WO2021184263A1 - 一种数据传输方法及装置、通信设备 - Google Patents

一种数据传输方法及装置、通信设备 Download PDF

Info

Publication number
WO2021184263A1
WO2021184263A1 PCT/CN2020/080046 CN2020080046W WO2021184263A1 WO 2021184263 A1 WO2021184263 A1 WO 2021184263A1 CN 2020080046 W CN2020080046 W CN 2020080046W WO 2021184263 A1 WO2021184263 A1 WO 2021184263A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
transmission
network
terminal
group
Prior art date
Application number
PCT/CN2020/080046
Other languages
English (en)
French (fr)
Inventor
许阳
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080097183.7A priority Critical patent/CN116057912A/zh
Priority to PCT/CN2020/080046 priority patent/WO2021184263A1/zh
Publication of WO2021184263A1 publication Critical patent/WO2021184263A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and in particular to a data transmission method and device, and communication equipment.
  • the current Quality of Service (QoS) mechanism only considers the guarantee of data transmission.
  • the analysis of big data needs to consider not only the guarantee of data transmission, but also the guarantee of data processing, such as the time spent on data processing and other factors.
  • the current QoS mechanism cannot meet the guarantee of big data analysis.
  • the embodiments of the present application provide a data transmission method and device, and communication equipment.
  • Each of the at least one node allocates corresponding computing resources and/or transmission resources according to QoS parameters, where the at least one node includes at least one of the following: a terminal, an access network network element, a core network user plane network element, Business server.
  • Part or all of the first node in a group determines that the connection with the second node meets the QoS requirements specified by at least one of the following parameters:
  • Guaranteed Bit Rate Guaranteed Bit Rate (Guaranteed Bit Rate, GBR), Maximum Bit Rate (Maximum Bit Rate, MBR), Packet Error Rate (Packet Error Rate, PER), Packet Delay Budget (PDB), the first node and The total delay between the second node, the total transmission rate between the first node and the second node.
  • the data transmission device provided in the embodiment of the present application is applied to each of at least one node, and the at least one node includes at least one of the following: a terminal, an access network network element, a core network user plane network element, and a service server; Wherein, the device includes:
  • the allocation unit is used to allocate corresponding computing resources and/or transmission resources according to the QoS parameters.
  • the data transmission device provided in the embodiment of the present application is applied to some or all of the first nodes in a group; wherein, the device includes:
  • the determining unit is used to determine that the connection with the second node meets the QoS requirements specified by at least one of the following parameters:
  • GBR GBR
  • MBR MBR
  • PER PDB
  • the communication device provided by the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned data transmission method.
  • the chip provided in the embodiment of the present application is used to implement the above-mentioned data transmission method.
  • the chip includes a processor, which is used to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned data transmission method.
  • the computer-readable storage medium provided by the embodiments of the present application is used to store a computer program, and the computer program enables a computer to execute the above-mentioned data transmission method.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the above-mentioned data transmission method.
  • the computer program provided in the embodiment of the present application when it runs on a computer, causes the computer to execute the above-mentioned data transmission method.
  • the current QoS mechanism is expanded, and the QoS parameters configured on the network side not only consider the guarantee of data transmission, but also the guarantee of data processing.
  • related nodes such as terminals, access network network elements, core network user plane network elements, and service servers
  • corresponding computing resources and/or transmission resources can be allocated according to QoS parameters, so as to meet the requirements of supporting big data analysis.
  • a group QoS mechanism is introduced to ensure that a certain percentage of terminals in the group meet the QoS guarantee, which provides protection for specific application scenarios or privacy protection.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Figure 2-1 is a schematic diagram 1 of the application scenario of the model provided by the embodiment of the present application.
  • Figure 2-2 is a second schematic diagram of an application scenario of the model provided by an embodiment of the present application.
  • Figure 2-3 is the third schematic diagram of the application scenario of the model provided by the embodiment of the present application.
  • Figures 2-4 are schematic diagrams of the calculation time and the amount of output data generated by the terminal at different segmentation points according to the embodiments of the present application;
  • FIG. 3 is a schematic flowchart of a data transmission method provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of the total delay provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of the rate and delay provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a group provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of QoS parameter delivery provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram 1 of the structural composition of a data transmission device provided by an embodiment of the application.
  • FIG. 9 is a second schematic diagram of the structural composition of the data transmission device provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a chip of an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication system 5G communication system or future communication system.
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminals located in the coverage area.
  • the network device 110 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or
  • the network equipment can be a mobile switching center, a relay station, an access point, an in-vehicle device, a wearable device, a hub, a switch, a bridge, a router, a network side device in a 5G network, or a network device in a future communication system, etc.
  • the communication system 100 also includes at least one terminal 120 located within the coverage area of the network device 110.
  • the "terminal” used here includes, but is not limited to, connection via a wired line, such as via a public switched telephone network (PSTN), digital subscriber line (Digital Subscriber Line, DSL), digital cable, and direct cable connection; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM Broadcast transmitter; and/or another terminal's device configured to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN public switched telephone network
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • a terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio telephone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal can refer to access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user Device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks, or terminals in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminals 120.
  • the 5G communication system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminals. This embodiment of the present application There is no restriction on this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal 120 with communication functions, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here; communication
  • the device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • AI Agent Intelligence
  • ML Machine Learning
  • DNN Deep Neural Network
  • RNN Recurrent Neural Network
  • CNN Convolution Neural Network
  • MPL Multilayer Perception
  • the most widely used model is the DNN model.
  • the DNN model is divided according to the location of different layers.
  • the neural network layer inside the DNN model can be divided into three categories: input layer, hidden layer and output layer.
  • the first layer of the DNN model is the input layer
  • the last layer of the DNN model is the output layer
  • the number of layers in the middle of the DNN model are all hidden layers.
  • a multi-level AI/ML approach can be considered, that is, the network side and the terminal division of labor for big data analysis.
  • FIG. 2-1 A typical division of labor is shown in Figure 2-1.
  • the terminal partially processes the data to form intermediate state data, and then sends the intermediate state data through the mobile network to the service server for further processing. This helps to share the workload and protect the privacy of the terminal.
  • (a) is a centralized scenario, that is, after all terminals report the required data, the big data analysis work is all On the network side.
  • (b) is a completely distributed scenario, that is, different terminals analyze the collected data locally.
  • (c) is a hybrid scenario, that is, after the terminal performs a part of the local analysis on the collected data, the result is sent to the network side, and the network side performs further calculation and analysis.
  • the methods (b) and (c) may also introduce data interaction between the terminal and the terminal to complete big data analysis or result sharing.
  • big data analysis work can be performed on terminals, edge servers, and cloud servers, or it can be performed on only one or two of the three. Therefore, the terminal may allocate different network models and calculation workloads as required, and the calculation is completed within the required time and is successfully sent to the network side.
  • the workload is configured for the terminal according to different splitting methods, so the calculation time and the amount of data generated by the terminal under each splitting method are different. As shown in Figure 2-4, it reflects the calculation time and the amount of data generated by the terminal at each layer for a network model. From Figure 2-4, you can see the time it takes for the terminal to process data (called calculation time), and the amount of output data generated after the terminal processes the data. If the workload of the first layer is executed by the terminal, the time it takes for the terminal to process the data is the calculation time represented by the light bar to the left of split point 1, and the amount of output data generated is the split Click the amount of data indicated by the arrow 1, and then the subsequent output data can be transmitted to the service server on the network side for further processing. The other split points are the same.
  • a set of QoS parameters is used for one or more QoS flows or bearer data transmissions.
  • the bearer specifically refers to a data radio bearer (Data Resource Bearer, DRB), and one or more QoS flows can be mapped to a DRB for transmission.
  • DRB Data Resource Bearer
  • the base station on the air interface will establish a DRB according to the QoS parameters and bind the QoS flow to a specific DRB.
  • a set of QoS parameters can specifically include the following parameters:
  • —5QI Used to retrieve the QoS parameters of a specific service.
  • GBR the guaranteed rate
  • MBR the highest achievable rate
  • -Packet loss rate also known as PER.
  • Transmission delay AN-PDB+CN-PDB, where AN-PDB represents the transmission delay between the terminal and the base station on the air interface, and CN-PDB represents the base station and the core network user plane network element Transmission delay.
  • Averaging window The time range within the average window is used to examine whether key QoS parameters such as rate and packet loss rate can be guaranteed. Specifically, in the average window, it is investigated whether the average value of the QoS parameters (such as rate, packet loss rate, etc.) meets the value specified by the QoS parameter.
  • ARP Address Retension Priority
  • -Priority Represents the priority of a QoS flow or bearer.
  • the current QoS mechanism only considers the guarantee of data transmission. From the above analysis, it can be seen that the analysis of big data needs to consider not only the guarantee of data transmission, but also the guarantee of data processing, such as the time spent on data processing. factor. On the other hand, for some distributed or hybrid big data analysis scenarios, it is necessary to ensure that a certain number of terminals can complete the big data analysis work. Since the channel quality of different terminals will often change over time, the network side can only guarantee a certain percentage of terminals or a certain number of terminals to perform big data analysis work, without specifying which terminals must perform big data analysis work.
  • the "data” in the embodiments of the present application may be network model data or ordinary data.
  • the “calculation time” in the embodiments of the present application may also be referred to as "processing time”.
  • the solutions of the embodiments of the present application can not only be applied to AI computing, but also can be applied to scenarios such as ordinary data computing or edge computing.
  • FIG. 3 is a schematic flowchart of a data transmission method provided by an embodiment of the application. As shown in FIG. 3, the data transmission method includes the following steps:
  • Step 301 Each of the at least one node allocates corresponding computing resources and/or transmission resources according to QoS parameters, where the at least one node includes at least one of the following: a terminal, an access network element, a core network user plane Network element, business server.
  • the involved computing nodes and/or transmission nodes include at least one of the following: a terminal, an access network network element, a core network user plane network element, and a service server.
  • the terminal is a computing node and a transmission node
  • the access network network element is a transmission node
  • the core network user plane network element is a transmission node
  • the service server is a computing node and a transmission node.
  • the network element of the access network may be a base station.
  • the service server may be a network model server (ie, an AI server).
  • the service server may also be a normal service server or an edge server or a network data analysis function (NWDAF) in 3GPP.
  • NWDAAF network data analysis function
  • the technical solutions of the embodiments of the present application can be applied but not limited to 5G networks and 4G networks.
  • implementations of the core network user plane network element and the access network network element are different.
  • the user plane network element of the core network may be a user plane function network element (User Plane Function, UPF), and the access network network element may be a gNB.
  • UPF User Plane Function
  • the current QoS parameters are extended.
  • the QoS parameters include not only existing data transmission related parameters, but also data calculation related parameters.
  • the existing data transmission-related parameters can refer to the foregoing description of QoS parameters, for example, including the following parameters: 5QI, packet loss rate, Averaging window, ARP, Priority, etc.
  • QoS parameters need to consider both data transmission and data calculation.
  • the QoS parameters in the embodiments of the present application also need to include at least one of the following parameters related to data calculation:
  • a first parameter where the first parameter is used to determine the total time delay of data
