WO2023125967A1 - 一种选择基站的方法及装置、网络设备 - Google Patents

一种选择基站的方法及装置、网络设备 Download PDF

Info

Publication number
WO2023125967A1
WO2023125967A1 PCT/CN2022/144116 CN2022144116W WO2023125967A1 WO 2023125967 A1 WO2023125967 A1 WO 2023125967A1 CN 2022144116 W CN2022144116 W CN 2022144116W WO 2023125967 A1 WO2023125967 A1 WO 2023125967A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
sensing
network element
request
service
Prior art date
Application number
PCT/CN2022/144116
Other languages
English (en)
French (fr)
Inventor
王玮
李爱华
秦鹏太
刘乐
史嫄嫄
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2023125967A1 publication Critical patent/WO2023125967A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0077Transmission or use of information for re-establishing the radio link of access information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a method and device for selecting a base station, and network equipment.
  • Typical application scenarios of communication sensing technology include automatic driving, drone supervision, foreign object detection on train tracks, health monitoring, etc. Most scenarios only require some base stations to perform sensing. For example, the perception of foreign objects on a train track only needs the participation of base stations along the railway line, and the perception of drones only needs the participation of base stations in the flying area of drones. If all base stations participate in sensing, a large amount of data will be transmitted to the core network, which will put pressure on the network elements of the core network and the transmission network, and affect transmission and processing efficiency. In addition, base stations that support communication and sensing and base stations that only support communication may exist in the same area.
  • the base station that does not support sensing may cause an error because it cannot recognize the request, resulting in additional performance. and signaling overhead.
  • the communication load of the base station itself is heavy, it may not have enough resources to perform sensing, which will affect the sensing performance on the one hand and the communication performance on the other hand.
  • embodiments of the present application provide a method and device for selecting a base station, a network device, a chip, and a computer-readable storage medium.
  • the first network element selects a base station for sensing according to at least one of base station capability, area, and sensing service.
  • the first network element acquires base station capabilities, where the first network element supports selection of a base station for sensing.
  • the first network element receives the first sensing request and/or sends the second sensing request to the selected base station;
  • the first sensing request is used to request the first network element to process the sensing service
  • the second sensing request is used to request the base station to perform sensing.
  • the device for selecting a base station provided in the embodiment of the present application is applied to a first network element, and the device includes:
  • the selection unit is configured to select a base station for sensing according to at least one of base station capability, area, and sensing service.
  • the device for selecting a base station provided in the embodiment of the present application is applied to a first network element, and the device includes:
  • the obtaining unit is configured to obtain base station capabilities, wherein the first network element supports selection of a base station for sensing.
  • the device for selecting a base station provided in the embodiment of the present application is applied to a first network element, and the device includes:
  • a communication unit configured to receive a first sensing request and/or send a second sensing request to a selected base station
  • the first sensing request is used to request the first network element to process the sensing service
  • the second sensing request is used to request the base station to perform sensing.
  • the network device provided in the embodiment of the present application includes: a processor and a memory, the memory is used to store a computer program, the processor is used to invoke and run the computer program stored in the memory, and execute any one of the above methods for selecting a base station .
  • the chip provided by the embodiment of the present application includes: a processor, configured to invoke and run a computer program from a memory, so that a device installed with the chip executes any one of the above methods.
  • the core computer-readable storage medium provided by the embodiment of the present application is used for storing a computer program, and the computer program causes a computer to execute any one of the above-mentioned methods.
  • the problem of selecting a sensing base station in an area sensing scenario can be effectively solved, preventing the core network from sending sensing requests to all jurisdictional base stations, causing a large amount of signaling and data to cause transmission and damage to the core network, transmission, and bearer network. Processing performance impact.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application
  • FIG. 2 is a first schematic flow diagram of a method for selecting a base station provided by an embodiment of the present application
  • FIG. 3 is a second schematic flow diagram of a method for selecting a base station provided in an embodiment of the present application
  • FIG. 4 is a third schematic flowchart of a method for selecting a base station provided in an embodiment of the present application.
  • FIG. 5 is a schematic flowchart 4 of a method for selecting a base station provided by an embodiment of the present application
  • FIG. 6 is a schematic flow diagram five of a method for selecting a base station provided by an embodiment of the present application.
  • FIG. 7 is a sixth schematic flow diagram of a method for selecting a base station provided by an embodiment of the present application.
  • FIG. 8 is a schematic flow diagram VII of a method for selecting a base station provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart eighth of a method for selecting a base station provided by an embodiment of the present application.
  • FIG. 10 is a schematic flow diagram 9 of a method for selecting a base station provided by an embodiment of the present application.
  • FIG. 11 is a tenth schematic flowchart of a method for selecting a base station provided by an embodiment of the present application.
  • FIG. 12 is an eleventh schematic flowchart of a method for selecting a base station provided in an embodiment of the present application.
  • FIG. 13 is a schematic flow diagram twelve of a method for selecting a base station provided in an embodiment of the present application.
  • FIG. 14 is a schematic flowchart of a method for selecting a base station according to an embodiment of the present application.
  • FIG. 15 is a fourteenth schematic flowchart of a method for selecting a base station provided by an embodiment of the present application.
  • FIG. 16 is a fifteenth schematic flowchart of a method for selecting a base station provided by an embodiment of the present application.
  • FIG. 17 is a sixteenth schematic flowchart of a method for selecting a base station provided in an embodiment of the present application.
  • FIG. 18 is a seventeenth schematic flowchart of a method for selecting a base station provided by an embodiment of the present application.
  • FIG. 19 is an eighteenth schematic flowchart of a method for selecting a base station provided in an embodiment of the present application.
  • FIG. 20 is a first structural diagram of an apparatus for selecting a base station provided by an embodiment of the present application.
  • FIG. 21 is a second structural diagram of a device for selecting a base station provided by an embodiment of the present application.
  • FIG. 22 is a schematic diagram of the third structural composition of the device for selecting a base station provided by the embodiment of the present application.
  • Fig. 23 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Fig. 24 is a schematic structure diagram of a chip according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the communication system 100 may include a terminal 110 and a network device 120 , or may not include the terminal 110 but only include the network device 120 .
  • the network device 120 can communicate with the terminal 110 through an air interface. Multi-service transmission is supported between the terminal 110 and the network device 120 .
  • the embodiment of the present application is only described by using the communication system 100 as an example, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: Long Term Evolution (Long Term Evolution, LTE) system, LTE Time Division Duplex (Time Division Duplex, TDD), Universal Mobile Communication System (Universal Mobile Telecommunications System, UMTS), Internet of Things (Internet of Things, IoT) system, Narrow Band Internet of Things (NB-IoT) system, enhanced Machine-Type Communications (eMTC) system, 5G communication system (also known as New Radio (NR) communication system), or future communication systems, etc.
  • LTE Long Term Evolution
  • LTE Time Division Duplex Time Division Duplex
  • TDD Time Division Duplex
  • Universal Mobile Communication System Universal Mobile Telecommunications System
  • UMTS Universal Mobile Communication System
  • Internet of Things Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine-Type Communications
  • the network device 120 may be an access network device that communicates with the terminal 110 .
  • the access network device can provide communication coverage for a specific geographic area, and can communicate with terminals 110 (such as UEs) located in the coverage area.
  • the network device 120 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in a long-term evolution (Long Term Evolution, LTE) system, or a next-generation radio access network (Next Generation Radio Access Network, NG RAN) device, Either a base station (gNB) in the NR system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wearable Devices, hubs, switches, bridges, routers, or network devices in the future evolution of the Public Land Mobile Network (Public Land Mobile Network, PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a long-term evolution (Long Term Evolution, LTE) system
  • NG RAN next-generation radio access network
  • gNB base station
  • CRAN Cloud Radio Access Network
  • the network device 120 can be a relay station, an access point,
  • the terminal 110 may be any terminal, including but not limited to a terminal connected to the network device 120 or other terminals by wire or wirelessly.
  • the terminal 110 may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device , User Agent, or User Device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, IoT devices, satellite handheld terminals, Wireless Local Loop (WLL) stations, Personal Digital Assistant , PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminals in 5G networks or terminals in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal 110 can be used for device-to-device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may also include a core network device 130 that communicates with the base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, Access and Mobility Management Function (Access and Mobility Management Function , AMF), and for example, authentication server function (Authentication Server Function, AUSF), and for example, user plane function (User Plane Function, UPF), and for example, session management function (Session Management Function, SMF).
  • the core network device 130 may also be a packet core evolution (Evolved Packet Core, EPC) device of the LTE network, for example, a data gateway (Session Management Function+Core Packet Gateway, SMF+PGW- C) equipment.
  • EPC packet core evolution
  • SMF+PGW-C can realize the functions of SMF and PGW-C at the same time.
  • the above-mentioned core network equipment may be called by other names, or a new network entity may be formed by dividing functions of the core network, which is not limited in this embodiment of the present application.
  • Various functional units in the communication system 100 may also establish a connection through a next generation network (next generation, NG) interface to implement communication.
  • NG next generation network
  • the terminal establishes an air interface connection with the access network device through the NR interface to transmit user plane data and control plane signaling; the terminal can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short); the access network device
  • a next-generation wireless access base station gNB
  • UPF can establish a user plane data connection with UPF through NG interface 3 (N3 for short); an access network device can establish a control plane signaling connection with AMF through NG interface 2 (N2 for short);
  • UPF can establish a control plane signaling connection with SMF through NG interface 4 (abbreviated as N4);
  • UPF can exchange user plane data with the data network through NG interface 6 (abbreviated as N6);
  • AMF can establish with SMF through NG interface 11 (abbreviated as N11)
  • Control plane signaling connection the SMF can establish a control plane signaling connection with the PCF through the NG interface 7 (N7 for short).
  • FIG. 1 exemplarily shows a base station, a core network device, and two terminals.
  • the wireless communication system 100 may include multiple base station devices and each base station may include other numbers of terminals within the coverage area. This embodiment of the present application does not limit it.
  • FIG. 1 is only an illustration of a system applicable to this application, and of course, the method shown in the embodiment of this application may also be applicable to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and there exists alone B these three situations.
  • the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • the "indication” mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the "correspondence” mentioned in the embodiments of the present application may mean that there is a direct correspondence or an indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated. , configuration and configured relationship.
  • predefined or “predefined rules” mentioned in the embodiments of this application can be used to indicate related information, and this application does not limit its specific implementation. For example, pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, and this application does not limit this .
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • 3GPP Third Generation Partnership Project
  • 5G-A base station NG-RAN
  • the acquisition and processing of perception information can be achieved by deploying communication-aware integrated base stations or upgrading deployed base stations.
  • the base station and/or terminal When the base station and/or terminal receives the transmission signal and/or echo signal, it first extracts the sensing information locally and processes it, and then transmits the processed sensing data to the core network element for calculation to obtain the position and speed of the target Information such as size and size are output as sensing results, and finally, the sensing results can be provided to terminals and/or core network elements and/or third-party application platforms or control platforms to assist third parties in making decisions.
  • the current communication perception technology is in the project discussion stage, and the network architecture and process are not defined.
  • Typical application scenarios of communication sensing technology include automatic driving, drone supervision, foreign object detection on train tracks, health monitoring, etc. Most scenarios only require some base stations and/or terminals to perform sensing. For example, the perception of foreign objects on a train track only needs the participation of base stations along the railway line, and the perception of drones only needs the participation of base stations in the flying area of drones. If all base stations participate in sensing, a large amount of data will be transmitted to the core network, which will put pressure on the network elements of the core network and the transmission network, and affect transmission and processing efficiency. In addition, base stations that support communication and sensing and base stations that only support communication may exist in the same area.
  • the base station that does not support sensing may cause an error because it cannot recognize the request, resulting in additional performance. and signaling overhead.
  • the communication load of the base station itself is heavy, it may not have enough resources to perform sensing, which will affect the sensing performance on the one hand and the communication performance on the other hand.
  • the base station for sensing (referred to as the sensing base station for short) is selected based on at least one of the base station capability, area, and sensing service to solve the problem of base station selection in the area sensing scenario.
  • This solution can also be used Scenarios where perception is performed on the terminal.
  • network element in this embodiment of the present application may also be replaced with “network function”.
  • base station in this embodiment of the application may also be replaced by “RAN”, and this application does not limit the type of RAN, for example, it may be "NG-RAN”.
