WO2021203270A1 - 一种时域资源的确定方法及装置、终端设备 - Google Patents

一种时域资源的确定方法及装置、终端设备 Download PDF

Info

Publication number
WO2021203270A1
WO2021203270A1 PCT/CN2020/083669 CN2020083669W WO2021203270A1 WO 2021203270 A1 WO2021203270 A1 WO 2021203270A1 CN 2020083669 W CN2020083669 W CN 2020083669W WO 2021203270 A1 WO2021203270 A1 WO 2021203270A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
pattern
psbch
time slots
uplink
Prior art date
Application number
PCT/CN2020/083669
Other languages
English (en)
French (fr)
Inventor
赵振山
丁伊
林晖闵
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN202080077029.3A priority Critical patent/CN114642059A/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/083669 priority patent/WO2021203270A1/zh
Priority to EP23203124.5A priority patent/EP4284115A3/en
Priority to CN202210814268.3A priority patent/CN115278885B/zh
Priority to ES20930193T priority patent/ES2967606T3/es
Priority to FIEP20930193.6T priority patent/FI4048008T3/fi
Priority to BR112022016348A priority patent/BR112022016348A2/pt
Priority to JP2022552897A priority patent/JP7476334B2/ja
Priority to EP20930193.6A priority patent/EP4048008B1/en
Priority to CN202311787637.5A priority patent/CN117729635A/zh
Priority to KR1020227037381A priority patent/KR20220164523A/ko
Publication of WO2021203270A1 publication Critical patent/WO2021203270A1/zh
Priority to US17/746,519 priority patent/US20220286265A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular to a method and device for determining time domain resources, and terminal equipment.
  • side-line communication according to the network coverage of the terminal device that communicates, it can be divided into network coverage inner-line communication, partial network coverage side-line communication, and network coverage outer-line communication.
  • partial network coverage for sideline communications it is necessary to clarify how the terminal equipment located within the coverage area of the base station and the terminal equipment located outside the coverage area of the base station determine the resource pool.
  • the embodiments of the present application provide a method and device for determining time domain resources, and terminal equipment.
  • the terminal equipment is configured according to the first time division multiplexing (TDD) configuration in the radio resource control (Radio Resource Control, RRC) signaling or the physical sidelink broadcast channel (Physical Sidelink Broadcast Channel, PSBCH)
  • TDD time division multiplexing
  • RRC Radio Resource Control
  • PSBCH Physical Sidelink Broadcast Channel
  • the terminal device selects a part of time slots from the first time slot set according to the first bitmap, and the part of time slots constitutes the time domain resources of the resource pool.
  • the device for determining time domain resources provided in the embodiment of the present application is applied to a terminal device, and the device includes:
  • the determining unit is configured to determine the first time slot set in the first period according to the first TDD configuration in the RRC signaling or the second TDD configuration in the PSBCH;
  • the selecting unit is configured to select a part of time slots from the first time slot set according to the first bitmap, and the part of time slots constitutes the time domain resources of the resource pool.
  • the terminal device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned method for determining time domain resources.
  • the chip provided in the embodiment of the present application is used to implement the above-mentioned method for determining time domain resources.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that a device installed with the chip executes the above-mentioned method for determining time domain resources.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program that enables a computer to execute the above-mentioned method for determining time domain resources.
  • the computer program product provided by the embodiment of the present application includes computer program instructions that cause a computer to execute the above-mentioned method for determining time domain resources.
  • the computer program provided in the embodiment of the present application when it runs on a computer, causes the computer to execute the above-mentioned method for determining time domain resources.
  • the first TDD configuration in the RRC signaling or the second TDD configuration in the PSBCH can be combined to determine the set of time slots that can be configured as the resource pool in the first period (ie. The first time slot set), and then the first bitmap is mapped to the first time slot set to determine which time slots in the first time slot set belong to the resource pool.
  • the first bitmap is mapped to the first time slot set to determine which time slots in the first time slot set belong to the resource pool.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Figure 2-1 is a scene diagram of inbound communication for network coverage provided by an embodiment of the present application.
  • Figure 2-2 is a scene diagram of a partial network coverage sideline communication provided by an embodiment of the present application.
  • Figure 2-3 is a scene diagram of network coverage outbound communication provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of configuring a resource pool provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for determining time domain resources provided by an embodiment of the application
  • FIG. 5 is a scene diagram of a PSBCH sending scene provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of the structural composition of an apparatus for determining a time domain resource provided by an embodiment of the application
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a chip of an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication system or future communication system etc.
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminals located in the coverage area.
  • the network device 110 may be an evolved base station (Evolutional Node B, eNB, or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or
  • the network equipment can be a mobile switching center, a relay station, an access point, an in-vehicle device, a wearable device, a hub, a switch, a bridge, a router, a network side device in a 5G network, or a network device in a future communication system, etc.
  • the communication system 100 also includes at least one terminal 120 located within the coverage area of the network device 110.
  • the "terminal” used here includes, but is not limited to, connection via a wired line, such as via a public switched telephone network (PSTN), digital subscriber line (Digital Subscriber Line, DSL), digital cable, and direct cable connection; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter; and/or a device of another terminal configured to receive/send communication signals; and/or an Internet of Things (IoT) device.
  • PSTN public switched telephone network
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscribe
  • a terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio telephone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal can refer to access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user Device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks, or terminals in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminals 120.
  • the 5G communication system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminals. This embodiment of the present application There is no restriction on this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal 120 with communication functions, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here; communication
  • the device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • side-line communication according to the network coverage of the terminal device that communicates, it can be divided into network-covered inner-line communication (as shown in Figure 2-1), and part of the network covers side-line communication (as shown in Figure 2-2). Show), and the network covers the outside line communication (as shown in Figure 2-3).
  • all terminal devices performing side-line communication are within the coverage of the same base station. Therefore, all terminal devices performing side-line communication can receive the configuration signaling of the base station based on the same side-line communication. Configure for side-line communication.
  • part of the terminal equipment performing side-line communication is located within the coverage of the base station.
  • This part of the terminal equipment can receive the configuration signaling of the base station, and then perform side-line communication according to the side-line configuration configured by the base station.
  • the terminal equipment located outside the coverage area of the base station cannot receive the configuration signaling of the base station.
  • the terminal equipment outside the coverage area of the base station will be based on the pre-configuration information and the terminal equipment located within the coverage area of the base station.
  • the information carried in the sent PSBCH determines the side-line configuration, and then performs side-line communication based on the side-line configuration.
  • all terminal devices performing sideline communication are located outside the coverage of the base station, and all terminal devices determine the sideline configuration for sideline communication according to the pre-configuration information.
  • the time domain resources of the resource pool are determined in a System Frame Number (SFN) period or a Direct Frame Number (DFN) period.
  • SFN System Frame Number
  • DFN Direct Frame Number
  • an SFN is determined in the following manner Which time domain resources in a period or a DFN period belong to the resource pool:
  • One SFN cycle or one DFN cycle includes 10240 subframes, which correspond to subframes 0, 1, 2, ... 10239, respectively.
  • 10240 subframes the synchronization subframes, downlink subframes, special subframes (ie downlink subframes and special subframes in the TDD system), and reserved subframes are removed, and the remaining subframes are renumbered
  • the formed subframe set is Wherein, the number of remaining subframes can be divisible by L bitmap , and L bitmap represents the length of the bitmap used to indicate the resource pool configuration.
  • Bitmap used to indicate resource pool configuration Periodically mapped to each of the remaining subframes, where the value of the bit is 1 indicates that the subframe corresponding to the bit belongs to the resource pool, and the value of 0 indicates that the subframe corresponding to the bit does not belong to the resource pool. Resource pool.
  • Figure 3 takes the SFN cycle as an example (the DFN cycle is the same as the SFN cycle).
  • An SFN cycle includes 10240 subframes (that is, 10240ms), and the synchronization signal cycle (referred to as the synchronization cycle) is 160ms.
  • the synchronization period includes 2 synchronization subframes. Therefore, there are 128 synchronization subframes in one SFN period.
  • bitmap needs to be repeated 1011 times in the remaining subframes to indicate whether all subframes belong to the resource pool, and there are 3 subframes belonging to the resource pool in the period of each bitmap, there are 3033 in one SFN period. Each subframe belongs to the resource pool.
  • the terminal device needs to specify the positions of different types of subframes such as downlink subframes, special subframes, and uplink subframes in an SFN period or DFN period.
  • the above information is determined by the TDD configuration type of the current carrier. In the LTE system, a total of 7 TDD configuration types are defined. Different types of TDD configurations correspond to different uplink, downlink, and special subframe positions and numbers. In order to ensure normal side-line transmission and reception between different terminal devices, the TDD configuration determined by all terminal devices must be the same.
  • the terminal device can obtain a unified TDD configuration according to the configuration information or pre-configuration information of the base station.
  • the terminal device receives the base station configuration signaling to determine the TDD configuration, and sends the above-mentioned TDD configuration to the terminal device outside the coverage area of the base station through the PSBCH, thereby ensuring that the TDD configuration determined by the terminal device inside and outside the coverage area of the base station is the same.
  • TDD configuration type P step TDD uplink and downlink configuration0 60 TDD uplink and downlink configuration 1 40 TDD uplink and downlink configuration 2 20 TDD uplink and downlink configuration 3 30 TDD uplink and downlink configuration 4 20 TDD uplink and downlink configuration 5 10 TDD uplink and downlink configuration 6 50 other 100
  • NR-V2X automatic driving needs to be supported, so higher requirements are put forward for data interaction between vehicles, such as higher throughput, lower delay, higher reliability, and larger coverage. More flexible resource allocation, etc. Therefore, unlike LTE V2X which mainly supports periodic services, in NR V2X, both periodic and aperiodic services need to be supported, and aperiodic services may occupy a major proportion. In addition, in order to reduce the data transmission delay and enhance the flexibility of resource allocation, NR V2X supports different subcarrier spacing (SubCarrier Space, SCS) and different time slot lengths.
  • SCS SubCarrier Space
  • the subcarrier spacing can be It is 15kHz, 30kHz, 60kHz, or 120kHz, and the length of the time slot can be 7 to 14 Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the subcarrier spacing is fixed at 15kHz, and The length of the time slot is fixed to 14 single-carrier frequency-division multiple access (Single-carrier Frequency-Division Multiple Access, SC-FDMA) symbols.
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • the system in order to provide more flexible TDD configuration, the system can support far more TDD configuration types than the LTE system.
  • the TDD configuration type of the carrier in the NR system is indicated by the configuration information TDD-UL-DL-ConfigCommon in the RRC signaling, and the TDD-UL-DL-ConfigCommon includes the following parameters:
  • the reference subcarrier spacing information which can also be called referenceSubcarrierSpacing, is used to determine the subcarrier spacing of the current carrier;
  • ⁇ Pattern 1 (pattern1) and pattern 2 (pattern2) are used to determine the patterns of uplink and downlink time domain resources (UL-DL); among them, pattern 2 is an optional configuration parameter; specifically, pattern1 or pattern2 can include the following parameter:
  • Period information which can also be called dl-UL-TransmissionPeriodicity, is used to determine the period of the UL-DL pattern.
  • the period can be 0.5ms, 0.625ms, 1ms, 1.25ms, 2ms, 3ms, 4ms, 2.5ms, 5ms, And 10ms;
  • the indication information of the number of downlink time slots which can also be called nrofDownlinkSlots, is used to determine that in each cycle, nrofDownlinkSlots from the start position of the cycle are all downlink time slots;
  • Downlink time domain symbol number indication information which can also be called nrofDownlinkSymbols, used to determine the first nrofDownlinkSymbols time domain symbols of the next slot after nrofDownlinkSlots full downlink time slots are downlink time domain symbols;
  • the indication information of the number of uplink time slots which can also be called nrofUplinkSlots, is used to determine that in each cycle, the last nrofUplinkSlots time slots in the cycle are all uplink time slots;
  • the indication information of the number of uplink time domain symbols which may also be called nrofUplinkSymbols, is used to determine that the last nrofUplinkSymbols of the previous time slot of the nrofUplinkSlots full uplink time slots are uplink time domain symbols.
  • PSBCH is still supported in NR-V2X.
  • the terminal equipment within the coverage of the base station sends part of the base station configuration information (including system frame number, time slot index, TDD configuration, etc.) to the base station through PSBCH. Terminal equipment outside the range.
  • the base station configuration information including system frame number, time slot index, TDD configuration, etc.
  • Terminal equipment outside the range Regarding the question of how to indicate the TDD configuration of the carrier through the PSBCH, one bit in the PSBCH can be used to indicate the number of patterns currently configured on the carrier, and four bits are used to indicate the period of up to two patterns on the carrier, and through 7 or 8 The bits indicate the number of full uplink time slots in each pattern.
  • the number of bits used to carry the TDD configuration is far from supporting all possible TDD configurations supported in the NR system.
  • terminal equipment located within the coverage of the base station may not be able to support all possible TDD configurations.
  • NR sideline communication uses a resource pool configuration method similar to that of LTE sideline communication, that is, the time slots contained in the resource pool are indicated by a bitmap, and the bitmap is mapped to the time available for sideline communication in the system frame period.
  • the time slot that can be used for side-line communication is related to the TDD configuration on the carrier. Therefore, the terminal equipment outside the coverage of the base station and the terminal equipment within the coverage of the base station may determine different resource pools, which will eventually lead to the failure of both parties. Perform side-line communication normally.
  • a new RRC signaling (ie base station configuration signaling) can be added on the basis of the existing RRC signaling to indicate that the terminal equipment within the coverage of the base station is used to determine the TDD configuration of the resource pool. It is the same as the TDD configuration indicated by the PSBCH for terminal equipment outside the coverage area of the base station to determine the resource pool to ensure that the resource pool determined by the terminal equipment outside the coverage area of the base station is the same to ensure normal side-line communication between each other.
  • the introduction of additional RRC signaling to ensure that the resource pools determined by the terminal equipment inside and outside the coverage of the base station are consistent will introduce additional system implementation complexity and standard workload.
  • FIG. 4 is a schematic flowchart of a method for determining a time domain resource provided by an embodiment of the application. As shown in FIG. 4, the method for determining a time domain resource includes the following steps:
  • Step 401 The terminal device determines the first time slot set in the first period according to the first TDD configuration in the RRC signaling or the second TDD configuration in the PSBCH.
  • the first time slot set includes multiple time slots, and the first time slot set refers to a time slot set that can be used for resource pool configuration, that is, time slots in the first time slot set It is a time slot that can be used for resource pool configuration.
  • the terminal device determines the first time slot set from the first period.
  • the first period is an SFN period.
  • the first period is a DFN period.
  • the terminal device determines that the first time slot set in the first period is:
  • the value of M is the number of subframes included in the first period, and the value of ⁇ is determined based on the subcarrier interval on the BandWidth Part (BWP).
  • BWP BandWidth Part
  • the value of M is 10240.
