WO2023102754A1 - 一种通信方法及装置、通信设备 - Google Patents

一种通信方法及装置、通信设备 Download PDF

Info

Publication number
WO2023102754A1
WO2023102754A1 PCT/CN2021/136213 CN2021136213W WO2023102754A1 WO 2023102754 A1 WO2023102754 A1 WO 2023102754A1 CN 2021136213 W CN2021136213 W CN 2021136213W WO 2023102754 A1 WO2023102754 A1 WO 2023102754A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
mobile network
terminals
upper limit
total
Prior art date
Application number
PCT/CN2021/136213
Other languages
English (en)
French (fr)
Inventor
许阳
陈景然
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/136213 priority Critical patent/WO2023102754A1/zh
Priority to CN202180103360.2A priority patent/CN118104207A/zh
Publication of WO2023102754A1 publication Critical patent/WO2023102754A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management

Definitions

  • the embodiments of the present application relate to the technical field of mobile communication, and in particular to a communication method and device, and a communication device.
  • multiple terminals can be combined to process a task.
  • multiple terminals consume communication resources. If the communication resources of multiple terminals are invoked without restriction, it will inevitably affect the normal progress of other terminals or other services. Therefore, an effective control method is required to limit it.
  • Embodiments of the present application provide a communication method and device, a communication device, a chip, a computer-readable storage medium, a computer program product, and a computer program.
  • the mobile network control node triggers the mobile network execution node to establish connections between multiple terminals and the application server; wherein, the value of the first aggregation parameter of at least some of the multiple terminals is less than or equal to the first total upper limit and/or Or the value of the second aggregation parameter is less than or equal to the second total upper limit, and the at least some terminals include at least one terminal that performs data transmission through respective connections among the multiple terminals.
  • the mobile network execution node controls data transmission between at least some of the multiple terminals and the application server based on the first total upper limit and/or the second total upper limit, wherein the first total upper limit refers to The upper limit of the value of the first aggregation parameter of at least one terminal performing data transmission among the plurality of terminals, the first total upper limit refers to the first aggregation of at least one terminal performing data transmission among the plurality of terminals The upper bound on the value of the parameter.
  • the communication device provided in the embodiment of the present application is applied to a mobile network control node, and the device includes:
  • An establishment unit configured to establish a connection between a plurality of terminals and an application server; wherein, the value of the first aggregation parameter of at least some of the plurality of terminals is less than or equal to the first total upper limit and/or the second aggregation The value of the parameter is less than or equal to the second total upper limit, and the at least some terminals include at least one terminal that performs data transmission through a respective connection among the multiple terminals.
  • the communication device provided in the embodiment of the present application is applied to a mobile network execution node, and the device includes:
  • a control unit configured to control data transmission between at least some of the multiple terminals and the application server based on a first total upper limit and/or a second total upper limit, wherein the first total upper limit is Refers to the upper limit of the value of the first aggregation parameter of at least one terminal that performs data transmission among the multiple terminals, and the first total upper limit refers to the first value of at least one terminal that performs data transmission among the multiple terminals The upper bound on the value of the aggregation parameter.
  • the communication device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory to execute the above-mentioned communication method.
  • the chip provided in the embodiment of the present application is used to implement the above-mentioned communication method.
  • the chip includes: a processor, configured to invoke and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned communication method.
  • the computer-readable storage medium provided by the embodiment of the present application is used for storing a computer program, and the computer program causes a computer to execute the above-mentioned communication method.
  • the computer program product provided by the embodiments of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the above-mentioned communication method.
  • the computer program provided in the embodiment of the present application when running on a computer, enables the computer to execute the above-mentioned communication method.
  • a connection is established between multiple terminals and the application server, and among the multiple terminals, the value of the aggregation parameter of the terminals that perform data transmission through their respective connections is less than or equal to the total upper limit value, so that data transmission can be achieved Effective management and control.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application
  • Figure 2-1 is an architecture diagram of federated learning
  • Figure 2-2 is a schematic diagram of each round of iterative process of federated learning
  • FIG. 3 is a first schematic flow diagram of a communication method provided by an embodiment of the present application.
  • FIG. 4 is a second schematic flow diagram of the communication method provided by the embodiment of the present application.
  • FIG. 5 is an architecture diagram of communication between a group and an application server provided by an embodiment of the present application
  • Fig. 6 is a schematic flow chart of establishing and joining a group provided by the embodiment of the present application.
  • FIG. 7 is a first schematic diagram of user plane data flow control performed by a mobile network control node provided in an embodiment of the present application.
  • FIG. 8 is a second schematic diagram of user plane data flow control performed by a mobile network control node provided in an embodiment of the present application.
  • FIG. 9 is a first structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a second structural diagram of the communication device provided by the embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • a communication system 100 may include a terminal 110 and a network device 120 .
  • the network device 120 can communicate with the terminal 110 through an air interface. Multi-service transmission is supported between the terminal 110 and the network device 120 .
  • the embodiment of the present application is only described by using the communication system 100 as an example, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: Long Term Evolution (Long Term Evolution, LTE) system, LTE Time Division Duplex (Time Division Duplex, TDD), Universal Mobile Communication System (Universal Mobile Telecommunication System, UMTS), Internet of Things (Internet of Things, IoT) system, Narrow Band Internet of Things (NB-IoT) system, enhanced Machine-Type Communications (eMTC) system, 5G communication system (also known as New Radio (NR) communication system), or future communication systems, etc.
  • LTE Long Term Evolution
  • LTE Time Division Duplex Time Division Duplex
  • TDD Time Division Duplex
  • Universal Mobile Telecommunication System Universal Mobile Telecommunication System
  • UMTS Universal Mobile Communication System
  • Internet of Things Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine-Type Communications
  • the network device 120 may be an access network device that communicates with the terminal 110 .
  • the access network device can provide communication coverage for a specific geographic area, and can communicate with terminals 110 (such as UEs) located in the coverage area.
  • the network device 120 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in a long-term evolution (Long Term Evolution, LTE) system, or a next-generation radio access network (Next Generation Radio Access Network, NG RAN) device, Either a base station (gNB) in the NR system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wearable Devices, hubs, switches, bridges, routers, or network devices in the future evolution of the Public Land Mobile Network (Public Land Mobile Network, PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a long-term evolution (Long Term Evolution, LTE) system
  • NG RAN next-generation radio access network
  • gNB base station
  • CRAN Cloud Radio Access Network
  • the network device 120 can be a relay station, an access point,
  • the terminal 110 may be any terminal, including but not limited to a terminal connected to the network device 120 or other terminals by wire or wirelessly.
  • the terminal 110 may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device , User Agent, or User Device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, IoT devices, satellite handheld terminals, Wireless Local Loop (WLL) stations, Personal Digital Assistant , PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminals in 5G networks or terminals in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal 110 can be used for device-to-device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may also include a core network device 130 that communicates with the base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, Access and Mobility Management Function (Access and Mobility Management Function , AMF), and for example, authentication server function (Authentication Server Function, AUSF), and for example, user plane function (User Plane Function, UPF), and for example, session management function (Session Management Function, SMF).
  • the core network device 130 may also be a packet core evolution (Evolved Packet Core, EPC) device of the LTE network, for example, a data gateway (Session Management Function+Core Packet Gateway, SMF+PGW- C) Equipment.
  • EPC packet core evolution
  • SMF+PGW-C can realize the functions of SMF and PGW-C at the same time.
  • the above-mentioned core network equipment may be called by other names, or a new network entity may be formed by dividing functions of the core network, which is not limited in this embodiment of the present application.
  • Various functional units in the communication system 100 may also establish a connection through a next generation network (next generation, NG) interface to implement communication.
  • NG next generation network
  • the terminal establishes an air interface connection with the access network device through the NR interface to transmit user plane data and control plane signaling; the terminal can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short); the access network device
  • a next-generation wireless access base station gNB
  • UPF can establish a user plane data connection with UPF through NG interface 3 (N3 for short); an access network device can establish a control plane signaling connection with AMF through NG interface 2 (N2 for short);
  • UPF can establish a control plane signaling connection with SMF through NG interface 4 (abbreviated as N4);
  • UPF can exchange user plane data with the data network through NG interface 6 (abbreviated as N6);
  • AMF can establish with SMF through NG interface 11 (abbreviated as N11)
  • Control plane signaling connection the SMF can establish a control plane signaling connection with the PCF through the NG interface 7 (N7 for short).
  • FIG. 1 exemplarily shows a base station, a core network device, and two terminals.
  • the wireless communication system 100 may include multiple base station devices and each base station may include other numbers of terminals within the coverage area. This embodiment of the present application does not limit it.
  • FIG. 1 is only an illustration of a system applicable to this application, and of course, the method shown in the embodiment of this application may also be applicable to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and there exists alone B these three situations.
  • the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • the "indication” mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the "correspondence” mentioned in the embodiments of the present application may mean that there is a direct correspondence or an indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated. , configuration and configured relationship.
  • predefined or “predefined rules” mentioned in the embodiments of this application can be used to indicate related information, and this application does not limit its specific implementation. For example, pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, and this application does not limit this .
  • multiple terminals can be combined to process a task.
  • the following uses a federated learning task as an example for illustration.
  • a federated learning task multiple terminals jointly process a learning task.
  • Figure 2-1 is an architecture diagram of federated learning.
  • the application server 210 interacts with multiple terminals (240-1 to 240-n) through the mobile network (core network 220+base station 230) For example, the application server 210 sends data to multiple terminals (240-1 to 240-n) through the mobile network, and the multiple terminals (240-1 to 240-n) report data to the application server 210 through the mobile network. Due to the needs of application layer scheduling, the application server can select different terminals to participate in federated learning in each round of iteration (or each time period).
  • FIG. 2-2 shows a schematic diagram of each round of iterative process of federated learning.
  • the Nth iterative process and the N+1th iterative process are used to illustrate the iterative process.
  • terminal selection, model allocation and training configuration are included.
  • the three processes of reporting the training results can also be described as a round of training process.
  • the local data of each terminal will not be exposed, which effectively protects data privacy; on the other hand, the computing power is shared among multiple terminals to speed up the training process of the model; On the one hand, the training of the model is based on the local data of multiple terminals, which breaks the problem of data islands.
  • any task jointly processed by multiple terminals or task processed by a group will involve scheduling multiple terminals to process the task.
  • multiple terminals When multiple terminals join together to handle a task, multiple terminals consume communication resources. If the communication resources of multiple terminals are called without restriction, it will inevitably affect the normal operation of other terminals or other services. Therefore, an effective control method is needed to limit it, which can meet the on-demand limitation of communication resources and support multiple Dynamic scheduling of terminals.
  • the technical solutions of the embodiments of the present application can at least achieve: 1. When multiple terminals and the application server jointly perform a certain task, limit the communication resources (such as bandwidth) of multiple terminals; 2. Multi-terminals and the application server jointly In the case of a certain task, quickly and dynamically adjust the number of multi-terminals.
  • Fig. 3 is a schematic flow diagram of a communication method provided by an embodiment of the present application. As shown in Fig. 3, the communication method includes the following steps:
  • Step 301 The mobile network control node triggers the mobile network execution node to establish connections between multiple terminals and the application server; wherein, the value of the first aggregation parameter of at least some of the multiple terminals is less than or equal to the first total upper limit value and/or the value of the second aggregation parameter is less than or equal to the second total upper limit value, and the at least some terminals include at least one terminal that performs data transmission through respective connections among the multiple terminals.
  • the mobile network control node may be but not limited to a control plane network element, and the mobile network execution node may be but not limited to a user plane network element.
  • the mobile network control node may be a session management function network element (Session Management Function, SMF), and the mobile network execution node may be a user plane function network element (User Plane Function, UPF).
  • SMF Session Management Function
  • UPF User Plane Function
  • the mobile network control node and the mobile network execution node may be set independently in the mobile network, or may also be set together.
  • the data transmission in the embodiment of the present application refers to data transmission between the terminal and the application server.
  • the mobile network control node before the mobile network control node triggers the mobile network execution node to establish connections between multiple terminals and the application server, the mobile network control node receives the first request sent by the terminal and/or the application server message: the first request message sent by the terminal is used to request that the terminal be added to the group, and the first request message sent by the application server is used to request to add multiple terminals to the group.
  • the mobile network control node triggers the mobile network execution node to establish connections between multiple terminals and the application server, which may be implemented in the following manner: the mobile network control node sends a connection establishment or update message to the mobile network execution node, and receives the A connection establishment or update reply message sent by a mobile network execution node, wherein the mobile network execution node is configured to establish connections between the multiple terminals and the application server.
  • the first request message may also be called a join request message, and the join request message is used to request to join a group.
  • the first request message carries request information, and the request information includes at least one of the following:
  • first indication information where the first indication information is used to instruct the terminal to apply to join the group
  • group identifier is used to indicate the group that the terminal applies to join or the group to which the terminal belongs
  • terminal identifier where the terminal identifier is used to identify a terminal joining the group
  • Second indication information where the second indication information is used to indicate relevant Quality of Service (QoS) parameters when the terminal joins the group for data transmission.
  • QoS Quality of Service
  • the first indication information may be referred to as joining group indication information.
  • the QoS parameter indicated by the second indication information may indicate the highest or lowest QoS requirement for the terminal to transmit data in the connection to which it belongs, such as the maximum or minimum bandwidth requirement (such as guaranteed bit rate and/or maximum bit rate ), maximum or minimum delay requirements, maximum or minimum reliability requirements, etc.
  • the mobile network execution node may establish a connection meeting the corresponding QoS requirements according to the QoS parameters indicated by the terminal in the first request message.
  • the connection may be a QoS flow (QoS flow) or other connections with parameters for implementing QoS.
  • terminal 1 (which may be any one of multiple terminals) sends a first request message to the mobile network control node, the first request message carries request information, and the request information includes at least one of the following:
  • first indication information where the first indication information is used to instruct terminal 1 to apply to join the group
  • a group identifier where the group identifier is used to identify the group that the terminal 1 applies to join;
  • terminal identifier is used to identify the terminal 1 joining the group
  • the second indication information is used to indicate the relevant QoS parameters when the terminal 1 joins the group for data transmission.
  • the application server sends a first request message to the mobile network control node, where the first request message carries request information, and the request information includes at least one of the following:
  • the first indication information is used to instruct terminal 1 to terminal N to apply to join the group, where N is a positive integer;
  • a group identifier where the group identifier is used to identify the group that the terminal 1 to the terminal N apply to join;
  • a terminal identification list (ie, a plurality of terminal identifications), the terminal identification list is used to identify terminals 1 to N joining the group;
  • Second indication information where the second indication information is used to indicate the respective QoS parameters related to when terminal 1 to terminal N join the group for data transmission.
  • the mobile network control node selects the same mobile network execution node for the multiple terminals based on the request information. In this way, since multiple terminals correspond to the same mobile network execution node, when multiple When the terminal communicates with the mobile network execution node, group-level control of multiple terminals can be realized, that is, multiple terminals can be controlled as a whole. Specifically, the mobile network execution node can control multiple terminals based on the total upper limit. Terminal data transmission.
  • the mobile network control node before the mobile network control node receives the first request message sent by the terminal and/or the application server, the mobile network control node receives the second request message sent by the first node, and the second The request message carries the group policy. Further, optionally, the mobile network control node establishes a group-level context based on the group policy, and sends the group-level context to the mobile network execution node.
  • the first node is a unified data management node or a policy control node or an application server. Taking a 5G network as an example, the unified data management node may be a unified data management network element (Unified Data Management, UDM), and the policy control node may be a policy control function network element (Policy Control Function, PCF).
  • UDM Unified Data Management
  • PCF Policy Control Function
  • the second request message may be called a configuration request message.
  • the group policy includes at least one of the following: the first total upper limit value, where the first total upper limit value refers to a first aggregation parameter of at least one terminal performing data transmission The upper limit of the value; the second total upper limit, the second total upper limit refers to the upper limit of the value of the second aggregation parameter of at least one terminal for data transmission; the maximum number of terminals in the group, the The maximum number of terminals in a group is the upper limit of the total number of terminals contained in a group; the address information of the application server, such as the IP address and port number of the application server.
  • the group-level context includes at least one of the following information: group identifier, group QoS, and group member information.