  • Figure 2 is a schematic flow diagram of a method for selecting a base station provided in an embodiment of the present application. As shown in Figure 2, the method for selecting a base station includes the following steps:
  • Step 201 The first network element selects a base station for sensing according to at least one of base station capability, area, and sensing service.
  • the first network element may be an existing network element of the mobile network, or may also be a newly added network element (NF Instance) of the mobile network. Further, the first network element may be an existing network element of the core network, or may be a new network element of the core network.
  • NF Instance newly added network element
  • the first network element may be an existing network element of the core network, specifically, the first network element is a control plane network element of the core network.
  • the first network element is an Access and Mobility Management Function (Access and Mobility Management Function, AMF).
  • the first network element may be a newly added network element of the core network, specifically, the first network element is a network element with a perception function added in the core network.
  • a newly added network element with a sensing function may be called a sensing function (Sensing Function) or a sensing network element.
  • the base station capability includes base station information and/or radio access technology (Radio Access Technology, RAT) information, which is used to indicate at least one of the following: whether to support sensing, supported sensing services, supported Area, supported perceived quality of service (Quality of Service, QoS), load, available resources, transmission rate that can be provided, etc.
  • RAT radio access technology
  • the perceived service is identified by at least one of the following: a perceived service type, a perceived service ID, a perceived service name, and a perceived QoS requirement.
  • the area is identified by at least one of the following: area identity, area location information, tracking area (Tracking Area, TA), base station, cell identity, TA and/or base station and/or cell identity list etc.
  • the method before the selection of the base station for sensing, the method further includes: the first network element receiving a first sensing request sent by a terminal and/or an application platform and/or a core network element , the first sensing request is used to request the first network element to process the sensing service.
  • the first network element selects a corresponding base station to perform sensing according to at least one of base station capabilities, areas, and sensing services.
  • the following describes how the first network element selects a base station for sensing in combination with different solutions.
  • the first network element selects a base station for sensing according to base station capabilities.
  • the base station capability is used to indicate at least one of the following: whether to support sensing, supported sensing services, supported areas, supported sensing QoS, load, available resources, and available transmission rates.
  • the first network element selects a base station for sensing according to base station capabilities, which may be implemented in the following manner:
  • the first network element selects a base station for sensing according to local first configuration information, where the first configuration information is used to configure base station capabilities.
  • the first network element selects a base station for sensing according to the base station capability reported by the base station.
  • the first network element receives the base station capability reported by the base station.
  • the base station capability is carried in the connection establishment request message sent by the base station to the first network element; or, the base station capability is carried in the message sent by the base station to the first network element. element's configuration update request message.
  • the base station capability is carried in the NG setup request (NG SETUP REQUEST) message sent by the base station to the first network element; or, the base station capability is carried in the message sent by the base station In the radio access network configuration update (RAN CONFIGURATION UPDATE) message to the first network element.
  • the first network element selects a base station for sensing according to a sensing service and/or an area.
  • the first network element selects a base station for sensing according to the sensing service and/or area, which may be implemented in the following manner:
  • the first network element selects a base station for sensing according to the requested sensing service and/or area and local second configuration information, where the second configuration information is used to configure the sensing service and and/or a list of TAs and/or base stations and/or cells corresponding to the area.
  • the first network element selects a base station for sensing according to base station capabilities, and at least one of a sensing service and an area.
  • the base station capability is used to indicate at least one of the following: whether to support sensing, supported sensing services, supported areas, supported sensing QoS, load, available resources, and available transmission rates.
  • the first network element selects a base station for sensing according to the base station capability, and at least one of the sensing service and the area, which may be achieved in the following manner:
  • the first network element selects a base station for sensing according to the requested sensing service and/or area and local first configuration information, where the first configuration information is used to configure base station capabilities.
  • the first network element selects a base station for sensing according to the requested sensing service and/or area, and the base station capability reported by the base station.
  • the first network element receives the base station capability reported by the base station.
  • the base station capability is carried in the connection establishment request message sent by the base station to the first network element; or, the base station capability is carried in the message sent by the base station to the first network element. element's configuration update request message.
  • the base station capability is carried in the NG setup request (NG SETUP REQUEST) message sent by the base station to the first network element; or, the base station capability is carried in the message sent by the base station In the radio access network configuration update (RAN CONFIGURATION UPDATE) message to the first network element.
  • the method further includes: the first network element sends a second sensing request to the base station, so The second sensing request is used to request the base station to perform sensing.
  • the first network element directly interacts with the base station. In other optional implementation manners, the first network element interacts with the base station through forwarding by at least one network element.
  • the first network element sends the second sensing request to the base station in the following cases:
  • the first network element sends a second sensing request to all base stations in the multiple base stations; or, the first network element sends a second sensing request to all base stations in the multiple base stations; Some of the base stations in the multiple base stations send the second sensing request.
  • the first network element if the first network element sends a second sensing request to some of the multiple base stations, the first network element needs to select the some of the base stations from the multiple base stations, where Options include but are not limited to:
  • the first network element randomly selects one or more base stations from the multiple base stations, and sends a second sensing request to the one or more base stations.
  • the first network element polls and selects one or more base stations from the multiple base stations, and sends a second sensing request to the one or more base stations.
  • the first network element selects one or more base stations from the multiple base stations based on weights corresponding to the multiple base stations, and sends the second sensing request to the one or multiple base stations.
  • the weights corresponding to the plurality of base stations are determined based on at least one of the following: the area of the base station, the load of the base station, the available bandwidth of the base station, the power of the base station, and the cyclic prefix (Cyclic Prefix, CP) used by the base station. ) length etc.
  • the first network element selects a base station according to the capability of the base station, and initiates a sensing request to the corresponding base station.
  • the specific implementation scheme can be one of the following schemes:
  • the first network element is a newly added network element of the core network, such as a perception network element.
  • the perception network element configures base station capabilities, and selects base stations based on this. Specifically, after receiving the sensing request, the sensing network element selects the base station based on local configuration information, and sends the sensing request to the base station or forwards the sensing request through the AMF, and the base station returns a response and performs sensing.
  • the base station capability is used to indicate at least one of the following: whether to support sensing, supported sensing services, supported areas, supported sensing QoS, currently available rate, current load, and the like.
  • Step 301 The sensing network element receives a sensing request.
  • Step 302 The sensing network element selects a base station based on local configuration information.
  • the local configuration information that is, the first local configuration information, is used to configure the capabilities of the base station.
  • Step 303 the sensing network element sends a sensing request to the base station.
  • Step 304 the base station sends a sensing response to the sensing network element.
  • Step 305 the base station performs sensing.
  • Step 401 The sensing network element receives a sensing request.
  • Step 402 The sensing network element selects a base station based on local configuration information.
  • the local configuration information that is, the first local configuration information, is used to configure the capabilities of the base station.
  • Step 403 The sensing network element sends a sensing request to the base station via the AMF.
  • Step 404 the base station sends a sensing response to the sensing network element via the AMF.
  • Step 405 the base station performs sensing.
  • the first network element is an AMF
  • the AMF configures base station capability information, and selects a base station based on this. Specifically, after receiving the sensing request, the AMF selects a base station based on local configuration information, and sends a sensing request to the base station, and the base station returns a sensing response and performs sensing.
  • the base station capability is used to indicate at least one of the following: whether to support sensing, supported sensing services, supported areas, supported sensing QoS, currently available rate, current load, and the like.
  • Step 501 AMF receives a sensing request.
  • Step 502 AMF selects a base station based on local configuration information.
  • the local configuration information that is, the first local configuration information, is used to configure the capabilities of the base station.
  • Step 503 The AMF sends a sensing request to the base station.
  • Step 504 the base station sends a sensing response to the AMF.
  • Step 505 the base station performs sensing.
  • the first network element is a newly added network element of the core network, such as a perception network element.
  • the sensing network element selects the base station based on the base station capability reported by the base station. Specifically, when the base station establishes a connection with the sensing network element and/or updates the configuration, it reports its own base station capability to the sensing network element, and the sensing network element stores the information. After receiving the sensing request, it selects a base station that supports sensing according to the base station capability. And send a sensing request to the base station or forward the sensing request to the base station through the AMF, and the base station returns a sensing response and performs sensing.
  • Step 601 the base station sends a connection establishment request to the sensing network element, carrying its own base station capability.
  • Step 602 The sensing network element sends a connection establishment response to the base station.
  • Step 603 The sensing network element receives the sensing request.
  • Step 604 The sensing network element selects a base station based on the base station capability.
  • the base station capability is the base station capability reported by the base station in the preceding step.
  • Step 605 the sensing network element sends a sensing request to the base station.
  • Step 606 the base station sends a sensing response to the sensing network element.
  • Step 607 The base station performs sensing.
  • Step 701 the base station sends a configuration update request to the sensing network element, carrying its own base station capability.
  • Step 702 The sensing network element sends a configuration update response to the base station.
  • Step 703 The sensing network element receives the sensing request.
  • Step 704 The sensing network element selects a base station based on the base station capability.
  • the base station capability is the base station capability reported by the base station in the preceding steps.
  • Step 705 the sensing network element sends a sensing request to the base station.
  • Step 706 the base station sends a sensing response to the sensing network element.
  • Step 707 The base station performs sensing.
  • the first network element is an AMF
  • the AMF selects a base station based on the base station capability reported by the base station.
  • the base station sends an NG setup request (NG SETUP REQUEST) and/or radio access network configuration update (RAN CONFIGURATION UPDATE) to the AMF, which carries the base station identifier (such as gNB ID) and base station capabilities, and the AMF returns a response message and stores the Information
  • the AMF receives the sensing request, it selects a base station that supports sensing according to the capabilities of the base station, and sends a sensing request to the base station, and the base station returns a sensing response and performs sensing.
  • Step 801 the base station sends an NG setup request (NG SETUP REQUEST) to the AMF, carrying its own base station capability.
  • NG setup request NG SETUP REQUEST
  • Step 802 AMF sends an NG setup response (NG SETUP RESPONSE) to the base station.
  • NG setup response NG SETUP RESPONSE
  • Step 803 The AMF receives the sensing request.
  • Step 804 AMF selects a base station based on base station capability.
  • the base station capability is the base station capability reported by the base station in the preceding step.
  • Step 805 AMF sends a sensing request to the base station.
  • Step 806 the base station sends a sensing response to the AMF.
  • Step 807 The base station performs sensing.
  • Step 901 the base station sends a radio access network configuration update (RAN CONFIGURATION UPDATE) to the AMF, carrying its own base station capabilities.
  • RAN CONFIGURATION UPDATE radio access network configuration update
  • Step 902 AMF sends a radio access network configuration response (RAN CONFIGURATION RESPONSE) to the base station.
  • RAN CONFIGURATION RESPONSE radio access network configuration response
  • Step 903 The AMF receives the sensing request.
  • Step 904 The AMF selects a base station based on the base station capability.
  • the base station capability is the base station capability reported by the base station in the preceding step.
  • Step 905 AMF sends a sensing request to the base station.
  • Step 906 the base station sends a sensing response to the AMF.
  • Step 907 The base station performs sensing.
  • the first network element selects a base station according to the sensing service and/or area, and initiates a sensing request to the corresponding base station.
  • the specific implementation scheme can be one of the following schemes:
  • the first network element is a newly added network element of the core network, such as a perception network element.
  • the sensing network element configures a base station list corresponding to the sensing service and/or area, and selects a base station based on the configuration information and the requested sensing service and/or area.
  • the sensing network element receives the sensing request, which includes the requested sensing service and/or area, and the sensing network element selects the base station based on the requested sensing service and/or area and local configuration information, and sends the sensing request to the base station or via the AMF
  • the sensing request is forwarded, and the base station returns a response and performs sensing.
  • Step 1001 The sensing network element receives a sensing request, including the requested sensing service and/or area.
  • Step 1002 The sensing network element selects a base station based on the requested sensing service and/or area and local configuration information.
  • the local configuration information that is, the second local configuration information, is used to configure the TA and/or base station and/or cell list corresponding to the sensing service and/or area.
  • Step 1003 the sensing network element sends a sensing request to the base station.
  • Step 1004 the base station sends a sensing response to the sensing network element.
  • Step 1005 the base station performs sensing.
  • Step 1101 The sensing network element receives a sensing request, including the requested sensing service and/or area.
  • Step 1102 The sensing network element selects a base station based on the requested sensing service and/or area and local configuration information.
  • the local configuration information that is, the second local configuration information, is used to configure the TA and/or base station and/or cell list corresponding to the sensing service and/or area.
  • Step 1103 the sensing network element sends a sensing request to the base station via the AMF.
