WO2022179316A1 - QoS变化的通知方法、装置、设备及介质 - Google Patents
QoS变化的通知方法、装置、设备及介质 Download PDFInfo
- Publication number
- WO2022179316A1 WO2022179316A1 PCT/CN2022/070541 CN2022070541W WO2022179316A1 WO 2022179316 A1 WO2022179316 A1 WO 2022179316A1 CN 2022070541 W CN2022070541 W CN 2022070541W WO 2022179316 A1 WO2022179316 A1 WO 2022179316A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- qnc
- core network
- network entity
- change
- notification message
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 184
- 230000008859 change Effects 0.000 claims description 148
- 238000004590 computer program Methods 0.000 claims description 17
- 230000007246 mechanism Effects 0.000 abstract description 14
- 238000010295 mobile communication Methods 0.000 abstract description 6
- 230000008569 process Effects 0.000 description 78
- 238000010586 diagram Methods 0.000 description 37
- 230000005540 biological transmission Effects 0.000 description 35
- 230000004044 response Effects 0.000 description 26
- 230000006870 function Effects 0.000 description 25
- 230000004048 modification Effects 0.000 description 21
- 238000012986 modification Methods 0.000 description 21
- 238000004891 communication Methods 0.000 description 18
- 238000004364 calculation method Methods 0.000 description 16
- 238000013461 design Methods 0.000 description 15
- 238000007726 management method Methods 0.000 description 15
- 230000007423 decrease Effects 0.000 description 14
- 230000003370 grooming effect Effects 0.000 description 9
- 230000003993 interaction Effects 0.000 description 9
- 238000005457 optimization Methods 0.000 description 5
- 102100035409 Dehydrodolichyl diphosphate synthase complex subunit NUS1 Human genes 0.000 description 4
- 101100240466 Homo sapiens NUS1 gene Proteins 0.000 description 4
- 208000003028 Stuttering Diseases 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000012092 media component Substances 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- 230000001960 triggered effect Effects 0.000 description 4
- 238000013523 data management Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003062 neural network model Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0268—Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/50—Network service management, e.g. ensuring proper service fulfilment according to agreements
- H04L41/5003—Managing SLA; Interaction between SLA and QoS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/50—Network service management, e.g. ensuring proper service fulfilment according to agreements
- H04L41/5003—Managing SLA; Interaction between SLA and QoS
- H04L41/5006—Creating or negotiating SLA contracts, guarantees or penalties
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0894—Policy-based network configuration management
Definitions
- the embodiments of the present application relate to the field of mobile communications, and in particular, to a method, apparatus, device, and medium for notifying a quality of service (Quality of Service, QoS) change.
- QoS Quality of Service
- QoS control is performed according to a QoS flow (QoS Flow) unit.
- GBR Guaranteed Bit Rate
- N-Guaranteed Bit Rate Non-Guaranteed Bit Rate
- non-GBR QoS traffic such as common audio and video calls and online conferences. Because changes in wireless network status often cause audio and video communications to freeze, it is necessary to optimize the QoS control of non-GBR QoS flows.
- the present application provides a method, apparatus, device and medium for notifying QoS changes, and provides a QNC mechanism for non-GBR QoS flows, which enables application entities to perceive changes in wireless network status.
- the technical solution is as follows:
- a method for notifying a QoS change comprising:
- the access network device sends a notification message to the application entity through the core network entity when the change of the QoS Notification Control (QNC) parameter of the non-GBR bearer flow satisfies the reporting condition.
- QNC QoS Notification Control
- an apparatus for notifying a QoS change comprising:
- the sending module is configured to send a notification message to the application entity through the core network entity when the change of the parameter of the QNC of the non-GBR bearer flow satisfies the reporting condition.
- a network element device includes: a processor and a memory, the memory stores a computer program, and the computer program is loaded and executed by the processor to achieve the above The notification method of the QoS change.
- the network element device is an access network device.
- a computer-readable storage medium stores a computer program, the computer program is loaded and executed by a processor to implement the above-mentioned QoS change notification method.
- a computer program product comprising computer instructions stored in a computer-readable storage medium.
- the processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the QoS change notification method provided by the above aspects.
- a chip is provided, characterized in that the chip includes a programmable logic circuit and/or program instructions, and is used to implement the above-mentioned notification method for QoS changes when the chip is running .
- a notification message is sent to the application entity through the core network entity, thereby providing a QNC mechanism for the non-GBR bearer flow, so that the application entity can know the non-GBR bearer flow. Changes in wireless network status.
- FIG. 1 shows a structural block diagram of a mobile communication system provided by an exemplary embodiment of the present application
- FIG. 2 shows a structural block diagram of a communication system provided by another exemplary embodiment of the present application
- FIG. 3 shows a flowchart of a method for notifying a QoS change provided by an exemplary embodiment of the present application
- FIG. 4 shows a flowchart of a method for notifying a QoS change provided by another exemplary embodiment of the present application
- FIG. 5 shows a flowchart of a configuration method of a QNC provided by an exemplary embodiment of the present application
- FIG. 6 shows a flowchart of a configuration method of a QNC provided by another exemplary embodiment of the present application
- FIG. 7 shows a flowchart of a configuration method of a QNC provided by another exemplary embodiment of the present application.
- Fig. 8 shows the flow chart of the optimization method of QNC provided by an exemplary embodiment of the present application
- Fig. 9 shows the flow chart of the optimization method of QNC provided by another exemplary embodiment of the present application.
- FIG. 10 shows a flowchart of a method for notifying a parameter value of a QNC provided by an exemplary embodiment of the present application
- FIG. 11 shows a flowchart of a method for notifying a QoS change in a handover process provided by an exemplary embodiment of the present application
- FIG. 12 shows a flowchart of a method for notifying a QoS change in a handover process provided by another exemplary embodiment of the present application
- FIG. 13 shows a flowchart of a method for notifying a QoS change in a handover process provided by another exemplary embodiment of the present application
- FIG. 14 shows a schematic diagram of a UE or network-requested PDU session modification (for non-roaming and local grooming roaming) process provided by an exemplary embodiment of the present application;
- FIG. 15 shows a schematic diagram of an SM policy association modification process provided by an exemplary embodiment of the present application
- FIG. 16 shows a schematic diagram of an Xn-based NG-RAN handover process without UPF reallocation provided by an exemplary embodiment of the present application
- FIG. 17 shows a schematic diagram of a message structure of an N2 path switching request provided by an exemplary embodiment of the present application
- FIG. 18 shows a schematic diagram of an N2 handover process based on an NG-RAN node provided by an exemplary embodiment of the present application
- FIG. 19 shows a schematic diagram of a PDU session establishment process requested by a UE provided by an exemplary embodiment of the present application
- FIG. 20 shows a flowchart of a PDU session establishment process requested by a UE for a home routing roaming scenario provided by an exemplary embodiment of the present application
- FIG. 21 shows a schematic diagram of the process of transferring an AF request for a single UE address to a related PCF provided by an exemplary embodiment of the present application
- FIG. 22 shows a schematic diagram of a PDU session modification process requested by a UE or network for non-roaming and local grooming roaming provided by an exemplary embodiment of the present application
- FIG. 23 shows a schematic diagram of a PDU session modification process requested by a UE or a network for home routing roaming provided by an exemplary embodiment of the present application
- FIG. 24 shows a schematic diagram of a handover procedure in a base station provided by an exemplary embodiment of the present application
- 25 shows a schematic diagram of an Xn-based inter-NG-RAN handover process without UPF reallocation provided by another exemplary embodiment of the present application
- Figure 26 shows a message structure diagram of a handover command provided by an exemplary embodiment of the present application
- FIG. 27 shows a schematic diagram of a handover process based on an XG-RAN node N2 provided by another exemplary embodiment of the present application
- Figure 28 shows a message structure diagram of a handover request provided by an exemplary embodiment of the present application
- Figure 29 shows a message structure diagram of a handover command provided by another exemplary embodiment of the present application.
- Figure 30 shows a schematic diagram of a handover flow (non-roaming and local grooming roaming) of a PDU session process from untrusted non-3GPP access to 3GPP access provided by an exemplary embodiment of the present application;
- FIG. 31 shows a schematic diagram of handover from EPC/ePDG to 5GS provided by an exemplary embodiment of the present application
- Figure 32 shows a schematic diagram of the preparation stage of the single registration-based interworking from EPS to 5GS process provided by an exemplary embodiment of the present application
- FIG. 33 shows a block diagram of an apparatus for notifying a QoS change provided by an exemplary embodiment of the present application
- FIG. 34 shows a block diagram of a network element device provided by an exemplary embodiment of the present application.
- FIG. 1 shows a schematic diagram of the architecture of a mobile communication system provided by an exemplary embodiment of the present application.
- the system architecture 100 may include: a user equipment (User Equipment, UE), a radio access network (Radio Access Network, RAN), a core network (Core), and a data network (Data Network, DN).
- UE, RAN, and Core are the main components of the architecture. Logically, they can be divided into two parts: the user plane and the control plane.
- the control plane is responsible for the management of the mobile network, and the user plane is responsible for the transmission of service data.
- the NG2 reference point is located between the RAN control plane and the Core control plane
- the NG3 reference point is located between the RAN user plane and the Core user plane
- the NG6 reference point is located between the Core user plane and the data network.
- the UE It is the portal for mobile users to interact with the network. It can provide basic computing capabilities and storage capabilities, display service windows to users, and accept user operation input. The UE will use the next-generation air interface technology to establish a signal connection and a data connection with the RAN, thereby transmitting control signals and service data to the mobile network.
- RAN Similar to the base station in the traditional network, it is deployed close to the UE to provide network access functions for authorized users within the cell coverage area, and can use transmission tunnels of different quality to transmit user data according to user levels and service requirements.
- the RAN can manage its own resources, utilize them rationally, provide access services for the UE on demand, and forward control signals and user data between the UE and the core network.
- Core responsible for maintaining the subscription data of the mobile network, managing the network elements of the mobile network, and providing functions such as session management, mobility management, policy management, and security authentication for the UE.
- the UE When the UE is attached, it provides network access authentication for the UE; when the UE has a service request, it allocates network resources for the UE; when the UE moves, it updates the network resources for the UE; when the UE is idle, it provides a fast recovery mechanism for the UE;
- the DN It is a data network that provides business services for users.
- the client is located in the UE, and the server is located in the data network.
- the data network can be a private network, such as a local area network, or an external network that is not controlled by operators, such as the Internet, or a private network jointly deployed by operators, such as in order to configure the IP Multimedia Core Network. Subsystem, IMS) service.
- IMS IP Multimedia Core Network. Subsystem
- Figure 2 is a detailed architecture determined on the basis of Figure 1, wherein the core network user plane includes a user plane function (User Plane Function, UPF); the core network control plane includes an authentication server function (Authentication Server Function, AUSF), access and Access and Mobility Management Function (AMF), Session Management (Session Management Function, SMF), Network Slice Selection Function (NSSF), Network Exposure Function (NEF), Network Function Storage Function (NF Repository Function, NRF), Unified Data Management (Unified Data Management, UDM), Policy Control Function (Policy Control Function, PCF), Application Function (Application Function, AF).
- the functions of these functional entities are as follows:
- UPF perform user data packet forwarding according to the routing rules of SMF
- AUSF perform security authentication of the UE
- AMF UE access and mobility management
- SMF UE session management
- NSSF select network slice for UE
- NEF Open network functions to third parties in the form of API interfaces
- NRF Provides the storage function and selection function of network function entity information for other network elements
- UDM user subscription context management
- PCF User Policy Management
- the N1 interface is the reference point between the UE and the AMF
- the N2 interface is the reference point between the RAN and the AMF, used for sending NAS messages, etc.
- the N3 interface is the reference point between the RAN and the UPF, It is used to transmit data on the user plane, etc.
- the N4 interface is the reference point between the SMF and the UPF, and is used to transmit information such as the tunnel identification information of the N3 connection, the data buffer indication information, and the downlink data notification message
- the N6 interface is the UPF and the UPF.
- NG interface The interface between the radio access network and the 5G core network.
- each network element in FIG. 1 and FIG. 2 is just an example, and the name of the interface in the specific implementation may be other names, which are not specifically limited in this embodiment of the present application.
- the names of each network element (such as SMF, AF, UPF, etc.) included in FIG. 1 and FIG. 2 are only an example, and the functions of the network elements themselves are not limited. In 5GS and other future networks, the above-mentioned network elements may also have other names, which are not specifically limited in this embodiment of the present application.
- a quick change QoS notification control (Quick Change QoS Notification Control, QCQNC) mechanism is defined for the non-GBR QoS flow.
- the QCQNC mechanism is a type of QoS Notification Control (QNC), which may be referred to as QNC for short.
- QNC QoS Notification Control
- the access network detects that at least one QoS parameter of the non-GBR QoS flow rapidly changes, it sends a rapid change notification to the SMF.
- SMF sends fast change notifications to PCF, AF and UE.
- AF and UE adjust their internal applications so that the application can adapt to the change, so as to prevent the occurrence of phenomena such as freezes that affect the quality of experience (QoE).
- a QoS flow is the smallest granularity of QoS differentiation in a PUD session.
- QoS Flow Identifier QFI
- the QoS flow is controlled by the SMF and can be pre-configured or established in the PDU session establishment procedure, or modified in the PDU session modification procedure.
- 5G QoS Identifier 5G QoS Identifier, 5QI
- Allocation and Retention Priority ARP
- Reflective QoS Attribute RQA
- GBR delay critical GBR or non-GBR.
- PDB Packet Delay Budget
- the first two parameters, resource type and priority define the features of 5QI
- the last two parameters, PDB and PER define the performance of 5QI.
- the Profile (characteristic) of the QoS QNC is related to the three parameters PDB, PER and the current transmission rate (Current Bit Rate, CBR) of the non-GBR QoS flow (Non GBR QoS Flow, NGBF).
- CBR Current Bit Rate
- NGBF Non GBR QoS Flow
- the SMF sends a notification message to the PCF, the PCF sends a notification message to the AF, and the application program corresponding to the AF makes corresponding adjustments.
- the SMF sends a notification message to the UE through the NAS message, and the corresponding application program of the UE can also make corresponding adjustments, thereby realizing the interaction between the network and the application, realizing the optimization of service transmission, and solving the jam when the network is congested, or When the network conditions become better, the application still uses a very low transmission rate, which cannot make full use of network resources, but cannot improve the user experience.
- the change rate is uniformly defined as the parameter value before and after the change (the larger value – Smaller value)/smaller value, or the rate of change is uniformly defined as the parameter value before and after the change (larger value–smaller value)/larger value, or the rate of change is uniformly defined as the parameter value before and after the change (larger value–smaller value) smaller value)/a fixed value.
- the larger value is the parameter value before and after the change with the larger absolute value
- the smaller value is the parameter value before and after the change with the smaller absolute value
- the fixed value is a predetermined value that does not change. In this way, when the parameter value A first increases by 30%, and then decreases by 30%, it returns to the original parameter value A.
- Whether a QoS flow is GBR or non-GBR is determined by its QoS configuration.
- the QoS configuration of the QoS flow is sent to the (R)AN, containing the following QoS parameters (details of the QoS parameters are defined in subsection 5.7.2 of the communication protocol TS23.501).
- the QoS configuration can also contain QoS parameters:
- the QoS configuration can also contain QoS parameters:
- GFBR Guaranteed Flow Bit Rate
- MFBR Maximum Flow Bit Rate
- the QoS configuration may also contain one or more QoS parameters
- a QoS Quick Change Notification Control Profile is provided.
- the QoS fast change notification control configuration is provided for non-GBR QoS flows that have fast change notification control enabled. If the corresponding PCC rules contain relevant information (as described in the communication protocol TS 23.503), the SMF shall provide the NG-RAN with the rapid change notification control configuration in addition to the QoS profile. If the SMF provides the NG-RAN with the fast change notification control configuration (if the corresponding Policy and Charging Control Rule (PCC) rule information has changed), the NG-RAN will replace the previously stored configuration with it .
- PCC Policy and Charging Control Rule
- the fast change notification control configuration indicates the fast change of any QoS parameters PDB, PER and detected CBR (current bit rate), which will help the application to control the application traffic according to the changed QoS parameters.
- the rapid change notification control configuration indicates that (PDR, PER, CBR) changes rapidly (increase or decrease) in a short time (20%, 10%, 30%), and the new value after the change can be maintained continuously, that is, this rapid Changes are not short and fast spikes caused by sudden shocks and other reasons.
- the fast change notification control configuration can be any combination of PDB, PER, CBR, for example, the fast change notification control configuration can set the increased (or decreased) PDR to 20%; it can also be an increased (or decreased) PDR and PER set to 20%, increase (or decrease) CBR by 10%; or increase (or decrease) CBR by 30%.
- the NG-RAN When the NG-RAN sends a quick change notification that satisfies the QCQNC configuration to the SMF, the NG-RAN should also include the current QoS parameters (PDB, PER) and CBR in the notification message.
- the current QoS parameters PDB, PER
- the QNC mechanism for non-GBR bearer flows includes at least the following processes:
- FIG. 3 is a flowchart of a method for notifying a QoS change provided by an exemplary embodiment of the present application. This embodiment is illustrated by taking the method applied to the mobile communication system shown in FIG. 1 or FIG. 2 as an example. The method includes:
- Step 320 the access network device sends a notification message to the application entity through the core network entity when the change of the parameter of the QNC of the non-GBR bearer flow satisfies the reporting condition;
- a non-GBR bearer stream refers to a bearer stream of a non-GBR type.
- Non-GBR bearer flows include: non-GBR QoS flows, or, non-GBR EPS bearers.
- a non-GBR bearer flow is a non-GBR type QoS flow
- a non-GBR bearer flow is a non-GBR type EPS bearer.
- the parameters of the QNC include at least one of the following: PDB, PER, and CBR.