  • a third parameter where the third parameter is used to determine at least one of a time, a time period, and a period when the data arrives at each of the at least one node.
  • the first parameter, the first parameter is used to determine the total delay of the data.
  • the total delay includes additional delay and at least one of the following:
  • a first transmission delay where the first transmission delay refers to a transmission delay between the user module of the terminal and the network element of the access network
  • a second transmission delay refers to a transmission delay between an access network network element and a core network user plane network element.
  • total delay AN_PDB+CN_PDB+additional_PDB, where AN_PDB represents the first transmission delay (that is, the transmission delay between the user module of the terminal and the network element of the access network), and CN_PDB represents the second transmission delay (That is, the transmission delay between the access network network element and the core network user plane network element), additional_PDB represents additional delay.
  • AN_PDB represents the first transmission delay (that is, the transmission delay between the user module of the terminal and the network element of the access network)
  • CN_PDB represents the second transmission delay (That is, the transmission delay between the access network network element and the core network user plane network element)
  • additional_PDB represents additional delay.
  • total delay AN_PDB+additional_PDB, where AN_PDB represents the first transmission delay (that is, the transmission delay between the user module of the terminal and the network element of the access network), and additional_PDB represents the additional delay.
  • total delay CN_PDB+additional_PDB, where CN_PDB represents the second transmission delay (that is, the transmission delay between the access network network element and the user plane network element of the core network), and additional_PDB represents the additional delay.
  • At least one of AN-PDB and CN-PDB may be defined according to one value.
  • the additional delay in the above solution includes at least one of the following:
  • the first calculation time where the first calculation time refers to the calculation time of the service processing module of the terminal;
  • the first transmission time refers to the transmission time between the service processing module of the terminal and the user module
  • the second calculation time where the second calculation time refers to the calculation time of the service server
  • the second transmission time, the second transmission time refers to the transmission time between the service server and the user plane network element of the core network.
  • the first calculation time and/or the first transmission time are terminal-side service processing time; the second calculation time and/or the second transmission time are network-side service processing time .
  • terminal-side service processing time first calculation time+first transmission time.
  • Network-side service processing time second calculation time+second transmission time.
  • total time delay terminal side service processing time+AN_PDB+CN_PDB+network side service processing time.
  • each parameter in the above solution may be an uplink parameter or a downlink parameter.
  • the first transmission delay is specifically the first uplink transmission delay
  • the second transmission delay is specifically the second uplink transmission delay
  • the first transmission time is specifically the first uplink transmission time
  • the second transmission is The time is specifically the second uplink transmission time.
  • the first transmission delay is specifically the first downlink transmission delay
  • the second transmission delay is specifically the second downlink transmission delay
  • the first transmission time is specifically the first downlink transmission time.
  • the second transmission time is specifically the second downlink transmission time.
  • the second parameter, the second parameter is used to determine the total rate of data.
  • the total rate is the minimum value of the total calculation rate and the total transmission rate.
  • total rate min (total calculation rate, total transmission rate).
  • the total calculation rate in the above solution is the minimum of the following calculation rates:
  • a first calculation rate where the first calculation rate refers to a calculation rate of a service processing module of the terminal
  • the second calculation rate where the second calculation rate refers to the calculation rate of the service server on the network side.
  • total calculation rate min (first calculation rate, second calculation rate).
  • the total transmission rate in the above solution is the minimum of the following transmission rates:
  • a first transmission rate refers to a transmission rate between a service processing module and a user module of the terminal
  • a second transmission rate where the second transmission rate refers to a transmission rate between the user module of the terminal and the network element of the access network
  • a third transmission rate refers to a transmission rate between an access network network element and a core network user plane network element
  • the fourth transmission rate refers to the transmission rate between the user plane network element of the core network and the service server.
  • total transmission rate min (first transmission rate, second transmission rate, third transmission rate, fourth transmission rate).
  • the second transmission rate may be the DRB transmission rate between the user module of the terminal and the network element of the access network.
  • the third transmission rate may be the transmission rate of the CN tunnel between the access network network element and the user plane network element of the core network.
  • total rate min (first calculation rate, second calculation rate, first transmission rate, second transmission rate, third transmission rate, fourth transmission rate).
  • the total delay for a particular network model, a part of the network model is allocated to the terminal for calculation, and the other part is allocated to the service server for calculation.
  • the entire network model starts from the most The total time from the input at the left end to the output at the far right end can be guaranteed by the QoS parameter (that is, the total delay).
  • the QoS parameter that is, the total delay.
  • the total rate is the minimum of the terminal calculation rate (that is, the first calculation rate), the service server's calculation rate (that is, the second calculation rate), and the total transmission rate.
  • each parameter in the above solution may be an uplink parameter or a downlink parameter.
  • the first transmission rate is specifically the first uplink transmission rate
  • the second transmission rate is specifically the second uplink transmission rate
  • the third transmission rate is specifically the third uplink transmission rate
  • the fourth transmission rate is specifically the first transmission rate.
  • the terminal calculation rate ie, the first calculation rate
  • the service server's calculation rate ie, the second calculation rate
  • the first transmission rate is specifically the first downlink transmission rate
  • the second transmission rate is specifically the second downlink transmission rate
  • the third transmission rate is specifically the third downlink transmission rate
  • the fourth transmission rate is specifically It is the fourth downlink transmission rate
  • the service server calculation rate (that is, the second calculation rate) is the rate of the intermediate state data output by the service server
  • the terminal calculation rate (that is, the first calculation rate) is the data rate that the terminal can receive and process.
  • the third parameter, the third parameter is used to determine at least one of the time, time period, and period when data arrives at each of the at least one node.
  • the third parameter may be called Burst Arrival Time.
  • This parameter is used to notify each node of the time and/or time period and/or period of the data arrival, so that each node retains enough transmission Resources are used for data transmission and/or sufficient computing resources are reserved for data calculations.
  • the above-mentioned one or more nodes may synchronize their own clocks.
  • the core network control plane network element sends the burst arrival time to the terminal, the access network network element, the core network user plane network element, and the service server respectively.
  • the core network control plane network element may be a session management function network element (Session Management Function, SMF).
  • each parameter in the above solution may be an uplink parameter or a downlink parameter.
  • the burst arrival time is specifically the uplink burst arrival time.
  • the burst reach time is specifically the downlink burst reach time.
  • the fourth parameter, the fourth parameter is used to determine the identity of the group
  • a fifth parameter where the fifth parameter is used to determine the number of terminals included in the group
  • a sixth parameter where the sixth parameter is used to determine the number of valid terminals in the group or the proportion of valid terminals in the group;
  • the group refers to a group of terminals applicable to the QoS parameter.
  • the seventh parameter includes at least one of the following: geographic coordinates, cell identification, base station identification, tracking area (TA) identification, and public land mobile network (PLMN) identification .
  • the above parameters may be part of the QoS parameters, or may not belong to the QoS parameters.
  • the QoS parameters in the embodiments of the present application may include the above-mentioned parameters or be associated with the above-mentioned parameters.
  • the above-mentioned parameters may also have other names.
  • the fourth parameter is called a group identifier, where multiple terminals that apply a set of QoS parameters correspond to the same group identifier.
  • the fifth parameter is called the number of groups.
  • the sixth parameter is called the number of effective terminals or the effective percentage, which is used to determine the number of effective terminals or the percentage of effective terminals that must be guaranteed in the group at a specific time point or time period or period.
  • the seventh parameter is called the position range. It should be noted that the effective terminal refers to a terminal that can perform data calculation in a group or a terminal that has established a connection with the network side.
  • a group includes multiple first nodes. Part or all of the first node in a group determines that the connection with the second node meets the QoS requirements specified by at least one of the following parameters: GBR, MBR, PER, PDB, the total time between the first node and the second node Extension, the first node determines the total transmission rate with the second node.
  • the total time delay may refer to the description related to the total time delay in the foregoing embodiment of the present application.
  • the total transmission rate can refer to the description related to the total transmission rate in the foregoing embodiment of the present application.
  • the group includes a terminal and/or a network-side node; the second node is a terminal or a network-side node.
  • the network side node includes at least one of the following: an access network network element, a core network user plane network element, and a service server.
  • the group includes multiple terminals, and the second node is an access network network element, and the QoS between the multiple terminals and the access network network element can be guaranteed through the above-mentioned parameters.
  • the group includes a plurality of first terminals, and the second node is a second terminal, and the QoS of direct communication between a group of terminals and another terminal can be guaranteed through the above-mentioned parameters.
  • the group includes a plurality of edge servers
  • the second node is a central server
  • the QoS between a group of edge servers and another central server can be guaranteed through the above-mentioned parameters.
  • some or all of the first nodes in the group receive QoS parameters, and the QoS
  • the parameters include or are associated with at least one of the following:
  • the fourth parameter, the fourth parameter is used to determine the identity of the group
  • a fifth parameter where the fifth parameter is used to determine the number of terminals included in the group
  • a sixth parameter where the sixth parameter is used to determine the number of valid terminals in the group or the proportion of valid terminals in the group;
  • the group refers to a group of terminals applicable to the QoS parameter.
  • part or all of the first nodes in the group are determined by at least one of the following parameters: the area range of the group, the number of valid terminals in the group, the proportion of valid terminals in the group, The duration of maintaining a certain number of valid terminals in the group.
  • all or part of the terminals in the group receive QoS parameters, and the QoS parameters include or are associated with at least one of the following parameters: the fourth parameter, the fifth parameter, the sixth parameter, and the seventh parameter. All or part of the terminals in the group ensure that the connection with the network side meets the requirements specified by the above parameters.
  • the above parameters may be part of the QoS parameters, or may not belong to the QoS parameters.
  • the QoS parameters in the embodiments of the present application may include the above-mentioned parameters or be associated with the above-mentioned parameters.
  • the contents of the QoS parameters received by different nodes in the part or all of the first nodes are the same or different.
  • different nodes in the part or all of the first nodes may receive QoS parameter content related to themselves.
  • all nodes in the part or all of the first nodes receive the same QoS parameter content (the content includes QoS parameter content related to all nodes).
  • the QoS parameter is sent by the core network control plane network element.
  • the control plane network element of the core network may be an SMF.
  • the coverage area of multiple base stations is the area range of the group.
  • a group of 16 terminals (16 terminals corresponding to the same group ID) is defined in this range.
  • the terminals inside must have 50% or more of the terminals guaranteed QoS requirements.
  • 8 terminals (or 50% of the terminals) need to meet the specified set of QoS parameters, and the effective terminal cannot be changed in this period.
  • the next The QoS of other terminals is guaranteed periodically, but the number of effective terminals still needs to be 50% or more of the total number of groups.
  • the duration of maintaining a certain number of valid terminals in the group is T.
  • the effective terminal can be changed at a specified time point or time period, otherwise the QoS of the currently determined effective terminal must be guaranteed.
  • the group QoS mechanism can be used in the scenario of joint computing, that is, the service server needs to obtain the calculation results sent by a certain number of terminals at a certain point in time or within a period of time, and does not need to limit which terminal sends the calculation results.
  • the group QoS mechanism also contributes to the protection of terminal privacy, and the service server does not know which terminal's QoS parameters are guaranteed.
  • the technical solution of the embodiment of the present application also includes a QoS parameter configuration solution, which will be described below.