  • Step 1104 the base station sends a sensing response to the sensing network element via the AMF.
  • Step 1105 the base station performs sensing.
  • the first network element is AMF
  • the AMF configures a list of base stations corresponding to the sensing service and/or area, and selects a base station based on the configuration information and the requested sensing service and/or area.
  • the AMF receives the sensing request, which includes the requested sensing service and/or area
  • the AMF selects the base station based on the requested sensing service and/or area, and local configuration information, and sends the sensing request to the base station, and the base station returns a response and performs sensing .
  • Step 1201 AMF receives a sensing request, including the requested sensing service and/or area.
  • Step 1202 AMF selects a base station based on the requested sensing service and/or area and local configuration information.
  • the local configuration information that is, the second local configuration information, is used to configure the TA and/or base station and/or cell list corresponding to the sensing service and/or area.
  • Step 1203 AMF sends a sensing request to the base station.
  • Step 1204 the base station sends a sensing response to the AMF.
  • Step 1205 the base station performs sensing.
  • the first network element selects a base station according to the capability of the base station and the requested sensing service and/or area, and initiates a sensing request to the corresponding base station.
  • the specific implementation scheme can be one of the following schemes:
  • the first network element is a newly added network element of the core network, such as a perception network element.
  • the sensing network element configures base station capabilities, and selects a base station based on the configuration information and the requested sensing service and/or area. Specifically, the sensing network element receives the sensing request, which includes the requested sensing service and/or area, and the sensing network element selects the base station based on the local configuration information and the requested sensing service and/or area, and sends the sensing request to the base station or forwards it through the AMF Sensing request, the base station returns a response and performs sensing.
  • the base station capability includes at least one of the following: whether to support sensing, supported sensing services, supported areas, supported sensing QoS, currently available rate, current load, and the like.
  • the first network element is an AMF
  • the AMF configures base station capabilities, and selects a base station based on the configuration information and the requested sensing service and/or area.
  • the AMF receives the sensing request, which includes the requested sensing service and/or area, and the AMF selects the base station based on the local configuration information and the requested sensing service and/or area, and sends the sensing request to the base station, and the base station returns a sensing response and performs sensing .
  • the base station capability includes at least one of the following: whether to support sensing, supported sensing services, supported areas, supported sensing QoS, currently available rate, current load, and the like.
  • the first network element is a newly added network element of the core network, such as a perception network element.
  • the sensing network element selects a base station based on the base station capability reported by the base station and the requested sensing service and/or area. Specifically, when the base station establishes a connection with the sensing network element and/or updates the configuration, it reports its own base station capability to the sensing network element, wherein the base station capability includes at least one of the following: whether to support sensing, supported sensing services, supported areas, The perceptual QoS supported, the current rate that can be provided, the current load, etc., the perceptual network element stores the information; the perceptual network element receives the perceptual request, which includes the requested perceptual service and/or area, and the perceptual network element matches the stored base station The information selects the base station that meets the requirements, and sends a sensing request to the base station or forwards the sensing request to the base station through the AMF, and the base station returns a sensing response and performs
  • Step 1301 the base station sends a connection establishment request to the sensing network element, carrying the base station identifier and base station capability.
  • Step 1302 the sensing network element sends a connection establishment response to the base station.
  • Step 1303 The sensing network element receives the sensing request, including the requested sensing service and/or area.
  • Step 1304 The sensing network element selects a base station according to the requested information and base station capabilities.
  • the base station capability is the base station capability reported by the base station in the preceding step, including at least one of the following: whether to support sensing, supported sensing services, supported areas, supported sensing QoS, currently available rate, current load, etc.
  • Step 1305 the sensing network element sends a sensing request to the base station.
  • Step 1306 the base station sends a sensing response to the sensing network element.
  • Step 1307 the base station performs sensing.
  • Step 1401 the base station sends a configuration update request to the sensing network element, carrying the base station identifier and base station capability.
  • Step 1402 The sensing network element sends a configuration update response to the base station.
  • Step 1403 The sensing network element receives the sensing request, including the requested sensing service and/or area.
  • Step 1404 The sensing network element selects a base station according to the requested information and base station capabilities.
  • the base station capability is the base station capability reported by the base station in the preceding step, including at least one of the following: whether to support sensing, supported sensing services, supported areas, supported sensing QoS, currently available rate, current load, etc.
  • Step 1405 the sensing network element sends a sensing request to the base station.
  • Step 1406 the base station sends a sensing response to the sensing network element.
  • Step 1407 the base station performs sensing.
  • the first network element is an AMF
  • the AMF selects a base station based on the capability reported by the base station and the requested sensing service and/or area.
  • the base station sends an NG setup request (NG SETUP REQUEST) or a radio access network configuration update (RAN CONFIGURATION UPDATE) to the AMF, which carries the base station identifier (such as gNB ID) and supported sensing services and/or areas, and the AMF returns a response
  • AMF receives the sensing request, which includes the requested sensing service and/or area
  • AMF selects a base station that meets the requirements according to the requested information and stored base station information, and sends a sensing request to the base station, and the base station returns a sensing response and Executive perception.
  • Step 1501 the base station sends an NG setup request (NG SETUP REQUEST) to the AMF, carrying the base station identifier and base station capability.
  • NG SETUP REQUEST an NG setup request
  • Step 1502 AMF sends an NG setup response (NG SETUP RESPONSE) to the base station.
  • NG setup response NG SETUP RESPONSE
  • Step 1503 AMF receives the sensing request, including the requested sensing service and/or area.
  • Step 1504 AMF selects a base station according to the requested information and base station capabilities.
  • the base station capability is the base station capability reported by the base station in the preceding step, including at least one of the following: whether to support sensing, supported sensing services, supported areas, supported sensing QoS, currently available rate, current load, etc.
  • Step 1505 AMF sends a sensing request to the base station.
  • Step 1506 the base station sends a sensing response to the AMF.
  • Step 1507 the base station performs sensing.
  • Step 1601 the base station sends a radio access network configuration update (RAN CONFIGURATION UPDATE) to the AMF, carrying the base station identifier and base station capability.
  • RAN CONFIGURATION UPDATE radio access network configuration update
  • Step 1602 AMF sends a radio access network configuration response (RAN CONFIGURATION RESPONSE) to the base station.
  • RAN CONFIGURATION RESPONSE radio access network configuration response
  • Step 1603 AMF receives the sensing request, including the requested sensing service and/or area.
  • Step 1604 AMF selects a base station according to the requested information and base station capabilities.
  • the base station capability is the base station capability reported by the base station in the preceding step, including at least one of the following: whether to support sensing, supported sensing services, supported areas, supported sensing QoS, currently available rate, current load, etc.
  • Step 1605 AMF sends a sensing request to the base station.
  • Step 1606 the base station sends a sensing response to the AMF.
  • Step 1607 the base station performs sensing.
  • the first network element an existing network element of the core network or a new network element selects multiple base stations according to at least one of base station capabilities, areas, and sensing services, but still needs to select one or more base stations to perform sensing. Then, random selection or round-robin algorithm, or selection based on weight sorting can be used for further selection.
  • the specific implementation scheme can be one of the following schemes:
  • the first network element randomly selects one or more base stations, and sends a sensing request to them.
  • the first network element polls to select one or more base stations, and sends a sensing request to them.
  • the first network element selects one or more base stations based on weights, and sends a sensing request to them.
  • the weight can be one of the parameters such as the area of the base station, the load of the base station, the available bandwidth of the base station, the power of the base station, the CP length used by the base station, or a weighted value of any combination of parameters.
  • the above parameters can be normalized first. One.
  • the first network element configures the weight calculation method; after receiving the sensing request, the first network element selects a base station that meets the requirements according to the aforementioned scheme, and multicasts and/or unicasts the sensing request to it; the base station returns a sensing response, which contains Parameters required for calculating the weights, the first network element calculates and sorts the weights; the first network element selects the base station according to the weight order, and sends a sensing request to the selected base station; the base station returns a sensing response, and performs sensing.
  • Step 1701 The first network element receives a sensing request.
  • Step 1702 The first network element selects a base station that meets the requirement according to the aforementioned scheme, and multicasts and/or unicasts a sensing request to it.
  • Step 1703 The base station returns a sensing response, which carries parameters required for weight calculation.
  • the parameters required for calculating the weight may include at least one of the following, for example: the area of the base station, the load of the base station, the available bandwidth of the base station, the power of the base station, and the CP length used by the base station.
  • Step 1704 The first network element calculates and sorts the weights, and selects base stations in sequence.
  • Step 1705 the first network element sends a sensing request to the selected base station.
  • Step 1706 The selected base station performs sensing.
  • FIG. 18 is a schematic flowchart of a method for selecting a base station provided in an embodiment of the present application. As shown in FIG. 18 , the method for selecting a base station includes the following steps:
  • Step 1801 The first network element acquires base station capabilities, where the first network element supports selection of a base station for sensing.
  • the first network element may be an existing network element of the mobile network, or may also be a newly added network element (NF Instance) of the mobile network. Further, the first network element may be an existing network element of the core network, or may be a new network element of the core network.
  • NF Instance newly added network element
  • the first network element may be an existing network element of the core network, specifically, the first network element is a control plane network element of the core network.
  • the first network element is an AMF.
  • the first network element may be a newly added network element of the core network, specifically, the first network element is a network element with a perception function added in the core network.
  • a newly added network element with a sensing function may be called a sensing function (Sensing Function) or a sensing network element.
  • the base station capability is used to indicate at least one of the following: whether to support sensing, supported sensing services, supported areas, supported sensing QoS, load, available resources, and available transmission rates.
  • the first network element may obtain the base station capability, but it is not limited to the following ways:
  • Way 1 The first network element obtains the base station capability reported by the base station.
  • the base station capability is carried in the connection establishment request message sent by the base station to the first network element; or, the base station capability is carried in the message sent by the base station to the first network element. or, the base station capability is carried in the NG setup request (NG SETUP REQUEST) message sent by the base station to the first network element; or, the base station capability is carried in the base station sent to the first network element in a radio access network configuration update (RAN CONFIGURATION UPDATE) message.
  • NG setup request NG SETUP REQUEST
  • RAN CONFIGURATION UPDATE radio access network configuration update
  • Manner 2 The first network element acquires base station capabilities according to local first configuration information, where the first configuration information is used to configure base station capabilities.
  • the first network element after the first network element acquires the base station capability, the first network element selects a base station for sensing according to the base station capability, or, the first network element selects a base station for sensing according to the base station capability, and senses the service and at least one of the areas, select a base station for sensing.
  • the first network element selects a base station for sensing according to the base station capability, or, the first network element selects a base station for sensing according to the base station capability, and senses the service and at least one of the areas, select a base station for sensing.
  • FIG. 19 is a schematic flowchart of a method for selecting a base station provided in an embodiment of the present application. As shown in FIG. 19 , the method for selecting a base station includes the following steps:
  • Step 1901 The first network element receives a first sensing request and/or sends a second sensing request to a selected base station; wherein, the first sensing request is used to request the first network element to process sensing services, and the second The sensing request is used to request the base station to perform sensing.
  • the first network element may be an existing network element of the mobile network, or may also be a newly added network element (NF Instance) of the mobile network. Further, the first network element may be an existing network element of the core network, or may be a new network element of the core network.
  • NF Instance newly added network element
  • the first network element may be an existing network element of the core network, specifically, the first network element is a control plane network element of the core network.
  • the first network element is an AMF.
  • the first network element may be a newly added network element of the core network, specifically, the first network element is a network element with a perception function added in the core network.
  • a newly added network element with a sensing function is called a sensing function (Sensing Function) or a sensing network element.
  • the first network element receives a first sensing request sent by a terminal and/or an application platform and/or a core network element.
  • the first sensing request carries the requested sensing service and/or area.
  • the perceived service is identified by at least one of the following: a perceived service type, a perceived service ID, a perceived service name, and a perceived QoS requirement.
  • the area is identified by at least one of the following: area identifier, area location information, tracking area TA, base station, cell identifier, TA and/or base station and/or cell identifier list.
  • the first network element interacts directly with the base station; or, the first network element interacts with the base station through forwarding by at least one network element.
  • the first network element may select a base station for sensing according to at least one of base station capability, area, and sensing service, and then send a message to the selected base station Second perception request.
  • a base station for sensing for the manner in which the first network element selects a base station for sensing, reference may be made to the description of the foregoing related solutions.