  • the group QoS in the context of the group level may be determined by the mobile network control node based on the total upper limit value in the group policy, for example, the total upper limit value is the total bandwidth, and the group QoS is the total bandwidth.
  • the group ID and group member information in the context of the group level may be allocated by the mobile network control node, wherein the number of terminals included in the group members needs to be less than the number of terminals in the group policy The maximum number of endpoints for a group.
  • the mobile network control node after receiving the first request message, updates the group-level context based on the request information carried in the first request message; the mobile network control node will The updated group-level context is sent to the mobile network execution node.
  • the first total upper limit value is the total bandwidth, and the total bandwidth refers to the upper limit of the sum of the bandwidths of the data streams of at least one terminal performing data transmission; at least one of the multiple terminals
  • the value of the first aggregation parameter of some terminals is less than or equal to the first total upper limit value means that: the sum of bandwidths of the data streams of at least some terminals is less than or equal to the total bandwidth.
  • the second total upper limit value is the total number of terminals, and the total number of terminals refers to the upper limit of the total number of at least one terminal performing data transmission; at least some of the multiple terminals
  • the value of the second aggregation parameter of the terminals is less than or equal to the second total upper limit value means that: the number of terminals of the at least some terminals is less than or equal to the total number of terminals.
  • the mobile network execution node controls the data transmission between at least some of the multiple terminals and the application server based on the first total upper limit and the second total upper limit.
  • Figure 4 illustrates this.
  • Fig. 4 is a schematic flow diagram II of the communication method provided by the embodiment of the present application. As shown in Fig. 4, the communication method includes the following steps:
  • Step 401 The mobile network execution node controls the data transmission between at least some of the multiple terminals and the application server based on the first total upper limit and/or the second total upper limit, wherein the first total upper limit
  • the value refers to the upper limit of the value of the first aggregation parameter of at least one terminal performing data transmission among the plurality of terminals
  • the first total upper limit value refers to the value of at least one terminal performing data transmission among the plurality of terminals.
  • the upper bound on the value of the first aggregation parameter refers to the upper limit of the value of the first aggregation parameter of at least one terminal performing data transmission among the plurality of terminals.
  • the first total upper limit value is a total bandwidth
  • the total bandwidth refers to an upper limit of a sum of bandwidths of data streams of at least one terminal performing data transmission.
  • the mobile network execution node determines that the sum of the bandwidths of the data streams of at least one terminal for data transmission with the application server is less than or equal to the total bandwidth, and allows the data streams of the at least one terminal to pass through the mobile network
  • the execution node transmits to the application server; if the sum of the bandwidth of the data stream of the first terminal that needs to transmit data with the application server plus the bandwidth of the data stream of the at least one terminal is greater than the total bandwidth, then the The mobile network execution node prohibits the data flow of the first terminal from being transmitted to the application server through the mobile network execution node; or, if it is necessary to add the bandwidth of the data flow of the first terminal for data transmission with the application server
  • the sum of the bandwidths of the data streams of at least one terminal is less than or equal to the total bandwidth, then the mobile network execution node allows the data stream of the first terminal to be transmitted to the application server through the mobile network execution node; wherein, The first terminal is a terminal of the multiple terminals.
  • Solution 1-2 If the mobile network execution node determines that the sum of bandwidths of at least one terminal’s data flow with the application server for data transmission is greater than or equal to the total bandwidth, then the mobile network execution node forbids The data flow of the first terminal transmitted by the server is transmitted to the application server through the mobile network execution node.
  • the first terminal that needs to perform data transmission may be understood as a new terminal that needs to perform data transmission (different from the at least one terminal that has already performed data transmission).
  • the The mobile network execution node allows the data flow of the first terminal to be transmitted to the application server through the mobile network execution node; or, if the second terminal of the at least one terminal stops transmitting, and the first terminal The sum of the bandwidth of the data stream of the at least one terminal plus the bandwidth of the data streams of the terminals other than the second terminal in the at least one terminal is less than or equal to the total bandwidth, then the mobile network execution node allows the first terminal to The data flow is transmitted to the application server through the mobile network execution node.
  • the second terminal may be understood as a terminal that has already performed data transmission.
  • Terminal 1, Terminal 2, Terminal 3, and Terminal 4 perform data transmission, the sum of the bandwidths of the data streams of these 4 terminals is less than or equal to the total bandwidth, and the mobile network execution node allows the data streams of these 4 terminals to pass. Subsequently, terminal 5 needs to perform data transmission. If the bandwidth of the data stream of terminal 5 plus the sum of the bandwidths of the previous four terminals is greater than the total bandwidth, the mobile network execution node prohibits the data stream of terminal 5 from passing through; further, if the previous Terminal 1 among the four terminals stops transmission, and the bandwidth of the data stream of terminal 1 is greater than or equal to the bandwidth of the data stream of terminal 5, then the mobile network execution node allows the data stream of terminal 5 to pass through.
  • the second total upper limit value is the total number of terminals, and the total number of terminals refers to the upper limit of the total number of at least one terminal performing data transmission.
  • the mobile network execution node determines that the number of terminals of at least one terminal that performs data transmission with the application server is less than or equal to the total number of terminals, and allows the data flow of the at least one terminal to be transmitted through the mobile network execution node To the application server; if the number of the first terminal that needs to perform data transmission with the application server plus the number of terminals of the at least one terminal is greater than the total number of terminals, then the mobile network execution node prohibits the first terminal The data flow of the mobile network execution node is transmitted to the application server; or, if the number of terminals of the first terminal that needs to perform data transmission with the application server plus the number of terminals of the at least one terminal is less than or equal to the total number of terminals, the mobile network execution node allows the data flow of the first terminal to be transmitted to the application server through the mobile network execution node; wherein the first terminal is one of the plurality of terminals.
  • the first terminal that needs to perform data transmission may be understood as a new terminal that needs to perform data transmission (different from the at least one terminal that has already performed data transmission).
  • the mobile network execution node allows the data flow of the first terminal to be transmitted to the second terminal through the mobile network execution node. the above application server.
  • the second terminal may be understood as a terminal that has already performed data transmission.
  • terminal 1, terminal 2, terminal 3, and terminal 4 perform data transmission, the number of terminals of these 4 terminals is less than or equal to the total number of terminals, and the mobile network execution node allows the data streams of these 4 terminals to pass. Subsequently, terminal 5 needs to perform data transmission. If the terminal number of terminal 5 plus the previous 4 terminals is greater than the total number of terminals, the mobile network execution node prohibits the data flow of terminal 5 from passing through; further, if the previous 4 terminals Terminal 1 stops transmission, and the mobile network execution node allows the data flow of terminal 5 to pass through.
  • the first total upper limit value is the total number of terminals, and the total number of terminals refers to the upper limit of the total number of at least one terminal performing data transmission;
  • the second total upper limit value is The total number of terminals, where the total number of terminals refers to the upper limit of the total number of at least one terminal for data transmission.
  • the mobile network execution node determines that the sum of bandwidths of the data streams of at least one terminal performing data transmission with the application server is less than or equal to the total bandwidth, and the number of terminals of the at least one terminal is less than or equal to the total number of terminals, allowing the at least The data flow of a terminal is transmitted to the application server through the mobile network execution node;
  • the mobile network execution node prohibits the data flow of the first terminal from being transmitted to the application server through the mobile network execution node;
  • the mobile network execution node allows the data flow of the first terminal to be transmitted to the application server through the mobile network execution node.
  • the first terminal that needs to perform data transmission may be understood as a new terminal that needs to perform data transmission (different from the at least one terminal that has already performed data transmission).
  • the The mobile network execution node allows the data flow of the first terminal to be transmitted to the application server through the mobile network execution node; or, if the second terminal of the at least one terminal stops transmitting, and the first terminal The sum of the bandwidth of the data stream of the at least one terminal plus the bandwidth of the data streams of the terminals other than the second terminal in the at least one terminal is less than or equal to the total bandwidth, then the mobile network execution node allows the first terminal to The data flow is transmitted to the application server through the mobile network execution node.
  • Terminal 1, Terminal 2, Terminal 3, and Terminal 4 perform data transmission, the sum of the bandwidth of the data streams of these 4 terminals is less than or equal to the total bandwidth and the number of terminals of these 4 terminals is less than or equal to the total number of terminals, the mobile network executes The node allows the data flow of these 4 terminals to pass through.
  • terminal 5 needs to perform data transmission, if the bandwidth of the data stream of terminal 5 plus the sum of the bandwidth of the previous 4 terminals is greater than the total bandwidth and/or the number of terminals of terminal 5 plus the previous 4 terminals is greater than the total number of terminals , then the mobile network execution node prohibits the data flow of terminal 5 from passing through; further, if terminal 1 among the previous four terminals stops transmitting, and the bandwidth of the data flow of terminal 1 is greater than or equal to the bandwidth of the data flow of terminal 5, the mobile network The execution node allows the data flow of terminal 5 to pass through.
  • the mobile network controls data transmission based on the total upper limit, which may be in the following manner:
  • the mobile network execution node continuously controls data transmission between at least some of the multiple terminals and the application server based on the first total upper limit and/or the second total upper limit.
  • the processing tasks between multiple terminals and the application server can be realized through a continuous process, that is, there is no iterative process.
  • the mobile network execution node can continuously control data transmission according to the above scheme.
  • the mobile network execution node controls the connection between at least some of the multiple terminals and the application server based on the first total upper limit and/or the second total upper limit in each round of iteration or in each time period. data transmission.
  • the processing tasks between multiple terminals and the application server can be realized through multiple rounds of iterative process.
  • the mobile network execution node will perform Control of data transmission, such as recounting the sum of the bandwidth of the terminals for each iteration and comparing it with the total bandwidth, and/or recounting the number of terminals and comparing it with the total number of terminals, and controlling the data flow based on the comparison results Is it allowed to pass.
  • the mobile network execution node determines whether to start a new round of iteration based on at least one of the following information: user plane information associated with iteration, time information associated with iteration, control plane associated with iteration information.
  • the mobile network execution node may determine whether to start a new round of iteration based on at least one of the following information: user plane information associated with the iteration, time information associated with the iteration, and control plane information associated with the iteration.
  • the user plane information associated with the iteration may be, for example, a label on a data packet (such as a Differentiated Services Code Point (Differentiated Services Code Point, DSCP) label or a Type of Service (Type of Service, ToS) field on an IP packet header), wherein , for the downlink, the data packet is sent by the application server, and for the uplink, the data packet is sent by the terminal.
  • DSCP Differentiated Services Code Point
  • ToS Type of Service
  • the control plane information associated with the iteration can be, for example, the instruction information sent by the mobile network control node to the mobile network execution node.
  • the instruction information is used to instruct to update the group members, or to instruct to establish or update the connection between the terminals in the group and the application server. Connection.
  • connection in the technical solution of the embodiment of the application may refer to a QoS flow (QoS flow) or other connection with execution QoS parameters, and the application does not limit the type of "connection”.
  • the bandwidth in the technical solutions of the embodiments of the present application may refer to guaranteed bit rate (Guaranteed Bit Rate, GBR) or maximum bit rate (Maximum Bit Rate, MBR).
  • GBR Guarantee Bit Rate
  • MBR Maximum Bit Rate
  • the technical solution of the embodiment of the present application can be applied to the uplink, and can also be applied to the downlink, wherein, for the uplink, the bandwidth refers to the uplink bandwidth (such as UL GBR and/or UL MBR), and for the downlink, the bandwidth refers to the downlink bandwidth (such as DL GBR and/or DL MBR).
  • the technical solution of the embodiment of the present application can be applied to an uplink scenario, and correspondingly, at least some of the multiple terminals can send data to the application server.
  • the technical solution of the embodiment of the present application may also be applied to a downlink scenario, and correspondingly, the application server may send data to at least some of the multiple terminals.
  • Fig. 5 is a structure diagram of the communication between the group and the application server provided by the embodiment of the present application. As shown in Fig. 5, a certain number of terminals 530 can complete connection establishment with the application server 510 through the mobile network (core network 520+base station 540) (such as establishing a PDU session and/or corresponding QoS flow).
  • the mobile network core network 520+base station 540
  • FIG. 5 illustrates the iterative process of the Nth round and the N+1th iterative process. Each iterative process can re-select participating terminals, and the terminals corresponding to different iterative processes can be completely the same or partially the same.
  • Fig. 6 is a schematic flow chart of establishing and joining a group provided by the embodiment of the present application, as shown in Fig. 6, including the following steps:
  • Step 601 the application server or the unified data management node or the policy control node sends a configuration request message to the mobile network control node, and the configuration request message carries a group policy.
  • the unified data management node may be a UDM, and the policy control node may be a PCF.
  • the group policy includes at least one of the following: a total upper limit value; a maximum number of terminals in a group, where the maximum number of terminals in a group is the upper limit of the total number of terminals contained in a group ; Address information of the application server, such as the IP address and port number of the application server.
  • the total upper limit value includes at least one of the following: total bandwidth, the total bandwidth refers to the upper limit of the sum of the bandwidth of the data flow of at least one terminal for data transmission; the total number of terminals, the The total number of terminals refers to the upper limit of the total number of at least one terminal for data transmission.
  • the mobile network control node After the mobile network control node acquires the group policy, it can establish a group-level context according to the group policy.
  • the group-level context includes at least one of the following: group identifier, group QoS , group member information, etc.
  • the mobile network control node may interact with the mobile network execution node to also establish a relevant context on the mobile network execution node (or this step may also be completed in the subsequent step 603).
  • Step 602a/b Multiple terminals and/or application servers send join request messages to the mobile network control node, where the join request messages carry request information.
  • the mobile network control node may be an SMF, and the mobile network execution node may be a UPF.
  • the request message is used to request to join a group, and the terminals under the group can be called by the application server to perform task processing at any time (that is to say, some terminals can be selected from the terminals requesting to join the group to perform task processing).
  • the terminals under the group can be called by the application server to perform task processing at any time (that is to say, some terminals can be selected from the terminals requesting to join the group to perform task processing).
  • a part of terminals may be reselected from the group for each round of iterative process to perform task processing.
  • the request information includes at least one of the following: first indication information, the first indication information is used to instruct the terminal to apply to join the group; a group identifier, the group identifier is used to indicate The group that the terminal applies to join or the group to which the terminal belongs; a terminal identifier, the terminal identifier is used to identify the terminal joining the group; second indication information, the second indication information is used to instruct the terminal to join the group QoS parameters related to data transmission.
  • the join request message can be sent multiple times from the terminal and/or the application server, that is, one or more terminals can be added to the group each time.
  • the mobile network control node may select the same core network execution node for the terminal according to the request information, so as to facilitate group-level control.
  • the mobile network control node each time the mobile network control node receives the joining request message, it will update the local group-level context. Further, the mobile network control node may send the updated group-level context to the mobile network execution node in the subsequent step 503 .
  • Step 603 The mobile network control node sends a connection establishment or update message to the mobile network execution node.
  • connection establishment or update message carries indication information
  • the indication information is used to indicate the terminal requesting to join the group, so that the mobile network execution node establishes a connection between the terminal requesting to join the group and the application server. connection between.
  • the mobile network execution node may respectively create corresponding connections (such as PDU sessions and/or QoS flows) for terminals requesting to join the group.
  • the mobile network execution node can create a corresponding connection for the terminal based on the address information of the application server in the group policy, and the connection is used to transmit data between the terminal and the application server.
  • Step 604 The mobile network execution node sends a connection establishment or update reply message to the mobile network control node.
  • the mobile network control node performs user plane data flow control.
  • the group includes 10 terminals, and the numbers of the 10 terminals are Terminal 1, Terminal 2, Terminal 3, Terminal 4, Terminal 5, Terminal 6, Terminal 7, Terminal 8, Terminal 9, and Terminal 10.
  • 10 terminals have established connections with the application server. During each round of iteration, the sum of the bandwidths of the data streams of the terminals actually performing data transmission cannot be greater than the total bandwidth of 5 mbps.
  • the mobile network execution node can, but is not limited to, determine the bandwidth occupied by the data flow of each terminal in the following ways:
  • the bandwidth of the terminal data flow establishment is the bandwidth occupied by the terminal connection, that is, the bandwidth occupied by the terminal data flow is as large as the bandwidth of the terminal connection establishment.
  • the mobile network execution node may determine the bandwidth occupied by the terminal's data stream according to the bandwidth corresponding to the connection of the terminal.
  • the mobile network execution node receives the user plane information or the control plane information, and determines the bandwidth occupied by the data flow of the terminal according to the instruction information carried in the user plane information or the control plane information.
  • the user plane information can be sent to the mobile network execution node by the application server or the terminal, for example, the application server sends the downlink data packet carrying the indication information to the mobile network execution node, for example, the terminal will carry the indication information