  • the at least one node receives the QoS parameter and/or the parameter associated with the QoS parameter sent by the network-side network element.
  • all or part of the at least one node sends capability information to the network-side network element, and the capability information is used by the network-side network element to determine the QoS parameter and/or the QoS The parameter associated with the parameter.
  • the network side network element is a core network control plane network element.
  • the control plane network element of the core network may be an SMF.
  • the capability information includes at least one of the following: capability information of the terminal and capability information of the service server.
  • the capability information of the terminal is reported by the terminal to the network-side network element through a non-access stratum (NAS) message.
  • NAS non-access stratum
  • the NAS message may be a registration request message, or a service request message, or a session establishment request message, or a session modification request message, etc.
  • the capability information of the terminal includes at least one of the following:
  • Computing time supported by the service processing module of the terminal (for example, the maximum supported computing time, or the maximum allowable computing time);
  • the calculation rate supported by the service processing module of the terminal (for example, the maximum calculation rate supported, or the maximum allowable calculation rate);
  • the transmission time between the service processing module supported by the terminal and the user module (for example, the maximum supported transmission time, or the maximum allowable transmission time).
  • the capability information of the service server is reported to the network-side network element by the service server or terminal.
  • the capability information of the service server includes at least one of the following:
  • the calculation time supported by the service server (for example, the maximum calculation time supported, or the maximum allowable calculation time);
  • the calculation rate supported by the service server (for example, the maximum calculation rate supported, or the maximum allowable calculation rate);
  • the transmission time between the service server supported by the service server and the user plane network element of the core network (for example, the maximum supported transmission time, or the maximum allowable transmission time).
  • the network-side network element uniformly collects the foregoing capability information, and determines and issues QoS parameters based on the foregoing capability information.
  • the process of capability reporting and QoS parameter delivery includes the following steps:
  • the terminal reports the capability information of the terminal to the core network control plane network element.
  • the terminal can also report the capability information of the service server to the core network control plane network element.
  • the control plane network element of the core network issues QoS parameters to the user plane network element of the core network.
  • control plane network element of the core network issues QoS parameters to the service server.
  • the core network control plane network element issues QoS parameters to the access network network element.
  • the control plane network element of the core network delivers QoS parameters to the terminal.
  • One or more of the terminal, the access network network element, the core network user plane network element, and the service server allocates corresponding resources (such as computing resources, transmission resources, etc.) according to the QoS parameters to ensure the QoS parameters.
  • the above steps 4 and 5 can be combined into one message, that is, the message sent by the core network control plane network element to the access network network element contains the NAS message, and the NAS message is passed through the access network.
  • the network element of the network access is transparently transmitted to the terminal, where the NAS message carries a container carrying the QoS parameter.
  • the technical solutions of the embodiments of the present application extend the current QoS mechanism and include computing capabilities to satisfy mobile networks that support big data analysis.
  • a group QoS mechanism is introduced, which is suitable for specific application scenarios or for the purpose of privacy protection.
  • the technical solutions of the embodiments of the present application make full use of existing processes and mechanisms for capability reporting and QoS parameter delivery, and have little impact on the system.
  • FIG. 8 is a schematic diagram 1 of the structural composition of a data transmission device provided by an embodiment of the application, which is applied to each of at least one node, and the at least one node includes at least one of the following: a terminal, an access network element, and a core network User plane network element, service server; as shown in Figure 8, the data transmission device includes:
  • the allocation unit 801 is configured to allocate corresponding computing resources and/or transmission resources according to QoS parameters.
  • the terminal is a computing node and a transmission node
  • the network element of the access network is a transmission node
  • the user plane network element of the core network is a transmission node
  • the service server is a computing node and a transmission node.
  • the QoS parameter includes at least one of the following:
  • a first parameter where the first parameter is used to determine the total time delay of data
  • a third parameter where the third parameter is used to determine at least one of a time, a time period, and a period when the data arrives at each of the at least one node.
  • the total delay includes additional delay and at least one of the following:
  • a first transmission delay where the first transmission delay refers to a transmission delay between the user module of the terminal and the network element of the access network
  • a second transmission delay refers to a transmission delay between an access network network element and a core network user plane network element.
  • the additional delay includes at least one of the following:
  • the first calculation time where the first calculation time refers to the calculation time of the service processing module of the terminal;
  • the first transmission time refers to the transmission time between the service processing module of the terminal and the user module
  • the second calculation time where the second calculation time refers to the calculation time of the service server
  • the second transmission time, the second transmission time refers to the transmission time between the service server and the user plane network element of the core network.
  • the first calculation time and/or the first transmission time are terminal-side service processing time
  • the second calculation time and/or the second transmission time are network-side service processing time.
  • the total rate is the minimum value of the total calculation rate and the total transmission rate.
  • the total calculation rate is the minimum of the following calculation rates:
  • a first calculation rate where the first calculation rate refers to a calculation rate of a service processing module of the terminal
  • the second calculation rate where the second calculation rate refers to the calculation rate of the service server on the network side.
  • the total transmission rate is a minimum of the following transmission rates:
  • a first transmission rate refers to a transmission rate between a service processing module and a user module of the terminal
  • a second transmission rate where the second transmission rate refers to a transmission rate between the user module of the terminal and the network element of the access network
  • a third transmission rate refers to a transmission rate between an access network network element and a core network user plane network element
  • the fourth transmission rate refers to the transmission rate between the user plane network element of the core network and the service server.
  • the QoS parameter includes or is associated with at least one of the following:
  • the fourth parameter, the fourth parameter is used to determine the identity of the group
  • a fifth parameter where the fifth parameter is used to determine the number of terminals included in the group
  • a sixth parameter where the sixth parameter is used to determine the number of valid terminals in the group or the proportion of valid terminals in the group;
  • the group refers to a group of terminals applicable to the QoS parameter.
  • the seventh parameter includes at least one of the following: geographic coordinates, cell identifier, base station identifier, TA identifier, and PLMN identifier.
  • the device further includes:
  • the receiving unit 803 is configured to receive the QoS parameter and/or the parameter associated with the QoS parameter sent by the network-side network element.
  • the device further includes:
  • the sending unit 802 is configured to send capability information to a network-side network element, where the capability information is used by the network-side network element to determine the QoS parameter and/or the parameter associated with the QoS parameter.
  • the capability information includes at least one of the following: capability information of the terminal and capability information of the service server.
  • the capability information of the terminal is reported by the terminal to the network-side network element through a NAS message.
  • the capability information of the service server is reported to the network-side network element by the service server or terminal.
  • the capability information of the terminal includes at least one of the following:
  • the transmission time between the service processing module supported by the terminal and the user module is the same.
  • the capability information of the service server includes at least one of the following:
  • the transmission time between the service server supported by the service server and the user plane network element of the core network is the same.
  • the network-side network element is a core network control plane network element.
  • FIG. 9 is a second schematic diagram of the structure composition of the data transmission device provided by an embodiment of the application, which is applied to some or all of the first nodes in a group; as shown in FIG. 9, the data transmission device includes:
  • the determining unit 901 is configured to determine that the connection with the second node meets the QoS requirements specified by at least one of the following parameters:
  • GBR GBR
  • MBR MBR
  • PER PDB
  • the group includes a terminal and/or a network-side node; the second node is a terminal or a network-side node.
  • part or all of the first nodes in the group are determined by at least one of the following parameters:
  • the device further includes:
  • the receiving unit 902 is configured to receive QoS parameters, where the QoS parameters include or are associated with at least one of the following:
  • the fourth parameter, the fourth parameter is used to determine the identity of the group
  • a fifth parameter where the fifth parameter is used to determine the number of terminals included in the group
  • a sixth parameter where the sixth parameter is used to determine the number of valid terminals in the group or the proportion of valid terminals in the group;
  • the group refers to a group of terminals applicable to the QoS parameter.
  • the seventh parameter includes at least one of the following: geographic coordinates, cell identifier, base station identifier, TA identifier, and PLMN identifier.
  • the QoS parameter is sent by a core network control plane network element.
  • the network side node includes at least one of the following: an access network network element, a core network user plane network element, and a service server.
  • FIG. 10 is a schematic structural diagram of a communication device 1000 according to an embodiment of the present application.
  • the communication device may be a terminal or a network device.
  • the communication device 1000 shown in FIG. 10 includes a processor 1010, and the processor 1010 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 1000 may further include a memory 1020.
  • the processor 1010 can call and run a computer program from the memory 1020 to implement the method in the embodiment of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or may be integrated in the processor 1010.
  • the communication device 1000 may further include a transceiver 1030, and the processor 1010 may control the transceiver 1030 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 1030 may include a transmitter and a receiver.
  • the transceiver 1030 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1000 may specifically be a network device of an embodiment of the application, and the communication device 1000 may implement the corresponding process implemented by the network device in each method of the embodiment of the application. For the sake of brevity, details are not repeated here. .
  • the communication device 1000 may specifically be a mobile terminal/terminal according to an embodiment of the present application, and the communication device 1000 may implement the corresponding process implemented by the mobile terminal/terminal in each method of the embodiment of the present application. For the sake of brevity, This will not be repeated here.
  • FIG. 11 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 1100 shown in FIG. 11 includes a processor 1110, and the processor 1110 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1100 may further include a memory 1120.
  • the processor 1110 can call and run a computer program from the memory 1120 to implement the method in the embodiment of the present application.
  • the memory 1120 may be a separate device independent of the processor 1110, or may be integrated in the processor 1110.
  • the chip 1100 may further include an input interface 1130.
  • the processor 1110 can control the input interface 1130 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1100 may further include an output interface 1140.
  • the processor 1110 can control the output interface 1140 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal in each method of the embodiment of the present application.
  • it will not be omitted here Go into details.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • FIG. 12 is a schematic block diagram of a communication system 1200 according to an embodiment of the present application. As shown in FIG. 12, the communication system 1200 includes a terminal 1210 and a network device 1220.
  • the terminal 1210 may be used to implement the corresponding functions implemented by the terminal in the foregoing method
  • the network device 1220 may be used to implement the corresponding functions implemented by the network device in the foregoing method.
  • details are not described herein again.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal in each method of the embodiment of the present application, in order to It's concise, so I won't repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal in each method of the embodiment of the present application, for the sake of brevity , I won’t repeat it here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal in the embodiments of the present application.
  • the computer program runs on the computer, the computer can execute the corresponding methods implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application. For the sake of brevity, the process will not be repeated here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Abstract