- the reporting conditions corresponding to the at least two parameters are the same; and/or the reporting conditions corresponding to the at least two parameters are different.
- reporting conditions include at least one of the following:
- the change value of the parameters of the QNC in the first time period is greater than the first threshold
- the first threshold is a decimal greater than 0 and less than 1.
- the first thresholds are 20%, 30% and 40%.
- the first duration is the period or duration used to calculate the change value, such as 1 second, 2 seconds.
- the rate of change of the parameters of the QNC in the second time period is greater than the second threshold
- the second threshold is a decimal greater than 0 and less than 1.
- the second thresholds are 20%, 30% and 40%.
- the second duration is the period or duration used to calculate the rate of change, such as 1 second, 2 seconds.
- the change value of the parameters of the QNC within the first time period is greater than the first threshold value, and the third threshold value is continuously maintained;
- the third threshold is a threshold for measuring the holding time of the changed value, such as 2 seconds.
- the rate of change of the parameters of the QNC in the second time period is greater than the second threshold, and the fourth threshold is maintained continuously.
- the fourth threshold is a threshold for measuring the hold time of the rate of change, such as 2 seconds.
- the third threshold and the fourth threshold are thresholds for measuring the holding time.
- the notification message also carries: the changed parameter value of the QNC. That is, after the parameters of the QNC change rapidly, the current parameter values of the parameters of the QNC.
- the "current" is a relative concept, not the current in an absolute sense.
- the current parameter value is the parameter value when the reporting condition is triggered, and is not necessarily equal to the real-time parameter value after the notification message is sent.
- the parameter value of the changed QNC may be represented by a quantized value of the parameter value of the changed QNC.
- the value range of QNC is divided into 16 non-overlapping sub-ranges. Each of the 16 sub-intervals corresponds to a unique quantized value, and the quantized value is represented by four bits.
- the parameter value of the changed QNC belongs to the i-th sub-interval, it is represented by the quantized value corresponding to the i-th sub-interval.
- the quantized value only needs 4 bits, which can reduce the transmission resources required for the notification message.
- Step 340 The application entity controls the application according to the notification message.
- the notification message (or referred to as fast change notification, fast change report, notification report) is used to indicate that the change of the parameter of the QNC of the non-GBR bearer flow satisfies the reporting condition.
- the application entity controls at least one of the calculation policy and the traffic policy of the application program according to the notification message, so that the application program adapts to the rapid change of the relevant parameters of the non-GBR bearer flow.
- SDF Service Data Flow
- SDFs with different QoS requirements are mapped to independent QoS flows. For example, an SDF with a first QoS requirement is mapped to a first QoS flow, and an SDF with a second QoS requirement is mapped to a second QoS flow.
- SDFs with the same QoS requirements can be mapped to the same QoS flow.
- one or more QoS flows corresponding to an application program include a non-GBR QoS flow, and the non-GBR QoS flow is used to transmit voice, video, text, message, file, control information and other services in the Data packets of at least one service.
- a notification message is sent to the application entity through the core network entity, thereby providing QNC for the non-GBR bearer flow.
- the mechanism enables the application entity to know the change of the wireless network state of the non-GBR bearer flow.
- the steps performed by the access network device can be implemented independently as an embodiment on the access network device side; the steps performed by the application entity can be implemented independently as an embodiment on the application entity side, which will not be repeated in this application.
- FIG. 4 is a flowchart of a method for notifying a QoS change provided by another exemplary embodiment of the present application. This embodiment is described by taking the method applied to the communication system shown in FIG. 1 or FIG. 2 as an example. The method includes:
- Step 322 the access network device sends a notification message to the core network entity when the change of the parameter of the QNC of the non-GBR bearer flow satisfies the reporting condition;
- the core network entity receives the notification message sent by the access network device.
- the notification message is used to indicate that the change of the parameters of the QoS notification control QNC of the non-GBR bearer flow satisfies the reporting condition.
- Step 324 the core network entity sends a notification message to the application entity
- the multiple core network entities transmit the notification message in sequence, and different core network entities may use different types of messages to carry the notification message.
- the core network entities include: Mobility Management Entity (MME), Serving GateWay (SGW), PDN Gateway (PDN GateWay, PGW) and PCF, then the transmission path of the notification message includes at least RAN ⁇ MME ⁇ SGW/PGW ⁇ PCF ⁇ AF; for another example, if the core network entities include: the first core network entity AMF, the second core network entity SMF and the third core network entity PCF, the transmission path of the notification message includes at least RAN ⁇ AMF ⁇ SMF ⁇ PCF ⁇ AF.
- the core network entity sends an event report (Event Reporting) to the application entity, where the event report carries a notification message.
- Event Reporting an event report
- Step 342 the application entity receives the notification message sent by the core network entity
- the application entity receives the event report sent by the core network entity.
- Step 344 The application entity controls the application according to the notification message.
- the application entity controls at least one of the computing strategy and the traffic strategy of the application program according to the notification message, so that the application program adapts to the rapid change of the relevant parameters of the non-GBR bearer flow, so as to ensure the user's QoE as much as possible and avoid the phenomenon such as freezing.
- the application corresponds to four SDFs: a voice SDF, a video SDF, a text message SDF, and a control plane SDF.
- Four SDFs correspond to four non-GBR QoS flows, and the QNC mechanism is enabled for the four non-GBR QoS flows respectively.
- the control application is executed according to the first calculation strategy
- the control application is executed according to the second calculation strategy
- the computing duration of the same computing task under the first computing strategy is shorter than the computing duration under the second computing strategy.
- Compute policies are policies related to the running computation of an application.
- the calculation strategy includes, but is not limited to, at least one of an encoding/decoding method selection strategy, an encoding/decoding model selection strategy, an encoding/decoding level selection strategy, a compression level selection strategy, and a neural network model selection strategy.
- the control application uses the first codec mode to encode and decode; in response to the notification message being used to indicate the parameter value of the QNC When it becomes better, the control application uses the second codec method to encode and decode.
- Encoding and decoding here refers to at least one of encoding and decoding.
- the computation duration of the same encoding/decoding task under the first encoding/decoding strategy is shorter than that under the second encoding/decoding strategy.
- the application program can compensate for the deterioration of the network delay by reducing the internal calculation time, and the overall transmission delay can still be kept unchanged or changed very little. For example, if the PDR of the non-GBR QoS flow corresponding to the video becomes poor, the encoding bit rate of the video is reduced to reduce the number and/or size of video data packets.
- the control application In response to the notification message being used to indicate that the parameter value of the QNC becomes worse, the control application is executed according to the first traffic policy; in response to the notification message being used to indicate that the parameter value of the QNC becomes better, the control application is executed according to the second traffic policy; wherein, The traffic of the first traffic policy is less than the traffic of the second traffic policy.
- the traffic of the application includes voice data packets and video data packets
- the first flow corresponding to the voice data packet is maintained, and the second flow corresponding to the video data packet is reduced; in response to the notification message being used to indicate that the parameter value of the QNC becomes better, the voice
- the first traffic corresponding to the data packet is added to the second traffic corresponding to the video data packet.
- the flow of the first non-GBR QoS flow corresponding to video is reduced, and the flow of the second non-GBR QoS flow corresponding to voice is maintained, thereby occupying less wireless resources as a whole to increase voice data Packet transmission quality and reduce interference.
- the application entity adjusts the application program according to the changed parameter value of the QNC, so that when the relevant parameters of the non-GBR bearer flow become worse, or the When the relevant parameters are recovered from bad to good, the application entity can adjust its internal application program to adapt to the parameter change, so as to optimize the operation of the application program.
- the method provided by this embodiment also changes the calculation strategy of the application program when the relevant parameters of the non-GBR bearer flow become worse, and compensates for the deterioration of the network delay by reducing the calculation time inside the application program, and can still ensure the overall The transmission delay does not change or changes very little.
- the traffic policy of the application program is changed when the relevant parameters of the non-GBR bearer stream become worse, such as maintaining the traffic of voice data packets and reducing the traffic of video data packets, so as to avoid the occurrence of adverse effects on users.
- the relevant parameters of the non-GBR bearer stream become worse, such as maintaining the traffic of voice data packets and reducing the traffic of video data packets, so as to avoid the occurrence of adverse effects on users.
- the stuttering that affects the audio so as to improve the user experience when using audio and video programs as much as possible.
- the core network entity performs the QNC configuration process to the access network device. That is, the core network entity sends the QNC configuration to the access network device, and the QNC configuration is used to configure the parameters and reporting conditions of the QNC (or change threshold, rapid change threshold, change reporting threshold, and rapid change reporting threshold).
- FIG. 5 is a flowchart of a QNC configuration method provided by an exemplary embodiment of the present application. This embodiment is described by taking the method applied to the communication system shown in FIG. 1 or FIG. 2 as an example. The method includes:
- Step 420 the third core network entity sends the QNC parameters and reporting conditions to the second core network entity;
- the third core network entity is an entity in the core network responsible for policy management, such as a PCF.
- the second core network entity is an entity in the core network responsible for session management, such as an MME in a 4G system or an SMF in a 5G system.
- the third core network entity PCF sends the QNC parameters and reporting conditions to the second core network entity SMF.
- Protocol Data Unit Protocol Data Unit
- this QoS flow is called QoS Flow with Default QoS Rules (QoS Flow with Default QoS Rules).
- QoS Flow with Default QoS Rules QoS Flow with Default QoS Rules
- this QoS flow is of non-GBR type, and the third core network entity may provide the QNC parameters and reporting conditions to the second core network entity.
- the parameters of the QNC and the reporting conditions are determined by the third core network entity; or, the parameters of the QNC and the reporting conditions are determined by the third core network entity based on the service flow information sent by the application entity; or, the The parameters and reporting conditions of the QNC are determined by the third core network entity based on the subscription data of the UE.
- Step 440 the second core network entity receives the PCC rule sent by the third core network entity
- Step 460 The second core network entity sends the QNC configuration to the access network device, where the QNC configuration is used to configure the QNC parameters and reporting conditions to the access network device.
- the method provided by this embodiment can trigger the second core network entity to configure the QNC parameters and Report the conditions to complete the QNC configuration process.
- the application entity provides service flow information to the third core network entity, and the service flow information carries the QNC parameters and reporting conditions required (or suggested) by the application entity, as shown in FIG. 6 .
- the third core network entity determines QNC parameters and reporting conditions based on the QNC subscription data, as shown in FIG. 7 .
- FIG. 6 is a flowchart of a QNC configuration method provided by another exemplary embodiment of the present application. This embodiment is described by taking the method applied to the communication system shown in FIG. 1 or FIG. 2 as an example. The method includes:
- Step 412 the application entity sends the control parameters of the QNC to the third core network entity;
- the application entity AF sends service flow information to the third core network entity PCF, where the service flow information carries the control parameters of the QNC.
- control parameter of the QNC includes at least one of: whether to enable the QNC, a parameter of the QNC, and a change threshold.
- Step 420 the third core network entity sends a policy control and charging (Policy Control and Charging, PCC) rule to the second core network entity, and the PCC rule carries the control parameters of the QNC;
- Policy Control and Charging PCC
- Step 440 the second core network entity receives the PCC rule sent by the third core network entity
- Step 460 The second core network entity sends the QNC configuration to the access network device, where the QNC configuration is used to configure the control parameters of the QNC to the access network device.
- the active interaction between the application entity and the core network entity can be realized, and the application entity drives the access network equipment (such as 5G, 4G's RAN) reports rapid changes in non-GBR bearer flows, thereby opening up its network capabilities to application entities by the radio access network, providing a new way for the innovation of Internet applications.
- the access network equipment Such as 5G, 4G's RAN
- FIG. 7 is a flowchart of a QNC configuration method provided by another exemplary embodiment of the present application. This embodiment is described by taking the method applied to the communication system shown in FIG. 1 or FIG. 2 as an example. The method includes:
- Step 414 the fourth core network entity sends the QNC subscription data to the third core network entity, and the QNC subscription data carries the control parameters of the QNC;
- the fourth core network entity is a core network entity responsible for contract data management.
- the fourth core network entity adds QNC subscription data.
- the fourth core network entity sends the QNC subscription data to the second core network entity, and the second core network entity sends the QNC subscription data to the third core network entity.
- Step 420 the third core network entity sends a default QoS rule to the second core network entity, and the default QoS rule carries the control parameters of the QNC;
- Step 440 the second core network entity receives the PCC rule sent by the third core network entity PCF;
- Step 460 The second core network entity sends the QNC configuration to the access network device, where the QNC configuration is used to configure the control parameters of the QNC to the access network device.
- the third core network entity determines the control parameters of the QNC based on the subscription data of the UE, so that the 5G network can be driven to report the non-GBR bearer to the AF and/or the UE based on the subscription data of the UE. Rapid changes in flow.
- the third core network entity PCF or the application entity AF finds that the notification messages of the QNC are too frequent, a large amount of signaling is caused to the system. At this time, the third core network entity PCF or the application entity AF should modify the reporting conditions of the QNC, such as increasing the change threshold.
- FIG. 8 is a flowchart of a method for optimizing a QNC provided by an exemplary embodiment of the present application. This embodiment is described by taking the method applied to the communication system shown in FIG. 1 or FIG. 2 as an example. The method includes:
- Step 520 the third core network entity sends the updated QNC control parameters to the second core network entity when the reporting frequency of the notification message is greater than or less than the frequency threshold;
- the control parameters of the updated QNC include at least one of: whether to enable the QNC, parameters of the updated QNC, and an updated change threshold. That is, the updated control parameter of the QNC can update at least one of the QNC enabled, the QNC parameter, and the change threshold.
- the third core network entity when the reporting frequency of the notification message is greater than the frequency threshold, the third core network entity sends an instruction to disable QNC to the second core network entity; for another example, when the reporting frequency of the notification message is greater than the frequency threshold by the third core network entity , sending the reduced QNC parameters to the second core network entity; for another example, when the reporting frequency of the notification message is greater than the frequency threshold, the third core network entity PCF sends the increased change threshold to the second core network entity.
- Step 540 The second core network entity sends the QNC configuration to the access network device, where the QNC configuration carries the updated control parameters of the QNC.
- the updated control parameters of the QNC are sent to the second core network entity SMF and the access network device, so as to avoid any The system causes a large signaling overhead, or the notification mechanism of the QNC is used reasonably.
- FIG. 9 is a flowchart of a method for optimizing a QNC provided by another exemplary embodiment of the present application. This embodiment is described by taking the method applied to the communication system shown in FIG. 1 or FIG. 2 as an example. The method includes:
- Step 510 when the reporting frequency of the notification message is greater than or less than the frequency threshold, the application entity sends the updated control parameters of the QNC to the third core network entity PCF;
- the control parameters of the updated QNC include at least one of: whether to enable the QNC, parameters of the updated QNC, and an updated change threshold. That is, the updated control parameter of the QNC can update at least one of the QNC enabled, the QNC parameter, and the change threshold.
- the AF when the reporting frequency of the notification message is greater than the frequency threshold, the AF sends an instruction to disable QNC to the third core network entity PCF; for another example, when the reporting frequency of the notification message is greater than the frequency threshold, the AF sends an instruction to the third core network entity to the third core network entity
- the PCF sends the parameters of the reduced QNC; for another example, when the reporting frequency of the notification message is greater than the frequency threshold, the AF sends the increased change threshold to the third core network entity PCF.
- Step 520 the third core network entity sends the updated QNC control parameters to the second core network entity;
- Step 540 The second core network entity sends the QNC configuration to the access network device, where the QNC configuration carries the updated control parameters of the QNC.
- the AF when the reporting frequency of the notification message is greater than or less than the frequency threshold, the AF triggers the PCF to send the updated QNC control parameters to the second core network entity SMF and the access network device. , which can avoid causing a large signaling overhead to the system, or reasonably utilize the QNC notification mechanism.
- FIG. 10 is a flowchart of a method for notifying a parameter value of a QNC provided by an exemplary embodiment of the present application. This embodiment is described by taking the method applied to the communication system shown in FIG. 1 or FIG. 2 as an example. The method includes:
- Step 620 the core network entity receives a notification message from the access network device, where the notification message is used to indicate that the change of the parameter of the QNC of the non-GBR bearer stream satisfies the reporting condition, and the notification message carries the changed parameter value of the QNC;
- Step 640 The core network entity sends the changed parameter value of the QNC to the terminal;
- the SMF after receiving the notification message from the access network device, the SMF sends the changed parameter value of the QNC to the UE.
- the SMF when the SMF does not receive the new PCC rule sent by the PCF within a predetermined period of time after receiving the notification message, it sends the changed parameter value of the QNC to the terminal.
- the SMF when the SMF receives the new PCC rule sent by the PCF within a predetermined period of time after receiving the notification message, and the new PCC rule does not have any modification to the QoS configuration, it sends the changed parameter value of the QNC to the terminal.
- the changed parameter value of the QNC is transparently transmitted from the core network device to the terminal through the RAN.
- the core network entity sends a NAS message to the UE, and the terminal receives the NAS message sent by the core network entity, where the NAS message carries the changed parameter value of the QNC.
- the core network entity sends a PDU session modification command to the terminal, and the terminal receives the PDU session modification command sent by the core network entity, and the PDU session modification command carries the changed parameter value of the QCQNC.
- Step 660 The terminal controls the application program according to the changed parameter value of the QNC.
- the UE controls at least one of the calculation strategy and the traffic strategy of the application according to the changed parameter value of the QNC, so that the application adapts to the rapid change of the relevant parameters of the non-GBR bearer flow.
- the application corresponds to four SDFs: a voice SDF, a video SDF, a text message SDF, and a control plane SDF.
- Four SDFs correspond to four non-GBR QoS flows, and the QNC mechanism is enabled for the four non-GBR QoS flows respectively.
- control application In response to the parameter value of the changed QNC becoming worse, the control application is executed according to the first calculation strategy
- control application In response to the parameter value of the changed QNC becoming better, the control application is executed according to the second calculation strategy
- the computing duration of the same computing task under the first computing strategy is shorter than the computing duration under the second computing strategy.