  • the technical solution of the embodiment of the present application can effectively solve the problem of selecting a sensing base station in an area sensing scenario, and prevent the core network from sending sensing requests to all jurisdictional base stations, causing a large amount of signaling and data to cause transmission and processing of the core network, transmission, and bearer network performance impact.
  • FIG. 20 is a schematic diagram of the first structural composition of the device for selecting a base station provided by the embodiment of the present application, which is applied to the first network element.
  • the device for selecting a base station includes:
  • the selecting unit 2001 is configured to select a base station for sensing according to at least one of base station capability, area, and sensing service.
  • the selecting unit 2001 is configured to select a base station for sensing according to local first configuration information, where the first configuration information is used to configure base station capabilities.
  • the selecting unit 2001 is configured to select a base station for sensing according to the base station capability reported by the base station.
  • the selection unit 2001 is configured to select a base station for sensing according to the requested sensing service and/or area and local second configuration information, wherein the second configuration information uses It is used to configure the TA and/or base station and/or cell list corresponding to the sensing service and/or area.
  • the selection unit 2001 is configured to select a base station for sensing according to the requested sensing service and/or area and local first configuration information, wherein the first configuration information uses It is used to configure base station capabilities.
  • the selecting unit 2001 is configured to select a base station for sensing according to the requested sensing service and/or area, and the base station capability reported by the base station.
  • the apparatus further includes: a communication unit 2002 configured to receive the base station capability reported by the base station.
  • the base station capability is carried in the connection establishment request message sent by the base station to the first network element; or, the base station capability is carried in the message sent by the base station to the first network element. or, the base station capability is carried in the NG setup request (NG SETUP REQUEST) message sent by the base station to the first network element; or, the base station capability is carried in the base station sent to the first network element in a radio access network configuration update (RAN CONFIGURATION UPDATE) message.
  • NG setup request NG SETUP REQUEST
  • RAN CONFIGURATION UPDATE radio access network configuration update
  • the base station capability includes base station information and/or RAT information, which is used to indicate at least one of the following: whether to support sensing, supported sensing services, supported areas, supported sensing QoS, load, available resources, the transmission rate that can be provided, etc.
  • the communication unit 2002 is configured to receive a first sensing request sent by a terminal and/or an application platform and/or a core network element, and the first sensing request is used to request the first The network element processes the perception service.
  • the communication unit 2002 is configured to send a second sensing request to the base station, where the second sensing request is used to request the base station to perform sensing.
  • the first network element interacts directly with the base station; or, the first network element interacts with the base station through forwarding by at least one network element.
  • the communication unit 2002 is configured to send the second sensing request to one base station.
  • the communication unit 2002 is configured to send a second sensing request to all base stations in the multiple base stations; or, Sending the second sensing request to some base stations in the multiple base stations.
  • the selecting unit 2001 is further configured to randomly select one of the multiple base stations or a plurality of base stations; or, polling and selecting one or more base stations from the plurality of base stations; or, selecting one or more base stations from the plurality of base stations based on weights respectively corresponding to the plurality of base stations;
  • the communication unit 2002 is configured to send a second sensing request to the one or more base stations.
  • weights corresponding to the multiple base stations are determined based on at least one of the following: area of the base station, load of the base station, available bandwidth of the base station, power of the base station, and CP length used by the base station.
  • the perceived service is identified by at least one of the following: a perceived service type, or a perceived service ID, a perceived service name, and a perceived QoS requirement.
  • the area is identified by at least one of the following: area identifier, area location information, TA, base station, cell identifier, TA and/or base station and/or cell identifier list.
  • the first network element is a control plane network element of the core network; or, the first network element is a network element with a perception function added in the core network.
  • each unit in the apparatus for selecting a base station shown in FIG. 20 can be understood with reference to the relevant description of the foregoing method.
  • the functions of each unit in the apparatus for selecting a base station shown in FIG. 20 may be realized by a program running on a processor, or may be realized by a specific logic circuit.
  • Fig. 21 is a schematic diagram of the second structural composition of the device for selecting a base station provided by the embodiment of the present application, which is applied to the first network element.
  • the device for selecting a base station includes:
  • the obtaining unit 2101 is configured to obtain a base station capability, wherein the first network element supports selection of a base station for sensing.
  • the apparatus further includes: a communication unit 2102 configured to receive the base station capability reported by the base station; the acquiring unit 2101 configured to acquire the base station capability by receiving the base station capability reported by the base station.
  • the base station capability is carried in the connection establishment request message sent by the base station to the first network element; or, the base station capability is carried in the message sent by the base station to the first network element. or, the base station capability is carried in the NG setup request (NG SETUP REQUEST) message sent by the base station to the first network element; or, the base station capability is carried in the base station sent to the first network element in a radio access network configuration update (RAN CONFIGURATION UPDATE) message.
  • NG setup request NG SETUP REQUEST
  • RAN CONFIGURATION UPDATE radio access network configuration update
  • the acquiring unit 2101 is configured to acquire base station capabilities according to local first configuration information, where the first configuration information is used to configure base station capabilities.
  • the base station capability includes base station information and/or RAT information, which is used to indicate at least one of the following: whether to support sensing, supported sensing services, supported areas, supported sensing QoS, load, available resources, and the transmission rate that can be provided.