本申请实施例提供一种数据传输方法及装置、通信设备,该方法包括:至少一个节点中的每个节点根据服务质量QoS参数分配相应的计算资源和/或传输资源,其中,所述至少一个节点包括以下至少之一:终端、接入网网元、核心网用户面网元、业务服务器。

Description

一种数据传输方法及装置、通信设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种数据传输方法及装置、通信设备。
背景技术
目前的服务质量(Quality of Service,QoS)机制,只考虑了数据传输的保障。然而,对于大数据的分析不仅需要考虑数据传输的保障,还要考虑数据处理的保障,例如数据处理所花费的时间等因素。目前的QoS机制无法满足大数据分析的保障。
发明内容
本申请实施例提供一种数据传输方法及装置、通信设备。
本申请实施例提供的数据传输方法,包括:
至少一个节点中的每个节点根据QoS参数分配相应的计算资源和/或传输资源,其中,所述至少一个节点包括以下至少之一:终端、接入网网元、核心网用户面网元、业务服务器。
本申请实施例提供的数据传输方法,包括:
一群组中的部分或全部第一节点确定与第二节点之间的连接满足如下至少一个参数规定的QoS要求:
保证比特速率(Guaranteed Bit Rate,GBR)、最大比特速率(Maximum Bit Rate,MBR)、包误差率(Packet Error Rate,PER)、数据包时延预算(Packet Delay Budget,PDB)、第一节点与第二节点之间的总时延、第一节点与第二节点之间的总传输速率。
本申请实施例提供的数据传输装置,应用于至少一个节点中的每个节点,所述至少一个节点包括以下至少之一:终端、接入网网元、核心网用户面网元、业务服务器;其中,所述装置包括:
分配单元,用于根据QoS参数分配相应的计算资源和/或传输资源。
本申请实施例提供的数据传输装置,应用于一群组中的部分或全部第一节点;其中,所述装置包括:
确定单元,用于确定与第二节点之间的连接满足如下至少一个参数规定的QoS要求:
GBR、MBR、PER、PDB、第一节点与第二节点之间的总时延、第一节点与第二节点之间的总传输速率。
本申请实施例提供的通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的数据传输方法。
本申请实施例提供的芯片,用于实现上述的数据传输方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的数据传输方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的数据传输方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的数据传输方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的数据传输方法。
通过上述技术方案,扩展了目前的QoS机制,网络侧配置的QoS参数不仅考虑了数据传输的保障,还考虑了数据处理的保障。对于相关的节点(如终端、接入网网元、核心网用户面网元、业务服务器)来说,可以根据QoS参数分配相应的计算资源和/或传输资源,从而实现满足支持大数据分析的保障。另一方面,引入了群组QoS机制,保障群组内一定比例的终端满足QoS保 障,对于特定的应用场景或隐私保护提供了保障。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2-1是本申请实施例提供的模型的应用场景示意图一;
图2-2是本申请实施例提供的模型的应用场景示意图二;
图2-3是本申请实施例提供的模型的应用场景示意图三;
图2-4是本申请实施例提供的终端在不同分割点对应的计算时间和产生的输出数据量的示意图;
图3为本申请实施例提供的数据传输方法的流程示意图;
图4为本申请实施例提供的总时延的示意图;
图5为本申请实施例提供的速率和时延的示意图;
图6为本申请实施例提供的群组的示意图;
图7为本申请实施例提供的QoS参数下发的示意图;
图8为本申请实施例提供的数据传输装置的结构组成示意图一;
图9为本申请实施例提供的数据传输装置的结构组成示意图二;
图10是本申请实施例提供的一种通信设备示意性结构图;
图11是本申请实施例的芯片的示意性结构图;
图12是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、5G通信系统或未来的通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop, WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G通信系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术方案进行说明。
随着网络的人工智能化,人工智能(Artifact Intelligence,AI)/机器学习(Machine Learning,ML)将参与进移动网络中,为此,需要一种机制实现终端和网络之间对于大数据分析模型(也可以称为网络模型,简称为模型)的协商,以便实现通信网络对于大数据分析的保障。
对于大数据分析模型,可以有深度神经网络(Deep Neural Network,DNN)模型,循环神经网络(Recurrent Neural Network,RNN)模型,卷积神经网络(Convolution Neural Network,CNN)模型、多层感知(Multilayer Perception,MPL)模型等。使用最广泛的一种模型是DNN模型,DNN模型按不同层的位置划分,DNN模型内部的神经网络层可以分为三类:输入层,隐藏层和输出层。一般来说,DNN模型的第一层是输入层,DNN模型的最后一层是输出层,DNN模型的中间的层数都是隐藏层。
为了能够提升大数据分析的效果和用户体验,可以考虑采用多级AI/ML的方式,即网络侧和终端分工进行大数据分析。
一种典型的分工如图2-1所示,终端对数据进行部分处理形成中间态数据,然后将中间态数据通过移动网络发送给业务服务器进行进一步处理。这样有助于分担工作量以及保护终端隐私。
对于多个终端的场景下,其大数据分析工作可以有多种选择,如图2-2所示,(a)为集中式场景,即所有终端将需要的数据上报后,大数据分析工作全都在网络侧进行。(b)为完全分布式场景,即不同的终端对于采集的数据本地进行分析。(c)为混合式场景,即终端对于采集的数据在本地进行一部分的分析后,将结果发送给网络侧,由网络侧进行进一步的计算分析。此外(b)和(c)的方式下还可能引入终端和终端之间的数据交互以完成大数据分析或结果共享。
举例来说,如图2-3所示,大数据分析工作可以在终端、边缘服务器、云端服务器三者上分摊进行,也可以只在这三个中的一个或两个上面进行。因此,终端可能会根据需要分摊不同的网络模型和计算工作量,并在要求的时间内计算完成并成功发送给网络侧。
从上面的描述可以看出,终端和网络之间需要通信来保证数据的交换,这里通信质量就显得非常重要,如果终端不能及时将处理得到的数据发送给业务服务器,那么网络侧就需要一直等待,造成业务服务器计算资源的闲置,无法达到最佳的大数据分析效率。
对于一个多层的网络模型按照不同的拆分方式给终端配置工作量,那么每一种拆分方式下的终端的计算时间和产生的数据量都不同。如图2-4所示,体现了对于一个网络模型,终端在每一层的计算时间和产生的数据量。从图2-4可以看到终端对数据处理需要花费的时间(称为计算时间),以及终端处理数据后产生的输出数据的数据量。如果第一层的工作量由终端执行,则终端对数据处理需要花费的时间为分割点1(split point 1)左边的浅色条形表示的计算时间,并且产生的输出数据的数据量为分割点1箭头所指的数据量,然后后续的输出数据可以传给网络侧的业务服务器进行进一步处理。其他的分割点同理。
从图2-4可以看出,网络模型的不同的拆分方式对于终端的处理能力和传输能力的要求不同。为了保障数据的传输,移动网络一般使用QoS机制,在QoS机制中,一套QoS参数用于一个或多 个QoS流(QoS flow)或承载的数据传输。这里,承载具体指数据无线承载(Data Resource Bearer,DRB),一个或多个QoS流可以映射到一个DRB上进行传输。对于一个QoS流来说,对应一套QoS参数,空口上基站会根据QoS参数来建立DRB并将QoS流绑定到特定的DRB上。一套QoS参数具体可以包含如下参数:
—5QI:用于检索特定业务的QoS参数。
—速率:GBR和MBR,其中,GBR为可以保障的速率,MBR为最高可以达到的速率。
—丢包率:也即PER。
—传输时延:传输时延=AN-PDB+CN-PDB,其中,AN-PDB代表终端与基站之间在空口上的传输时延,CN-PDB代表基站与核心网用户面网元之间的传输时延。
—平均窗口(Averaging window):在平均窗口内的时间范围考察速率、丢包率等关键QoS参数能否保障。具体地,在平均窗口内考察QoS参数(如速率、丢包率等)的平均值是否满足QoS参数所规定的值。
—分配保留优先级(Allocation Retension Priority,ARP):代表QoS参数对应的QoS流或承载的抢占优先级或被强占优先级,可以在网络资源紧张(比如空口资源拥塞)的情况下使用。
—优先级(Priority):代表QoS流或承载的优先级。
目前的QoS机制,只考虑了数据传输的保障,而从上面的分析可以看出,大数据的分析不仅需要考虑数据传输的保障,还要考虑数据处理的保障,例如数据处理所花费的时间等因素。另一方面,对于一些分布式或混合式的大数据分析场景,需要保障一定数量的终端能够完成大数据分析工作。由于不同终端的信道质量会随着时间而经常改变,因此网络侧可以只保障一定比例的终端或一定数量的终端执行大数据分析工作,而不需要指定必须是哪些终端执行大数据分析工作。
为此,提出了本申请实施例的以下技术方案。需要说明的是,本申请实施例中的“数据”,可以是网络模型的数据或者是普通数据。本申请实施例中的“计算时间”,也可以称为“处理时间”。本申请实施例的方案不仅可以应用于AI计算,也可以用于普通数据计算或者边缘计算等场景。
图3为本申请实施例提供的数据传输方法的流程示意图,如图3所示,所述数据传输方法包括以下步骤:
步骤301:至少一个节点中的每个节点根据QoS参数分配相应的计算资源和/或传输资源,其中,所述至少一个节点包括以下至少之一:终端、接入网网元、核心网用户面网元、业务服务器。
本申请实施例中,对于数据分析工作来说,涉及到的计算节点和/或传输节点包括以下至少之一:终端、接入网网元、核心网用户面网元、业务服务器。其中,所述终端为计算节点和传输节点;所述接入网网元为传输节点;所述核心网用户面网元为传输节点;所述业务服务器为计算节点和传输节点。
进一步,可选地,所述接入网网元可以是基站。
进一步,可选地,所述业务服务器可以是网络模型服务器(即AI服务器)。不局限于此,所述业务服务器还可以是普通业务服务器或者是边缘服务器或者是3GPP中的网络数据分析功能网元(Network Data Analytics Function,NWDAF)。
本申请实施例的技术方案,可以应用但不局限于5G网络、4G网络。根据不同的网络类型,所述核心网用户面网元和所述接入网网元的实现有所不同。以5G网络为例,所述核心网用户面网元元可以是用户面功能网元(User Plane Function,UPF),所述接入网网元可以是gNB。