- Compute policies are policies related to the running computation of an application.
- the calculation strategy includes, but is not limited to, at least one of an encoding/decoding method selection strategy, an encoding/decoding model selection strategy, an encoding/decoding level selection strategy, a compression level selection strategy, and a neural network model selection strategy.
- the control application uses the first encoding and decoding method to perform encoding and decoding; in response to the changed QNC parameter value becoming better, the control The application uses the second codec method to encode and decode.
- Encoding and decoding here refers to at least one of encoding and decoding.
- the computation duration of the same encoding/decoding task under the first encoding/decoding strategy is shorter than that under the second encoding/decoding strategy.
- the application program can compensate for the deterioration of the network delay by reducing the internal calculation time, and the overall transmission delay can still be kept unchanged or changed very little. For example, if the PDR of the non-GBR QoS flow corresponding to the video becomes poor, the encoding bit rate of the video is reduced to reduce the number and/or size of video data packets.
- the control application is executed according to the first traffic policy
- the control application is executed according to the second traffic policy
- the traffic of the first traffic policy is less than the traffic of the second traffic policy.
- the traffic of the application includes voice data packets and video data packets
- the first flow corresponding to the voice data packet is maintained, and the second flow corresponding to the video data packet is reduced; in response to the changed parameter value of the QNC becoming better, the corresponding For the first flow, increase the second flow corresponding to the video data packet.
- both the UE side and the AF side may change the video codec mode to reduce the number and/or size of video data packets.
- the UE adjusts the application program according to the changed parameter value of the QNC, so that when the relevant parameters of the non-GBR bearer flow become worse, or the correlation of the non-GBR bearer flow
- the UE can adjust its internal application to adapt to the parameter change, so as to optimize the operation of the application.
- the method provided by this embodiment also changes the calculation strategy of the application program when the relevant parameters of the non-GBR bearer flow become worse, and compensates for the deterioration of the network delay by reducing the calculation time inside the application program, and can still ensure the overall The transmission delay does not change or changes very little.
- the traffic policy of the application program is changed when the relevant parameters of the non-GBR bearer stream become worse, such as maintaining the traffic of voice data packets and reducing the traffic of video data packets, so as to avoid the occurrence of adverse effects on users.
- the relevant parameters of the non-GBR bearer stream become worse, such as maintaining the traffic of voice data packets and reducing the traffic of video data packets, so as to avoid the occurrence of adverse effects on users.
- the stuttering that affects the audio so as to improve the user experience when using audio and video programs as much as possible.
- the handover process is the most common factor that causes the parameters of QNC to change rapidly, so it is necessary to introduce a QNC mechanism for non-GBR bearer flows in the handover process.
- FIG. 11 is a flowchart of a method for sending a message based on a handover process in a handover process provided by an exemplary embodiment of the present application. This embodiment is described by taking the method applied to the communication system shown in FIG. 1 or FIG. 2 as an example. The method includes:
- Step 720 During the handover process, the source access network device sends the QNC control parameters of the non-GBR bearer flow to the target access network device;
- the QNC control parameter is used to indicate the QNC parameters and reporting conditions of the non-GBR bearer flow.
- Step 740 During the handover process, the target access network device receives the control parameters of the QNC;
- the target access network device enables or starts the QNC of the non-GBR bearer flow according to the control parameters of the QNC.
- Step 760 After the handover is completed, the target access network device sends a notification message to the application entity through the core network entity when the change of the parameter value of the QNC of the non-GBR bearer flow satisfies the reporting condition.
- the change of the parameter value of QNC including at least one of the following two:
- the first parameter value is the parameter value of the QNC parameter before the handover, that is, the current parameter value of the source access network device;
- the second parameter value is the parameter value of the QNC parameter after the handover, that is, the target access network.
- the current parameter value of the device is the parameter value of the QNC parameter before the handover, that is, the current parameter value of the source access network device.
- the second parameter value and the third parameter value are both parameter values of the QNC parameter after switching, and the collection time of the third parameter value is later than the second parameter value.
- the method provided in this embodiment sends the QNC control parameters of the non-GBR bearer flow from the source access network device to the target access network device. , which enables the target access network device to send a notification message to the application entity and the terminal through the core network entity when the increase/decrease of the parameters of the QNC of the non-GBR bearer flow meets the reporting conditions, so that the relevant parameters of the non-GBR bearer flow become worse
- the application entity can adjust its internal application program to adapt to the parameter change, so as to optimize the operation of the application program and the terminal.
- the source access network device sends the QNC control parameters of the non-GBR bearer flow to the target access network device through the core network entity.
- the type, number and division of core network entities may be different.
- the core network entities include: a first core network entity AMF and a second core network entity SMF.
- the process in which the source access network device sends the QNC control parameters of the non-GBR bearer flow to the target access network device through the core network entity may optionally include the following steps:
- the source access network device sends a handover request (Handover Require) to the source first core network entity AMF, and the handover request carries the control parameters of the QNC;
- the source first core network entity AMF sends a create UE context request (Namf_Communication_CreateUEContext) to the target first core network entity AMF, and the create UE context request carries the control parameters of the QNC;
- the target first core network entity AMF sends an update session context request (Nsmf_PDUSession_UpdateSMContext) to the second core network entity SMF, and the update session context request carries the control parameters of the QNC;
- the second core network entity SMF sends an update session context response (Nsmf_PDUSession_UpdateSMContext response) to the target first core network entity AMF, and the update session context response carries the control parameters of the QNC;
- the target first core network entity AMF sends a handover command (Handover Request) to the target access network device, and the handover command carries the control parameters of the QNC.
- the control parameters of the QNC can be carried in the source-to-end transparent transmission container.
- the source-to-end transparent transmission container is a field that is transparently transmitted in a handover request, a UE context creation request, a session context update request, a session context update response, and a handover command.
- FIG. 12 is a flowchart of a method for sending a message based on a handover process provided by an exemplary embodiment of the present application. This embodiment is described by taking the method applied to the communication system shown in FIG. 1 or FIG. 2 as an example. The method includes:
- Step 722 During the handover process, the source access network device sends the QNC control parameters of the non-GBR bearer flow and the first parameter value to the target access network device;
- the source access network device not only sends the control parameters of the QNC to the target access network device, but also sends the first parameter value to the target access network device at the same time. previous parameter value.
- control parameters of the QNC and the first parameter value may be sent in the same message, or may be sent in different messages.
- the present application takes the control parameter of the QNC and the first parameter value sent in the same message as an example for illustration.
- the source access network device sends the QNC control parameter and the first parameter value of the non-GBR bearer flow to the target access network device through the core network entity.
- the type, number and division of core network entities may be different.
- the core network entities include: a first core network entity AMF and a second core network entity SMF.
- the process of the source access network device sending the QNC control parameters of the non-GBR bearer flow and the first parameter value to the target access network device through the core network entity may optionally include the following steps:
- the source access network device sends a handover request to the source first core network entity AMF, and the handover request carries the control parameters of the QNC;
- the source first core network entity AMF sends a request to create a UE context to the target first core network entity AMF, and the request to create a UE context carries the control parameters of the QNC and the first parameter value;
- the target first core network entity AMF sends an update session context request to the second core network entity SMF, and the update session context request carries the control parameter of the QNC and the first parameter value;
- the second core network entity SMF sends an update session context response to the target first core network entity AMF, and the update session context response carries the control parameter of the QNC and the first parameter value;
- the target first core network entity AMF sends a handover command to the target access network device, where the handover command carries the control parameters of the QNC and the first parameter value.
- control parameters of the QNC and the first parameter value are carried in a source-to-end transparent transmission container.
- the source-to-end transparent transmission container is a field that is transparently transmitted in a handover request, a UE context creation request, a session context update request, a session context update response, and a handover command.
- Step 742 During the handover process, the target access network device receives the control parameters of the QNC and the first parameter value;
- the handover command may also carry the QNC control parameters sent by the second core network entity SMF to the target access network device.
- control parameters of the two groups of QNCs are carried in different fields of the handover command.
- the control parameters of the QNC sent by the source access network device to the target access network device are carried in the source-to-end transparent transmission container of the handover command; the QNC sent by the second core network entity SMF to the target access network device
- the control parameters are carried in the handover command.
- control parameters of the two groups of QNCs are the same. However, if the control parameters of the two groups of QNCs are inconsistent, the target access network device preferentially takes the control parameters of the QNC sent by the second core network entity SMF to the target access network device.
- Step 762 After the handover is completed, when the change from the first parameter value to the second parameter value satisfies the reporting condition, the target access network device sends a notification message to the application entity through the core network entity.
- the first parameter value is the parameter value of the QNC parameter before switching
- the second parameter value is the parameter value of the QNC parameter after switching.
- the target access network device by sending the first parameter value of the non-GBR bearer flow from the source access network device to the target access network device, the target access network device can switch the non-GBR bearer flow to the target access network device.
- the increase/decrease of the parameters of the QNC before and after the handover is monitored.
- the target access network device sends a notification message to the application entity and the terminal through the core network entity, so that in the non-GBR
- the application entity can adjust its internal application program to adapt to the change of the parameter, so as to achieve the improvement of the application and the The operation of the terminal is optimized.
- the source access network device or a certain access network device in the source access network device does not support QNC for non-GBR bearer streams, but the target access network device supports non-GBR bearer streams.
- the QNC the following embodiments, as shown in Figure 13:
- Step 730 the core network entity sends the QNC control parameters of the non-GBR bearer flow to the target access network device during the handover process;
- the core network entity may add QNC control parameters to the handover command.
- the SMF adds the control parameter of the QNC to the QoS establishment request entry of the handover command.
- the control parameters of the QNC include: whether to enable the QNC, parameters of the QNC, and reporting conditions.
- Step 740 During the handover process, the target access network device receives the control parameters of the QNC;
- the target access network device enables or starts the QNC of the non-GBR bearer flow according to the control parameters of the QNC.
- Step 760 After the handover is completed, the target access network device sends a notification message to the application entity through the core network entity when the change from the second parameter value to the third parameter value meets the reporting condition.
- the second parameter value and the third parameter value are both parameter values of the QNC parameter after switching, and the collection time of the third parameter value is later than the second parameter value.
- the core network entity sends the control parameters of the QNC of the non-GBR bearer flow to the target access network device, in the case that the source access network device does not support the QNC of the non-GBR bearer flow.
- the target access network device can also be triggered to perform QNC control on the non-GBR bearer flow. Therefore, the QNC control of the non-GBR bearer flow can be introduced in the switching scenario where the parameters of QNC are most likely to change rapidly, and the control of the application program can be enhanced. , so that the application can better adapt to network changes.
- the steps performed by the above access network device can be implemented independently as an embodiment on the access network device side; the steps performed by the above core network entity can be implemented independently as an embodiment on the core network side; the steps performed by the above application entity, It can be independently implemented as an embodiment on the application entity side, which will not be repeated in this application.
- the base station When the network where the UE is located changes, that is, the base station detects that the radio resources change rapidly (become better or worse). When the change reaches the change threshold defined by the QNC, the RAN will trigger the notification process of the QNC and send a notification message to the AF.
- the notification message carries the parameter value (current parameter value) of the changed QNC parameter.
- the base station first sends the notification message to the SMF, then the SMF sends the notification message to the PCF, and the PCF sends the notification message to the AF.
- FIG. 14 shows a schematic diagram of a UE or network-requested PDU session modification (for non-roaming and local grooming roaming) process provided by an exemplary embodiment of the present application.
- step 1e the RAN sends an N2 message (PDU session ID, SM information) to the AMF, and the AMF sends a Namf_PDUSession_UpdateSMContext message to the SMF.
- N2 message PDU session ID, SM information
- the two messages carry a notification message.
- the notification message also carries the transformed parameter value of the QNC.
- step 2 the SMF initiates the SM policy association modification process, and sends a notification message to the PCF and the AF.
- step 5 the SMF sends a PDU session modification command to the UE, and sends the changed parameter value of the QNC to the UE.
- the SMF sends the notification message to the SMF.
- the UE initiates a PDU session modification command to notify the UE of the parameter values (PDB, PER, CBR) of the current QCQNC of the QFI corresponding to the current QNC.
- step 9 the UE responds with a PDU session modification confirmation.
- the PDU session modification command and the PDU session modification confirmation are transparently transmitted between the UE and the SMF through the RAN.
- FIG. 15 The SM policy association modification process shown in the above step 2 is defined by FIG. 15 . As shown in Figure 15:
- step 1 the SMF sends an Npcf_SMPolicyControl_Update request to the PCF, and the request carries a notification message.
- step 2 the PCF sends an event report Npcf_PolicyAuthorizationNotify request to the AF, and the event report carries a notification message.
- FIG. 16 shows a schematic diagram of an Xn-based inter-NG-RAN handover process without UPF reallocation provided by an exemplary embodiment of the present application.
- the source NG-RAN sends to the target NG-RAN the QNC control parameters of the non-GBR bearer stream on the source side and the first parameter value of the QNC, that is, the current parameter value of the QNC parameter before the handover.
- step 1 the target NG-RAN sends an N2 path switching request to the AMF, the request carrying a notification message, and the notification message can optionally carry the parameter value (second parameter value) of the QNC after the handover;
- the target NG-RAN determines whether a notification message needs to be reported.
- the QoSFlowAcceptedItem field in the N2 path switching request may include the transformed parameter value of the QNC on the target NG-RAN.
- the message structure of the N2 path switching request is shown in FIG. 17 .
- step 2 the AMF sends an Nsmf_PDUSession_UpdateSMContext request to the SMF, where the request carries a notification message, and the notification message optionally carries a parameter value (second parameter value) of the QNC after the handover.
- the SMF reports the notification message to the PCF and the AF based on the flow shown in FIG. 13 and FIG. 14 .
- FIG. 18 shows a schematic diagram of an NG-RAN node-based N2 handover process provided by an exemplary embodiment of the present application.
- step 5 the target NG-RAN sends a handover notification to the target AMF, the handover notification carries a notification message, and the notification message optionally carries the parameter value (second parameter value) of the QNC on the target NG-RAN after handover.
- the target NG-RAN determines whether a notification message needs to be reported. When reporting is required, the notification message may be carried in the handover notification.
- step 7 the AMF sends an Nsmf_PDUSession_UpdateSMContext request to the SMF, where the request carries a notification message, and the notification message optionally carries the parameter value (second parameter value) of the QNC after the handover.
- the SMF reports the notification message to the PCF and the AF based on the flow shown in FIG. 14 and FIG. 15 .
- FIG. 19 shows a schematic diagram of a process of establishing a PDU session requested by a UE according to an exemplary embodiment of the present application.
- the SMF sends the SM policy association establishment request message or the SM policy association modification request message to the PCF; accordingly, the PCF sends the SM policy association establishment response message to the SMF, or the SM policy association modification response message initiated by the SMF , the message carries the control parameters of the QNC.
- a QoS flow (usually the first one) will be established, this QoS flow is called a QoS flow based on the default QoS rules (no longer similar to the default bearer of 4G, 5G no longer uses the default QoS flow to name).
- this default QoS rule is of non-GBR type, then the PCF can include the control parameters of the QNC in the PCC rule. Then in step 7b or 9 of FIG. 18 , if the 5QI in the Default QoS Rule provided by the PCF is of NGBR type, the PCF can provide the control parameters of QCQNC to the SMF.
- the SMF sends a Namf_Communication_N1N2 information conversion message to the AMF, and the message carries the QNC configuration according to the control parameters of the QCQNC provided by the PCF.
- the subscription data of the UE includes the default 5QI and the default ARP. If the default 5QI is of NGBR type, QNC subscription data is added.
- the UDM provides the message containing the QNC subscription data to the SMF, then the SMF provides the QNC subscription data to the PCF, and then the default QoS rules provided by the PCF contain the control parameters of the QNC.
- the PDU session establishment procedure can be used for PDU session handover from N3GPP to 3GPP. If in step 7b or step 9, the PCF provides the control parameters of the QNC for any non-GBR QoS flow, then the control parameters of the QNC are added in steps 11 and 12 similar to the previous.
- step 11 includes the control parameters of the QNC.
- FIG. 20 shows a flow chart of a PDU session establishment process requested by a UE for a home routing roaming scenario provided by an exemplary embodiment of the present application.
- a QoS flow (usually the first one) will be established, this QoS flow is called a QoS flow based on the default QoS rules (no longer similar to the default bearer of 4G, 5G no longer uses the default QoS flow to name).
- this default QoS rule is of non-GBR type
- the PCF can include the control parameters of the QNC in the PCC rule. Then, in the message of step 9b or 11 in FIG. 19 , if the 5QI in the default QoS rule provided by the PCF is of non-GBR type, the PCF can provide the control parameters of the QNC. Then, in the messages in steps 13, 14 and 15, the QNC configuration is added.
- the subscription data of the UE includes the default 5QI and the default ARP. If the default 5QI is of NGBR type, QNC subscription data is added.
- step 7 step 9b and step 11
- the UDM provides the subscription data containing the QNC to the SMF
- the SMF provides the subscription data of the QNC to the PCF
- the default QoS rules provided by the PCF contain the control parameters of the QNC.
- FIG. 21 shows a schematic diagram of the process of transferring an AF request for a single UE address to a related PCF provided by an exemplary embodiment of the present application.
- FIG. 22 shows a schematic diagram of a PDU session modification process requested by a UE or a network for non-roaming and local grooming roaming provided by an exemplary embodiment of the present application.
- the AF sends the Npcf_PolicyAuthorization_Create/Update message to the PCF, and the QNC control parameters are added to the (one or more) media component (Media Component) information contained in the message.
- the media component contains the control parameters of QNC, the media is requested to be transmitted on the NGBF; if the media component does not contain the QCQNC parameters, it indicates that the media can be transmitted on the NGBF or It is transmitted on the GBR quality of service data flow (GBR QoS Flow, GBF).