  • one SFN cycle includes 1024 SFNs, and one SFN includes 10 subframes. Therefore, one SFN cycle includes 10240 subframes.
  • the value of ⁇ has an associated relationship with the subcarrier spacing on the current BWP of the terminal device. Specifically, the corresponding relationship between the value of ⁇ and the subcarrier spacing is shown in Table 2 below:
  • ⁇ ⁇ f 2 ⁇ ⁇ 15[kHz] 0 15 1 30 2 60 3 120 4 240
  • ⁇ f represents the subcarrier spacing, and the unit is kHz.
  • the index of the time slot in the above solution is numbered relative to the index of the first time slot in SFN#0 or DFN#0.
  • the terminal device determines the first time slot set in the first period according to the first TDD configuration in the RRC signaling or the second TDD configuration in the PSBCH.
  • the first TDD configuration is indicated by the configuration information TDD-UL-DL-ConfigCommon in the RRC signaling, and the content contained in the TDD-UL-DL-ConfigCommon can refer to the description of the aforementioned related technical solutions.
  • the first time slot set may be determined in the following manners, and each manner will be described separately below.
  • the "full uplink time slot” in the following embodiments refers to a time slot in which all symbols in a time slot are uplink symbols.
  • the “symbol” in the following embodiments refers to an OFDM symbol in the time domain.
  • Method 1 For terminal equipment within the coverage of the base station.
  • Manner 1-1-1 In the case that the terminal device is a terminal device within the coverage of a base station, the first time slot set includes all time slots in the first cycle except for the following time slots:
  • the first type of time slot refers to a time slot configured as a Sidelink Synchronization Signal Block (S-SSB) resource;
  • S-SSB Sidelink Synchronization Signal Block
  • the second type of time slot refers to a time slot in which the number of uplink symbols indicated by the first TDD configuration in the RRC signaling is less than N, and N is a positive integer;
  • the third type of time slot refers to all uplink time slots in the first uplink time slot set except for the second uplink time slot set, and the first uplink time slot set refers to the RRC information
  • the uplink time slot set indicated by the first TDD configuration in the command, and the second uplink time slot set refers to the uplink time slot set indicated by the second TDD configuration in the PSBCH;
  • the fourth type of time slot refers to a reserved time slot.
  • the value of N may be 14 or 12.
  • the second type of time slot refers to a time slot in which the number of uplink symbols indicated by the first TDD configuration in the RRC signaling is less than 14;
  • the second type of time slot refers to a time slot in which the number of uplink symbols indicated by the first TDD configuration in the RRC signaling is less than 12.
  • the second uplink time slot set indicated by the second TDD configuration in the PSBCH may be equal to or smaller than the first uplink time slot set indicated by the first TDD configuration in the RRC signaling.
  • the first uplink time slot set indicated by the first TDD configuration in the RRC signaling refers to a set of all uplink time slots determined based on the first TDD configuration in the RRC signaling.
  • the second uplink time slot set indicated by the second TDD configuration in the PSBCH refers to a set of all uplink time slots determined based on the second TDD configuration in the PSBCH.
  • the terminal device determines that the carrier currently used for side-line communication allows PSBCH transmission, or the resource pool is used for the side between the terminal device within the coverage area of the base station and the terminal device outside the coverage area of the base station.
  • the first time slot set is determined according to the method 1-1-1.
  • the terminal device may determine that the carrier currently used for sideline communication allows PSBCH transmission according to the instruction of the base station, or the resource pool is used for communication between terminal devices within the coverage area of the base station and terminal devices outside the coverage area of the base station.
  • Sideline communication if the base station is configured with the RSRP threshold for the PSBCH sent by the carrier currently used for side-line communication, the terminal device considers that the carrier currently used for side-line communication allows PSBCH transmission; otherwise, the terminal device considers that it is currently used for side-line communication.
  • the communication carrier does not allow PSBCH transmission.
  • the RSRP threshold may also be referred to as syncTxThreshIC.
  • the first time slot set includes the second uplink time slot set in the first cycle except for the following time slots
  • the second uplink time slot set refers to the uplink time slot set indicated by the second TDD configuration in the PSBCH:
  • the first type of time slot where the first type of time slot refers to a time slot configured as an S-SSB resource
  • the fourth type of time slot refers to a reserved time slot.
  • the second uplink time slot set indicated by the second TDD configuration in the PSBCH may be equal to or smaller than the first uplink time slot set indicated by the first TDD configuration in the RRC signaling.
  • the terminal device determines that the carrier currently used for side-line communication allows PSBCH transmission, or the resource pool is used for the side between the terminal device within the coverage area of the base station and the terminal device outside the coverage area of the base station.
  • the first time slot set is determined according to the method 1-1-2.
  • the terminal device may determine that the carrier currently used for sideline communication allows PSBCH transmission according to the instruction of the base station, or the resource pool is used for communication between terminal devices within the coverage area of the base station and terminal devices outside the coverage area of the base station.
  • Sideline communication if the base station is configured with the RSRP threshold for the PSBCH sent by the carrier currently used for side-line communication, the terminal device considers that the carrier currently used for side-line communication allows PSBCH transmission; otherwise, the terminal device considers that it is currently used for side-line communication.
  • the communication carrier does not allow PSBCH transmission.
  • the RSRP threshold may also be referred to as syncTxThreshIC.
  • the first time slot set includes all time slots in the first cycle except for the following time slots:
  • the first type of time slot where the first type of time slot refers to a time slot configured as an S-SSB resource
  • the fifth type of time slot refers to a time slot in which Y consecutive symbols starting from the symbol X are not all uplink symbols, and X and Y are positive integers;
  • the fourth type of time slot refers to a reserved time slot.
  • the fifth type of time slot is explained below: if at least one of downlink symbols, flexible symbols, and uplink symbols is configured in a time slot, the time slot starts at least from Y consecutive symbols starting from the Xth symbol. There is a symbol that is not an uplink symbol (that is, the Y consecutive symbols are not all uplink symbols), then the time slot belongs to the fifth type of time slot.
  • the fifth type of time slot may also be referred to as an incomplete uplink time slot.
  • the values of X and Y are determined based on RRC configuration parameters (that is, the fifth type of time slot is determined based on the first TDD configuration in RRC signaling); or, the values of X and Y are based on The pre-configured parameters are determined.
  • the values of X and Y are respectively indicated by the base station through the RRC configuration configuration parameters sl-LengthSymbols and sl-StartSymbol; or, the values of X and Y are indicated by the pre-configured parameters sl-LengthSymbols and sl-StartSymbol.
  • the terminal device determines that the carrier currently used for sideline communication does not allow PSBCH transmission, or the resource pool is not used for communication between terminal devices within the coverage area of the base station and terminal devices outside the coverage area of the base station.
  • the first time slot set is determined according to the method 1-1-3.
  • the terminal device if the base station is configured with the RSRP threshold for the PSBCH sent by the carrier currently used for side-line communication, the terminal device considers that the carrier currently used for side-line communication allows PSBCH transmission; otherwise, the terminal device considers that it is currently used for side-line communication.
  • the communication carrier does not allow PSBCH transmission.
  • the RSRP threshold may also be referred to as syncTxThreshIC.
  • Method 2 For the terminal equipment within the coverage of the base station and the terminal equipment outside the coverage of the base station.
  • the first time slot set includes all time slots in the first cycle except the following time slots:
  • the first type of time slot where the first type of time slot refers to a time slot configured as an S-SSB resource
  • the fifth type of time slot refers to a time slot in which Y consecutive symbols starting from the symbol X are not all uplink symbols, and X and Y are positive integers;
  • the fourth type of time slot refers to a reserved time slot.
  • the values of X and Y are determined based on RRC configuration parameters (that is, the fifth type of time slot is determined based on the first TDD configuration in RRC signaling); or, the values of X and Y are based on The pre-configured parameters are determined.
  • the values of X and Y are respectively indicated by the base station through the RRC configuration configuration parameters sl-LengthSymbols and sl-StartSymbol; or, the values of X and Y are indicated by the pre-configured parameters sl-LengthSymbols and sl-StartSymbol.
  • the terminal equipment within the coverage of the base station expects that the first uplink time slot set indicated by the first TDD configuration in the RRC signaling is the same as the second uplink time slot set indicated by the second TDD configuration in the PSBCH; or The terminal device expects that the first uplink time slot set indicated by the first TDD configuration in the RRC signaling can be indicated by the PSBCH.
  • the first time slot set includes all time slots except the following time slots in the second uplink time slot set in the first cycle
  • the second uplink time slot set refers to the uplink time slot set indicated by the second TDD configuration in the PSBCH or the uplink time slot set indicated in the pre-configuration:
  • the first type of time slot where the first type of time slot refers to a time slot configured as an S-SSB resource
  • the fourth type of time slot refers to a reserved time slot.
  • the terminal equipment outside the coverage of the base station expects that the first uplink time slot set indicated by the first TDD configuration in the RRC signaling is the same as the second uplink time slot set indicated by the second TDD configuration in the PSBCH; or The terminal device expects that the first uplink time slot set indicated by the first TDD configuration in the RRC signaling can be indicated by the PSBCH.
  • Step 402 The terminal device selects a part of time slots from the first time slot set according to the first bitmap, and the part of time slots constitutes the time domain resources of the resource pool.
  • the first bitmap is used to indicate the time domain configuration of the resource pool, and the length of the first bitmap is denoted as L bitmap. Further, optionally, the terminal device determines the value of the L bitmap according to network configuration signaling or pre-configuration signaling.
  • the first bitmap is periodically mapped to each time slot in the first time slot set, wherein the value of the bit in the first bitmap is a first value It means that the time slot corresponding to the bit belongs to the resource pool, and the value of the bit in the first bitmap is a second value, which means that the time slot corresponding to the bit does not belong to the resource pool. Further, optionally, the first value is 1, and the second value is 0. In this way, the part of the time slots belonging to the resource pool can be extracted from the first time slot set.
  • the terminal equipment located in the coverage area of the base station determines the time slots contained in the resource pool according to the following steps:
  • the terminal device determines the set of time slots that can be configured as the resource pool in the resource pool configuration period P
  • the resource pool configuration period P (that is, the first period) refers to the mapping period of the first bitmap used for resource pool configuration.
  • the period may be 10240 ⁇ 2 ⁇ time slots.
  • is the subcarrier interval index
  • the value of ⁇ is related to the subcarrier interval on the current BWP.
  • the set t SL includes the time slots in the period P except for the following time slots: the first type time slot, the second type time slot, and the third type time slot Slot and the fourth type of time slot.
  • the fourth type of time slot refers to a reserved slot.
  • the reserved slot is used to ensure that T max can divide the length of the first bitmap used for resource pool configuration.
  • the number of reserved slots can be For example, when periodic resource reservation is not allowed in the resource pool, the number of reserved time slots can always be zero.
  • the set t SL contains the time slots of the second uplink time slot set that can be indicated by the PSBCH within the period P except the following time slots: the first type of time slots And the fourth type of time slot.
  • the terminal device determines the set t SL according to the above-mentioned method 1-1-1 or method 1-1-2, otherwise, the set t SL contains the following time slots in the period P except Outer time slots: Type 1 time slots, Type 5 time slots, and Type 4 time slots.
  • the terminal device maps the first bitmap used for resource pool configuration to the set To determine the resource pool.
  • the terminal device determines the set of time slots that can be configured as the resource pool in the resource pool configuration period P
  • the resource pool configuration period P (that is, the first period) refers to the mapping period of the first bitmap used for resource pool configuration.
  • the period may be 10240 ⁇ 2 ⁇ time slots.
  • is the subcarrier interval index
  • the value of ⁇ is related to the subcarrier interval on the current BWP.
  • the set t SL includes the time slots in the period P except for the following time slots: the first type of time slot, the fifth type of time slot, and the fourth type of time slot.
  • the set t SL contains the time slots in the second uplink time slot set indicated by the PSBCH in the period P except for the following time slots; otherwise, the set t SL contains the time slots in the second uplink time slot set indicated by the pre-configuration in the period P except for the following time slots: the first type of time slot and the fourth type of time slot.
  • the terminal device determines the reserved resource interval based on the number of time slots available for side-line communication in the statistical period; the terminal device instructs the said terminal device through Sidelink Control Information (SCI) Reserve resource interval.
  • SCI Sidelink Control Information
  • the terminal device can reserve a unified frequency domain resource according to a certain resource reservation interval P′ rsvp_TX , and indicate P′ rsvp_TX through the SCI, where P′ rsvp_TX represents the first time slot set t The number of time slots in the SL.
  • P'rsvp_TX is calculated by the physical layer of the terminal device according to the absolute resource reservation period P rsvp_TX
  • P rsvp_TX is provided by the MAC layer of the terminal device and is in milliseconds.
  • the physical layer of the terminal device determines the reserved resource interval according to the following manner:
  • P′ rsvp_TX represents the resource reservation interval in units of time slots
  • P rsvp_TX represents the absolute resource reservation period in milliseconds
  • T represents the statistical period
  • P step represents the time slot available for sideline communication in the statistical period. Number.
  • T represents the time slot statistical period that can be used for sideline transmission, where T is a specific value, and the terminal device can determine the value of T according to standard definitions or base station configuration or pre-configuration.
  • T can be 20ms, 100ms, 10240ms.
  • T can be the minimum absolute resource reservation period (unit: ms) that is allowed to be used in the resource pool indicated by the RRC layer configuration parameter reservationPeriodAllowed.
  • P step represents the number of time slots available for sideline transmission in the statistical period T.
  • P step represents the total uplink time slot in the second uplink time slot set indicated by the second TDD configuration in the PSBCH in the statistical period T Number.
  • P step means that the first time slot set t SL is determined according to the RRC information.
  • the first TDD configuration in the command ie, TDD-UL-DL-ConfigCommon
  • the physical layer of the terminal device determines the reserved resource interval according to the following manner:
  • P′ rsvp_TX represents the resource reservation interval
  • l represents the length of the first bitmap
  • n is the closest to n ⁇ l
  • P rsvp_TX represents the absolute resource reservation period
  • T represents the statistical period
  • P step represents the number of time slots available for side-line communication in the statistical period.
  • the terminal device when the terminal device is a terminal device within the coverage of a base station, the terminal device determines the second TDD configuration in the PSBCH according to the first TDD configuration in the RRC signaling; The terminal device sends the PSBCH, where the PSBCH carries the second TDD configuration. Specifically, the terminal equipment within the coverage of the base station determines the second TDD configuration indicated in the PSBCH according to the first TDD configuration indicated by the TDD-UL-DL-ConfigCommon in the RRC signaling of the base station.
  • the second TDD configuration includes at least one of the following:
  • First indication information where the first indication information is used to indicate the number of patterns
  • Second indication information where the second indication information is used to indicate the period of the pattern
  • the third indication information is used to indicate the number of full uplink time slots in the first pattern and/or the second pattern.
  • the second indication information indicates the period of the pattern through the following 4 bits ⁇ b 1 , b 2 , b 3 , b 4 ⁇ .
  • ⁇ b 1 , b 2 , b 3 , b 4 ⁇ is used to indicate the period of the first pattern and/or the second pattern.
  • the first pattern can also be referred to as pattern1, and the second pattern can also be referred to as pattern2.
  • the following describes how the first indication information and/or the second indication information indicate in combination with different situations.
  • the first indication information in the PSBCH indicates that the number of patterns is 1, and the second indication information indicates the first pattern And the sum of the period of the second pattern.
