WO2023151042A1 - 一种无线通信方法及装置、通信设备 - Google Patents

一种无线通信方法及装置、通信设备 Download PDF

Info

Publication number
WO2023151042A1
WO2023151042A1 PCT/CN2022/076092 CN2022076092W WO2023151042A1 WO 2023151042 A1 WO2023151042 A1 WO 2023151042A1 CN 2022076092 W CN2022076092 W CN 2022076092W WO 2023151042 A1 WO2023151042 A1 WO 2023151042A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
rate
connection
indication information
network device
Prior art date
Application number
PCT/CN2022/076092
Other languages
English (en)
French (fr)
Inventor
许阳
陈景然
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202280088657.0A priority Critical patent/CN118614138A/zh
Priority to PCT/CN2022/076092 priority patent/WO2023151042A1/zh
Publication of WO2023151042A1 publication Critical patent/WO2023151042A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular to a wireless communication method and device, and communication equipment.
  • Application servers for group services such as federated learning interact with multiple terminal devices through the 5G system to transfer data, allowing multiple participants to perform group services without sharing data, technically breaking data islands.
  • this business method needs to mobilize multiple terminal devices to carry out, which will consume communication resources. If the application server is allowed to call wireless resources of multiple terminal devices without restriction, it will inevitably affect the normal operation of other terminal devices or other services.
  • Embodiments of the present application provide a wireless communication method and device, and communication equipment.
  • the first network device measures a first rate of a first group, the first group includes at least two terminal devices participating in the first group service, the first rate consists of rates of at least two first connections, The at least two first connections include first connections of the at least two terminal devices, and the first connections are used to transmit data of the first group service.
  • the first terminal device sends a first message to the second network device, where the first message carries fourth indication information, and the fourth indication information is used to instruct the first terminal device to join the first group and/or participate in A first group service, where the first group includes at least two terminal devices participating in the first group service.
  • the second network device receives the first message sent by the first terminal device, where the first message carries fourth indication information, and the fourth indication information is used to instruct the first terminal device to join the first group and/or participating in a first group service, where the first group includes at least two terminal devices participating in the first group service.
  • the third network device receives the second message sent by the second network device, the second message includes second information, and the second information is at least used for controlling the first rate, and the first rate is determined by at least two first The rate configuration of the connection, the at least two first connections include first connections of at least two terminal devices of a first group, and the first group includes at least two terminal devices participating in the first group service, so The first connection is used to transmit data of the first group service.
  • a measurement module configured to measure a first rate of a first group, the first group including at least two terminal devices participating in the first group service, the first rate consisting of rates of at least two first connections , the at least two first connections include first connections of the at least two terminal devices, and the first connections are used to transmit data of the first group service.
  • the first sending module is configured to send a first message to the second network device, the first message carries fourth indication information, and the fourth indication information is used to instruct the first terminal device to join the first group and /or participating in a first group service, where the first group includes at least two terminal devices participating in the first group service.
  • the second receiving module is configured to receive a first message sent by a first terminal device, where the first message carries fourth indication information, and the fourth indication information is used to instruct the first terminal device to join the first group And/or participating in a first group service, where the first group includes at least two terminal devices participating in the first group service.
  • the third receiving module is configured to receive a second message sent by the second network device, the second message includes second information, and the second information is at least used for controlling a first rate, and the first rate is composed of at least two rate of one first connection, the at least two first connections include first connections of at least two terminal devices of a first group, and the first group includes at least two terminals participating in the first group service A device, where the first connection is used to transmit data of the first group service.
  • the communication device provided in the embodiment of the present application may be the terminal device in the above solution or the network device in the above solution, and the communication device includes a processor and a memory.
  • the memory is used for storing computer programs
  • the processor is used for invoking and running the computer programs stored in the memory to execute the above wireless communication method.
  • the chip provided in the embodiment of the present application is used to implement the above wireless communication method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above wireless communication method.
  • the computer-readable storage medium provided by the embodiment of the present application is used for storing a computer program, and the computer program causes a computer to execute the above wireless communication method.
  • the computer program product provided by the embodiments of the present application includes computer program instructions, where the computer program instructions cause a computer to execute the above wireless communication method.
  • the computer program provided by the embodiment of the present application when running on a computer, enables the computer to execute the above wireless communication method.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application
  • FIG. 2 is a schematic diagram of an application scenario of an embodiment of the present application
  • FIG. 3 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of an optional wireless communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of an optional wireless communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of an optional wireless communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of an optional wireless communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of an optional wireless communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of an optional wireless communication method provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of an optional wireless communication method provided by an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of an optional wireless communication method provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of an optional wireless communication method provided by an embodiment of the present application.
  • FIG. 14 is a schematic flowchart of an optional wireless communication method provided by an embodiment of the present application.
  • FIG. 15 is a schematic flowchart of an optional wireless communication method provided by an embodiment of the present application.
  • Fig. 16 is an optional schematic structural diagram of a wireless communication device provided by an embodiment of the present application.
  • Fig. 17 is an optional schematic structural diagram of a wireless communication device provided by an embodiment of the present application.
  • Fig. 18 is an optional schematic structural diagram of a wireless communication device provided by an embodiment of the present application.
  • FIG. 19 is an optional schematic structural diagram of a wireless communication device provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Fig. 22 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • a communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through an air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120 .
  • the embodiment of the present application is only described by using the communication system 100 as an example, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: Long Term Evolution (Long Term Evolution, LTE) system, LTE Time Division Duplex (Time Division Duplex, TDD), Universal Mobile Communication System (Universal Mobile Telecommunication System, UMTS), Internet of Things (Internet of Things, IoT) system, Narrow Band Internet of Things (NB-IoT) system, enhanced Machine-Type Communications (eMTC) system, 5G communication system (also known as New Radio (NR) communication system), or future communication systems, etc.
  • LTE Long Term Evolution
  • LTE Time Division Duplex Time Division Duplex
  • TDD Time Division Duplex
  • Universal Mobile Telecommunication System Universal Mobile Telecommunication System
  • UMTS Universal Mobile Communication System
  • Internet of Things Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine-Type Communications
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • the access network device can provide communication coverage for a specific geographic area, and can communicate with terminal devices 110 (such as UEs) located in the coverage area.
  • the network device 120 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in a long-term evolution (Long Term Evolution, LTE) system, or a next-generation radio access network (Next Generation Radio Access Network, NG RAN) device, Either a base station (gNB) in the NR system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wearable Devices, hubs, switches, bridges, routers, or network devices in the future evolution of the Public Land Mobile Network (Public Land Mobile Network, PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a long-term evolution (Long Term Evolution, LTE) system
  • NG RAN next-generation radio access network
  • gNB base station
  • CRAN Cloud Radio Access Network
  • the network device 120 can be a relay station, an access point,
  • the terminal device 110 may be any terminal device, including but not limited to a terminal device connected to the network device 120 or other terminal devices by wire or wirelessly.
  • the terminal device 110 may refer to an access terminal, UE, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device .
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, IoT devices, satellite handheld terminals, Wireless Local Loop (WLL) stations, Personal Digital Assistant , PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the wireless communication system 100 may also include a core network device 130 that communicates with the base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, Access and Mobility Management Function (Access and Mobility Management Function , AMF), another example, authentication server function (Authentication Server Function, AUSF), another example, user plane function network element (User Plane Function, UPF), and another example, session management function network element (Session Management Function, SMF).
  • the core network device 130 may also be a packet core evolution (Evolved Packet Core, EPC) device of the LTE network, for example, a data gateway (Session Management Function+Core Packet Gateway, SMF+PGW- C) Equipment.
  • EPC packet core evolution
  • SMF+PGW-C can realize the functions of SMF and PGW-C at the same time.
  • the above-mentioned core network equipment may be called by other names, or a new network entity may be formed by dividing functions of the core network, which is not limited in this embodiment of the present application.
  • Various functional units in the communication system 100 may also establish a connection through a next generation network (next generation, NG) interface to implement communication.
  • NG next generation network
  • the terminal device establishes an air interface connection with the access network device through the Uu interface to transmit user plane data and control plane signaling; the terminal device can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short);
  • the access Network equipment such as the next generation wireless access base station (gNB), can establish a user plane data connection with UPF through NG interface 3 (abbreviated as N3); access network equipment can establish control plane signaling with AMF through NG interface 2 (abbreviated as N2) connection;
  • UPF can establish a control plane signaling connection with SMF through NG interface 4 (abbreviated as N4);
  • UPF can exchange user plane data with the data network through NG interface 6 (abbreviated as N6);
  • AMF can communicate with SMF through NG interface 11 (abbreviated as N11)
  • the SMF establishes a control plane signaling connection; the SMF may establish a control plane signaling connection with the PCF through an NG interface 7 (N7 for short).
  • Figure 1 exemplarily shows a base station, a core network device, and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and each base station may include other numbers of terminals within the coverage area.
  • the device is not limited in the embodiment of this application.
  • FIG. 1 is only an illustration of a system applicable to this application, and of course, the method shown in the embodiment of this application may also be applicable to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and there exists alone B these three situations.
  • the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • the "indication” mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B it can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the "correspondence” mentioned in the embodiments of the present application may mean that there is a direct correspondence or an indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated. , configuration and configured relationship.
  • the "predefined” or “predefined rules” mentioned in the embodiments of this application can be used by pre-saving corresponding codes, tables or other It is implemented by indicating related information, and this application does not limit the specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, and this application does not limit this .
  • the application server 201 interacts with multiple terminals 203 through the 5G system 202 (5GS, including the core network 2021 + base station 2022 ), and transfers data.
  • 5GS including the core network 2021 + base station 2022
  • FIG. 2 multiple terminals 203 are located under the coverage of one base station 2022.
  • FIG. 3 multiple terminals 203 are located under the coverage of two base stations 2022. 2022 to interact with multiple terminals 203.
  • the application server can select different terminal devices in each round (or each time period). For example, if there are 100 terminal devices under the coverage of the base station, the application server will interact with 10 of the terminals as needed in each round (or each time period), so that the 10 terminal devices can pass the local data training
  • the results are returned to the application server for further processing (such as merging and weighting the training results of multiple terminal devices).
  • the application server After the application server completes a round of training with 10 terminal devices, it can select 10 new terminal devices (some of them may be the same as the previous round or different, there is no limit), and then start a new round of training. Report the training results.
  • each round of federated learning training includes: training equipment selection phase, model allocation and training configuration phase, training result reporting stage;
  • each terminal device reports training resources
  • the application server reports selection of a terminal device for training from all terminal devices based on the training resources reported by each terminal device.
  • the application server sends the model distribution and training configuration to the selected terminal device, and the terminal device that receives the model distribution and training configuration performs training.
  • the terminal device that has completed the training reports the training result to the application server, and the application server completes joint learning based on the reported training result.
  • the terminal devices participating in federated learning include: terminal A, terminal B, terminal C, terminal D and terminal E.
  • terminal A, terminal B, terminal C, terminal D, and terminal E report training resources to the application server, and the application server selects equipment according to the training resources reported by each terminal equipment, and selects terminal A, terminal C and terminal D participates in the Nth round of training, and after completing the training, terminal A, terminal C, and terminal D report the training results to the application server, and the application server performs the Nth round of joint learning.
  • terminal A, terminal B, terminal C, terminal D, and terminal E report training resources to the application server, and the application server selects equipment according to the training resources reported by each terminal equipment, and selects terminal A and terminal B , Terminal C, and Terminal E participate in the N+1 round of training, and after completing the training, Terminal A, Terminal B, Terminal C, and Terminal E report the training results to the application server, and the application server conducts the joint training of the N+1 round study.
  • Federated learning has many benefits, including:
  • Federated learning requires the application server to mobilize multiple terminal devices, which will consume communication resources. If the application server of federated learning is allowed to call wireless resources of multiple terminal devices without restriction, it will inevitably affect the normal operation of other terminal devices or other services. Therefore, there is a need for an effective management and control method that can meet the on-demand limitation of bandwidth (rate) for federated learning and support dynamic scheduling of multi-terminal device reporting.
  • the current communication network does not have the following functions:
  • the wireless communication method provided in the embodiment of the present application is applied to the first network device, as shown in FIG. 5, including:
  • the first network device measures a first rate of a first group, the first group includes at least two terminal devices participating in the first group service, and the first rate consists of the rates of at least two first connections It is configured that the at least two first connections include first connections of the at least two terminal devices, and the first connections are used to transmit data of the first group service.
  • the first group is a group formed by terminal devices participating in the first group service, and the first group service may be but not limited to federated learning.
  • connection A1 and connection Connection A2 are used to transmit the data of the first group of services, then connection A1 and connection Connection A2 belongs to the first connection.
  • the sum of the rates of the first connections of the terminal devices included in the first group is the first rate.
  • the first group includes terminal device A, terminal device B, and terminal device C
  • the first connection of terminal device A includes: connection A1 and connection A2
  • the first connection of terminal device B includes connection B2
  • the terminal The first connection of device C includes C3, then the first rate of the first group is the sum of the rates of connection A1, connection A2, connection B2 and connection C3.
  • the first network device measures the rate of the first connection of each terminal device in the first group, and adds the measurement results of the first connection to obtain a measured value of the first rate, that is, a real-time first rate.
  • the first network device may measure the rates of the first connections of all terminal devices in the first group at one moment, and add the measured rates of all the first connections to obtain the first rate of the first group Measurements.
  • the first network device may average the aggregated bit rates measured within a period of time (for example, a 100 ms time window) to obtain the measured value of the first rate of the first group.
  • the first network device may measure the rates of the first connections of all terminal devices in the first group within a period of time (for example, a time window of 100 ms), to obtain the average rate of each first connection within the period of time , and add the average rates of all the first connections within this period of time to obtain the measured value of the first rate of the first group.
  • a period of time for example, a time window of 100 ms
  • the first rate of the first group may be understood as the aggregate bit rate of the first group
  • the measurement value of the first rate of the first group may be understood as the real-time aggregate bit rate of the first group.
  • the first connection is used to transmit data of the first group service.
  • the first connection may perform data transmission of the first group service, or may not perform data transmission of the first group service.
  • the first group includes terminal device A, terminal device B, and terminal device C
  • the first connection of terminal device A includes: connection A1 and connection A2
  • the first connection of terminal device B includes connection B2
  • the terminal The first connection of device C includes C3.
  • connection A1 and connection A2 of terminal device A do not transmit data.
  • the first network device measures the first rate at time t1, it measures connection A1, connection A2, connection B2 and The sum of the rates of connections C3.
  • the terminal devices participating in the federated learning include 100 terminal devices, that is, the first group includes 100 terminal devices, and the terminal devices participating in training in each round include 10 of the 100 terminal devices, these 10 terminal devices report the training results to the application server.
  • the first network device measures the first rate, it measures the rates of the first connections of the 100 terminal devices included in the first group to obtain a measured value of the first rate.
  • the measured value of the first rate may be used to control the first rate.
  • the first network device may control the first rate according to the measured value of the first rate.
  • the first network device adjusts the first rate if the measured value of the first rate satisfies the adjustment condition.
  • the first network device does not adjust the first rate.
  • the goal of adjusting the first rate may include: reducing the first rate, that is, the measured value of the first rate is used to determine whether to reduce the first rate, so as to limit the first rate.
  • the first network device After the first network device adjusts the first rate, it can continue to measure the adjusted first rate, and when the measured value of the first rate again meets the adjustment condition, continue to adjust the first rate until the following conditions are met If there is at least one of them, stop adjusting the first rate: the measured value of the first rate does not meet the adjustment condition, and the number of times of adjustment reaches the threshold value of the number of times of adjustment.
  • the adjusted first rate does not meet the adjustment condition, and it can be considered that the first rate meets the condition for stopping the adjustment, and the first network device stops adjusting the first rate.
  • a rate adjustment is applied.
  • the first network device may be a first base station or a UPF.
  • the first base station is any one of the multiple base stations.
  • the first base station measures the rate of one or more first connections served by itself, And acquire the measured value of the rate of the first connection served by the other base station through the interface with the other base station to obtain the measured value of the first rate.
  • the first group includes terminal equipment A, terminal equipment B, and terminal equipment C
  • terminal equipment A is distributed under base station A
  • terminal equipment B and terminal equipment C are distributed under base station B
  • terminal equipment A's first A connection includes: connection A1 and connection A2
  • the first connection of terminal device B includes connection B2
  • the first connection of terminal device C includes C3
  • base station A measures the rate of connection A1 and connection A2, and obtains the rate of connection A1 and connection A2
  • Base station B measures the rate of connection B2 and connection C3, and obtains the measured value of the rate of connection B2 and connection C3, and base station A receives the measured value of the rate of connection B2 and connection C3 through the interaction with base station B, thus based on
  • the measured measurements of the rates of the connections A1 and A2, and the received measurements of the rates of the connections B2 and C3 yield a first rate for the first group.
  • the UPF serves at least two terminal devices in the first group. At this time, the UPF can measure and control the first connection of at least two terminal devices in the first group.
  • the first connection may be a PDU session or a Quality of Service (Quality of Service, QoS) flow (Flow).
  • QoS Quality of Service
  • the first network device measures and controls the first rate of the first group at the granularity of the PDU session.
  • the first network device measures and controls the first rate of the first group at the granularity of the QoS flow.
  • the wireless communication method provided by the embodiment of the present application controls the rate of multiple terminal devices participating in the group service by measuring the connection rate of each terminal device in the same group for the group service.
  • the first connection is configured with a guaranteed bit rate (Guaranteed Bit Rate, GBR); or, the first connection is not configured with GBR.
  • GBR Guarantee Bit Rate
  • the GBR configured for the first connection can be understood as Guaranteed Flow Bit Rate (GFBR).
  • GFBR Guaranteed Flow Bit Rate
  • all of them may be configured with GBR, or all of them may not be configured with GBR, or some of them may be configured with GBR and some of them may not be configured with GBR.
  • the terminal equipment of the first group establishes a connection with the core network through the first connection, and transmits the data of the first group service through the first connection configured with GBR.
  • the first connection performs data transmission of the first group service.
  • the sum of the GBRs of the at least two first connections is greater than the aggregate maximum bit rate (Aggregate Maximum Bit Rate, AMBR) of the first group.
  • AMBR aggregate Maximum Bit Rate
  • some or all of the first connections may be configured with GBR.
  • the sum of the GBRs of the first connection configured with GBRs is greater than the AMBRs of the first group.
  • the AMBR value of the first group is 20 Mbps, and the sum of the GBRs of the first connections of the 10 terminal devices included in the first group may be greater than 20 Mbps. For example: 40Mbps, 50Mbps, etc.
  • the first connections of the 10 terminal devices included in the first group may all be configured with GBR, or may be partially configured with GBR.
  • all terminal devices in the first group can participate in one group service, and can also participate in multiple group services, and all terminal devices in the first group participate in one group service, that is, the first group
  • the first group corresponds to one ABMR; in the case of all terminal devices in the first group participating in multiple group services, the first group corresponds to multiple AMBRs, and each AMBR is related to each group Business correspondence, that is, one group service corresponds to one AMBR.
  • one group service corresponds to one AMBR
  • the sum of the GBRs for the first connection transmitting the first group service is greater than the first An AMBR corresponding to a group service, wherein, the first group service is any group service among multiple participating group services.
  • the first group includes: 10 terminal devices, and these 10 terminal devices participate in the three group services of group service 1, group service 2, and group service 3 at the same time, then the first group There are three AMBRs corresponding to the group, AMBR1, AMBR2, and AMBR3.
  • AMBR1, AMBR2, and AMBR3 are AMBRs corresponding to group service 1, group service 2, and group service 3 respectively.
  • 10 terminals transmit the first connection of group service 1.
  • the sum of the GBRs of 10 terminals transmitting the first connection of group service 2 is greater than AMBR2, and the sum of the GBRs of the first connections of 10 terminals transmitting group service 3 is greater than AMBR3.
  • the sum of the GBRs of the multiple first connections corresponding to the first group is greater than the AMBR of the first group, so that the first network device has enough space to adjust the first rate.
  • the condition for adjusting the first rate includes: the measured value of the first rate is greater than a first rate threshold.
  • the first network device reduces the first rate.
  • the condition for stopping adjustment of the first rate includes: the measured value of the first rate is less than or equal to a first rate threshold.
  • the first rate threshold is used in conjunction with the measured value of the first rate to determine whether to adjust the first rate.
  • one group service corresponds to one rate threshold
  • the first rate threshold used to judge whether to adjust the first rate is the first group service The corresponding rate threshold.
  • the first rate is adjusted, and after the first rate is adjusted, the adjusted first rate is continued to be measured.
  • the measured value of the first rate measured again is less than or equal to the first rate threshold, then stop the measurement of the first rate, and when the measured value of the first rate measured again is still greater than the first rate threshold, Continue to adjust the first rate until the measured value of the adjusted first rate is less than or equal to the first rate threshold.
  • the first rate threshold as 50Mbps as an example, when the measured value of the first rate by the first network device is 68 Mbps, the first rate is adjusted for the first time; the first network device performs the first For the second measurement of the rate, the measured value of the first rate after the first adjustment is 65Mbps. At this time, the first network device adjusts the first rate for the second time; the first network device performs the second rate adjustment of the first rate. After three measurements, the measured value of the first rate after the second adjustment is 53Mbps. At this time, the first network device adjusts the first rate for the third time; the first network device performs the fourth measurement of the first rate , the measured value of the first rate after the third adjustment is 49 Mbps, and the adjustment to the first rate is stopped.
  • the manner of adjusting the first rate includes at least one of the following:
  • Adjustment mode 1 Limiting the speed of at least one of the first connections
  • Adjustment mode 2 limit the speed of at least one data radio bearer (Data Radio Bearer, DRB) corresponding to the first connection;
  • Data Radio Bearer Data Radio Bearer
  • Adjustment mode 3 Deactivate at least one of the first connections
  • Adjustment mode 4 Deactivate at least one DRB corresponding to the first connection
  • Adjustment mode 5 Delete at least one of the first connections
  • Adjustment manner 6 Delete at least one DRB corresponding to the first connection.
  • the first network device limits the rate of one or more first connections.
  • the rate of the first connection may be limited by adjusting the QoS parameter of the first connection, or reducing the rate of the first connection.