  • the uplink data packet of the information is sent to the mobile network execution node.
  • the application server or the terminal may send the data packet carrying the indication information to the mobile network execution node (for example, the indication information may be sent to the mobile network at the beginning of each round of iteration or during each round of iteration The execution node) indicates the bandwidth occupied by the data flow of the terminal through the indication information.
  • the indication information may be carried in a header of the data packet.
  • Terminal 1, Terminal 2, Terminal 3, and Terminal 4 perform data transmission with the application server through their respective connections, and the bandwidth of the data streams of these four terminals is 1 mbps respectively , 1.5mbps, 1.2mbps, 1.2mbps, the sum of the bandwidth of the data flow of these 4 terminals is 4.9mbps, since the sum of bandwidth 4.9mbps is less than the total bandwidth of 5mbps, the mobile network execution node allows the data flow of these 4 terminals to pass through .
  • terminal 5 When terminal 5 needs to transmit data, since the bandwidth of terminal 5's data stream is 0.5 mbps plus the sum of the bandwidth of the previous 4 terminals 4.9 mbps is greater than the total bandwidth of 5 mbps, the mobile network execution node prohibits the data stream of terminal 5 from passing. Further, if terminal 1 stops data transmission, since the bandwidth 1 mbps of terminal 1's data stream is greater than the bandwidth of terminal 5's data stream 0.5 mbps, the mobile network execution node allows terminal 5's data stream to pass through. Similarly, in the second round of iteration, Terminal 2, Terminal 7, and Terminal 9 perform data transmission with the application server through their respective connections, and the bandwidths of the data streams of these three terminals are 1.8mbps, 1.2mbps, and 2mbps respectively.
  • the sum of the bandwidths of the data streams of the three terminals is 5 mbps, and since the sum of the bandwidths of 5 mbps is equal to the total bandwidth of 5 mbps, the mobile network execution node allows the data streams of the three terminals to pass.
  • the mobile network execution node prohibits terminal 3's data stream from passing.
  • terminal 7 stops data transmission, since the bandwidth of terminal 7's data stream of 1.2 mbps is greater than the bandwidth of terminal 3's data stream of 0.9 mbps, the mobile network execution node allows terminal 3's data stream to pass through.
  • each round of iteration can ensure that the sum of the bandwidth used by the group members does not exceed the total bandwidth.
  • the group includes 10 terminals, and the numbers of the 10 terminals are Terminal 1, Terminal 2, Terminal 3, Terminal 4, Terminal 5, Terminal 6, Terminal 7, Terminal 8, Terminal 9, and Terminal 10. 10 terminals have established connections with the application server. In each round of iteration, the number of terminals actually performing data transmission cannot be greater than the total number of terminals 3.
  • Terminal 1, Terminal 2, and Terminal 3 perform data transmission with the application server through their respective connections.
  • the number of terminals of these three terminals is equal to the total number of terminals 3, so the mobile The network execution node allows the data flow of these 3 terminals to pass through.
  • the mobile network execution node prohibits the data flow of the terminal 5 from passing, no matter how large the bandwidth of the data flow of the terminal 5 is. Further, if the terminal 1 stops data transmission, the mobile network execution node allows the data flow of the terminal 5 to pass through.
  • terminal 3, terminal 5, and terminal 6 perform data transmission between the application server through their respective connections.
  • the number of terminals of these three terminals is equal to the total number of terminals 3, so the mobile network execution node allows these 3
  • the data flow of each terminal passes through.
  • the mobile network execution node prohibits the data flow of the terminal 4 from passing, no matter how large the bandwidth of the data flow of the terminal 4 is. Further, if the terminal 3 stops data transmission, the mobile network execution node allows the data flow of the terminal 4 to pass through.
  • each iteration can guarantee that the sum of the terminal numbers of the group members does not exceed the total terminal number.
  • Embodiment 3 and Embodiment 4 can be implemented independently or in combination, that is, the data transmission is limited according to the total bandwidth and the total number of terminals at the same time, and only the terminals that actually perform data transmission Only when the sum of bandwidths of data streams is less than or equal to the total bandwidth and the number of terminals is less than or equal to the total number of terminals, the mobile network execution node allows the data streams of these terminals to pass.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic, and should not be used in this application.
  • the implementation of the examples constitutes no limitation.
  • the terms “downlink”, “uplink” and “sidelink” are used to indicate the transmission direction of signals or data, wherein “downlink” is used to indicate that the transmission direction of signals or data is sent from the station The first direction to the user equipment in the cell, “uplink” is used to indicate that the signal or data transmission direction is the second direction sent from the user equipment in the cell to the station, and “side line” is used to indicate that the signal or data transmission direction is A third direction sent from UE1 to UE2.
  • “downlink signal” indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that there may be three relationships. Specifically, A and/or B may mean: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • Fig. 9 is a schematic diagram of the first structural composition of the communication device provided by the embodiment of the present application, which is applied to a mobile network control node. As shown in Fig. 9, the communication device includes:
  • the communication unit 901 is configured to trigger the mobile network execution node to establish a connection between multiple terminals and the application server; where the value of the first aggregation parameter of at least some of the multiple terminals is less than or equal to the first total upper limit value And/or the value of the second aggregation parameter is less than or equal to the second total upper limit, and the at least some terminals include at least one terminal that performs data transmission through respective connections among the multiple terminals.
  • the communication unit 901 is further configured to receive a first request message sent by a terminal and/or an application server; the first request message sent by the terminal is used to request that the terminal be added to a group , the first request message sent by the application server is used to request to add multiple terminals to the group.
  • the communication unit 901 is configured to send a connection establishment or update message to a mobile network execution node, and receive a connection establishment or update reply message sent by the mobile network execution node, wherein the mobile network The execution node is configured to establish connections between the multiple terminals and the application server.
  • the first request message carries request information, and the request information includes at least one of the following:
  • first indication information where the first indication information is used to instruct the terminal to apply to join the group
  • group identifier is used to indicate the group that the terminal applies to join or the group to which the terminal belongs
  • terminal identifier where the terminal identifier is used to identify a terminal joining the group
  • Second indication information where the second indication information is used to indicate relevant QoS parameters when the terminal joins the group for data transmission.
  • the apparatus further includes: a selection unit, configured to select the same mobile network execution node for the multiple terminals based on the request information.
  • the communication unit 901 is further configured to receive a second request message sent by the first node before receiving the first request message sent by the terminal and/or the application server, the second request message Carry group policies.
  • the apparatus further includes: an establishing unit 902, configured to establish a group-level context based on the group policy, and send the group-level context to the mobile network for execution node.
  • an establishing unit 902 configured to establish a group-level context based on the group policy, and send the group-level context to the mobile network for execution node.
  • the group policy includes at least one of the following:
  • the first total upper limit value refers to the upper limit of the value of the first aggregation parameter of at least one terminal performing data transmission
  • the second total upper limit refers to the upper limit of the value of the second aggregation parameter of at least one terminal performing data transmission
  • the maximum number of terminals in a group where the maximum number of terminals in a group is the upper limit of the total number of terminals contained in a group;
  • the address information of the application server is the address information of the application server.
  • the group-level context includes at least one of the following information: group identifier, group QoS, and group member information.
  • the first node is a unified data management node or a policy control node or an application server.
  • the apparatus further includes: an updating unit, configured to update the group-level context based on the request information carried in the first request message;
  • the communication unit 901 is further configured to send the updated group-level context to the mobile network execution node.
  • the first total upper limit value is the total bandwidth, and the total bandwidth refers to the upper limit of the sum of the bandwidths of the data streams of at least one terminal performing data transmission; at least one of the multiple terminals
  • the value of the first aggregation parameter of some terminals is less than or equal to the first total upper limit value means that: the sum of bandwidths of the data streams of at least some terminals is less than or equal to the total bandwidth.
  • the second total upper limit value is the total number of terminals, and the total number of terminals refers to the upper limit of the total number of at least one terminal performing data transmission; at least some of the multiple terminals
  • the value of the second aggregation parameter of the terminals is less than or equal to the second total upper limit value means that: the number of terminals of the at least some terminals is less than or equal to the total number of terminals.
  • Fig. 10 is a schematic diagram of the second structural composition of the communication device provided by the embodiment of the present application, which is applied to a mobile network execution node. As shown in Fig. 10, the communication device includes:
  • a control unit 1001 configured to control data transmission between at least some of the multiple terminals and an application server based on a first total upper limit and/or a second total upper limit, wherein the first total upper limit refers to the upper limit of the value of the first aggregation parameter of at least one terminal performing data transmission among the plurality of terminals, and the first total upper limit value refers to the first aggregate parameter value of at least one terminal performing data transmission among the plurality of terminals An upper bound on the value of the aggregation parameter.
  • the first total upper limit value is a total bandwidth
  • the total bandwidth refers to the upper limit of the sum of bandwidths of data streams of at least one terminal performing data transmission
  • the control unit 1001 is configured to determine that the sum of the bandwidths of the data streams of at least one terminal performing data transmission with the application server is less than or equal to the total bandwidth, and allow the data streams of the at least one terminal to be transmitted through the mobile network execution node to the application server; if the sum of the bandwidth of the data stream of the first terminal that needs to transmit data with the application server plus the bandwidth of the data stream of the at least one terminal is greater than the total bandwidth, prohibit the first The data flow of the terminal is transmitted to the application server through the mobile network execution node; or, if it is necessary to perform data transmission with the application server, the bandwidth of the data flow of the first terminal plus the bandwidth of the data flow of the at least one terminal and is less than or equal to the total bandwidth, allowing the data flow of the first terminal to be transmitted to the application server through the mobile network execution node; wherein the first terminal is a terminal of the plurality of terminals.
  • the first total upper limit value is the total number of terminals, and the total number of terminals refers to the upper limit of the total number of at least one terminal performing data transmission;
  • the control unit 1001 is configured to prohibit transmission with the application server if the mobile network execution node determines that the sum of bandwidths of data streams of at least one terminal that performs data transmission with the application server is greater than or equal to the total bandwidth
  • the data flow of the first terminal is transmitted to the application server through the mobile network execution node.
  • control unit 1001 is configured to: if the second terminal of the at least one terminal stops transmitting, and the bandwidth of the data stream of the second terminal is greater than or equal to the data stream of the first terminal, If the bandwidth of the flow, the data flow of the first terminal is allowed to be transmitted to the application server through the mobile network execution node; or, if the second terminal of the at least one terminal stops transmitting, and the first terminal The sum of the bandwidth of the data stream of the at least one terminal plus the bandwidth of the data streams of the terminals other than the second terminal in the at least one terminal is less than or equal to the total bandwidth, then the data stream of the first terminal is allowed to pass through the mobile The network execution node transmits to the application server.
  • the second total upper limit value is the total number of terminals, and the total number of terminals refers to the upper limit of the total number of at least one terminal performing data transmission;
  • the control unit 1001 is configured to determine that the number of at least one terminal that performs data transmission with the application server is less than or equal to the total number of terminals, and allow the data flow of the at least one terminal to be transmitted to the mobile network execution node through the mobile network execution node.
  • Application server if the number of terminals that need to perform data transmission with the application server plus the number of terminals of the at least one terminal is greater than the total number of terminals, prohibiting the data flow of the first terminal from being executed through the mobile network
  • the node transmits to the application server; or, if the number of terminals of the first terminal that needs to perform data transmission with the application server plus the number of terminals of the at least one terminal is less than or equal to the total number of terminals, the first terminal is allowed to The data stream of the terminal is transmitted to the application server through the mobile network execution node; wherein, the first terminal is a terminal of the plurality of terminals.
  • the second total upper limit value is the total number of terminals, and the total number of terminals refers to the upper limit of the total number of at least one terminal performing data transmission;
  • the control unit 1001 is configured to, if the mobile network execution node determines that the terminal number of at least one terminal that performs data transmission with the application server is greater than or equal to the total number of terminals, prohibit the first terminal that needs to transmit data with the application server.
  • the data flow of the terminal is transmitted to the application server through the mobile network execution node.
  • control unit 1001 is configured to allow the data flow of the first terminal to be transmitted to the at least one terminal through the mobile network execution node if the second terminal of the at least one terminal stops transmitting. the above application server.
  • the first total upper limit value is the total number of terminals, and the total number of terminals refers to the upper limit of the total number of at least one terminal performing data transmission;
  • the second total upper limit value is The total number of terminals, the total number of terminals refers to the upper limit of the total number of at least one terminal for data transmission;
  • the control unit 1001 is configured to determine that the sum of bandwidths of data streams of at least one terminal performing data transmission with the application server is less than or equal to the total bandwidth, and the number of terminals of the at least one terminal is less than or equal to the total number of terminals, allowing the The data flow of the at least one terminal is transmitted to the application server through the mobile network execution node; if it is necessary to perform data transmission with the application server, the bandwidth of the data flow of the first terminal plus the bandwidth of the data flow of the at least one terminal The sum is greater than the total bandwidth, and/or the number of terminals of the first terminal plus the number of terminals of the at least one terminal is greater than the total number of terminals, then the data flow of the first terminal is prohibited from executing through the mobile network
  • the node transmits to the application server; or, if the sum of the bandwidth of the data stream of the first terminal that needs to transmit data with the application server plus the bandwidth of the data stream of the at least one terminal is less than or equal to the total bandwidth, and the If the number
  • control unit 1001 is configured to: if the second terminal of the at least one terminal stops transmitting, and the bandwidth of the data stream of the second terminal is greater than or equal to the data stream of the first terminal, If the bandwidth of the flow, the data flow of the first terminal is allowed to be transmitted to the application server through the mobile network execution node; or, if the second terminal of the at least one terminal stops transmitting, and the first terminal The sum of the bandwidth of the data stream of the at least one terminal plus the bandwidth of the data streams of the terminals other than the second terminal in the at least one terminal is less than or equal to the total bandwidth, then the data stream of the first terminal is allowed to pass through the mobile The network execution node transmits to the application server.
  • control unit 1001 is configured to control at least some of the multiple terminals based on the first total upper limit and/or the second total upper limit in each round of iteration or in each time period Data transmission between the terminal and the application server.
  • the apparatus further includes: a determining unit 1002, configured to determine whether to start a new round of iteration based on at least one of the following information: user plane information associated with the iteration, time information associated with the iteration, Control plane information associated with an iteration.
  • a determining unit 1002 configured to determine whether to start a new round of iteration based on at least one of the following information: user plane information associated with the iteration, time information associated with the iteration, Control plane information associated with an iteration.
  • FIG. 11 is a schematic structural diagram of a communication device 1100 provided by an embodiment of the present application.
  • the communication device may be a network device (such as a mobile network control node, a mobile network execution node).
  • the communication device 1100 shown in FIG. 11 includes a processor 1110, and the processor 1110 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 1100 may further include a memory 1120 .
  • the processor 1110 can invoke and run a computer program from the memory 1120, so as to implement the method in the embodiment of the present application.
  • the memory 1120 may be an independent device independent of the processor 1110 , or may be integrated in the processor 1110 .
  • the communication device 1100 may further include a transceiver 1130, and the processor 1110 may control the transceiver 1130 to communicate with other devices, specifically, to send information or data to other devices, or to receive other Information or data sent by the device.
  • the processor 1110 may control the transceiver 1130 to communicate with other devices, specifically, to send information or data to other devices, or to receive other Information or data sent by the device.
  • the transceiver 1130 may include a transmitter and a receiver.
  • the transceiver 1130 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1100 may specifically be the network device of the embodiment of the present application, and the communication device 900 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • FIG. 12 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1200 shown in FIG. 12 includes a processor 1210, and the processor 1210 can call and run a computer program from the memory, so as to implement the method in the embodiment of the present application.
  • the chip 1200 may further include a memory 1220 .
  • the processor 1210 can invoke and run a computer program from the memory 1220, so as to implement the method in the embodiment of the present application.
  • the memory 1220 may be an independent device independent of the processor 1210 , or may be integrated in the processor 1210 .
  • the chip 1200 may also include an input interface 1230 .
  • the processor 1210 can control the input interface 1230 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 1200 may also include an output interface 1240 .
  • the processor 1210 can control the output interface 1240 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • Fig. 13 is a schematic block diagram of a communication system 1300 provided by an embodiment of the present application. As shown in FIG. 13 , the communication system 1300 includes a terminal 1310 and a network device 1320 .
  • the terminal 1310 can be used to realize the corresponding functions realized by the terminal in the above method
  • the network device 1320 can be used to realize the corresponding functions realized by the network device in the above method.
  • details are not repeated here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, and the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法及装置、通信设备,该方法包括:移动网络控制节点触发移动网络执行节点建立多个终端与应用服务器之间的连接;其中,所述多个终端中的至少部分终端的第一聚合参数的值小于等于第一总上限值和/或第二聚合参数的值小于等于第二总上限值,所述至少部分终端包括所述多个终端中通过各自的连接进行数据传输的至少一个终端。