  • the number of patterns indicated by the first TDD configuration in the RRC signaling is 2, and there is at least one full uplink time slot in the first pattern, and the time slots in the second pattern are not all full uplink time slots
  • the first indication information in the PSBCH indicates that the number of patterns is 2.
  • Figure 5 shows an example of a PSBCH transmission scenario.
  • the second TDD configuration indicated in the PSBCH is based on the TDD configuration in the cell covered by the base station ( That is, the first TDD configuration) is determined.
  • the number of patterns configured on the carrier is 2, due to the limitation of PSBCH capacity, the number of full uplink time slots on each pattern may not be correctly indicated, so it is necessary to avoid indicating the configuration of 2 patterns through the PSBCH as much as possible.
  • the base station indicates that the number of patterns is 2 through the first TDD configuration (such as TDD-UL-DL-ConfigCommon) in the RRC signaling, and the period of the two patterns is not all 10ms, then when there is no full uplink in the first pattern When the time slot or the second pattern are all full uplink time slots, the number of patterns may be indicated as 1 in the PSBCH, and the period of the pattern may be indicated as the sum of the periods of the above two patterns. Further, the terminal equipment should only set b 0 to 1 when one of the following two conditions is met. Condition 1) The number of patterns configured by the base station through TDD-UL-DL-ConfigCommon in RRC signaling is 2, and one of them Or the period of both patterns is 10ms. Condition 2) The number of patterns configured by the base station through TDD-UL-DL-ConfigCommon in RRC signaling is 2, and there is at least one full uplink symbol time slot in the first pattern, and not all uplink time slots in the second pattern .
  • the terminal device determines the m and The value of n:
  • P 1 represents the period of the first pattern, and the unit is milliseconds.
  • the number of full uplink time slots in the first pattern is equal to the decimal representation value corresponding to the m bits plus 1; the number of full uplink time slots in the second pattern is equal to the n The decimal representation value corresponding to the bit.
  • P 1 represents the period of the first pattern in milliseconds
  • P 2 represents the period of the second pattern in milliseconds.
  • the number of all uplink time slots in the first pattern is the decimal representation value corresponding to m bits plus 1
  • the number of full uplink time slots in the first pattern is the decimal representation value corresponding to m bits plus 1 and multiplied by k1; or, if P 2 ⁇ 2 ⁇ ⁇ 2 n , then the number in the second pattern
  • the number of full uplink time slots is the decimal representation value corresponding to n bits. If P 2 ⁇ 2 ⁇ > 2 n , then the number of full uplink time slots in the second pattern is the decimal representation value corresponding to n bits multiplied by Take k2;
  • k1 is the smallest integer such that P 1 ⁇ 2 ⁇ ⁇ k1 ⁇ 2 m
  • k2 is the smallest integer such that P 2 ⁇ 2 ⁇ ⁇ k2 ⁇ 2 n .
  • the second indication information indicates the period of the pattern through the following 4 bits ⁇ b 1 , b 2 , b 3 , b 4 ⁇ .
  • ⁇ b 1 , b 2 , b 3 , b 4 ⁇ is used to indicate the period of the first pattern and/or the second pattern.
  • the third indication information uses the following N bits ⁇ b 5 ,..., b 5+N-1 ⁇ to indicate the number of full uplink time slots in the first pattern and/or the second pattern;
  • N represents the total number of bits used to indicate the number of all uplink time slots in each pattern.
  • the value of N may be equal to 7 or 8.
  • the first pattern can also be referred to as pattern1, and the second pattern can also be referred to as pattern2.
  • the terminal device determines the decimal representation value of the N bits in the PSBCH in the following manner:
  • D represents the decimal representation value of N bits in the PSBCH
  • a represents the number of full uplink time slots in the first pattern
  • b represents the number of full uplink time slots in the second pattern
  • ⁇ ref represents the reference subcarrier interval index
  • ⁇ PSBCH represents the subcarrier interval index configured or pre-configured on the BWP where the PSBCH is located.
  • the ⁇ ref is determined according to the following manner:
  • ⁇ ref ⁇ PSBCH ;
  • ⁇ ref min( ⁇ PSBCH , 2); or
  • ⁇ ref min( ⁇ PSBCH ,1); or
  • the ⁇ ref is determined according to the following manner:
  • ⁇ ref min( ⁇ PSBCH , 2); or
  • ⁇ ref 0.
  • Figure 5 shows an example of a PSBCH transmission scenario.
  • the second TDD configuration indicated in the PSBCH is based on the TDD configuration in the cell covered by the base station ( That is, the first TDD configuration) is determined.
  • the number of patterns configured on the carrier is 2, due to the limitation of PSBCH capacity, the number of full uplink time slots on each pattern may not be correctly indicated.
  • the reference subcarrier interval index ⁇ ref can be defined. Reduce the number of time slots on each pattern.
  • ⁇ ref ⁇ PSBCH , where ⁇ PSBCH is PSBCH
  • ⁇ ref 0.
  • the decimal representation value of N bits in the PSBCH is Where a is the number of full uplink time slots in the first pattern, and b is the number of full uplink time slots in the second pattern.
  • the number of full uplink time slots in the first pattern indicated in PSBCH is The number of full uplink time slots in the second pattern indicated in the PSBCH is
  • the decimal representation value of N bits in the PSBCH is Where a is the number of full uplink time slots in the first pattern, and b is the number of full uplink time slots in the second pattern.
  • the number of full uplink time slots in the first pattern indicated in PSBCH is The number of full uplink time slots in the second pattern indicated in the PSBCH is In this implementation, if the number of patterns configured by TDD-UL-DL-ConfigCommon is 2, and all time slots in the second pattern are full uplink time slots, then b 0 should be set to 0, ⁇ b 1 , b 2 ,b 3 ,b 4 ⁇ The corresponding period should be the sum of the periods of the two patterns. At this time, the maximum period can be 20ms.
  • the terminal device can determine the time slot that can be configured as a resource pool by combining the time slot indicated in the RRC signaling that can be used for side-line transmission and the time slot that can be used for side-line transmission indicated by the PSBCH, and Determining the resource reservation interval can ensure that terminal devices within and outside the coverage of the base station in a part of the network coverage environment can normally perform side-line communication, and ensure the utilization of side-line resources with less system implementation complexity.
  • FIG. 6 is a schematic diagram of the structural composition of an apparatus for determining a time domain resource provided by an embodiment of the application, which is applied to a terminal device.
  • the apparatus for determining a time domain resource includes:
  • the determining unit 601 is configured to determine the first time slot set in the first period according to the first TDD configuration in the RRC signaling or the second TDD configuration in the PSBCH;
  • the selecting unit 602 is configured to select a part of time slots from the first time slot set according to the first bitmap, and the part of time slots constitute the time domain resources of the resource pool.
  • the determining unit 601 is configured to determine the first time slot set in the first period as:
  • the value of M is the number of subframes included in the first period, and the value of ⁇ is determined based on the subcarrier interval on the partial bandwidth BWP.
  • the first time slot set includes all time slots in the first cycle except for the following time slots:
  • the first type of time slot where the first type of time slot refers to a time slot configured as an S-SSB resource
  • the second type of time slot refers to a time slot in which the number of uplink symbols indicated by the first TDD configuration in the RRC signaling is less than N, and N is a positive integer;
  • the third type of time slot refers to all uplink time slots in the first uplink time slot set except for the second uplink time slot set, and the first uplink time slot set refers to the RRC information
  • the uplink time slot set indicated by the first TDD configuration in the command, and the second uplink time slot set refers to the uplink time slot set indicated by the second TDD configuration in the PSBCH;
  • the fourth type of time slot refers to a reserved time slot.
  • the second type of time slot refers to a time slot in which the number of uplink symbols indicated by the first TDD configuration in the RRC signaling is less than N, and includes:
  • the second type of time slot refers to a time slot in which the number of uplink symbols indicated by the first TDD configuration in the RRC signaling is less than 14; or,
  • the second type of time slot refers to a time slot in which the number of uplink symbols indicated by the first TDD configuration in the RRC signaling is less than 12.
  • the first time slot set includes the second uplink time slot set in the first period except for the following time slots
  • the second uplink time slot set refers to the uplink time slot set indicated by the second TDD configuration in the PSBCH:
  • the first type of time slot where the first type of time slot refers to a time slot configured as an S-SSB resource
  • the fourth type of time slot refers to a reserved time slot.
  • the determining unit 601 is further configured to determine that the carrier currently used for sideline communication allows PSBCH transmission, or the resource pool is used for terminal equipment within the coverage of the base station and terminals outside the coverage of the base station Side-line communication between devices.
  • the first time slot set includes all time slots in the first cycle except for the following time slots:
  • the first type of time slot where the first type of time slot refers to a time slot configured as an S-SSB resource
  • the fifth type of time slot refers to a time slot in which Y consecutive symbols starting from the symbol X are not all uplink symbols, and X and Y are positive integers;
  • the fourth type of time slot refers to a reserved time slot.
  • the values of X and Y are determined based on RRC configuration parameters; or,
  • the values of X and Y are determined based on pre-configured parameters.
  • the determining unit 601 is further configured to determine that the carrier currently used for side-line communication does not allow PSBCH transmission, or that the resource pool is not used for terminal equipment within the coverage area of the base station and those outside the coverage area of the base station. Side-line communication between terminal devices.
  • the first time slot set includes the second uplink time slot set in the first cycle except for the following time slots
  • the second uplink time slot set refers to the uplink time slot set indicated by the second TDD configuration in the PSBCH:
  • the first type of time slot where the first type of time slot refers to a time slot configured as an S-SSB resource
  • the fourth type of time slot refers to a reserved time slot.
  • the terminal device expects that the first uplink time slot set indicated by the first TDD configuration in the RRC signaling is the same as the second uplink time slot set indicated by the second TDD configuration in the PSBCH ;or,
  • the terminal device expects that the first uplink time slot set indicated by the first TDD configuration in the RRC signaling can be indicated by the PSBCH.
  • the determining unit 601 is further configured to determine the reserved resource interval based on the number of time slots available for side-line communication in the statistical period;
  • the device further includes: an indication unit (not shown in the figure), configured to indicate the reserved resource interval through the SCI.
  • the determining unit 601 is configured to determine the reserved resource interval according to the following manner:
  • P′ rsvp_TX represents the resource reservation interval in units of time slots
  • P rsvp_TX represents the absolute resource reservation period in milliseconds
  • T represents the statistical period
  • P step represents the time slot available for sideline communication in the statistical period. Number.
  • the determining unit 601 is configured to determine the reserved resource interval according to the following manner:
  • P′ rsvp_TX represents the resource reservation interval
  • l represents the length of the first bitmap
  • n is the closest to n ⁇ l
  • P rsvp_TX represents the absolute resource reservation period
  • T represents the statistical period
  • P step represents the number of time slots available for side-line communication in the statistical period.
  • the terminal device when the terminal device is a terminal device within the coverage area of the base station,
  • the determining unit 601 is further configured to determine the second TDD configuration in the PSBCH according to the first TDD configuration in the RRC signaling;
  • the device further includes: a sending unit (not shown in the figure), configured to send the PSBCH, where the PSBCH carries the second TDD configuration.
  • a sending unit (not shown in the figure), configured to send the PSBCH, where the PSBCH carries the second TDD configuration.
  • the second TDD configuration includes at least one of the following:
  • First indication information where the first indication information is used to indicate the number of patterns
  • Second indication information where the second indication information is used to indicate the period of the pattern
  • the third indication information is used to indicate the number of full uplink time slots in the first pattern and/or the second pattern.
  • the third indication information indicates the number of full uplink time slots in the first pattern by the following m bits ⁇ b 5 ,..., b 5+m-1 ⁇ ; it is expressed by the following n bits ⁇ b 5+m ,...,b 5+m+n-1 ⁇ indicates the number of full uplink time slots in the second pattern;
  • N represents the total number of bits used to indicate the number of all uplink time slots in each pattern.
  • the first indication information in the PSBCH indicates that the number of patterns is 1, and
  • the second indication information indicates the sum of the periods of the first pattern and the second pattern.
  • the first indication information in the PSBCH indicates that the number of patterns is 2.
  • the number of patterns indicated by the first TDD configuration in the RRC signaling is 2, and there is at least one full uplink time slot in the first pattern, and not all time slots in the second pattern are all In the case of uplink time slots,
  • the first indication information in the PSBCH indicates that the number of patterns is 2.
  • the determining unit is further configured to determine the values of m and n according to the following manner:
  • P 1 represents the period of the first pattern, and the unit is milliseconds.
  • the number of all uplink time slots in the first pattern is equal to the decimal representation value corresponding to the m bits plus 1;
  • the number of full uplink time slots in the second pattern is equal to the decimal representation value corresponding to the n bits.
  • the determining unit 601 is further configured to determine the values of the m and the n according to the following manner:
  • P 1 represents the period of the first pattern in milliseconds
  • P 2 represents the period of the second pattern in milliseconds.
  • the number of all uplink time slots in the first pattern is the decimal representation value corresponding to m bits plus 1
  • P 1 ⁇ 2 ⁇ > 2 m the number of all uplink time slots in the first pattern is the decimal representation value corresponding to m bits plus 1 and multiplied by k1;
  • the number of all uplink time slots in the second pattern is the decimal representation value corresponding to n bits, and if P 2 ⁇ 2 ⁇ > 2 n , then the second pattern
  • the number of full uplink time slots in is the decimal representation value corresponding to n bits multiplied by k2;
  • k1 is the smallest integer such that P 1 ⁇ 2 ⁇ ⁇ k1 ⁇ 2 m
  • k2 is the smallest integer such that P 2 ⁇ 2 ⁇ ⁇ k2 ⁇ 2 n .
  • the third indication information uses the following N bits ⁇ b 5 ,..., b 5+N-1 ⁇ to indicate the number of full uplink time slots in the first pattern and/or the second pattern;
  • N represents the total number of bits used to indicate the number of all uplink time slots in each pattern.
  • the determining unit 601 is further configured to determine the decimal representation value of the N bits in the PSBCH in the following manner:
  • D represents the decimal representation value of N bits in the PSBCH
  • a represents the number of full uplink time slots in the first pattern
  • b represents the number of full uplink time slots in the second pattern
  • ⁇ ref represents the reference subcarrier interval index
  • ⁇ PSBCH represents the subcarrier interval index configured or pre-configured on the BWP where the PSBCH is located.
  • the ⁇ ref is determined according to the following manner:
  • ⁇ ref ⁇ PSBCH ;
  • ⁇ ref min( ⁇ PSBCH , 2);
  • ⁇ ref min( ⁇ PSBCH ,1); or
  • the ⁇ ref is determined according to the following manner:
  • ⁇ ref min( ⁇ PSBCH , 2); or
  • ⁇ ref 0.
  • the ⁇ ref is determined according to the following manner:
  • the first period is an SFN period or a DFN period.
  • FIG. 7 is a schematic structural diagram of a communication device 700 provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 700 shown in FIG. 7 includes a processor 710, and the processor 710 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the communication device 700 may further include a transceiver 730, and the processor 710 may control the transceiver 730 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 730 may include a transmitter and a receiver.
  • the transceiver 730 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 700 may specifically be a network device of an embodiment of the application, and the communication device 700 may implement the corresponding process implemented by the network device in each method of the embodiment of the application. For the sake of brevity, it will not be repeated here. .
  • the communication device 700 may specifically be a mobile terminal/terminal device of an embodiment of the present application, and the communication device 700 may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • FIG. 8 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 800 shown in FIG. 8 includes a processor 810, and the processor 810 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 800 may further include a memory 820.
  • the processor 810 may call and run a computer program from the memory 820 to implement the method in the embodiment of the present application.
  • the memory 820 may be a separate device independent of the processor 810, or may be integrated in the processor 810.
  • the chip 800 may further include an input interface 830.
  • the processor 810 can control the input interface 830 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 800 may further include an output interface 840.
  • the processor 810 can control the output interface 840 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • FIG. 9 is a schematic block diagram of a communication system 900 according to an embodiment of the present application.
  • the communication system 900 includes a terminal device 910 and a network device 920.
  • the terminal device 910 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 920 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application , For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