  • the first network element is a control plane network element of the core network; or, the first network element is a network element with a perception function added in the core network.
  • each unit in the apparatus for selecting a base station shown in FIG. 21 can be understood with reference to the relevant description of the foregoing method.
  • the functions of each unit in the apparatus for selecting a base station shown in FIG. 21 may be realized by a program running on a processor, or may be realized by a specific logic circuit.
  • Fig. 22 is a schematic diagram of the third structural composition of the device for selecting a base station provided by the embodiment of the present application, which is applied to the first network element.
  • the device for selecting a base station includes:
  • a communication unit 2201 configured to receive a first sensing request and/or send a second sensing request to a selected base station
  • the first sensing request is used to request the first network element to process the sensing service
  • the second sensing request is used to request the base station to perform sensing.
  • the communication unit 2201 is configured to receive a first sensing request sent by a terminal and/or an application platform and/or a core network element.
  • the first sensing request carries the requested sensing service and/or area.
  • the perceived service is identified by at least one of the following: a perceived service type, a perceived service ID, a perceived service name, and a perceived QoS requirement.
  • the area is identified by at least one of the following: area identifier, area location information, tracking area TA, base station, cell identifier, TA and/or base station and/or cell identifier list.
  • the first network element interacts directly with the base station; or, the first network element interacts with the base station through forwarding by at least one network element.
  • the first network element is a control plane network element of the core network; or, the first network element is a network element with a perception function added in the core network.
  • each unit in the apparatus for selecting a base station shown in FIG. 22 can be understood with reference to the relevant description of the foregoing method.
  • the functions of each unit in the device for selecting a base station shown in FIG. 22 can be realized by a program running on a processor, or by a specific logic circuit.
  • Fig. 23 is a schematic structural diagram of a communication device 2300 provided by an embodiment of the present application.
  • the communication device may be a network device (such as the first network element in the above solution), and the communication device 2300 shown in FIG. 23 includes a processor 2310, and the processor 2310 can call and run a computer program from a memory to implement the implementation of the present application. method in the example.
  • the communication device 2300 may further include a memory 2320 .
  • the processor 2310 can invoke and run a computer program from the memory 2320, so as to implement the method in the embodiment of the present application.
  • the memory 2320 may be an independent device independent of the processor 2310 , or may be integrated in the processor 2310 .
  • the communication device 2300 may further include a transceiver 2330, and the processor 2310 may control the transceiver 2330 to communicate with other devices, specifically, to send information or data to other devices, or to receive other devices. Information or data sent by the device.
  • the transceiver 2330 may include a transmitter and a receiver.
  • the transceiver 2330 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 2300 may specifically be the network device of the embodiment of the present application (such as the first network element in the above solution), and the communication device 2300 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, in order to It is concise and will not be repeated here.
  • Fig. 24 is a schematic structure diagram of a chip according to an embodiment of the present application.
  • the chip 2400 shown in FIG. 24 includes a processor 2410, and the processor 2410 can call and run a computer program from the memory, so as to implement the method in the embodiment of the present application.
  • the chip 2400 may further include a memory 2424 .
  • the processor 2410 can call and run a computer program from the memory 2424, so as to implement the method in the embodiment of the present application.
  • the memory 2424 may be an independent device independent of the processor 2410 , or may be integrated in the processor 2410 .
  • the chip 2400 may also include an input interface 2430 .
  • the processor 2410 can control the input interface 2430 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 2400 may also include an output interface 2440 .
  • the processor 2410 can control the output interface 2440 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application (such as the first network element in the above solution), and the chip can implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of brevity, in This will not be repeated here.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application (such as the first network element in the above solution), and the computer program enables the computer to execute the corresponding functions implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, the process will not be repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application (such as the first network element in the above solution), and the computer program instructions enable the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application , for the sake of brevity, it is not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application (such as the first network element in the above scheme), and when the computer program is run on the computer, the computer can execute the various methods in the embodiment of the present application by the network device For the sake of brevity, the corresponding process of implementation is not repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种选择基站的方法及装置、网络设备,一方面,所述方法包括:第一网元根据基站能力、区域、感知业务中的至少之一,选择用于感知的基站。另一方面,所述方法包括:第一网元获取基站能力,其中,所述第一网元支持选择用于感知的基站。再一方面,所述方法包括:第一网元接收第一感知请求和/或向选择的基站发送第二感知请求;其中,所述第一感知请求用于请求所述第一网元处理感知业务,所述第二感知请求用于请求所述基站执行感知。

Description

一种选择基站的方法及装置、网络设备
相关申请的交叉引用
本申请基于申请号为202111666771.0、申请日为2021年12月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种选择基站的方法及装置、网络设备。
背景技术
通信感知技术典型的应用场景有自动驾驶、无人机监管、火车道异物检测、健康监测等,大部分场景只需要部分基站执行感知即可。比如,对于火车道异物的感知只需铁道沿线的基站参与,对于无人机的感知只需无人机飞行区域内的基站参与。若所有基站均参与感知,将向核心网传输大量数据,对核心网网元和传输网络造成压力,影响传输和处理效率。此外,同一区域可能同时存在支持通信和感知的基站和只支持通信的基站,若核心网网元向所有基站发送感知请求,不支持感知的基站可能因不能识别该请求造成错误,造成额外的性能和信令开销。同时,若基站本身通信负载较重,可能无足够资源执行感知,一方面会影响感知性能,另一方面会影响通信性能。
发明内容
为解决上述技术问题,本申请实施例提供了一种选择基站的方法及装 置、网络设备、芯片、计算机可读存储介质。
本申请实施例提供的选择基站的方法,包括:
第一网元根据基站能力、区域、感知业务中的至少之一,选择用于感知的基站。
本申请实施例提供的选择基站的方法,包括:
第一网元获取基站能力,其中,所述第一网元支持选择用于感知的基站。
本申请实施例提供的选择基站的方法,包括:
第一网元接收第一感知请求和/或向选择的基站发送第二感知请求;
其中,所述第一感知请求用于请求所述第一网元处理感知业务,所述第二感知请求用于请求所述基站执行感知。
本申请实施例提供的选择基站的装置,应用于第一网元,所述装置包括:
选择单元,配置为根据基站能力、区域、感知业务中的至少之一,选择用于感知的基站。
本申请实施例提供的选择基站的装置,应用于第一网元,所述装置包括:
获取单元,配置为获取基站能力,其中,所述第一网元支持选择用于感知的基站。
本申请实施例提供的选择基站的装置,应用于第一网元,所述装置包括:
通信单元,配置为接收第一感知请求和/或向选择的基站发送第二感知请求;
其中,所述第一感知请求用于请求所述第一网元处理感知业务,所述第二感知请求用于请求所述基站执行感知。
本申请实施例提供的网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行上述任意一种选择基站的方法。
本申请实施例提供的芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述任意一种方法。
本申请实施例提供的芯计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述任意一种方法。
本申请实施例的技术方案中,可有效解决区域感知场景下感知基站的选择问题,避免核心网向所有管辖基站发送感知请求,导致大量信令和数据对核心网和传输、承载网络造成传输和处理性能的影响。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是本申请实施例的一个应用场景的示意图;
图2是本申请实施例提供的选择基站的方法的流程示意图一;
图3是本申请实施例提供的选择基站的方法的流程示意图二;
图4是本申请实施例提供的选择基站的方法的流程示意图三;
图5是本申请实施例提供的选择基站的方法的流程示意图四;
图6是本申请实施例提供的选择基站的方法的流程示意图五;
图7是本申请实施例提供的选择基站的方法的流程示意图六;