Description

一种通信方法及装置、通信设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种通信方法及装置、通信设备。
背景技术
为了提升任务处理效率,多个终端可以联合起来处理一项任务。当多个终端联合起来处理一项任务时,多个终端会消耗通信资源。如果无限制的调用多个终端的通信资源,势必会影响到其他终端或其他业务的正常进行,因此,需要一种有效的管控方式对其进行限制。
发明内容
本申请实施例提供一种通信方法及装置、通信设备、芯片、计算机可读存储介质、计算机程序产品、计算机程序。
本申请实施例提供的通信方法,包括:
移动网络控制节点触发移动网络执行节点建立多个终端与应用服务器之间的连接;其中,所述多个终端中的至少部分终端的第一聚合参数的值小于等于第一总上限值和/或第二聚合参数的值小于等于第二总上限值,所述至少部分终端包括所述多个终端中通过各自的连接进行数据传输的至少一个终端。
本申请实施例提供的通信方法,包括:
移动网络执行节点基于第一总上限值和/或第二总上限值控制多个终端中的至少部分终端与应用服务器之间的数据传输,其中,所述第一总上限值是指所述多个终端中进行数据传输的至少一个终端的第一聚合参数的值的上限,所述第一总上限值是指所述多个终端中进行数据传输的至少一个终端的第一聚合参数的值的上限。
本申请实施例提供的通信装置,应用于移动网络控制节点,所述装置包括:
建立单元,用于建立多个终端与应用服务器之间的连接;其中,所述多个终端中的至少部分终端的第一聚合参数的值小于等于第一总上限值和/或第二聚合参数的值小于等于第二总上限值,所述至少部分终端包括所述多个终端中通过各自的连接进行数据传输的至少一个终端。
本申请实施例提供的通信装置,应用于移动网络执行节点,所述装置包括:
控制单元,用于基于第一总上限值和/或第二总上限值控制多个终端中的至少部分终端与应用服务器之间的数据传输,其中,所述第一总上限值是指所述多个终端中进行数据传输的至少一个终端的第一聚合参数的值的上限,所述第一总上限值是指所述多个终端中进行数据传输的至少一个终端的第一聚合参数的值的上限。
本申请实施例提供的通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的通信方法。
本申请实施例提供的芯片,用于实现上述的通信方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的通信方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的通信方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的通信方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的通信方法。
通过上述技术方案,多个终端与应用服务器之间建立连接,所述多个终端中通过各自的连接进行数据传输的终端的聚合参数的值小于等于总上限值,如此,可以实现数据传输的有效管控。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例的一个应用场景的示意图;
图2-1是一种联邦学习的架构图;
图2-2是一种联邦学习的每轮迭代过程的示意图;
图3是本申请实施例提供的通信方法的流程示意图一;
图4是本申请实施例提供的通信方法的流程示意图二;
图5是本申请实施例提供的群组与应用服务器通信的架构图;
图6是本申请实施例提供的群组的建立和加入的流程示意图;
图7是本申请实施例提供的移动网络控制节点进行用户面数据流控制的示意图一;
图8是本申请实施例提供的移动网络控制节点进行用户面数据流控制的示意图二;
图9是本申请实施例提供的通信装置的结构组成示意图一;
图10是本申请实施例提供的通信装置的结构组成示意图二;
图11是本申请实施例提供的一种通信设备示意性结构图;
图12是本申请实施例的芯片的示意性结构图;
图13是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端110和网络设备120。网络设备120可以通过空口与终端110通信。终端110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端110可以是任意终端,其包括但不限于与网络设备120或其它终端采用有线或者无线连接的终端。
例如,所述终端110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进网络中的终端等。
终端110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
在一些场景下,多个终端可以联合起来处理一项任务。以下以联邦学习任务为例进行说明,对于联邦学习任务来说,多个终端联合起来处理一项学习任务。
图2-1是一种联邦学习的架构图,如图2-1所示,应用服务器210通过移动网络(核心网220+基站230)与多个终端(240-1至240-n)进行交互,例如应用服务器210通过移动网络向多个终端(240-1至240-n)下发数据,多个终端(240-1至240-n)通过移动网络向应用服务器210上报数据。由于应用层调度的需要,应用服务器在每轮迭代(或每个时间段)中可以选取不同的终端参与联邦学习。作为示例,基站覆盖区域下有100个终端,应用服务器在每轮迭代(或每个时间段)会按需与其中的10个终端进行交互,以使这10个终端可以通过本地数据将训练好的结果(简称为训练结果,如训练好的模型)上报至应用服务器,并由应用服务器对这10个终端的训练结果进行进一步处理(如合并)。然后,应用服务器可以开启下一轮迭代(下一个时间段),并重新选择10个终端进而开启新一轮的训练和结果上报。图2-2给出了联邦学习的每轮迭代过程的示意图,这里以第N轮迭代过程和第N+1轮迭代过程进行示意,对于每轮迭代过程,包括终端选择、模型分配和训练配置以及上报训练结果这三个过程。需要说明的是,对于一轮迭代过程来说,也可以描述为一轮训练过程。
对于联邦学习来说,至少具有以下好处:一方面,各个终端的本地数据不会被暴露,有效保护 了数据隐私;另一方面,算力分担到多个终端,加速模型的训练进程;再一方面,模型的训练基于多个终端的本地数据,打破了数据孤岛问题。
需要说明的是,以上描述虽然是以联邦学习为例进行说明的,但是任何由多个终端联合处理的任务或者由群组处理的任务,都会涉及到调度多个终端来处理任务。当多个终端联合起来处理一项任务时,多个终端会消耗通信资源。如果无限制的调用多个终端的通信资源,势必会影响到其他终端或其他业务的正常进行,因此,需要一种有效的管控方式对其进行限制,能够满足对于通信资源按需限制并且支持多终端的动态调度。为此,提出了本申请实施例的以下技术方案。本申请实施例的技术方案,至少可以实现:1、多终端与应用服务器共同进行某项任务的情况下,对多个终端的通信资源(如带宽)的限制;2、多终端与应用服务器共同进行某项任务的情况下,快速动态调整多终端的数量。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
需要说明的是,本申请实施例的技术方案可以应用于任何通信系统,包括但不限于5G系统(5GS)、6G系统(6GS)等。
需要说明的是,本申请实施例的技术方案可以但不限于应用于联邦学习场景,对于基于群组管理的场景均可应用。
图3是本申请实施例提供的通信方法的流程示意图一,如图3所示,所述通信方法包括以下步骤:
步骤301:移动网络控制节点触发移动网络执行节点建立多个终端与应用服务器之间的连接;其中,所述多个终端中的至少部分终端的第一聚合参数的值小于等于第一总上限值和/或第二聚合参数的值小于等于第二总上限值,所述至少部分终端包括所述多个终端中通过各自的连接进行数据传输的至少一个终端。
在一些可选实施方式中,所述移动网络控制节点可以但不限于是控制面网元,所述移动网络执行节点可以但不限于是用户面网元。作为示例,以5G网络为例,移动网络控制节点可以是会话管理功能网元(Session Management Function,SMF),移动网络执行节点可以是用户面功能网元(User Plane Function,UPF)。
这里,需要说明的是,移动网络控制节点和移动网络执行节点在移动网络中可以独立设置,或者也可以合并设置。
需要说明的是,本申请实施例中的进行数据传输是指:终端与应用服务器之间进行数据传输。
在一些可选实施方式中,所述移动网络控制节点触发移动网络执行节点建立多个终端与应用服务器之间的连接之前,所述移动网络控制节点接收终端和/或应用服务器发送的第一请求消息;所述终端发送的第一请求消息用于请求将所述终端加入群组,所述应用服务器发送的第一请求消息用于请求将多个终端加入群组。
所述移动网络控制节点触发移动网络执行节点建立多个终端与应用服务器之间的连接,可以通过以下方式实现:所述移动网络控制节点向移动网络执行节点发送连接建立或更新消息,接收所述移动网络执行节点发送的连接建立或更新回复消息,其中,所述移动网络执行节点用于为所述多个终端建立与所述应用服务器之间的连接。这里,可选地,所述第一请求消息也可以称为加入请求消息,所述加入请求消息用于请求加入群组。
在一些可选实施方式中,所述第一请求消息携带请求信息,所述请求信息包括以下至少之一:
第一指示信息,所述第一指示信息用于指示终端申请加入群组;
群组标识,所述群组标识用于指示所述终端申请加入的群组或该终端所属的群组;
终端标识,所述终端标识用于标识加入群组的终端;
第二指示信息,所述第二指示信息用于指示终端加入群组进行数据传输时相关的服务质量(Quality of Service,QoS)参数。
这里,可选地,所述第一指示信息可以称为加入群组指示信息。
这里,可选地,所述第二指示信息指示的QoS参数可以指示终端在所属连接中传输数据的最高或最低QoS要求,例如最大或最小带宽要求(如可保障比特率和/或最大比特率)、最高或最低时延要求、最大或最小可靠性要求等。移动网络执行节点建立终端的连接时,可以根据该终端在第一请求消息中指示的QoS参数建立满足对应QoS要求的连接。这里,所述连接可以是QoS流(QoS flow)或其他具有执行QoS参数的连接。
作为示例:终端1(可以是多个终端中的任意一个终端)向移动网络控制节点发送第一请求消息,所述第一请求消息携带请求信息,所述请求信息包括以下至少之一:
第一指示信息,所述第一指示信息用于指示终端1申请加入群组;
群组标识,所述群组标识用于标识所述终端1申请加入的群组;
终端标识,所述终端标识用于标识加入群组的终端1;
第二指示信息,所述第二指示信息用于指示终端1加入群组进行数据传输时相关的QoS参数。
作为示例:应用服务器向移动网络控制节点发送第一请求消息,所述第一请求消息携带请求信息,所述请求信息包括以下至少之一:
第一指示信息,所述第一指示信息用于指示终端1至终端N申请加入群组,N为正整数;
群组标识,所述群组标识用于标识所述终端1至终端N申请加入的群组;
终端标识列表(即多个终端标识),所述终端标识列表用于标识加入群组的终端1至终端N;
第二指示信息,所述第二指示信息用于指示终端1至终端N加入群组进行数据传输时分别相关的QoS参数。
在一些可选实施方式中,所述移动网络控制节点基于所述请求信息为所述多个终端选择相同的移动网络执行节点,如此,由于多个终端对应相同的移动网络执行节点,当多个终端与移动网络执行节点之间进行通信时,可以实现多个终端的群组级别的控制,也即对多个终端整体进行控制,具体地,移动网络执行节点可以基于总上限值控制多个终端的数据传输。
在一些可选实施方式中,所述移动网络控制节点接收终端和/或应用服务器发送的第一请求消息之前,所述移动网络控制节点接收第一节点发送的第二请求消息,所述第二请求消息携带群组策略。进一步,可选地,所述移动网络控制节点基于所述群组策略,建立群组级别的上下文,并将所述群组级别的上下文发送给所述移动网络执行节点。这里,可选地,所述第一节点为统一数据管理节点或策略控制节点或者应用服务器。以5G网络为例,所述统一数据管理节点可以是统一数据管理网元(Unified Data Management,UDM),所述策略控制节点可以是策略控制功能网元(Policy Control Function,PCF)。
这里,可选地,所述第二请求消息可以称为配置请求消息。
在一些可选实施方式中,所述群组策略包括以下至少之一:所述第一总上限值,所述第一总上限值是指进行数据传输的至少一个终端的第一聚合参数的值的上限;所述第二总上限值,所述第二总上限值是指进行数据传输的至少一个终端的第二聚合参数的值的上限;群组的最大终端数量,所述群组的最大终端数量为一个群组中包含的终端总数的上限;应用服务器的地址信息,例如应用服务器的IP地址、端口号等信息。
在一些可选实施方式中,所述群组级别的上下文包括以下至少一种信息:群组标识、群组QoS、群组成员信息。
这里,可选地,所述群组级别的上下文中的群组QoS可以由所述移动网络控制节点基于群组策略中的总上限值确定,例如总上限值为总带宽,群组QoS为该总带宽。
这里,可选地,所述群组级别的上下文中的群组标识和群组成员信息可以由所述移动网络控制节点选择分配,其中,群组成员包括的终端数量需要小于群组策略中的群组的最大终端数量。
在一些可选实施方式中,所述移动网络控制节点接收到所述第一请求消息后,基于所述第一请求消息中携带的请求信息更新群组级别的上下文;所述移动网络控制节点将更新后的群组级别的上下文发送给所述移动网络执行节点。
在一些可选实施方式中,所述第一总上限值为总带宽,所述总带宽是指进行数据传输的至少一个终端的数据流的带宽总和的上限;所述多个终端中的至少部分终端的第一聚合参数的值小于等于第一总上限值,是指:所述至少部分终端的数据流的带宽之和小于等于所述总带宽。
在一些可选实施方式中,所述第二总上限值为总终端数,所述总终端数是指进行数据传输的至少一个终端的总数量的上限;所述多个终端中的至少部分终端的第二聚合参数的值小于等于第二总上限值,是指:所述至少部分终端的终端数量小于等于所述总终端数。
本申请实施例中,所述移动网络执行节点基于所述第一总上限值和所述第二总上限值控制多个终端中的至少部分终端与应用服务器之间的数据传输,以下结合图4对其进行说明。
图4是本申请实施例提供的通信方法的流程示意图二,如图4所示,所述通信方法包括以下步骤:
步骤401:移动网络执行节点基于第一总上限值和/或第二总上限值控制多个终端中的至少部分终端与应用服务器之间的数据传输,其中,所述第一总上限值是指所述多个终端中进行数据传输的 至少一个终端的第一聚合参数的值的上限,所述第一总上限值是指所述多个终端中进行数据传输的至少一个终端的第一聚合参数的值的上限。
需要说明的是,以下实施例中描述的“需要进行数据传输”是指“需要进行数据传输当尚未进行数据传输”。
情况一
在一些可选实施方式中,所述第一总上限值为总带宽,所述总带宽是指进行数据传输的至少一个终端的数据流的带宽总和的上限。
方案1-1)所述移动网络执行节点确定与应用服务器之间进行数据传输的至少一个终端的数据流的带宽之和小于等于总带宽,允许所述至少一个终端的数据流通过所述移动网络执行节点传输至所述应用服务器;若需要与应用服务器进行数据传输的第一终端的数据流的带宽加上所述至少一个终端的数据流的带宽之和,大于所述总带宽,则所述移动网络执行节点禁止所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器;或者,若需要与应用服务器进行数据传输的第一终端的数据流的带宽加上所述至少一个终端的数据流的带宽之和,小于等于所述总带宽,则所述移动网络执行节点允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器;其中,所述第一终端为所述多个终端的一个终端。