本申请实施例提供一种时域资源的确定方法及装置、终端设备,该方法包括:终端设备根据无线资源控制RRC信令中的第一时分复用TDD配置或者物理侧行广播信道PSBCH中的第二TDD配置,确定第一周期内的第一时隙集合;所述终端设备根据第一比特位图从所述第一时隙集合中选取部分时隙,所述部分时隙组成资源池的时域资源。

Description

一种时域资源的确定方法及装置、终端设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种时域资源的确定方法及装置、终端设备。
背景技术
在侧行通信中,根据进行通信的终端设备所处的网络覆盖情况,可以分为网络覆盖内侧行通信,部分网络覆盖侧行通信,及网络覆盖外侧行通信。在部分网络覆盖侧行通信的情况下,位于基站覆盖范围内的终端设备和位于基站覆盖范围外的终端设备如何确定资源池需要明确。
发明内容
本申请实施例提供一种时域资源的确定方法及装置、终端设备。
本申请实施例提供的时域资源的确定方法,包括:
终端设备根据无线资源控制(Radio Resource Control,RRC)信令中的第一时分复用(Time Division Duplexing,TDD)配置或者物理侧行广播信道侧行广播信道(Physical Sidelink Broadcast Channel,PSBCH)中的第二TDD配置,确定第一周期内的第一时隙集合;
所述终端设备根据第一比特位图从所述第一时隙集合中选取部分时隙,所述部分时隙组成资源池的时域资源。
本申请实施例提供的时域资源的确定装置,应用于终端设备,所述装置包括:
确定单元,用于根据RRC信令中的第一TDD配置或者PSBCH中的第二TDD配置,确定第一周期内的第一时隙集合;
选取单元,用于根据第一比特位图从所述第一时隙集合中选取部分时隙,所述部分时隙组成资源池的时域资源。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的时域资源的确定方法。
本申请实施例提供的芯片,用于实现上述的时域资源的确定方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的时域资源的确定方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的时域资源的确定方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的时域资源的确定方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的时域资源的确定方法。
通过上述技术方案,对于基站覆盖范围内外的终端设备,可以结合RRC信令中的第一TDD配置或者PSBCH中的第二TDD配置,确定第一周期内可配置为资源池的时隙集合(即第一时隙集合),然后,通过将第一比特位图映射至第一时隙集合从而确定第一时隙集合中的哪些时隙属于资源池。通过这种方式可以保证部分网络覆盖环境下,基站覆盖范围内外的终端设备可以正常进行侧行通信,以较小的系统实现复杂度保证侧行资源的利用率。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2-1是本申请实施例提供的网络覆盖内侧行通信的场景图;
图2-2是本申请实施例提供的部分网络覆盖侧行通信的场景图;
图2-3是本申请实施例提供的网络覆盖外侧行通信的场景图;
图3是本申请实施例提供的配置资源池的示意图;
图4为本申请实施例提供的时域资源的确定方法的流程示意图;
图5为本申请实施例提供的PSBCH发送场景的场景图;
图6为本申请实施例提供的时域资源的确定装置的结构组成示意图;
图7是本申请实施例提供的一种通信设备示意性结构图;
图8是本申请实施例的芯片的示意性结构图;
图9是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、系统、5G通信系统或未来的通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G通信系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如 网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术方案进行说明。
●不同网络覆盖环境下的侧行通信
在侧行通信中,根据进行通信的终端设备所处的网络覆盖情况,可以分为网络覆盖内侧行通信(如图2-1所示),部分网络覆盖侧行通信(如图2-2所示),及网络覆盖外侧行通信(如图2-3所示)。
在网络覆盖内侧行通信中,所有进行侧行通信的终端设备均处于同一基站的覆盖范围内,从而,所有进行侧行通信的终端设备均可以通过接收基站的配置信令,基于相同的侧行配置进行侧行通信。
在部分网络覆盖侧行通信情况下,部分进行侧行通信的终端设备位于基站覆盖范围内,这部分终端设备能够接收到基站的配置信令,进而根据基站配置的侧行配置进行侧行通信。而位于基站覆盖范围外的终端设备,无法接收基站的配置信令,在这种情况下,基站覆盖范围外的终端设备将根据预配置(pre-configuration)信息及位于基站覆盖范围内的终端设备发送的PSBCH中携带的信息确定侧行配置,进而基于该侧行配置进行侧行通信。
而对于网络覆盖外侧行通信的情况,所有进行侧行通信的终端设备均位于基站覆盖范围外,所有终端设备均根据预配置信息确定侧行配置进行侧行通信。
●长期演进(Long Term Evolution,LTE)-车联网(Vehicle to Everything,V2X)的资源池确定方法
在LTE-V2X中,在一个系统帧计数(System Frame Number,SFN)周期或一个直接帧计数(Direct Frame Number,DFN)周期内确定资源池的时域资源,具体地,通过以下方式确定一个SFN周期或一个DFN周期内的哪些时域资源属于资源池:
一个SFN周期或一个DFN周期包括10240个子帧,分别对应子帧0、1、2……10239。在10240个子帧中,去掉同步子帧、下行子帧、特殊子帧(即TDD系统中的下行子帧和特殊子帧)、以及预留子帧(reserved subframe),剩余的子帧重新编号后形成的子帧集合为
Figure PCTCN2020083669-appb-000001
其中,剩余的子帧的个数能够被L bitmap整除,L bitmap表示用于指示资源池配置的比特位图的长度。用于指示资源池配置的比特位图
Figure PCTCN2020083669-appb-000002
周期性的映射至剩余的各个子帧上,其中,比特位的取值为1表示该比特位对应的子帧属于资源池,比特位的取值为0表示该比特位对应的子帧不属于资源池。
如图3所示,图3以SFN周期为例(DFN周期与SFN周期同理),一个SFN周期包括10240个子帧(即10240ms),同步信号的周期(简称为同步周期)是160ms,在一个同步周期内包括2个同步子帧,因此,在一个SFN周期内共有128个同步子帧。用于指示资源池配置的比特位图的长度是10比特(即L bitmap=10),因此需要2个预留子帧(reserved subframe),剩余子帧的个数是(10240-128-2=10110),可以被比特位图的长度10整除,将剩余的子帧重新编号为0,1,2,……,10109,比特位图前3位为1,其余7位为0,即
Figure PCTCN2020083669-appb-000003
可见,在剩余子帧中,每10个子帧中的前3个子帧属于资源池,其余的子帧不属于资源池。由于在剩余子帧中需要比特位图重复1011次,以指示所有的子帧是否属于资源池,而在每个比特位图的周期内有3个子帧属于资源池,因此在一个SFN周期共有3033个子帧属于资源池。
从以上资源池的确定方法可以看到,如果要唯一的确定一个资源池,终端设备需要明确一个SFN周期或DFN周期内下行子帧,特殊子帧,及上行子帧等不同类型子帧的位置和个数,上述信息由当前载波的TDD配置类型决定。在LTE系统中,一共定义了7中TDD配置类型,不同类型的TDD配置对应不同的上行,下行,及特殊子帧的位置及个数。为了确保不同终端设备之间的正常侧行发送和接收,所有终端设备确定的TDD配置必须相同。在网络覆盖范围内侧行通信或网络覆盖范围外侧行通信中,终端设备可以根据基站的配置信息或预配置信息获得统一的TDD配置,而对于部分网络覆盖侧行通信中,位于基站覆盖范围内的终端设备接收基站配置信令确定TDD配置,并通过PSBCH将上述TDD配置发送给基站覆盖范围外的终端设备,从而保证基站覆盖范围内外的终端设备确定的TDD配置相同。
●LTE-V2X中资源预留周期的计算方法
在LTE-V2X中,终端设备可以周期性的预留同一个频域资源,由于所有用于侧行通信的资源必 须属于同一资源池,所以预留周期P′ rsvp_TX表示为集合
Figure PCTCN2020083669-appb-000004
内的子帧个数,其中P′ rsvp_TX=P step×P rsvp_TX/100,P rsvp_TX表示高层指示的数据包(packet)到达周期,P step和当前载波的TDD配置有关,具体如表1所示。
TDD配置类型 P step
TDD上下行配置0 60
TDD上下行配置1 40
TDD上下行配置2 20
TDD上下行配置3 30
TDD上下行配置4 20
TDD上下行配置5 10
TDD上下行配置6 50
其它 100
表1
●NR-V2X中的资源池配置
在NR-V2X中,需要支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。因此,与LTE V2X主要支持周期性业务不同,在NR V2X中,需要同时支持周期性业务和非周期性业务,而且非周期性业务可能占据主要比重。此外,为了降低数据传输时延,并增强资源分配的灵活性,NR V2X支持不同的子载波间隔(SubCarrier Space,SCS)和不同的时隙长度,具体的,在NR V2X中,子载波间隔可以是15kHz,30kHz,60kHz,或120kHz,而时隙长度可以是7~14个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,而在LTE V2X中,子载波间隔固定为15kHz,而时隙长度固定为14个单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)符号。
另外,在NR系统中,为了提供更为灵活的TDD配置,系统能够支持的TDD配置类型远远多于LTE系统。具体的,在NR系统中载波的TDD配置类型由RRC信令中的配置信息TDD-UL-DL-ConfigCommon指示,TDD-UL-DL-ConfigCommon中包括如下参数:
◆参考子载波间隔信息,也可以称为referenceSubcarrierSpacing,用于确定当前载波的子载波间隔;
◆图案1(pattern1)和图案2(pattern2),用于确定上下行时域资源(UL-DL)的图案;其中,图案2是可选的配置参数;具体地,pattern1或pattern2中可以包括如下参数:
I)周期信息,也可称为dl-UL-TransmissionPeriodicity,用于确定UL-DL图案的周期,周期可以为0.5ms,0.625ms,1ms,1.25ms,2ms,3ms,4ms,2.5ms,5ms,和10ms;
II)下行时隙个数指示信息,也可以称为nrofDownlinkSlots,用于确定每个周期内,从该周期的起始位置开始的nrofDownlinkSlots个时隙为全下行时隙;
III)下行时域符号个数指示信息,也可以称为nrofDownlinkSymbols,用于确定nrofDownlinkSlots个全下行时隙的之后一个时隙的前nrofDownlinkSymbols个时域符号为下行时域符号;
IV)上行时隙个数指示信息,也可以称为nrofUplinkSlots,用于确定在每个周期内,该周期内的最后nrofUplinkSlots个时隙为全上行时隙;
V)上行时域符号个数指示信息,也可以称为nrofUplinkSymbols,用于确定nrofUplinkSlots个全上行时隙的之前一个时隙的最后nrofUplinkSymbols个时域符号为上行时域符号。
和LTE侧行通信系统类似,NR-V2X中依然支持PSBCH,基站覆盖范围内的终端设备通过PSBCH将部分基站配置的信息(包括系统帧号,时隙索引,TDD配置等),发送给基站覆盖范围外的终端设备。对于如何通过PSBCH指示载波的TDD配置这一问题,可以通过PSBCH中的1比特来指示当前载波上配置的pattern个数,通过4比特来指示载波上最多两个pattern的周期,通过7或8个比特指示各个pattern的全上行时隙个数。
然而,由于PSBCH的容量有限,用于承载TDD配置的比特数远不能支持NR系统中支持的所有可能的TDD配置,在部分网络覆盖侧行通信情况下,位于基站覆盖范围内的终端设备可能无法通过PSBCH获得基站覆盖范围内的终端设备采用的TDD配置。由于NR侧行通信中采用类似于LTE侧行通信中的资源池配置方法,即资源池内包含的时隙由比特位图指示,比特位图映射到系统帧周期内的可用于侧行通信的时隙上,而且可用于侧行通信的时隙和载波上的TDD配置有关,从而,基 站覆盖范围外的终端设备和基站覆盖范围内的终端设备确定的资源池可能不同,这将最终导致双方无法正常进行侧行通信。
针对上述问题,可以在已有的RRC信令基础上,增加一项新的RRC信令(即基站配置信令),用于指示基站覆盖范围内的终端设备用于确定资源池的TDD配置,和PSBCH指示的用于基站覆盖范围外的终端设备确定资源池的TDD配置相同,从而保证基站覆盖范围内外的终端设备确定的资源池相同以保证相互之间的正常侧行通信。然而,通过引入额外的RRC信令来保证基站覆盖范围内外的终端设备确定的资源池一致的方式将引入额外的系统实现复杂度及标准工作量。
此外,当载波上配置了两个pattern时,如果每个pattern内包含的时隙个数过大,将超出PSBCH的指示能力。另一方面,由于NR系统中,TDD配置更为灵活,LTE V2X中的资源预留间隔计算方法不适用于NR V2X。为此,提出了本申请实施例的以下技术方案。
图4为本申请实施例提供的时域资源的确定方法的流程示意图,如图4所示,所述时域资源的确定方法包括以下步骤:
步骤401:终端设备根据RRC信令中的第一TDD配置或者PSBCH中的第二TDD配置,确定第一周期内的第一时隙集合。
本申请实施例中,所述第一时隙集合包括多个时隙,所述第一时隙集合是指可用于资源池配置的时隙集合,即所述第一时隙集合中的时隙是可用于资源池配置的时隙。
本申请实施例中,所述终端设备从第一周期内确定所述第一时隙集合。在一可选方式中,所述第一周期为一个SFN周期。在另一可选方式中,所述第一周期为一个DFN周期。
在本申请一可选方式中,所述终端设备确定第一周期内的第一时隙集合为:
Figure PCTCN2020083669-appb-000005
其中,
Figure PCTCN2020083669-appb-000006
所述M的取值为所述第一周期内包含的子帧个数,所述μ的取值基于部分带宽(BandWidth Part,BWP)上的子载波间隔确定。
上述方案中,可选地,所述M的取值为10240。以SFN周期为例,一个SFN周期包括1024个SFN,一个SFN包括10个子帧,因此,一个SFN周期包括10240个子帧。
上述方案中,可选地,μ的取值和终端设备的当前BWP上的子载波间隔具有关联关系,具体地,μ的取值和子载波间隔之间的对应关系如下表2所示:
μ Δf=2 μ·15[kHz]
0 15
1 30
2 60
3 120
4 240
表2
其中,Δf表示子载波间隔,单位为kHz。
进一步,上述方案中的时隙的索引是相对于SFN#0或DFN#0内的第一个时隙的索引进行编号的。
本申请实施例中,终端设备根据RRC信令中的第一TDD配置或者PSBCH中的第二TDD配置,确定第一周期内的第一时隙集合。这里,所述第一TDD配置由RRC信令中的配置信息TDD-UL-DL-ConfigCommon指示,TDD-UL-DL-ConfigCommon包含的内容可以参照前述相关技术方案的描述。
本申请实施例中,所述第一时隙集合的确定方式可以有以下几种方式,以下对各个方式分别进行描述。需要说明的是,以下实施例中的“全上行时隙”是指一个时隙内的全部符号均为上行符号的时隙。以下实施例中的“符号”是指时域上的OFDM符号。
方式一:对于基站覆盖范围内的终端设备的情况。
方式1-1-1:所述终端设备为基站覆盖范围内的终端设备的情况下,所述第一时隙集合中包含所述第一周期中除以下时隙以外的所有时隙:
第一类时隙,所述第一类时隙是指被配置为侧行链路同步信号块(Sidelink Synchronization Signal Block,S-SSB)资源的时隙;
第二类时隙,所述第二类时隙是指所述RRC信令中的第一TDD配置指示的上行符号数少于N的时隙,N为正整数;
第三类时隙,所述第三类时隙是指第一上行时隙集合中除第二上行时隙集合以外的全上行时隙, 所述第一上行时隙集合是指所述RRC信令中的第一TDD配置指示的上行时隙集合,所述第二上行时隙集合是指所述PSBCH中的第二TDD配置指示的上行时隙集合;
第四类时隙,所述第四类时隙是指保留时隙。
上述方案中,可选地,所述N的取值可以是14或者12。具体地,在正常循环前缀(Cyclic Prefix,CP)长度的情况下,所述第二类时隙是指所述RRC信令中的第一TDD配置指示的上行符号数少于14的时隙;或者,在扩展CP长度的情形下,所述第二类时隙是指所述RRC信令中的第一TDD配置指示的上行符号数少于12的时隙。
对于这种方式,PSBCH中的第二TDD配置指示的第二上行时隙集合可能等于或小于RRC信令中的第一TDD配置指示的第一上行时隙集合。
需要说明的是,RRC信令中的第一TDD配置指示的第一上行时隙集合是指:基于RRC信令中的第一TDD配置确定出的全上行时隙的集合。PSBCH中的第二TDD配置指示的第二上行时隙集合是指:基于PSBCH中的第二TDD配置确定出的全上行时隙的集合。