- step 1b of Figure 22 the PCF sends a Npcf_SMPolicyControlUpdateNotify request message.
- the control parameters of the QNC are added to the PCC rules of the (one or more) service data flows (Service Data Flow, SDF, one SDF corresponds to one media flow provided by the AF).
- control parameters including the QNC are carried in the messages in steps 3b and 4 of FIG. 22 .
- FIG. 23 shows a schematic diagram of a PDU session modification process requested by a UE or a network for home routing roaming provided by an exemplary embodiment of the present application.
- step 1b step 3, step 4b and step 5 of Figure 23, one or more control parameters of the QNC (ie each possible service flow, SDF, QoS Flow) are added.
- Step 3 in FIG. 23 is a new step relative to the scenario described in FIG. 21 , that is, adding the control parameters of the QNC to the QoS parameters of one or more QoS flows.
- FIG. 24 shows a schematic diagram of a handover procedure in a base station provided by an exemplary embodiment of the present application.
- FIG. 25 shows a schematic diagram of the Xn-based inter-NG-RAN handover process without UPF reallocation provided by the present application.
- step 1 of Fig. 24 the control parameters of the non-GBR bearer flow QNC are added. Since there may be multiple QoS flows in the same UE, for any QoS flow in which the control parameters of the QNC exist in the source gNB, the control parameters of the QNC need to be provided to the target gNB.
- the first parameter value is carried in the handover command, such as the QoSFlowsToBeSetup-Item field shown in FIG. 26 .
- the source gNB also needs to report the parameter values corresponding to each parameter of the QNC on the current source side, that is, the first parameter value.
- the resource status of the target gNB may be much better or worse than the resource status of the source gNB.
- the target gNB can determine whether it can report the notification information.
- control parameter of the QNC is added in the handover request in step 1; the control parameter of the QNC is added in the handover command in step 9.
- Figure 28 shows the message structure diagram of the source-to-end transparent transmission container in the handover request, and the first parameter value is carried in the source-to-end transparent transmission container;
- Figure 29 shows the QoSFlowSetupRequestItem field in the handover command, QNC The control parameters can be carried in this request field.
- the source gNB also needs to report each value corresponding to the parameter of the QNC on the current source side, that is, the first parameter value.
- the resource status of the target gNB is much better or worse than the resources of the source gNB.
- the target gNB can determine whether the notification message can be reported. Therefore, in steps 1, 3, 4, 7, and 9 in the left figure, the current values of the parameters of the QNC of all QoS flows on the source NG-RAN are added.
- Figure 30 shows a schematic diagram of the handover flow (non-roaming and local grooming roaming) of a PDU session procedure from untrusted non-3GPP to 3GPP access.
- Figure 31 shows a schematic diagram of handover from EPC/ePDG to 5GS.
- switching from 5G non-3GPP to 5GS or 4G non-3GPP to 5GS uses the PDU session establishment process, which is defined in the above embodiment. Therefore, the processing of the QNC in the non-3GPP to 3GPP handover process can be implemented only by reusing the above-mentioned embodiments.
- Figure 32 shows the preparation phase of single registration based interworking from EPS to 5GS procedure.
- the processing method of this embodiment is similar to Figure 27, only steps 2 and 3 need to be modified to the response messages in the 5G system, that is, when switching from 4G to 5GS, if 4G also supports QNC, the 4G protocol needs to be updated. .
- the technology proposed in the embodiments of this application can be applied to a 4G system.
- NR-gNB When applied to 4G system, NR-gNB is replaced by eNB.
- the interaction between PCF and AF does not make any changes.
- the interaction between SMF and PCF is modified to the interaction between PGW and PCF.
- 5G's QoS Flow is replaced by 4G's EPS Bearer.
- 5QI of 5G is replaced by 4G QCI.
- the interaction between RAN and AMF/SMF in 5G is replaced by the interaction between RAN and MME in 4G.
- FIG. 33 shows a block diagram of an apparatus for notifying a Qos change provided by an exemplary embodiment of the present application.
- the apparatus can be implemented as a part of the access network equipment.
- the device includes:
- the sending module 920 is configured to send a notification message to the application entity through the core network entity when the change of the parameter of the QNC of the non-GBR bearer flow meets the reporting condition, so that the application entity controls the application program according to the notification message.
- the parameters of the QNC include at least one of the following:
- the parameters of the QNC include at least two kinds;
- the reporting conditions corresponding to at least two kinds of the parameters are the same; and/or the reporting conditions corresponding to at least two kinds of the parameters are different.
- the reporting condition includes at least one of the following:
- the change value of the parameter of the QNC in the first time period is greater than the first threshold
- the rate of change of the parameter of the QNC in the second time period is greater than the second threshold
- the change value of the parameter of the QNC within the first time period is greater than the first threshold, and the third threshold is continuously maintained;
- the rate of change of the parameter of the QNC within the second time period is greater than the second threshold, and continues to maintain the fourth threshold;
- the third threshold and the fourth threshold are thresholds used to measure the holding time.
- the notification message includes:
- the non-GBR bearer flow includes:
- a non-GBR QoS flow; or, a non-GBR EPS bearer A non-GBR QoS flow; or, a non-GBR EPS bearer.
- the QNC is defined in the uplink; or, the QNC is defined in the downlink; or, the QNC is defined in the uplink and the downlink.
- the target service flow is a service flow including the QNC and parameters of the QNC.
- the sending module 920 is configured to send the notification message to a core network entity, so that the core network entity sends the notification message to the application entity.
- the core network entity includes a first core network entity and a second core network entity
- the sending module 920 is configured to send the notification message to the first core network entity, so that the first core network entity forwards the notification message to the second core network entity.
- the device further includes:
- the receiving module 940 is configured to receive the QNC configuration sent by the core network entity, where the QNC configuration includes the QNC parameters of the non-GBR bearer flow and the reporting condition.
- the receiving module 940 is configured for the access network device to receive an N2PDU session request sent by the core network entity, where the N2PDU session request carries the QNC configuration.
- FIG. 34 shows a schematic structural diagram of a network element device provided by an embodiment of the present application.
- the network element device can be used to execute the control method for the above application program.
- the network element device 3400 may include: a processor 3401 , a receiver 3402 , a transmitter 3403 , a memory 3404 and a bus 3405 .
- the processor 3401 includes one or more processing cores, and the processor 3401 executes various functional applications and information processing by running software programs and modules.
- the receiver 3402 and the transmitter 3403 may be implemented as a transceiver 3406, which may be a communication chip.
- the memory 3404 is connected to the processor 3401 through the bus 3405.
- the memory 3404 can be used to store a computer program, and the processor 3401 is used to execute the computer program to implement various steps performed by the network element device, access network device, core network element or core network entity in the above method embodiments.
- the transmitter 3403 is used to perform the steps related to sending in the above embodiments; the receiver 3402 is used to perform the steps related to receiving in the above embodiments; the processor 3401 is used to perform the steps except sending and receiving in the above embodiments. Steps other than the receiving step.
- the memory 3404 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, and the volatile or non-volatile storage device includes but is not limited to: RAM (Random-Access Memory, random access memory) and ROM (Read-Only Memory), EPROM (Erasable Programmable Read-Only Memory, Erasable Programmable Read-Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory, Electrically Erasable Programmable Read-Only Memory) memory), flash memory or other solid-state storage technology, CD-ROM (Compact Disc Read-Only Memory), DVD (Digital Video Disc, high-density digital video disc) or other optical storage, tape cassettes, magnetic tapes, magnetic disks storage or other magnetic storage devices.
- RAM Random-Access Memory, random access memory
- ROM Read-Only Memory
- EPROM Erasable Programmable Read-Only Memory
- EEPROM Electrically Erasable Programmable Read-Only Memory
- flash memory or other solid-