  • the first network device may limit the rate of the first connection at the granularity of the first connection or the terminal device.
  • the rate is limited for one or more first connections in the plurality of first connections corresponding to the first group.
  • the first group includes: terminal device A, terminal device B, and terminal device C
  • the at least two first connections corresponding to the first group include: connection A1, connection A2, connection B2, and connection C3, wherein , connection A1 and connection A2 are the first connection of terminal device A, connection B2 is the first connection of terminal device B, and connection C3 is the second connection of terminal device C.
  • connection A1 and connection A2 are the first connection of terminal device A
  • connection B2 is the first connection of terminal device B
  • connection C3 is the second connection of terminal device C.
  • the rate of the first connection of one or more terminal devices in the first group is limited.
  • the first group includes: terminal device A, terminal device B, and terminal device C
  • the at least two first connections corresponding to the first group include: connection A1, connection A2, connection B2, and connection C3, wherein , connection A1 and connection A2 are the first connection of terminal device A, connection B2 is the first connection of terminal device B, and connection C3 is the first connection of terminal device C.
  • connection A1 and connection A2 are the first connection of terminal device A
  • connection B2 is the first connection of terminal device B
  • connection C3 is the first connection of terminal device C.
  • the first network device may reduce the rates of DRBs corresponding to one or more first connections.
  • the first network device may limit the rate of the DRB corresponding to the first connection at the granularity of the first connection or the terminal device.
  • the rate of the DRB corresponding to one or more first connections among the plurality of first connections corresponding to the first group is limited.
  • the rate of the DRB corresponding to the first connection of one or more terminal devices in the first group is limited.
  • the first network device temporarily disables one or more first connections for data transmission, but the first connections still exist. After a period of time, the first connections can be activated to resume data transmission transmission.
  • the first network device may deactivate the first connection at the granularity of the first connection or the terminal device.
  • first connection is used as a granularity
  • one or more first connections among the plurality of first connections corresponding to the first group are deactivated.
  • the first connection of one or more terminal devices in the first group is deactivated.
  • the deactivated first connection may be activated after a first duration, wherein activation of the deactivated first connection may be controlled based on a timer, or may be controlled by a core network device.
  • the first network device temporarily disables data transmission for one or more DRBs corresponding to the first connection, but the DRBs corresponding to the first connection still exist. After a period of time, the DRBs corresponding to the first connection Can be activated to resume data transfer.
  • the first network device may deactivate the DRB corresponding to the first connection at the granularity of the first connection or the terminal device.
  • the DRB corresponding to the deactivated first connection may be activated after a second duration, wherein the activation of the DRB corresponding to the deactivated first connection may be controlled based on a timer, or may be controlled by a core network device.
  • the DRB corresponding to one or more first connections among the plurality of first connections corresponding to the first group is deactivated.
  • the DRB corresponding to the first connection of one or more terminal devices in the first group is deactivated.
  • the first network device deletes one or more first connections, and the deleted first connections do not exist.
  • the first network device may delete the first connection at the granularity of the first connection or the terminal device.
  • one or more first connections among the multiple first connections corresponding to the first group are deleted.
  • the first connection of one or more terminal devices in the first group is deleted.
  • the first network device deletes one or more DRBs of the first connection, and the deleted DRBs do not exist.
  • the first network device may delete the DRB corresponding to the first connection at the granularity of the first connection or terminal device.
  • the DRBs corresponding to one or more first connections among the multiple first connections corresponding to the first group are deleted.
  • the DRBs corresponding to the first connections of one or more terminal devices in the first group are deleted.
  • adjustment mode 1, adjustment mode 3, and adjustment mode 5 may be applied to the UPF to adjust the first rate.
  • adjustment mode 2, adjustment mode 4, and adjustment mode 6 may be applied to the first base station to adjust the first rate.
  • the UPF may locally reduce the first rate, or directly instruct the second base station or through the second network device to instruct the second base station to reduce the first rate.
  • the UPF limits the rate of at least one first connection.
  • the UPF locally limits the rate of at least one first connection to reduce the first rate, and the adjustment mode adopted by the UPF to adjust the first rate is adjustment mode 1.
  • the UPF sends first indication information to the second base station, where the first indication information is used to indicate at least one of the following:
  • the UPF directly instructs the second base station to reduce the first rate.
  • the adjustment mode adopted by the UPF to adjust the first rate may include one or more of adjustment mode 1, adjustment mode 3, and adjustment mode 5.
  • the wireless communication method provided by the embodiment of the present application may include:
  • the UPF sends the first indication information to the second base station,
  • the second base station reduces the first rate based on the received first indication information.
  • the first indication information indicates the first connection that needs to be adjusted, and indicates an adjustment type for the first connection adjustment, where the adjustment type includes one or more of speed limit, deactivation, and deletion.
  • the adjustment types of different first connections may be the same or different.
  • the UPF determines that the first rate is adjusted, it determines the first connection that needs to be adjusted, and determines the adjustment type, and generates the first indication information based on the identifier that identifies the first connection that needs to be adjusted and the type identifier that indicates the adjustment type, and sends
  • the first indication information is sent to the second base station.
  • the second base station performs rate limiting or deactivation or deletion of the first connection based on the received first indication information.
  • the UPF can send the first indication information to each second base station, and each second base station will send the first indication information to each second base station after receiving the first indication information.
  • the first connection indicated by the indication information the first connection served by itself is adjusted; the UPF can also determine the second base station corresponding to each first connection that needs to be adjusted, and the first indication information sent to each second base station only indicates that each The first connection served by the second base station.
  • the first connection to be adjusted includes: connection 1, connection 2, and connection 3, and base station 1 serves connection 1, base station 2 serves connection 2 and connection 3, and the UPF will indicate the connection 1, connection 2, and connection 3
  • the first instruction information for speed limit is sent to base station 1 and base station 2 respectively. After receiving the first instruction information, base station 1 performs speed limit on connection 1. After receiving the first instruction information, base station 2 performs speed limit on connection 2 and connection 3. Speed limit.
  • the first connection to be adjusted includes: connection 1, connection 2, and connection 3, and base station 1 serves connection 1, and base station 2 serves connection 2 and connection 3, and the UPF will indicate the first connection that limits the rate of connection 1.
  • the instruction information A is sent to the base station 1, and the first instruction information B indicating to limit the speed of the connection 2 and the connection 3 is sent to the base station 2.
  • the base station 1 limits the speed of the connection 1, and the base station 2.
  • the first indication information B limit the speed of connection 2 and connection 3.
  • the UPF sends first information to the second network device, where the first information is used to indicate the measured value of the first rate.
  • the UPF instructs the second base station to reduce the first rate through the second network device
  • the adjustment mode adopted by the UPF to adjust the first rate may include one or more of adjustment mode 1, adjustment mode 3, and adjustment mode 5.
  • the UPF determines that the measured value of the first rate is greater than the first rate threshold, the UPF sends the first information to the second network device, so as to notify the second network device to reduce the first rate.
  • the second network device is a core network control plane network element, such as an SMF.
  • the second network device When the second network device receives the first information, it may determine that the first rate needs to be reduced, and instruct the second base station to reduce the first rate.
  • the first information includes at least one of the following:
  • Second indication information where the second indication information is used to indicate that the measured value of the first rate is greater than the first rate threshold.
  • the second network device may directly instruct the second base station to reduce the first rate, or may compare the received measured value of the first rate with the first rate threshold, If it is confirmed that the measured value of the first rate is greater than the first rate threshold, instruct the second base station to reduce the first rate.
  • the first information is used to determine third indication information sent by the second network device to the second base station, and the third indication information is used to indicate at least one of the following:
  • the second network device After receiving the first information, the second network device determines third indication information based on the first information, and sends the third indication information to the second base station, and the second base station reduces the first rate based on the received third indication information.
  • the wireless communication method provided by the embodiment of the present application may include:
  • the UPF sends first information to the SMF.
  • the SMF sends third indication information to the second base station.
  • the second base station reduces the first rate based on the received third indication information.
  • the third indication information indicates the first connection that needs to be adjusted, and indicates an adjustment type for the first connection adjustment, where the adjustment type includes one or more of speed limit, deactivation, and deletion.
  • the adjustment types of different first connections may be the same or different.
  • the second network device After the second network device determines to adjust the first rate, determine the first connection that needs to be adjusted, and determine the adjustment type, generate first indication information based on the identifier that identifies the first connection that needs to be adjusted and the type identifier that indicates the adjustment type, and Send the first indication information to the second base station.
  • the second base station performs rate limiting or deactivation or deletion of the first connection based on the received first indication information.
  • the second network device may send the first indication information to each second base station, and each second base station may send the first indication information to each second base station after receiving the first indication information , adjust the first connection served by itself in the first connection indicated by the first indication information; the second network device may also determine the second base station corresponding to each first connection that needs to be adjusted, and send the first connection to each second base station The indication information only indicates the first connection served by each second base station.
  • the second base station may activate the deactivated first connection after a period of time.
  • the second base station may start a timer when at least one first connection is deactivated, and activate the deactivated first connection when the timer expires.
  • the second network device sends an activation indication to the second base station, and the base station activates the deactivated first connection when receiving the activation indication.
  • the first base station performs one or more adjustments of rate limiting, deactivation, and deletion on the DRB of at least one connection served by the first base station.
  • the first base station can only adjust the first connection served by itself.
  • the first connection served by the first base station Other first connections besides the connection may be adjusted by the UPF, or may be adjusted by the first base station serving other first connections.
  • the first rate threshold is the AMBR of the first group.
  • the first rate threshold is the AMBR of the first group.
  • one group service corresponds to one AMBR
  • the first rate gate is the AMBR corresponding to the first group service among the multiple AMBRs corresponding to the first group .
  • the first connection corresponds to an independent DRB.
  • separate DRBs are created for different first connections, so that when the first base station reduces the first rate by limiting, deactivating, or deleting DRBs, different first connections can communicate with each other. Do not interfere.
  • the wireless communication method provided by the embodiment of the present application measures the connection rate of each terminal device in the same group for the group service, thereby controlling the rate of multiple terminal devices participating in the same group service, and through The adjustment of the connection rate of the group service realizes the dynamic scheduling of the rates of multiple terminal devices participating in the group service.
  • An embodiment of the present application provides a wireless communication method, which is applied to a first terminal device, as shown in FIG. 8 , including:
  • the first terminal device sends a first message to the second network device, where the first message carries fourth indication information, and the fourth indication information is used to instruct the first terminal device to join the first group and/or Or participate in a first group service, where the first group includes at least two terminal devices participating in the first group service.
  • the first terminal device When the first terminal device determines to join the first group and/or participate in the first group business, it sends a first message to the second network device, and carries fourth indication information in the first message to instruct the second network device to join The first group or participate in the first group business.
  • the second network device is a core network control plane network element, such as an SMF.
  • the fourth indication information instructs the first terminal device to participate in the first group service
  • the second network device determines based on the fourth indication information that the first terminal device joins the first group corresponding to the first group service.
  • the fourth indication information instructs the first terminal device to join the first group
  • the second network device determines that the first terminal device joins the first group based on the fourth indication information
  • the fourth indication information instructs the first terminal device to join the first group and participate in services of the first group, and the second network device determines based on the fourth indication information that the first terminal device joins the first group.
  • the first message is used to establish or update a PDU session.
  • the first message may be a PDU session establishment/modification request sent by the first terminal device to the second network device.
  • the first terminal device adds fourth indication information to the PDU session establishment/modification request, and sends the PDU session establishment/modification request added with the fourth indication information to the second network device.
  • the first terminal device when the first message is used to establish or update a PDU session, notifies the core network to join the first group during the process of establishing or modifying the PDU session.
  • the fourth indication information is at least used by the second network device to determine a third network device.
  • the second network device After receiving the fourth indication information, the second network device selects the third network device based on the fourth indication information.
  • the third network device is a core network user plane network element, such as a UPF.
  • the third network device serves at least two terminal devices of the first group.
  • the second network device determines the first group that the first terminal device joins based on the fourth indication information, and selects a third network device that can serve all terminal devices in the first group.
  • the fourth indication information is at least used to determine second information, and the second information is used at least to control a first rate, where the first rate consists of rates of at least two first connections,
  • the at least two first connections include first connections of the at least two terminal devices, and the first connections are used to transmit data of the first group service.
  • the second network device After the second network device determines the second information based on the fourth indication information, it may carry the second information in the second message and send it to the third network device, and the third network device performs the first terminal device's communication based on the received second information Establishment of the first connection.
  • the second network device may notify the third network device of the following content through the second information: the first group that the first terminal device joins, the first connection that the first terminal device needs to establish, that is, the first terminal device's participation in the first group.
  • a rate-controlled connection and an updated AMBR based on the joining of the first terminal device.
  • the fourth indication information indicates the first group service
  • the terminal equipment in the first group participates in multiple group services
  • one group service corresponds to one AMBR
  • the AMBR in the second information It is the ABMR corresponding to the service of the first group among the multiple AMBRs corresponding to the first group.
  • the second information includes at least one of the following:
  • fifth indication information where the fifth indication information is used to indicate the first connection of the first terminal device
  • sixth indication information where the sixth indication information is used to indicate the AMBR of the first group.
  • the QoS parameters may include: QoS Class Identifier (QoS Class Identifier, QCI), Allocation/Retention Priority (ARP) and other parameters.
  • QCI QoS Class Identifier
  • ARP Allocation/Retention Priority
  • the QoS rule includes: the identifier of the associated QoS flow, the priority of the QoS rule, and the like.
  • the fifth indication information is used to indicate the first connection of the first terminal device for data transmission of the first group service.
  • the third network device After the second network device sends the fifth indication information to the third network device, the third network device The network device establishes the first connection for the first terminal device based on the fifth indication information.
  • the first terminal device corresponds to one or more first connections.
  • the AMBR of the first group indicated by the sixth indication information is the AMBR after the first terminal device joins the first group.
  • the AMBR indicated by the sixth indication information may be used as the first rate threshold in the wireless communication method shown in FIG. 5 for the UPF or the first base station to control the first rate of the first group.
  • the sixth indication information includes at least one of the following:
  • the AMBR The AMBR
  • the second identifier of the first group service is the second identifier of the first group service.
  • the sixth indication information is used to determine the value of the AMBR of the first group.
  • the sixth indication information includes AMBR
  • the sixth indication information directly indicates AMBR.
  • the third network device searches for the AMBR identified by the first identifier based on the first identifier.
  • the third network device receives the second identifier, and determines the AMBR corresponding to the first group service based on the second identifier.
  • the first connection is a PDU session or a Quality of Service (QoS) flow.
  • QoS Quality of Service
  • the first connection corresponds to an independent DRB.
  • the base station can establish a DRB independently for each first connection, so that in the process of implementing the wireless communication method shown in FIG. 5, it is convenient to control the first rate based on the DRB, so that different A connection does not affect each other.
  • QoS parameters of different first connections may be the same or different.
  • independent DRBs may also be established respectively.
  • each terminal device to be added to the first group can join the first group according to the wireless communication method shown in Figure 7, and complete the establishment of the first connection and the configuration of the AMBR in the core network After the core network completes the establishment of the first connection and the configuration of the AMBR, the first network device measures the first rate of the first group, and based on the measurement result of the first rate and the AMBR of the first group, the first rate Make adjustments.
  • An embodiment of the present application provides a wireless communication method, which is applied to a second network device, as shown in FIG. 9 , including:
  • the second network device receives the first message sent by the first terminal device, where the first message carries fourth indication information, and the fourth indication information is used to instruct the first terminal device to join the first group and /or participating in a first group service, where the first group includes at least two terminal devices participating in the first group service.
  • the second network device is a core network control plane network element, such as an SMF.
  • the first terminal device When the first terminal device determines to join the first group and/or participate in the first group business, it sends a first message to the second network device, and carries fourth indication information in the first message to instruct the second network device to join The first group or participate in the first group business.
  • the fourth indication information instructs the first terminal device to participate in the first group service
  • the second network device determines based on the fourth indication information that the first terminal device joins the first group corresponding to the first group service.
  • the fourth indication information instructs the first terminal device to join the first group
  • the second network device determines that the first terminal device joins the first group based on the fourth indication information
  • the fourth indication information instructs the first terminal device to join the first group and participate in services of the first group, and the second network device determines based on the fourth indication information that the first terminal device joins the first group.
  • the first message is used to establish or update a PDU session.
  • the first message may be a PDU session establishment/modification request sent by the first terminal device to the second network device.
  • the first terminal device adds fourth indication information to the PDU session establishment/modification request, and sends the PDU session establishment/modification request added with the fourth indication information to the second network device.
  • the first terminal device when the first message is used to establish or update a PDU session, notifies the core network to join the first group during the process of establishing or modifying the PDU session.
  • the fourth indication information is used by the second network device to determine a third network device.
  • the second network device After receiving the fourth indication information, the second network device selects the third network device based on the fourth indication information.
  • the third network device is a core network user plane network element, such as a UPF.
  • the third network device serves at least two terminal devices of the first group.
  • the second network device determines the first group that the first terminal device joins based on the fourth indication information, and selects a third network device that can serve all terminal devices in the first group.
  • the fourth indication information is also used to determine second information, the second information is used at least for the control of the first rate, and the first rate is composed of the rates of at least two first connections,
  • the at least two first connections include first connections of the at least two terminal devices, and the first connections are used to transmit data of the first group service.
  • the second network device sends a second message to the third network device, the second message includes second information, the second information is used at least for controlling the first rate, and the first The rate is constituted by the rate of at least two first connections, the at least two first connections including the first connections of the at least two terminal devices, the first connections being used to transmit the data of the first group service .
  • the second network device After the second network device determines the second information based on the fourth indication information, it may carry the second information in the second message and send it to the third network device, and the third network device performs the first terminal device's communication based on the received second information Establishment of the first connection.
  • the second network device may notify the third network device of the following content through the second information: the first group joined by the first terminal device, the first connection to be established by the first terminal, and the Updated AMBRs.
  • the fourth indication information indicates the first group service
  • the terminal equipment in the first group participates in multiple group services
  • one group service corresponds to one AMBR
  • the AMBR in the second information It is the ABMR corresponding to the service of the first group among the multiple AMBRs corresponding to the first group.
  • the wireless communication method provided in the embodiment of the present application includes:
  • the first terminal device sends a first message to the second network device.
  • the second network device sends a second message to the third network device.
  • the second message is used to establish or update a PDU session.
  • the second information includes at least one of the following:
  • QoS Quality of Service
  • fifth indication information where the fifth indication information is used to indicate the first connection of the first terminal device
  • sixth indication information where the sixth indication information is used to indicate the AMBR of the first group.
  • the QoS parameters may include: QCI, ARP and other parameters.
  • the QoS rule includes: the identifier of the associated QoS flow, the priority of the QoS rule, and the like.
  • the fifth indication information is used to indicate the first connection of the first terminal device for data transmission of the first group service.
  • the third network device After the second network device sends the fifth indication information to the third network device, the third network device The network device establishes the first connection for the first terminal device based on the fifth indication information.
  • the first terminal device corresponds to one or more first connections.
  • the third network device may send each first rate in the first group based on the fifth indication information sent by each terminal device in the first group.
  • the rate of the first connection of the terminal device is measured, so as to determine the measured value of the first rate of the first group.
  • the AMBR of the first group indicated by the sixth indication information is the AMBR after the first terminal device joins the first group.
  • the AMBR indicated by the sixth indication information received by the third network device can be used as the first rate in the wireless communication method shown in FIG. 5 a threshold to control the first rate of the first group.
  • the second network device sends a third message to the first base station, where the third message includes third information, and the third information is at least used for QoS control.
  • the wireless communication method provided in the embodiment of the present application includes:
  • the first terminal device sends a first message to the second network device.
  • the second network device sends a second message to the third network device.
  • the third network device sends a third message to the first base station.
  • the third information includes at least one of the following:
  • QoS Quality of Service
  • the third information is further used to instruct the first base station to control the first rate
  • the first rate is composed of the rates of at least two first connections
  • the at least two first The connection includes a first connection of the at least two terminal devices, and the first connection is used for transmitting data of the first group service.
  • the first base station after receiving the third information, can act as the first network device to implement the wireless network as shown in FIG. 5 based on the third information. communication method.
  • the third information includes at least one of the following:
  • fifth indication information where the fifth indication information is used to indicate the first connection of the first terminal device
  • sixth indication information where the sixth indication information is used to indicate the AMBR of the first group
  • seventh indication information where the seventh indication information is used to instruct the first base station to control the first rate.
  • the first base station may measure the first connection rate of each first terminal device in the first group based on the fifth indication information sent by each terminal device in the first group The velocity is measured to determine a first velocity measurement for the first group.
  • the AMBR of the first group indicated by the sixth indication information is the AMBR after the first terminal device joins the first group.
  • the AMBR indicated by the sixth indication information received by the first base station can be used as the first rate threshold in the wireless communication method shown in FIG.
  • the first rate of the group is controlled.
  • the sixth indication information includes at least one of the following:
  • the AMBR The AMBR
  • the second identifier of the first group service is the second identifier of the first group service.