本申请实施例中,扩展目前的QoS参数,具体地,QoS参数除了包含已有的数据传输相关的参数以外,还包含数据计算相关的参数。其中,已有的数据传输相关的参数可以参照前述关于QoS参数的描述,例如包含如下参数:5QI、丢包率、Averaging window、ARP、Priority等。
对于数据计算和数据传输性能要求较高的场景,QoS参数需要同时考虑数据传输和数据计算。为此,本申请实施例的QoS参数还需要包括以下至少一种与数据计算相关的参数:
第一参数,所述第一参数用于确定数据的总时延;
第二参数,所述第二参数用于确定数据的总速率;
第三参数,所述第三参数用于确定数据到达所述至少一个节点中各个节点的时间、时间段和周期中的至少之一。
以下对第一参数、第二参数以及第三参数的实现进行说明。
●第一参数,所述第一参数用于确定数据的总时延。
这里,所述总时延包括附加时延以及以下至少之一:
第一传输时延,所述第一传输时延指终端的用户模块与接入网网元之间的传输时延;
第二传输时延,所述第二传输时延指接入网网元与核心网用户面网元之间的传输时延。
举个例子:总时延=AN_PDB+CN_PDB+additional_PDB,其中,AN_PDB代表第一传输时延(即终端的用户模块与接入网网元之间的传输时延),CN_PDB代表第二传输时延(即接入网网元与核心网用户面网元之间的传输时延),additional_PDB代表附加时延。
举个例子:总时延=AN_PDB+additional_PDB,其中,AN_PDB代表第一传输时延(即终端的用户模块与接入网网元之间的传输时延),additional_PDB代表附加时延。
举个例子:总时延=CN_PDB+additional_PDB,其中,CN_PDB代表第二传输时延(即接入网网元与核心网用户面网元之间的传输时延),additional_PDB代表附加时延。
上述方案中,可选地,AN-PDB和CN-PDB中的至少之一可以按照一个值来定义。
在一可选方式中,上述方案中的附加时延包括以下至少之一:
第一计算时间,所述第一计算时间指终端的业务处理模块的计算时间;
第一传输时间,所述第一传输时间指终端的业务处理模块与用户模块之间的传输时间;
第二计算时间,所述第二计算时间指业务服务器的计算时间;
第二传输时间,所述第二传输时间指业务服务器与核心网用户面网元之间的传输时间。
在一可选方式中,所述第一计算时间和/或所述第一传输时间为终端侧业务处理时间;所述第二计算时间和/或所述第二传输时间为网络侧业务处理时间。例如:终端侧业务处理时间=第一计算时间+第一传输时间。网络侧业务处理时间=第二计算时间+第二传输时间。
参照图4,总时延=终端侧业务处理时间+AN_PDB+CN_PDB+网络侧业务处理时间。
需要说明的是,上述方案中的各个参数可以是针对上行的参数或者是针对下行的参数。例如:针对上行来说,第一传输时延具体为第一上行传输时延,第二传输时延具体为第二上行传输时延,第一传输时间具体为第一上行传输时间,第二传输时间具体为第二上行传输时间。再例如:针对下行来说,第一传输时延具体为第一下行传输时延,第二传输时延具体为第二下行传输时延,第一传输时间具体为第一下行传输时间,第二传输时间具体为第二下行传输时间。
●第二参数,所述第二参数用于确定数据的总速率。
这里,所述总速率为总计算速率和总传输速率中的最小值。
举个例子:总速率=min(总计算速率,总传输速率)。
在一可选方式中,上述方案中的总计算速率为以下计算速率中的最小值:
第一计算速率,所述第一计算速率指终端的业务处理模块的计算速率;
第二计算速率,所述第二计算速率指网络侧的业务服务器的计算速率。
举个例子:总计算速率=min(第一计算速率,第二计算速率)。
在一可选方式中,上述方案中的总传输速率为以下传输速率的最小值:
第一传输速率,所述第一传输速率指终端的业务处理模块与用户模块之间的传输速率;
第二传输速率,所述第二传输速率指终端的用户模块与接入网网元之间的传输速率;
第三传输速率,所述第三传输速率指接入网网元与核心网用户面网元之间的传输速率;
第四传输速率,所述第四传输速率指核心网用户面网元与业务服务器之间的传输速率。
举个例子:总传输速率=min(第一传输速率,第二传输速率,第三传输速率,第四传输速率)。
这里,可选地,所述第二传输速率可以是终端的用户模块与接入网网元之间的DRB传输速率。
这里,可选地,所述第三传输速率可以是接入网网元与核心网用户面网元之间的CN隧道的传输速率。
通过以上描述,可以等效得出:总速率=min(第一计算速率,第二计算速率,第一传输速率,第二传输速率,第三传输速率,第四传输速率)。
参照图5,作为上述总时延的一种实施例,对于某一个特定的网络模型,该网络模型的一部分分配给了终端进行计算,另一部分分配给了业务服务器进行计算,整个网络模型从最左端的输入到最右端的输出总时间可以通过QoS参数(即总时延)来保障。对于总速率来说,总速率为终端计算速率(即第一计算速率)、业务服务器计算速率(即第二计算速率)、总传输速率中的最小值。
需要说明的是,上述方案中的各个参数可以是针对上行的参数或者是针对下行的参数。例如:针对上行来说,第一传输速率具体为第一上行传输速率,第二传输速率具体为第二上行传输速率,第三传输速率具体为第三上行传输速率,第四传输速率具体为第四上行传输速率,终端计算速率(即第一计算速率)是终端输出的中间态数据的速率,业务服务器计算速率(即第二计算速率)是业务服务器能够接收处理的数据速率。再例如:针对下行来说,第一传输速率具体为第一下行传输速率,第二传输速率具体为第二下行传输速率,第三传输速率具体为第三下行传输速率,第四传输速率具 体为第四下行传输速率,业务服务器计算速率(即第二计算速率)是业务服务器输出的中间态数据的速率,终端计算速率(即第一计算速率)为终端能够接收处理的数据速率。
●第三参数,所述第三参数用于确定数据到达所述至少一个节点中各个节点的时间、时间段和周期中的至少之一。
可选地,所述第三参数可以称为突发达到时间(Burst Arrival Time),该参数用于通知各节点数据达到的时间和/或时间段和/或周期,以便各节点保留足够的传输资源用于数据传输和/或保留足够的计算资源用于数据计算。进一步,在一可选方式中,为了更好的使用突发到达时间,上述一个或多个节点可以对自身的时钟进行时钟同步。
参照图4,核心网控制面网元将突发达到时间分别发送给终端、接入网网元、核心网用户面网元以及业务服务器。其中,可选地,所述核心网控制面网元可以是会话管理功能网元(Session Management Function,SMF)。
需要说明的是,上述方案中的各个参数可以是针对上行的参数或者是针对下行的参数。例如:针对上行来说,突发达到时间具体为上行突发达到时间。再例如:对于下行来说,突发达到时间具体为下行突发达到时间。
在上述技术方案的基础上,进一步,本申请实施例的技术方案引入群组QoS机制,为此,在上述QoS参数的基础上还引入如下新的参数:
第四参数,所述第四参数用于确定群组的标识;
第五参数,所述第五参数用于确定群组内包含的终端的数量;
第六参数,所述第六参数用于确定群组内有效终端的数量或群组内有效终端的占比;
第七参数,所述第七参数用于确定群组的区域范围;
其中,所述群组指适用于所述QoS参数的一组终端。
在一可选方式中,所述第七参数包括以下至少之一:地理坐标、小区标识、基站标识、跟踪区(Tracking Area,TA)标识、公共陆地移动网(Public Land Mobile Network,PLMN)标识。
需要说明的是,上述参数可以作为QoS参数的一部分,也可以不属于QoS参数。也就是说,本申请实施例的QoS参数可以包括上述参数或者关联上述参数。
在一可选方式中,上述参数也可以有其他的命名,例如:第四参数称为群组标识,其中,适用一套QoS参数的多个终端对应同一个群组标识。第五参数称为群组数量。第六参数称为有效终端数或者有效百分比,用于确定特定时间点或时间段或周期内必须要在群组中保证的有效终端数量或有效终端占比。第七参数称为位置范围。需要说明的是,有效终端是指在群组中能够进行数据计算的终端或者指与网络侧建立有连接的终端。
需要说明的是,上述群组QoS机制的方案也可以单独进行实施,具体地,一群组包括多个第一节点。一群组中的部分或全部第一节点确定与第二节点之间的连接满足如下至少一个参数规定的QoS要求:GBR、MBR、PER、PDB、第一节点与第二节点之间的总时延、第一节点确定与第二节点之间的总传输速率。
这里,总时延可以参照本申请前述实施例的与总时延相关的描述。
这里,总传输速率可以参照本申请前述实施例的与总传输速率相关的描述。
这里,所述群组包括终端和/或网络侧节点;所述第二节点为终端或网络侧节点。进一步,可选地,所述网络侧节点包括以下至少之一:接入网网元、核心网用户面网元、业务服务器。
举个例子:所述群组包括多个终端,所述第二节点为接入网网元,通过上述参数可以保障多个终端和接入网网元之间的QoS。
举个例子:所述群组包括多个第一终端,所述第二节点为第二终端,通过上述参数可以保障一群终端与另一个终端之间的直连通信的QoS。
举个例子:所述群组包括多个边缘服务器,所述第二节点为中央服务器,通过上述参数可以保障一群边缘服务器与另一个中央服务器之间的QoS。
为了实现一个一群组中的部分或全部第一节点与第二节点之间的连接满足上述参数规定的QoS要求,所述一群组中的部分或全部第一节点接收QoS参数,所述QoS参数包括或者关联以下至少之一:
第四参数,所述第四参数用于确定群组的标识;
第五参数,所述第五参数用于确定群组内包含的终端的数量;
第六参数,所述第六参数用于确定群组内有效终端的数量或群组内有效终端的占比;
第七参数,所述第七参数用于确定群组的区域范围;
其中,所述群组指适用于所述QoS参数的一组终端。
在一可选方式中,所述一群组中的部分或全部第一节点由如下至少一个参数确定:群组的区域范围、群组内有效终端的数量、群组内有效终端的占比、群组内维持一定数量有效终端的时长。
举个例子:群组中的全部或部分终端接收QoS参数,QoS参数包括或关联以下至少一种参数:第四参数、第五参数、第六参数、第七参数。群组中的全部或部分终端确保与网络侧之间的连接满足上述参数规定的要求。
需要说明的是,上述参数可以作为QoS参数的一部分,也可以不属于QoS参数。也就是说,本申请实施例的QoS参数可以包括上述参数或者关联上述参数。
在一可选方式中,所述部分或全部第一节点中不同节点接收的QoS参数的内容相同或不同。例如:所述部分或全部第一节点中不同节点可以接收与自己相关的QoS参数内容。或者,所述部分或全部第一节点中全部节点接收相同的QoS参数内容(该内容包含了所有节点相关的QoS参数内容)。
上述方案中,所述QoS参数由核心网控制面网元发送。进一步,可选地,所述核心网控制面网元可以是SMF。
举个例子:参照图6,多个基站的覆盖范围为群组的区域范围,在该范围内规定了一个包含16个终端的群组(16个终端对应同一个群组标识),该群组内的终端必须有50%或以上的终端保证QoS要求。在每隔T时长的周期内,需要有8个终端(或者说50%的终端)满足规定的一套QoS参数,且在该周期内有效终端不能改变,当该周期时间到后,可在下一周期保障其他终端的QoS,但有效终端数量仍需为群组总数的50%或以上。这里,群组内维持一定数量有效终端的时长为T。
需要说明的是,可以在指定的时间点或时间段改变有效终端,否则必须保障当前已确定的有效终端的QoS。