- a network element device in an exemplary embodiment, includes: a processor and a memory, the memory stores a computer program, and the computer program is loaded and executed by the processor to implement The notification method of the QoS change as described above.
- the network element device is an access network device.
- the present application further provides a computer-readable storage medium, where at least one instruction, at least one piece of program, code set or instruction set is stored in the storage medium, the at least one instruction, the at least one piece of program, the code set or The instruction set is loaded and executed by the processor to implement the notification method of QoS change provided by the above method embodiments.
- the present application also provides a computer program product, wherein the computer program product includes computer instructions, and the computer instructions are stored in a computer-readable storage medium.
- the processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the QoS change notification method provided by the above aspects.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供了一种QoS变化的通知方法、装置、设备及存储介质,属于移动通信领域。方法包括:接入网设备在非GBR承载流的QNC的参数的变化满足上报条件时,通过核心网实体向应用实体发送通知消息(320),以便应用实体根据通知消息控制应用程序(340)。本申请提供了一种针对非GBR承载流的QNC机制。
Description
本申请要求申请号2021102144021,申请日2021年02月25日,发明名称为“QoS变化的通知方法、装置、设备及介质”的中国申请的优先权,其全部内容引用在本申请中。
本申请实施例涉及移动通信领域,特别涉及一种服务质量(Quality of Service,QoS)变化的通知方法、装置、设备及介质。
在第五代(5th-Generation,5G)移动通信技术中,按照QoS流(QoS Flow)为单位进行QoS控制。
按照承载类型进行区分,QoS流分为保证比特速率(Guaranteed Bit Rate,GBR)和非保证比特速率(Non-Guaranteed Bit Rate,非GBR)两种。对于GBR的QoS流,在网络资源紧张的情况下,相应的比特速率也能够保证;对于非GBR的QoS流,在网络资源紧张的情况下,需要承受降低速率的要求。
目前90%以上的业务流量都是非GBR QoS流,比如常见的音视频通话以及在线会议等。因为无线网络状态的变化经常会造成音视频通信的卡顿出现,因此需要对非GBR QoS流的QoS控制进行优化。
发明内容
本申请提供了一种QoS变化的通知方法、装置、设备及介质,提供了一种针对非GBR QoS流的QNC机制,能够使得应用实体感知到无线网络状态的变化。所述技术方案如下:
根据本申请的一方面,提供了一种QoS变化的通知方法,所述方法包括:
接入网设备在非GBR承载流的QoS通知控制(QoS Notification Control,QNC)的参数的变化满足上报条件时,通过核心网实体向应用实体发送通知消息。
根据本申请的另一方面,提供了一种QoS变化的通知装置,所述装置包括:
发送模块,用于在非GBR承载流的QNC的参数的变化满足上报条件时,通过核心网实体向应用实体发送通知消息。
根据本申请的一个方面,提供了一种网元设备,所述网元设备包括:处理器和存储器,所述存储器存储有计算机程序,所述计算机程序由所述处理器加载并执行以实现如上所述的QoS变化的通知方法。可选地,该网元设备是接入网设备。
根据本申请的另一方面,提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序由处理器加载并执行以实现如上所述的QoS变化的通知方法。
根据本申请的另一方面,提供了一种计算机程序产品,所述计算机程序产品包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述方面提供的QoS变化的通知方法。
根据本申请的另一方面,提供了一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时用于实现如上所述的QoS变化的通知方法。
本申请实施例提供的技术方案带来的有益效果至少包括:
在非GBR承载流的QNC的参数的增加/减少满足上报条件时,通过核心网实体向应用实体发送通知消息,从而针对非GBR承载流提供了QNC机制,使得应用实体能够获知非GBR承载流的无线网络状态的变化。
图1示出了本申请一个示例性实施例提供的移动通信系统的结构框图;
图2示出了本申请另一个示例性实施例提供的通信系统的结构框图;
图3示出了本申请一个示例性实施例提供的QoS变化的通知方法的流程图;
图4示出了本申请另一个示例性实施例提供的QoS变化的通知方法的流程图;
图5示出了本申请一个示例性实施例提供的QNC的配置方法的流程图;
图6示出了本申请另一个示例性实施例提供的QNC的配置方法的流程图;
图7示出了本申请另一个示例性实施例提供的QNC的配置方法的流程图;
图8示出了本申请一个示例性实施例提供的QNC的优化方法的流程图;
图9示出了本申请另一个示例性实施例提供的QNC的优化方法的流程图;
图10示出了本申请一个示例性实施例提供的QNC的参数值的通知方法的流程图;
图11示出了本申请一个示例性实施例提供的切换过程中的QoS变化的通知方法的流程图;
图12示出了本申请另一个示例性实施例提供的切换过程中的QoS变化的通知方法的流程图;
图13示出了本申请另一个示例性实施例提供的切换过程中的QoS变化的通知方法的流程图;
图14示出了本申请的一个示例性实施例提供的UE或网络请求的PDU会话修改(用于非漫游和本地疏导漫游)流程的示意图;
图15示出了本申请一个示例性实施例提供的SM策略关联修改流程的示意图;
图16示出了本申请一个示例性实施例提供的没有UPF重新分配的基于Xn的NG-RAN间切换流程的示意图;
图17示出了本申请一个示例性实施例提供的N2路径切换请求的消息结构的示意图;
图18示出了本申请一个示例性实施例提供的基于NG-RAN节点的N2切换流程的示意图;
图19示出了本申请一个示例性实施例提供的UE请求的PDU会话建立流程的示意图;
图20示出了本申请一个示例性实施例提供的用于归属路由漫游场景的UE请求的PDU会话建立流程的流程图;
图21示出了本申请一个示意性实施例提供的针对单个UE地址的AF请求转移到相关PCF流程的示意图;
图22示出了本申请一个示例性实施例提供的用于非漫游和本地疏导漫游的UE或网络请求的PDU会话修改流程的示意图;
图23示出了本申请一个示例性实施例提供的用于归属路由漫游的UE或网络请求的PDU会话修改流程的示意图;
图24示出了本申请一个示例性实施例提供的基站内的切换程序的示意图;
图25示出了本申请另一个示例性实施例提供的没有UPF重新分配的基于Xn的NG-RAN间切换流程的示意图;
图26示出了本申请一个示例性实施例提供的切换命令的消息结构图;
图27示出了本申请另一个示例性实施例提供的基于XG-RAN节点N2的切换流程的示意图;
图28示出了本申请一个示例性实施例提供的切换请求的消息结构图;
图29示出了本申请另一个示例性实施例提供的切换命令的消息结构图;
图30示出了本申请一个示例性实施例提供的从不可信的非3GPP到3GPP接入的PDU会话过程的切换流程(非漫游和本地疏导漫游)的示意图;
图31示出了本申请一个示例性实施例提供的从EPC/ePDG切换到5GS的切换示意图;
图32示出了本申请一个示例性实施例提供的从EPS到5GS过程的基于单一注册的互通的准备阶段的示意图;
图33示出了本申请一个示例性实施例提供的QoS变化的通知装置的框图;
图34示出了本申请一个示例性实施例提供的网元设备的框图。
图1示出了本申请一个示例性实施例提供的移动通信系统的架构示意图。如图1所示,该系统架构100可以包括:用户设备(User Equipment,UE)、无线接入网(Radio Access Network,RAN)、核心网(Core)和数据网络(Data Network,DN)构成。其中,UE、RAN、Core是构成架构的主要成分,逻辑上它们可以分为用户面和控制面两部分,控制面负责移动网络的管理,用户面负责业务数据的传输。在图1中,NG2参考点位于RAN控制面和Core控制面之间,NG3参考点位于RAN用户面和Core用户面之间,NG6参考点位于Core用户面和数据网络之间。
UE:是移动用户与网络交互的入口,能够提供基本的计算能力、存储能力,向用户显示业务窗口,接受用户操作输入。UE会采用下一代空口技术,与RAN建立信号连接、数据连接,从而传输控制信号和业务数据到移动网络。
RAN:类似于传统网络里面的基站,部署在靠近UE的位置,为小区覆盖范围的授权用户提供入网功能,并能够根据用户的级别,业务的需求等使用不同质量的传输隧道传输用户数据。RAN能够管理自身的资源,合理利用,按需为UE提供接入服务,把控制信号和用户数据在UE和核心网之间转发。
Core:负责维护移动网络的签约数据,管理移动网络的网元,为UE提供会话管理、移动性管理、策略管理、安全认证等功能。在UE附着的时候,为UE提供入网认证;在UE有业务请求时,为UE分配网络资源;在UE移动的时候,为UE更新网络资源;在UE空闲的时候,为UE提供快恢复机制;在UE去附着的时候,为UE释放网络资源;在UE有业务数据时,为UE提供数据路由功能,如转发上行数据到DN;或者从DN接收UE下行数据,转发到RAN,从而发送给UE。
DN:是为用户提供业务服务的数据网络,一般客户端位于UE,服务端位于数据网络。数据网络可以是私有网络,如局域网,也可以是不受运营商管控的外部网络,如Internet,还可以是运营商共同部署的专有网络,如为了配置IP多媒体网络子系统(IP Multimedia Core Network Subsystem,IMS)服务。
图2是在图1的基础上确定的详细架构,其中核心网用户面包括用户面功能(User Plane Function,UPF);核心网控制面包括认证服务器功能(Authentication Server Function,AUSF)、接入和移动管理(Access and Mobility Management Function,AMF)、会话管理(Session Management Function,SMF)、网络切片选择功能(Network Slice Selection Function,NSSF)、网络开放功能(Network Exposure Function,NEF)、网络功能仓储功能(NF Repository Function,NRF)、统一数据管理(Unified Data Management,UDM)、策略控制功能(Policy Control Function,PCF)、应用功能(Application Function,AF)。这些功能实体的功能如下:
UPF:根据SMF的路由规则执行用户数据包转发;
AUSF:执行UE的安全认证;
AMF:UE接入和移动性管理;
SMF:UE会话管理;
NSSF:为UE选择网络切片;
NEF:以API接口的方式向第三方开放网络功能;
NRF:为其他网元提供网络功能实体信息的存储功能和选择功能;
UDM:用户签约上下文管理;
PCF:用户策略管理;
AF:用户应用管理。
在图2所示架构中,N1接口为UE与AMF之间的参考点;N2接口为RAN和AMF的参考点,用于NAS消息的发送等;N3接口为RAN和UPF之间的参考点,用于传输用户面的数据等;N4接口为SMF和UPF之间的参考点,用于传输例如N3连接的隧道标识信息、数据缓存指示信息,以及下行数据通知消息等信息;N6接口为UPF和DN之间的参考点,用于传输用户面的数据等。NG接口:无线接入网和5G核心网之间的接口。
需要说明的是,图1和图2中的各个网元之间的接口名称只是一个示例,具体实现中接口的名称可能为其他的名称,本申请实施例对此不作具体限定。图1和图2中包括的各个网元(比如SMF、AF、UPF等)的名称也仅是一个示例,对网元本身的功能不构成限定。在5GS以及未来其它的网络中,上述各个网元也可以是其他的名称,本申请实施例对此不作具体限定。例如,在6G网络中,上述各个网元中的部分或全部可以沿用5G中的术语,也可能采用其他名称,等等,在此进行统一说明,以下不再赘述。此外,应理解,上述各个网元之间的所传输的消息(或信令)的名称也仅仅是一个示例,对消息本身的功能不构成任何限定。
在本申请实施例中,为非GBR QoS流定义了快速变化的QoS通知控制(Quick Change QoS Notification Control,QCQNC)机制。QCQNC机制是QoS通知控制(QoS Notification Control,QNC)的一种,可简称为QNC。在本申请实施例提供的QCQNC机制中,接入网在检测到非GBR QoS流的至少一个QoS参数发生快速变化时,向SMF发送快速变化通知。SMF向PCF、AF以及UE发送快速变化通知。AF和UE在接收到快速变化通知后,对自身内部的应用程序进行调整,使得应用程序来适应该变化,以防止卡顿等影响业务体验质量(Quality of Experience,QoE)的现象出现。
QoS流是PUD会话中最小的QoS区分粒度。5G系统中使用QoS流ID(QoS Flow Identifier,QFI)来区分QoS流。QoS流被SMF控制,可以预配置或者在PDU会话建立流程中建立,或者在PDU会话修改流程中修改。
在本申请实施例中,为非GBR QoS流定义了如下的QoS特性:
·5G QoS标识(5G QoS Identifier,5QI)、分配和维持优先级(Allocation and Retention Priority,ARP)、反射QoS特性(Reflective QoS Attribute,RQA)。
·且对应于非GBR QoS流的5QI,只定义了如下的QoS特性:
·资源类型(Resource Type);
分为:GBR、时延关键GBR或非GBR。
·优先级(Priority Level);
·分组数据时延(Packet Delay Budget,PDB);
分组数据时延(预算),包含核心网的分组时延。
·分组误码率(Packet Error Rate,PER)。
在这4个QoS特性中,前面的两个参数资源类型和优先级是定义5QI的特性,而后面的两个参数PDB和PER则是定义5QI的性能。
在本申请实施例中,提出QoS QNC的Profile(特性)是有关非GBR QoS流(Non GBR QoS Flow,NGBF)的三个参数PDB,PER及当前传输速率(Current Bit Rate,CBR)。当RAN检测到这三个参数中的任何一个参数值增加或减少一个变化率(或,增加或减少一个变化值)超过了一个变化门限(由于不同的参数的性质不一样,对于每个参数,其对应的变化率或变化值都是不同的),则向SMF发送通知消息,并且通知所有参数变化的参数值或变化率或变化值。SMF向PCF发送通知消息,PCF向AF发送通知消息,AF对应的应用程序则作相应的调整。同时SMF通过NAS消息向UE发送通知消息,UE对应的应用程序也可以有作相应的调整,从而实现了网络与应用的交互,实现了业务传输的优化,解决网络出现 拥塞时的卡顿,或当网络条件变好之后,应用程序仍然使用非常低的传输速率,不能充分利用网络资源,却不能提升用户的体验。
在一个实施例中,参数变化的定义有两种:
1、变化值;
在参数值从A变化到B时,定义B-A为变化值。需要注意的是,假设参数值从A变化到B时的变化值为第一变化值,从B变回到A时的变化值为第二变化值,则第一变化值和第二变化值的幅值相同(不考虑正负)。
2、变化率。
在一种可能的设计中,在参数值从A变化到B时,定义(B-A)/A为变化值。需要注意的是,假设参数值从A变化到B时的变化率为第一变化率(B-A)/A,从B变回到A时的变化率为第二变化率(A-B)/B,则第一变化率和第二变化率的幅值相同(不考虑正负)。
即(B-A)/A不等于(A-B)/B的幅值(假设B>A>0)。因此在上述定义中,参数值A上升30%到参数值B后,然后参数值B下降30%之后,并不是恢复到参数值A。
在另一种可能的设计中,为了让同一参数值在先上升30%再下降30%后,是表示恢复到同一参数值,则将变化率统一定义为参数值变化前后的(较大值–较小值)/较小值,或变化率统一定义为参数值变化前后的(较大值–较小值)/较大值,或变化率统一定义为参数值变化前后的(较大值–较小值)/一固定值。其中,较大值是变化前后的参数值中绝对值较大的一个,较小值是变化前后的参数值中绝对值较小的一个,固定值是事先确定的一个数值不变的值。这样,参数值A先上升30%,再下降30%时,则恢复到原参数值A了。
在一个实施例中,提供了如下通信协议:
QoS配置(QoS Profile)
一个QoS流是GBR或非GBR受其QoS配置决定。QoS流的QoS配置被发送至(R)AN,包含以下QoS参数(QoS参数的详细信息在通信协议TS23.501的5.7.2小节定义)。
-每一个QoS流,QoS配置要包含的QoS参数;
-5QI;和,
-ARP;
-仅对每个非GBR的QoS流,QoS配置可以还包含的QoS参数:
-QCQNC;
-RQA;
-仅对每个GBR的QoS流,QoS配置可以还包含的QoS参数:
-保证的流比特率(Guaranteed Flow Bit Rate,GFBR)-上行和下行,和,
-最大流比特率(Maximum Flow Bit Rate,MFBR)-上行和下行;和,
-仅对GBR QoS流,QoS配置可以还包含一个或者更多的QoS参数;
-通知控制;
-最大丢包率-上行和下行。
在一个实施例中,提供了QoS快速变化通知控制配置(QoS Quick Change Notification Control Profile)。
QoS快速变化通知控制配置是为启用快速变化通知控制的非GBR QoS流提供的。如果相应的PCC规则包含相关信息(如通信协议TS 23.503中所述),则SMF除QoS配置文件外,还应向NG-RAN提供快速变化通知控制配置。如果SMF向NG-RAN提供了快速变化通知控制配置(如果相应的策略控制和计费(Policy and Charging Control Rule,PCC)规则信息发生了变化),则NG-RAN将用它替换之前存储的配置。
快速变化通知控制配置表示任何QoS参数PDB,PER和检测到的CBR(当前比特率)的快速变化,这将有助于应用程序根据变化后的QoS参数来控制应用程序流量。快速变化通知控制配置表示(PDR,PER,CBR)在短时间内的(20%,10%,30%)快速变化(增加或减少),并且变化后的新值能够持续保持,即这种快速变化不是由于突发冲击干扰等原因所造成了短而快的刺峰。
注意:快速变化通知控制配置可以是PDB,PER,CBR的任何变化组合,例如,快速变化通知控制配置可以将增加(或减少)的PDR设置为20%;也可以是增加(或减少)的PDR和PER设置为20%,增加(或减少)的CBR为10%;或者增加(或减少)的CBR为30%。
当NG-RAN向SMF发送满足QCQNC配置的快速变化通知时,NG-RAN还应在通知消息中包括当前的QoS参数(PDB,PER)和CBR。
非GBR承载流的QNC机制至少包括如下几个过程:
1.QNC的通知过程(针对AF);
2.QNC的配置过程;
3.QNC的优化过程;
4.QNC的参数值的通知过程(针对UE);
5.切换过程中的QNC控制。
下面分别介绍上述过程。
1.QNC的通知过程(针对AF):
图3是本申请一个示例性实施例提供的QoS变化的通知方法的流程图。本实施例以该方法应用于图1或图2所示的移动通信系统中来举例说明。该方法包括:
步骤320:接入网设备在非GBR承载流的QNC的参数的变化满足上报条件时,通过核心网实体向应用实体发送通知消息;
非GBR承载流是指非GBR类型的承载流。非GBR承载流包括:非GBR QoS流,或,非GBR EPS承载。示例性的,在5G系统中,非GBR承载流是非GBR类型的QoS流;在4G系统中,非GBR承载流是非GBR类型的EPS承载。
示例性的,QNC(或称QCQNC)的参数包括如下至少一种:PDB、PER、CBR。在QNC的参数包括至少两种的情况下,存在至少两种参数对应的上报条件相同;和/或,存在至少两种参数对应的上报条件不同。
示例性的,上报条件(或称变化门限、变化上报门限)包括如下至少一种:
·QNC的参数在第一时长内的变化值大于第一阈值;
第一阈值是大于0且小于1的小数。比如,该第一阈值是20%、30%和40%。第一时长是用于计算变化值的周期或时长,比如1秒、2秒。
·QNC的参数在第二时长内的变化率大于第二阈值;
第二阈值是大于0且小于1的小数。比如,该第二阈值是20%、30%和40%。第二时长是用于计算变化率的周期或时长,比如1秒、2秒。
·QNC的参数在第一时长内的变化值大于第一阈值,且持续保持第三阈值;
第三阈值是用于衡量变化值的保持时长的阈值,比如2秒。
·QNC的参数在第二时长内的变化率大于第二阈值,且持续保持第四阈值。
第四阈值是用于衡量变化率的保持时长的阈值,比如2秒。
也即,第三阈值和第四阈值是用于衡量保持时长的阈值。