在一可选方式中,所述终端设备确定当前用于侧行通信的载波允许PSBCH发送,或所述资源池用于基站覆盖范围内的终端设备和基站覆盖范围外的终端设备之间的侧行通信的情况下,按照方式1-1-1确定所述第一时隙集合。
这里,所述终端设备可以根据基站的指示,确定当前用于侧行通信的载波允许PSBCH发送,或所述资源池用于基站覆盖范围内的终端设备和基站覆盖范围外的终端设备之间的侧行通信。在一个示例中,如果基站配置了当前用于侧行通信的载波发送PSBCH的RSRP门限,则终端设备认为当前用于侧行通信的载波允许PSBCH发送,反之,则终端设备认为当前用于侧行通信的载波不允许PSBCH发送。这里,RSRP门限也可以称为syncTxThreshIC。
方式1-1-2:所述终端设备为基站覆盖范围内的终端设备的情况下,所述第一时隙集合中包含所述第一周期中的第二上行时隙集合中除以下时隙以外的所有时隙,所述第二上行时隙集合是指所述PSBCH中的第二TDD配置指示的上行时隙集合:
第一类时隙,所述第一类时隙是指被配置为S-SSB资源的时隙;
第四类时隙,所述第四类时隙是指保留时隙。
对于这种方式,PSBCH中的第二TDD配置指示的第二上行时隙集合可能等于或小于RRC信令中的第一TDD配置指示的第一上行时隙集合。
在一可选方式中,所述终端设备确定当前用于侧行通信的载波允许PSBCH发送,或所述资源池用于基站覆盖范围内的终端设备和基站覆盖范围外的终端设备之间的侧行通信的情况下,按照方式1-1-2确定所述第一时隙集合。
这里,所述终端设备可以根据基站的指示,确定当前用于侧行通信的载波允许PSBCH发送,或所述资源池用于基站覆盖范围内的终端设备和基站覆盖范围外的终端设备之间的侧行通信。在一个示例中,如果基站配置了当前用于侧行通信的载波发送PSBCH的RSRP门限,则终端设备认为当前用于侧行通信的载波允许PSBCH发送,反之,则终端设备认为当前用于侧行通信的载波不允许PSBCH发送。这里,RSRP门限也可以称为syncTxThreshIC。
方式1-1-3:所述终端设备为基站覆盖范围内的终端设备的情况下,所述第一时隙集合中包含所述第一周期中除以下时隙以外的所有时隙:
第一类时隙,所述第一类时隙是指被配置为S-SSB资源的时隙;
第五类时隙,所述第五类时隙是指从符号X开始的连续Y个符号不全是上行符号的时隙,X和Y为正整数;
第四类时隙,所述第四类时隙是指保留时隙。
进一步,以下对上述第五类时隙进行解释说明:如果一个时隙中配置了下行符号、灵活符号和上行符号中的至少一种,该时隙从第X个符号开始的Y连续符号中至少有一个符号不是上行符号(即Y个连续符号不全是上行符号),那么,该时隙属于第五类时隙。可选地,第五类时隙也可以称为不完整上行时隙。
这里,所述X和所述Y的值基于RRC配置参数确定(即所述第五类时隙基于RRC信令中的第一TDD配置确定);或者,所述X和所述Y的值基于预配置参数确定。例如:X和Y的值分别由基站通过RRC配置配置参数sl-LengthSymbols和sl-StartSymbol指示;或者,X和Y的值由预配置参数sl-LengthSymbols和sl-StartSymbol指示。
在一个示例中,在正常CP长度的情况下,X=0,Y=14;在扩展CP长度下的情况下,X=0,Y=12。
在一可选方式中,所述终端设备确定当前用于侧行通信的载波不允许PSBCH发送,或所述资源池不用于基站覆盖范围内的终端设备和基站覆盖范围外的终端设备之间的侧行通信的情况下,按照方式1-1-3确定所述第一时隙集合。
在一个示例中,如果基站配置了当前用于侧行通信的载波发送PSBCH的RSRP门限,则终端设备认为当前用于侧行通信的载波允许PSBCH发送,反之,则终端设备认为当前用于侧行通信的载波不允许PSBCH发送。这里,RSRP门限也可以称为syncTxThreshIC。
方式二:对于基站覆盖范围内的终端设备,以及基站覆盖范围外的终端设备的情况。
1)所述终端设备为基站覆盖范围内的终端设备的情况下,所述第一时隙集合中包含所述第一周期中除以下时隙以外的所有时隙:
第一类时隙,所述第一类时隙是指被配置为S-SSB资源的时隙;
第五类时隙,所述第五类时隙是指从符号X开始的连续Y个符号不全是上行符号的时隙,X和Y为正整数;
第四类时隙,所述第四类时隙是指保留时隙。
这里,所述X和所述Y的值基于RRC配置参数确定(即所述第五类时隙基于RRC信令中的第一TDD配置确定);或者,所述X和所述Y的值基于预配置参数确定。例如:X和Y的值分别由基站通过RRC配置配置参数sl-LengthSymbols和sl-StartSymbol指示;或者,X和Y的值由预配置参数sl-LengthSymbols和sl-StartSymbol指示。
在一个示例中,在正常CP长度的情况下,X=0,Y=14;在扩展CP长度下的情况下,X=0,Y=12。
进一步,基站覆盖范围内的终端设备期望所述RRC信令中的第一TDD配置指示的第一上行时隙集合和所述PSBCH中的第二TDD配置指示的第二上行时隙集合相同;或者,所述终端设备期望所述RRC信令中的第一TDD配置指示的第一上行时隙集合能够被所述PSBCH指示。
2)所述终端设备为基站覆盖范围外的终端设备的情况下,所述第一时隙集合中包含所述第一周期中的第二上行时隙集合中除以下时隙以外的所有时隙,所述第二上行时隙集合是指所述PSBCH中的第二TDD配置指示的上行时隙集合或者预配置中指示的上行时隙集合:
第一类时隙,所述第一类时隙是指被配置为S-SSB资源的时隙;
第四类时隙,所述第四类时隙是指保留时隙。
进一步,基站覆盖范围外的终端设备期望所述RRC信令中的第一TDD配置指示的第一上行时隙集合和所述PSBCH中的第二TDD配置指示的第二上行时隙集合相同;或者,所述终端设备期望所述RRC信令中的第一TDD配置指示的第一上行时隙集合能够被所述PSBCH指示。
步骤402:所述终端设备根据第一比特位图从所述第一时隙集合中选取部分时隙,所述部分时隙组成资源池的时域资源。
本申请实施例中,所述第一比特位图用于指示所述资源池的时域配置,所述第一比特位图的长度记为L bitmap。进一步,可选地,所述终端设备根据网络配置信令或者预配置信令确定L bitmap的取值。
具体实现时,所述第一比特位图周期性的映射至所述第一时隙集合中的各个时隙上,其中,所述第一比特位图中的比特位的取值为第一值表示该比特位对应的时隙属于所述资源池,所述第一比特位图中的比特位的取值为第二值表示该比特位对应的时隙不属于所述资源池。进一步,可选地,所述第一值为1,所述第二值为0。如此,可以从所述第一时隙集合中出属于资源池的那部分时隙。
以下结合具体应用示例对本申请实施例的技术方案进行举例说明。
应用示例一
位于基站覆盖范围内的终端设备按照以下步骤确定资源池内包含的时隙:
1、终端设备确定资源池配置周期P内可以配置为资源池的时隙集合
Figure PCTCN2020083669-appb-000007
这里,所述资源池配置周期P(即第一周期),是指用于资源池配置的第一比特位图的映射周期,例如,该周期可以为10240×2 μ个时隙,此时
Figure PCTCN2020083669-appb-000008
其中,μ为子载波间隔索引,μ的值和当前BWP上的子载波间隔有关。
可选地,按照本实施例的实现方式1-1-1,集合t SL中包含周期P内除以下时隙外的时隙:第一类时隙、第二类时隙、第三类时隙和第四类时隙。
其中,所述第四类时隙是指保留时隙(reserved slot),保留时隙用于保证T max可以整除用于资源池配置的第一比特位图的长度,保留时隙的个数可以为零,例如,当资源池内不允许周期性的资源预留,则保留时隙的个数可以恒为零。
可选地,按照本实施例的实现方式1-1-2,集合t SL中包含周期P内能够由PSBCH指示的第二上行时隙集合除以下时隙外的时隙:第一类时隙和第四类时隙。
可选地,按照本实施例的实现方式1-1-3,如果基站指示当前用于侧行通信的载波允许PSBCH发送,或基站指示所述资源池用于基站覆盖范围内的终端设备和基站覆盖范围外的终端设备之间的侧行通信,则终端设备按照上述方式1-1-1或方式1-1-2确定集合t SL,否则,集合t SL中包含周期P内除以下时隙外的时隙:第一类时隙、第五类时隙和第四类时隙。
2、终端设备将用于资源池配置的第一比特位图映射到集合
Figure PCTCN2020083669-appb-000009
从而确定资源池。
应用示例二
1、终端设备确定资源池配置周期P内可以配置为资源池的时隙集合
Figure PCTCN2020083669-appb-000010
这里,所述资源池配置周期P(即第一周期),是指用于资源池配置的第一比特位图的映射周期,例如,该周期可以为10240×2 μ个时隙,此时
Figure PCTCN2020083669-appb-000011
其中,μ为子载波间隔索引,μ的值和当前BWP上的子载波间隔有关。
对于基站覆盖范围内的终端设备,集合t SL中包含周期P内除以下时隙外的时隙:第一类时隙、第五类时隙和第四类时隙。
对于基站覆盖范围外的终端设备,如果该终端设备能够检测到PSBCH,则集合t SL中包含周期P内由PSBCH指示的第二上行时隙集合中除以下时隙外的时隙,否则,集合t SL中包含周期P内由预配置(pre-configuration)指示的第二上行时隙集合中除以下时隙外的时隙:第一类时隙和第四类时隙。
本申请实施例中,所述终端设备基于统计周期内可用于侧行通信的时隙个数,确定预留资源间隔;所述终端设备通过侧行控制信息(Sidelink Control Information,SCI)指示所述预留资源间隔。
具体地,在NR V2X中,终端设备可以按照某一资源预留间隔P′ rsvp_TX预留统一的频域资源,并通过SCI指示P′ rsvp_TX,其中,P′ rsvp_TX表示为第一时隙集合t SL内的时隙个数。P′ rsvp_TX由终端设备的物理层根据绝对资源预留周期P rsvp_TX计算获得,P rsvp_TX由终端设备的MAC层提供,并以毫秒为单位。
在一可选方式中,所述终端设备的物理层根据以下方式确定预留资源间隔:
Figure PCTCN2020083669-appb-000012
其中,P′ rsvp_TX表示以时隙为单位的资源预留间隔,P rsvp_TX表示以毫秒为单位的绝对资源预留周期,T表示统计周期,P step表示统计周期内可用于侧行通信的时隙个数。
以下对上述公式(2)中的各个参数进行说明。
T表示可用于侧行发送的时隙统计周期,其中T为特定值,终端设备可以根据标准定义或者基站配置或者预配置确定T的值。例如,T可以为20ms,100ms,10240ms。或者定T的值为RRC层配置参数reservationPeriodAllowed指示的资源池内允许使用的最小绝对资源预留周期(单位为ms)。
P step表示统计周期T内可用于侧行发送的时隙个数,对于按照上述方式1-1-1或者方式1-1-2确定第一时隙集合t SL的情况,以及按照上述方式二中基站覆盖范围外的终端设备确定第一时隙集合t SL的情况,P step表示统计周期T内能够被PSBCH中的第二TDD配置指示的第二上行时隙集合内的全上行时隙的个数。对于按照上述方式1-1-3确定第一时隙集合t SL的情况,以及按照上述方式二中基站覆盖范围内的终端设备确定第一时隙集合t SL的情况,P step表示根据RRC信令中的第一TDD配置(即TDD-UL-DL-ConfigCommon)指示的统计周期T内从X符号开始的连续Y个符号均为上行符号的时隙个数。
在另一可选方式中,所述终端设备的物理层根据以下方式确定预留资源间隔:
P′ rsvp_TX=n×l;        (3)
其中,P′ rsvp_TX表示资源预留间隔,l表示用所述第一比特位图的长度,n为使得n×l最接近
Figure PCTCN2020083669-appb-000013
的正整数,P rsvp_TX表示绝对资源预留周期,T表示统计周期,P step表示统计周期内可用于侧行通信的时隙个数。
本申请实施例中,所述终端设备为基站覆盖范围内的终端设备的情况下,所述终端设备根据所述RRC信令中的第一TDD配置确定所述PSBCH中的第二TDD配置;所述终端设备发送所述PSBCH,其中,所述PSBCH携带所述第二TDD配置。具体地,基站覆盖范围内的终端设备根据基站的RRC信令中的TDD-UL-DL-ConfigCommon指示的第一TDD配置确定PSBCH中指示的第二TDD配置。
本申请实施例中,所述第二TDD配置包括以下至少之一:
第一指示信息,所述第一指示信息用于指示pattern个数;
第二指示信息,所述第二指示信息用于指示pattern的周期;
第三指示信息,所述第三指示信息用于指示第一pattern和/或第二pattern内全上行时隙的个数。
▲在一可选实施方式中,上述各指示信息可以通过以下方式实现。
所述第一指示信息通过以下1比特b 0指示pattern个数。例如:b 0=0表示当前载波配置的pattern个数为1个,b 0=1表示当前载波配置的pattern个数为2个。
所述第二指示信息通过以下4比特{b 1,b 2,b 3,b 4}指示pattern的周期。例如:通过{b 1,b 2,b 3,b 4}指示第一pattern和/或第二pattern的周期。
所述第三指示信息所述第三指示信息通过以下m比特{b 5,…,b 5+m-1}指示第一pattern内全上行时隙的个数;通过以下n比特表示{b 5+m,…,b 5+m+n-1}指示第二pattern内全上行时隙的个数;其中,m+n=N,N表示用于指示各个pattern内的全上行时隙的个数的比特总数。在一个示例中,N的值可以等于7或8。
上述方案中,第一pattern也可以称为pattern1,第二pattern也可以称为pattern2。
以下结合不同的情况,对所述第一指示信息和/或所述第二指示信息如何指示进行说明。
A)所述RRC信令中的第一TDD配置指示的pattern个数为2,且第一pattern和第二pattern的周期不全为10ms的情况下,若所述第一pattern内没有全上行时隙,或所述第二pattern内的时隙全部为全上行时隙,则所述PSBCH中的所述第一指示信息指示pattern个数为1,且所述第二指示信息指示所述第一pattern和所述第二pattern的周期之和。
B)所述RRC信令中的第一TDD配置指示的pattern个数为2,且第一pattern和第二pattern中的至少一个pattern的周期为10ms的情况下,所述PSBCH中的所述第一指示信息指示pattern个数为2。
C)所述RRC信令中的第一TDD配置指示的pattern个数为2,且第一pattern中至少有一个全上行时隙,且第二pattern中的时隙不全为全上行时隙的情况下,所述PSBCH中的所述第一指示信息指示pattern个数为2。
具体地,图5给出了PSBCH的一个发送场景示例,位于基站覆盖范围内的终端设备根据基站的配置信息发送PSBCH时,PSBCH中指示的第二TDD配置根据基站覆盖的小区内的TDD配置(即第一TDD配置)确定。当载波上配置的pattern个数为2时,由于PSBCH容量的限制,每个pattern上的全上行时隙个数可能无法正确指示,所以有必要尽可能避免通过PSBCH指示2个pattern的配置。例如,如果基站通过RRC信令中的第一TDD配置(如TDD-UL-DL-ConfigCommon)指示pattern个数为2,而且两个pattern的周期不全为10ms,则当第一pattern内没有全上行时隙,或第二pattern全部为全上行时隙时,PSBCH中可以将pattern个数指示为1,而将pattern的周期指示为上述两个pattern的周期之和。进一步,终端设备只应在满足以下两个条件之一时将b 0置为1,条件1)基站通过RRC信令中的TDD-UL-DL-ConfigCommon配置的pattern个数为2,而且其中的一个或两个pattern的周期均为10ms。条件2)基站通过RRC信令中的TDD-UL-DL-ConfigCommon配置的pattern个数为2,而且第一pattern中至少有一个全上行符号时隙,而且第二pattern中不全为全上行时隙。
本申请实施例中,所述PSBCH中的所述第一指示信息指示pattern个数为2的情况下(即b 0置为1的情况下),所述终端设备根据以下方式确定所述m和所述n的值:
方式a)所述终端设备根据以下方式确定所述m和所述n的值:
Figure PCTCN2020083669-appb-000014
其中,P 1表示第一pattern的周期,单位为毫秒。
对于这种方式,所述第一pattern中的全上行时隙的个数等于所述m比特对应的十进制表示值加1;所述第二pattern中的全上行时隙的个数等于所述n比特对应的十进制表示值。
方式b)所述终端设备根据以下方式确定所述m和所述n的值:
如果P 1≤P 2
Figure PCTCN2020083669-appb-000015
n=N-m;
若果P 1>P 2
Figure PCTCN2020083669-appb-000016
其中,P 1表示第一pattern的周期,单位为毫秒;P 2表示第二pattern的周期,单位为毫秒。
对于这种方式,如果P 1×2 μ≤2m,则所述第一pattern中的全上行时隙的个数为m比特对应的十进制表示值加1,如果P 1×2 μ>2 m,则所述第一pattern中的全上行时隙的个数为m比特对应的十进制表示值加1后乘以k1;或者,如果P 2×2 μ≤2 n,则所述第二pattern中的全上行时隙 的个数为n比特对应的十进制表示值,如果P 2×2 μ>2 n,则所述第二pattern中的全上行时隙的个数为n比特对应的十进制表示值乘以k2;
其中,k1是使得P 1×2 μ≤k1×2 m的最小整数,k2是使得P 2×2 μ≤k2×2 n的最小整数。
▲在另一可选方式中,上述各指示信息可以通过以下方式实现。
所述第一指示信息通过以下1比特b 0指示pattern个数。例如:b 0=0表示当前载波配置的pattern个数为1个,b 0=1表示当前载波配置的pattern个数为2个。