群组QoS机制可以用于联合计算的场景,即业务服务器需要获取某个时间点或时间段内一定数量的终端发来的计算结果,而不需要限定具体是哪个终端发来的计算结果。此外,群组QoS机制还有助于终端隐私保护,业务服务器不知晓哪些终端的QoS参数被保障。
在上述技术方案的基础上,进一步,本申请实施例的技术方案还包括QoS参数配置的方案,以下对其进行说明。
所述至少一个节点接收所述网络侧网元发送的所述QoS参数和/或所述QoS参数所关联的参数。
进一步,可选地,所述至少一个节点中的全部节点或部分节点向网络侧网元发送能力信息,所述能力信息用于所述网络侧网元确定所述QoS参数和/或所述QoS参数所关联的参数。
这里,所述网络侧网元为核心网控制面网元。进一步,可选地,所述核心网控制面网元可以是SMF。
上述方案中,所述能力信息包括以下至少之一:所述终端的能力信息、所述业务服务器的能力信息。
在一可选方式中,所述终端的能力信息由所述终端通过非接入层(NAS)消息上报给所述网络侧网元。可选地,所述NAS消息可以是注册请求消息、或者业务请求消息、或者会话建立请求消息、或者会话修改请求消息等。
这里,所述终端的能力信息包括以下至少之一:
所述终端的业务处理模块支持的计算时间(例如支持的最大计算时间,或者允许的最大计算时间);
所述终端的业务处理模块支持的计算速率(例如支持的最大计算速率,或者允许的最大计算速率);
所述终端支持的业务处理模块与用户模块之间的传输时间(例如支持的最大传输时间,或者允许的最大传输时间)。
在一可选方式中,所述业务服务器的能力信息由所述业务服务器或者终端上报给所述网络侧网元。
这里,所述业务服务器的能力信息包括以下至少之一:
所述业务服务器支持的计算时间(例如支持的最大计算时间,或者允许的最大计算时间);
所述业务服务器支持的计算速率(例如支持的最大计算速率,或者允许的最大计算速率);
所述业务服务器支持的业务服务器与核心网用户面网元之间的传输时间(例如支持的最大传输时间,或者允许的最大传输时间)。
所述网络侧网元统一收集上述能力信息,基于上述能力信息确定和下发QoS参数。
参照图7,能力上报和QoS参数下发的流程包括以下步骤:
1:终端通过向核心网控制面网元上报终端的能力信息,可选地,终端还可以向核心网控制面网元上报业务服务器的能力信息。
2:核心网控制面网元向核心网用户面网元下发QoS参数。
3:核心网控制面网元向业务服务器下发QoS参数。
4:核心网控制面网元向接入网网元下发QoS参数。
5:核心网控制面网元向终端下发QoS参数。
需要说明的是,上述步骤2至步骤5中的执行顺序不做限定。终端、接入网网元、核心网用户面网元、业务服务器中的一个或多个根据QoS参数分配相应的资源(如计算资源、传输资源等),以保障QoS参数。
需要说明的是,在一可选方式中,上述步骤4和步骤5可以合并为一条消息,即核心网控制面网元向接入网网元发送的消息中包含NAS消息,该NAS消息通过接入网网元透传给终端,其中,NAS消息携带承载有所述QoS参数的容器。
本申请实施例的技术方案,扩展了目前的QoS机制,将计算能力纳入进来,以此来满足支持大数据分析的移动网络。另一方面,引入了群组QoS机制,适用于特定的应用场景或实现隐私保护的目的。此外,本申请实施例的技术方案对于能力上报和QoS参数下发,充分利用了现有流程和机制,对系统影响较小。
图8为本申请实施例提供的数据传输装置的结构组成示意图一,应用于至少一个节点中的每个节点,所述至少一个节点包括以下至少之一:终端、接入网网元、核心网用户面网元、业务服务器;如图8所示,所述数据传输装置包括:
分配单元801,用于根据QoS参数分配相应的计算资源和/或传输资源。
在一可选方式中,所述终端为计算节点和传输节点;
所述接入网网元为传输节点;
所述核心网用户面网元为传输节点;
所述业务服务器为计算节点和传输节点。
在一可选方式中,所述QoS参数包括以下至少之一:
第一参数,所述第一参数用于确定数据的总时延;
第二参数,所述第二参数用于确定数据的总速率;
第三参数,所述第三参数用于确定数据到达所述至少一个节点中各个节点的时间、时间段和周期中的至少之一。
在一可选方式中,所述总时延包括附加时延以及以下至少之一:
第一传输时延,所述第一传输时延指终端的用户模块与接入网网元之间的传输时延;
第二传输时延,所述第二传输时延指接入网网元与核心网用户面网元之间的传输时延。
在一可选方式中,所述附加时延包括以下至少之一:
第一计算时间,所述第一计算时间指终端的业务处理模块的计算时间;
第一传输时间,所述第一传输时间指终端的业务处理模块与用户模块之间的传输时间;
第二计算时间,所述第二计算时间指业务服务器的计算时间;
第二传输时间,所述第二传输时间指业务服务器与核心网用户面网元之间的传输时间。
在一可选方式中,所述第一计算时间和/或所述第一传输时间为终端侧业务处理时间;
所述第二计算时间和/或所述第二传输时间为网络侧业务处理时间。
在一可选方式中,所述总速率为总计算速率和总传输速率中的最小值。
在一可选方式中,所述总计算速率为以下计算速率中的最小值:
第一计算速率,所述第一计算速率指终端的业务处理模块的计算速率;
第二计算速率,所述第二计算速率指网络侧的业务服务器的计算速率。
在一可选方式中,所述总传输速率为以下传输速率的最小值:
第一传输速率,所述第一传输速率指终端的业务处理模块与用户模块之间的传输速率;
第二传输速率,所述第二传输速率指终端的用户模块与接入网网元之间的传输速率;
第三传输速率,所述第三传输速率指接入网网元与核心网用户面网元之间的传输速率;
第四传输速率,所述第四传输速率指核心网用户面网元与业务服务器之间的传输速率。
在一可选方式中,所述QoS参数包括或者关联以下至少之一:
第四参数,所述第四参数用于确定群组的标识;
第五参数,所述第五参数用于确定群组内包含的终端的数量;
第六参数,所述第六参数用于确定群组内有效终端的数量或群组内有效终端的占比;
第七参数,所述第七参数用于确定群组的区域范围;
其中,所述群组指适用于所述QoS参数的一组终端。
在一可选方式中,所述第七参数包括以下至少之一:地理坐标、小区标识、基站标识、TA标识、PLMN标识。
在一可选方式中,所述装置还包括:
接收单元803,用于接收所述网络侧网元发送的所述QoS参数和/或所述QoS参数所关联的参数。
在一可选方式中,所述装置还包括:
发送单元802,用于向网络侧网元发送能力信息,所述能力信息用于所述网络侧网元确定所述QoS参数和/或所述QoS参数所关联的参数。
在一可选方式中,所述能力信息包括以下至少之一:所述终端的能力信息、所述业务服务器的能力信息。
在一可选方式中,所述终端的能力信息由所述终端通过NAS消息上报给所述网络侧网元。
在一可选方式中,所述业务服务器的能力信息由所述业务服务器或者终端上报给所述网络侧网元。
在一可选方式中,所述终端的能力信息包括以下至少之一:
所述终端的业务处理模块支持的计算时间;
所述终端的业务处理模块支持的计算速率;
所述终端支持的业务处理模块与用户模块之间的传输时间。
在一可选方式中,所述业务服务器的能力信息包括以下至少之一:
所述业务服务器支持的计算时间;
所述业务服务器支持的计算速率;
所述业务服务器支持的业务服务器与核心网用户面网元之间的传输时间。
在一可选方式中,所述网络侧网元为核心网控制面网元。
本领域技术人员应当理解,本申请实施例的上述数据传输装置的相关描述可以参照本申请实施例的数据传输方法的相关描述进行理解。
图9为本申请实施例提供的数据传输装置的结构组成示意图二,应用于一群组中的部分或全部第一节点;如图9所示,所述数据传输装置包括:
确定单元901,用于确定与第二节点之间的连接满足如下至少一个参数规定的QoS要求:
GBR、MBR、PER、PDB、第一节点与第二节点之间的总时延、第一节点与第二节点之间的总传输速率。
在一可选方式中,所述群组包括终端和/或网络侧节点;所述第二节点为终端或网络侧节点。
在一可选方式中,所述一群组中的部分或全部第一节点由如下至少一个参数确定:
群组的区域范围、群组内有效终端的数量、群组内有效终端的占比、群组内维持一定数量有效终端的时长。
在一可选方式中,所述装置还包括:
接收单元902,用于接收QoS参数,其中,所述QoS参数包括或者关联以下至少之一:
第四参数,所述第四参数用于确定群组的标识;
第五参数,所述第五参数用于确定群组内包含的终端的数量;
第六参数,所述第六参数用于确定群组内有效终端的数量或群组内有效终端的占比;
第七参数,所述第七参数用于确定群组的区域范围;
其中,所述群组指适用于所述QoS参数的一组终端。
在一可选方式中,所述第七参数包括以下至少之一:地理坐标、小区标识、基站标识、TA标识、PLMN标识。
在一可选方式中,所述QoS参数由核心网控制面网元发送。
在一可选方式中,所述网络侧节点包括以下至少之一:接入网网元、核心网用户面网元、业务服务器。
本领域技术人员应当理解,本申请实施例的上述数据传输装置的相关描述可以参照本申请实施例的数据传输方法的相关描述进行理解。
图10是本申请实施例提供的一种通信设备1000示意性结构图。该通信设备可以是终端,也可以是网络设备,图10所示的通信设备1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,通信设备1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,如图10所示,通信设备1000还可以包括收发器1030,处理器1010可以控制该收发器1030与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1030可以包括发射机和接收机。收发器1030还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1000具体可为本申请实施例的网络设备,并且该通信设备1000可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1000具体可为本申请实施例的移动终端/终端,并且该通信设备1000可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例的芯片的示意性结构图。图11所示的芯片1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,芯片1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
可选地,该芯片1100还可以包括输入接口1130。其中,处理器1110可以控制该输入接口1130与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1100还可以包括输出接口1140。其中,处理器1110可以控制该输出接口1140与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图12是本申请实施例提供的一种通信系统1200的示意性框图。如图12所示,该通信系统1200包括终端1210和网络设备1220。
其中,该终端1210可以用于实现上述方法中由终端实现的相应的功能,以及该网络设备1220可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、 双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执 行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (58)