  • the sixth indication information is used to determine the value of the AMBR of the first group.
  • the sixth indication information includes AMBR
  • the sixth indication information directly indicates AMBR.
  • the third network device searches for the AMBR identified by the first identifier based on the first identifier.
  • the third network device receives the second identifier, and determines the AMBR corresponding to the first group service based on the second identifier.
  • the first connection is a PDU session or a Quality of Service (QoS) flow.
  • QoS Quality of Service
  • the first connection corresponds to an independent data radio bearer (DRB).
  • DRB independent data radio bearer
  • the base station can establish a DRB independently for each first connection, so that in the process of implementing the wireless communication method shown in FIG. 5, it is convenient to control the first rate based on the DRB, so that different A connection does not affect each other.
  • QoS parameters of different first connections may be the same or different.
  • independent DRBs may also be established respectively.
  • each terminal device to be added to the first group can join the first group according to the wireless communication method shown in Figure 7, and complete the establishment of the first connection and the configuration of the AMBR in the core network After the core network completes the establishment of the first connection and the configuration of the AMBR, the first network device measures the first rate of the first group, and based on the measurement result of the first rate and the AMBR of the first group, the first rate Make adjustments.
  • An embodiment of the present application provides a wireless communication method, which is applied to a third network device, as shown in FIG. 12 , including:
  • the third network device receives a second message sent by the second network device, where the second message includes second information, and the second information is used at least to control a first rate, and the first rate is composed of at least two The rate configuration of the first connection, the at least two first connections include a first connection of at least two terminal devices of a first group, the first group includes at least two terminal devices participating in the first group service , the first connection is used to transmit data of the first group service.
  • the third network device is a core network user plane network element, such as a UPF.
  • the second network device is a core network control plane network element, such as an SMF.
  • the second network device determines the second information, it carries the second information in the second message and sends it to the third network device, and the third network device receives the second message carrying the second information.
  • the first terminal device When the first terminal device determines to join the first group and/or participate in the first group business, it sends a first message to the second network device, and carries fourth indication information in the first message to notify the second network device that the first A terminal device needs to join the first group.
  • the second network device After receiving the first message, the second network device generates second information based on the fourth indication information, adds the second information to the second message, and sends the second message to the third network device.
  • the third network device receives the second message carrying the second information sent by the second network device.
  • the fourth indication information is used to instruct the first terminal device to join the first group and/or participate in the first group service, and the first group includes at least two terminal devices participating in the first group service.
  • the second network device may notify the third network device of the following content through the second information: the first group joined by the first terminal device, the first connection to be established by the first terminal, and the Updated AMBRs.
  • the second information includes at least one of the following:
  • fifth indication information where the fifth indication information is used to indicate the first connection of the first terminal device
  • sixth indication information where the sixth indication information is used to indicate the AMBR of the first group.
  • the QoS parameters may include: QCI, ARP and other parameters.
  • the QoS rule includes: the identifier of the associated QoS flow, the priority of the QoS rule, and the like.
  • the fifth indication information is used to indicate the first connection of the first terminal device for data transmission of the first group service.
  • the third network device After the second network device sends the fifth indication information to the third network device, the third network device The network device establishes the first connection for the first terminal device based on the fifth indication information.
  • the first terminal device corresponds to one or more first connections.
  • the AMBR of the first group indicated by the sixth indication information is the AMBR after the first terminal device joins the first group.
  • the AMBR indicated by the sixth indication information may be used as the first rate threshold in the wireless communication method shown in FIG. 5 for the UPF or the first base station to control the first rate of the first group.
  • the sixth indication information includes at least one of the following:
  • the AMBR The AMBR
  • the second identifier of the first group service is the second identifier of the first group service.
  • the sixth indication information is used to determine the value of the AMBR of the first group.
  • the sixth indication information includes AMBR
  • the sixth indication information directly indicates AMBR.
  • the third network device searches for the AMBR identified by the first identifier based on the first identifier.
  • the third network device receives the second identifier, and determines the AMBR corresponding to the first group service based on the second identifier.
  • the second message is used to establish or update a PDU session.
  • the first connection is a PDU session or a Quality of Service (QoS) flow.
  • QoS Quality of Service
  • the first connection corresponds to an independent DRB.
  • the base station can establish a DRB independently for each first connection, so that in the process of implementing the wireless communication method shown in FIG. 5, it is convenient to control the first rate based on the DRB, so that different A connection does not affect each other.
  • QoS parameters of different first connections may be the same or different.
  • independent DRBs may also be established respectively.
  • the application server can be connected to one or more base stations through UPF, and each base station is covered by terminals participating in FL.
  • the group includes 10 terminals: UE1 to UE10, wherein UE1 to UE3 are distributed under RAN node 1, UE4 to UE5 are distributed under RAN node 2, and UE6 to UE10 are distributed under RAN Under node 3, UE1 to UE10 perform data transmission with the application server 1302 through three RAN nodes (ie base stations) of RAN node 1 to RAN node 3 and UPF 1301 .
  • the UPF or the RAN node on the RAN side controls the aggregated bit rate for the group consisting of 10 terminals. For this, the following capabilities need to be defined:
  • the 10 terminals respectively establish connections with the core network through the QoS flow of the PDU session, and can transmit application data through the QoS flow guaranteed by the guaranteed flow bit rate GFBR, of course, it can also be transmitted through the non-GFBR QoS flow.
  • the sum of the GFBR corresponding to the QoS flow used by the terminals in the group to transmit data with the application server can be greater than the value of the group AMBR.
  • the AMBR value of the group is 20Mbps
  • the total value of the GFBR of the QoS flow of 10 terminals can be 50Mbps or other values greater than 20Mbps.
  • the purpose of this is to allow the application layer to have enough space to adjust each round The transmission rate of each terminal is guaranteed by 5GS.
  • the UPF or RAN side performs the measurement of the aggregated bit rate of the group, that is, the first rate.
  • the AMBR of the group can be divided into uplink and downlink, and the uplink and downlink can be configured separately.
  • a single RAN node can obtain the rate sum of the QoS flow of the terminals under the RAN node by summing the rates of the QoS flow of the terminals in the group, and multiple RAN nodes can pass the Xn interface between the base stations Interact the measurement results, so as to sum up the QoS flow rate of the terminals under each RAN node, and obtain the measured value of the aggregated bit rate, that is, the real-time aggregated bit rate.
  • UPF can limit the rate of QoS flow of one or more UEs to prevent the aggregate bit rate value of the group from exceeding the upper limit.
  • the UPF can notify the SMF, and the SMF informs the RAN side to limit or deactivate the QoS flow rate of one or more terminals or delete the QoS flow of one or more terminals, or the UPF itself notifies the RAN side Limit or deactivate or delete the QoS flow rate of one or more terminals, so that the aggregated bit rate of the group does not exceed the upper limit.
  • a UE can have multiple QoS flows, among which, only one or several QoS flows can participate in the calculation of the aggregate bit rate of the group when transmitting data with the QoS flows of other UEs.
  • the RAN node can rate limit or disable or delete the DRB corresponding to one or more QoS flows.
  • the wireless communication method provided by the embodiments of the present application may be implemented as but not limited to the following embodiments.
  • the wireless communication method provided in the embodiment of this application may be shown in Figure 14, including:
  • the UE sends a PDU session establishment/modification request to a control plane network element.
  • the UE adds the first indication, that is, the fourth indication information, to the PDU session establishment/modification request, and sends the PDU session establishment/modification request with the first indication to the control plane network element; the first indication is used to instruct the UE to join a certain
  • a specific group service (such as a certain FL service) may also indicate which group service to join.
  • the control plane network element may be an SMF.
  • the control plane network element determines the user plane network element.
  • control plane network element After the control plane network element receives the PDU session establishment/modification request, it determines the user plane network element according to the first instruction; among them, all terminals that apply to join a certain group service will be served by the same UPF, so that the group can be connected Aggregate bit rate measurement and control.
  • the user plane network element may be a UPF.
  • the control plane network element sends a PDU session request message to the user plane network element.
  • the control plane network element can determine the QoS parameter and QoS rule/packet detection rule (Packet Detection Rule) of the UE according to the first indication and/or other parameters (for example: policy and charging control (Policy and Charging Control, PCC) rule) , PDR), and determine which QoS flow will participate in the control of the aggregate bit rate (that is, determine the applicable group AMBR or its group AMBR identifier for the QoS flow participating in the aggregate bit rate control); and will carry the group AMBR, its group
  • the group AMBR identifier which is the first identifier and/or the group service identifier, which is the second identifier, is sent to the user plane network element in the PDU session establishment/modification request, so that the user plane network element performs QoS flow establishment, binding and/or monitoring and control.
  • the control plane network element sends a PDU session request message to the RAN.
  • the PDU session request message may include QoS parameters and NAS messages including QoS rules. If the aggregated bit rate monitoring of the group needs to be performed by the RAN side, when the control plane network element sends a PDU session request message to the RAN, the PDU session request message not only carries the existing QoS parameters and NAS messages containing QoS rules, but also It will carry the second indication, that is, the fifth indication information, group AMBR, group AMBR identifier and/or group service identifier, and the second indication is used to indicate which QoS flow of the terminal participates in the control of the aggregated bit rate.
  • the base station can determine which QoS flow the terminal participates in the aggregate bit rate control of the group, and the group AMBR, the group AMBR identifier and/or the group service identifier are used to determine the specific group AMBR value .
  • a DRB is established between the RAN and the UE.
  • the base station establishes a DRB according to the interaction with the terminal to serve different QoS flows of the UE.
  • a DRB can be established for it alone (even if the QoS parameters of this QoS flow are different from those of other QoS flows same), the purpose of this is to manage the DRB easily.
  • the QoS flow is used between the terminal and the application server to transmit the data of the group service, and control the aggregation bit rate of the group.
  • the 5GS node monitors the aggregated bit rate based on the sum of the real-time rates of data transmitted by these QoS flows, that is, the real-time aggregated bit rate , and carry out necessary control (such as taking measures such as current limiting when exceeding the maximum value).
  • the wireless communication method provided by the embodiment of the present application includes:
  • a user plane network element measures an aggregated bit rate of a group.
  • the user plane network element After the user plane network element starts to monitor the aggregated bit rate of the group, it measures the sum of the QoS flow rate measurements of all UEs in the group transmitting data with the application server, obtains the measured value of the aggregated bit rate of the group, and detects the aggregated bit rate. When the measured value of the bit rate exceeds the prescribed value, the user plane network element may execute S1502a and S1502b.
  • the user plane network element reports the measured value of the aggregated bit rate to the control plane network element.
  • the user plane network element reports the measured value of the aggregated bit rate to the application server.
  • the user plane network element reports the measurement result of the aggregated bit rate (including whether it exceeds the group AMBR value and/or the measured value of the aggregated bit rate measured).
  • the user plane network element may perform S1503a or S1503c, or the control plane network element may perform S1503b.
  • the user plane network element limits the QoS Flow rate of one or more UEs.
  • the control plane network element instructs the RAN to deactivate the QoS Flow or limit the rate of the QoS Flow.
  • the control plane network element instructs the RAN to deactivate one or more QoS Flows or limit the rate of the first or more QoS Flows of the group.
  • the RAN limits the rate of the DRB of the QoS Flow of one or more UEs in the group or deactivates one or more QoS Flows.
  • the disable (or Inactivate) of S1503b can be performed on the QOS flow granularity or PDU session granularity.
  • Disable is a temporary failure/deactivation, which does not mean that the data flow or session is deleted, and can be expired by a timer Afterwards, it is automatically restored, and it can also be restored by sending an enable or activation (enable/activate) from a network element of the core network.
  • the user plane network element instructs the RAN to deactivate the QoS Flow or limit the rate of the QoS Flow.
  • the aggregate bit rate of the group may be limited within the upper limit.
  • the wireless communication method provided by the embodiment of the present application makes full use of the existing process and architecture of the 5G core network to monitor and control the aggregated bit rate of the group; and can perform actual rate control for group services composed of multiple UEs, It helps that network resources will not be occupied too much by some group rental service, which may easily affect the normal use of other services.
  • the 5GS network element (such as UPF) can continuously control the upper limit of the data flow rate of multiple UEs in a group.
  • the deactivation mechanism can be used separately from the group AMBR scenario, that is, the corresponding QoS flow/PDU session (Session) can be deactivated (disacble/inactivate) in any necessary situation.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic, and should not be used in this application.
  • the implementation of the examples constitutes no limitation.
  • the terms “downlink”, “uplink” and “sidelink” are used to indicate the transmission direction of signals or data, wherein “downlink” is used to indicate that the transmission direction of signals or data is sent from the station The first direction to the user equipment in the cell, “uplink” is used to indicate that the signal or data transmission direction is the second direction sent from the user equipment in the cell to the station, and “side line” is used to indicate that the signal or data transmission direction is A third direction sent from UE1 to UE2.
  • “downlink signal” indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that there may be three relationships. Specifically, A and/or B may mean: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • FIG. 16 is a first structural diagram of a wireless communication device provided by an embodiment of the present application, which is applied to a first network device. As shown in FIG. 16 , the wireless communication device 1600 includes:
  • the measurement module 1601 is configured to measure a first rate of a first group, the first group includes at least two terminal devices participating in the first group service, and the first rate consists of the rate of at least two first connections It is configured that the at least two first connections include first connections of the at least two terminal devices, and the first connections are used to transmit data of the first group service.
  • said first connection is configured with a Guaranteed Bit Rate GBR; or,
  • the first connection is not configured with GBR.
  • the sum of the GBRs of the at least two first connections is greater than the aggregate maximum bit rate AMBR of the first group.
  • the conditions for the first rate adjustment include:
  • the measured value of the first rate is greater than a first rate threshold.
  • the conditions for stopping adjustment of the first rate include:
  • the measured value of the first rate is less than or equal to a first rate threshold.
  • the manner of adjusting the first rate includes at least one of the following:
  • the first network device is a user plane function network element UPF or a first base station.
  • the apparatus 1600 when the first network device is a UPF, the apparatus 1600 further includes:
  • the first adjustment module is configured to limit the rate of at least one of the first connections.
  • the apparatus 1600 when the first network device is a UPF, the apparatus 1600 further includes:
  • the second adjustment module is configured to send first indication information to the second base station, where the first indication information is used to indicate at least one of the following:
  • the apparatus 1600 when the first network device is a UPF, the apparatus 1600 further includes:
  • a third adjustment module configured to send first information to the second network device, where the first information is used to indicate the measured value of the first rate.
  • the first information includes at least one of the following:
  • Second indication information where the second indication information is used to indicate that the measured value of the first rate is greater than the first rate threshold.
  • the first information is used to determine third indication information sent by the second network device to the second base station, and the third indication information is used to indicate at least one of the following:
  • the first rate threshold is the AMBR of the first group.
  • the first connection is: a Protocol Data Unit (PDU) session or a Quality of Service (QoS) flow.
  • PDU Protocol Data Unit
  • QoS Quality of Service
  • the apparatus 1600 when the first network device is a UPF, the apparatus 1600 further includes:
  • the first receiving module is configured to receive a second message sent by a second network device, where the second message includes second information, and the second information is at least used for controlling the first rate.
  • the second information includes at least one of the following:
  • fifth indication information where the fifth indication information is used to indicate the first connection of the first terminal device
  • the fifth indication information is used to indicate the AMBR of the first group.
  • the sixth indication information includes at least one of the following:
  • the second identifier of the first group service is the second identifier of the first group service.
  • the second message is used to establish or update a PDU session.
  • the first connection corresponds to an independent DRB.
  • Fig. 17 is a first schematic diagram of the structure and composition of a wireless communication device provided by an embodiment of the present application, which is applied to a first terminal device.
  • the wireless communication device 1700 includes:
  • the first sending module 1701 is configured to send a first message to a second network device, where the first message carries fourth indication information, and the fourth indication information is used to instruct the first terminal device to join the first group And/or participating in a first group service, where the first group includes at least two terminal devices participating in the first group service.
  • the first message is used to establish or update a PDU session.
  • the fourth indication information is at least used by the second network device to determine a third network device.
  • the third network device serves at least two terminal devices of the first group.
  • the fourth indication information is at least used to determine second information, and the second information is used at least to control a first rate, where the first rate consists of rates of at least two first connections,
  • the at least two first connections include first connections of the at least two terminal devices, and the first connections are used to transmit data of the first group service.
  • the second information includes at least one of the following:
  • QoS Quality of Service
  • fifth indication information where the fifth indication information is used to indicate the first connection of the first terminal device
  • sixth indication information where the sixth indication information is used to indicate the AMBR of the first group.
  • the sixth indication information includes at least one of the following:
  • the second identifier of the first group service is the second identifier of the first group service.
  • the first connection is a PDU session or a Quality of Service (QoS) flow.
  • QoS Quality of Service
  • the first connection corresponds to an independent data radio bearer (DRB).
  • DRB independent data radio bearer
  • FIG. 18 is a schematic diagram of the structure and composition of a wireless communication device provided by an embodiment of the present application, which is applied to a second network device. As shown in FIG. 18 , the wireless communication device 1800 includes:
  • the second receiving module 1801 is configured to receive a first message sent by a first terminal device, where the first message carries fourth indication information, and the fourth indication information is used to instruct the first terminal device to join the first group Group and/or participate in a first group service, where the first group includes at least two terminal devices participating in the first group service.
  • the first message is used to establish or update a PDU session.
  • the fourth indication information is used by the second network device to determine a third network device.
  • the third network device serves at least two terminal devices of the first group.
  • the fourth indication information is also used to determine second information, and the second information is used at least to control a first rate, where the first rate consists of rates of at least two first connections,
  • the at least two first connections include first connections of the at least two terminal devices, and the first connections are used to transmit data of the first group service.
  • device 1800 also includes:
  • the second sending module is configured to send a second message to a third network device, the second message includes second information, and the second information is at least used for controlling a first rate, and the first rate is composed of at least two The rate configuration of the first connection, the at least two first connections include first connections of the at least two terminal devices, and the first connections are used to transmit data of the first group service.
  • the second message is used to establish or update a PDU session.
  • the second information includes at least one of the following:
  • QoS Quality of Service
  • fifth indication information where the fifth indication information is used to indicate the first connection of the first terminal device
  • sixth indication information where the sixth indication information is used to indicate the AMBR of the first group.
  • device 1800 also includes:
  • the third sending module is configured to send a third message to the first base station, where the third message includes third information, and the third information is at least used for QoS control.
  • the third information includes at least one of the following:
  • QoS Quality of Service
  • the third information is further used to instruct the first base station to control the first rate
  • the first rate is composed of the rates of at least two first connections
  • the at least two first The connection includes a first connection of the at least two terminal devices, and the first connection is used for transmitting data of the first group service.
  • the third information includes at least one of the following:
  • fifth indication information where the fifth indication information is used to indicate the first connection of the first terminal device
  • sixth indication information where the sixth indication information is used to indicate the AMBR of the first group
  • seventh indication information where the seventh indication information is used to instruct the first base station to control the first rate.
  • the sixth indication information includes at least one of the following:
  • the second identifier of the first group service is the second identifier of the first group service.
  • the first connection is a PDU session or a Quality of Service (QoS) flow.
  • QoS Quality of Service
  • the first connection corresponds to an independent data radio bearer (DRB).
  • DRB independent data radio bearer
  • FIG. 19 is a schematic diagram of the structure and composition of a wireless communication device provided by an embodiment of the present application, which is applied to a third network device.
  • the wireless communication device 1900 includes:
  • the third receiving module 1901 is configured to receive a second message sent by a second network device, where the second message includes second information, and the second information is at least used for controlling a first rate, and the first rate is controlled by at least The rate configuration of two first connections, the at least two first connections include first connections of at least two terminal devices of a first group, and the first group includes at least two terminals participating in the first group business For a terminal device, the first connection is used to transmit data of the first group service.
  • the second information includes at least one of the following:
  • fifth indication information where the fifth indication information is used to indicate the first connection of the first terminal device
  • sixth indication information where the sixth indication information is used to indicate the AMBR of the first group.
  • the sixth indication information includes at least one of the following:
  • the second identifier of the first group service is the second identifier of the first group service.
  • the second message is used to establish or update a PDU session.
  • the first connection is a PDU session or a Quality of Service (QoS) flow.
  • QoS Quality of Service
  • the first connection corresponds to an independent DRB.
  • FIG. 20 is a schematic structural diagram of a communication device 2000 provided by an embodiment of the present application.
  • the communication device may be a terminal device, or may be a first network device, a second network device, or a third network device.
  • the communication device 2000 shown in FIG. 20 includes a processor 2010, and the processor 2010 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 2000 may further include a memory 2020 .
  • the processor 2010 can invoke and run a computer program from the memory 2020, so as to implement the method in the embodiment of the present application.
  • the memory 2020 may be a separate device independent of the processor 2010 , or may be integrated in the processor 2010 .
  • the communication device 2000 may further include a transceiver 2030, and the processor 2010 may control the transceiver 2030 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 2030 may include a transmitter and a receiver.
  • the transceiver 2030 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 2000 may specifically be the network device of the embodiment of the present application, and the communication device 2000 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 2000 may specifically be the mobile terminal/terminal device of the embodiment of the present application, and the communication device 2000 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for the sake of brevity , which will not be repeated here.
  • FIG. 21 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 2100 shown in FIG. 21 includes a processor 2110, and the processor 2110 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 2100 may further include a memory 2120 .
  • the processor 2110 can invoke and run a computer program from the memory 2120, so as to implement the method in the embodiment of the present application.
  • the memory 2120 may be an independent device independent of the processor 2110 , or may be integrated in the processor 2110 .
  • the chip 2100 may also include an input interface 2130 .
  • the processor 2110 can control the input interface 2130 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 2100 may also include an output interface 2140 .
  • the processor 2110 can control the output interface 2140 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • Fig. 22 is a schematic block diagram of a communication system 2200 provided by an embodiment of the present application. As shown in FIG. 22 , the communication system 2200 includes a terminal device 2210 and a network device 2220 .
  • the terminal device 2210 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 1420 can be used to realize the first network device, the second network device or the third network device in the above method
  • the corresponding functions will not be repeated here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the methods of the embodiments of the present application, For the sake of brevity, details are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program executes each method in the embodiment of the present application to be implemented by the mobile terminal/terminal device
  • the corresponding process will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种无线通信方法及装置、通信设备,该方法包括:第一网络设备测量第一群组的第一速率,所述第一群组包括参与第一群组业务的至少两个终端设备,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括所述至少两个终端设备的第一连接,所述第一连接用于传输所述第一群组业务的数据。