所述第二指示信息通过以下4比特{b 1,b 2,b 3,b 4}指示pattern的周期。例如:通过{b 1,b 2,b 3,b 4}指示第一pattern和/或第二pattern的周期。
所述第三指示信息通过以下N比特{b 5,…,b 5+N-1}指示第一pattern和/或第二pattern内全上行时隙的个数;
其中,N表示用于指示各个pattern内的全上行时隙的个数的比特总数。在一个示例中,N的值可以等于7或8。
上述方案中,第一pattern也可以称为pattern1,第二pattern也可以称为pattern2。
本申请实施例中,所述RRC信令中的第一TDD配置指示的pattern个数为2的情况下,所述终端设备根据以下方式确定所述PSBCH中的所述N比特的十进制表示值:
Figure PCTCN2020083669-appb-000017
其中,D表示PSBCH中N比特的十进制表示值,a表示第一pattern内全上行时隙的个数,b表示第二pattern中全上行时隙的个数,μ ref表示参考子载波间隔索引,μ PSBCH表示PSBCH所在BWP上配置或预配置的子载波间隔索引。
在一可选方式中,所述μ ref根据以下方式确定:
在第一pattern和第二pattern的周期之和小于4ms,或不大于2.5ms的情况下,μ ref=μ PSBCH;或者,
在第一pattern和第二pattern的周期之和为4ms或5ms的情况下,μ ref=min(μ PSBCH,2);或者,
在第一pattern和第二pattern的周期之和为10ms的情况下,μ ref=min(μ PSBCH,1);或者,
在第一pattern和第二pattern的周期之和为20ms的情况下,μ ref=0。
在另一可选方式中,所述μ ref根据以下方式确定:
在第一pattern和第二pattern的周期之和不大于5ms的情况下,μ ref=min(μ PSBCH,2);或者,
在第一pattern和第二pattern的周期之和大于5ms的情况下,μ ref=0。
在又一可选方式中,所述μ ref根据以下方式确定:μ ref=0。
具体地,图5给出了PSBCH的一个发送场景示例,位于基站覆盖范围内的终端设备根据基站的配置信息发送PSBCH时,PSBCH中指示的第二TDD配置根据基站覆盖的小区内的TDD配置(即第一TDD配置)确定。当载波上配置的pattern数为2时,由于PSBCH容量的限制,每个pattern上的全上行时隙个数可能无法正确指示,在这种情况下可通过定义参考子载波间隔索引μ ref的方式减少每个pattern上的时隙个数。
例如,当两个pattern的周期之和小于4ms,或不大于2.5ms时,由于两个pattern的时隙数在N比特的指示范围之内,则μ ref=μ PSBCH,其中,μ PSBCH为PSBCH所在BWP上配置或预配置的子载波间隔索引;如果两个pattern的周期之和为4ms或5ms,则μ ref=min(μ PSBCH,2);如果两个pattern的周期之和为10ms,则μ ref=min(μ PSBCH,1);如果两个pattern的周期之和为20ms,则μ ref=0。
又例如,如果两个pattern的周期之和不大于5ms,则μ ref=min(μ PSBCH,2);如果两个pattern的周期之和大于5ms,则μ ref=0。
再例如,如果配置两个pattern,则μ ref=0。
按照本申请实施例的一种实现方式:对于发送PSBCH的终端设备,PSBCH中N比特的十进制表示值为
Figure PCTCN2020083669-appb-000018
其中a为第一pattern内全上行时隙的个数,b为第二pattern中全上行时隙的个数。对于接收PSBCH的终端设备,PSBCH中指示的第一pattern中的全上行时隙的个数为
Figure PCTCN2020083669-appb-000019
PSBCH中指示的第二pattern中的全上行时隙的个数为
Figure PCTCN2020083669-appb-000020
按照本申请实施例的另一种实现方式:对于发送PSBCH的终端设备,PSBCH中N比特的十进制表示值为
Figure PCTCN2020083669-appb-000021
其中a为第一pattern内全上行时隙的个数,b为第二pattern中全上行时隙的个数。对于接收PSBCH的终端设备,PSBCH中指 示的第一pattern中的全上行时隙的个数为
Figure PCTCN2020083669-appb-000022
PSBCH中指示的第二pattern中的全上行时隙的个数为
Figure PCTCN2020083669-appb-000023
在这种实现方式中,如果TDD-UL-DL-ConfigCommon配置的pattern个数为2,第二pattern中的所有时隙均为全上行时隙,则b 0应设置为0,{b 1,b 2,b 3,b 4}对应的周期应该两个pattern的周期之和,此时,最大的周期可以为20ms。
本申请实施例的技术方案,终端设备可以结合RRC信令中指示的可用于侧行传输的时隙和PSBCH能够指示的可用于侧行传输的时隙确定可配置为资源池的时隙,以及确定资源预留间隔,从而可以保证部分网络覆盖环境下基站覆盖范围内外的终端终端设备可以正常进行侧行通信,以较小的系统实现复杂度保证侧行资源的利用率。
图6为本申请实施例提供的时域资源的确定装置的结构组成示意图,应用于终端设备,如图6所示,所述时域资源的确定装置包括:
确定单元601,用于根据RRC信令中的第一TDD配置或者PSBCH中的第二TDD配置,确定第一周期内的第一时隙集合;
选取单元602,用于根据第一比特位图从所述第一时隙集合中选取部分时隙,所述部分时隙组成资源池的时域资源。
在一可选方式中,所述确定单元601,用于确定第一周期内的第一时隙集合为:
Figure PCTCN2020083669-appb-000024
其中,
Figure PCTCN2020083669-appb-000025
所述M的取值为所述第一周期内包含的子帧个数,所述μ的取值基于部分带宽BWP上的子载波间隔确定。
在一可选方式中,所述终端设备为基站覆盖范围内的终端设备的情况下,所述第一时隙集合中包含所述第一周期中除以下时隙以外的所有时隙:
第一类时隙,所述第一类时隙是指被配置为S-SSB资源的时隙;
第二类时隙,所述第二类时隙是指所述RRC信令中的第一TDD配置指示的上行符号数少于N的时隙,N为正整数;
第三类时隙,所述第三类时隙是指第一上行时隙集合中除第二上行时隙集合以外的全上行时隙,所述第一上行时隙集合是指所述RRC信令中的第一TDD配置指示的上行时隙集合,所述第二上行时隙集合是指所述PSBCH中的第二TDD配置指示的上行时隙集合;
第四类时隙,所述第四类时隙是指保留时隙。
在一可选方式中,所述第二类时隙是指所述RRC信令中的第一TDD配置指示的上行符号数少于N的时隙,包括:
在正常CP长度的情况下,所述第二类时隙是指所述RRC信令中的第一TDD配置指示的上行符号数少于14的时隙;或者,
在扩展CP长度的情形下,所述第二类时隙是指所述RRC信令中的第一TDD配置指示的上行符号数少于12的时隙。
在一可选方式中,所述终端设备为基站覆盖范围内的终端设备的情况下,所述第一时隙集合中包含所述第一周期中的第二上行时隙集合中除以下时隙以外的所有时隙,所述第二上行时隙集合是指所述PSBCH中的第二TDD配置指示的上行时隙集合:
第一类时隙,所述第一类时隙是指被配置为S-SSB资源的时隙;
第四类时隙,所述第四类时隙是指保留时隙。
在一可选方式中,所述确定单元601,还用于确定当前用于侧行通信的载波允许PSBCH发送,或所述资源池用于基站覆盖范围内的终端设备和基站覆盖范围外的终端设备之间的侧行通信。
在一可选方式中,所述终端设备为基站覆盖范围内的终端设备的情况下,所述第一时隙集合中包含所述第一周期中除以下时隙以外的所有时隙:
第一类时隙,所述第一类时隙是指被配置为S-SSB资源的时隙;
第五类时隙,所述第五类时隙是指从符号X开始的连续Y个符号不全是上行符号的时隙,X和Y为正整数;
第四类时隙,所述第四类时隙是指保留时隙。
在一可选方式中,所述X和所述Y的值基于RRC配置参数确定;或者,
所述X和所述Y的值基于预配置参数确定。
在一可选方式中,所述确定单元601,还用于确定当前用于侧行通信的载波不允许PSBCH发送,或所述资源池不用于基站覆盖范围内的终端设备和基站覆盖范围外的终端设备之间的侧行通信。
在一可选方式中,所述终端设备为基站覆盖范围外的终端设备的情况下,所述第一时隙集合中包含所述第一周期中的第二上行时隙集合中除以下时隙以外的所有时隙,所述第二上行时隙集合是指所述PSBCH中的第二TDD配置指示的上行时隙集合:
第一类时隙,所述第一类时隙是指被配置为S-SSB资源的时隙;
第四类时隙,所述第四类时隙是指保留时隙。
在一可选方式中,所述终端设备期望所述RRC信令中的第一TDD配置指示的第一上行时隙集合和所述PSBCH中的第二TDD配置指示的第二上行时隙集合相同;或者,
所述终端设备期望所述RRC信令中的第一TDD配置指示的第一上行时隙集合能够被所述PSBCH指示。
在一可选方式中,所述确定单元601,还用于基于统计周期内可用于侧行通信的时隙个数,确定预留资源间隔;
所述装置还包括:指示单元(图中未示出),用于通过SCI指示所述预留资源间隔。
在一可选方式中,所述确定单元601,用于根据以下方式确定预留资源间隔:
Figure PCTCN2020083669-appb-000026
其中,P′ rsvp_TX表示以时隙为单位的资源预留间隔,P rsvp_TX表示以毫秒为单位的绝对资源预留周期,T表示统计周期,P step表示统计周期内可用于侧行通信的时隙个数。
在一可选方式中,所述确定单元601,用于根据以下方式确定预留资源间隔:
P′ rsvp_TX=n×l;
其中,P′ rsvp_TX表示资源预留间隔,l表示用所述第一比特位图的长度,n为使得n×l最接近
Figure PCTCN2020083669-appb-000027
的正整数,P rsvp_TX表示绝对资源预留周期,T表示统计周期,P step表示统计周期内可用于侧行通信的时隙个数。
在一可选方式中,所述终端设备为基站覆盖范围内的终端设备的情况下,
所述确定单元601,还用于根据所述RRC信令中的第一TDD配置确定所述PSBCH中的第二TDD配置;
所述装置还包括:发送单元(图中未示出),用于发送所述PSBCH,其中,所述PSBCH携带所述第二TDD配置。
在一可选方式中,所述第二TDD配置包括以下至少之一:
第一指示信息,所述第一指示信息用于指示pattern个数;
第二指示信息,所述第二指示信息用于指示pattern的周期;
第三指示信息,所述第三指示信息用于指示第一pattern和/或第二pattern内全上行时隙的个数。
在一可选方式中,所述第三指示信息通过以下m比特{b 5,…,b 5+m-1}指示第一pattern内全上行时隙的个数;通过以下n比特表示{b 5+m,…,b 5+m+n-1}指示第二pattern内全上行时隙的个数;
其中,m+n=N,N表示用于指示各个pattern内的全上行时隙的个数的比特总数。
在一可选方式中,所述RRC信令中的第一TDD配置指示的pattern个数为2,且第一pattern和第二pattern的周期不全为10ms的情况下,
若所述第一pattern内没有全上行时隙,或所述第二pattern内的时隙全部为全上行时隙,则所述PSBCH中的所述第一指示信息指示pattern个数为1,且所述第二指示信息指示所述第一pattern和所述第二pattern的周期之和。
在一可选方式中,所述RRC信令中的第一TDD配置指示的pattern个数为2,且第一pattern和第二pattern中的至少一个pattern的周期为10ms的情况下,
所述PSBCH中的所述第一指示信息指示pattern个数为2。
在一可选方式中,所述RRC信令中的第一TDD配置指示的pattern个数为2,且第一pattern中至少有一个全上行时隙,且第二pattern中的时隙不全为全上行时隙的情况下,
所述PSBCH中的所述第一指示信息指示pattern个数为2。
在一可选方式中,所述PSBCH中的所述第一指示信息指示pattern个数为2的情况下,
所述确定单元,还用于根据以下方式确定所述m和所述n的值:
Figure PCTCN2020083669-appb-000028
其中,P 1表示第一pattern的周期,单位为毫秒。
在一可选方式中,所述第一pattern中的全上行时隙的个数等于所述m比特对应的十进制表 示值加1;
所述第二pattern中的全上行时隙的个数等于所述n比特对应的十进制表示值。
在一可选方式中,所述PSBCH中的所述第一指示信息指示pattern个数为2的情况下,
所述确定单元601,还用于根据以下方式确定所述m和所述n的值:
如果P 1≤P 2
Figure PCTCN2020083669-appb-000029
若果P 1>P 2
Figure PCTCN2020083669-appb-000030
其中,P 1表示第一pattern的周期,单位为毫秒;P 2表示第二pattern的周期,单位为毫秒。
在一可选方式中,如果P 1×2 μ≤2 m,则所述第一pattern中的全上行时隙的个数为m比特对应的十进制表示值加1,如果P 1×2 μ>2 m,则所述第一pattern中的全上行时隙的个数为m比特对应的十进制表示值加1后乘以k1;或者,
如果P 2×2 μ≤2 n,则所述第二pattern中的全上行时隙的个数为n比特对应的十进制表示值,如果P 2×2 μ>2 n,则所述第二pattern中的全上行时隙的个数为n比特对应的十进制表示值乘以k2;
其中,k1是使得P 1×2 μ≤k1×2 m的最小整数,k2是使得P 2×2 μ≤k2×2 n的最小整数。
在一可选方式中,所述第三指示信息通过以下N比特{b 5,…,b 5+N-1}指示第一pattern和/或第二pattern内全上行时隙的个数;
其中,N表示用于指示各个pattern内的全上行时隙的个数的比特总数。
在一可选方式中,所述RRC信令中的第一TDD配置指示的pattern个数为2的情况下,
所述确定单元601,还用于根据以下方式确定所述PSBCH中的所述N比特的十进制表示值:
Figure PCTCN2020083669-appb-000031
其中,D表示PSBCH中N比特的十进制表示值,a表示第一pattern内全上行时隙的个数,b表示第二pattern中全上行时隙的个数,μ ref表示参考子载波间隔索引,μ PSBCH表示PSBCH所在BWP上配置或预配置的子载波间隔索引。
在一可选方式中,所述μ ref根据以下方式确定:
在第一pattern和第二pattern的周期之和小于4ms,或不大于2.5ms的情况下,μ ref=μ PSBCH
或者,
在第一pattern和第二pattern的周期之和为4ms或5ms的情况下,μ ref=min(μ PSBCH,2);
或者,
在第一pattern和第二pattern的周期之和为10ms的情况下,μ ref=min(μ PSBCH,1);或者,
在第一pattern和第二pattern的周期之和为20ms的情况下,μ ref=0。
在一可选方式中,所述μ ref根据以下方式确定:
在第一pattern和第二pattern的周期之和不大于5ms的情况下,μ ref=min(μ PSBCH,2);或者,
在第一pattern和第二pattern的周期之和大于5ms的情况下,μ ref=0。
在一可选方式中,所述μ ref根据以下方式确定:
μ ref=0。
在一可选方式中,所述第一周期为一个SFN周期或者一个DFN周期。
本领域技术人员应当理解,本申请实施例的上述时域资源的确定装置的相关描述可以参照本申请实施例的时域资源的确定方法的相关描述进行理解。
图7是本申请实施例提供的一种通信设备700示意性结构图。该通信设备可以是终端设备,也可以是网络设备,图7所示的通信设备700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,通信设备700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,如图7所示,通信设备700还可以包括收发器730,处理器710可以控制该收发器730与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器730可以包括发射机和接收机。收发器730还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备700具体可为本申请实施例的网络设备,并且该通信设备700可以实现本 申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备700具体可为本申请实施例的移动终端/终端设备,并且该通信设备700可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图8是本申请实施例的芯片的示意性结构图。图8所示的芯片800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,芯片800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,该芯片800还可以包括输入接口830。其中,处理器810可以控制该输入接口830与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片800还可以包括输出接口840。其中,处理器810可以控制该输出接口840与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图9是本申请实施例提供的一种通信系统900的示意性框图。如图9所示,该通信系统900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (65)