方案1-2)若所述移动网络执行节点确定与应用服务器之间进行数据传输的至少一个终端的数据流的带宽之和已大于或等于总带宽,则所述移动网络执行节点禁止需要与应用服务器进行传输的第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器。
这里,需要进行数据传输的第一终端,可以理解为,需要进行数据传输的新的终端(区别与已经进行数据传输的所述至少一个终端)。
进一步,在一些可选实施方式中,若所述至少一个终端中的第二终端停止传输,且所述第二终端的数据流的带宽大于等于所述第一终端的数据流的带宽,则所述移动网络执行节点允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器;或者,若所述至少一个终端中的第二终端停止传输,且所述第一终端的数据流的带宽加上所述至少一个终端中除所述第二终端以外的终端的数据流的带宽之和小于等于所述总带宽,则所述移动网络执行节点允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器。
这里,第二终端,可以理解为,已经进行数据传输的终端。
作为示例:终端1、终端2、终端3和终端4进行数据传输,这4个终端的数据流的带宽之和小于等于总带宽,移动网络执行节点允许这4个终端的数据流通过。后续,终端5需要进行数据传输,若终端5的数据流的带宽加上前面的4个终端的带宽之和大于总带宽,则移动网络执行节点禁止终端5的数据流通过;进一步,若前面的4个终端中的终端1停止传输,且终端1的数据流的带宽大于等于终端5的数据流的带宽,则移动网络执行节点允许终端5的数据流通过。
情况二
在一些可选实施方式中,所述第二总上限值为总终端数,所述总终端数是指进行数据传输的至少一个终端的总数量的上限。
方案2-1)所述移动网络执行节点确定与应用服务器之间进行数据传输的至少一个终端的终端数量小于等于总终端数,允许所述至少一个终端的数据流通过所述移动网络执行节点传输至所述应用服务器;若需要与应用服务器进行数据传输的第一终端的终端数量加上所述至少一个终端的终端数量,大于总终端数,则所述移动网络执行节点禁止所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器;或者,若需要与应用服务器进行数据传输的第一终端的终端数量加上所述至少一个终端的终端数量,小于等于所述总终端数,则所述移动网络执行节点允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器;其中,所述第一终端为所述多个终端的一个终端。
方案2-2)若所述移动网络执行节点确定与应用服务器之间进行数据传输的至少一个终端的终端数量已大于或等于总终端数,则所述移动网络执行节点禁止需要与应用服务器进行传输的第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器。
这里,需要进行数据传输的第一终端,可以理解为,需要进行数据传输的新的终端(区别与已经进行数据传输的所述至少一个终端)。
进一步,在一些可选实施方式中,若所述至少一个终端中的第二终端停止传输,则所述移动网络执行节点允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器。
这里,第二终端,可以理解为,已经进行数据传输的终端。
作为示例:终端1、终端2、终端3和终端4进行数据传输,这4个终端的终端数量小于等于总终端数,移动网络执行节点允许这4个终端的数据流通过。后续,终端5需要进行数据传输,若终端5加上前面的4个终端的终端数量大于总终端数,则移动网络执行节点禁止终端5的数据流通过;进一步,若前面的4个终端中的终端1停止传输,则移动网络执行节点允许终端5的数据流通过。
情况三
在一些可选实施方式中,所述第一总上限值为总终端数,所述总终端数是指进行数据传输的至少一个终端的总数量的上限;所述第二总上限值为总终端数,所述总终端数是指进行数据传输的至少一个终端的总数量的上限。
所述移动网络执行节点确定与应用服务器之间进行数据传输的至少一个终端的数据流的带宽之和小于等于总带宽,且所述至少一个终端的终端数量小于等于总终端数,允许所述至少一个终端的数据流通过所述移动网络执行节点传输至所述应用服务器;
若需要与应用服务器进行数据传输的第一终端的数据流的带宽加上所述至少一个终端的数据流的带宽之和大于所述总带宽,和/或所述第一终端的终端数量加上所述至少一个终端的终端数量大于总终端数,则所述移动网络执行节点禁止所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器;或者,
若需要与应用服务器进行数据传输的第一终端的数据流的带宽加上所述至少一个终端的数据流的带宽之和小于等于所述总带宽,且所述第一终端的终端数量加上所述至少一个终端的终端数量小于等于所述总终端数,则所述移动网络执行节点允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器。
这里,需要进行数据传输的第一终端,可以理解为,需要进行数据传输的新的终端(区别与已经进行数据传输的所述至少一个终端)。
进一步,在一些可选实施方式中,若所述至少一个终端中的第二终端停止传输,且所述第二终端的数据流的带宽大于等于所述第一终端的数据流的带宽,则所述移动网络执行节点允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器;或者,若所述至少一个终端中的第二终端停止传输,且所述第一终端的数据流的带宽加上所述至少一个终端中除所述第二终端以外的终端的数据流的带宽之和小于等于所述总带宽,则所述移动网络执行节点允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器。
作为示例:终端1、终端2、终端3和终端4进行数据传输,这4个终端的数据流的带宽之和小于等于总带宽且这4个终端的终端数量小于等于总终端数,移动网络执行节点允许这4个终端的数据流通过。后续,终端5需要进行数据传输,若终端5的数据流的带宽加上前面的4个终端的带宽之和大于总带宽和/或终端5加上前面的4个终端的终端数量大于总终端数,则移动网络执行节点禁止终端5的数据流通过;进一步,若前面的4个终端中的终端1停止传输,且终端1的数据流的带宽大于等于终端5的数据流的带宽,则移动网络执行节点允许终端5的数据流通过。
上述方案中,所述移动网络基于所述总上限值控制数据传输,可以有如下方式:
方式一)所述移动网络执行节点基于第一总上限值和/或第二总上限值持续性控制多个终端中的至少部分终端与应用服务器之间的数据传输。
这里,多个终端与应用服务器之间处理任务,可以通过一个持续性过程来实现,即没有迭代过程,对于这种情况,移动网络执行节点可以按照上述方案持续性控制数据传输。
方式二)所述移动网络执行节点在每轮迭代或每个时间段内基于第一总上限值和/或第二总上限值控制多个终端中的至少部分终端与应用服务器之间的数据传输。
这里,多个终端与应用服务器之间处理任务,可以通过多轮迭代过程来实现,对于这种情况,移动网络执行节点会按照上述方案针对每轮迭代(或每轮迭代对应的时间段)进行数据传输的控制,例如针对每轮迭代重新统计终端的带宽总和并将其与总带宽进行比较,和/或重新统计终端的终端数量并将其与总终端数进行比较,基于比较结果控制数据流是否允许通过。
在一些可选实施方式中,所述移动网络执行节点基于以下至少一种信息确定是否开启新一轮的迭代:与迭代关联的用户面信息、与迭代关联的时间信息、与迭代关联的控制面信息。
具体地,移动网络执行节点可以基于以下至少一种信息确定是否开启新一轮的迭代:与迭代关联的用户面信息、与迭代关联的时间信息、与迭代关联的控制面信息。其中,与迭代关联的用户面信息例如可以是数据包上的标签(如IP包头上的差分服务代码点(Differentiated Services Code Point,DSCP)标签或服务类型(Type of Service,ToS)字段),其中,对于下行来说,该数据包由应用服务器发送,对于上行来说,该数据包由终端发送。与迭代关联的控制面信息例如可以是移动网络控 制节点向移动网络执行节点发送的指示信息,该指示信息用于指示更新群组成员,或指示建立或更新群组中的终端与应用服务器之间的连接。
需要说明的是,本申请实施例的技术方案中的“连接”可以是指QoS流(QoS flow)或其他具有执行QoS参数的连接,本申请对“连接”的类型不做限定。
需要说明的是,本申请实施例的技术方案中的“带宽”可以是指保证比特速率(Guaranteed Bit Rate,GBR)或最大比特速率(Maximum Bit Rate,MBR)。本申请实施例的技术方案可以应用于上行,也可以应用下行,其中,对于上行来说,带宽是指上行带宽(如UL GBR和/或UL MBR),对于下行来说,带宽是指下行带宽(如DL GBR和/或DL MBR)。
需要说明的是,本申请实施例的技术方案可以应用于上行的场景,相应的,多个终端中的至少部分终端可以向应用服务器发送数据。或者,本申请实施例的技术方案也可以应用于下行的场景,相应的,应用服务器可以向多个终端中的至少部分终端发送数据。
以下结合具体应用实例对本申请实施例的技术方案进行举例说明。
应用实例一
图5是本申请实施例提供的群组与应用服务器通信的架构图,如图5所示,一定数量的终端530可以通过移动网络(核心网520+基站540)与应用服务器510完成连接建立(如建立了PDU会话和/或相应的QoS流)。在每一轮迭代过程中,群组中的一部分终端通过各自建立的连接与应用服务器之间传输数据,并且这部分终端的聚合参数的值小于等于总上限值,例如:这部分终端的数据流的带宽之和小于等于总带宽,和/或这部分终端的终端数量小于等于总终端数。图5以第N轮迭代过程和第N+1轮迭代过程进行示意,每轮迭代过程可以重新选择参与的终端,不同迭代过程对应的终端可以完全相同或者部分相同。
应用实例二
图6是本申请实施例提供的群组的建立和加入的流程示意图,如图6所示,包括以下步骤:
步骤601:应用服务器或统一数据管理节点或策略控制节点向移动网络控制节点发送配置请求消息,该配置请求消息携带群组策略。
以5G网络为例,所述统一数据管理节点可以是UDM,所述策略控制节点可以是PCF。
在一些可选实施方式中,所述群组策略包括以下至少之一:总上限值;群组的最大终端数量,所述群组的最大终端数量为一个群组中包含的终端总数的上限;应用服务器的地址信息,例如应用服务器的IP地址、端口号等信息。
在一些可选实施方式中,所述总上限值包括以下至少之一:总带宽,所述总带宽是指进行数据传输的至少一个终端的数据流的带宽总和的上限;总终端数,所述总终端数是指进行数据传输的至少一个终端的总数量的上限。
这里,移动网络控制节点获取到群组策略后,可以根据该群组策略建立一个群组级别的上下文,可选地,该群组级别的上下文包括以下至少之一:群组标识、群组QoS、群组成员信息等。进一步,移动网络控制节点可以与移动网络执行节点交互以在移动网络执行节点上也建立相关上下文(或者该步骤也可以在后续的步骤603中完成)。
步骤602a/b:多个终端和/或应用服务器向移动网络控制节点发送加入请求消息,该加入请求消息携带请求信息。
以5G网络为例,所述移动网络控制节点可以是SMF,所述移动网络执行节点可以是UPF。
这里,所述请求消息用于请求加入群组,该群组下的终端可以随时被应用服务器调用进行任务处理(也就是说可以在请求加入群组的终端中选择出来一部分终端进行任务处理)。对于通过迭代过程实现的任务处理来说,可以针对每轮迭代过程重新从群组中选择一部分终端来进行任务处理。
在一些可选实施方式中,所述请求信息包括以下至少之一:第一指示信息,所述第一指示信息用于指示终端申请加入群组;群组标识,所述群组标识用于指示所述终端申请加入的群组或该终端所属的群组;终端标识,所述终端标识用于标识加入群组的终端;第二指示信息,所述第二指示信息用于指示终端加入群组进行数据传输时相关的QoS参数。
这里,加入请求消息可以从终端和/或应用服务器发送多次,也即每次可以实现将一个或多个终端加入群组。
这里,可选地,移动网络控制节点可以根据请求信息为终端选择相同的核心网执行节点,如此便于实现群组级别的控制。
这里,移动网络控制节点每次接收到加入请求消息,会更新本地的群组级别的上下文。进一步,移动网络控制节点可以在后续的步骤503中将更新的群组级别的上下文发送给移动网络执行节点。
步骤603:移动网络控制节点向移动网络执行节点发送连接建立或更新消息。
这里,可选地,所述连接建立或更新消息携带指示信息,所述指示信息用于指示请求加入群组的终端,从而移动网络执行节点针对请求加入群组的终端建立该终端与应用服务器之间的连接。
这里,移动网络执行节点可以分别为请求加入群组的终端创建对应的连接(如PDU会话和/或QoS流)。例如:移动网络执行节点基于群组策略中的应用服务器的地址信息可以为终端创建对应的连接,该连接用于传输该终端与应用服务器之间的数据。
步骤604:移动网络执行节点向移动网络控制节点发送连接建立或更新回复消息。
进一步,在步骤604之后,移动网络控制节点进行用户面数据流控制。
应用实例三
本应用实例中,群组包括10个终端,10个终端的编号分别为终端1、终端2、终端3、终端4、终端5、终端6、终端7、终端8、终端9、终端10,这10个终端建立了与应用服务器之间的连接。在每轮迭代过程中,实际进行数据传输的终端的数据流的带宽之和不能大于总带宽5mbps。
移动网络执行节点可以但不局限于通过以下方式确定每个终端的数据流占用的带宽:
方式一)终端的数据流建立的带宽是该终端的连接占用的带宽,也即:终端的连接建立的带宽有多大,终端的数据流就占用多大的带宽。基于此,移动网络执行节点可以根据终端的连接对应的带宽确定该终端的数据流占用的带宽。
方式二)移动网络执行节点接收用户面信息或控制面信息,根据该用户面信息或控制面信息中携带的指示信息确定终端的数据流占用的带宽。以用户面信息为例,用户面信息可以由应用服务器或终端发送给移动网络执行节点,例如应用服务器将携带所述指示信息的下行数据包发送给移动网络执行节点,例如终端将携带所述指示信息的上行数据包发送给移动网络执行节点。这里,应用服务器或终端可以将携带所述指示信息的数据包发送给移动网络执行节点(例如,可以在每轮迭代开始的时候或者也可以在每轮迭代的过程中将指示信息发送给移动网络执行节点),通过所述指示信息指示终端的数据流占用的带宽。这里,可选地,所述指示信息可以携带在数据包的包头中。