Description

一种无线通信方法及装置、通信设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种无线通信方法及装置、通信设备。
背景技术
联邦学习等群组业务的应用服务器通过5G系统与多个终端设备进行交互,传递数据,让多个参与方在不共享数据的基础上进行群组业务,从技术上打破数据孤岛。但这种业务方式需要调集多个终端设备开展,会消耗通信资源,如果让应用服务器无限制的调用多终端设备的无线资源,势必会影响到其他终端设备或其他业务的正常进行。
发明内容
本申请实施例提供一种无线通信方法及装置、通信设备。
本申请实施例提供的无线通信方法包括:
第一网络设备测量第一群组的第一速率,所述第一群组包括参与第一群组业务的至少两个终端设备,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括所述至少两个终端设备的第一连接,所述第一连接用于传输所述第一群组业务的数据。
本申请实施例提供的无线通信方法包括:
第一终端设备向第二网络设备发送第一消息,所述第一消息中携带第四指示信息,所述第四指示信息用于指示所述第一终端设备加入第一群组和/或参与第一群组业务,所述第一群组包括参与所述第一群组业务的至少两个终端设备。
本申请实施例提供的无线通信方法包括:
第二网络设备接收第一终端设备发送的第一消息,所述第一消息中携带第四指示信息,所述第四指示信息用于指示所述第一终端设备加入第一群组和/或参与第一群组业务,所述第一群组包括参与所述第一群组业务的至少两个终端设备。
本申请实施例提供的无线通信方法包括:
第三网络设备接收第二网络设备发送的第二消息,所述第二消息包括第二信息,所述第二信息至少用于第一速率的控制,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括第一群组的至少两个终端设备的第一连接,所述第一群组包括参与第一群组业务的至少两个终端设备,所述第一连接用于传输所述第一群组业务的数据。
本申请实施例提供的无线通信装置,包括:
测量模块,配置为测量第一群组的第一速率,所述第一群组包括参与第一群组业务的至少两个终端设备,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括所述至少两个终端设备的第一连接,所述第一连接用于传输所述第一群组业务的数据。
本申请实施例提供的无线通信装置,包括:
第一发送模块,配置为向第二网络设备发送第一消息,所述第一消息中携带第四指示信息,所述第四指示信息用于指示所述第一终端设备加入第一群组和/或参与第一群组业务,所述第一群组包括参与所述第一群组业务的至少两个终端设备。
本申请实施例提供的无线通信装置,包括:
第二接收模块,配置为接收第一终端设备发送的第一消息,所述第一消息中携带第四指示信息,所述第四指示信息用于指示所述第一终端设备加入第一群组和/或参与第一群组业务,所述第一群组包括参与所述第一群组业务的至少两个终端设备。
本申请实施例提供的无线通信装置,包括:
第三接收模块,配置为接收第二网络设备发送的第二消息,所述第二消息包括第二信息,所述第二信息至少用于第一速率的控制,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括第一群组的至少两个终端设备的第一连接,所述第一群组包括参与第一群组业 务的至少两个终端设备,所述第一连接用于传输所述第一群组业务的数据。
本申请实施例提供的通信设备,可以是上述方案中的终端设备或者是上述方案中的网络设备,该通信设备包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的无线通信方法。
本申请实施例提供的芯片,用于实现上述的无线通信方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的无线通信方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的无线通信方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的无线通信方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的无线通信方法。
通过上述技术方案,通过对同一个群组中各终端设备进行群组业务的连接的速率进行测量,从而对参与群组业务的多个终端设备的速率进行控制。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例的一个应用场景的示意图;
图2是本申请实施例的一个应用场景的示意图;
图3是本申请实施例的一个应用场景的示意图;
图4是本申请实施例的一个应用场景的示意图;
图5是本申请实施例提供的无线通信方法的可选地流程示意图;
图6是本申请实施例提供的无线通信方法的可选地流程示意图;
图7是本申请实施例提供的无线通信方法的可选地流程示意图;
图8是本申请实施例提供的无线通信方法的可选地流程示意图;
图9是本申请实施例提供的无线通信方法的可选地流程示意图;
图10是本申请实施例提供的无线通信方法的可选地流程示意图;
图11是本申请实施例提供的无线通信方法的可选地流程示意图;
图12是本申请实施例提供的无线通信方法的可选地流程示意图;
图13是本申请实施例提供的无线通信方法的可选地流程示意图;
图14是本申请实施例提供的无线通信方法的可选地流程示意图;
图15是本申请实施例提供的无线通信方法的可选地流程示意图;
图16是本申请实施例提供的一种无线通信装置的可选地示意性结构图;
图17是本申请实施例提供的一种无线通信装置的可选地示意性结构图;
图18是本申请实施例提供的一种无线通信装置的可选地示意性结构图;
图19是本申请实施例提供的一种无线通信装置的可选地示意性结构图;
图20是本申请实施例提供的一种通信设备示意性结构图;
图21是本申请实施例的芯片的示意性结构图;
图22是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、UE、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能网元(User Plane Function,UPF),又例如,会话管理功能网元(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过Uu接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C 获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
在群组业务中,如图2或图3所示,应用服务器201通过5G系统202(5GS,包括核心网2021+基站2022)与多个终端203进行交互,传递数据。在图2中,多个终端203位于一个基站2022的覆盖下,在图3中,多个终端203位于两个基站2022的覆盖下,在实际应用中,应用服务器201可通过一个或多个基站2022与多个终端203下进行交互。
以群组业务为联邦学习(Federated Learning,FL)为例,由于应用层调度的需要,应用服务器在每轮(或每个时间段)中可以选取不同的终端设备。比如,基站覆盖下有100个终端设备,应用服务器每轮(或每个时间段)会按需与其中的10个终端进设备行交互,以使该10个终端设备可以将通过本地数据的训练结果(训练好的模型/结果)返回至应用服务器,并由应用服务器进行进一步处理(如合并、加权多个终端设备的训练结果)。应用服务器在与10个终端设备完成一轮训练后,可以再选择新的10个终端设备(可以部分是与前一轮一样的终端也可以都不一样,没有限制),进而开启新一轮的训练结果上报。
联邦学习每一轮训练的过程如图4所示(第N轮训练和第N+1轮训练),在一轮训练中,包括:训练设备选择阶段、模型分配和训练配置阶段、训练结果上报阶段;
在训练设备选择阶段,各个终端设备上报训练资源,应用服务器基于各个终端设备上报的训练资源报告从所有的终端设备中进行训练的终端设备的选择。
在模型分配和训练配置阶段,应用服务器向选择的终端设备发送模型分配和训练配置,接收到模型分配和训练配置的终端设备进行训练。
在训练结果上报阶段,完成训练的终端设备将训练结果上报给应用服务器,应用服务器基于上报的训练结果完成联合学习。
如图4所示,参与联邦学习的终端设备包括:终端A、终端B、终端C、终端D和终端E。在第N轮训练中,终端A、终端B、终端C、终端D和终端E向应用服务器上报训练资源,应用服务器根据各终端设备上报的训练资源进行设备选择,选择终端A、终端C和终端D参与第N轮的训练,且终端A、终端C和终端D在完成训练后,将训练结果上报至应用服务器,应用服务器进行第N轮的联合学习。在第N+1轮训练中,终端A、终端B、终端C、终端D和终端E向应用服务器上报训练资源,应用服务器据各终端设备上报的训练资源进行设备选择,选择终端A、终端B、终端C和终端E参与第N+1轮的训练,且终端A、终端B、终端C和终端E在完成训练后,将训练结果上报至应用服务器,应用服务器进行第N+1轮的联合学习。
联邦学习有非常多的好处,包括:
-用户数据本地存储不暴露,有效保护用户隐私;
-算力分担到多个节点,加速训练进程;
-多节点数据集联合,打破数据孤岛问题;
联邦学习需要应用服务器调集多个终端设备开展,会消耗通信资源,如果让联邦学习的应用服务器无限制的调用多终端设备的无线资源,势必会影响到其他终端设备或其他业务的正常进行。因此,需要一种有效的管控方式,能够满足联邦学习对于带宽(速率)进行按需限制并且支持多终端设备上报的动态调度。当前通信网络不具备如下功能:
1.多终端设备与应用服务器共同进行某项业务(如联邦学习)的情况下,群组无线资源(如群组的聚合比特速率)的控制;
2.多终端设备与应用服务器共同进行某项业务(如联邦学习)的情况下,限制群组速率的有效办法。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
本申请实施例提供的无线通信方法,应用于第一网络设备,如图5所示,包括:
S501、第一网络设备测量第一群组的第一速率,所述第一群组包括参与第一群组业务的至少两个终端设备,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括所述至少两个终端设备的第一连接,所述第一连接用于传输所述第一群组业务的数据。
本申请实施例中,第一群组为参与第一群组业务的终端设备构成的群组,第一群组业务可为但不限于联邦学习。
对于第一群组的任一终端设备,可包括有多个连接,传输第一群组业务的数据的连接为第一连接,且部分或全部连接为第一连接。在一示例中,对于第一群组的终端设备A,包括有连接A1、连接A2、连接A3和连接A4,且连接A1和连接A2用于传输第一群组业务的数据,则连接A1和连接A2属于第一连接。
本申请实施例中,第一群组所包括的终端设备中各终端设备的第一连接的速率之和,为第一速率。
在一示例中,第一群组包括终端设备A、终端设备B、终端设备C,且终端设备A的第一连接包括:连接A1和连接A2,终端设备B的第一连接包括连接B2,终端设备C的第一连接包括C3,则第一群组的第一速率为连接A1、连接A2、连接B2和连接C3的速率之和。
第一网络设备测量第一群组中各终端设备的第一连接的速率,将第一连接的测量结果相加,得到第一速率的测量值,即实时的第一速率。可选地,第一网络设备可在一时刻测量第一群组中所有终端设备的第一连接的速率,将测量的所有第一连接的速率相加,得到第一群组的第一速率的测量值。可选地,第一网络设备可在一段时间内(比如一个100ms的时间窗)测量到的聚合比特速率进行平均,得到第一群组的第一速率的测量值。可选地,第一网络设备可在一段时间内(比如一个100ms的时间窗)测量第一群组中所有终端设备的第一连接的速率,得到各第一连接在该段时间内的平均速率,并将所有第一连接在该段时间内的平均速率相加,得到第一群组的第一速率的测量值。
这里,第一群组的第一速率可理解为第一群组的聚合比特速率,第一群组的第一速率的测量值可理解为第一群组的实时的聚合比特速率。
本申请实施例中,第一连接用于传输第一群组业务的数据。在测量第一速率时,第一连接可进行第一群组业务的数据的传输,也可未进行第一群组业务的数据的传输。
在一示例中,第一群组包括终端设备A、终端设备B、终端设备C,且终端设备A的第一连接包括:连接A1和连接A2,终端设备B的第一连接包括连接B2,终端设备C的第一连接包括C3,在时刻t1,终端设备A的连接A1、连接A2未传输数据,当第一网络设备在时刻t1测量第一速率,则测量连接A1、连接A2、连接B2和连接C3的速率之和。
在又一示例中,以第一群组业务的联邦学习为例,参与联邦学习的终端设备包括100个终端设备,即第一群组包括100个终端设备,在每轮参与训练的终端设备包括100个终端设备中的10个终端设备,这10个终端设备向应用服务器上报训练结果。当第一网络设备测量第一速率时,对第一群组所包括的100个终端设备的第一连接的速率进行测量,得到第一速率的测量值。
本申请实施例中,第一速率的测量值可用于对第一速率进行控制。第一网络设备得到第一速率的测量值后,可根据第一速率的测量值对第一速率进行控制。可选地,第一速率的测量值满足调整的条件,则第一网络设备对第一速率进行调整。可选地,第一速率的测量值不满足调整的条件,则第一网络设备不对第一速率进行调整。
本申请实施例中,对第一速率的调整的目标可包括:降低第一速率,即第一速率测量值用于判断是否降低第一速率,以对第一速率进行限制。
第一网络设备对第一速率进行调整后,可继续测量调整后第一速率,当再次测量的第一速率的测量值满足调整条件的情况下,继续对第一速率进行调整,直到满足以下条件至少之一,则停止对第一速率进行调整:第一速率的测量值不满足调整条件,调整次数达到调整次数阈值。
本申请实施例中,对第一群组的第一速率进行调整后,调整后的第一速率不满足调整的条件,可认为第一速率满足停止调整的条件,则第一网络设备停止对第一速率的调整。
本申请实施例中,对第一网络设备停止调整第一速率的条件不进行任何限定。
本申请实施例中,第一网络设备可为第一基站或UPF。
在第一群组的至少两个终端设备分布于多个基站的覆盖下的情况下,第一基站为多个基站中任一基站。
在第一网络设备为第一基站,且第一群组的至少两个终端设备分布于多个基站的覆盖下的情况 下,第一基站测量自身服务的一个或多个第一连接的速率,并通过与其他基站之间的接口获取其他基站服务的第一连接的速率的测量值,得到第一速率的测量值。
在一示例中,第一群组包括终端设备A、终端设备B和终端设备C,且终端设备A分布于基站A下,终端设备B和终端设备C分布于基站B下,终端设备A的第一连接包括:连接A1和连接A2,终端设备B的第一连接包括连接B2,终端设备C的第一连接包括C3,基站A测量连接A1和连接A2的速率,得到连接A1和连接A2的速率的测量值,基站B测量连接B2和连接C3的速率,得到连接B2和连接C3的速率的测量值,基站A通过与基站B的交互,接收连接B2和连接C3的速率的测量值,从而基于测量的连接A1和连接A2的速率的测量值,以及接收的连接B2和连接C3的速率的测量值,得到第一群组的第一速率。
在第一网络设备为UPF的情况下,UPF服务于第一群组中的至少两个终端设备。此时,UPF能够对第一群组的至少两个终端设备的第一连接进行测量和控制。
在一些实施例中,第一连接可为PDU会话或服务质量(Quality of Service,QoS)流(Flow)。
若第一连接为PDU会话,则第一网络设备以PDU会话为粒度对第一群组的第一速率进行测量和控制。
若第一连接为QoS流,则第一网络设备以QoS流为粒度对第一群组的第一速率进行测量和控制。
本申请实施例提供的无线通信方法,通过对同一个群组中各终端设备进行群组业务的连接的速率进行测量,从而对参与群组业务的多个终端设备的速率进行管控。
在一些实施例中,所述第一连接配置有保障比特速率(Guaranteed Bit Rate,GBR);或者,所述第一连接未配置有GBR。
本申请实施例中,当第一连接为QoS流,第一连接配置的GBR可理解为保障流比特速率(Guaranteed Flow Bit Rate,GFBR)。
本申请实施例中,第一群组对应的多个第一连接中,可全部配置有GBR,也可全部未配置有GBR,还可部分配置有GBR部分未配置有GBR。
本申请实施例中,第一群组的终端设备通过第一连接与核心网建立连接,并通过配置有GBR的第一连接进行第一群组业务的数据的传输,也可通过未配置有GBR的第一连接进行第一群组业务的数据的传输。
在一些实施例中,所述至少两个第一连接的GBR总和大于所述第一群组的聚合最大比特速率(Aggregate Maximum Bit Rate,AMBR)。
这里,第一群组对应的多个第一连接中,可部分或全部第一连接配置有GBR。配置有GBR的第一连接的GBR的总和大于第一群组的AMBR。
在一示例中,第一群组的AMBR的值为20Mbps,第一群组包括的10个终端设备的第一连接的GBR的总和可大于20Mbps。比如:40Mbps、50Mbps等。其中,第一群组包括的10个终端设备的第一连接可全部配置有GBR,也可部分配置有GBR。
在实际应用中,第一群组中的所有终端设备可参与一个群组业务,也可参与多个群组业务,在第一群组中的所有终端设备参与一个群组业务即第一群组业务的情况下,第一群组对应一个ABMR;在第一群组中的所有终端设备参与多个群组业务的情况下,第一群组对应有多个AMBR,且各AMBR与各群组业务相对应,即一个群组业务对应一个AMBR。
在第一群组所包括的多个终端设备可同时参与多个群组业务的情况下,一个群组业务对应一个AMBR,则针对传输第一群组业务的第一连接的GBR的总和大于第一群组业务对应的AMBR,其中,第一群组业务为参与的多个群组业务中任一群组业务。
在一示例中,第一群组中包括:10个终端设备,且这10个终端设备同时参与群组业务1、群组业务2、群组业务3这三个群组业务,则第一群组对应有AMBR1、AMBR2、AMBR3三个AMBR,AMBR1、AMBR2、AMBR3分别为对应群组业务1、群组业务2、群组业务3的AMBR,则10个终端传输群组业务1的第一连接的GBR的总和大于AMBR1;10个终端传输群组业务2的第一连接的GBR的总和大于AMBR2,10个终端传输群组业务3的第一连接的GBR的总和大于AMBR3。
本申请实施例中,第一群组对应的多个第一连接的GBR总和大于第一群组的AMBR,使得第一网络设备有足够的空间来调整第一速率。
在一些实施例中,所述第一速率调整的条件包括:所述第一速率的测量值大于第一速率门限。
此时,当第一速率的测量值大于第一速率门限,则确定第一速率满足调整条件,第一网络设备降低第一速率。
在一些实施例中,所述第一速率停止调整的条件包括:所述第一速率的测量值小于或等于第一 速率门限。
这里,第一速率门限用于结合第一速率的测量值判断是否对第一速率进行调整。在第一群组中多个终端设备参与多个群组业务的情况下,一个群组业务对应一个速率门限,判断是否对第一速率进行调整所使用的第一速率门限为第一群组业务对应的速率门限。
第一网络设备测量的第一速率的测量值大于第一速率门限的情况下,对第一速率进行调整,并在对第一速率进行调整后,继续测量调整后的第一速率。当再次测量的第一速率的测量值小于或等于第一速率门限的情况下,则停止对第一速率的测量,当再次测量的第一速率的测量值仍然大于第一速率门限的情况下,继续对第一速率进行调整,直到调整后的第一速率的测量值小于或等于第一速率门限。
以第一速率门限为50Mbps为例,当第一网络设备第一次测量得到第一速率的测量值为68Mbps的情况下,则对第一速率进行第一次调整;第一网络设备进行第一速率的第二次测量,得到第一次调整后的第一速率的测量值为65Mbps,此时,第一网络设备对第一速率进行第二次调整;第一网络设备进行第一速率的第三次测量,得到第二次调整后的第一速率的测量值为53Mbps,此时,第一网络设备对第一速率进行第三次调整;第一网络设备进行第一速率的第四次测量,得到第三次调整后的第一速率的测量值为49Mbps,则停止对第一速率的调整。
在一些实施例中,所述第一速率的调整方式包括以下至少之一:
调整方式1、对至少一个所述第一连接限速;
调整方式2、对至少一个所述第一连接对应的数据无线承载(Data RadioBearer,DRB)限速;
调整方式3、去激活至少一个所述第一连接;
调整方式4、去激活至少一个所述第一连接对应的DRB;
调整方式5、删除至少一个所述第一连接;
调整方式6、删除至少一个所述第一连接对应的DRB。
在调整方式1中,第一网络设备限制一个或多个第一连接的速率。其中,可通过第一连接的QoS参数的调整、或降低第一连接的速率等方式限制第一连接的速率。
第一网络设备可以第一连接或终端设备为粒度对第一连接进行限速。
以第一连接为粒度的情况下,对第一群组对应的多个第一连接中的一个或多个第一连接限速。
在一示例中,第一群组包括:终端设备A、终端设备B和终端设备C,第一群组对应的至少两个第一连接包括:连接A1、连接A2、连接B2和连接C3,其中,连接A1、连接A2为终端设备A的第一连接,连接B2为终端设备B的第一连接,连接C3为终端设备C的第二连接,第一网络设备在调整第一速率时,可通过对连接A1进行限速,来降低第一速率。
以终端设备为粒度的情况下,对第一群组中的一个或多个终端设备的第一连接限速。
在一示例中,第一群组包括:终端设备A、终端设备B和终端设备C,第一群组对应的至少两个第一连接包括:连接A1、连接A2、连接B2和连接C3,其中,连接A1、连接A2为终端设备A的第一连接,连接B2为终端设备B的第一连接,连接C3为终端设备C的第一连接,第一网络设备在调整第一速率时,可通过对终端设备A的第一连接即连接A1和连接A2进行限速,来降低第一速率。
在调整方式2中,第一网络设备可降低一个或多个第一连接对应的DRB的速率。
第一网络设备可以第一连接或终端设备为粒度对第一连接对应的DRB限速。
以第一连接为粒度的情况下,对第一群组对应的多个第一连接中的一个或多个第一连接对应的DRB限速。
以终端设备为粒度的情况下,对第一群组中的一个或多个终端设备的第一连接对应的DRB限速。
在调整方式3中,第一网络设备暂时性的使一个或多个第一连接无法进行数据的传输,但第一连接仍然存在,在一段时间后,第一连接可被激活,以恢复进行数据的传输。
第一网络设备可以第一连接或终端设备为粒度去激活第一连接。
以第一连接为粒度的情况下,去激活第一群组对应的多个第一连接中的一个或多个第一连接。
以终端设备为粒度的情况下,去激活第一群组中的一个或多个终端设备的第一连接。
这里,去激活的第一连接可在第一时长后被激活,其中,去激活的第一连接的激活可基于定时器控制,也可由核心网设备控制。
在调整方式4中,第一网络设备暂时性的使一个或多个第一连接对应的DRB无法进行数据的传输,但第一连接对应的DRB仍然存在,在一段时间后,第一连接的DRB可被激活,以恢复进行数据的传输。
第一网络设备可以第一连接或终端设备为粒度去激活第一连接对应的DRB。