  1. 一种时域资源的确定方法,所述方法包括:
    终端设备根据无线资源控制RRC信令中的第一时分复用TDD配置或者物理侧行广播信道PSBCH中的第二TDD配置,确定第一周期内的第一时隙集合;
    所述终端设备根据第一比特位图从所述第一时隙集合中选取部分时隙,所述部分时隙组成资源池的时域资源。
  2. 根据权利要求1所述的方法,其中,所述确定第一周期内的第一时隙集合,包括:
    确定第一周期内的第一时隙集合为:
    Figure PCTCN2020083669-appb-100001
    其中,
    Figure PCTCN2020083669-appb-100002
    所述M的取值为所述第一周期内包含的子帧个数,所述μ的取值基于部分带宽BWP上的子载波间隔确定。
  3. 根据权利要求2所述的方法,其中,所述终端设备为基站覆盖范围内的终端设备的情况下,所述第一时隙集合中包含所述第一周期中除以下时隙以外的所有时隙:
    第一类时隙,所述第一类时隙是指被配置为侧行链路同步信号块S-SSB资源的时隙;
    第二类时隙,所述第二类时隙是指所述RRC信令中的第一TDD配置指示的上行符号数少于N的时隙,N为正整数;
    第三类时隙,所述第三类时隙是指第一上行时隙集合中除第二上行时隙集合以外的全上行时隙,所述第一上行时隙集合是指所述RRC信令中的第一TDD配置指示的上行时隙集合,所述第二上行时隙集合是指所述PSBCH中的第二TDD配置指示的上行时隙集合;
    第四类时隙,所述第四类时隙是指保留时隙。
  4. 根据权利要求3所述的方法,其中,所述第二类时隙是指所述RRC信令中的第一TDD配置指示的上行符号数少于N的时隙,包括:
    在正常循环前缀CP长度的情况下,所述第二类时隙是指所述RRC信令中的第一TDD配置指示的上行符号数少于14的时隙;或者,
    在扩展CP长度的情形下,所述第二类时隙是指所述RRC信令中的第一TDD配置指示的上行符号数少于12的时隙。
  5. 根据权利要求2所述的方法,其中,所述终端设备为基站覆盖范围内的终端设备的情况下,所述第一时隙集合中包含所述第一周期中的第二上行时隙集合中除以下时隙以外的所有时隙,所述第二上行时隙集合是指所述PSBCH中的第二TDD配置指示的上行时隙集合:
    第一类时隙,所述第一类时隙是指被配置为S-SSB资源的时隙;
    第四类时隙,所述第四类时隙是指保留时隙。
  6. 根据权利要求3至5中任一项所述的方法,其中,所述方法还包括:
    所述终端设备确定当前用于侧行通信的载波允许PSBCH发送,或所述资源池用于基站覆盖范围内的终端设备和基站覆盖范围外的终端设备之间的侧行通信。
  7. 根据权利要求2所述的方法,其中,所述终端设备为基站覆盖范围内的终端设备的情况下,所述第一时隙集合中包含所述第一周期中除以下时隙以外的所有时隙:
    第一类时隙,所述第一类时隙是指被配置为S-SSB资源的时隙;
    第五类时隙,所述第五类时隙是指从符号X开始的连续Y个符号不全是上行符号的时隙,X和Y为正整数;
    第四类时隙,所述第四类时隙是指保留时隙。
  8. 根据权利要求7所述的方法,其中,
    所述X和所述Y的值基于RRC配置参数确定;或者,
    所述X和所述Y的值基于预配置参数确定。
  9. 根据权利要求7或8所述的方法,其中,所述方法还包括:
    所述终端设备确定当前用于侧行通信的载波不允许PSBCH发送,或所述资源池不用于基站覆盖范围内的终端设备和基站覆盖范围外的终端设备之间的侧行通信。
  10. 根据权利要求2所述的方法,其中,所述终端设备为基站覆盖范围外的终端设备的情况下,所述第一时隙集合中包含所述第一周期中的第二上行时隙集合中除以下时隙以外的所有时隙, 所述第二上行时隙集合是指所述PSBCH中的第二TDD配置指示的上行时隙集合:
    第一类时隙,所述第一类时隙是指被配置为S-SSB资源的时隙;
    第四类时隙,所述第四类时隙是指保留时隙。
  11. 根据权利要求7至10中任一项所述的方法,其中,所述方法还包括:
    所述终端设备期望所述RRC信令中的第一TDD配置指示的第一上行时隙集合和所述PSBCH中的第二TDD配置指示的第二上行时隙集合相同;或者,
    所述终端设备期望所述RRC信令中的第一TDD配置指示的第一上行时隙集合能够被所述PSBCH指示。
  12. 根据权利要求1至11中任一项所述的方法,其中,所述方法还包括:
    所述终端设备基于统计周期内可用于侧行通信的时隙个数,确定预留资源间隔;
    所述终端设备通过侧行控制信息SCI指示所述预留资源间隔。
  13. 根据权利要求12所述的方法,其中,所述终端设备基于统计周期内可用于侧行通信的时隙个数,确定预留资源间隔,包括:
    所述终端设备根据以下方式确定预留资源间隔:
    Figure PCTCN2020083669-appb-100003
    其中,P′ rsvp_TX表示以时隙为单位的资源预留间隔,P rsvp_TX表示以毫秒为单位的绝对资源预留周期,T表示统计周期,P step表示统计周期内可用于侧行通信的时隙个数。
  14. 根据权利要求12所述的方法,其中,所述终端设备基于统计周期内可用于侧行通信的时隙个数,确定预留资源间隔,包括:
    所述终端设备根据以下方式确定预留资源间隔:
    P′ rsvp_TX=n×l;
    其中,P′ rsvp_TX表示资源预留间隔,l表示用所述第一比特位图的长度,n为使得n×l最接近
    Figure PCTCN2020083669-appb-100004
    的正整数,P rsvp_TX表示绝对资源预留周期,T表示统计周期,P step表示统计周期内可用于侧行通信的时隙个数。
  15. 根据权利要求1至14中任一项所述的方法,其中,所述终端设备为基站覆盖范围内的终端设备的情况下,所述方法还包括:
    所述终端设备根据所述RRC信令中的第一TDD配置确定所述PSBCH中的第二TDD配置;
    所述终端设备发送所述PSBCH,其中,所述PSBCH携带所述第二TDD配置。
  16. 根据权利要求15所述的方法,其中,所述第二TDD配置包括以下至少之一:
    第一指示信息,所述第一指示信息用于指示pattern个数;
    第二指示信息,所述第二指示信息用于指示pattern的周期;
    第三指示信息,所述第三指示信息用于指示第一pattern和/或第二pattern内全上行时隙的个数。
  17. 根据权利要求16所述的方法,其中,
    所述第三指示信息通过以下m比特{b 5,…,b 5+m-1}指示第一pattern内全上行时隙的个数;通过以下n比特表示{b 5+m,…,b 5+m+n-1}指示第二pattern内全上行时隙的个数;
    其中,m+n=N,N表示用于指示各个pattern内的全上行时隙的个数的比特总数。
  18. 根据权利要求17所述的方法,其中,所述RRC信令中的第一TDD配置指示的pattern个数为2,且第一pattern和第二pattern的周期不全为10ms的情况下,
    若所述第一pattern内没有全上行时隙,或所述第二pattern内的时隙全部为全上行时隙,则所述PSBCH中的所述第一指示信息指示pattern个数为1,且所述第二指示信息指示所述第一pattern和所述第二pattern的周期之和。
  19. 根据权利要求17所述的方法,其中,所述RRC信令中的第一TDD配置指示的pattern个数为2,且第一pattern和第二pattern中的至少一个pattern的周期为10ms的情况下,
    所述PSBCH中的所述第一指示信息指示pattern个数为2。
  20. 根据权利要求17所述的方法,其中,所述RRC信令中的第一TDD配置指示的pattern个数为2,且第一pattern中至少有一个全上行时隙,且第二pattern中的时隙不全为全上行时隙的情况下,
    所述PSBCH中的所述第一指示信息指示pattern个数为2。
  21. 根据权利要求19或20所述的方法,其中,所述PSBCH中的所述第一指示信息指示pattern 个数为2的情况下,所述方法还包括:
    所述终端设备根据以下方式确定所述m和所述n的值:
    Figure PCTCN2020083669-appb-100005
    其中,P 1表示第一pattern的周期,单位为毫秒。
  22. 根据权利要求21所述的方法,其中,
    所述第一pattern中的全上行时隙的个数等于所述m比特对应的十进制表示值加1;
    所述第二pattern中的全上行时隙的个数等于所述n比特对应的十进制表示值。
  23. 根据权利要求19或20所述的方法,其中,所述PSBCH中的所述第一指示信息指示pattern个数为2的情况下,所述方法还包括:
    所述终端设备根据以下方式确定所述m和所述n的值:
    如果P 1≤P 2
    Figure PCTCN2020083669-appb-100006
    若果P 1>P 2
    Figure PCTCN2020083669-appb-100007
    其中,P 1表示第一pattern的周期,单位为毫秒;P 2表示第二pattern的周期,单位为毫秒。
  24. 根据权利要求23所述的方法,其中,
    如果P 1×2 μ≤2 m,则所述第一pattern中的全上行时隙的个数为m比特对应的十进制表示值加1,如果P 1×2 μ>2 m,则所述第一pattern中的全上行时隙的个数为m比特对应的十进制表示值加1后乘以k1;或者,
    如果P 2×2 μ≤2 n,则所述第二pattern中的全上行时隙的个数为n比特对应的十进制表示值,如果P 2×2 μ>2 n,则所述第二pattern中的全上行时隙的个数为n比特对应的十进制表示值乘以k2;
    其中,k1是使得P 1×2 μ≤k1×2 m的最小整数,k2是使得P 2×2 μ≤k2×2 n的最小整数。
  25. 根据权利要求16所述的方法,其中,
    所述第三指示信息通过以下N比特{b 5,…,b 5+N-1}指示第一pattern和/或第二pattern内全上行时隙的个数;
    其中,N表示用于指示各个pattern内的全上行时隙的个数的比特总数。
  26. 根据权利要求25所述的方法,其中,所述RRC信令中的第一TDD配置指示的pattern个数为2的情况下,所述方法包括:
    所述终端设备根据以下方式确定所述PSBCH中的所述N比特的十进制表示值:
    Figure PCTCN2020083669-appb-100008
    其中,D表示PSBCH中N比特的十进制表示值,a表示第一pattern内全上行时隙的个数,b表示第二pattern中全上行时隙的个数,μ ref表示参考子载波间隔索引,μ PSBCH表示PSBCH所在BWP上配置或预配置的子载波间隔索引。
  27. 根据权利要求26所述的方法,其中,所述μ ref根据以下方式确定:
    在第一pattern和第二pattern的周期之和小于4ms,或不大于2.5ms的情况下,μ ref=μ PSBCH;或者,
    在第一pattern和第二pattern的周期之和为4ms或5ms的情况下,μ ref=min(μ PSBCH,2);或者,
    在第一pattern和第二pattern的周期之和为10ms的情况下,μ ref=min(μ PSBCH,1);或者,
    在第一pattern和第二pattern的周期之和为20ms的情况下,μ ref=0。
  28. 根据权利要求26所述的方法,其中,所述μ ref根据以下方式确定:
    在第一pattern和第二pattern的周期之和不大于5ms的情况下,μ ref=min(μ PSBCH,2);或者,
    在第一pattern和第二pattern的周期之和大于5ms的情况下,μ ref=0。
  29. 根据权利要求26所述的方法,其中,所述μ ref根据以下方式确定:
    μ ref=0。
  30. 根据权利要求1至29中任一项所述的方法,其中,所述第一周期为一个系统帧计数SFN周期或者一个直接帧计数DFN周期。
  31. 一种时域资源的确定装置,应用于终端设备,所述装置包括:
    确定单元,用于根据RRC信令中的第一TDD配置或者PSBCH中的第二TDD配置,确定第一周期内的第一时隙集合;
    选取单元,用于根据第一比特位图从所述第一时隙集合中选取部分时隙,所述部分时隙组成 资源池的时域资源。
  32. 根据权利要求31所述的装置,其中,所述确定单元,用于确定第一周期内的第一时隙集合为:
    Figure PCTCN2020083669-appb-100009
    其中,
    Figure PCTCN2020083669-appb-100010
    所述M的取值为所述第一周期内包含的子帧个数,所述μ的取值基于部分带宽BWP上的子载波间隔确定。
  33. 根据权利要求32所述的装置,其中,所述终端设备为基站覆盖范围内的终端设备的情况下,所述第一时隙集合中包含所述第一周期中除以下时隙以外的所有时隙:
    第一类时隙,所述第一类时隙是指被配置为S-SSB资源的时隙;
    第二类时隙,所述第二类时隙是指所述RRC信令中的第一TDD配置指示的上行符号数少于N的时隙,N为正整数;
    第三类时隙,所述第三类时隙是指第一上行时隙集合中除第二上行时隙集合以外的全上行时隙,所述第一上行时隙集合是指所述RRC信令中的第一TDD配置指示的上行时隙集合,所述第二上行时隙集合是指所述PSBCH中的第二TDD配置指示的上行时隙集合;
    第四类时隙,所述第四类时隙是指保留时隙。
  34. 根据权利要求33所述的装置,其中,所述第二类时隙是指所述RRC信令中的第一TDD配置指示的上行符号数少于N的时隙,包括:
    在正常CP长度的情况下,所述第二类时隙是指所述RRC信令中的第一TDD配置指示的上行符号数少于14的时隙;或者,
    在扩展CP长度的情形下,所述第二类时隙是指所述RRC信令中的第一TDD配置指示的上行符号数少于12的时隙。
  35. 根据权利要求32所述的装置,其中,所述终端设备为基站覆盖范围内的终端设备的情况下,所述第一时隙集合中包含所述第一周期中的第二上行时隙集合中除以下时隙以外的所有时隙,所述第二上行时隙集合是指所述PSBCH中的第二TDD配置指示的上行时隙集合:
    第一类时隙,所述第一类时隙是指被配置为S-SSB资源的时隙;
    第四类时隙,所述第四类时隙是指保留时隙。
  36. 根据权利要求33至35中任一项所述的装置,其中,所述确定单元,还用于确定当前用于侧行通信的载波允许PSBCH发送,或所述资源池用于基站覆盖范围内的终端设备和基站覆盖范围外的终端设备之间的侧行通信。
  37. 根据权利要求32所述的装置,其中,所述终端设备为基站覆盖范围内的终端设备的情况下,所述第一时隙集合中包含所述第一周期中除以下时隙以外的所有时隙:
    第一类时隙,所述第一类时隙是指被配置为S-SSB资源的时隙;
    第五类时隙,所述第五类时隙是指从符号X开始的连续Y个符号不全是上行符号的时隙,X和Y为正整数;
    第四类时隙,所述第四类时隙是指保留时隙。
  38. 根据权利要求37所述的装置,其中,
    所述X和所述Y的值基于RRC配置参数确定;或者,
    所述X和所述Y的值基于预配置参数确定。
  39. 根据权利要求37或38所述的装置,其中,所述确定单元,还用于确定当前用于侧行通信的载波不允许PSBCH发送,或所述资源池不用于基站覆盖范围内的终端设备和基站覆盖范围外的终端设备之间的侧行通信。
  40. 根据权利要求32所述的装置,其中,所述终端设备为基站覆盖范围外的终端设备的情况下,所述第一时隙集合中包含所述第一周期中的第二上行时隙集合中除以下时隙以外的所有时隙,所述第二上行时隙集合是指所述PSBCH中的第二TDD配置指示的上行时隙集合:
    第一类时隙,所述第一类时隙是指被配置为S-SSB资源的时隙;
    第四类时隙,所述第四类时隙是指保留时隙。
  41. 根据权利要求37至40中任一项所述的装置,其中,
    所述终端设备期望所述RRC信令中的第一TDD配置指示的第一上行时隙集合和所述PSBCH中的第二TDD配置指示的第二上行时隙集合相同;或者,
    所述终端设备期望所述RRC信令中的第一TDD配置指示的第一上行时隙集合能够被所述PSBCH指示。
  42. 根据权利要求31至41中任一项所述的装置,其中,
    所述确定单元,还用于基于统计周期内可用于侧行通信的时隙个数,确定预留资源间隔;
    所述装置还包括:指示单元,用于通过SCI指示所述预留资源间隔。
  43. 根据权利要求42所述的装置,其中,所述确定单元,用于根据以下方式确定预留资源间隔:
    Figure PCTCN2020083669-appb-100011
    其中,P′ rsvp_TX表示以时隙为单位的资源预留间隔,P rsvp_TX表示以毫秒为单位的绝对资源预留周期,T表示统计周期,P step表示统计周期内可用于侧行通信的时隙个数。
  44. 根据权利要求42所述的装置,其中,所述确定单元,用于根据以下方式确定预留资源间隔:
    P′ rsvp_TX=n×l;
    其中,P′ rsvp_TX表示资源预留间隔,l表示用所述第一比特位图的长度,n为使得n×l最接近
    Figure PCTCN2020083669-appb-100012
    的正整数,P rsvp_TX表示绝对资源预留周期,T表示统计周期,P step表示统计周期内可用于侧行通信的时隙个数。
  45. 根据权利要求31至44中任一项所述的装置,其中,所述终端设备为基站覆盖范围内的终端设备的情况下,
    所述确定单元,还用于根据所述RRC信令中的第一TDD配置确定所述PSBCH中的第二TDD配置;
    所述装置还包括:发送单元,用于发送所述PSBCH,其中,所述PSBCH携带所述第二TDD配置。
  46. 根据权利要求45所述的装置,其中,所述第二TDD配置包括以下至少之一:
    第一指示信息,所述第一指示信息用于指示pattern个数;
    第二指示信息,所述第二指示信息用于指示pattern的周期;
    第三指示信息,所述第三指示信息用于指示第一pattern和/或第二pattern内全上行时隙的个数。
  47. 根据权利要求46所述的装置,其中,
    所述第三指示信息通过以下m比特{b 5,…,b 5+m-1}指示第一pattern内全上行时隙的个数;通过以下n比特表示{b 5+m,…,b 5+m+n-1}指示第二pattern内全上行时隙的个数;
    其中,m+n=N,N表示用于指示各个pattern内的全上行时隙的个数的比特总数。
  48. 根据权利要求47所述的装置,其中,所述RRC信令中的第一TDD配置指示的pattern个数为2,且第一pattern和第二pattern的周期不全为10ms的情况下,
    若所述第一pattern内没有全上行时隙,或所述第二pattern内的时隙全部为全上行时隙,则所述PSBCH中的所述第一指示信息指示pattern个数为1,且所述第二指示信息指示所述第一pattern和所述第二pattern的周期之和。
  49. 根据权利要求47所述的装置,其中,所述RRC信令中的第一TDD配置指示的pattern个数为2,且第一pattern和第二pattern中的至少一个pattern的周期为10ms的情况下,
    所述PSBCH中的所述第一指示信息指示pattern个数为2。
  50. 根据权利要求47所述的装置,其中,所述RRC信令中的第一TDD配置指示的pattern个数为2,且第一pattern中至少有一个全上行时隙,且第二pattern中的时隙不全为全上行时隙的情况下,
    所述PSBCH中的所述第一指示信息指示pattern个数为2。
  51. 根据权利要求49或50所述的装置,其中,所述PSBCH中的所述第一指示信息指示pattern个数为2的情况下,
    所述确定单元,还用于根据以下方式确定所述m和所述n的值:
    Figure PCTCN2020083669-appb-100013
    其中,P 1表示第一pattern的周期,单位为毫秒。
  52. 根据权利要求51所述的装置,其中,
    所述第一pattern中的全上行时隙的个数等于所述m比特对应的十进制表示值加1;
    所述第二pattern中的全上行时隙的个数等于所述n比特对应的十进制表示值。
  53. 根据权利要求49或50所述的装置,其中,所述PSBCH中的所述第一指示信息指示pattern 个数为2的情况下,
    所述确定单元,还用于根据以下方式确定所述m和所述n的值:
    如果P 1≤P 2
    Figure PCTCN2020083669-appb-100014
    若果P 1>P 2
    Figure PCTCN2020083669-appb-100015
    其中,P 1表示第一pattern的周期,单位为毫秒;P 2表示第二pattern的周期,单位为毫秒。
  54. 根据权利要求53所述的装置,其中,
    如果P 1×2 μ≤2 m,则所述第一pattern中的全上行时隙的个数为m比特对应的十进制表示值加1,如果P 1×2 μ>2 m,则所述第一pattern中的全上行时隙的个数为m比特对应的十进制表示值加1后乘以k1;或者,
    如果P 2×2 μ≤2 n,则所述第二pattern中的全上行时隙的个数为n比特对应的十进制表示值,如果P 2×2 μ>2 n,则所述第二pattern中的全上行时隙的个数为n比特对应的十进制表示值乘以k2;
    其中,k1是使得P 1×2 μ≤k1×2 m的最小整数,k2是使得P 2×2 μ≤k2×2 n的最小整数。
  55. 根据权利要求46所述的装置,其中,
    所述第三指示信息通过以下N比特{b 5,…,b 5+N-1}指示第一pattern和/或第二pattern内全上行时隙的个数;
    其中,N表示用于指示各个pattern内的全上行时隙的个数的比特总数。
  56. 根据权利要求55所述的装置,其中,所述RRC信令中的第一TDD配置指示的pattern个数为2的情况下,
    所述确定单元,还用于根据以下方式确定所述PSBCH中的所述N比特的十进制表示值:
    Figure PCTCN2020083669-appb-100016
    其中,D表示PSBCH中N比特的十进制表示值,a表示第一pattern内全上行时隙的个数,b表示第二pattern中全上行时隙的个数,μ ref表示参考子载波间隔索引,μ PSBCH表示PSBCH所在BWP上配置或预配置的子载波间隔索引。
  57. 根据权利要求56所述的装置,其中,所述μ ref根据以下方式确定:
    在第一pattern和第二pattern的周期之和小于4ms,或不大于2.5ms的情况下,μ ref=μ PSBCH;或者,
    在第一pattern和第二pattern的周期之和为4ms或5ms的情况下,μ ref=min(μ PSBCH,2);或者,
    在第一pattern和第二pattern的周期之和为10ms的情况下,μ ref=min(μ PSBCH,1);或者,
    在第一pattern和第二pattern的周期之和为20ms的情况下,μ ref=0。
  58. 根据权利要求56所述的装置,其中,所述μ ref根据以下方式确定:
    在第一pattern和第二pattern的周期之和不大于5ms的情况下,μ ref=min(μ PSBCH,2);或者,
    在第一pattern和第二pattern的周期之和大于5ms的情况下,μ ref=0。
  59. 根据权利要求56所述的装置,其中,所述μ ref根据以下方式确定:
    μ ref=0。
  60. 根据权利要求31至59中任一项所述的装置,其中,所述第一周期为一个SFN周期或者一个DFN周期。
  61. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至30中任一项所述的方法。
  62. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至30中任一项所述的方法。
  63. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至30中任一项所述的方法。
  64. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至30中任一项所述的方法。
  65. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至30中任一项所述的方法。
PCT/CN2020/083669 2020-04-08 2020-04-08 一种时域资源的确定方法及装置、终端设备 WO2021203270A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
FIEP20930193.6T FI4048008T3 (fi) 2020-04-08 2020-04-08 Aika-alueen resurssin määritysmenetelmä ja -laitteisto
PCT/CN2020/083669 WO2021203270A1 (zh) 2020-04-08 2020-04-08 一种时域资源的确定方法及装置、终端设备
EP23203124.5A EP4284115A3 (en) 2020-04-08 2020-04-08 Time-domain resource determination method and apparatus
CN202210814268.3A CN115278885B (zh) 2020-04-08 2020-04-08 一种时域资源的确定方法及装置、终端设备
ES20930193T ES2967606T3 (es) 2020-04-08 2020-04-08 Método y aparato de determinación de recursos en el domino del tiempo
CN202080077029.3A CN114642059A (zh) 2020-04-08 2020-04-08 一种时域资源的确定方法及装置、终端设备
BR112022016348A BR112022016348A2 (pt) 2020-04-08 2020-04-08 Método para determinar um recurso de domínio de tempo, aparelho para determinar um recurso de domínio de tempo, aplicado a um dispositivo terminal e mídia de armazenamento legível por computador
CN202311787637.5A CN117729635A (zh) 2020-04-08 2020-04-08 一种时域资源的确定方法及装置、终端设备
EP20930193.6A EP4048008B1 (en) 2020-04-08 2020-04-08 Time-domain resource determination method and apparatus
JP2022552897A JP7476334B2 (ja) 2020-04-08 2020-04-08 時間領域リソースの決定方法及びその装置、端末機器
KR1020227037381A KR20220164523A (ko) 2020-04-08 2020-04-08 시간 도메인 자원의 결정 방법 및 장치, 단말 기기
US17/746,519 US20220286265A1 (en) 2020-04-08 2022-05-17 Time-domain resource determination method and apparatus, and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/083669 WO2021203270A1 (zh) 2020-04-08 2020-04-08 一种时域资源的确定方法及装置、终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/746,519 Continuation US20220286265A1 (en) 2020-04-08 2022-05-17 Time-domain resource determination method and apparatus, and terminal device