如图7所示,在第一轮迭代过程中,终端1、终端2、终端3和终端4通过各自的连接与应用服务器之间进行数据传输,这4个终端的数据流的带宽分别为1mbps,1.5mbps,1.2mbps,1.2mbps,这4个终端的数据流的带宽之和为4.9mbps,由于带宽之和4.9mbps小于总带宽5mbps,因此移动网络执行节点允许这4个终端的数据流通过。当终端5需要进行数据传输时,由于终端5的数据流的带宽0.5mbps加上之前的4个终端的带宽之和4.9mbps大于总带宽5mbps,因此移动网络执行节点禁止终端5的数据流通过。进一步,若终端1停止数据传输,由于终端1的数据流的带宽1mbps大于终端5的数据流的带宽0.5mbps,因此移动网络执行节点允许终端5的数据流通过。同理,在第二轮迭代过程中,终端2、终端7和终端9通过各自的连接与应用服务器之间进行数据传输,这3个终端的数据流的带宽分别为1.8mbps,1.2mbps,2mbps,这3个终端的数据流的带宽之和为5mbps,由于带宽之和5mbps等于总带宽5mbps,因此移动网络执行节点允许这3个终端的数据流通过。当终端3需要进行数据传输时,由于终端3的数据流的带宽0.9mbps加上之前的3个终端的带宽之和5mbps大于总带宽5mbps,因此移动网络执行节点禁止终端3的数据流通过。进一步,若终端7停止数据传输,由于终端7的数据流的带宽1.2mbps大于终端3的数据流的带宽0.9mbps,因此移动网络执行节点允许终端3的数据流通过。以此类推,每一轮迭代都可以保障群组成员使用的带宽之和不超过总带宽。
应用实例四
本应用实例中,群组包括10个终端,10个终端的编号分别为终端1、终端2、终端3、终端4、终端5、终端6、终端7、终端8、终端9、终端10,这10个终端建立了与应用服务器之间的连接。在每轮迭代过程中,实际进行数据传输的终端的终端数量不能大于总终端数3。
如图8所示,在第一轮迭代过程中,终端1、终端2和终端3通过各自的连接与应用服务器之间进行数据传输,这3个终端的终端数量等于总终端数3,因此移动网络执行节点允许这3个终端的数据流通过。当终端5需要进行数据传输时,由于总终端数3的限制,因此移动网络执行节点禁止终端5的数据流通过,无论终端5的数据流的带宽为多大。进一步,若终端1停止数据传输,移动网络执行节点允许终端5的数据流通过。在第二轮迭代过程中,终端3、终端5和终端6通过各自的连接与应用服务器之间进行数据传输,这3个终端的终端数量等于总终端数3,因此移动网络执行节点允许这3个终端的数据流通过。当终端4需要进行数据传输时,由于总终端数3的限制,因此移动网络执行节点禁止终端4的数据流通过,无论终端4的数据流的带宽为多大。进一步,若终端3停止数据传输,移动网络执行节点允许终端4的数据流通过。以此类推,每一轮迭代都可以 保障群组成员的终端数量之和不超过总终端数。
需要说明的是,虽然上述实施例三和实施例四是以下行数据传输的控制为例进行说明的,但本申请实施例的技术方案同样适用于上行数据传输的控制。
需要说明的是,虽然上述实施例三和实施例四是针对每轮迭代过程进行数据传输控制为例进行说明的,但本申请实施例的技术方案同样适用于不考虑迭代过程的场景,即移动网络控制节点可以持续性进行数据传输控制。
需要说明的是,上述实施例三和实施例四的方案可以单独进行实施,也可以结合起来进行实施,即同时按照总带宽和总终端数来限制数据传输,只有在实际进行数据传输的终端的数据流的带宽之和小于等于总带宽且终端数量小于等于总终端数的情况下,移动网络执行节点才允许这些终端的数据流通过。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图9是本申请实施例提供的通信装置的结构组成示意图一,应用于移动网络控制节点,如图9所示,所述通信装置包括:
通信单元901,用于触发移动网络执行节点建立多个终端与应用服务器之间的连接;其中,所述多个终端中的至少部分终端的第一聚合参数的值小于等于第一总上限值和/或第二聚合参数的值小于等于第二总上限值,所述至少部分终端包括所述多个终端中通过各自的连接进行数据传输的至少一个终端。
在一些可选实施方式中,所述通信单元901,还用于接收终端和/或应用服务器发送的第一请求消息;所述终端发送的第一请求消息用于请求将所述终端加入群组,所述应用服务器发送的第一请求消息用于请求将多个终端加入群组。
在一些可选实施方式中,所述通信单元901,用于向移动网络执行节点发送连接建立或更新消息,接收所述移动网络执行节点发送的连接建立或更新回复消息,其中,所述移动网络执行节点用于为所述多个终端建立与所述应用服务器之间的连接。
在一些可选实施方式中,所述第一请求消息携带请求信息,所述请求信息包括以下至少之一:
第一指示信息,所述第一指示信息用于指示终端申请加入群组;
群组标识,所述群组标识用于指示所述终端申请加入的群组或该终端所属的群组;
终端标识,所述终端标识用于标识加入群组的终端;
第二指示信息,所述第二指示信息用于指示终端加入群组进行数据传输时相关的QoS参数。
在一些可选实施方式中,所述装置还包括:选择单元,用于基于所述请求信息为所述多个终端选择相同的移动网络执行节点。
在一些可选实施方式中,所述通信单元901,还用于在接收终端和/或应用服务器发送的第一请求消息之前,接收第一节点发送的第二请求消息,所述第二请求消息携带群组策略。
在一些可选实施方式中,所述装置还包括:建立单元902,用于基于所述群组策略,建立群组级别的上下文,并将所述群组级别的上下文发送给所述移动网络执行节点。
在一些可选实施方式中,所述群组策略包括以下至少之一:
所述第一总上限值,所述第一总上限值是指进行数据传输的至少一个终端的第一聚合参数的值的上限;
所述第二总上限值,所述第二总上限值是指进行数据传输的至少一个终端的第二聚合参数的值的上限;
群组的最大终端数量,所述群组的最大终端数量为一个群组中包含的终端总数的上限;
应用服务器的地址信息。
在一些可选实施方式中,所述群组级别的上下文包括以下至少一种信息:群组标识、群组QoS、群组成员信息。
在一些可选实施方式中,所述第一节点为统一数据管理节点或策略控制节点或者应用服务器。
在一些可选实施方式中,所述装置还包括:更新单元,用于基于所述第一请求消息中携带的请求信息更新群组级别的上下文;
所述通信单元901,还用于将更新后的群组级别的上下文发送给所述移动网络执行节点。
在一些可选实施方式中,所述第一总上限值为总带宽,所述总带宽是指进行数据传输的至少一个终端的数据流的带宽总和的上限;所述多个终端中的至少部分终端的第一聚合参数的值小于等于第一总上限值,是指:所述至少部分终端的数据流的带宽之和小于等于所述总带宽。
在一些可选实施方式中,所述第二总上限值为总终端数,所述总终端数是指进行数据传输的至少一个终端的总数量的上限;所述多个终端中的至少部分终端的第二聚合参数的值小于等于第二总上限值,是指:所述至少部分终端的终端数量小于等于所述总终端数。
本领域技术人员应当理解,本申请实施例的上述通信装置的相关描述可以参照本申请实施例的通信方法的相关描述进行理解。
图10是本申请实施例提供的通信装置的结构组成示意图二,应用于移动网络执行节点,如图10所示,所述通信装置包括:
控制单元1001,用于基于第一总上限值和/或第二总上限值控制多个终端中的至少部分终端与应用服务器之间的数据传输,其中,所述第一总上限值是指所述多个终端中进行数据传输的至少一个终端的第一聚合参数的值的上限,所述第一总上限值是指所述多个终端中进行数据传输的至少一个终端的第一聚合参数的值的上限。
在一些可选实施方式中,所述第一总上限值为总带宽,所述总带宽是指进行数据传输的至少一个终端的数据流的带宽总和的上限;
所述控制单元1001,用于确定与应用服务器之间进行数据传输的至少一个终端的数据流的带宽之和小于等于总带宽,允许所述至少一个终端的数据流通过所述移动网络执行节点传输至所述应用服务器;若需要与应用服务器进行数据传输的第一终端的数据流的带宽加上所述至少一个终端的数据流的带宽之和,大于所述总带宽,则禁止所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器;或者,若需要与应用服务器进行数据传输的第一终端的数据流的带宽加上所述至少一个终端的数据流的带宽之和,小于等于所述总带宽,则允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器;其中,所述第一终端为所述多个终端的一个终端。
在一些可选实施方式中,所述第一总上限值为总终端数,所述总终端数是指进行数据传输的至少一个终端的总数量的上限;
所述控制单元1001,用于若所述移动网络执行节点确定与应用服务器之间进行数据传输的至少一个终端的数据流的带宽之和已大于或等于总带宽,则禁止需要与应用服务器进行传输的第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器。
在一些可选实施方式中,所述控制单元1001,用于若所述至少一个终端中的第二终端停止传输,且所述第二终端的数据流的带宽大于等于所述第一终端的数据流的带宽,则允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器;或者,若所述至少一个终端中的第二终端停止传输,且所述第一终端的数据流的带宽加上所述至少一个终端中除所述第二终端以外的终端的数据流的带宽之和小于等于所述总带宽,则允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器。
在一些可选实施方式中,所述第二总上限值为总终端数,所述总终端数是指进行数据传输的至少一个终端的总数量的上限;
所述控制单元1001,用于确定与应用服务器之间进行数据传输的至少一个终端的终端数量小于等于总终端数,允许所述至少一个终端的数据流通过所述移动网络执行节点传输至所述应用服 务器;若需要与应用服务器进行数据传输的第一终端的终端数量加上所述至少一个终端的终端数量,大于总终端数,则禁止所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器;或者,若需要与应用服务器进行数据传输的第一终端的终端数量加上所述至少一个终端的终端数量,小于等于所述总终端数,则允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器;其中,所述第一终端为所述多个终端的一个终端。
在一些可选实施方式中,所述第二总上限值为总终端数,所述总终端数是指进行数据传输的至少一个终端的总数量的上限;
所述控制单元1001,用于若所述移动网络执行节点确定与应用服务器之间进行数据传输的至少一个终端的终端数量已大于或等于总终端数,则禁止需要与应用服务器进行传输的第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器。
在一些可选实施方式中,所述控制单元1001,用于若所述至少一个终端中的第二终端停止传输,则允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器。
在一些可选实施方式中,所述第一总上限值为总终端数,所述总终端数是指进行数据传输的至少一个终端的总数量的上限;所述第二总上限值为总终端数,所述总终端数是指进行数据传输的至少一个终端的总数量的上限;
所述控制单元1001,用于确定与应用服务器之间进行数据传输的至少一个终端的数据流的带宽之和小于等于总带宽,且所述至少一个终端的终端数量小于等于总终端数,允许所述至少一个终端的数据流通过所述移动网络执行节点传输至所述应用服务器;若需要与应用服务器进行数据传输的第一终端的数据流的带宽加上所述至少一个终端的数据流的带宽之和大于所述总带宽,和/或所述第一终端的终端数量加上所述至少一个终端的终端数量大于总终端数,则禁止所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器;或者,若需要与应用服务器进行数据传输的第一终端的数据流的带宽加上所述至少一个终端的数据流的带宽之和小于等于所述总带宽,且所述第一终端的终端数量加上所述至少一个终端的终端数量小于等于所述总终端数,则允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器。
在一些可选实施方式中,所述控制单元1001,用于若所述至少一个终端中的第二终端停止传输,且所述第二终端的数据流的带宽大于等于所述第一终端的数据流的带宽,则允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器;或者,若所述至少一个终端中的第二终端停止传输,且所述第一终端的数据流的带宽加上所述至少一个终端中除所述第二终端以外的终端的数据流的带宽之和小于等于所述总带宽,则允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器。
在一些可选实施方式中,所述控制单元1001,用于在每轮迭代或每个时间段内基于第一总上限值和/或第二总上限值控制多个终端中的至少部分终端与应用服务器之间的数据传输。
在一些可选实施方式中,所述装置还包括:确定单元1002,用于基于以下至少一种信息确定是否开启新一轮的迭代:与迭代关联的用户面信息、与迭代关联的时间信息、与迭代关联的控制面信息。
本领域技术人员应当理解,本申请实施例的上述通信装置的相关描述可以参照本申请实施例的通信方法的相关描述进行理解。
图11是本申请实施例提供的一种通信设备1100示意性结构图。该通信设备可以是网络设备(如移动网络控制节点、移动网络执行节点)。图11所示的通信设备1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,通信设备1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
可选地,如图11所示,通信设备1100还可以包括收发器1130,处理器1110可以控制该收发器1130与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1130可以包括发射机和接收机。收发器1130还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1100具体可为本申请实施例的网络设备,并且该通信设备900可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例的芯片的示意性结构图。图12所示的芯片1200包括处理器1210,处理 器1210可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,芯片1200还可以包括存储器1220。其中,处理器1210可以从存储器1220中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1220可以是独立于处理器1210的一个单独的器件,也可以集成在处理器1210中。
可选地,该芯片1200还可以包括输入接口1230。其中,处理器1210可以控制该输入接口1230与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1200还可以包括输出接口1240。其中,处理器1210可以控制该输出接口1240与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图13是本申请实施例提供的一种通信系统1300的示意性框图。如图13所示,该通信系统1300包括终端1310和网络设备1320。
其中,该终端1310可以用于实现上述方法中由终端实现的相应的功能,以及该网络设备1320可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (31)