  1. 一种数据传输方法,所述方法包括:
    至少一个节点中的每个节点根据服务质量QoS参数分配相应的计算资源和/或传输资源,其中,所述至少一个节点包括以下至少之一:终端、接入网网元、核心网用户面网元、业务服务器。
  2. 根据权利要求1所述的方法,其中,
    所述终端为计算节点和传输节点;
    所述接入网网元为传输节点;
    所述核心网用户面网元为传输节点;
    所述业务服务器为计算节点和传输节点。
  3. 根据权利要求1或2所述的方法,其中,所述QoS参数包括以下至少之一:
    第一参数,所述第一参数用于确定数据的总时延;
    第二参数,所述第二参数用于确定数据的总传输速率;
    第三参数,所述第三参数用于确定数据到达所述至少一个节点中各个节点的时间、时间段和周期中的至少之一。
  4. 根据权利要求3所述的方法,其中,所述总时延包括附加时延以及以下至少之一:
    第一传输时延,所述第一传输时延指终端的用户模块与接入网网元之间的传输时延;
    第二传输时延,所述第二传输时延指接入网网元与核心网用户面网元之间的传输时延。
  5. 根据权利要求4所述方法,其中,所述附加时延包括以下至少之一:
    第一计算时间,所述第一计算时间指终端的业务处理模块的计算时间;
    第一传输时间,所述第一传输时间指终端的业务处理模块与用户模块之间的传输时间;
    第二计算时间,所述第二计算时间指业务服务器的计算时间;
    第二传输时间,所述第二传输时间指业务服务器与核心网用户面网元之间的传输时间。
  6. 根据权利要求5所述方法,其中,
    所述第一计算时间和/或所述第一传输时间为终端侧业务处理时间;
    所述第二计算时间和/或所述第二传输时间为网络侧业务处理时间。
  7. 根据权利要求3至6中任一项所述的方法,其中,所述总速率为总计算速率和总传输速率中的最小值。
  8. 根据权利要求7所述的方法,其中,所述总计算速率为以下计算速率中的最小值:
    第一计算速率,所述第一计算速率指终端的业务处理模块的计算速率;
    第二计算速率,所述第二计算速率指网络侧的业务服务器的计算速率。
  9. 根据权利要求7或8所述的方法,其中,所述总传输速率为以下传输速率的最小值:
    第一传输速率,所述第一传输速率指终端的业务处理模块与用户模块之间的传输速率;
    第二传输速率,所述第二传输速率指终端的用户模块与接入网网元之间的传输速率;
    第三传输速率,所述第三传输速率指接入网网元与核心网用户面网元之间的传输速率;
    第四传输速率,所述第四传输速率指核心网用户面网元与业务服务器之间的传输速率。
  10. 根据权利要求1至9中任一项所述的方法,其中,所述QoS参数包括或者关联以下至少之一:
    第四参数,所述第四参数用于确定群组的标识;
    第五参数,所述第五参数用于确定群组内包含的终端的数量;
    第六参数,所述第六参数用于确定群组内有效终端的数量或群组内有效终端的占比;
    第七参数,所述第七参数用于确定群组的区域范围;
    其中,所述群组指适用于所述QoS参数的一组终端。
  11. 根据权利要求10所述的方法,其中,所述第七参数包括以下至少之一:地理坐标、小区标识、基站标识、跟踪区TA标识、公共陆地移动网PLMN标识。
  12. 根据权利要求1至11中任一项所述的方法,其中,所述方法还包括:
    所述至少一个节点接收网络侧网元发送的所述QoS参数和/或所述QoS参数所关联的参数。
  13. 根据权利要求1至12中任一项所述的方法,其中,所述方法还包括:
    所述至少一个节点中的全部节点或部分节点向网络侧网元发送能力信息,所述能力信息用于所 述网络侧网元确定所述QoS参数和/或所述QoS参数所关联的参数。
  14. 根据权利要求13所述的方法,其中,所述能力信息包括以下至少之一:所述终端的能力信息、所述业务服务器的能力信息。
  15. 根据权利要求14所述的方法,其中,所述终端的能力信息由所述终端通过非接入层NAS消息上报给所述网络侧网元。
  16. 根据权利要求14所述的方法,其中,所述业务服务器的能力信息由所述业务服务器或者终端上报给所述网络侧网元。
  17. 根据权利要求14至16中任一项所述的方法,其中,所述终端的能力信息包括以下至少之一:
    所述终端的业务处理模块支持的计算时间;
    所述终端的业务处理模块支持的计算速率;
    所述终端支持的业务处理模块与用户模块之间的传输时间。
  18. 根据权利要求14至16中任一项所述的方法,其中,所述业务服务器的能力信息包括以下至少之一:
    所述业务服务器支持的计算时间;
    所述业务服务器支持的计算速率;
    所述业务服务器支持的业务服务器与核心网用户面网元之间的传输时间。
  19. 根据权利要求12至18中任一项所述的方法,其中,所述网络侧网元为核心网控制面网元。
  20. 一种数据传输方法,所述方法包括:
    一群组中的部分或全部第一节点确定与第二节点之间的连接满足如下至少一个参数规定的QoS要求:
    保证比特速率GBR、最大比特速率MBR、包误差率PER、数据包时延预算PDB、第一节点与第二节点之间的总时延、第一节点与第二节点之间的总传输速率。
  21. 根据权利要求20所述的方法,其中,所述群组包括终端和/或网络侧节点;所述第二节点为终端或网络侧节点。
  22. 根据权利要求20或21所述的方法,其中,所述一群组中的部分或全部第一节点由如下至少一个参数确定:
    群组的区域范围、群组内有效终端的数量、群组内有效终端的占比、群组内维持一定数量有效终端的时长。
  23. 根据权利要求20至22中任一项所述的方法,其中,所述方法还包括:
    所述一群组中的部分或全部第一节点接收QoS参数,所述QoS参数包括或者关联以下至少之一:
    第四参数,所述第四参数用于确定群组的标识;
    第五参数,所述第五参数用于确定群组内包含的终端的数量;
    第六参数,所述第六参数用于确定群组内有效终端的数量或群组内有效终端的占比;
    第七参数,所述第七参数用于确定群组的区域范围;
    其中,所述群组指适用于所述QoS参数的一组终端。
  24. 根据权利要求23所述,其中,所述部分或全部第一节点中不同节点接收的QoS参数的内容相同或不同。
  25. 根据权利要求23或24所述的方法,其中,所述第七参数包括以下至少之一:地理坐标、小区标识、基站标识、TA标识、PLMN标识。
  26. 根据权利要求23至25中任一项所述的方法,其中,所述QoS参数由核心网控制面网元发送。
  27. 根据权利要求21所述的方法,其中,所述网络侧节点包括以下至少之一:接入网网元、核心网用户面网元、业务服务器。
  28. 一种数据传输装置,应用于至少一个节点中的每个节点,所述至少一个节点包括以下至少之一:终端、接入网网元、核心网用户面网元、业务服务器;其中,所述装置包括:
    分配单元,用于根据QoS参数分配相应的计算资源和/或传输资源。
  29. 根据权利要求28所述的装置,其中,
    所述终端为计算节点和传输节点;
    所述接入网网元为传输节点;
    所述核心网用户面网元为传输节点;
    所述业务服务器为计算节点和传输节点。
  30. 根据权利要求28或29所述的装置,其中,所述QoS参数包括以下至少之一:
    第一参数,所述第一参数用于确定数据的总时延;
    第二参数,所述第二参数用于确定数据的总速率;
    第三参数,所述第三参数用于确定数据到达所述至少一个节点中各个节点的时间、时间段和周期中的至少之一。
  31. 根据权利要求30所述的装置,其中,所述总时延包括附加时延以及以下至少之一:
    第一传输时延,所述第一传输时延指终端的用户模块与接入网网元之间的传输时延;
    第二传输时延,所述第二传输时延指接入网网元与核心网用户面网元之间的传输时延。
  32. 根据权利要求31所述的装置,其中,所述附加时延包括以下至少之一:
    第一计算时间,所述第一计算时间指终端的业务处理模块的计算时间;
    第一传输时间,所述第一传输时间指终端的业务处理模块与用户模块之间的传输时间;
    第二计算时间,所述第二计算时间指业务服务器的计算时间;
    第二传输时间,所述第二传输时间指业务服务器与核心网用户面网元之间的传输时间。
  33. 根据权利要求32所述的装置,其中,
    所述第一计算时间和/或所述第一传输时间为终端侧业务处理时间;
    所述第二计算时间和/或所述第二传输时间为网络侧业务处理时间。
  34. 根据权利要求30至33中任一项所述的装置,其中,所述总速率为总计算速率和总传输速率中的最小值。
  35. 根据权利要求34所述的装置,其中,所述总计算速率为以下计算速率中的最小值:
    第一计算速率,所述第一计算速率指终端的业务处理模块的计算速率;
    第二计算速率,所述第二计算速率指网络侧的业务服务器的计算速率。
  36. 根据权利要求34或35所述的装置,其中,所述总传输速率为以下传输速率的最小值:
    第一传输速率,所述第一传输速率指终端的业务处理模块与用户模块之间的传输速率;
    第二传输速率,所述第二传输速率指终端的用户模块与接入网网元之间的传输速率;
    第三传输速率,所述第三传输速率指接入网网元与核心网用户面网元之间的传输速率;
    第四传输速率,所述第四传输速率指核心网用户面网元与业务服务器之间的传输速率。
  37. 根据权利要求28至36中任一项所述的装置,其中,所述QoS参数包括或者关联以下至少之一:
    第四参数,所述第四参数用于确定群组的标识;
    第五参数,所述第五参数用于确定群组内包含的终端的数量;
    第六参数,所述第六参数用于确定群组内有效终端的数量或群组内有效终端的占比;
    第七参数,所述第七参数用于确定群组的区域范围;
    其中,所述群组指适用于所述QoS参数的一组终端。
  38. 根据权利要求37所述的装置,其中,所述第七参数包括以下至少之一:地理坐标、小区标识、基站标识、TA标识、PLMN标识。
  39. 根据权利要求28至38中任一项所述的装置,其中,所述装置还包括:
    接收单元,用于接收网络侧网元发送的所述QoS参数和/或所述QoS参数所关联的参数。
  40. 根据权利要求28至39中任一项所述的装置,其中,所述装置还包括:
    发送单元,用于向网络侧网元发送能力信息,所述能力信息用于所述网络侧网元确定所述QoS参数和/或所述QoS参数所关联的参数。
  41. 根据权利要求40所述的装置,其中,所述能力信息包括以下至少之一:所述终端的能力信息、所述业务服务器的能力信息。
  42. 根据权利要求41所述的装置,其中,所述终端的能力信息由所述终端通过NAS消息上报给所述网络侧网元。
  43. 根据权利要求41所述的装置,其中,所述业务服务器的能力信息由所述业务服务器或者终端上报给所述网络侧网元。
  44. 根据权利要求41至43中任一项所述的装置,其中,所述终端的能力信息包括以下至少之一:
    所述终端的业务处理模块支持的计算时间;
    所述终端的业务处理模块支持的计算速率;
    所述终端支持的业务处理模块与用户模块之间的传输时间。
  45. 根据权利要求41至43中任一项所述的装置,其中,所述业务服务器的能力信息包括以下至少之一:
    所述业务服务器支持的计算时间;
    所述业务服务器支持的计算速率;
    所述业务服务器支持的业务服务器与核心网用户面网元之间的传输时间。
  46. 根据权利要求39至45中任一项所述的装置,其中,所述网络侧网元为核心网控制面网元。
  47. 一种数据传输装置,应用于一群组中的部分或全部第一节点;其中,所述装置包括:
    确定单元,用于确定与第二节点之间的连接满足如下至少一个参数规定的QoS要求:
    GBR、MBR、PER、PDB、第一节点与第二节点之间的总时延、第一节点与第二节点之间的总传输速率。
  48. 根据权利要求47所述的装置,其中,所述群组包括终端和/或网络侧节点;所述第二节点为终端或网络侧节点。
  49. 根据权利要求47或48所述的装置,其中,所述一群组中的部分或全部第一节点由如下至少一个参数确定:
    群组的区域范围、群组内有效终端的数量、群组内有效终端的占比、群组内维持一定数量有效终端的时长。
  50. 根据权利要求47至49中任一项所述的装置,其中,所述装置还包括:
    接收单元,用于接收QoS参数,其中,所述QoS参数包括或者关联以下至少之一:
    第四参数,所述第四参数用于确定群组的标识;
    第五参数,所述第五参数用于确定群组内包含的终端的数量;
    第六参数,所述第六参数用于确定群组内有效终端的数量或群组内有效终端的占比;
    第七参数,所述第七参数用于确定群组的区域范围;
    其中,所述群组指适用于所述QoS参数的一组终端。
  51. 根据权利要求50所述的装置,其中,所述第七参数包括以下至少之一:地理坐标、小区标识、基站标识、TA标识、PLMN标识。
  52. 根据权利要求50或51所述的装置,其中,所述QoS参数由核心网控制面网元发送。
  53. 根据权利要求48所述的装置,其中,所述网络侧节点包括以下至少之一:接入网网元、核心网用户面网元、业务服务器。
  54. 一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至27中任一项所述的方法。
  55. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至27中任一项所述的方法。
  56. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至27中任一项所述的方法。
  57. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至27中任一项所述的方法。
  58. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至27中任一项所述的方法。
PCT/CN2020/080046 2020-03-18 2020-03-18 一种数据传输方法及装置、通信设备 WO2021184263A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080097183.7A CN116057912A (zh) 2020-03-18 2020-03-18 一种数据传输方法及装置、通信设备
PCT/CN2020/080046 WO2021184263A1 (zh) 2020-03-18 2020-03-18 一种数据传输方法及装置、通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/080046 WO2021184263A1 (zh) 2020-03-18 2020-03-18 一种数据传输方法及装置、通信设备