Publications (1)

Publication Number Publication Date
WO2021203270A1 true WO2021203270A1 (zh) 2021-10-14

Family

ID=78023796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083669 WO2021203270A1 (zh) 2020-04-08 2020-04-08 一种时域资源的确定方法及装置、终端设备

Country Status (9)

Country Link
US (1) US20220286265A1 (zh)
EP (2) EP4048008B1 (zh)
JP (1) JP7476334B2 (zh)
KR (1) KR20220164523A (zh)
CN (3) CN114642059A (zh)
BR (1) BR112022016348A2 (zh)
ES (1) ES2967606T3 (zh)
FI (1) FI4048008T3 (zh)
WO (1) WO2021203270A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11659552B2 (en) * 2019-09-27 2023-05-23 Qualcomm Incorporated Time division duplex (TDD) slot format configuration indication for sidelink communications
TWI809372B (zh) * 2020-04-10 2023-07-21 新加坡商聯發科技(新加坡)私人有限公司 側鏈路時隙配置方法與裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992331A (zh) * 2015-01-29 2016-10-05 中兴通讯股份有限公司 通信处理方法、装置及用户设备
CN107852685A (zh) * 2015-07-08 2018-03-27 Lg电子株式会社 在无线通信系统中发送/接收装置对装置通信终端的同步信号的方法和装置
US20190020440A1 (en) * 2017-07-12 2019-01-17 Qualcomm Incorporated User equipment capability discovery in distributed wireless networks
CN110024459A (zh) * 2016-09-30 2019-07-16 创新技术实验室株式会社 用于确定资源池的方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11304165B2 (en) * 2017-11-16 2022-04-12 Lg Electronics Inc. Method and apparatus for performing sidelink communication in wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992331A (zh) * 2015-01-29 2016-10-05 中兴通讯股份有限公司 通信处理方法、装置及用户设备
CN107852685A (zh) * 2015-07-08 2018-03-27 Lg电子株式会社 在无线通信系统中发送/接收装置对装置通信终端的同步信号的方法和装置
CN110024459A (zh) * 2016-09-30 2019-07-16 创新技术实验室株式会社 用于确定资源池的方法和装置
US20190020440A1 (en) * 2017-07-12 2019-01-17 Qualcomm Incorporated User equipment capability discovery in distributed wireless networks

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Remaining details on resource pool determination", 3GPP DRAFT; R1-2001015, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200224 - 20200306, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051853139 *
OPPO: "Draft text proposals on physical layer structure for NR-V2X", 3GPP DRAFT; R1-2000489, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200224 - 20200306, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051852888 *

Also Published As

Publication number Publication date
EP4284115A3 (en) 2024-01-17
JP7476334B2 (ja) 2024-04-30
EP4048008A4 (en) 2022-11-16
CN114642059A (zh) 2022-06-17
BR112022016348A2 (pt) 2022-11-29
FI4048008T3 (fi) 2023-12-13
US20220286265A1 (en) 2022-09-08
EP4048008B1 (en) 2023-11-15
ES2967606T3 (es) 2024-05-03
KR20220164523A (ko) 2022-12-13
CN115278885A (zh) 2022-11-01
JP2023527618A (ja) 2023-06-30
EP4284115A2 (en) 2023-11-29
CN115278885B (zh) 2024-01-09
EP4048008A1 (en) 2022-08-24
CN117729635A (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
WO2020143057A1 (zh) 信道接入方案的确定方法及装置、终端设备、网络设备
WO2020082304A1 (zh) 切换资源池的方法、终端设备和通信设备
US20220210835A1 (en) Method and apparatus for determining cyclic prefix extension and user equipment
CN114270917B (zh) 一种drx配置方法及装置、终端设备、网络设备
JP7465289B2 (ja) 制御情報の伝送方法、端末装置及びネットワーク装置
WO2020051774A1 (zh) 通信方法、终端设备和网络设备
WO2020191636A1 (zh) 通信方法、终端设备和网络设备
WO2020056696A1 (zh) 一种资源分配方法及装置、终端
WO2020062068A1 (zh) 无线通信方法、终端设备和网络设备
US20220286265A1 (en) Time-domain resource determination method and apparatus, and terminal device
WO2021159257A1 (zh) 一种信息配置方法及装置、终端
WO2020227995A1 (zh) 一种d2d系统中的通信方法及终端设备、网络设备
WO2020220358A1 (zh) 一种用于非授权频谱的功率调整方法及装置
WO2021109461A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021088262A1 (zh) 确定时隙格式的方法及装置
EP3902351B1 (en) Resource indication method, terminal device, and network device
WO2021035557A1 (zh) 一种资源配置方法及装置、终端设备、网络设备
WO2020061776A9 (zh) 一种反馈资源的复用方法、终端设备及网络设备
WO2021159281A1 (zh) 一种时域资源的确定方法及装置、终端设备
WO2021000239A1 (zh) 无线通信方法、网络设备和终端设备
WO2020206622A1 (zh) 无线通信的方法和设备
WO2020087311A1 (zh) 一种数据传输方法及装置、网络设备、终端
WO2020024250A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020019188A1 (zh) 一种信号传输方法及装置、网络设备、终端设备
TW202008817A (zh) 一種訊號傳輸方法及適用該方法的裝置、終端設備及網路設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020930193

Country of ref document: EP

Effective date: 20220519

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022016348

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022552897

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227037381

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022016348

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220817