  1. 一种通信方法,所述方法包括:
    移动网络控制节点触发移动网络执行节点建立多个终端与应用服务器之间的连接;其中,所述多个终端中的至少部分终端的第一聚合参数的值小于等于第一总上限值和/或第二聚合参数的值小于等于第二总上限值,所述至少部分终端包括所述多个终端中通过各自的连接进行数据传输的至少一个终端。
  2. 根据权利要求1所述的方法,其中,所述移动网络控制节点触发移动网络执行节点建立多个终端与应用服务器之间的连接之前,所述方法还包括:
    所述移动网络控制节点接收终端和/或应用服务器发送的第一请求消息;所述终端发送的第一请求消息用于请求将所述终端加入群组,所述应用服务器发送的第一请求消息用于请求将多个终端加入群组。
  3. 根据权利要求2所述的方法,其中,所述移动网络控制节点触发移动网络执行节点建立多个终端与应用服务器之间的连接,包括:
    所述移动网络控制节点向移动网络执行节点发送连接建立或更新消息,接收所述移动网络执行节点发送的连接建立或更新回复消息,其中,所述移动网络执行节点用于为所述多个终端建立与所述应用服务器之间的连接。
  4. 根据权利要求2或3所述的方法,其中,所述第一请求消息携带请求信息,所述请求信息包以下至少之一:
    第一指示信息,所述第一指示信息用于指示终端申请加入群组;
    群组标识,所述群组标识用于指示所述终端申请加入的群组或该终端所属的群组;
    终端标识,所述终端标识用于标识加入群组的终端;
    第二指示信息,所述第二指示信息用于指示终端加入群组进行数据传输时相关的服务质量QoS参数。
  5. 根据权利要求4所述的方法,其中,所述方法还包括:
    所述移动网络控制节点基于所述请求信息为所述多个终端选择相同的移动网络执行节点。
  6. 根据权利要求2至5中任一项所述的方法,所述方法还包括:
    所述移动网络控制节点接收终端和/或应用服务器发送的第一请求消息之前,所述移动网络控制节点接收第一节点发送的第二请求消息,所述第二请求消息携带群组策略。
  7. 根据权利要求6所述的方法,其中,所述方法还包括:
    所述移动网络控制节点基于所述群组策略,建立群组级别的上下文,并将所述群组级别的上下文发送给所述移动网络执行节点。
  8. 根据权利要求6或7所述的方法,其中,所述群组策略包括以下至少之一:
    所述第一总上限值,所述第一总上限值是指进行数据传输的至少一个终端的第一聚合参数的值的上限;
    所述第二总上限值,所述第二总上限值是指进行数据传输的至少一个终端的第二聚合参数的值的上限;
    群组的最大终端数量,所述群组的最大终端数量为一个群组中包含的终端总数的上限;
    应用服务器的地址信息。
  9. 根据权利要求7所述的方法,其中,所述群组级别的上下文包括以下至少一种信息:群组标识、群组QoS、群组成员信息。
  10. 根据权利要求6至9中任一项所述的方法,其中,所述第一节点为统一数据管理节点或策略控制节点或者应用服务器。
  11. 根据权利要求2至10中任一项所述的方法,其中,所述方法还包括:
    所述移动网络控制节点接收到所述第一请求消息后,基于所述第一请求消息中携带的请求信息更新群组级别的上下文;
    所述移动网络控制节点将更新后的群组级别的上下文发送给所述移动网络执行节点。
  12. 根据权利要求1至11中任一项所述的方法,其中,所述第一总上限值为总带宽,所述总带宽是指进行数据传输的至少一个终端的数据流的带宽总和的上限;
    所述多个终端中的至少部分终端的第一聚合参数的值小于等于第一总上限值,是指:所述至少部分终端的数据流的带宽之和小于等于所述总带宽。
  13. 根据权利要求1至12中任一项所述的方法,其中,所述第二总上限值为总终端数,所述总终端数是指进行数据传输的至少一个终端的总数量的上限;
    所述多个终端中的至少部分终端的第二聚合参数的值小于等于第二总上限值,是指:所述至少部分终端的终端数量小于等于所述总终端数。
  14. 一种通信方法,所述方法包括:
    移动网络执行节点基于第一总上限值和/或第二总上限值控制多个终端中的至少部分终端与应用服务器之间的数据传输,其中,所述第一总上限值是指所述多个终端中进行数据传输的至少一个终端的第一聚合参数的值的上限,所述第一总上限值是指所述多个终端中进行数据传输的至少一个终端的第一聚合参数的值的上限。
  15. 根据权利要求14所述的方法,其中,所述第一总上限值为总带宽,所述总带宽是指进行数据传输的至少一个终端的数据流的带宽总和的上限;
    所述移动网络执行节点基于第一总上限值控制多个终端中的至少部分终端的数据传输,包括:
    所述移动网络执行节点确定与应用服务器之间进行数据传输的至少一个终端的数据流的带宽之和小于等于总带宽,允许所述至少一个终端的数据流通过所述移动网络执行节点传输至所述应用服务器;
    若需要与应用服务器进行数据传输的第一终端的数据流的带宽加上所述至少一个终端的数据流的带宽之和,大于所述总带宽,则所述移动网络执行节点禁止所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器;或者,若需要与应用服务器进行数据传输的第一终端的数据流的带宽加上所述至少一个终端的数据流的带宽之和,小于等于所述总带宽,则所述移动网络执行节点允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器;其中,所述第一终端为所述多个终端的一个终端。
  16. 根据权利要求14所述的方法,其中,所述第一总上限值为总终端数,所述总终端数是指进行数据传输的至少一个终端的总数量的上限;
    所述移动网络执行节点基于第一总上限值控制多个终端中的至少部分终端的数据传输,包括:
    若所述移动网络执行节点确定与应用服务器之间进行数据传输的至少一个终端的数据流的带宽之和已大于或等于总带宽,则所述移动网络执行节点禁止需要与应用服务器进行传输的第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器。
  17. 根据权利要求15所述的方法,其中,所述移动网络执行节点基于第一总上限值控制多个终端中的至少部分终端的数据传输,还包括:
    若所述至少一个终端中的第二终端停止传输,且所述第二终端的数据流的带宽大于等于所述第一终端的数据流的带宽,则所述移动网络执行节点允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器;或者,
    若所述至少一个终端中的第二终端停止传输,且所述第一终端的数据流的带宽加上所述至少一个终端中除所述第二终端以外的终端的数据流的带宽之和小于等于所述总带宽,则所述移动网络执行节点允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器。
  18. 根据权利要求14所述的方法,其中,所述第二总上限值为总终端数,所述总终端数是指进行数据传输的至少一个终端的总数量的上限;
    所述移动网络执行节点基于第二总上限值控制多个终端中的至少部分终端的数据传输,包括:
    所述移动网络执行节点确定与应用服务器之间进行数据传输的至少一个终端的终端数量小于等于总终端数,允许所述至少一个终端的数据流通过所述移动网络执行节点传输至所述应用服务器;
    若需要与应用服务器进行数据传输的第一终端的终端数量加上所述至少一个终端的终端数量,大于总终端数,则所述移动网络执行节点禁止所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器;或者,若需要与应用服务器进行数据传输的第一终端的终端数量加上所述至少一个终端的终端数量,小于等于所述总终端数,则所述移动网络执行节点允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器;其中,所述第一终端为所述多个终端的一个终端。
  19. 根据权利要求14所述的方法,其中,所述第二总上限值为总终端数,所述总终端数是指进行数据传输的至少一个终端的总数量的上限;
    所述移动网络执行节点基于第二总上限值控制多个终端中的至少部分终端的数据传输,包括:
    若所述移动网络执行节点确定与应用服务器之间进行数据传输的至少一个终端的终端数量已大于或等于总终端数,则所述移动网络执行节点禁止需要与应用服务器进行传输的第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器。
  20. 根据权利要求18所述的方法,其中,所述移动网络执行节点基于第二总上限值控制多个终端中的至少部分终端的数据传输,还包括:
    若所述至少一个终端中的第二终端停止传输,则所述移动网络执行节点允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器。
  21. 根据权利要求14所述的方法,其中,所述第一总上限值为总终端数,所述总终端数是指进行数据传输的至少一个终端的总数量的上限;所述第二总上限值为总终端数,所述总终端数是指进行数据传输的至少一个终端的总数量的上限;
    所述移动网络执行节点基于第一总上限值和第二总上限值控制多个终端中的至少部分终端的数据传输,包括:
    所述移动网络执行节点确定与应用服务器之间进行数据传输的至少一个终端的数据流的带宽之和小于等于总带宽,且所述至少一个终端的终端数量小于等于总终端数,允许所述至少一个终端的数据流通过所述移动网络执行节点传输至所述应用服务器;
    若需要与应用服务器进行数据传输的第一终端的数据流的带宽加上所述至少一个终端的数据流的带宽之和大于所述总带宽,和/或所述第一终端的终端数量加上所述至少一个终端的终端数量大于总终端数,则所述移动网络执行节点禁止所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器;或者,
    若需要与应用服务器进行数据传输的第一终端的数据流的带宽加上所述至少一个终端的数据流的带宽之和小于等于所述总带宽,且所述第一终端的终端数量加上所述至少一个终端的终端数量小于等于所述总终端数,则所述移动网络执行节点允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器。
  22. 根据权利要求21所述的方法,其中,所述移动网络执行节点基于第一总上限值和第二总上限值控制多个终端中的至少部分终端的数据传输,还包括:
    若所述至少一个终端中的第二终端停止传输,且所述第二终端的数据流的带宽大于等于所述第一终端的数据流的带宽,则所述移动网络执行节点允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器;或者,
    若所述至少一个终端中的第二终端停止传输,且所述第一终端的数据流的带宽加上所述至少一个终端中除所述第二终端以外的终端的数据流的带宽之和小于等于所述总带宽,则所述移动网络执行节点允许所述第一终端的数据流通过所述移动网络执行节点传输至所述应用服务器。
  23. 根据权利要求14至22中任一项所述的方法,其中,所述移动网络执行节点基于第一总上限值和/或第二总上限值控制多个终端中的至少部分终端的数据传输,包括:
    所述移动网络执行节点在每轮迭代或每个时间段内基于第一总上限值和/或第二总上限值控制多个终端中的至少部分终端与应用服务器之间的数据传输。
  24. 根据权利要求23所述的方法,其中,所述方法还包括:
    所述移动网络执行节点基于以下至少一种信息确定是否开启新一轮的迭代:与迭代关联的用户面信息、与迭代关联的时间信息、与迭代关联的控制面信息。
  25. 一种通信装置,应用于移动网络控制节点,所述装置包括:
    建立单元,用于触发移动网络执行节点建立多个终端与应用服务器之间的连接;其中,所述多个终端中的至少部分终端的第一聚合参数的值小于等于第一总上限值和/或第二聚合参数的值小于等于第二总上限值,所述至少部分终端包括所述多个终端中通过各自的连接进行数据传输的至少一个终端。
  26. 一种通信装置,应用于移动网络执行节点,所述装置包括:
    控制单元,用于基于第一总上限值和/或第二总上限值控制多个终端中的至少部分终端与应用服务器之间的数据传输,其中,所述第一总上限值是指所述多个终端中进行数据传输的至少一个终端的第一聚合参数的值的上限,所述第一总上限值是指所述多个终端中进行数据传输的至少一个终端的第一聚合参数的值的上限。
  27. 一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至13中任一项所述的方法, 或者权利要求14至24中任一项所述的方法。
  28. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至13中任一项所述的方法,或者权利要求14至24中任一项所述的方法。
  29. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的方法,或者权利要求14至24中任一项所述的方法。
  30. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至13中任一项所述的方法,或者权利要求14至24中任一项所述的方法。
  31. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的方法,或者权利要求14至24中任一项所述的方法。
PCT/CN2021/136213 2021-12-07 2021-12-07 一种通信方法及装置、通信设备 WO2023102754A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/136213 WO2023102754A1 (zh) 2021-12-07 2021-12-07 一种通信方法及装置、通信设备
CN202180103360.2A CN118104207A (zh) 2021-12-07 2021-12-07 一种通信方法及装置、通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/136213 WO2023102754A1 (zh) 2021-12-07 2021-12-07 一种通信方法及装置、通信设备