去激活的第一连接对应的DRB可在第二时长后被激活,其中,去激活的第一连接对应的DRB的被激活可基于定时器控制,也可由核心网设备控制。
以第一连接为粒度的情况下,去激活第一群组对应的多个第一连接中的一个或多个第一连接对应的DRB。
以终端设备为粒度的情况下,去激活第一群组中的一个或多个终端设备的第一连接对应的DRB。
在调整方式5中,第一网络设备将一个或多个第一连接删除,被删除的第一连接则不存在。
第一网络设备可以第一连接或终端设备为粒度删除第一连接。
以第一连接为粒度的情况下,删除第一群组对应的多个第一连接中的一个或多个第一连接。
以终端设备为粒度的情况下,删除第一群组的一个或多个终端设备的第一连接。
在调整方式6中,第一网络设备将一个或多个第一连接的DRB删除,被删除的DRB则不存在。
第一网络设备可以第一连接或终端设备为粒度删除第一连接对应的DRB。
以第一连接为粒度的情况下,删除第一群组对应的多个第一连接中的一个或多个第一连接对应的DRB。
以终端设备为粒度的情况下,删除第一群组的一个或多个终端设备的第一连接对应的DRB。
可选地,调整方式1、调整方式3、调整方式5可应用于UPF进行第一速率的调整。
可选地,调整方式2、调整方式4、调整方式6可应用于第一基站进行第一速率的调整。
在第一网络设备为UPF的情况下,UPF可在本地对降低第一速率,也可直接指示第二基站或通过第二网络设备指示第二基站降低第一速率。
以第一网络设备为UPF为例,UPF对至少一个所述第一连接进行限速。
此时,UPF在本地对至少一个第一连接限速,以降低第一速率,UPF调整第一速率所采用的调整方式为调整方式1。
以第一网络设备为UPF为例,UPF向第二基站发送第一指示信息,所述第一指示信息用于指示以下至少之一:
对所述第二基站服务的至少一个第一连接限速;
去激活所述第二基站服务的至少一个第一连接;
删除所述第二基站服务的至少一个第一连接。
此时,UPF直接指示第二基站降低第一速率。UPF调整第一速率所采用的调整方式可包括调整方式1、调整方式3和调整方式5中的一种或多种。
如图6所示,本申请实施例提供的无线通信方法可包括:
S601、UPF向第二基站发送第一指示信息,
S602、第二基站基于接收到的第一指示信息降低第一速率。
这里,第一指示信息指示需要调整的第一连接,并指示对第一连接调整的调整类型,其中,调整类型包括限速、去激活和删除中的一个或多个。这里,在需要调整的第一连接包括多个的情况下,不同的第一连接的调整类型可相同也可不同。
其中,UPF确定对第一速率进行调整后,确定需要调整的第一连接,并确定调整类型,基于标识需要调整的第一连接的标识和指示调整类型的类型标识生成第一指示信息,并将第一指示信息发送至第二基站。第二基站基于接收的第一指示信息进行第一连接的限速或去激活或删除。
在实际应用中,在需要调整的第一连接分布于多个第二基站的情况下,UPF可向各第二基站发送第一指示信息,各第二基站接收到第一指示信息后,对第一指示信息指示的第一连接中自身服务的第一连接进行调整;UPF也可确定需要调整的各第一连接对应的第二基站,且向各第二基站发送的第一指示信息仅指示各第二基站服务的第一连接。
在一示例中,需要调整的第一连接包括:连接1、连接2、连接3,且基站1服务连接1,基站2服务连接2和连接3,UPF将指示对连接1、连接2、连接3进行限速的第一指示信息分别发送至基站1和基站2,基站1接收到第一指示信息后,对连接1进行限速,基站2接收到第一指示信息后,对连接2和连接3进行限速。
在一示例中,需要调整的第一连接包括:连接1、连接2、连接3,且基站1服务连接1,基站2服务连接2和连接3,UPF将指示对连接1进行限速的第一指示信息A发送至基站1,并将指示对连接2、连接3进行限速的第一指示信息B发送至基站2,基站1接收到第一指示信息A后,对连接1进行限速,基站2接收到第一指示信息B后,对连接2和连接3进行限速。
以第一网络设备为UPF为例,所述UPF向第二网络设备发送第一信息,所述第一信息用于指示 所述第一速率的测量值。
此时,UPF通过第二网络设备指示第二基站降低第一速率,UPF调整第一速率所采用的调整方式可包括调整方式1、调整方式3和调整方式5中的一种或多种。
UPF在确定第一速率的测量值大于第一速率门限的情况下,向第二网络设备发送第一信息,以通知第二网络设备降低第一速率。可选地,第二网络设备为核心网控制面网元,如SMF。
第二网络设备接收到第一信息的情况下,可确定需要降低第一速率,则指示第二基站降低第一速率。
在一些实施例中,所述第一信息包括以下至少之一:
所述第一速率的测量值;
第二指示信息,所述第二指示信息用于指示所述第一速率的测量值大于第一速率门限。
在第一信息为第一速率的测量值的情况下,第二网络设备可直接指示第二基站降低第一速率,也可将接收到的第一速率的测量值和第一速率门限进行比较,在确认第一速率的测量值大于第一速率门限的情况下,指示第二基站降低第一速率。
在一些实施例中,所述第一信息用于确定第二网络设备发送至第二基站的第三指示信息,所述第三指示信息用于指示以下至少之一:
对所述第二基站服务的至少一个第一连接限速;
去激活所述第二基站服务的至少一个第一连接;
删除所述第二基站服务的至少一个第一连接。
第二网络设备接收到第一信息后,基于第一信息确定第三指示信息,并将第三指示信息发送至第二基站,第二基站基于接收到的第三指示信息降低第一速率。
如图7所示,本申请实施例提供的无线通信方法可包括:
S701、UPF向SMF发送第一信息。
S702、SMF向第二基站发送第三指示信息。
S703、第二基站基于接收到的第三指示信息降低第一速率。
第三指示信息指示需要调整的第一连接,并指示对第一连接调整的调整类型,其中,调整类型包括限速、去激活和删除中的一种或多种。这里,在需要调整的第一连接包括多个的情况下,不同的第一连接的调整类型可相同也可不同。
第二网络设备确定对第一速率进行调整后,确定需要调整的第一连接,并确定调整类型,基于标识需要调整的第一连接的标识和指示调整类型的类型标识生成第一指示信息,并将第一指示信息发送至第二基站。第二基站基于接收的第一指示信息进行第一连接的限速或去激活或删除。
在实际应用中,在需要调整的第一连接分布于多个第二基站的情况下,第二网络设备可向各第二基站发送第一指示信息,各第二基站接收到第一指示信息后,对第一指示信息指示的第一连接中自身服务的第一连接进行调整;第二网络设备也可确定需要调整的各第一连接对应的第二基站,并向各第二基站发送的第一指示信息仅指示各第二基站服务的第一连接。
在第二基站接收到的第一指示信息指示的调整类型为去激活的情况下,第二基站可在一段时间后激活被被去激活的第一连接。
在一示例中,第二基站在去激活至少一个第一连接的情况下,可启动定时器,且在定时器超时时,将去激活的第一连接激活。
在一示例中,第二网络设备向第二基站发送激活指示,基站接收到激活指示的情况下,将去激活的第一连接激活。
在第一网络设备为第一基站的情况下,第一基站对自身服务的至少一个连接的DRB进行限速、去激活和删除中的一种或多种调整。
在第一群组的终端设备分布在多个基站的情况下,第一基站可仅对自身服务的第一连接进行调整,第一群组对应的第一连接中,第一基站服务的第一连接之外的其他第一连接可由UPF调整,也可有服务其他第一连接的第一基站进行调整。
在一些实施例中,第一速率门限为第一群组的AMBR。
在第一群组包括的终端设备参与一个群组业务的情况下,第一速率门限为第一群组的AMBR。
在第一群组包括的终端设备参与多个群组业务的情况下,一个群组业务对应一个AMBR,第一速率门下为第一群组对应的多个AMBR中第一群组业务对应的AMBR。
在一些实施例中,所述第一连接对应独立的DRB。
本申请实施例中,不同的第一连接分别创建有单独的DRB,从而在第一基站通过对DRB的限 速、去激活或删除来降低第一速率时,实现不同的第一连接之间相互不干扰。
本申请实施例提供的无线通信方法,通过对同一个群组中各终端设备进行群组业务的连接的速率进行测量,从而对参与同一群组业务的多个终端设备的速率进行管控,并通过对群组业务的连接的速率的调整,实现对参与群组业务的多个终端设备的速率的动态调度。
本申请实施例提供一种无线通信方法,应用于第一终端设备,如图8所示,包括:
S801、第一终端设备向第二网络设备发送第一消息,所述第一消息中携带第四指示信息,所述第四指示信息用于指示所述第一终端设备加入第一群组和/或参与第一群组业务,所述第一群组包括参与所述第一群组业务的至少两个终端设备。
第一终端设备确定加入第一群组和/或参与第一群组业务时,向第二网络设备发送第一消息,并在第一消息中携带第四指示信息,以指示第二网络设备加入第一群组或参与第一群组业务。其中,第二网络设备为核心网控制面网元,比如:SMF。
可选地,第四指示信息指示第一终端设备参与第一群组业务,第二网络设备基于第四指示信息确定第一终端设备加入第一群组业务对应的第一群组。
可选地,第四指示信息指示第一终端设备加入第一群组,第二网络设备基于第四指示信息确定第一终端设备加入第一群组。
可选地,第四指示信息指示第一终端设备加入第一群组,且参与第一群组业务,第二网络设备基于第四指示信息确定第一终端设备加入第一群组。
在一些实施例中,第一消息用于建立或更新PDU会话。
在第一消息用于建立或更新PDU会话的情况下,第一消息可为第一终端设备发送至第二网络设备的PDU会话建立/修改请求。此时,第一终端设备在的PDU会话建立/修改请求中添加第四指示信息,并将添加第四指示信息的PDU会话建立/修改请求发送至第二网络设备。
这里,第一消息用于建立或更新PDU会话的情况下,第一终端设备在PDU会话建立或修改过程中向核心网通知加入第一群组。
在一些实施例中,所述第四指示信息至少用于所述第二网络设备确定第三网络设备。
第二网络设备接收到第四指示信息后,基于第四指示信息进行第三网络设备的选取。可选地,第三网络设备为核心网用户面网元,比如:UPF。
在一些实施例中,所述第三网络设备服务于所述第一群组的至少两个终端设备。
这里,第二网络设备基于第四指示信息确定第一终端设备所加入的第一群组,并选取能够服务于第一群组的所有终端设备的第三网络设备。
在一些实施例中,所述第四指示信息至少用于确定第二信息,所述第二信息至少用于第一速率的管控,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括所述至少两个终端设备的第一连接,所述第一连接用于传输所述第一群组业务的数据。
第二网络设备基于第四指示信息确定第二信息后,可将第二信息携带在第二消息中发送至第三网络设备,第三网络设备基于接收到的第二信息进行第一终端设备的第一连接的建立。
这里,第二网络设备可通过第二信息向第三网络设备通知以下内容:第一终端设备所加入的第一群组、第一终端设备需要建立的第一连接即第一终端设备的参与第一速率管控的连接,以及基于第一终端设备的加入所更新的AMBR。
这里,在第四指示信息指示第一群组业务,且第一群组中的终端设备参与多个群组业务的情况下,一个群组业务对应一个AMBR,此时,第二信息中的AMBR为第一群组对应的多个AMBR中,第一群组业务对应的ABMR。
在一些实施例中,所述第二信息包括以下至少之一:
所述第一终端设备的QoS参数;
所述第一终端设备的QoS规则;
第五指示信息,所述第五指示信息用于指示所述第一终端设备的第一连接;
第六指示信息,所述第六指示信息用于指示所述第一群组的AMBR。
QoS参数可包括:QoS等级标识(QoS Class Identifier,QCI)、分配保持优先级(Allocation/Retention Priority,ARP)等参数。
QoS规则包含:关联的QoS流的标识、QoS规则的优先级等。
第五指示信息用于指示第一终端设备的用于进行第一群组业务的数据传输的第一连接,这里,在第二网络设备将第五指示信息发送至第三网络设备后,第三网络设备基于第五指示信息为第一终 端设备建立第一连接。其中,第一终端设备对应一个或多个第一连接。
所述第六指示信息所指示所述第一群组的AMBR为第一终端设备加入第一群组后的AMBR。
这里,第六指示信息指示的AMBR可作为图5所示的无线通信方法中的第一速率门限用于UPF或第一基站对第一群组的第一速率进行管控。
在一些实施例中,所述第六指示信息包括以下至少之一:
所述AMBR、
用于指示所述AMBR的第一标识;
所述第一群组业务的第二标识。
第六指示信息用于确定第一群组的AMBR的取值。
在第六指示信息包括AMBR的情况下,第六指示信息直接指示AMBR。
在第六指示信息包括第一标识的情况下,第三网络设备接收第一标识后,基于第一标识查找第一标识所标识的AMBR。
在第六指示信息包括第二标识的情况下,第三网络设备接收第二标识,基于第二标识确定第一群组业务对应的AMBR。
在一些实施例中,所述第一连接为PDU会话或服务质量QoS流。
在一些实施例中,所述第一连接对应独立的DRB。
本申请实施例中,对于第一连接,基站可为各第一连接单独建立DRB,从而在实施图5所示的无线通信方法过程中,方便基于DRB对第一速率进行控制,使得不同的第一连接相互不影响。
本申请实施例中,第一终端设备对应多个第一连接的情况下,不同的第一连接的QoS参数可相同也可不同。对于QoS参数相同的第一连接,也可分别建立独立的DRB。
本申请实施例中,待加入第一群组中的各终端设备都可根据图7所示的无线通信方法加入到第一群组中,并在核心网完成第一连接的建立和AMBR的配置,核心网完成第一连接的建立和AMBR的配置后,第一网络设备对第一群组的第一速率进行测量,并基于第一速率的测量结果和第一群组的AMBR对第一速率进行调整。
本申请实施例提供一种无线通信方法,应用于第二网络设备,如图9所示,包括:
S901、第二网络设备接收第一终端设备发送的第一消息,所述第一消息中携带第四指示信息,所述第四指示信息用于指示所述第一终端设备加入第一群组和/或参与第一群组业务,所述第一群组包括参与所述第一群组业务的至少两个终端设备。
第二网络设备为核心网控制面网元,比如:SMF。
第一终端设备确定加入第一群组和/或参与第一群组业务时,向第二网络设备发送第一消息,并在第一消息中携带第四指示信息,以指示第二网络设备加入第一群组或参与第一群组业务。
可选地,第四指示信息指示第一终端设备参与第一群组业务,第二网络设备基于第四指示信息确定第一终端设备加入第一群组业务对应的第一群组。
可选地,第四指示信息指示第一终端设备加入第一群组,第二网络设备基于第四指示信息确定第一终端设备加入第一群组。
可选地,第四指示信息指示第一终端设备加入第一群组,且参与第一群组业务,第二网络设备基于第四指示信息确定第一终端设备加入第一群组。
在一些实施例中,所述第一消息用于建立或更新PDU会话。
在第一消息用于建立或更新PDU会话的情况下,第一消息可为第一终端设备发送至第二网络设备的PDU会话建立/修改请求。此时,第一终端设备在的PDU会话建立/修改请求中添加第四指示信息,并将添加第四指示信息的PDU会话建立/修改请求发送至第二网络设备。
这里,第一消息用于建立或更新PDU会话的情况下,第一终端设备在PDU会话建立或修改过程中向核心网通知加入第一群组。
在一些实施例中,所述第四指示信息用于所述第二网络设备确定第三网络设备。
第二网络设备接收到第四指示信息后,基于第四指示信息进行第三网络设备的选取。可选地,第三网络设备为核心网用户面网元,比如:UPF。
在一些实施例中,所述第三网络设备服务于所述第一群组的至少两个终端设备。
这里,第二网络设备基于第四指示信息确定第一终端设备所加入的第一群组,并选取能够服务于第一群组的所有终端设备的第三网络设备。
在一些实施例中,所述第四指示信息还用于确定第二信息,所述第二信息至少用于第一速率的 管控,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括所述至少两个终端设备的第一连接,所述第一连接用于传输所述第一群组业务的数据。
在一些实施例中,所述第二网络设备向第三网络设备发送第二消息,所述第二消息包括第二信息,所述第二信息至少用于第一速率的控制,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括所述至少两个终端设备的第一连接,所述第一连接用于传输所述第一群组业务的数据。
第二网络设备基于第四指示信息确定第二信息后,可将第二信息携带在第二消息中发送至第三网络设备,第三网络设备基于接收到的第二信息进行第一终端设备的第一连接的建立。
这里,第二网络设备可通过第二信息向第三网络设备通知以下内容:第一终端设备所加入的第一群组、第一终端需要建立的第一连接以及基于第一终端设备的加入所更新的AMBR。
这里,在第四指示信息指示第一群组业务,且第一群组中的终端设备参与多个群组业务的情况下,一个群组业务对应一个AMBR,此时,第二信息中的AMBR为第一群组对应的多个AMBR中,第一群组业务对应的ABMR。
在一示例中,本申请实施例提供的无线通信方法,如图10所示,包括:
S1001、第一终端设备向第二网络设备发送第一消息。
S1002、第二网络设备向第三网络设备发送第二消息。
在一些实施例中,所述第二消息用于建立或更新PDU会话。
在一些实施例中,所述第二信息包括以下至少之一:
所述第一终端设备的服务质量QoS参数;
所述第一终端设备的QoS规则;
第五指示信息,所述第五指示信息用于指示所述第一终端设备的第一连接;
第六指示信息,所述第六指示信息用于指示所述第一群组的AMBR。
QoS参数可包括:QCI、ARP等参数。
QoS规则包含:关联的QoS流的标识、QoS规则的优先级等。
第五指示信息用于指示第一终端设备的用于进行第一群组业务的数据传输的第一连接,这里,在第二网络设备将第五指示信息发送至第三网络设备后,第三网络设备基于第五指示信息为第一终端设备建立第一连接。其中,第一终端设备对应一个或多个第一连接。
当第三网络设备为UPF,且UPF对第一速率进行测量的情况下,第三网络设备可基于第一群组中的各终端设备发送的第五指示信息对第一群组中各第一终端设备的第一连接的速率进行测量,从而确定第一群组的第一速率的测量值。
所述第六指示信息所指示所述第一群组的AMBR为第一终端设备加入第一群组后的AMBR。
在第三网络设备为UPF,且UPF对第一速率进行控制的情况下,这里,第三网络设备接收的第六指示信息指示的AMBR可作为图5所示的无线通信方法中的第一速率门限,以对第一群组的第一速率进行控制。
在一些实施例中,所述第二网络设备向第一基站发送第三消息,所述第三消息包括第三信息,所述第三信息至少用于QoS控制。
在一示例中,本申请实施例提供的无线通信方法,如图11所示,包括:
S1001、第一终端设备向第二网络设备发送第一消息。
S1002、第二网络设备向第三网络设备发送第二消息。
S1003、第三网络设备向第一基站发送第三消息。
在一些实施例中,所述第三信息至少包括以下至少之一:
所述第一终端设备的服务质量QoS参数;
所述第一终端设备的QoS规则。
在一些实施例中,所述第三信息还用于指示所述第一基站对第一速率进行控制,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括所述至少两个终端设备的第一连接,所述第一连接用于传输所述第一群组业务的数据。
这里,在第三信息还用于指示第一基站对第一速率进行控制的情况下,第一基站接收到第三信息后,可作为第一网络设备基于第三信息实施图5所示的无线通信方法。
在一些实施例中,所述第三信息至少包括以下至少之一:
第五指示信息,所述第五指示信息用于指示所述第一终端设备的第一连接;
第六指示信息,所述第六指示信息用于指示所述第一群组的AMBR;
第七指示信息,所述第七指示信息用于指示所述第一基站对所述第一速率进行控制。
当第一基站对第一速率进行测量的情况下,第一基站可基于第一群组中的各终端设备发送的第五指示信息对第一群组中各第一终端设备的第一连接的速率进行测量,从而确定第一群组的第一速率的测量值。
所述第六指示信息所指示所述第一群组的AMBR为第一终端设备加入第一群组后的AMBR。
在第一基站对第一速率进行控制的情况下,这里,第一基站备接收的第六指示信息指示的AMBR可作为图5所示的无线通信方法中的第一速率门限,以对第一群组的第一速率进行管控。
在一些实施例中,所述第六指示信息包括以下至少之一:
所述AMBR、
用于指示所述AMBR的第一标识;
所述第一群组业务的第二标识。
第六指示信息用于确定第一群组的AMBR的取值。
在第六指示信息包括AMBR的情况下,第六指示信息直接指示AMBR。
在第六指示信息包括第一标识的情况下,第三网络设备接收第一标识后,基于第一标识查找第一标识所标识的AMBR。
在第六指示信息包括第二标识的情况下,第三网络设备接收第二标识,基于第二标识确定第一群组业务对应的AMBR。
在一些实施例中,所述第一连接为PDU会话或服务质量QoS流。
在一些实施例中,所述第一连接对应独立的数据无线承载DRB。
本申请实施例中,对于第一连接,基站可为各第一连接单独建立DRB,从而在实施图5所示的无线通信方法过程中,方便基于DRB对第一速率进行控制,使得不同的第一连接相互不影响。
本申请实施例中,第一终端设备对应多个第一连接的情况下,不同的第一连接的QoS参数可相同也可不同。对于QoS参数相同的第一连接,也可分别建立独立的DRB。
本申请实施例中,待加入第一群组中的各终端设备都可根据图7所示的无线通信方法加入到第一群组中,并在核心网完成第一连接的建立和AMBR的配置,核心网完成第一连接的建立和AMBR的配置后,第一网络设备对第一群组的第一速率进行测量,并基于第一速率的测量结果和第一群组的AMBR对第一速率进行调整。
本申请实施例提供一种无线通信方法,应用于第三网络设备,如图12所示,包括:
S1201、第三网络设备接收第二网络设备发送的第二消息,所述第二消息包括第二信息,所述第二信息至少用于第一速率的控制,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括第一群组的至少两个终端设备的第一连接,所述第一群组包括参与第一群组业务的至少两个终端设备,所述第一连接用于传输所述第一群组业务的数据。
可选地,第三网络设备为核心网用户面网元,比如:UPF。
可选地,第二网络设备为核心网控制面网元,比如:SMF。
这里,第二网络设备确定第二信息后,将第二信息携带在第二消息中发送至第三网络设备,第三网络设备接收到携带第二信息的第二消息。
第一终端设备确定加入第一群组和/或参与第一群组业务时,向第二网络设备发送第一消息,并在第一消息中携带第四指示信息,以通知第二网络设备第一终端设备需加入第一群组。第二网络设备接收到第一消息后,基于第四指示信息生成第二信息,并将第二信息添加在第二消息中,将第二消息发送至第三网络设备。第三网络设备接收到第二网络设备发送的携带第二信息的第二消息。其中,第四指示信息用于指示第一终端设备加入第一群组和/或参与第一群组业务,所述第一群组包括参与所述第一群组业务的至少两个终端设备。
这里,第二网络设备可通过第二信息向第三网络设备通知以下内容:第一终端设备所加入的第一群组、第一终端需要建立的第一连接以及基于第一终端设备的加入所更新的AMBR。
在一些实施例中,所述第二信息包括以下至少之一:
第一终端设备的QoS参数,所述第一终端设备为所述第一群组中任一终端设备;
所述第一终端设备的QoS规则;
第五指示信息,所述第五指示信息用于指示第一终端设备的第一连接;
第六指示信息,所述第六指示信息用于指示所述第一群组的AMBR。
QoS参数可包括:QCI、ARP等参数。
QoS规则包含:关联的QoS流的标识、QoS规则的优先级等。
第五指示信息用于指示第一终端设备的用于进行第一群组业务的数据传输的第一连接,这里,在第二网络设备将第五指示信息发送至第三网络设备后,第三网络设备基于第五指示信息为第一终端设备建立第一连接。其中,第一终端设备对应一个或多个第一连接。
所述第六指示信息所指示所述第一群组的AMBR为第一终端设备加入第一群组后的AMBR。
这里,第六指示信息指示的AMBR可作为图5所示的无线通信方法中的第一速率门限用于UPF或第一基站对第一群组的第一速率进行控制。
在一些实施例中,所述第六指示信息包括以下至少之一:
所述AMBR、
用于指示所述AMBR的第一标识;
所述第一群组业务的第二标识。
第六指示信息用于确定第一群组的AMBR的取值。
在第六指示信息包括AMBR的情况下,第六指示信息直接指示AMBR。
在第六指示信息包括第一标识的情况下,第三网络设备接收第一标识后,基于第一标识查找第一标识所标识的AMBR。
在第六指示信息包括第二标识的情况下,第三网络设备接收第二标识,基于第二标识确定第一群组业务对应的AMBR。
在一些实施例中,所述第二消息用于建立或更新PDU会话。
在一些实施例中,所述第一连接为PDU会话或服务质量QoS流。
在一些实施例中,所述第一连接对应独立的DRB。
本申请实施例中,对于第一连接,基站可为各第一连接单独建立DRB,从而在实施图5所示的无线通信方法过程中,方便基于DRB对第一速率进行控制,使得不同的第一连接相互不影响。
本申请实施例中,第一终端设备对应多个第一连接的情况下,不同的第一连接的QoS参数可相同也可不同。对于QoS参数相同的第一连接,也可分别建立独立的DRB。
下面,对本申请实施例提供的无线通信方法进行进一步描述。
为了执行FL的场景,应用服务器可以通过UPF与一个或多个基站相连,每个基站下都覆盖有参与FL的终端。在一示例中,如图13所示,群组包括10个终端:UE1至UE10,其中,UE1至UE3分布于RAN节点1下,UE4至UE5分布于RAN节点2下,UE6至UE10分布于RAN节点3下,UE1至UE10通过RAN节点1至RAN节点3这三个RAN节点(即基站)和UPF1301与应用服务器1302进行数据传输。UPF或者RAN侧的RAN节点对这10个终端组成的群组进行聚合比特速率的管控。为此,需要明确以下能力:
1、10个终端分别通过PDU会话的QoS flow与核心网建立连接,并可以由保障流比特率GFBR保障的QoS flow进行应用数据的传输,当然也可以通过非GFBR的QoS flow进行传输。
2、群组中的终端用于与应用服务器传输数据的QoS flow对应的GFBR总和可以大于群组AMBR的值。
比如,群组的AMBR的值为20Mbps,10个终端的QoS flow的GFBR的总值可以为50Mbps或其他大于20Mbps的值,这样做的目的是为了能够让应用层有足够的空间调整每一轮每个终端的传输速率并通过5GS进行保障。
3、UPF或RAN侧执行群组的聚合比特速率即第一速率的测量。
计算群组的实时的聚合比特速率,即便10个终端的GFBR总和可以大于群组AMBR,但是该群组10个终端与应用服务器进行数据传输的实时(或称为”瞬时”)的聚合比特速率不能大于群组的AMBR。
其中,群组的AMBR可以分上行和下行且上行和下行可以分别配置。
若RAN侧进行测量,单个RAN节点可以通过对群组中的终端的QoS flow的速率加总,得到该RAN节点下的终端的QoS flow的速率和,多个RAN节点可以通过基站间的Xn接口交互测量结果,从而对各RAN节点下的终端的QoS flow的速率进行加总,得到聚合比特速率的测量值即实时的聚合比特速率。
4、当群组的聚合比特速率的测量值超过上限(可为设定的群组AMBR)时:
-若为UPF进行控制,UPF可以对一个或多个UE的QoS flow进行速率限制以避免群组的聚合比特速率的值超过上限。此外,UPF可以通知SMF,并由SMF通知RAN侧对一个或多个终端的 QoS flow的速率进行限制或者去激活(disable)或者删除掉一个或多个终端的QoS flow,或UPF自己通知RAN侧对一个或多个终端的QoS flow的速率进行限制或者去激活(disable)或者删除掉一个或多个终端的QoS flow,以达到群组的聚合比特速率不超过上限的目的。
注:一个UE可以有多个QoS flow,其中,可以只有一个或几个QoS flow与其他UE的QoS flow传输数据时参与群组的聚合比特速率的计算。
-若为RAN侧进行控制,RAN节点可以对一个或多个QoS flow对应的DRB进行速率限制或disable或删除。
本申请实施例提供的无线通信方法可实施为但不限于以下实施例。
本申请实施例提供的无线通信方法,可如图14所示,包括:
S1401、UE向控制面网元发送PDU会话建立/修改请求。
UE在PDU会话建立/修改请求中添加第一指示即第四指示信息,并将添加第一指示的PDU会话建立/修改请求发送至控制面网元;第一指示用于指示该UE加入某个特定的群组业务(如某个FL服务),还可以指示加入哪个群组业务。
控制面网元可为SMF。
S1402、控制面网元确定用户面网元。
控制面网元收到PDU会话建立/修改请求后,根据第一指示确定用户面网元;其中,所有申请加入某一群组业务的终端都将由同一个UPF进行服务,以便可以进行群组的聚合比特速率的测量和控制。
用户面网元可为UPF。
S1403、控制面网元向用户面网元发送PDU会话请求消息。
控制面网元可以根据第一指示和/或其他参数(比如:策略与计费控制(Policy and Charging Control,PCC)规则)确定该UE的QoS参数和QoS规则/数据包检测规则(Packet Detection Rule,PDR),并且确定哪个QoS flow将参与聚合比特速率的管控(即确定对于参与聚合比特速率管控的QoS flow适用的群组AMBR或其群组AMBR标识);并将携带群组AMBR、其群组AMBR标识即第一标识和/或群组业务标识即第二标识在PDU会话建立/修改请求中发送至用户面网元,使得用户面网元执行QoS flow的建立、绑定和/或监视和控制。
S1404、控制面网元向RAN发送PDU会话请求消息。
PDU会话请求消息中可包括QoS参数、包含QoS规则的NAS消息。如果群组的聚合比特速率的监控需要RAN侧执行,则控制面网元向RAN发送PDU会话请求消息时,在PDU会话请求消息中不仅携带现有的QoS参数、包含QoS规则的NAS消息,还会携带第二指示即第五指示信息、群组AMBR、群组AMBR标识和/或群组业务标识,第二指示用于指示该终端的哪个QoS flow参与聚合比特速率的管控。基于第二指示,基站可以确定该终端对于哪个QoS flow参与群组的聚合比特速率的管控,而群组AMBR、群组AMBR标识和/或群组业务标识用于确定具体的群组AMBR取值。
S1405、RAN与UE之间建立DRB。
基站按照与终端进行交互建立DRB以服务于该UE的不同QoS flow,这里如果是参与群组AMBR监控的QoS flow,则可以单独为其建立一个DRB(即使该QoS flow的QoS参数与其他QoS flow一样),这样的目的是易于管理该DRB。
S1406、终端与应用服务器之间使用QoS flow进行群组业务的数据传输,并对群组的聚合比特速率进行控制。
由于多个UE均按照S1401至S1405建立了参与聚合比特速率的管控的QoS flow,5GS节点(UPF或RAN)基于这些QoS flow传输数据的实时速率总和即实时的聚合比特速率对聚合比特速率进行监视、并进行必要的控制(如超过最大值时采取限流等措施)。
在建立PDU会话后,本申请实施例提供的无线通信方法,如图15所示,包括:
S1501、用户面网元测量群组的聚合比特速率。
用户面网元开始进行群组的聚合比特速率监控后,测量群组的所有UE在与应用服务器传输数据的QoS flow的速率测量总和,得到群组的聚合比特速率的测量值,并检测到聚合比特速率的测量值到超过规定值时,用户面网元可以执行S1502a和S1502b。
S1502a、用户面网元将聚合比特速率的测量值上报至控制面网元。
S1502b、用户面网元将聚合比特速率的测量值上报至应用服务器。
通过S1502a和S1502b,用户面网元将聚合比特速率的测量结果(包括是否超过群组AMBR值 和/或测量到的聚合比特速率的测量值大小)上报。
为了控制群组的聚合比特速率实际值在预定范围内,用户面网元可执行S1503a或S1503c,或者,控制面网元执行S1503b。
S1503a、用户面网元限制一个或多个UE的QoS Flow的速率。
S1503b、控制面网元指示RAN去激活QoS Flow或限制QoS Flow的速率。
控制面网元指示RAN去激活一个或多个QoS Flow或限制群组的第一个或多个QoS Flow的速率。其中,RAN对群组中一个或多个UE的QoS Flow的DRB进行速率限制或去激活一个或多个QoS Flow。
其中,S1503b的disable(或称Inactivate)可以是对于QOS flow粒度或PDU会话粒度进行的,disable是暂时性的失效/去激活,不代表该数据流或会话被删除,可以通过一个定时器到期后自动恢复,也可以通过核心网网元发送使能或激活(enable/activate)来恢复。
S1503c、用户面网元指示RAN去激活QoS Flow或限制QoS Flow的速率。
这里,在S1503a、S1503b或S1503c之后,可将群组的聚合比特速率限制在上限内。
本申请实施例提供的无线通信方法,充分利用5G核心网的现有流程、架构实现群组的聚合比特速率的监视和控制;且可以对于多个UE组成的群组业务进行实际的速率管控,有助于网络资源不会被某种群租业务占用太多,易导致影响其他业务的正常使用。
本申请实施例提供的无线通信方法,具有以下技术特征:
1、可不限于5G网络,也可以应用于其他网络,比如:6G网络;
2、可适用于基于群组管理的群组业务场景;
3、可不考虑多次迭代问题,仅通过5GS网元(如UPF)持续控制一个群组下对于的多个UE的数据流的速率上限。
4、去激活机制可以脱离群组AMBR场景而单独使用,即在任何需要的情况下,均可以去激活(disacble/inactivate)相应的QoS flow/PDU会话(Session)等。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图16是本申请实施例提供的无线通信装置的结构组成示意图一,应用于第一网络设备,如图16所示,无线通信装置1600包括:
测量模块1601,配置为测量第一群组的第一速率,所述第一群组包括参与第一群组业务的至少两个终端设备,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括所述至少两个终端设备的第一连接,所述第一连接用于传输所述第一群组业务的数据。
在一些实施例中,所述第一连接配置有保障比特速率GBR;或者,
所述第一连接未配置有GBR。
在一些实施例中,所述至少两个第一连接的GBR总和大于所述第一群组的聚合最大比特速率AMBR。
在一些实施例中,所述第一速率调整的条件包括:
所述第一速率的测量值大于第一速率门限。
在一些实施例中,所述第一速率停止调整的条件包括:
所述第一速率的测量值小于或等于第一速率门限。
在一些实施例中,所述第一速率的调整方式包括以下至少之一:
对至少一个所述第一连接限速;
对至少一个所述第一连接对应的数据无线承载DRB限速;
去激活至少一个所述第一连接;
去激活至少一个所述第一连接对应的DRB;
删除至少一个所述第一连接;
删除至少所述第一连接对应的DRB。
在一些实施例中,所述第一网络设备为用户面功能网元UPF或第一基站。
在一些实施例中,在所述第一网络设备为UPF的情况下,装置1600还包括:
第一调整模块,配置为对至少一个所述第一连接限速。
在一些实施例中,在所述第一网络设备为UPF的情况下,装置1600还包括:
第二调整模块,配置为向第二基站发送第一指示信息,所述第一指示信息用于指示以下至少之一:
对所述第二基站服务的至少一个第一连接限速;
去激活所述第二基站服务的至少一个第一连接;
删除所述第二基站服务的至少一个第一连接。
在一些实施例中,在所述第一网络设备为UPF的情况下,装置1600还包括:
第三调整模块,配置为向第二网络设备发送第一信息,所述第一信息用于指示所述第一速率的测量值。
在一些实施例中,所述第一信息包括以下至少之一:
所述第一速率的测量值;
第二指示信息,所述第二指示信息用于指示所述第一速率的测量值大于第一速率门限。
在一些实施例中,所述第一信息用于确定第二网络设备发送至第二基站的第三指示信息,所述第三指示信息用于指示以下至少之一:
对所述第二基站服务的至少一个第一连接限速;
去激活所述第二基站服务的至少一个第一连接;
删除所述第二基站服务的至少一个第一连接。
在一些实施例中,所述第一速率门限为所述第一群组的AMBR。
在一些实施例中,所述第一连接为:协议数据单元PDU会话或者服务质量QoS流。
在一些实施例中,在所述第一网络设备为UPF的情况下,装置1600还包括:
第一接收模块,配置为接收第二网络设备发送的第二消息,所述第二消息包括第二信息,所述第二信息至少用于所述第一速率的控制。
在一些实施例中,所述第二信息包括以下至少之一:
第一终端设备的QoS参数,所述第一终端设备为所述第一群组中任一终端设备;
所述第一终端设备的QoS规则;
第五指示信息,所述第五指示信息用于指示第一终端设备的第一连接;
第六指示信息,所述第五指示信息用于指示所述第一群组的AMBR。
在一些实施例中,所述第六指示信息包括以下至少之一:
所述AMBR;
用于指示所述AMBR的第一标识;
所述第一群组业务的第二标识。
在一些实施例中,所述第二消息用于建立或更新PDU会话。
在一些实施例中,所述第一连接对应独立的DRB。
图17是本申请实施例提供的无线通信装置的结构组成示意图一,应用于第一终端设备,如图17所示,无线通信装置1700包括:
第一发送模块1701,配置为向第二网络设备发送第一消息,所述第一消息中携带第四指示信息,所述第四指示信息用于指示所述第一终端设备加入第一群组和/或参与第一群组业务,所述第 一群组包括参与所述第一群组业务的至少两个终端设备。
在一些实施例中,所述第一消息用于建立或更新PDU会话。
在一些实施例中,所述第四指示信息至少用于所述第二网络设备确定第三网络设备。
在一些实施例中,所述第三网络设备服务于所述第一群组的至少两个终端设备。
在一些实施例中,所述第四指示信息至少用于确定第二信息,所述第二信息至少用于第一速率的控制,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括所述至少两个终端设备的第一连接,所述第一连接用于传输所述第一群组业务的数据。
在一些实施例中,所述第二信息包括以下至少之一:
所述第一终端设备的服务质量QoS参数;
所述第一终端设备的QoS规则;
第五指示信息,所述第五指示信息用于指示所述第一终端设备的第一连接;
第六指示信息,所述第六指示信息用于指示所述第一群组的AMBR。
在一些实施例中,所述第六指示信息包括以下至少之一:
所述AMBR;
用于指示所述AMBR的第一标识;
所述第一群组业务的第二标识。
在一些实施例中,所述第一连接为PDU会话或服务质量QoS流。
在一些实施例中,所述第一连接对应独立的数据无线承载DRB。
图18是本申请实施例提供的无线通信装置的结构组成示意图,应用于第二网络设备,如图18所示,无线通信装置1800包括:
第二接收模块1801,配置为接收第一终端设备发送的第一消息,所述第一消息中携带第四指示信息,所述第四指示信息用于指示所述第一终端设备加入第一群组和/或参与第一群组业务,所述第一群组包括参与所述第一群组业务的至少两个终端设备。
在一些实施例中,所述第一消息用于建立或更新PDU会话。
在一些实施例中,所述第四指示信息用于所述第二网络设备确定第三网络设备。
在一些实施例中,所述第三网络设备服务于所述第一群组的至少两个终端设备。
在一些实施例中,所述第四指示信息还用于确定第二信息,所述第二信息至少用于第一速率的控制,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括所述至少两个终端设备的第一连接,所述第一连接用于传输所述第一群组业务的数据。
在一些实施例中,装置1800还包括:
第二发送模块,配置为向第三网络设备发送第二消息,所述第二消息包括第二信息,所述第二信息至少用于第一速率的控制,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括所述至少两个终端设备的第一连接,所述第一连接用于传输所述第一群组业务的数据。
在一些实施例中,所述第二消息用于建立或更新PDU会话。
在一些实施例中,所述第二信息包括以下至少之一:
所述第一终端设备的服务质量QoS参数;
所述第一终端设备的QoS规则;
第五指示信息,所述第五指示信息用于指示所述第一终端设备的第一连接;
第六指示信息,所述第六指示信息用于指示所述第一群组的AMBR。
在一些实施例中,装置1800还包括:
第三发送模块,配置为向第一基站发送第三消息,所述第三消息包括第三信息,所述第三信息至少用于QoS控制。
在一些实施例中,所述第三信息至少包括以下至少之一:
所述第一终端设备的服务质量QoS参数;
所述第一终端设备的QoS规则。
在一些实施例中,所述第三信息还用于指示所述第一基站对第一速率进行控制,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括所述至少两个终端设备的第一连接,所述第一连接用于传输所述第一群组业务的数据。
在一些实施例中,所述第三信息至少包括以下至少之一:
第五指示信息,所述第五指示信息用于指示所述第一终端设备的第一连接;
第六指示信息,所述第六指示信息用于指示所述第一群组的AMBR;
第七指示信息,所述第七指示信息用于指示所述第一基站对所述第一速率进行控制。
在一些实施例中,所述第六指示信息包括以下至少之一:
所述AMBR;
用于指示所述AMBR的第一标识;
所述第一群组业务的第二标识。
在一些实施例中,所述第一连接为PDU会话或服务质量QoS流。
在一些实施例中,所述第一连接对应独立的数据无线承载DRB。
图19是本申请实施例提供的无线通信装置的结构组成示意图,应用于第三网络设备,如图19所示,无线通信装置1900包括:
第三接收模块1901,配置为接收第二网络设备发送的第二消息,所述第二消息包括第二信息,所述第二信息至少用于第一速率的控制,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括第一群组的至少两个终端设备的第一连接,所述第一群组包括参与第一群组业务的至少两个终端设备,所述第一连接用于传输所述第一群组业务的数据。
在一些实施例中,所述第二信息包括以下至少之一:
第一终端设备的QoS参数,所述第一终端设备为所述第一群组中任一终端设备;
所述第一终端设备的QoS规则;
第五指示信息,所述第五指示信息用于指示第一终端设备的第一连接;
第六指示信息,所述第六指示信息用于指示所述第一群组的AMBR。
在一些实施例中,所述第六指示信息包括以下至少之一:
所述AMBR;
用于指示所述AMBR的第一标识;
所述第一群组业务的第二标识。
在一些实施例中,所述第二消息用于建立或更新PDU会话。
在一些实施例中,所述第一连接为PDU会话或服务质量QoS流。
在一些实施例中,所述第一连接对应独立的DRB。
本领域技术人员应当理解,本申请实施例的上述无线通信装置的相关描述可以参照本申请实施例的无线通信方法的相关描述进行理解。
图20是本申请实施例提供的一种通信设备2000示意性结构图。该通信设备可以终端设备,也可以是第一网络设备、第二网络设备或第三网络设备。图20所示的通信设备2000包括处理器2010,处理器2010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图20所示,通信设备2000还可以包括存储器2020。其中,处理器2010可以从存储器2020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器2020可以是独立于处理器2010的一个单独的器件,也可以集成在处理器2010中。
可选地,如图20所示,通信设备2000还可以包括收发器2030,处理器2010可以控制该收发器2030与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器2030可以包括发射机和接收机。收发器2030还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备2000具体可为本申请实施例的网络设备,并且该通信设备2000可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备2000具体可为本申请实施例的移动终端/终端设备,并且该通信设备2000可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图21是本申请实施例的芯片的示意性结构图。图21所示的芯片2100包括处理器2110,处理器2110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图21所示,芯片2100还可以包括存储器2120。其中,处理器2110可以从存储器2120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器2120可以是独立于处理器2110的一个单独的器件,也可以集成在处理器2110中。
可选地,该芯片2100还可以包括输入接口2130。其中,处理器2110可以控制该输入接口2130与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片2100还可以包括输出接口2140。其中,处理器2110可以控制该输出接口2140与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图22是本申请实施例提供的一种通信系统2200的示意性框图。如图22所示,该通信系统2200包括终端设备2210和网络设备2220。
其中,该终端设备2210可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1420可以用于实现上述方法中由第一网络设备、第二网络设备或第三网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (73)