示例性的,通知消息内还携带有:变化后的QNC的参数值。也即在QNC的参数发生快速变化后,QNC的参数的当前参数值。该“当前”是相对概念,并不是绝对意义上的当 前。比如,当前参数值是在触发上报条件时的参数值,并不一定等于发送通知消息后的实时参数值。
示例性的,变化后的QNC的参数值可以使用变化后的QNC的参数值的量化值来表示。比如,将QNC的取值范围划分为16个不重叠的子区间。16个子区间中的每个子区间对应有唯一的量化值,该量化值采用四个比特来表示。当变化后的QNC的参数值属于第i个子区间的情况下,使用第i个子区间对应的量化值来表示,该量化值仅需4个比特即可,能够降低通知消息所需要的传输资源。
步骤340:应用实体根据通知消息控制应用程序。
该通知消息(或称快速变化通知、快速变化报告、通知报告)用于指示非GBR承载流的QNC的参数的变化满足上报条件。
应用实体根据通知消息控制应用程序的计算策略和流量策略中的至少一种,以使得应用程序适应非GBR承载流的相关参数的快速变化。
应用实体上运行有一个或多个应用程序,同一个应用程序对应至少一个业务数据流(Service Data Flow,SDF)。具有不同QoS需求的SDF会分别映射至独立的QoS流,比如具有第一QoS需求的SDF会映射至第一QoS流,具有第二QoS需求的SDF会映射至第二QoS流。可选地,具有相同QoS需求的SDF可以映射至相同的QoS流。
在本申请实施例中,假设一个应用程序对应的一个或多个QoS流中包括有非GBR QoS流,该非GBR QoS流用于传输语音、视频、文本、消息、文件、控制信息等业务中的至少一种业务的数据包。
综上所述,本实施例提供的方法,在非GBR承载流的QNC的参数的增加/减少满足上报条件时,通过核心网实体向应用实体发送通知消息,从而针对非GBR承载流提供了QNC机制,使得应用实体能够获知非GBR承载流的无线网络状态的变化。
上述接入网设备执行的步骤,可以单独实现成为接入网设备侧的一个实施例;上述应用实体执行的步骤,可以单独实现成为应用实体侧的一个实施例,本申请不再赘述。
图4是本申请另一个示例性实施例提供的QoS变化的通知方法的流程图。本实施例以该方法应用于图1或图2所示的通信系统中来举例说明。该方法包括:
步骤322:接入网设备在非GBR承载流的QNC的参数的变化满足上报条件时,向核心网实体发送通知消息;
核心网实体接收接入网设备发送的通知消息。该通知消息用于指示非GBR承载流的QoS通知控制QNC的参数的变化满足上报条件。
步骤324:核心网实体向应用实体发送通知消息;
核心网实体为一个或多个。在通知消息涉及位于RAN和AF之间的多个核心网实体时,多个核心网实体依次传输该通知消息,不同核心网实体可以采用不同类型的消息携带该通知消息。比如,核心网实体包括:移动性管理实体(Mobility Management Entity,MME)、服务网关(Serving GateWay,SGW)、PDN网关(PDN GateWay,PGW)和PCF,则通知消息的传输路径至少包括RAN→MME→SGW/PGW→PCF→AF;又比如,核心网实体包括:第一核心网实体AMF、第二核心网实体SMF和第三核心网实体PCF,则通知消息的传输路径至少包括RAN→AMF→SMF→PCF→AF。
示例性的,核心网实体向应用实体发送事件报告(Event Reporting),该事件报告携带有通知消息。
步骤342:应用实体接收核心网实体发送的通知消息;
示例性的,应用实体接收核心网实体发送的事件报告。
步骤344:应用实体根据通知消息控制应用程序。
应用实体根据通知消息控制应用程序的计算策略和流量策略中的至少一种,以使得应用程序适应非GBR承载流的相关参数的快速变化,以尽量保证用户的QoE,避免出现卡顿等现象。
以在线会议的服务器侧的应用程序为例,该应用程序对应有4个SDF:语音SDF、视频SDF、文本消息SDF和控制面SDF。4个SDF对应4个非GBR QoS流,针对4个非GBR QoS流分别启用QNC机制。
第一种可能的实现方式:
响应于通知消息用于指示QNC的参数值变差,控制应用程序按照第一计算策略执行;
响应于通知消息用于指示QNC的参数值变优,控制应用程序按照第二计算策略执行;
其中,相同计算任务在第一计算策略下的计算时长小于在第二计算策略下的计算时长。
计算策略是与应用程序的运行计算有关的策略。计算策略包括但不限于:编解码方式的选择策略、编解码模型的选择策略、编解码等级的选择策略、压缩级别的选择策略、神经网络模型的选择策略中的至少一种。
以计算策略包括编解码方式的选择为例,响应于通知消息用于指示QNC的参数值变差,控制应用程序采用第一编解码方式进行编解码;响应于通知消息用于指示QNC的参数值变优,控制应用程序采用第二编解码方式进行编解码。此处的“编解码”是指编码和解码中的至少一种。
其中,相同编解码任务在第一编解码策略下的计算时长小于在第二编解码策略下的计算时长。
例如,在PDR变大时,虽然网络时延变大,但是应用程序通过减少内部的计算时长来弥补网络时延的恶化,仍然能够保证整体的传输时延不变或变化很小。比如,与视频对应的非GBR QoS流的PDR变差,则降低视频的编码码率,以减少视频数据包的数量和/或大小。
第二种可能的实现方式:
响应于通知消息用于指示QNC的参数值变差,控制应用程序按照第一流量策略执行;响应于通知消息用于指示QNC的参数值变优,控制应用程序按照第二流量策略执行;其中,所述第一流量策略的流量少于所述第二流量策略的流量。
示例性的,应用程序的流量包括语音数据包和视频数据包;
响应于通知消息用于指示QNC的参数值变差,保持语音数据包对应的第一流量,减少视频数据包对应的第二流量;响应于通知消息用于指示QNC的参数值变优,保持语音数据包对应的第一流量,增加视频数据包对应的第二流量。
例如,在PDR变大时,降低与视频对应的第一非GBR QoS流的流量,保持与语音对应的第二非GBR QoS流的流量,从而整体上占用更少的无线资源,以增加语音数据包的传输质量以及减少干扰。
这是由于在基于云的应用(视频会议,语音会议,远程教学)中,通常是需要视频和语音的双向交互。对网络传输时延有一定要求(通常要单向传输时延<150ms),但在实际的使用过程中,由于无线网络状态的变化,在一段时间内(如一个5秒的时间内),无线网络的传输时延突然变差,或传输的速率突然变小,造成音视频的卡顿。
而相关研究表明,用户对音频的卡顿非常敏感,而对于视频的质量变化(如分辨率的变化,清晰的变化)并不是太敏感(且在保留语音的情形下,暂时关闭一下视频都是可以接受的)。对于音频一般由于其传输数据较小,不大经常出现卡顿。但若音频出现卡顿,则用户的体验非常不好。另外,即便音频从CD的质量往下降低到非常低的传输率(如2G语音传输质量),但只要不出现卡顿,用户仍然有非常好的使用体验。
综上所述,本实施例提供的方法,通过应用实体根据变化后的QNC的参数值来调整应用程序,使得在非GBR承载流的相关参数变差的情况下,或者,非GBR承载流的相关参数 由差恢复为好的情况下,应用实体能够调整自身内部的应用程序来适应该参数变化,从而达到对应用程序的运行进行优化。
本实施例提供的方法,还通过在非GBR承载流的相关参数变差的情况下,改变应用程序的计算策略,通过减少应用程序内部的计算时长来弥补网络时延的恶化,仍然能够保证整体的传输时延不变或变化很小。
本实施例提供的方法,还通过在非GBR承载流的相关参数变差的情况下,改变应用程序的流量策略,比如保持语音数据包的流量,减少视频数据包的流量,能够避免出现对用户体验影响较大的音频的卡顿,从而尽可能提升用户在使用音视频程序时的用户体验。
2.QNC的配置过程:
在非GBR承载流的建立过程或修改过程中,由核心网实体向接入网设备进行QNC的配置过程。也即,核心网实体向接入网设备发送QNC配置,QNC配置用于配置QNC的参数以及上报条件(或称变化门限、快速变化门限、变化上报门限、快速变化上报门限)。
图5是本申请一个示例性实施例提供的QNC的配置方法的流程图。本实施例以该方法应用于图1或图2所示的通信系统中来举例说明。该方法包括:
步骤420:第三核心网实体向第二核心网实体发送QNC的参数以及上报条件;
第三核心网实体是核心网中负责策略管理的实体,比如PCF。
第二核心网实体是核心网中负责会话管理的实体,比如4G系统中的MME或5G系统中的SMF。
示例性的,在非GBR承载流的建立过程或修改过程中,第三核心网实体PCF向第二核心网实体SMF发送QNC的参数以及上报条件。
示例性的,在建立协议数据单元(Protocol Data Unit,PDU)会话的过程中,会建立
(第)一个QoS流,这个QoS流称为基于默认QoS规则的QoS流(QoS Flow with Default QoS Rules)。一般而言,这个QoS流是非GBR类型的,第三核心网实体可以向第二核心网实体提供QNC的参数以及上报条件。
示例性的,该QNC的参数以及上报条件是第三核心网实体自行确定的;或者,该QNC的参数以及上报条件是第三核心网实体基于应用实体发送的业务流信息确定的;或者,该QNC的参数以及上报条件是第三核心网实体基于UE的签约数据确定的。
步骤440:第二核心网实体接收第三核心网实体发送的PCC规则;
步骤460:第二核心网实体向接入网设备发送QNC配置,QNC配置用于向接入网设备配置QNC的参数以及上报条件。
综上所述,本实施例提供的方法,通过由第三核心网实体向第二核心网实体发送QNC的参数以及上报条件,能够触发第二核心网实体为非GBR承载流配置QNC的参数以及上报条件,完成QNC的配置过程。
在一种设计中,应用实体向第三核心网实体提供业务流信息,业务流信息中携带有应用实体需要(或建议)的QNC的参数以及上报条件,如图6所示。在另一种设计中,第三核心网实体基于QNC签约数据来确定QNC的参数以及上报条件,如图7所示。
图6是本申请另一个示例性实施例提供的QNC的配置方法的流程图。本实施例以该方法应用于图1或图2所示的通信系统中来举例说明。该方法包括:
步骤412:应用实体向第三核心网实体发送QNC的控制参数;
应用实体AF向第三核心网实体PCF发送业务流信息,该业务流信息携带有QNC的控制参数。
示例性的,QNC的控制参数包括:是否使能QNC、QNC的参数、变化门限中的至少一种。
步骤420:第三核心网实体向第二核心网实体发送策略控制和计费(Policy Control and Charging,PCC)规则,PCC规则携带有QNC的控制参数;
步骤440:第二核心网实体接收第三核心网实体发送的PCC规则;
步骤460:第二核心网实体向接入网设备发送QNC配置,QNC配置用于向接入网设备配置QNC的控制参数。
综上所述,本实施例提供的方法,通过由应用实体向第三核心网实体提供QNC的控制参数,能够实现应用实体与核心网实体的主动交互,由应用实体来驱动接入网设备(如5G,4G的RAN)报告非GBR承载流的快速变化,从而由无线接入网络向应用实体开放了其网络能力,为互联网应用的创新提供了新的途径。
图7是本申请另一个示例性实施例提供的QNC的配置方法的流程图。本实施例以该方法应用于图1或图2所示的通信系统中来举例说明。该方法包括:
步骤414:第四核心网实体向第三核心网实体发送QNC签约数据,QNC签约数据携带有QNC的控制参数;
第四核心网实体是负责签约数据管理的核心网实体。
若默认5QI是NGBR类型,则第四核心网实体增加QNC签约数据。第四核心网实体将QNC签约数据发送给第二核心网实体,第二核心网实体将QNC签约数据发送给第三核心网实体。
步骤420:第三核心网实体向第二核心网实体发送默认QoS规则,默认QoS规则携带有QNC的控制参数;
步骤440:第二核心网实体接收第三核心网实体PCF发送的PCC规则;
步骤460:第二核心网实体向接入网设备发送QNC配置,QNC配置用于向接入网设备配置QNC的控制参数。
综上所述,本实施例提供的方法,通过第三核心网实体基于UE的签约数据来确定QNC的控制参数,能够实现基于UE的签约数据驱动5G网络向AF和/或UE报告非GBR承载流的快速变化。
3.QNC的优化过程:
当第三核心网实体PCF或应用实体AF发现QNC的通知消息过于频繁,对系统造成较大的信令量。此时,第三核心网实体PCF或应用实体AF应当修改QNC的上报条件,比如增大变化门限。
图8是本申请一个示例性实施例提供的QNC的优化方法的流程图。本实施例以该方法应用于图1或图2所示的通信系统中来举例说明。该方法包括:
步骤520:第三核心网实体在通知消息的上报频率大于或小于频率阈值时,向第二核心网实体发送更新后的QNC的控制参数;
更新后的QNC的控制参数包括:是否使能QNC、更新后的QNC的参数、更新后的变化门限中的至少一种。也即,更新后的QNC的控制参数,可以对使能QNC、QNC的参数、变化门限三者中的至少一种进行更新。
比如,第三核心网实体在通知消息的上报频率大于频率阈值时,向第二核心网实体发送去使能QNC的指示;又比如,第三核心网实体在通知消息的上报频率大于频率阈值时,向第二核心网实体发送减少后的QNC的参数;再比如,第三核心网实体PCF在通知消息的上报频率大于频率阈值时,向第二核心网实体发送增大后的变化门限。
步骤540:第二核心网实体向接入网设备发送QNC配置,QNC配置携带有更新后的QNC的控制参数。
综上所述,本实施例提供的方法,通过在通知消息的上报频率大于或小于频率阈值时,向第二核心网实体SMF以及接入网设备发送更新后的QNC的控制参数,可以避免对系统造成较大的信令开销,或者,合理利用QNC的通知机制。
图9是本申请另一个示例性实施例提供的QNC的优化方法的流程图。本实施例以该方法应用于图1或图2所示的通信系统中来举例说明。该方法包括:
步骤510:应用实体在通知消息的上报频率大于或小于频率阈值时,向第三核心网实体PCF发送更新后的QNC的控制参数;
更新后的QNC的控制参数包括:是否使能QNC、更新后的QNC的参数、更新后的变化门限中的至少一种。也即,更新后的QNC的控制参数,可以对使能QNC、QNC的参数、变化门限三者中的至少一种进行更新。
比如,AF在通知消息的上报频率大于频率阈值时,向第三核心网实体PCF发送去使能QNC的指示;又比如,AF在通知消息的上报频率大于频率阈值时,向第三核心网实体PCF发送减少后的QNC的参数;再比如,AF在通知消息的上报频率大于频率阈值时,向第三核心网实体PCF发送增大后的变化门限。
步骤520:第三核心网实体向第二核心网实体发送更新后的QNC的控制参数;
步骤540:第二核心网实体向接入网设备发送QNC配置,QNC配置携带有更新后的QNC的控制参数。
综上所述,本实施例提供的方法,通过在通知消息的上报频率大于或小于频率阈值时,由AF触发PCF向第二核心网实体SMF以及接入网设备发送更新后的QNC的控制参数,可以避免对系统造成较大的信令开销,或者,合理利用QNC的通知机制。
4.QNC的参数值的通知过程(针对UE):
图10是本申请一个示例性实施例提供的QNC的参数值的通知方法的流程图。本实施例以该方法应用于图1或图2所示的通信系统中来举例说明。该方法包括:
步骤620:核心网实体接收来自接入网设备的通知消息,通知消息用于指示非GBR承载流的QNC的参数的变化满足上报条件,该通知消息携带有变化后的QNC的参数值;
步骤640:核心网实体向终端发送变化后的QNC的参数值;
以核心网实体是SMF为例,SMF在收到接入网设备的通知消息后,向UE发送变化后的QNC的参数值。
示意性的,SMF在接收到通知消息后的预定时长内没有接收到PCF发送的新PCC规则时,向终端发送变化后的QNC的参数值。
示意性的,SMF在接收到通知消息后的预定时长内接收到PCF发送的新PCC规则,且新PCC规则不存在对QoS配置有修改时,向终端发送变化后的QNC的参数值。
变化后的QNC的参数值是通过RAN从核心网设备透传至终端的。可选地,核心网实体向UE发送NAS消息,终端接收核心网实体发送的NAS消息,NAS消息携带有变化后的QNC的参数值。可选地,核心网实体向终端发送PDU会话修改命令,终端接收核心网实体发送的PDU会话修改命令,PDU会话修改命令携带有变化后的QCQNC的参数值。
步骤660:终端根据变化后的QNC的参数值控制应用程序。
UE根据变化后的QNC的参数值控制应用程序的计算策略和流量策略中的至少一种,以使得应用程序适应非GBR承载流的相关参数的快速变化。
以在线会议的UE侧的应用程序为例,该应用程序对应有4个SDF:语音SDF、视频SDF、文本消息SDF和控制面SDF。4个SDF对应4个非GBR QoS流,针对4个非GBR QoS流分别启用QNC机制。
第一种可能的实现方式:
响应于变化后的QNC的参数值变差,控制应用程序按照第一计算策略执行;
响应于变化后的QNC的参数值变优,控制应用程序按照第二计算策略执行;
其中,相同计算任务在第一计算策略下的计算时长小于在第二计算策略下的计算时长。
计算策略是与应用程序的运行计算有关的策略。计算策略包括但不限于:编解码方式的选择策略、编解码模型的选择策略、编解码等级的选择策略、压缩级别的选择策略、神经网络模型的选择策略中的至少一种。
以计算策略包括编解码方式的选择为例,响应于变化后的QNC的参数值变差,控制应用程序采用第一编解码方式进行编解码;响应于变化后的QNC的参数值变优,控制应用程序采用第二编解码方式进行编解码。此处的“编解码”是指编码和解码中的至少一种。
其中,相同编解码任务在第一编解码策略下的计算时长小于在第二编解码策略下的计算时长。
例如,在PDR变大时,虽然网络时延变大,但是应用程序通过减少内部的计算时长来弥补网络时延的恶化,仍然能够保证整体的传输时延不变或变化很小。比如,与视频对应的非GBR QoS流的PDR变差,则降低视频的编码码率,以减少视频数据包的数量和/或大小。
第二种可能的实现方式:
响应于变化后的QNC的参数值变差,控制应用程序按照第一流量策略执行;
响应于变化后的QNC的参数值变优,控制应用程序按照第二流量策略执行;
其中,所述第一流量策略的流量少于所述第二流量策略的流量。
示例性的,应用程序的流量包括语音数据包和视频数据包;
响应于变化后的QNC的参数值变差,保持语音数据包对应的第一流量,减少视频数据包对应的第二流量;响应于变化后的QNC的参数值变优,保持语音数据包对应的第一流量,增加视频数据包对应的第二流量。
例如,在PDR变大时,降低与视频对应的第一非GBR QoS流的流量,保持与语音对应的第二非GBR QoS流的流量,从而整体上占用更少的无线资源,以增加语音数据包的传输质量以及减少干扰。在降低第一非GBR QoS流的流量的过程中,可以是UE侧和AF侧均改变视频的编解码方式,以降低视频数据包的数量和/或大小。
这是由于在基于云的应用(视频会议,语音会议,远程教学)中,通常是需要视频和语音的双向交互。对网络传输时延有一定要求(通常要单向传输时延<150ms),但在实际的使用过程中,由于无线网络状态的变化,在一段时间内(如一个5秒的时间内),无线网络的传输时延突然变差,或传输的速率突然变小,造成音视频的卡顿。
而相关研究表明,用户对音频的卡顿非常敏感,而对于视频的质量变化(如分辨率的变化,清晰的变化)并不是太敏感(且在保留语音的情形下,暂时关闭一下视频都是可以接受的)。对于音频一般由于其传输数据较小,不大经常出现卡顿。但若音频出现卡顿,则用户的体验非常不好。另外,即便音频从CD的质量往下降低到非常低的传输率(如2G语音传输质量),但只要不出现卡顿,用户仍然有非常好的使用体验。
综上所述,本实施例提供的方法,通过UE根据变化后的QNC的参数值来调整应用程序,使得在非GBR承载流的相关参数变差的情况下,或者,非GBR承载流的相关参数由差恢复为好的情况下,UE能够调整自身内部的应用程序来适应该参数变化,从而达到对应用程序的运行进行优化。
本实施例提供的方法,还通过在非GBR承载流的相关参数变差的情况下,改变应用程序的计算策略,通过减少应用程序内部的计算时长来弥补网络时延的恶化,仍然能够保证整体的传输时延不变或变化很小。
本实施例提供的方法,还通过在非GBR承载流的相关参数变差的情况下,改变应用程序的流量策略,比如保持语音数据包的流量,减少视频数据包的流量,能够避免出现对用户体验影响较大的音频的卡顿,从而尽可能提升用户在使用音视频程序时的用户体验。
5.切换过程中的QNC控制:
切换过程是最常见的引起QNC的参数快速变化的因素,因此有必要在切换过程中引入对非GBR承载流的QNC机制。
图11是本申请一个示例性实施例提供的切换过程中的基于切换过程的消息发送方法的流程图。本实施例以该方法应用于图1或图2所示的通信系统中来举例说明。该方法包括:
步骤720:在切换过程中,源接入网设备向目标接入网设备发送非GBR承载流的QNC的控制参数;
其中,QNC控制参数用于指示非GBR承载流的QNC的参数以及上报条件。
步骤740:在切换过程中,目标接入网设备接收QNC的控制参数;
目标接入网设备根据QNC的控制参数,使能或启动非GBR承载流的QNC。
步骤760:在切换完毕后,目标接入网设备在非GBR承载流的QNC的参数值的变化满足上报条件时,通过核心网实体向应用实体发送通知消息。
QNC的参数值的变化,包括如下两种中的至少一种:
1、从第一参数值到第二参数值的变化;
第一参数值是QNC的参数在切换前的参数值,也即在源接入网设备的当前参数值;第二参数值是QNC的参数在切换后的参数值,也即在目标接入网设备的当前参数值。
2、从第二参数值到第三参数值的变化。
第二参数值和第三参数值均为QNC的参数在切换后的参数值,第三参数值的采集时刻晚于第二参数值。
综上所述,由于切换过程是最容易引起无线网络状态发生快速变化的过程,本实施例提供的方法通过由源接入网设备向目标接入网设备发送非GBR承载流的QNC的控制参数,能够使得目标接入网设备在非GBR承载流的QNC的参数的增加/减少满足上报条件时,通过核心网实体向应用实体和终端发送通知消息,使得在非GBR承载流的相关参数变差的情况下,或者,非GBR承载流的相关参数由差恢复为好的情况下,应用实体能够调整自身内部的应用程序来适应该参数变化,从而达到对应用程序和终端的运行进行优化。
示例性的,在切换过程中,源接入网设备通过核心网实体向目标接入网设备发送非GBR承载流的QNC的控制参数。在不同的通信系统中,核心网实体的类型、数量和划分可能不同。以5G系统为例,核心网实体包括:第一核心网实体AMF、第二核心网实体SMF。源接入网设备通过核心网实体向目标接入网设备发送非GBR承载流的QNC的控制参数的过程,可选包括如下步骤:
1.在切换过程中,源接入网设备向源第一核心网实体AMF发送切换请求(Handover Require),切换请求携带有QNC的控制参数;