Publications (1)

Publication Number Publication Date
WO2021184263A1 true WO2021184263A1 (zh) 2021-09-23

Family

ID=77771585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080046 WO2021184263A1 (zh) 2020-03-18 2020-03-18 一种数据传输方法及装置、通信设备

Country Status (2)

Country Link
CN (1) CN116057912A (zh)
WO (1) WO2021184263A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114567671A (zh) * 2022-02-25 2022-05-31 北京百度网讯科技有限公司 一种arm服务器和数据传输方法
CN115942496A (zh) * 2023-01-05 2023-04-07 阿里巴巴(中国)有限公司 空口资源调度方法、网络接入设备、终端设备和通信网络
CN116669045A (zh) * 2023-06-08 2023-08-29 北京杰睿中恒科技有限公司 一种增强通信能力的双模通信系统及方法
WO2024032434A1 (zh) * 2022-08-09 2024-02-15 中国移动通信有限公司研究院 业务控制方法、装置、通信设备及可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582130A (zh) * 2012-07-19 2014-02-12 成都鼎桥通信技术有限公司 服务质量和资源的配置方法、基站和用户设备
CN104081796A (zh) * 2011-12-02 2014-10-01 高通股份有限公司 用于机器对机器设备的基于群组的接入控制的系统和方法
US20140380175A1 (en) * 2013-06-21 2014-12-25 Verizon Patent And Licensing Inc. User defined arrangement of resources in a cloud computing environment
US20150058474A1 (en) * 2013-08-26 2015-02-26 Verizon Patent And Licensing Inc. Quality of service agreement and service level agreement enforcement in a cloud computing environment
CN108738071A (zh) * 2017-04-20 2018-11-02 华为技术有限公司 一种资源建立的方法及装置
CN109257827A (zh) * 2016-09-30 2019-01-22 华为技术有限公司 通信方法、装置、系统、终端和接入网设备
CN110098969A (zh) * 2019-05-21 2019-08-06 重庆邮电大学 一种面向物联网的雾计算任务卸载方法
CN110166377A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种资源分配方法和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081796A (zh) * 2011-12-02 2014-10-01 高通股份有限公司 用于机器对机器设备的基于群组的接入控制的系统和方法
CN103582130A (zh) * 2012-07-19 2014-02-12 成都鼎桥通信技术有限公司 服务质量和资源的配置方法、基站和用户设备
US20140380175A1 (en) * 2013-06-21 2014-12-25 Verizon Patent And Licensing Inc. User defined arrangement of resources in a cloud computing environment
US20150058474A1 (en) * 2013-08-26 2015-02-26 Verizon Patent And Licensing Inc. Quality of service agreement and service level agreement enforcement in a cloud computing environment
CN109257827A (zh) * 2016-09-30 2019-01-22 华为技术有限公司 通信方法、装置、系统、终端和接入网设备
CN108738071A (zh) * 2017-04-20 2018-11-02 华为技术有限公司 一种资源建立的方法及装置
CN110166377A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种资源分配方法和装置
CN110098969A (zh) * 2019-05-21 2019-08-06 重庆邮电大学 一种面向物联网的雾计算任务卸载方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Solution for QoS monitoring", 3GPP DRAFT; R2-1905830_SOLUTION FOR QOS MONITORING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, Nevada, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051729329 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114567671A (zh) * 2022-02-25 2022-05-31 北京百度网讯科技有限公司 一种arm服务器和数据传输方法
CN114567671B (zh) * 2022-02-25 2024-03-19 北京百度网讯科技有限公司 一种arm服务器和数据传输方法
WO2024032434A1 (zh) * 2022-08-09 2024-02-15 中国移动通信有限公司研究院 业务控制方法、装置、通信设备及可读存储介质
CN115942496A (zh) * 2023-01-05 2023-04-07 阿里巴巴(中国)有限公司 空口资源调度方法、网络接入设备、终端设备和通信网络
CN116669045A (zh) * 2023-06-08 2023-08-29 北京杰睿中恒科技有限公司 一种增强通信能力的双模通信系统及方法
CN116669045B (zh) * 2023-06-08 2024-04-12 北京杰睿中恒科技有限公司 一种增强通信能力的双模通信系统及方法

Also Published As

Publication number Publication date
CN116057912A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
WO2021184263A1 (zh) 一种数据传输方法及装置、通信设备
WO2021163895A1 (zh) 网络模型的管理方法及建立或修改会话的方法、装置
US20220021623A1 (en) Service processing method, device, chip, and computer program
WO2020056696A1 (zh) 一种资源分配方法及装置、终端
US20230209540A1 (en) Method of allocating uplink data packet resource and user equipment
WO2021030989A1 (zh) 一种路径选择方法及装置、终端
WO2021217412A1 (zh) 一种确定终端策略行为的方法及装置、网络设备
TW202008838A (zh) 一種隨機存取方法、終端設備及存儲媒介
WO2021134316A1 (zh) 一种业务调度方法及装置、终端设备、网络设备
WO2021056576A1 (zh) 一种业务传输方法及装置、通信设备
WO2020227868A1 (zh) 传输数据的方法、终端设备和网络设备
CN114158075A (zh) 网络资源配置方法、装置、设备及存储介质
WO2021203270A1 (zh) 一种时域资源的确定方法及装置、终端设备
WO2021142707A1 (zh) 一种信息配置方法及装置、通信设备
WO2018120156A1 (zh) 系统信息发送方法、系统信息接收方法及装置
WO2021003733A1 (zh) 一种资源共享方法及装置、终端、网络设备
CN111132223B (zh) 一种数据包的传输方法和通信设备
WO2021051312A1 (zh) 一种信息配置方法及装置、终端设备、网络设备
WO2020062042A1 (zh) 无线通信方法和设备
WO2022147836A1 (zh) 一种连接建立方法及装置、网络设备
WO2021138849A1 (zh) 一种资源分配方法及装置、终端、网络设备
WO2021203230A1 (zh) 上行控制信息传输方法及装置、终端设备
WO2020164054A1 (zh) 业务处理方法、装置、芯片及计算机程序
WO2021056335A1 (zh) 一种接入控制方法及装置、终端设备、网络设备
WO2021051321A1 (zh) 一种业务数据传输方法及装置、终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926342

Country of ref document: EP

Kind code of ref document: A1