  1. 一种无线通信方法,所述方法包括:
    第一网络设备测量第一群组的第一速率,所述第一群组包括参与第一群组业务的至少两个终端设备,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括所述至少两个终端设备的第一连接,所述第一连接用于传输所述第一群组业务的数据。
  2. 根据权利要求1所述的方法,其中,
    所述第一连接配置有保障比特速率GBR;或者,
    所述第一连接未配置有GBR。
  3. 根据权利要求1或2所述的方法,其中,所述至少两个第一连接的GBR总和大于所述第一群组的聚合最大比特速率AMBR。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述第一速率调整的条件包括:
    所述第一速率的测量值大于第一速率门限。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述第一速率停止调整的条件包括:
    所述第一速率的测量值小于或等于第一速率门限。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述第一速率的调整方式包括以下至少之一:
    对至少一个所述第一连接限速;
    对至少一个所述第一连接对应的数据无线承载DRB限速;
    去激活至少一个所述第一连接;
    去激活至少一个所述第一连接对应的DRB;
    删除至少一个所述第一连接;
    删除至少所述第一连接对应的DRB。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述第一网络设备为用户面功能网元UPF或第一基站。
  8. 根据权利要求1至7中任一项所述的方法,其中,在所述第一网络设备为UPF的情况下,所述方法还包括:
    所述UPF对至少一个所述第一连接限速。
  9. 根据权利要求1至7中任一项所述的方法,其中,在所述第一网络设备为UPF的情况下,所述方法还包括:
    所述UPF用户面功能网元向第二基站发送第一指示信息,所述第一指示信息用于指示以下至少之一:
    对所述第二基站服务的至少一个第一连接限速;
    去激活所述第二基站服务的至少一个第一连接;
    删除所述第二基站服务的至少一个第一连接。
  10. 根据权利要求1至7中任一项所述的方法,其中,在所述第一网络设备为UPF的情况下,所述方法还包括:
    所述用户面功能网元向第二网络设备发送第一信息,所述第一信息用于指示第一速率的测量值。
  11. 根据权利要求10所述的方法,其中,所述第一信息包括以下至少之一:
    所述第一速率的测量值;
    第二指示信息,所述第二指示信息用于指示所述第一速率的测量值大于第一速率门限。
  12. 根据权利要求10或11所述的方法,其中,所述第一信息用于确定第二网络设备发送至第二基站的第三指示信息,所述第三指示信息用于指示以下至少之一:
    对所述第二基站服务的至少一个第一连接限速;
    去激活所述第二基站服务的至少一个第一连接;
    删除所述第二基站服务的至少一个第一连接。
  13. 根据权利要求4、5或11中任一项所述的方法,其中,
    所述第一速率门限为所述第一群组的AMBR。
  14. 根据权利要求1至13中任一项所述的方法,其中,所述第一连接为:协议数据单元PDU会话或者服务质量QoS流。
  15. 根据权利要求1至14中任一项所述的方法,其中,在所述第一网络设备为UPF的情况下,所述方法还包括:
    所述UPF接收第二网络设备发送的第二消息,所述第二消息包括第二信息,所述第二信息至少用于所述第一速率的控制。
  16. 根据权利要求15所述的方法,其中,所述第二信息包括以下至少之一:
    第一终端设备的QoS参数,所述第一终端设备为所述第一群组中任一终端设备;
    所述第一终端设备的QoS规则;
    第五指示信息,所述第五指示信息用于指示第一终端设备的第一连接;
    第六指示信息,所述第五指示信息用于指示所述第一群组的AMBR。
  17. 根据权利要求16所述的方法,其中,所述第六指示信息为所述AMBR或指示所述AMBR的第一标识。
  18. 根据权利要15至17中任一项所述的方法,其中,所述第二消息用于建立或更新PDU会话。
  19. 根据权利要求1至18中任一项所述的方法,其中,所述第一连接对应独立的DRB。
  20. 一种无线通信方法,包括:
    第一终端设备向第二网络设备发送第一消息,所述第一消息中携带第四指示信息,所述第四指示信息用于指示所述第一终端设备加入第一群组和/或参与第一群组业务,所述第一群组包括参与所述第一群组业务的至少两个终端设备。
  21. 根据权利要求20所述的方法,其中,所述第一消息用于建立或更新PDU会话。
  22. 根据权利要求20或21所述的方法,其中,
    所述第四指示信息至少用于所述第二网络设备确定第三网络设备。
  23. 根据权利要22所述的方法,其中,所述第三网络设备服务于所述第一群组的至少两个终端设备。
  24. 根据权利要求20至23中任一项所述的方法,其中,
    所述第四指示信息至少用于确定第二信息,所述第二信息至少用于第一速率的控制,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括所述至少两个终端设备的第一连接,所述第一连接用于传输所述第一群组业务的数据。
  25. 根据权利要求24所述的方法,其中,所述第二信息包括以下至少之一:
    所述第一终端设备的服务质量QoS参数;
    所述第一终端设备的QoS规则;
    第五指示信息,所述第五指示信息用于指示所述第一终端设备的第一连接;
    第六指示信息,所述第六指示信息用于指示所述第一群组的AMBR。
  26. 根据权利要求25所述的方法,其中,所述第六指示信息包括以下至少之一:
    所述AMBR;
    用于指示所述AMBR的第一标识;
    所述第一群组业务的第二标识。
  27. 根据权利要求25所述的方法,其中,所述第一连接为PDU会话或服务质量QoS流。
  28. 根据权利要求27所述的方法,其中,所述第一连接对应独立的数据无线承载DRB。
  29. 一种无线通信方法,包括:
    第二网络设备接收第一终端设备发送的第一消息,所述第一消息中携带第四指示信息,所述第四指示信息用于指示所述第一终端设备加入第一群组和/或参与第一群组业务,所述第一群组包括参与所述第一群组业务的至少两个终端设备。
  30. 根据权利要求29所述的方法,其中,所述第一消息用于建立或更新PDU会话。
  31. 根据权利要求29或30所述的方法,其中,
    所述第四指示信息用于所述第二网络设备确定第三网络设备。
  32. 根据权利要31所述的方法,其中,所述第三网络设备服务于所述第一群组的至少两个终端设备。
  33. 根据权利要求29至32中任一项所述的方法,其中,所述第四指示信息还用于确定第二信息,所述第二信息至少用于第一速率的控制,所述第一速率由至少两个第一连接的速率构成, 所述至少两个第一连接包括所述至少两个终端设备的第一连接,所述第一连接用于传输所述第一群组业务的数据。
  34. 根据权利要求29至33中任一项所述的方法,其中,所述方法还包括:
    所述第二网络设备向第三网络设备发送第二消息,所述第二消息包括第二信息,所述第二信息至少用于第一速率的控制,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括所述至少两个终端设备的第一连接,所述第一连接用于传输所述第一群组业务的数据。
  35. 根据权利要求34所述的方法,其中,所述第二消息用于建立或更新PDU会话。
  36. 根据权利要求33至35中任一项所述的方法,其中,所述第二信息包括以下至少之一:
    所述第一终端设备的服务质量QoS参数;
    所述第一终端设备的QoS规则;
    第五指示信息,所述第五指示信息用于指示所述第一终端设备的第一连接;
    第六指示信息,所述第六指示信息用于指示所述第一群组的AMBR。
  37. 根据权利要求29至36中任一项所述的方法,其中,所述方法还包括:
    所述第二网络设备向第一基站发送第三消息,所述第三消息包括第三信息,所述第三信息至少用于QoS控制。
  38. 根据权利要求37所述的方法,其中,所述第三信息至少包括以下至少之一:
    所述第一终端设备的服务质量QoS参数;
    所述第一终端设备的QoS规则。
  39. 根据权利要求37或38所述的方法,其中,所述第三信息还用于指示所述第一基站对第一速率进行控制,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括所述至少两个终端设备的第一连接,所述第一连接用于传输所述第一群组业务的数据。
  40. 根据权利要求39所述的方法,其中,所述第三信息至少包括以下至少之一:
    第五指示信息,所述第五指示信息用于指示所述第一终端设备的第一连接;
    第六指示信息,所述第六指示信息用于指示所述第一群组的AMBR;
    第七指示信息,所述第七指示信息用于指示所述第一基站对所述第一速率进行控制。
  41. 根据权利要求36或40所述的方法,其中,所述第六指示信息包括以下至少之一:
    所述AMBR;
    用于指示所述AMBR的第一标识;
    所述第一群组业务的第二标识。
  42. 根据权利要求33至41中任一项所述的方法,其中,所述第一连接为PDU会话或服务质量QoS流。
  43. 根据权利要求42所述的方法,其中,所述第一连接对应独立的数据无线承载DRB。
  44. 一种无线通信方法,包括:
    第三网络设备接收第二网络设备发送的第二消息,所述第二消息包括第二信息,所述第二信息至少用于第一速率的控制,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括第一群组的至少两个终端设备的第一连接,所述第一群组包括参与第一群组业务的至少两个终端设备,所述第一连接用于传输所述第一群组业务的数据。
  45. 根据权利要求44所述的方法,其中,所述第二信息包括以下至少之一:
    第一终端设备的QoS参数,所述第一终端设备为所述第一群组中任一终端设备;
    所述第一终端设备的QoS规则;
    第五指示信息,所述第五指示信息用于指示第一终端设备的第一连接;
    第六指示信息,所述第六指示信息用于指示所述第一群组的AMBR。
  46. 根据权利要求45所述的方法,其中,所述第六指示信息包括以下至少之一:
    所述AMBR、
    用于指示所述AMBR的第一标识;
    所述第一群组业务的第二标识。
  47. 根据权利要44至46中任一项所述的方法,其中,所述第二消息用于建立或更新PDU会话。
  48. 根据权利要求44至47中任一项所述的方法,其中,所述第一连接为PDU会话或服务质量QoS流。
  49. 根据权利要求44至48中任一项所述的方法,其中,所述第一连接对应独立的DRB。
  50. 一种无线通信装置,包括:
    测量模块,配置为测量第一群组的第一速率,所述第一群组包括参与第一群组业务的至少两个终端设备,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括所述至少两个终端设备的第一连接,所述第一连接用于传输所述第一群组业务的数据。
  51. 一种无线通信装置,包括:
    第一发送模块,配置为向第二网络设备发送第一消息,所述第一消息中携带第四指示信息,所述第四指示信息用于指示所述第一终端设备加入第一群组和/或参与第一群组业务,所述第一群组包括参与所述第一群组业务的至少两个终端设备。
  52. 一种无线通信装置,包括:
    第二接收模块,配置为接收第一终端设备发送的第一消息,所述第一消息中携带第四指示信息,所述第四指示信息用于指示所述第一终端设备加入第一群组和/或参与第一群组业务,所述第一群组包括参与所述第一群组业务的至少两个终端设备。
  53. 一种无线通信装置,包括:
    第三接收模块,配置为接收第二网络设备发送的第二消息,所述第二消息包括第二信息,所述第二信息至少用于第一速率的控制,所述第一速率由至少两个第一连接的速率构成,所述至少两个第一连接包括第一群组的至少两个终端设备的第一连接,所述第一群组包括参与第一群组业务的至少两个终端设备,所述第一连接用于传输所述第一群组业务的数据。
  54. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至19中任一项所述的方法。
  55. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求20至28中任一项所述的方法。
  56. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求29至43中任一项所述的方法。
  57. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求44至49中任一项所述的方法。
  58. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至19中任一项所述的方法。
  59. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求20至28中任一项所述的方法。
  60. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求29至43中任一项所述的方法。
  61. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求44至49中任一项所述的方法。
  62. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至19中任一项所述的方法。
  63. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求20至28中任一项所述的方法。
  64. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求29至43中任一项所述的方法。
  65. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求44至49中任一项所述的方法。
  66. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至19中任一项所述的方法。
  67. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求20至28中任一项所述的方法。
  68. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求29至43中任一项所述的方法。
  69. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求44至49中任一项所述的方法。
  70. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至19中任一项所述的方法。
  71. 一种计算机程序,所述计算机程序使得计算机执行如权利要求20至28中任一项所述的方法。
  72. 一种计算机程序,所述计算机程序使得计算机执行如权利要求29至43中任一项所述的方法。
  73. 一种计算机程序,所述计算机程序使得计算机执行如权利要求44至49中任一项所述的方法。
PCT/CN2022/076092 2022-02-11 2022-02-11 一种无线通信方法及装置、通信设备 WO2023151042A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280088657.0A CN118614138A (zh) 2022-02-11 2022-02-11 一种无线通信方法及装置、通信设备
PCT/CN2022/076092 WO2023151042A1 (zh) 2022-02-11 2022-02-11 一种无线通信方法及装置、通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076092 WO2023151042A1 (zh) 2022-02-11 2022-02-11 一种无线通信方法及装置、通信设备