2.源第一核心网实体AMF向目标第一核心网实体AMF发送创建UE上下文请求(Namf_Communication_CreateUEContext),创建UE上下文请求携带有QNC的控制参数;
3.目标第一核心网实体AMF向第二核心网实体SMF发送更新会话上下文请求(Nsmf_PDUSession_UpdateSMContext),更新会话上下文请求携带有QNC的控制参数;
4.第二核心网实体SMF向目标第一核心网实体AMF发送更新会话上下文响应(Nsmf_PDUSession_UpdateSMContext响应),更新会话上下文响应携带有QNC的控制参数;
5.目标第一核心网实体AMF向目标接入网设备发送切换命令(Handover Request),切换命令携带有QNC的控制参数。
QNC的控制参数可以被携带在源到端的透传容器中。其中,源到端的透传容器是在切换请求、创建UE上下文请求、更新会话上下文请求、更新会话上下文响应、切换命令中透传的字段。
图12是本申请一个示例性实施例提供的基于切换过程的消息发送方法的流程图。本实施例以该方法应用于图1或图2所示的通信系统中来举例说明。该方法包括:
步骤722:在切换过程中,源接入网设备向目标接入网设备发送非GBR承载流的QNC的控制参数以及第一参数值;
与图3实施例相比,源接入网设备不仅向目标接入网设备发送QNC的控制参数,还同时向目标接入网设备发送第一参数值,第一参数值是QNC的参数在切换前的参数值。
QNC的控制参数以及第一参数值可以在同一消息中发送,也可以在不同消息中发送,本申请以QNC的控制参数以及第一参数值在同一消息中发送来举例说明。
示例性的,在切换过程中,源接入网设备通过核心网实体向目标接入网设备发送非GBR承载流的QNC的控制参数以及第一参数值。在不同的通信系统中,核心网实体的类型、数量和划分可能不同。以5G系统为例,核心网实体包括:第一核心网实体AMF和第二核心网实体SMF。源接入网设备通过核心网实体向目标接入网设备发送非GBR承载流的QNC的控制参数以及第一参数值的过程,可选包括如下步骤:
1.在切换过程中,源接入网设备向源第一核心网实体AMF发送切换请求,切换请求携带有QNC的控制参数;
2.源第一核心网实体AMF向目标第一核心网实体AMF发送创建UE上下文请求,创建UE上下文请求携带有QNC的控制参数以及第一参数值;
3.目标第一核心网实体AMF向第二核心网实体SMF发送更新会话上下文请求,更新会话上下文请求携带有QNC的控制参数以及第一参数值;
4.第二核心网实体SMF向目标第一核心网实体AMF发送更新会话上下文响应,更新会话上下文响应携带有QNC的控制参数以及第一参数值;
5.目标第一核心网实体AMF向目标接入网设备发送切换命令,切换命令携带有QNC的控制参数以及第一参数值。
可选地,QNC的控制参数以及第一参数值被携带在源到端的透传容器中。其中,源到端的透传容器是在切换请求、创建UE上下文请求、更新会话上下文请求、更新会话上下文响应、切换命令中透传的字段。
步骤742:在切换过程中,目标接入网设备接收QNC的控制参数以及第一参数值;
示例性的,在切换命令中除了源接入网设备向目标接入网设备发送的QNC的控制参数,还可以携带第二核心网实体SMF向目标接入网设备发送的QNC的控制参数。
两组QNC的控制参数携带在切换命令的不同字段中。示例性的,源接入网设备向目标接入网设备发送的QNC的控制参数携带在切换命令的源到端的透传容器中;第二核心网实体SMF向目标接入网设备发送的QNC的控制参数携带在切换命令中。
通常情况下,两组QNC的控制参数是一致的。但如果存在两组QNC的控制参数不一致的情况,则目标接入网设备优先以第二核心网实体SMF向目标接入网设备发送的QNC的控制参数为准。
步骤762:在切换完毕后,目标接入网设备在第一参数值至第二参数值的变化满足上报条件时,通过核心网实体向应用实体发送通知消息。
第一参数值是QNC的参数在切换前的参数值,第二参数值是QNC的参数在切换后的参数值。
综上所述,本实施例提供的方法,通过由源接入网设备向目标接入网设备发送非GBR承载流的第一参数值,能够使得目标接入网设备对非GBR承载流在切换前后的QNC的参数的增加/减少进行监测,若在切换前后的QNC的参数的变化满足上报条件时,则目标接入网设备通过核心网实体向应用实体和终端发送通知消息,使得在非GBR承载流的相关参数变差的情况下,或者,非GBR承载流的相关参数由差恢复为好的情况下,应用实体能够调整 自身内部的应用程序来适应该参数变化,从而达到对应用程序和终端的运行进行优化。
需要说明的是,存在某些情况下,源接入网设备或源接入网设备中的某个接入网设备不支持非GBR承载流的QNC,而目标接入网设备支持非GBR承载流的QNC。本申请还提供有如下实施例,如图13所示:
步骤730:核心网实体在切换过程中向目标接入网设备发送非GBR承载流的QNC的控制参数;
核心网实体在接收到源接入网设备的切换请求后,若切换过程涉及非GBR承载流的切换,核心网实体可以在切换命令中添加QNC的控制参数。
示例性的,SMF在切换命令的QoS建立请求条目中增加QNC的控制参数。该QNC的控制参数包括:是否使能QNC、QNC的参数和上报条件。
步骤740:在切换过程中,目标接入网设备接收QNC的控制参数;
目标接入网设备根据QNC的控制参数,使能或启动非GBR承载流的QNC。
步骤760:在切换完毕后,目标接入网设备在第二参数值至第三参数值的变化满足上报条件时,通过核心网实体向应用实体发送通知消息。
第二参数值和第三参数值均为QNC的参数在切换后的参数值,第三参数值的采集时刻晚于第二参数值。
综上所述,本实施例提供的方法,通过由核心网实体向目标接入网设备发送非GBR承载流的QNC的控制参数,在源接入网设备不支持非GBR承载流的QNC的情况下,也可以触发目标接入网设备对非GBR承载流进行QNC控制,因此可以在最容易引起QNC的参数快速变化的切换场景中引入对非GBR承载流进行QNC控制,增强对应用程序的控制,以使得应用程序能够更好地适应网络变化。
上述接入网设备执行的步骤,可以单独实现成为接入网设备侧的一个实施例;上述核心网实体执行的步骤,可以单独实现成为核心网侧的一个实施例;上述应用实体执行的步骤,可以单独实现成为应用实体侧的一个实施例,本申请不再赘述。
下面结合第三代合作伙伴项目(Third Generation Partnership Project,3GPP)的通信协议
(TS23.502)对上述过程进行更详细的阐述。下述附图中网元名称、步骤流程和步骤介绍的详细内容,均可参考TS23.502(https://www.3gpp.org/ftp/Specs/archive/23_series/23.502)中的相关记载,本文受限于篇幅,着重介绍本申请实施例与TS23.502协议中不同的内容。
1.QNC的通知过程:
当UE所在的网络发生了变化,即基站检测到无线资源发生快速变化(变好或变差)。当这个变化达到QNC所定义的变化门限时,RAN会触发QNC的通知过程,向AF发送通知消息。可选地,该通知消息携带有变化后的QNC的参数的参数值(当前参数值)。基站先将通知消息发送给SMF,然后SMF再将通知消息发送至PCF,PCF再将通知消息发送至AF。
1.1非漫游和本地疏导漫游场景:
图14示出了本申请的一个示例性实施例提供的UE或网络请求的PDU会话修改(用于非漫游和本地疏导漫游)流程的示意图。
在步骤1e中,RAN向AMF发送N2消息(PDU会话ID,SM信息),AMF向SMF发送Namf_PDUSession_UpdateSMContext消息。
在非GBR承载流的QNC的参数满足上报条件时,这2个消息中携带有通知消息。可选地,通知消息还携带有变换后的QNC的参数值。
在步骤2中,SMF发起SM策略关联修改流程,将通知消息发送至PCF以及AF。
在步骤5中,SMF向UE发送PDU会话修改命令,将变化后的QNC的参数值发送给UE。
示例性的,在SMF收到通知消息的一段时间后,当SMF没有收到PCF新的PCC Rule或收到的PCC Rule中对于QNC对应的SDF的PCC Rule没有对QoS方面有修改,则SMF向UE发起PDU会话修改命令,通知UE当前QNC对应的QFI的当前QCQNC的参数值(PDB,PER,CBR)。
在步骤9中,UE回应PDU会话修改确认。
其中,PDU会话修改命令与PDU会话修改确认是通过RAN在UE和SMF之间进行透明地传输。
上述步骤2所示出的SM策略关联修改流程由图15定义。如图15所示:
在步骤1中,SMF向PCF发送Npcf_SMPolicyControl_Update请求,该请求中携带有通知消息。
在步骤2中,PCF向AF发送事件报告Npcf_PolicyAuthorizationNotify请求,该事件报告中携带有通知消息。
1.2基于Xn接口的NG-RAN间切换场景:
图16示出了本申请的一个示例性实施例提供的没有UPF重新分配的基于Xn的NG-RAN间切换流程的示意图。
在切换执行过程中,源NG-RAN向目标NG-RAN发送非GBR承载流在源侧的QNC控制参数及QNC的第一参数值,也即QNC参数在切换前的当前参数值。
在步骤1中,目标NG-RAN向AMF发送N2路径切换请求,该请求携带有通知消息,该通知消息可选携带有切换后的QNC的参数值(第二参数值);
当UE成功切换到目标NG-RAN后,因目标NG-RAN一定与源NG-RAN的资源状态不一致,目标NG-RAN确定出是否需要上报通知消息。在需要上报时,可以在N2路径切换请求中的QoSFlowAcceptedItem字段中包含变换后的目标NG-RAN上的QNC的参数值。其中,N2路径切换请求的消息结构如图17所示。
在步骤2中,AMF向SMF发送Nsmf_PDUSession_UpdateSMContext请求,该请求携带有通知消息,该通知消息可选携带有切换后的QNC的参数值(第二参数值)。
之后,由SMF基于图13和图14所示出的流程将通知消息上报给PCF以及AF。
1.3基于NG-RAN节点的N2切换场景:
图18示出了本申请一个示例性实施例提供的基于NG-RAN节点的N2切换流程的示意图。
在步骤5中,目标NG-RAN向目标AMF发送切换通知,该切换通知携带有通知消息,该通知消息可选携带有切换后目标NG-RAN上的QNC的参数值(第二参数值)。
当UE成功切换到目标NG-RAN后,因目标NG-RAN一定与源NG-RAN的资源状态不一致,目标NG-RAN确定出是否需要上报通知消息。在需要上报时,可以在切换通知中携带该通知消息。
在步骤7中,AMF向SMF发送Nsmf_PDUSession_UpdateSMContext请求,该请求携带有通知消息,该通知消息可选携带有切换后的QNC的参数值(第二参数值)。
之后,由SMF基于图14和图15所示出的流程将通知消息上报给PCF以及AF。
2.QNC的配置过程:
2.1非漫游和本地疏导漫游的PDU会话建立场景:
图19示出了本申请一个示例性实施例提供的UE请求的PDU会话建立流程的示意图。
在步骤7b和9中,SMF向PCF发送SM策略关联建立请求消息,或者SM策略关联修改请求消息;相应地,PCF向SMF发送SM策略关联建立响应消息,或者关于SMF发起SM策略关联修改响应消息,该消息中携带有QNC的控制参数。
在建立PDU会话的过程中,会建立一个QoS流(通常是第一个),这个QoS流称为基于默认QoS规则的QoS流(不再类似于4G的默认承载,5G不再使用默认QoS流来命名)。
一般而言,这个基于默认QoS规则是非GBR类型的,则PCF可以在PCC规则中包含QNC的控制参数。则可以在图18的步骤7b或9中,PCF提供Default QoS Rule中的5QI若是NGBR类型的,PCF可以向SMF提供QCQNC的控制参数。
在步骤11和12中,SMF向AMF发送Namf_Communication_N1N2信息转换消息,根据PCF提供的QCQNC的控制参数在该消息中携带有QNC配置。
可选地,UE的签约数据中包含有默认5QI与默认ARP。若默认5QI是NGBR类型的,则增加QNC签约数据。
在步骤4,7b和9中,UDM将包含QNC签约数据的消息提供给SMF,然后SMF将QNC签约数据提供给PCF,然后,PCF提供的默认QoS规则中包含QNC的控制参数。
PDU会话建立过程可用于N3GPP向3GPP的PDU会话切换。若在步骤7b或步骤9中,PCF为任一非GBR QoS流提供了QNC的控制参数,则类似于前面,在步骤11和12中增加QNC的控制参数。
需要注意的是,此处可能有多个非GBR QoS流的处理。
需要注意的是,步骤12的N2消息中的SM相关的参数是包含在步骤11中,因此在步骤11中包含有QNC的控制参数。
2.2归属路由漫游场景:
图20示出了本申请一个示例性实施例提供的用于归属路由漫游场景的UE请求的PDU会话建立流程的流程图。
在建立PDU会话的过程中,会建立一个QoS流(通常是第一个),这个QoS流称为基于默认QoS规则的QoS流(不再类似于4G的默认承载,5G不再使用默认QoS流来命名)。
一般而言,这个基于默认QoS规则是非GBR类型的,则PCF可以在PCC规则中包含QNC的控制参数。则可以在图19的步骤9b或11的消息中,PCF提供默认QoS规则中的5QI若是非GBR类型的,PCF可以提供QNC的控制参数。然后,在步骤13、14和15中的消息,增加QNC配置。
可选地,UE的签约数据中包含有默认5QI与默认ARP。若默认5QI是NGBR类型的,则增加QNC签约数据。
在步骤7,步骤9b和步骤11中UDM将包含QNC的签约数据提供给SMF,SMF将QNC的签约数据提供给PCF,然后,PCF提供的默认QoS规则中包含QNC的控制参数。
2.3 AF触发的QoS流建立流程,非漫游和本地疏导漫游场景:
图21示出了本申请一个示意性实施例提供的针对单个UE地址的AF请求转移到相关PCF流程的示意图。图22示出了本申请一个示例性实施例提供的用于非漫游和本地疏导漫游的UE或网络请求的PDU会话修改流程的示意图。
在图21的步骤4,AF向PCF发送Npcf_PolicyAuthorization_Create/Update消息,该消息包含的(一个或多个)媒体组件(Media Component)信息中增加QNC的控制参数。前面所说,若这个媒体组件中包含了QNC的控制参数,则是请求这个媒体在NGBF上传输的;若这个媒体组件中不包含QCQNC参数,则表明这个媒体是可以在NGBF上传输,也可以是在GBR服务质量数据流(GBR QoS Flow,GBF)上传输。
在图22的步骤1b中,PCF发送Npcf_SMPolicyControlUpdateNotify请求消息。在请求消息中,对(一个或多个)业务数据流(Service Data Flow,SDF,一个SDF对应于AF提供的一个媒体流)的PCC规则增加QNC的控制参数。
相应的,在图22的步骤3b和4的消息中携带包括QNC的控制参数。
2.4 AF触发的QoS流建立流程,归属路由漫游场景:
图23示出了本申请一个示例性实施例提供的用于归属路由漫游的UE或网络请求的PDU会话修改流程的示意图。
在图23的步骤1b,步骤3,步骤4b和步骤5是增加一个或多个QNC的控制参数(即每个可能的业务流,SDF,QoS Flow)。
在图23的步骤3是相对于图21所述场景的新增步骤,即在一个或多个QoS流的QoS参数上增加QNC的控制参数。
3.切换过程中的QoS通知:
3.1 Xn接口的切换场景:
图24示出了本申请一个示例性实施例提供的基站内的切换程序的示意图。图25示出了本申请提供的没有UPF重新分配的基于Xn的NG-RAN间切换流程的示意图。
在图24的步骤1中增加非GBR承载流QNC的控制参数。由于同一UE中可能存在着多个QoS流,因此对于任何一个在源gNB存在有QNC的控制参数的QoS流,都需要将QNC的控制参数提供给目标gNB。
其中,第一参数值携带在切换命令中,如图26所示出的QoSFlowsToBeSetup-Item字段中。
另外,为了支持后续的QNC的通知过程,源gNB还需要报告当前源侧的QNC的各个参数对应的参数值,也即第一参数值。这样,当UE成功切换到目标gNB后,目标gNB的资源状态比源侧gNB的资源状态可能好很多,或差很多,这样,当UE成功切换到目标gNB后,目标gNB可以确定是否可以上报通知消息。
3.2基于XG-RAN节点N2的切换准备场景:
在图27中的步骤1,3,4,7,9中增加QNC的控制参数。
示例性的,在步骤1的切换请求中增加QNC的控制参数;在步骤9的切换命令中增加QNC的控制参数。
其中,图28示出了切换请求中的源到端透传容器的消息结构图,第一参数值携带在该源到端透传容器中;图29示出了切换命令中的QoSFlowSetupRequestItem字段,QNC的控制参数可以携带在该请求字段中。
由于存在着多个QF,因此对于任何一个在源gNB有QNC的控制参数的QoS流都需要提供。实际上这个过程只是通过多个步骤将源NG-RAN上的所有QoS流的QNC控制参数传输到目标NG-RAN上。
同样的,为了支持后续的QNC的通知过程,源gNB还需要报告当前源侧的QNC的参数对应的各个值,也即第一参数值。这样,当UE成功切换到目标gNB后,目标gNB的资源状态比源侧gNB的资源好很多,或差很多,这样,当UE成功切换到目标gNB后,目标gNB可以确定是否可以上报通知消息。因此左图中的步骤1,3,4,7,9中增加所有QoS流的QNC的参数在源NG-RAN上的当前值。
3.3非3GPP切换到3GPP场景:
图30示出了从不可信的非3GPP到3GPP接入的PDU会话过程的切换流程(非漫游和本地疏导漫游)的示意图。图31示出了从EPC/ePDG切换到5GS的切换示意图。
从图30可以看到,从5G非3GPP切换到5GS或4G非3GPP切换到5GS,都是使用PDU会话建立流程,而这个过程在上述实施例中作了定义。因此只需要重用上述实施例就可以实现非3GPP到3GPP切换过程中QNC的处理。
图32示出了从EPS到5GS过程的基于单一注册的互通的准备阶段。这个实施例的处理方式类似图27,只需要将步骤2和3修改为5G系统中的响应消息,也就是从4G切换到5GS时,若4G也支持QNC,则需要对4G的协议作些更新。
本申请实施例提出的技术可以应用于4G系统。在应用至4G系统时,NR-gNB用eNB代替。PCF与AF的交互,不作任何的改变。SMF与PCF的交互,修改为PGW与PCF的交互。5G的QoS Flow被4G的EPS Bearer代替。5G的5QI被4G QCI代替。5G中RAN与AMF/SMF的交互,被4G的RAN与MME交互代替。
图33示出了本申请一个示例性实施例提供的Qos变化的通知装置的框图。该装置可以实现成为接入网设备的一部分。该装置包括:
发送模块920,用于在非GBR承载流的QNC的参数的变化满足上报条件时,通过核心网实体向应用实体发送通知消息,以便所述应用实体根据所述通知消息控制应用程序。
在本申请实施例的一个可能的设计中,所述QNC的参数包括如下至少一种:
PDB;PER;CBR。
在本申请实施例的一个可能的设计中,所述QNC的参数包括至少两种;
存在至少两种所述参数对应的所述上报条件相同;和/或,存在至少两种所述参数对应的所述上报条件不同。
在本申请实施例的一个可能的设计中,所述上报条件包括如下至少一种:
所述QNC的参数在第一时长内的变化值大于第一阈值;
所述QNC的参数在第二时长内的变化率大于第二阈值;
所述QNC的参数在所述第一时长内的变化值大于第一阈值,且持续保持第三阈值;
所述QNC的参数在所述第二时长内的变化率大于第二阈值,且持续保持第四阈值;
其中,所述第三阈值和所述第四阈值是用于衡量保持时长的阈值。
在本申请实施例的一个可能的设计中,所述通知消息包括:
变化后的所述QNC的参数值;
或,变化后的所述QNC的参数值的量化值。
在本申请实施例的一个可能的设计中,所述非GBR承载流包括:
非GBR QoS流;或,非GBR EPS承载。
在本申请实施例的一个可能的设计中,
所述QNC定义在上行链路;或,所述QNC定义在下行链路;或,所述QNC定义在所述上行链路和所述下行链路。
在本申请实施例的一个可能的设计中,所述非GBR承载流与目标业务流存在一一对应关系,所述目标业务流是包含所述QNC以及所述QNC的参数的业务流。
在本申请实施例的一个可能的设计中,所述发送模块920,用于向核心网实体发送所述通知消息,以便所述核心网实体向所述应用实体发送所述通知消息。
在本申请实施例的一个可能的设计中,所述核心网实体包括第一核心网实体和第二核心网实体;
所述发送模块920,用于向所述第一核心网实体发送所述通知消息,以便所述第一核心网实体向所述第二核心网实体转发所述通知消息。
在本申请实施例的一个可能的设计中,所述装置还包括:
接收模块940,用于接收所述核心网实体发送的QNC配置,所述QNC配置包括所述非GBR承载流的QNC的参数以及所述上报条件。
在本申请实施例的一个可能的设计中,所述接收模块940,用于所述接入网设备接收所述核心网实体发送的N2PDU会话请求,所述N2PDU会话请求携带有所述QNC配置。
图34示出了本申请一个实施例提供的网元设备的结构示意图,例如,该网元设备可以用于执行上述应用程序的控制方法。具体来讲:该网元设备3400可以包括:处理器3401、接收器3402、发射器3403、存储器3404和总线3405。
处理器3401包括一个或者一个以上处理核心,处理器3401通过运行软件程序以及模 块,从而执行各种功能应用以及信息处理。
接收器3402和发射器3403可以实现为一个收发器3406,该收发器3406可以是一块通信芯片。
存储器3404通过总线3405与处理器3401相连。
存储器3404可用于存储计算机程序,处理器3401用于执行该计算机程序,以实现上述方法实施例中的网元设备、接入网设备、核心网网元或核心网实体执行的各个步骤。
其中,发射器3403用于执行上述各个实施例中与发送相关的步骤;接收器3402用于执行上述各个实施例中与接收相关的步骤;处理器3401用于执行上述各个实施例中除发送和接收步骤之外的其它步骤。
此外,存储器3404可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:RAM(Random-Access Memory,随机存储器)和ROM(Read-Only Memory,只读存储器)、EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、EEPROM(Electrically Erasable Programmable Read-Only Memory,电可擦写可编程只读存储器)、闪存或其他固态存储其技术,CD-ROM(Compact Disc Read-Only Memory,只读光盘)、DVD(Digital Video Disc,高密度数字视频光盘)或其他光学存储、磁带盒、磁带、磁盘存储或其他磁性存储设备。