Publications (1)

Publication Number Publication Date
WO2023102754A1 true WO2023102754A1 (zh) 2023-06-15

Family

ID=86729517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136213 WO2023102754A1 (zh) 2021-12-07 2021-12-07 一种通信方法及装置、通信设备

Country Status (2)

Country Link
CN (1) CN118104207A (zh)
WO (1) WO2023102754A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118796A (zh) * 2009-12-31 2011-07-06 华为技术有限公司 带宽的控制方法、装置及系统
CN103125142A (zh) * 2010-05-07 2013-05-29 爱立信(中国)通信有限公司 为移动实体的群组实施共同服务质量
CN104662935A (zh) * 2012-06-25 2015-05-27 爱立信(中国)通信有限公司 机器对机器群的策略控制
CN107995603A (zh) * 2016-10-27 2018-05-04 中兴通讯股份有限公司 一种能力开放实现方法及装置
CN113504999A (zh) * 2021-08-05 2021-10-15 重庆大学 一种面向高性能分层联邦边缘学习的调度与资源分配方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118796A (zh) * 2009-12-31 2011-07-06 华为技术有限公司 带宽的控制方法、装置及系统
CN103125142A (zh) * 2010-05-07 2013-05-29 爱立信(中国)通信有限公司 为移动实体的群组实施共同服务质量
CN104662935A (zh) * 2012-06-25 2015-05-27 爱立信(中国)通信有限公司 机器对机器群的策略控制
CN107995603A (zh) * 2016-10-27 2018-05-04 中兴通讯股份有限公司 一种能力开放实现方法及装置
CN113504999A (zh) * 2021-08-05 2021-10-15 重庆大学 一种面向高性能分层联邦边缘学习的调度与资源分配方法

Also Published As

Publication number Publication date
CN118104207A (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
WO2020221015A1 (zh) 直通链路通信方法、装置和存储介质
JP6980836B2 (ja) データ送信方法、ユーザ機器、および基地局
WO2012107004A1 (zh) 一种基于服务质量的调度方法、设备及系统
WO2020252710A1 (zh) 无线通信方法和设备
WO2020093678A1 (zh) 传输侧行链路数据的方法和终端设备
CN113543219A (zh) 通信方法和装置
CN109196918A (zh) 一种数据传输控制方法、通信设备及核心网设备
WO2020150876A1 (zh) 会话建立方法、终端设备和网络设备
WO2020191785A1 (zh) 一种车联网系统中的通信方法及终端设备、网络设备
CN113973322A (zh) 一种通信方法及装置
WO2022012361A1 (zh) 一种通信方法及装置
CN112087777A (zh) 一种mdbv的确定方法、装置及系统
WO2022147795A1 (zh) 无线通信方法、网元以及设备
WO2022151242A1 (zh) 一种数据传输方法、电子设备及存储介质
WO2020164078A1 (zh) 用于传输数据的方法及设备
WO2023102754A1 (zh) 一种通信方法及装置、通信设备
WO2023102680A1 (zh) 拥塞控制方法、装置、设备、介质、芯片、产品及程序
WO2022188035A1 (zh) 一种通信方法及装置
WO2018058391A1 (zh) 建立承载的方法、无线接入网设备和客户终端设备
WO2021142669A1 (zh) 业务传输的方法和设备
WO2021163932A1 (zh) 通信参数调整方法、装置、设备及存储介质
WO2024016134A1 (zh) 一种无线通信方法及装置、设备、存储介质
WO2023019450A1 (zh) 一种QoS的控制方法及装置、通信设备
WO2023125967A1 (zh) 一种选择基站的方法及装置、网络设备
WO2023151042A1 (zh) 一种无线通信方法及装置、通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966678

Country of ref document: EP

Kind code of ref document: A1