图8是本申请实施例提供的选择基站的方法的流程示意图七;
图9是本申请实施例提供的选择基站的方法的流程示意图八;
图10是本申请实施例提供的选择基站的方法的流程示意图九;
图11是本申请实施例提供的选择基站的方法的流程示意图十;
图12是本申请实施例提供的选择基站的方法的流程示意图十一;
图13是本申请实施例提供的选择基站的方法的流程示意图十二;
图14是本申请实施例提供的选择基站的方法的流程示意图十三;
图15是本申请实施例提供的选择基站的方法的流程示意图十四;
图16是本申请实施例提供的选择基站的方法的流程示意图十五;
图17是本申请实施例提供的选择基站的方法的流程示意图十六;
图18是本申请实施例提供的选择基站的方法的流程示意图十七;
图19是本申请实施例提供的选择基站的方法的流程示意图十八;
图20是本申请实施例提供的选择基站的装置的结构组成示意图一;
图21是本申请实施例提供的选择基站的装置的结构组成示意图二;
图22是本申请实施例提供的选择基站的装置的结构组成示意图三;
图23是本申请实施例提供的一种通信设备示意性结构图;
图24是本申请实施例的芯片的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端110和网络设备120,或者不包含终端110只包括网络设备120。网络设备120可以通过空口与终端110通信。终端110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile  Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端110可以是任意终端,其包括但不限于与网络设备120或其它终端采用有线或者无线连接的终端。
例如,所述终端110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进网络中的终端等。
终端110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端,可选地, 该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
移动通信技术的发展催生了智慧交通、智慧城市、智慧医疗、智慧气 象监控、智慧工厂、无人机等,除通信需求外,这些新兴业务同样具有感知的需求。现有传统感知技术需安装部署专门设备或器件,如传感器、摄像头和雷达等,应用场景和性能受限,无法满足未来业务的需求。在此背景下,通信与感知的融合技术被提出。
当前第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)正在开展通信感知技术的立项讨论,该技术利用5G-A基站(NG-RAN)或终端收发无线电波同时实现通信和感知功能,若基站执行感知,可通过部署通信感知一体化基站或升级已部署基站实现感知信息的获取和处理。当基站和/或终端接收到传输信号和/或回波信号后,先在本地提取感知信息并进行处理,之后将处理过的感知数据传递到核心网网元进行计算,得到目标的位置、速度和大小等信息作为感知结果输出,最终,感知结果可提供给终端和/或核心网网元和/或第三方应用平台或控制平台辅助第三方进行决策。
当前通信感知技术处于立项讨论阶段,网络架构和流程等均未定义。
通信感知技术典型的应用场景有自动驾驶、无人机监管、火车道异物检测、健康监测等,大部分场景只需要部分基站和/或终端执行感知即可。比如,对于火车道异物的感知只需铁道沿线的基站参与,对于无人机的感知只需无人机飞行区域内的基站参与。若所有基站均参与感知,将向核心网传输大量数据,对核心网网元和传输网络造成压力,影响传输和处理效率。此外,同一区域可能同时存在支持通信和感知的基站和只支持通信的基站,若核心网网元向所有基站发送感知请求,不支持感知的基站可能因不能识别该请求造成错误,造成额外的性能和信令开销。同时,若基站本身通信负载较重,可能无足够资源执行感知,一方面会影响感知性能,另一方面会影响通信性能。
为此,提出了本申请实施例的以下技术方案。本申请实施例的技术方 案,通过基于基站能力、区域以及感知业务中的至少之一选择用于感知的基站(简称为感知基站),以解决区域感知场景中的基站选择问题,该方案也可用于终端执行感知的场景。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
需要说明的是,本申请实施例中关于“网元”的描述也可以替换为“网络功能”。
需要说明的是,本申请实施例中关于“基站”的描述也可以替换为“RAN”,本申请对RAN的类型不做限定,例如可以是“NG-RAN”。
需要说明的是,本申请实施例中关于“区域”的描述也可以替换为“感知区域”。
图2是本申请实施例提供的一种选择基站的方法的流程示意图,如图2所示,所述选择基站的方法包括以下步骤:
步骤201:第一网元根据基站能力、区域、感知业务中的至少之一,选择用于感知的基站。
本申请实施例中,所述第一网元可以是移动网络已有网元,或者也可以是移动网络新增网元(NF Instance)。进一步,所述第一网元可以是核心网已有网元、或者也可以是核心网新增网元。
在一些可选实施方式中,所述第一网元可以是核心网已有网元,具体地,所述第一网元为核心网控制面网元。例如所述第一网元为接入和移动性管理功能(Access and Mobility Management Function,AMF)。
在一些可选实施方式中,所述第一网元可以是核心网新增网元,具体地,所述第一网元为核心网中增加的具有感知功能的网元。例如新增加的 具有感知功能的网元可称为感知功能(Sensing Function)或者感知网元。
在一些可选实施方式中,所述基站能力包括基站信息和/或无线接入技术(Radio Access Technology,RAT)信息,用于指示以下至少之一:是否支持感知、支持的感知业务、支持的区域、支持的感知服务质量(Quality of Service,QoS)、负载、可用资源、能够提供的传输速率等。
在一些可选实施方式中,所述感知业务由以下至少之一进行标识:感知业务类型、感知业务ID、感知业务名称、感知QoS要求。
在一些可选实施方式中,所述区域由以下至少之一进行标识:区域标识、区域位置信息、跟踪区(Tracking Area,TA)、基站、小区标识、TA和/或基站和/或小区标识列表等。
在一些可选实施方式中,所述选择用于感知的基站之前,所述方法还包括:所述第一网元接收终端和/或应用平台和/或核心网网元发送的第一感知请求,所述第一感知请求用于请求第一网元处理感知业务。
这里,当终端或应用平台或核心网网元发起感知请求时,第一网元根据基站能力、区域、感知业务中的至少之一,选择相应的基站执行感知。
以下结合不同的方案说明第一网元如何选择用于感知的基站。
方案一
在一些可选实施方式中,所述第一网元根据基站能力,选择用于感知的基站。
这里,所述基站能力用于指示以下至少之一:是否支持感知、支持的感知业务、支持的区域、支持的感知QoS、负载、可用资源、能够提供的传输速率等。
所述第一网元根据基站能力,选择用于感知的基站,可以通过以下方式实现:
方式1-1)所述第一网元根据本地的第一配置信息,选择用于感知的基 站,其中,所述第一配置信息用于配置基站能力。
方式1-2)所述第一网元根据基站上报的基站能力,选择用于感知的基站。
对于上述方式1-2)来说,所述第一网元接收所述基站上报的基站能力。
在一些可选实施方式中,所述基站能力携带在所述基站发送给所述第一网元的建立连接请求消息中;或者,所述基站能力携带在所述基站发送给所述第一网元的配置更新请求消息中。在另一些可选实施方式中,所述基站能力携带在所述基站发送给所述第一网元的NG建立请求(NG SETUP REQUEST)消息中;或者,所述基站能力携带在所述基站发送给所述第一网元无线接入网配置更新(RAN CONFIGURATION UPDATE)消息中。
方案二
在一些可选实施方式中,所述第一网元根据感知业务和/或区域,选择用于感知的基站。
具体地,所述第一网元根据感知业务和/或区域,选择用于感知的基站,可以通过以下方式实现:
方式2-1)所述第一网元根据请求的感知业务和/或区域,以及本地的第二配置信息,选择用于感知的基站,其中,所述第二配置信息用于配置感知业务和/或区域对应的TA和/或基站和/或小区列表。
方案三
在一些可选实施方式中,所述第一网元根据基站能力,以及感知业务和区域中的至少之一,选择用于感知的基站。
这里,所述基站能力用于指示以下至少之一:是否支持感知、支持的感知业务、支持的区域、支持的感知QoS、负载、可用资源、能够提供的传输速率等。
所述第一网元根据基站能力,以及感知业务和区域中的至少之一,选 择用于感知的基站,可以通过以下方式实现:
方式3-1)所述第一网元根据请求的感知业务和/或区域,以及本地的第一配置信息,选择用于感知的基站,其中,所述第一配置信息用于配置基站能力。
方式3-2)所述第一网元根据请求的感知业务和/或区域,以及基站上报的基站能力,选择用于感知的基站。
对于上述方式3-2)来说,所述第一网元接收所述基站上报的基站能力。
在一些可选实施方式中,所述基站能力携带在所述基站发送给所述第一网元的建立连接请求消息中;或者,所述基站能力携带在所述基站发送给所述第一网元的配置更新请求消息中。在另一些可选实施方式中,所述基站能力携带在所述基站发送给所述第一网元的NG建立请求(NG SETUP REQUEST)消息中;或者,所述基站能力携带在所述基站发送给所述第一网元无线接入网配置更新(RAN CONFIGURATION UPDATE)消息中。
对于上述方案一至方案三中的任意方案来说,所述选择用于感知的基站之后,可选地,所述方法还包括:所述第一网元向所述基站发送第二感知请求,所述第二感知请求用于请求所述基站执行感知。
在一些可选实施方式中,所述第一网元与所述基站直接进行交互。在另一些可选实施方式中,所述第一网元与所述基站通过至少一个网元的转发进行交互。
本申请实施例中,所述第一网元向所述基站发送第二感知请求,有如下情况:
情况1)所述选择的用于感知的基站的数目为一个的情况下,所述第一网元向一个基站发送第二感知请求。
情况2)所述选择的用于感知的基站的数目为多个的情况下,所述第一网元向多个基站中的全部基站发送第二感知请求;或者,所述第一网元向 多个基站中的部分基站发送第二感知请求。
对于情况2)来说,若所述第一网元向多个基站中的部分基站发送第二感知请求,则所述第一网元需要从所述多个基站中选择所述部分基站,这里的选择方式包括但不局限于:
方式A)所述第一网元从所述多个基站中随机选择一个或多个基站,并向所述一个或多个基站发送第二感知请求。
方式B)所述第一网元从所述多个基站中轮询选择一个或多个基站,并向所述一个或多个基站发送第二感知请求。
方式C)所述第一网元基于所述多个基站分别对应的权重从所述多个基站中选择一个或多个基站,并向所述一个或多个基站发送第二感知请求。
这里,可选地,所述多个基站分别对应的权重基于以下至少之一确定:基站的区域、基站的负载、基站可使用的带宽、基站的功率、基站使用的循环前缀(Cyclic Prefix,CP)长度等。
以下结合具体应用实例对本申请实施例的技术方案进行举例说明。
应用实例一
第一网元根据基站能力选择基站,并向相应的基站发起感知请求。具体实施方案可为如下方案之一:
方案1):第一网元为核心网新增网元,如感知网元。感知网元配置基站能力,并基于此选择基站。具体地,感知网元接收感知请求后,基于本地配置信息选择基站,并向基站发送感知请求或经AMF转发感知请求,基站返回响应并执行感知。所述基站能力用于指示以下至少之一:是否支持感知、支持的感知业务、支持的区域、支持的感知QoS、当前能够提供的速率、当前负载等。
作为示例,如图3所示,包括以下流程:
步骤301:感知网元接收感知请求。
步骤302:感知网元基于本地配置信息选择基站。
这里,本地配置信息也即本地的第一配置信息,用于配置基站能力。
步骤303:感知网元向基站发送感知请求。
步骤304:基站向感知网元发送感知响应。
步骤305:基站执行感知。
作为示例,如图4所示,包括以下流程:
步骤401:感知网元接收感知请求。
步骤402:感知网元基于本地配置信息选择基站。
这里,本地配置信息也即本地的第一配置信息,用于配置基站能力。
步骤403:感知网元经AMF向基站发送感知请求。
步骤404:基站经AMF向感知网元发送感知响应。
步骤405:基站执行感知。
方案2):第一网元为AMF,AMF配置基站能力信息,基于此选择基站。具体地,AMF接收感知请求后,基于本地配置信息选择基站,并向基站发送感知请求,基站返回感知响应并执行感知。所述基站能力用于指示以下至少之一:是否支持感知、支持的感知业务、支持的区域、支持的感知QoS、当前能够提供的速率、当前负载等。
作为示例,如图5所示,包括以下流程:
步骤501:AMF接收感知请求。
步骤502:AMF基于本地配置信息选择基站。
这里,本地配置信息也即本地的第一配置信息,用于配置基站能力。
步骤503:AMF向基站发送感知请求。
步骤504:基站向AMF发送感知响应。
步骤505:基站执行感知。
方案3):第一网元为核心网新增网元,如感知网元。感知网元基于基 站上报的基站能力选择基站。具体地,基站与感知网元建立连接和/或更新配置时将自身的基站能力上报给感知网元,感知网元存储该信息,当接收到感知请求后,根据基站能力选择支持感知的基站,并向基站发送感知请求或经AMF向基站转发感知请求,基站返回感知响应并执行感知。
作为示例,如图6所示,包括以下流程:
步骤601:基站向感知网元发送连接建立请求,携带自身的基站能力。
步骤602:感知网元向基站发送连接建立响应。
步骤603:感知网元接收感知请求。
步骤604:感知网元基于基站能力选择基站。
这里,基站能力即为前述步骤基站上报的基站能力。
步骤605:感知网元向基站发送感知请求。
步骤606:基站向感知网元发送感知响应。
步骤607:基站执行感知。
作为示例,如图7所示,包括以下流程:
步骤701:基站向感知网元发送配置更新请求,携带自身的基站能力。
步骤702:感知网元向基站发送配置更新响应。
步骤703:感知网元接收感知请求。
步骤704:感知网元基于基站能力选择基站。
这里,基站能力即为前述步骤基站上报的基站能力。
步骤705:感知网元向基站发送感知请求。
步骤706:基站向感知网元发送感知响应。
步骤707:基站执行感知。
方案4):第一网元为AMF,AMF基于基站上报的基站能力选择基站。具体地,基站向AMF发送NG建立请求(NG SETUP REQUEST)和/或无线接入网配置更新(RAN CONFIGURATION UPDATE),其中携带基站标 识(如gNB ID)和基站能力,AMF返回响应消息并存储该信息;当AMF接收到感知请求后,根据基站能力选择支持感知的基站,并向基站发送感知请求,基站返回感知响应并执行感知。
作为示例,如图8所示,包括以下流程:
步骤801:基站向AMF发送NG建立请求(NG SETUP REQUEST),携带自身的基站能力。
步骤802:AMF向基站发送NG建立响应(NG SETUP RESPONSE)。
步骤803:AMF接收感知请求。
步骤804:AMF基于基站能力选择基站。
这里,基站能力即为前述步骤基站上报的基站能力。
步骤805:AMF向基站发送感知请求。
步骤806:基站向AMF发送感知响应。
步骤807:基站执行感知。
作为示例,如图9所示,包括以下流程:
步骤901:基站向AMF发送无线接入网配置更新(RAN CONFIGURATION UPDATE),携带自身的基站能力。
步骤902:AMF向基站发送无线接入网配置响应(RAN CONFIGURATION RESPONSE)。
步骤903:AMF接收感知请求。
步骤904:AMF基于基站能力选择基站。
这里,基站能力即为前述步骤基站上报的基站能力。
步骤905:AMF向基站发送感知请求。
步骤906:基站向AMF发送感知响应。
步骤907:基站执行感知。
应用实例二
第一网元根据感知业务和/或区域选择基站,并向相应的基站发起感知请求。具体实施方案可为如下方案之一:
方案1):第一网元为核心网新增网元,如感知网元。感知网元配置感知业务和/或区域对应的基站列表,并基于该配置信息和请求的感知业务和/或区域选择基站。具体地,感知网元接收感知请求,其中包含请求的感知业务和/或区域,感知网元基于请求的感知业务和/或区域,以及本地配置信息选择基站,并向基站发送感知请求或经AMF转发感知请求,基站返回响应并执行感知。
作为示例,如图10所示,包括以下流程:
步骤1001:感知网元接收感知请求,包含请求的感知业务和/或区域。
步骤1002:感知网元基于请求的感知业务和/或区域,以及本地配置信息选择基站。
这里,本地配置信息也即本地的第二配置信息,用于配置感知业务和/或区域对应的TA和/或基站和/或小区列表。
步骤1003:感知网元向基站发送感知请求。
步骤1004:基站向感知网元发送感知响应。
步骤1005:基站执行感知。
作为示例,如图11所示,包括以下流程:
步骤1101:感知网元接收感知请求,包含请求的感知业务和/或区域。
步骤1102:感知网元基于请求的感知业务和/或区域,以及本地配置信息选择基站。
这里,本地配置信息也即本地的第二配置信息,用于配置感知业务和/或区域对应的TA和/或基站和/或小区列表。
步骤1103:感知网元经AMF向基站发送感知请求。
步骤1104:基站经AMF向感知网元发送感知响应。
步骤1105:基站执行感知。
方案2):第一网元为AMF,AMF配置感知业务和/或区域对应的基站列表,并基于该配置信息和请求的感知业务和/或区域选择基站。具体地,AMF接收感知请求,其中包含请求的感知业务和/或区域,AMF基于请求的感知业务和/或区域,以及本地配置信息选择基站,并向基站发送感知请求,基站返回响应并执行感知。
作为示例,如图12所示,包括以下流程:
步骤1201:AMF接收感知请求,包含请求的感知业务和/或区域。
步骤1202:AMF基于请求的感知业务和/或区域,以及本地配置信息选择基站。
这里,本地配置信息也即本地的第二配置信息,用于配置感知业务和/或区域对应的TA和/或基站和/或小区列表。
步骤1203:AMF向基站发送感知请求。
步骤1204:基站向AMF发送感知响应。
步骤1205:基站执行感知。
应用实例三
第一网元根据基站能力和请求的感知业务和/或区域选择基站,并向相应的基站发起感知请求。具体实施方案可为如下方案之一:
方案1)第一网元为核心网新增网元,如感知网元。感知网元配置基站能力,基于该配置信息与请求的感知业务和/或区域选择基站。具体地,感知网元接收感知请求,其中包含请求的感知业务和/或区域,感知网元基于本地配置信息与请求的感知业务和/或区域选择基站,并向基站发送感知请求或经AMF转发感知请求,基站返回响应并执行感知。所述基站能力包括以下至少之一:是否支持感知、支持的感知业务、支持的区域、支持的感知QoS、当前能够提供的速率、当前负载等。
方案2)第一网元为AMF,AMF配置基站能力,基于该配置信息与请求的感知业务和/或区域选择基站。具体地,AMF接收感知请求,其中包含请求的感知业务和/或区域,AMF基于本地配置信息与请求的感知业务和/或区域选择基站,并向基站发送感知请求,基站返回感知响应并执行感知。所述基站能力包括以下至少之一:是否支持感知、支持的感知业务、支持的区域、支持的感知QoS、当前能够提供的速率、当前负载等。
方案3)第一网元为核心网新增网元,如感知网元。感知网元基于基站上报的基站能力与请求的感知业务和/或区域选择基站。具体地,基站与感知网元建立连接和/或更新配置时将自身的基站能力上报给感知网元,其中,基站能力包括以下至少之一:是否支持感知、支持的感知业务、支持的区域、支持的感知QoS、当前能够提供的速率、当前负载等,感知网元存储该信息;感知网元接收感知请求,其中包含请求的感知业务和/或区域,感知网元根据请求信息与存储的基站信息选择满足需求的基站,并向基站发送感知请求或经AMF向基站转发感知请求,基站返回感知响应并执行感知。
作为示例,如图13所示,包括以下流程:
步骤1301:基站向感知网元发送连接建立请求,携带基站标识、基站能力。
步骤1302:感知网元向基站发送连接建立响应。
步骤1303:感知网元接收感知请求,包含请求的感知业务和/或区域。
步骤1304:感知网元根据请求的信息和基站能力选择基站。
这里,基站能力即为前述步骤基站上报的基站能力,包括以下至少之一:是否支持感知、支持的感知业务、支持的区域、支持的感知QoS、当前能够提供的速率、当前负载等。
步骤1305:感知网元向基站发送感知请求。
步骤1306:基站向感知网元发送感知响应。
步骤1307:基站执行感知。
作为示例,如图14所示,包括以下流程:
步骤1401:基站向感知网元发送配置更新请求,携带基站标识、基站能力。
步骤1402:感知网元向基站发送配置更新响应。
步骤1403:感知网元接收感知请求,包含请求的感知业务和/或区域。
步骤1404:感知网元根据请求的信息和基站能力选择基站。
这里,基站能力即为前述步骤基站上报的基站能力,包括以下至少之一:是否支持感知、支持的感知业务、支持的区域、支持的感知QoS、当前能够提供的速率、当前负载等。
步骤1405:感知网元向基站发送感知请求。
步骤1406:基站向感知网元发送感知响应。
步骤1407:基站执行感知。
方案4)第一网元为AMF,AMF基于基站上报的能力与请求的感知业务和/或区域选择基站。具体地,基站向AMF发送NG建立请求(NG SETUP REQUEST)或者无线接入网配置更新(RAN CONFIGURATION UPDATE),其中携带基站标识(如gNB ID)与支持的感知业务和/或区域,AMF返回响应消息并存储该信息;AMF接收感知请求,其中包含请求的感知业务和/或区域,AMF根据请求的信息与存储的基站信息选择满足需求的基站,并向基站发送感知请求,基站返回感知响应并执行感知。
作为示例,如图15所示,包括以下流程:
步骤1501:基站向AMF发送NG建立请求(NG SETUP REQUEST),携带基站标识、基站能力。
步骤1502:AMF向基站发送NG建立响应(NG SETUP RESPONSE)。
步骤1503:AMF接收感知请求,包含请求的感知业务和/或区域。
步骤1504:AMF根据请求的信息和基站能力选择基站。
这里,基站能力即为前述步骤基站上报的基站能力,包括以下至少之一:是否支持感知、支持的感知业务、支持的区域、支持的感知QoS、当前能够提供的速率、当前负载等。
步骤1505:AMF向基站发送感知请求。
步骤1506:基站向AMF发送感知响应。
步骤1507:基站执行感知。
作为示例,如图16所示,包括以下流程:
步骤1601:基站向AMF发送无线接入网配置更新(RAN CONFIGURATION UPDATE),携带基站标识、基站能力。
步骤1602:AMF向基站发送无线接入网配置响应(RAN CONFIGURATION RESPONSE)。
步骤1603:AMF接收感知请求,包含请求的感知业务和/或区域。
步骤1604:AMF根据请求的信息和基站能力选择基站。
这里,基站能力即为前述步骤基站上报的基站能力,包括以下至少之一:是否支持感知、支持的感知业务、支持的区域、支持的感知QoS、当前能够提供的速率、当前负载等。
步骤1605:AMF向基站发送感知请求。
步骤1606:基站向AMF发送感知响应。
步骤1607:基站执行感知。
应用实例四
若第一网元(核心网已有网元或者新增网元)根据基站能力、区域、感知业务中的至少之一选择了多个基站,但仍需从中选择一个或多个基站执行感知,则可采用随机选择或者轮询算法或者基于权重排序选择等方法 进一步选择。具体实施方案可为如下方案之一:
方案1)第一网元随机选择一个或多个基站,并向其发送感知请求。
方案2)第一网元轮询选择一个或多个基站,并向其发送感知请求。
方案3)第一网元基于权重选择一个或多个基站,并向其发送感知请求。其中,权重可为基站的区域、基站的负载、基站可使用的带宽、基站的功率、基站使用的CP长度等参数之一或任意参数组合的加权值,加权过程中可先将上述参数进行归一化。具体地,第一网元配置权重计算方法;第一网元接收到感知请求后,依前述方案选择满足需求的基站,向其多播和/或单播感知请求;基站返回感知响应,其中携带计算权重所需的参数,第一网元计算权重并排序;第一网元依权重顺序选择基站,并向选择的基站发送感知请求;基站返回感知响应,并执行感知。
作为示例,如图17所示,包括以下流程:
步骤1701:第一网元接收感知请求。
步骤1702:第一网元依前述方案选择满足需求的基站,向其多播和/或单播感知请求。
步骤1703:基站返回感知响应,其中携带计算权重所需的参数。
这里,计算权重所需的参数例如可以包括以下至少之一;基站的区域、基站的负载、基站可使用的带宽、基站的功率、基站使用的CP长度。
步骤1704:第一网元计算权重并排序,依序选择基站。
步骤1705:第一网元向选择的基站发送感知请求。
步骤1706:选择的基站执行感知。
图18是本申请实施例提供的一种选择基站的方法的流程示意图,如图18所示,所述选择基站的方法包括以下步骤:
步骤1801:第一网元获取基站能力,其中,所述第一网元支持选择用于感知的基站。
本申请实施例中,所述第一网元可以是移动网络已有网元,或者也可以是移动网络新增网元(NF Instance)。进一步,所述第一网元可以是核心网已有网元、或者也可以是核心网新增网元。
在一些可选实施方式中,所述第一网元可以是核心网已有网元,具体地,所述第一网元为核心网控制面网元。例如所述第一网元为AMF。
在一些可选实施方式中,所述第一网元可以是核心网新增网元,具体地,所述第一网元为核心网中增加的具有感知功能的网元。例如新增加的具有感知功能的网元可称为感知功能(Sensing Function)或者感知网元。
在一些可选实施方式中,所述基站能力用于指示以下至少之一:是否支持感知、支持的感知业务、支持的区域、支持的感知QoS、负载、可用资源、能够提供的传输速率等。
本申请实施例中,所述第一网元获取基站能力,可以但不局限于通过以下方式实现:
方式一:所述第一网元获取基站上报的基站能力。
在一些可选实施方式中,所述基站能力携带在所述基站发送给所述第一网元的建立连接请求消息中;或者,所述基站能力携带在所述基站发送给所述第一网元的配置更新请求消息中;或者,所述基站能力携带在所述基站发送给所述第一网元的NG建立请求(NG SETUP REQUEST)消息中;或者,所述基站能力携带在所述基站发送给所述第一网元无线接入网配置更新(RAN CONFIGURATION UPDATE)消息中。
方式二:所述第一网元根据本地的第一配置信息,获取基站能力,其中,所述第一配置信息用于配置基站能力。
在一些可选实施方式中,所述第一网元获取基站能力后,所述第一网元根据基站能力选择用于感知的基站,或者,所述第一网元根据基站能力,以及感知业务和区域中的至少之一,选择用于感知的基站。具体实现方式 可以参照前述相关的方案的描述。
图19是本申请实施例提供的一种选择基站的方法的流程示意图,如图19所示,所述选择基站的方法包括以下步骤:
步骤1901:第一网元接收第一感知请求和/或向选择的基站发送第二感知请求;其中,所述第一感知请求用于请求所述第一网元处理感知业务,所述第二感知请求用于请求所述基站执行感知。
本申请实施例中,所述第一网元可以是移动网络已有网元,或者也可以是移动网络新增网元(NF Instance)。进一步,所述第一网元可以是核心网已有网元、或者也可以是核心网新增网元。
在一些可选实施方式中,所述第一网元可以是核心网已有网元,具体地,所述第一网元为核心网控制面网元。例如所述第一网元为AMF。
在一些可选实施方式中,所述第一网元可以是核心网新增网元,具体地,所述第一网元为核心网中增加的具有感知功能的网元。例如可以新增加的具有感知功能的网元称为感知功能(Sensing Function)或者感知网元。
在一些可选实施方式中,所述第一网元接收终端和/或应用平台和/或核心网网元发送的第一感知请求。可选地,所述第一感知请求携带请求的感知业务和/或区域。
在一些可选实施方式中,所述感知业务由以下至少之一进行标识:感知业务类型、感知业务ID、感知业务名称、感知QoS要求。
在一些可选实施方式中,所述区域由以下至少之一进行标识:区域标识、区域位置信息、跟踪区TA、基站、小区标识、TA和/或基站和/或小区标识列表。
在一些可选实施方式中,所述第一网元与所述基站直接进行交互;或者,所述第一网元与所述基站通过至少一个网元的转发进行交互。
在一些可选实施方式中,所述第一网元接收第一感知请求后,可以根 据基站能力、区域、感知业务中的至少之一,选择用于感知的基站,而后,向选择的基站发送第二感知请求。这里,所述第一网元选择用于感知的基站的方式可以参照前述相关方案的描述。
本申请实施例的技术方案,可有效解决区域感知场景下感知基站的选择问题,避免核心网向所有管辖基站发送感知请求,导致大量信令和数据对核心网和传输、承载网络造成传输和处理性能的影响。
图20是本申请实施例提供的选择基站的装置的结构组成示意图一,应用于第一网元,如图20所示,所述选择基站的装置包括:
选择单元2001,配置为根据基站能力、区域、感知业务中的至少之一,选择用于感知的基站。
在一些可选实施方式中,所述选择单元2001,配置为根据本地的第一配置信息,选择用于感知的基站,其中,所述第一配置信息用于配置基站能力。
在一些可选实施方式中,所述选择单元2001,配置为根据基站上报的基站能力,选择用于感知的基站。
在一些可选实施方式中,所述选择单元2001,配置为根据请求的感知业务和/或区域,以及本地的第二配置信息,选择用于感知的基站,其中,所述第二配置信息用于配置感知业务和/或区域对应的TA和/或基站和/或小区列表。
在一些可选实施方式中,所述选择单元2001,配置为根据请求的感知业务和/或区域,以及本地的第一配置信息,选择用于感知的基站,其中,所述第一配置信息用于配置基站能力。
在一些可选实施方式中,所述选择单元2001,配置为根据请求的感知业务和/或区域,以及基站上报的基站能力,选择用于感知的基站。
在一些可选实施方式中,所述装置还包括:通信单元2002,配置为接 收所述基站上报的基站能力。
在一些可选实施方式中,所述基站能力携带在所述基站发送给所述第一网元的建立连接请求消息中;或者,所述基站能力携带在所述基站发送给所述第一网元的配置更新请求消息中;或者,所述基站能力携带在所述基站发送给所述第一网元的NG建立请求(NG SETUP REQUEST)消息中;或者,所述基站能力携带在所述基站发送给所述第一网元无线接入网配置更新(RAN CONFIGURATION UPDATE)消息中。
在一些可选实施方式中,所述基站能力包括基站信息和/或RAT信息,用于指示以下至少之一:是否支持感知、支持的感知业务、支持的区域、支持的感知QoS、负载、可用资源、能够提供的传输速率等。
在一些可选实施方式中,所述通信单元2002,配置为接收终端和/或应用平台和/或核心网网元发送的第一感知请求,所述第一感知请求用于请求所述第一网元处理感知业务。
在一些可选实施方式中,所述通信单元2002,配置为向所述基站发送第二感知请求,所述第二感知请求用于请求所述基站执行感知。
在一些可选实施方式中,所述第一网元与所述基站直接进行交互;或者,所述第一网元与所述基站通过至少一个网元的转发进行交互。
在一些可选实施方式中,所述选择的用于感知的基站的数目为一个的情况下,所述通信单元2002,配置为向一个基站发送第二感知请求。
在一些可选实施方式中,所述选择的用于感知的基站的数目为多个的情况下,所述通信单元2002,配置为向多个基站中的全部基站发送第二感知请求;或者,向多个基站中的部分基站发送第二感知请求。
在一些可选实施方式中,所述第一网元向多个基站中的部分基站发送第二感知请求的情况下,所述选择单元2001,还用于从所述多个基站中随机选择一个或多个基站;或者,从所述多个基站中轮询选择一个或多个基 站;或者,基于所述多个基站分别对应的权重从所述多个基站中选择一个或多个基站;所述通信单元2002,配置为向所述一个或多个基站发送第二感知请求。
在一些可选实施方式中,所述多个基站分别对应的权重基于以下至少之一确定:基站的区域、基站的负载、基站可使用的带宽、基站的功率、基站使用的CP长度。
在一些可选实施方式中,所述感知业务由以下至少之一进行标识:感知业务类型、或感知业务ID、感知业务名称、感知QoS要求。
在一些可选实施方式中,所述区域由以下至少之一进行标识:区域标识、区域位置信息、TA、基站、小区标识、TA和/或基站和/或小区标识列表。
在一些可选实施方式中,所述第一网元为核心网控制面网元;或者,所述第一网元为核心网中增加的具有感知功能的网元。
本领域技术人员应当理解,图20所示的选择基站的装置中的各单元的实现功能可参照前述方法的相关描述而理解。图20所示的选择基站的装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
图21是本申请实施例提供的选择基站的装置的结构组成示意图二,应用于第一网元,如图21所示,所述选择基站的装置包括:
获取单元2101,配置为获取基站能力,其中,所述第一网元支持选择用于感知的基站。
在一些可选实施方式中,所述装置还包括:通信单元2102,配置为接收基站上报的基站能力;所述获取单元2101,配置为通过收基站上报的基站能力来获取基站能力。
在一些可选实施方式中,所述基站能力携带在所述基站发送给所述第 一网元的建立连接请求消息中;或者,所述基站能力携带在所述基站发送给所述第一网元的配置更新请求消息中;或者,所述基站能力携带在所述基站发送给所述第一网元的NG建立请求(NG SETUP REQUEST)消息中;或者,所述基站能力携带在所述基站发送给所述第一网元无线接入网配置更新(RAN CONFIGURATION UPDATE)消息中。
在一些可选实施方式中,所述获取单元2101,配置为根据本地的第一配置信息,获取基站能力,其中,所述第一配置信息用于配置基站能力。
在一些可选实施方式中,所述基站能力包括基站信息和/或RAT信息,用于指示以下至少之一:是否支持感知、支持的感知业务、支持的区域、支持的感知QoS、负载、可用资源、能够提供的传输速率。
在一些可选实施方式中,所述第一网元为核心网控制面网元;或者,所述第一网元为核心网中增加的具有感知功能的网元。
本领域技术人员应当理解,图21所示的选择基站的装置中的各单元的实现功能可参照前述方法的相关描述而理解。图21所示的选择基站的装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
图22是本申请实施例提供的选择基站的装置的结构组成示意图三,应用于第一网元,如图22所示,所述选择基站的装置包括:
通信单元2201,配置为接收第一感知请求和/或向选择的基站发送第二感知请求;
其中,所述第一感知请求用于请求所述第一网元处理感知业务,所述第二感知请求用于请求所述基站执行感知。
在一些可选实施方式中,所述通信单元2201,配置为接收终端和/或应用平台和/或核心网网元发送的第一感知请求。
在一些可选实施方式中,所述第一感知请求携带请求的感知业务和/或 区域。
在一些可选实施方式中,所述感知业务由以下至少之一进行标识:感知业务类型、感知业务ID、感知业务名称、感知QoS要求。
在一些可选实施方式中,所述区域由以下至少之一进行标识:区域标识、区域位置信息、跟踪区TA、基站、小区标识、TA和/或基站和/或小区标识列表。
在一些可选实施方式中,所述第一网元与所述基站直接进行交互;或者,所述第一网元与所述基站通过至少一个网元的转发进行交互。
在一些可选实施方式中,所述第一网元为核心网控制面网元;或者,所述第一网元为核心网中增加的具有感知功能的网元。
本领域技术人员应当理解,图22所示的选择基站的装置中的各单元的实现功能可参照前述方法的相关描述而理解。图22所示的选择基站的装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
图23是本申请实施例提供的一种通信设备2300示意性结构图。该通信设备可以是网络设备(如上述方案中的第一网元),图23所示的通信设备2300包括处理器2310,处理器2310可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图23所示,通信设备2300还可以包括存储器2320。其中,处理器2310可以从存储器2320中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器2320可以是独立于处理器2310的一个单独的器件,也可以集成在处理器2310中。
可选地,如图23所示,通信设备2300还可以包括收发器2330,处理器2310可以控制该收发器2330与其他设备进行通信,具体地,可以向其 他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器2330可以包括发射机和接收机。收发器2330还可以进一步包括天线,天线的数量可以为一个或多个。