在示例性实施例中,还提供了一种网元设备,所述网元设备包括:处理器和存储器,所述存储器存储有计算机程序,所述计算机程序由所述处理器加载并执行以实现如上所述的QoS变化的通知方法。可选的,该网元设备是接入网设备。
本申请还提供一种计算机可读存储介质,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现上述方法实施例提供的QoS变化的通知方法。
可选地,本申请还提供了一种计算机程序产品,所述计算机程序产品包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述方面提供的QoS变化的通知方法。
Claims (28)
- 一种服务质量QoS变化的通知方法,其特征在于,所述方法包括:接入网设备在非保证比特速率GBR承载流的QoS通知控制QNC的参数的变化满足上报条件时,通过核心网实体向应用实体发送通知消息。
- 根据权利要求1所述的方法,其特征在于,所述QNC的参数包括如下至少一种:分组数据时延PDB;分组误码率PER;当前比特速率CBR。
- 根据权利要求2所述的方法,其特征在于,所述QNC的参数包括至少两种;存在至少两种所述参数对应的所述上报条件相同;和/或,存在至少两种所述参数对应的所述上报条件不同。
- 根据权利要求1所述的方法,其特征在于,所述上报条件包括如下至少一种:所述QNC的参数在第一时长内的变化值大于第一阈值;所述QNC的参数在第二时长内的变化率大于第二阈值;所述QNC的参数在所述第一时长内的变化值大于第一阈值,且持续保持第三阈值;所述QNC的参数在所述第二时长内的变化率大于第二阈值,且持续保持第四阈值;其中,所述第三阈值和所述第四阈值是用于衡量保持时长的阈值。
- 根据权利要求1所述的方法,其特征在于,所述通知消息包括:变化后的所述QNC的参数值;或,变化后的所述QNC的参数值的量化值。
- 根据权利要求1所述的方法,其特征在于,所述非GBR承载流包括:非GBR QoS流;或,非GBR演进的分组系统EPS承载。
- 根据权利要求1所述的方法,其特征在于,所述QNC定义在上行链路;或,所述QNC定义在下行链路;或,所述QNC定义在所述上行链路和所述下行链路。
- 根据权利要求1所述的方法,其特征在于,所述非GBR承载流与目标业务流存在一一对应关系,所述目标业务流是包含所述QNC以及所述QNC的参数的业务流。
- 根据权利要求1至8任一所述的方法,其特征在于,所述通过核心网实体向应用实体发送通知消息,包括:向核心网实体发送所述通知消息,以便所述核心网实体向所述应用实体发送所述通知消息。
- 根据权利要求9所述的方法,其特征在于,所述核心网实体包括第一核心网实体和第二核心网实体;所述向核心网实体发送所述通知消息,包括:向所述第一核心网实体发送所述通知消息,以便所述第一核心网实体向所述第二核心网实体转发所述通知消息。
- 根据权利要求1至8任一所述的方法,其特征在于,所述方法还包括:所述接入网设备接收所述核心网实体发送的QNC配置,所述QNC配置包括所述非GBR承载流的QNC的参数以及所述上报条件中的至少一种。
- 根据权利要求11所述的方法,其特征在于,所述接入网接收所述第一核心网实体发送的QNC配置,包括:所述接入网设备接收所述核心网实体发送的N2接口协议数据单元PDU会话请求,所述N2 PDU会话请求携带有所述QNC配置。
- 一种QoS变化的通知装置,其特征在于,所述装置包括:发送模块,用于在非保证比特速率GBR承载流的服务质量通知控制QNC的参数的变化满足上报条件时,通过核心网实体向应用实体发送通知消息。
- 根据权利要求13所述的装置,其特征在于,所述QNC的参数包括如下至少一种:分组数据时延PDB;分组误码率PER;当前比特速率CBR。
- 根据权利要求14所述的装置,其特征在于,所述QNC的参数包括至少两种;存在至少两种所述参数对应的所述上报条件相同;和/或,存在至少两种所述参数对应的所述上报条件不同。
- 根据权利要求13所述的装置,其特征在于,所述上报条件包括如下至少一种:所述QNC的参数在第一时长内的变化值大于第一阈值;所述QNC的参数在第二时长内的变化率大于第二阈值;所述QNC的参数在所述第一时长内的变化值大于第一阈值,且持续保持第三阈值;所述QNC的参数在所述第二时长内的变化率大于第二阈值,且持续保持第四阈值;其中,所述第三阈值和所述第四阈值是用于衡量保持时长的阈值。
- 根据权利要求13所述的装置,其特征在于,所述通知消息包括:变化后的所述QNC的参数值;或,变化后的所述QNC的参数值的量化值。
- 根据权利要求13所述的装置,其特征在于,所述非GBR承载流包括:非GBR QoS流;或,非GBR演进的分组系统EPS承载。
- 根据权利要求13所述的装置,其特征在于,所述QNC定义在上行链路;或,所述QNC定义在下行链路;或,所述QNC定义在所述上行链路和所述下行链路。
- 根据权利要求13所述的装置,其特征在于,所述非GBR承载流与目标业务流存在一一对应关系,所述目标业务流是包含所述QNC以及所述QNC的参数的业务流。
- 根据权利要求13至20任一所述的装置,其特征在于,所述通过核心网实体向应用实体发送通知消息,包括:向核心网实体发送所述通知消息,以便所述核心网实体向所述应用实体发送所述通知消息。
- 根据权利要求21所述的装置,其特征在于,所述核心网实体包括第一核心网实体和第二核心网实体;所述向核心网实体发送所述通知消息,包括:向所述第一核心网实体发送所述通知消息,以便所述第一核心网实体向所述第二核心网实体转发所述通知消息。
- 根据权利要求13至20任一所述的装置,其特征在于,所述装置还包括:所述接入网设备接收所述核心网实体发送的QNC配置,所述QNC配置包括所述非GBR承载流的QNC的参数以及所述上报条件中的至少一种。
- 根据权利要求23所述的装置,其特征在于,所述接入网接收所述第一核心网实体发送的QNC配置,包括:所述接入网设备接收所述核心网实体发送的N2接口协议数据单元PDU会话请求,所述N2 PDU会话请求携带有所述QNC配置。
- 一种网元设备,其特征在于,所述网元设备包括:处理器和存储器,所述存储器存储有计算机程序,所述计算机程序由所述处理器加载并执行以实现如权利要求1至12任一所述的QoS变化的通知方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序由处理器加载并执行以实现如权利要求1至12任一所述的QoS变化的通知方法。
- 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时用于实现如权利要求1至12任一所述的QoS变化的通知方法。
- 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中,计算机设备的处理器从所述计算机可读存储介质读取所述计算机指令,所述处理器执行该计算机指令,使得所述计算机设备执行上述权利要求1至12任一所述的QoS变化的通知方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/986,795 US20230075987A1 (en) | 2021-02-25 | 2022-11-14 | METHOD AND APPARATUS FOR NOTIFYING QoS CHANGE, DEVICE AND MEDIUM |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110214402.1 | 2021-02-25 | ||
CN202110214402.1A CN113037543B (zh) | 2021-02-25 | 2021-02-25 | QoS变化的通知方法、装置、设备及介质 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/986,795 Continuation US20230075987A1 (en) | 2021-02-25 | 2022-11-14 | METHOD AND APPARATUS FOR NOTIFYING QoS CHANGE, DEVICE AND MEDIUM |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022179316A1 true WO2022179316A1 (zh) | 2022-09-01 |
Family
ID=76461930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/070541 WO2022179316A1 (zh) | 2021-02-25 | 2022-01-06 | QoS变化的通知方法、装置、设备及介质 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230075987A1 (zh) |
CN (2) | CN117650991A (zh) |
WO (1) | WO2022179316A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117650991A (zh) * | 2021-02-25 | 2024-03-05 | 腾讯科技(深圳)有限公司 | QoS变化的通知方法、装置、设备及介质 |
WO2024210487A1 (ko) * | 2023-04-07 | 2024-10-10 | 삼성전자 주식회사 | 무선 통신 시스템에서 패킷을 처리하는 방법 및 장치 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101478743A (zh) * | 2008-01-03 | 2009-07-08 | 大唐移动通信设备有限公司 | 一种eps承载管理的方法和装置 |
US20200112907A1 (en) * | 2018-10-05 | 2020-04-09 | Huawei Technologies Co., Ltd. | Quality of service information notification to user equipment, users, and application server |
CN113038553A (zh) * | 2021-02-25 | 2021-06-25 | 腾讯科技(深圳)有限公司 | 基于切换过程的消息发送方法、装置、设备及介质 |
CN113037543A (zh) * | 2021-02-25 | 2021-06-25 | 腾讯科技(深圳)有限公司 | QoS变化的通知方法、装置、设备及介质 |
CN113038527A (zh) * | 2021-02-25 | 2021-06-25 | 腾讯科技(深圳)有限公司 | 应用程序的控制方法、装置、设备及存储介质 |
CN113163449A (zh) * | 2021-02-25 | 2021-07-23 | 腾讯科技(深圳)有限公司 | 应用程序的控制方法、装置、设备及存储介质 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8189621B2 (en) * | 2006-05-12 | 2012-05-29 | Microsoft Corporation | Stack signaling to application with lack of requested bandwidth |
EP3701743A1 (en) * | 2017-10-26 | 2020-09-02 | Huawei Technologies Co., Ltd. | Techniques for quality of service negotiation |
EP3698572B1 (en) * | 2017-10-26 | 2023-08-30 | Huawei Technologies Co., Ltd. | Techniques for notifying a quality of service change |
CN112073216A (zh) * | 2018-02-05 | 2020-12-11 | 华为技术有限公司 | 获取链路质量的方法和装置 |
CN110351784B (zh) * | 2018-04-03 | 2021-12-28 | 华为技术有限公司 | 一种信息传输方法及装置 |
CN110366132B (zh) * | 2018-04-09 | 2021-04-20 | 华为技术有限公司 | 通信方法及装置 |
WO2019210966A1 (en) * | 2018-05-03 | 2019-11-07 | Huawei Technologies Co., Ltd. | Client device, network control node and upf for transmission and reception of streams of data packets in multi-connectivity |
CN113365293A (zh) * | 2018-05-21 | 2021-09-07 | 华为技术有限公司 | 一种通信方法及装置 |
WO2020069742A1 (en) * | 2018-10-04 | 2020-04-09 | Huawei Technologies Co., Ltd. | Network node and client device for quality-of-service change management |
CN114466382A (zh) * | 2019-01-28 | 2022-05-10 | 华为技术有限公司 | 一种通信方法及通信装置 |
CN111586600B (zh) * | 2020-04-24 | 2023-05-23 | 腾讯科技(深圳)有限公司 | 网络辅助信息提供方法及相关设备 |
CN111935738B (zh) * | 2020-07-17 | 2022-07-26 | 网络通信与安全紫金山实验室 | 一种用于多运营商核心网对接mec的方法及系统 |
CN112203330B (zh) * | 2020-09-30 | 2023-07-14 | 中国联合网络通信集团有限公司 | QoS流的控制方法及通信装置 |
-
2021
- 2021-02-25 CN CN202311636077.3A patent/CN117650991A/zh active Pending
- 2021-02-25 CN CN202110214402.1A patent/CN113037543B/zh active Active
-
2022
- 2022-01-06 WO PCT/CN2022/070541 patent/WO2022179316A1/zh active Application Filing
- 2022-11-14 US US17/986,795 patent/US20230075987A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101478743A (zh) * | 2008-01-03 | 2009-07-08 | 大唐移动通信设备有限公司 | 一种eps承载管理的方法和装置 |
US20200112907A1 (en) * | 2018-10-05 | 2020-04-09 | Huawei Technologies Co., Ltd. | Quality of service information notification to user equipment, users, and application server |
CN113038553A (zh) * | 2021-02-25 | 2021-06-25 | 腾讯科技(深圳)有限公司 | 基于切换过程的消息发送方法、装置、设备及介质 |
CN113037543A (zh) * | 2021-02-25 | 2021-06-25 | 腾讯科技(深圳)有限公司 | QoS变化的通知方法、装置、设备及介质 |
CN113038527A (zh) * | 2021-02-25 | 2021-06-25 | 腾讯科技(深圳)有限公司 | 应用程序的控制方法、装置、设备及存储介质 |
CN113163449A (zh) * | 2021-02-25 | 2021-07-23 | 腾讯科技(深圳)有限公司 | 应用程序的控制方法、装置、设备及存储介质 |
Non-Patent Citations (2)
Title |
---|
HUAWEI ET AL.: "KI#15: new solution to assist Application Adjustment;", SA WG2 MEETING #129 S2-1811822;, 20 November 2018 (2018-11-20) * |
TENCENT: "TS 23.287 EN#24 on Whether V2X Application Server provides 5QI", 3GPP DRAFT; S2-1907404_23287_EN#24 ON WHETHER V2X APPLICATION SERVER PROVIDES 5QI, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Sapporo, Japan; 20190624 - 20190628, 18 June 2019 (2019-06-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051752364 * |
Also Published As
Publication number | Publication date |
---|---|
US20230075987A1 (en) | 2023-03-09 |
CN117650991A (zh) | 2024-03-05 |
CN113037543A (zh) | 2021-06-25 |
CN113037543B (zh) | 2023-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022179317A1 (zh) | 应用程序的控制方法、装置、设备及存储介质 | |
WO2022179334A1 (zh) | 应用程序的控制方法、装置、设备及存储介质 | |
US10638351B2 (en) | Service rate adjustment method and apparatus | |
WO2019228214A1 (zh) | 一种无线承载建立、业务流的监测方法及装置 | |
WO2020019764A1 (zh) | 信息传输方法、设备及计算机可读存储介质 | |
WO2019011107A1 (zh) | 网络切换方法及装置 | |
US7688724B2 (en) | Call admission control for mobility-capable telecommunications terminals | |
US9549345B2 (en) | Solution to improve RAN bandwidth efficiency during VoLTE call scenarios | |
WO2022179316A1 (zh) | QoS变化的通知方法、装置、设备及介质 | |
WO2022179322A1 (zh) | 基于切换过程的消息发送方法、装置、设备及介质 | |
WO2022016948A1 (zh) | 一种通信方法及装置 | |
WO2023035894A1 (zh) | 一种数据处理方法、设备、可读存储介质和程序产品 | |
JP7494327B2 (ja) | 通信方法、装置、およびシステム | |
US20230007128A1 (en) | Voice packets over the control plane | |
EP3777461A1 (en) | Dedicated bearer management | |
US9246817B1 (en) | System and method of managing traffic flow in a communication network | |
WO2023029625A1 (zh) | 一种服务质量的处理方法、装置和通信系统 | |
WO2017177356A1 (zh) | 数据传输的方法、基站和用户设备 | |
US9042317B2 (en) | Non-guaranteed bit rate bearer control in a mobile communication network | |
WO2024148499A1 (zh) | 信息处理方法以及装置、通信设备及存储介质 | |
WO2024148497A1 (zh) | 信息处理方法及装置、通信设备及存储介质 | |
WO2022161162A1 (zh) | 视频传输方法、装置和存储介质 | |
WO2023151042A1 (zh) | 一种无线通信方法及装置、通信设备 | |
WO2024148495A1 (zh) | 信息处理方法以及装置、通信设备及存储介质 | |
WO2021163855A1 (zh) | 信息发送方法、接收方法、装置、设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22758682 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/01/2024) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22758682 Country of ref document: EP Kind code of ref document: A1 |