Publications (1)

Publication Number Publication Date
WO2023151042A1 true WO2023151042A1 (zh) 2023-08-17

Family

ID=87563343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076092 WO2023151042A1 (zh) 2022-02-11 2022-02-11 一种无线通信方法及装置、通信设备

Country Status (2)

Country Link
CN (1) CN118614138A (zh)
WO (1) WO2023151042A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107509176A (zh) * 2017-09-13 2017-12-22 广东欧珀移动通信有限公司 一种群组的建立方法及装置、计算机存储介质
CN111200791A (zh) * 2018-11-19 2020-05-26 华为技术有限公司 群组通信方法、设备及系统
WO2021075594A1 (ko) * 2019-10-16 2021-04-22 엘지전자 주식회사 무선 통신 시스템에서 사용자 단말에 의해 신호를 전송하는 방법 및 이를 위한 사용자 단말
CN113747604A (zh) * 2020-05-27 2021-12-03 华为技术有限公司 一种通信方法、装置以及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107509176A (zh) * 2017-09-13 2017-12-22 广东欧珀移动通信有限公司 一种群组的建立方法及装置、计算机存储介质
CN111200791A (zh) * 2018-11-19 2020-05-26 华为技术有限公司 群组通信方法、设备及系统
WO2021075594A1 (ko) * 2019-10-16 2021-04-22 엘지전자 주식회사 무선 통신 시스템에서 사용자 단말에 의해 신호를 전송하는 방법 및 이를 위한 사용자 단말
CN113747604A (zh) * 2020-05-27 2021-12-03 华为技术有限公司 一种通信方法、装置以及系统

Also Published As

Publication number Publication date
CN118614138A (zh) 2024-09-06

Similar Documents

Publication Publication Date Title
EP3826274B1 (en) Flow control method and apparatus
US11159436B2 (en) Mechanism for air interface delay adjustment
RU2669009C2 (ru) Система связи
WO2020143788A1 (zh) 支持时间敏感通信服务质量的方法及通信设备
US10728882B2 (en) Method for allocating aggregate maximum bit rate of UE, method for allocating aggregate bit rates of non-GBR services and base stations
RU2649873C2 (ru) Способ и устройство для конфигурирования совокупной максимальной битовой скорости
KR20230035038A (ko) 근접 기반 서비스 원격 및 중계 엔티티 서비스 품질 관리
US11019527B2 (en) Method for transmitting TCP ACK packet in wireless communication system and a device therefor
WO2021031022A1 (zh) 链路切换的方法和通信设备
WO2011015155A1 (zh) 带宽管理方法、演进基站、服务网关和通信系统
WO2019214135A1 (zh) 通信方法和设备
WO2020191785A1 (zh) 一种车联网系统中的通信方法及终端设备、网络设备
WO2023108641A1 (en) Method, device and computer program product for wireless communication
WO2022179317A1 (zh) 应用程序的控制方法、装置、设备及存储介质
CN113973322A (zh) 一种通信方法及装置
WO2022179334A1 (zh) 应用程序的控制方法、装置、设备及存储介质
WO2020252710A1 (zh) 无线通信方法和设备
WO2022061872A1 (zh) 一种小数据传输方法及装置、终端设备
JP2023522238A (ja) 中継機能を用いた無線ネットワークにおけるスケジューリング強化
WO2022179322A1 (zh) 基于切换过程的消息发送方法、装置、设备及介质
WO2022179316A1 (zh) QoS变化的通知方法、装置、设备及介质
WO2020220327A1 (zh) 一种信息处理方法、设备及存储介质
WO2022151242A1 (zh) 一种数据传输方法、电子设备及存储介质
WO2022082543A1 (zh) Iab节点的移植方法及装置
WO2019212546A1 (en) Self-backhaul with enhanced signaling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925404

Country of ref document: EP

Kind code of ref document: A1