该通信设备2300具体可为本申请实施例的网络设备(如上述方案中的第一网元),并且该通信设备2300可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
图24是本申请实施例的芯片的示意性结构图。图24所示的芯片2400包括处理器2410,处理器2410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图24所示,芯片2400还可以包括存储器2424。其中,处理器2410可以从存储器2424中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器2424可以是独立于处理器2410的一个单独的器件,也可以集成在处理器2410中。
可选地,该芯片2400还可以包括输入接口2430。其中,处理器2410可以控制该输入接口2430与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片2400还可以包括输出接口2440。其中,处理器2410可以控制该输出接口2440与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
该芯片可应用于本申请实施例中的网络设备(如上述方案中的第一网元),并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced  SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质可应用于本申请实施例中的网络设备(如上述方案中的第一网元),并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。该计算机程序产品可应用于本申请实施例中的网络设备(如上述方案中的第一网元),并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。该计算机程序可应用于本申请实施例中的网络设备(如上述方案中的第一网元),当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申 请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (38)

  1. 一种选择基站的方法,所述方法包括:
    第一网元根据基站能力、区域、感知业务中的至少之一,选择用于感知的基站。
  2. 根据权利要求1所述的方法,其中,所述第一网元根据基站能力、区域、感知业务中的至少之一,选择用于感知的基站,包括:
    所述第一网元根据本地的第一配置信息,选择用于感知的基站,其中,所述第一配置信息用于配置基站能力。
  3. 根据权利要求1所述的方法,其中,所述第一网元根据基站能力、区域、感知业务中的至少之一,选择用于感知的基站,包括:
    所述第一网元根据基站上报的基站能力,选择用于感知的基站。
  4. 根据权利要求1所述的方法,其中,所述第一网元根据基站能力、区域、感知业务中的至少之一,选择用于感知的基站,包括:
    所述第一网元根据请求的感知业务和/或区域,以及本地的第二配置信息,选择用于感知的基站,其中,所述第二配置信息用于配置感知业务和/或区域对应的跟踪区TA和/或基站和/或小区列表。
  5. 根据权利要求1所述的方法,其中,所述第一网元根据基站能力、区域、感知业务中的至少之一,选择用于感知的基站,包括:
    所述第一网元根据请求的感知业务和/或区域,以及本地的第一配置信息,选择用于感知的基站,其中,所述第一配置信息用于配置基站能力。
  6. 根据权利要求1所述的方法,其中,所述第一网元根据基站能力、区域、感知业务中的至少之一,选择用于感知的基站,包括:
    所述第一网元根据请求的感知业务和/或区域,以及基站上报的基站能力,选择用于感知的基站。
  7. 根据权利要求3或6所述的方法,其中,所述方法还包括:
    所述第一网元接收所述基站上报的基站能力。
  8. 根据权利要求7所述的方法,其中,
    所述基站能力携带在所述基站发送给所述第一网元的建立连接请求消息中;或者,
    所述基站能力携带在所述基站发送给所述第一网元的配置更新请求消息中;或者,
    所述基站能力携带在所述基站发送给所述第一网元的NG建立请求NG SETUP REQUEST消息中;或者,
    所述基站能力携带在所述基站发送给所述第一网元无线接入网配置更新RAN CONFIGURATION UPDATE消息中。
  9. 根据权利要求1至6中任一项所述的方法,其中,所述基站能力包括基站信息和/或无线接入技术RAT信息,用于指示以下至少之一:是否支持感知、支持的感知业务、支持的区域、支持的感知服务质量QoS、负载、可用资源、能够提供的传输速率。
  10. 根据权利要求1至6中任一项所述的方法,其中,所述选择用于感知的基站之前,所述方法还包括:
    所述第一网元接收终端和/或应用平台和/或核心网网元发送的第一感知请求,所述第一感知请求用于请求所述第一网元处理感知业务。
  11. 根据权利要求1至6中任一项所述的方法,其中,所述选择用于感知的基站之后,所述方法还包括:
    所述第一网元向所述基站发送第二感知请求,所述第二感知请求用于请求所述基站执行感知。
  12. 根据权利要求11所述的方法,其中,
    所述第一网元与所述基站直接进行交互;或者,
    所述第一网元与所述基站通过至少一个网元的转发进行交互。
  13. 根据权利要求11所述的方法,其中,所述选择的用于感知的基站的数目为一个的情况下,所述第一网元向所述基站发送第二感知请求,包括:
    所述第一网元向一个基站发送第二感知请求。
  14. 根据权利要求11所述的方法,其中,所述选择的用于感知的基站的数目为多个的情况下,所述第一网元向所述基站发送第二感知请求,包括:
    所述第一网元向多个基站中的全部基站发送第二感知请求;或者,
    所述第一网元向多个基站中的部分基站发送第二感知请求。
  15. 根据权利要求14所述的方法,其中,所述第一网元向多个基站中的部分基站发送第二感知请求的情况下,所述方法还包括:
    所述第一网元从所述多个基站中随机选择一个或多个基站,并向所述一个或多个基站发送第二感知请求;或者,
    所述第一网元从所述多个基站中轮询选择一个或多个基站,并向所述一个或多个基站发送第二感知请求;或者,
    所述第一网元基于所述多个基站分别对应的权重从所述多个基站中选择一个或多个基站,并向所述一个或多个基站发送第二感知请求。
  16. 根据权利要求15所述的方法,其中,所述多个基站分别对应的权重基于以下至少之一确定:基站的区域、基站的负载、基站可使用的带宽、基站的功率、基站使用的循环前缀CP长度。
  17. 根据权利要求1至6中任一项所述的方法,其中,所述感知业务由以下至少之一进行标识:感知业务类型、感知业务ID、感知业务名称、感知QoS要求。
  18. 根据权利要求1至6中任一项所述的方法,其中,所述区域由以 下至少之一进行标识:区域标识、区域位置信息、TA、基站、小区标识、TA和/或基站和/或小区标识列表。
  19. 根据权利要求1至6中任一项所述的方法,其中,
    所述第一网元为核心网控制面网元;或者,
    所述第一网元为核心网中增加的具有感知功能的网元。
  20. 一种选择基站的方法,所述方法包括:
    第一网元获取基站能力,其中,所述第一网元支持选择用于感知的基站。
  21. 根据权利要求20所述的方法,其中,所述第一网元获取基站能力,包括:
    所述第一网元获取基站上报的基站能力。
  22. 根据权利要求21所述的方法,其中,
    所述基站能力携带在所述基站发送给所述第一网元的建立连接请求消息中;或者,
    所述基站能力携带在所述基站发送给所述第一网元的配置更新请求消息中;或者,
    所述基站能力携带在所述基站发送给所述第一网元的NG建立请求NG SETUP REQUEST消息中;或者,
    所述基站能力携带在所述基站发送给所述第一网元无线接入网配置更新RAN CONFIGURATION UPDATE消息中。
  23. 根据权利要求20所述的方法,其中,所述第一网元获取基站能力,包括:
    所述第一网元根据本地的第一配置信息,获取基站能力,其中,所述第一配置信息用于配置基站能力。
  24. 根据权利要求20至23中任一项所述的方法,其中,所述基站能 力包括基站信息和/或RAT信息,用于指示以下至少之一:是否支持感知、支持的感知业务、支持的区域、支持的感知QoS、负载、可用资源、能够提供的传输速率。
  25. 根据权利要求20至23中任一项所述的方法,其中,
    所述第一网元为核心网控制面网元;或者,
    所述第一网元为核心网中增加的具有感知功能的网元。
  26. 一种选择基站的方法,所述方法包括:
    第一网元接收第一感知请求和/或向选择的基站发送第二感知请求;
    其中,所述第一感知请求用于请求所述第一网元处理感知业务,所述第二感知请求用于请求所述基站执行感知。
  27. 根据权利要求26所述的方法,其中,所述第一网元接收第一感知请求,包括:
    所述第一网元接收终端和/或应用平台和/或核心网网元发送的第一感知请求。
  28. 根据权利要求26所述的方法,其中,所述第一感知请求携带请求的感知业务和/或区域。
  29. 根据权利要求28所述的方法,其中,所述感知业务由以下至少之一进行标识:感知业务类型、感知业务ID、感知业务名称、感知QoS要求。
  30. 根据权利要求28所述的方法,其中,所述区域由以下至少之一进行标识:区域标识、区域位置信息、跟踪区TA、基站、小区标识、TA和/或基站和/或小区标识列表。
  31. 根据权利要求26至28中任一项所述的方法,其中,
    所述第一网元与所述基站直接进行交互;或者,
    所述第一网元与所述基站通过至少一个网元的转发进行交互。
  32. 根据权利要求26至28中任一项所述的方法,其中,
    所述第一网元为核心网控制面网元;或者,
    所述第一网元为核心网中增加的具有感知功能的网元。
  33. 一种选择基站的装置,应用于第一网元,所述装置包括:
    选择单元,配置为根据基站能力、区域、感知业务中的至少之一,选择用于感知的基站。
  34. 一种选择基站的装置,应用于第一网元,所述装置包括:
    获取单元,配置为获取基站能力,其中,所述第一网元支持选择用于感知的基站。
  35. 一种选择基站的装置,应用于第一网元,所述装置包括:
    通信单元,配置为接收第一感知请求和/或向选择的基站发送第二感知请求;
    其中,所述第一感知请求用于请求所述第一网元处理感知业务,所述第二感知请求用于请求所述基站执行感知。
  36. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至19中任一项所述的方法、或者权利要求20至25中任一项所述的方法、或者权利要求26至32中任一项所述的方法。
  37. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至19中任一项所述的方法、或者权利要求20至25中任一项所述的方法、或者权利要求26至32中任一项所述的方法。
  38. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至19中任一项所述的方法、或者权利要求20至25中任一项所述的方法、或者权利要求26至32中任一项所述的方法。
PCT/CN2022/144116 2021-12-31 2022-12-30 一种选择基站的方法及装置、网络设备 WO2023125967A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111666771.0A CN116419336A (zh) 2021-12-31 2021-12-31 一种选择基站的方法及装置、网络设备
CN202111666771.0 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023125967A1 true WO2023125967A1 (zh) 2023-07-06

Family

ID=86998194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144116 WO2023125967A1 (zh) 2021-12-31 2022-12-30 一种选择基站的方法及装置、网络设备

Country Status (2)

Country Link
CN (1) CN116419336A (zh)
WO (1) WO2023125967A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008071129A1 (fr) * 2006-12-15 2008-06-19 Huawei Technologies Co., Ltd. Procédé et dispositif et réseau pour initialiser un système dans un réseau régional sans fil
CN103812583A (zh) * 2012-11-15 2014-05-21 电信科学技术研究院 一种基于认知无线电系统的协作频谱感知方法和设备
CN109246778A (zh) * 2017-06-16 2019-01-18 华为技术有限公司 功能网元的选择方法及相关设备
CN113111682A (zh) * 2020-01-09 2021-07-13 阿里巴巴集团控股有限公司 目标对象感知方法和装置、感知基站、感知系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008071129A1 (fr) * 2006-12-15 2008-06-19 Huawei Technologies Co., Ltd. Procédé et dispositif et réseau pour initialiser un système dans un réseau régional sans fil
CN103812583A (zh) * 2012-11-15 2014-05-21 电信科学技术研究院 一种基于认知无线电系统的协作频谱感知方法和设备
CN109246778A (zh) * 2017-06-16 2019-01-18 华为技术有限公司 功能网元的选择方法及相关设备
CN113111682A (zh) * 2020-01-09 2021-07-13 阿里巴巴集团控股有限公司 目标对象感知方法和装置、感知基站、感知系统

Also Published As

Publication number Publication date
CN116419336A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
US10973000B2 (en) Message sending method and apparatus
US20190313359A1 (en) Method and apparatus for supporting vehicle communications in 5g system
EP3399819B1 (en) Method and device for establishing radio resource control connection
CN110505714B (zh) 多链接通信方法、设备和终端
EP3975592B1 (en) Communication method and network device
WO2020155172A1 (zh) 业务处理方法、装置、芯片及计算机程序
EP3979747B1 (en) Quality of service (qos) parameter configuration method and related device
WO2020150876A1 (zh) 会话建立方法、终端设备和网络设备
WO2021030965A1 (zh) 一种中继选择方法及装置、终端设备
WO2021087910A1 (zh) 用于连接网络的方法和设备
WO2020019910A1 (zh) 一种车联网中的通信方法及终端设备、网络设备
US20200162854A1 (en) Service Data Transmission Method And Apparatus
JP2022502929A (ja) データ伝送制御方法、ネットワーク機器および記憶媒体
CN113950851A (zh) 无线通信方法和设备
US12096271B2 (en) Methods for service transmission, core network device, and access network device
WO2020034978A1 (zh) 通信方法、终端设备和网络设备
CN116866981A (zh) 通信方法和装置
WO2022061872A1 (zh) 一种小数据传输方法及装置、终端设备
WO2021022428A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020087546A1 (zh) 一种网络信息传输方法、获取方法、网络设备及终端设备
WO2020010619A1 (zh) 数据传输方法、终端设备和网络设备
WO2023125967A1 (zh) 一种选择基站的方法及装置、网络设备
WO2023092482A1 (zh) 一种通过中继终端进行通信的方法及装置、终端
WO2023065334A1 (zh) 无线通信方法、终端设备和网络设备
WO2023108564A1 (zh) 无线通信方法、终端设备以及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE