WO2024014880A1 - 배터리 관리 장치 및 방법 - Google Patents

배터리 관리 장치 및 방법 Download PDF

Info

Publication number
WO2024014880A1
WO2024014880A1 PCT/KR2023/009970 KR2023009970W WO2024014880A1 WO 2024014880 A1 WO2024014880 A1 WO 2024014880A1 KR 2023009970 W KR2023009970 W KR 2023009970W WO 2024014880 A1 WO2024014880 A1 WO 2024014880A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
voltage
overvoltage
detection signal
reference voltage
Prior art date
Application number
PCT/KR2023/009970
Other languages
English (en)
French (fr)
Inventor
김준영
김동현
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202380013723.2A priority Critical patent/CN117980759A/zh
Priority to JP2024517544A priority patent/JP2024535316A/ja
Priority to EP23839971.1A priority patent/EP4394414A1/en
Publication of WO2024014880A1 publication Critical patent/WO2024014880A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0038Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0084Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0038Circuits for comparing several input signals and for indicating the result of this comparison, e.g. equal, different, greater, smaller (comparing pulses or pulse trains according to amplitude)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16576Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing DC or AC voltage with one threshold
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/1659Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 to indicate that the value is within or outside a predetermined range of values (window)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/30Measuring the maximum or the minimum value of current or voltage reached in a time interval
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery management system, particularly a battery management system capable of preventing diagnostic defects due to measurement errors in the BMIC (battery monitoring IC) and MCU (Main Control Unit) of the battery management system. It relates to devices and methods. Furthermore, when applying an overvoltage detection IC to prevent this, errors may occur in the diagnosis of the conventional overvoltage detection IC.
  • the present invention relates to a battery management device and method for preventing diagnosis errors in the conventional overvoltage detection IC. will be.
  • Batteries Secondary batteries that can be charged and discharged, that is, batteries, are widely used as an energy source for mobile devices such as smartphones.
  • batteries are also used as an energy source for eco-friendly vehicles such as electric vehicles and hybrid electric vehicles, which are proposed as a solution to air pollution caused by gasoline vehicles and diesel vehicles that use fossil fuels.
  • eco-friendly vehicles such as electric vehicles and hybrid electric vehicles, which are proposed as a solution to air pollution caused by gasoline vehicles and diesel vehicles that use fossil fuels.
  • the types of applications that use batteries are becoming very diverse, and in the future, batteries are expected to be applied to more fields and products than now.
  • lithium-ion batteries have little memory effect compared to nickel-based batteries, so they can be freely charged and discharged. , it is in the spotlight for its very low self-discharge rate and high energy density.
  • lithium-ion batteries can be manufactured in small sizes, so they are used as a power source for mobile devices, and their range of use has expanded to a power source for electric vehicles, attracting attention as a next-generation energy storage medium.
  • BMS battery management system
  • the BMS monitors the status of the battery, such as temperature, voltage, and current, and can control battery balancing and charging or discharging through SOC (State Of Charge) estimation based on the monitored battery status.
  • This BMS may include a battery monitoring IC (BMIC) for monitoring the state of the battery and generating a diagnostic signal, and a main control unit (MCU) for controlling the battery according to the state of the battery.
  • BMIC battery monitoring IC
  • MCU main control unit
  • the BMIC generates a diagnostic signal from status information such as voltage, current, and temperature measured for the battery and transmits it to the MCU.
  • the MCU can receive a diagnostic signal from the BMIC, determine the state of the battery, and control the battery according to the judgment result according to the state of the battery.
  • the battery management device may not be able to diagnose, for example, overvoltage of the battery due to a measurement error in the MCU or BMIC, and in this situation, the overvoltage A detection unit is provided.
  • the overvoltage detection unit receives the battery voltage monitoring results and detects whether the battery voltage is overvoltage exceeding the set voltage.
  • one overvoltage detection unit may be provided in the battery management device. That is, conventionally, an overvoltage detection unit is provided within the BMS to detect whether the voltage monitoring result of the battery is an overvoltage exceeding the set voltage and to maintain the battery in a safe state through the MCU.
  • a problem of false detection may occur due to a failure of the overvoltage detection unit or a failure of a circuit surrounding the overvoltage detection unit.
  • a problem in which the overvoltage detection unit cannot properly detect the overvoltage may occur due to a failure of the overvoltage detection unit itself or a failure of the circuit surrounding the overvoltage detection unit. If the overvoltage cannot be properly detected due to a failure of one overvoltage detection unit, problems such as the inability to control the battery and the inability to use the battery may occur.
  • JP 2011-002350 A (2011. 1. 6)
  • the present invention provides a battery management device and method that can prevent false detection by an overvoltage detection unit.
  • the present invention provides a battery management device and method that can prevent erroneous detection of overvoltage by detecting the battery voltage by having at least two overvoltage detectors with different reference voltages.
  • a battery management device includes a Battery Monitoring Integrated Circuit (BMIC) that diagnoses the state of a battery; a first overvoltage detector that compares the battery voltage with a first reference voltage and generates a first detection signal; a second overvoltage detector that generates a second detection signal by comparing the battery voltage with a second reference voltage that is different from the first reference voltage; and an MCU (Micro Controller Unit) that controls the battery according to the diagnostic signal from the BMIC and diagnoses an abnormality in the device according to the first and second detection signals.
  • BMIC Battery Monitoring Integrated Circuit
  • the first reference voltage is lower than the second reference voltage.
  • the first overvoltage detection unit generates the first detection signal when the battery voltage is higher than the first reference voltage
  • the second overvoltage detection unit generates the first detection signal when the battery voltage is higher than the first reference voltage. generate a signal.
  • the MCU determines that the BMIC, the first and second overvoltage detection units, and its peripheral circuits are operating normally.
  • the MCU compares the maximum voltage of the battery and the second reference voltage.
  • the MCU determines normal operation of the second overvoltage detector, and if the maximum voltage of the battery is lower than the second reference voltage, the battery of the BMIC or MCU It is determined that there is a voltage measurement error or an abnormality in the second overvoltage detection unit.
  • the MCU determines an error in at least one of the first and second overvoltage detectors according to the first detection signal.
  • a battery management method includes a process of measuring the state of the battery and a process of comparing the measured voltage value of the battery with the first and second reference voltages of the first and second overvoltage detectors, respectively. and, a process of determining whether a second detection signal is generated from the second overvoltage detector because the second reference voltage is higher than the battery measurement voltage, and a process of determining normal operation if the second detection signal is not generated;
  • a second detection signal is generated, comparing the maximum voltage of the battery and the second reference voltage, and if the maximum voltage of the battery is higher than the second reference voltage, determining that the second overvoltage detection unit is operating normally; , if the maximum voltage of the battery is lower than the second reference voltage, determining that there is a battery voltage measurement error or an abnormality in the second overvoltage detection unit.
  • the first reference voltage is lower than the second reference voltage.
  • a battery management device includes first and second overvoltage detectors having different first and second reference voltages between the BMCI and the MCU.
  • the first and second overvoltage detectors compare the measured voltage of the battery with the first and second reference voltages, respectively, and output first and second detection signals to the MCU, respectively.
  • the MCU can use the first and second detection signals to diagnose abnormalities in the BMIC, the first and second overvoltage detectors, and their surrounding circuits. That is, when the second detection signal is generated, the MCU can diagnose a measurement error in the BMIC or MCU by comparing the voltage of the battery input from the BMIC and the second reference voltage. Additionally, when the second detection signal is generated, the MCU may diagnose an error in at least one of the first and second overvoltage detectors depending on whether the first detection signal is generated.
  • the present invention can prevent false detection problems caused by failure of the overvoltage detection unit or failure of circuits around the overvoltage detection unit.
  • the present invention can prevent false detection problems caused by failure of the overvoltage detection unit or failure of circuits around the overvoltage detection unit.
  • two overvoltage detection units with different reference voltages it is possible to prevent the problem of the overvoltage detection unit failing to properly detect the overvoltage due to failure of the overvoltage detection unit itself or failure of circuitry around the overvoltage detection unit.
  • FIG. 1 is a block diagram for explaining the configuration of a battery management device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram for explaining the configuration of an MCU of a battery management device according to an embodiment of the present invention.
  • FIG. 3 is a flowchart for explaining a method of driving a battery management device according to an embodiment of the present invention.
  • Figure 1 is a block diagram for explaining the configuration of a battery device according to an embodiment of the present invention. That is, Figure 1 is a block diagram of a battery device including a battery and a battery management device. Additionally, Figure 2 is a block diagram for explaining the configuration of an MCU of a battery management system according to an embodiment of the present invention.
  • a battery device includes a battery 100 including a plurality of battery cells capable of charging and discharging, and a monitoring unit 200 that monitors the state of the battery 100. , a battery monitoring IC (BMIC) 300 that diagnoses the state of the battery 100 according to the monitoring results of the battery 100, and a first reference voltage and a voltage of the battery 100 from the monitoring unit 200.
  • BMIC battery monitoring IC
  • a first overvoltage detector 400 that compares the voltage to the first reference voltage
  • a second overvoltage detector that has a second reference voltage different from the first reference voltage and compares the voltage of the battery 100 from the monitoring unit 200 with the second reference voltage.
  • the overvoltage detection unit 500 and the BMIC 300 Signals are exchanged through communication with the overvoltage detection unit 500 and the BMIC 300, and detection signals are received from the first and second overvoltage detection units 400 and 500 to detect the battery 100 according to the state of the battery 100.
  • It may include an MCU 600 for control.
  • the monitoring unit 200, BMIC 300, first and second overvoltage detection units 400 and 500, and MCU 600 form a battery management device.
  • the battery device including the battery and battery management device according to the present invention will be described in more detail for each component as follows.
  • the battery 100 is an electrical energy source that provides energy to a power consuming device to drive the power consuming device.
  • power consuming devices may include mobile devices such as smartphones and transportation means such as electric scooters, electric vehicles, and hybrid electric vehicles.
  • Battery 100 may include at least one battery pack.
  • at least one battery pack may each include a plurality of battery modules, and the battery modules may include a plurality of battery cells that can be charged and discharged. That is, the battery 100 includes a plurality of battery cells, and the plurality of battery cells can be grouped into a predetermined unit to form a battery module, and the plurality of battery modules can form one battery pack.
  • a plurality of battery cells may be connected in series and/or parallel in various ways to meet the specifications of the power consumption device.
  • a plurality of battery packs each including a plurality of battery cells may also be connected in series and/or parallel.
  • the type of battery cell is not particularly limited, and may include, for example, a lithium ion battery, a lithium polymer battery, a nickel cadmium battery, a nickel hydrogen battery, or a nickel zinc battery.
  • the monitoring unit 200 may be provided to monitor the state of the battery 100.
  • the monitoring unit 200 may measure the current, voltage, temperature, etc. of the battery 100.
  • the monitoring unit 200 can measure the status of the battery pack, battery module, and battery cell. That is, the monitoring unit 200 may measure the state of each of a plurality of battery cells, measure the state of a battery module in which a plurality of battery cells are bundled, and measure the state of a battery pack in which a plurality of battery modules are bundled. It may be possible.
  • the monitoring unit 200 may include a plurality of sensors. That is, the monitoring unit 200 may include at least one current sensor, at least one voltage sensor, and at least one temperature sensor.
  • the current sensor, voltage sensor, and temperature sensor may periodically measure the current, voltage, and temperature of the battery 100 and provide the measurement results to the BMIC 300. Measurement results may be provided to the BMIC 300 as analog signals or digital signals.
  • the current sensor can generate a signal corresponding to the magnitude of the charging current.
  • the current sensor can measure not only the charging current but also the magnitude of the discharging current.
  • the current sensor may be installed, for example, on a charge/discharge path in the battery 100, which is a path through which charge/discharge current flows.
  • the current sensor according to the present invention may include a shunt resistor. Additionally, the voltage sensor generates a signal corresponding to the voltage applied between the anode and cathode of the battery 100.
  • the voltage sensor may include a differential amplification circuit that outputs a voltage signal corresponding to the voltage difference between the positive and negative terminals of the battery 100.
  • the temperature sensor may be a thermal coupler, for example, used to measure temperature. The temperature sensor generates a signal corresponding to the temperature of the battery 100.
  • the temperature sensor may further include an external temperature sensor that measures the external temperature at which heat is radiated from the battery 100 in addition to the temperature sensor that measures the temperature of the battery 100.
  • the external temperature sensor may be composed of the same sensors as the temperature sensor and generates a signal corresponding to the external temperature.
  • the monitoring unit 200 may be connected to the first and second overvoltage detection units 400 and 500 and provide voltage measurement results to the first and second overvoltage detection units 400 and 500. That is, the voltage of the battery 100 measured from the voltage sensor is provided to the first and second overvoltage detection units 400 and 500, and can be used to detect the overvoltage of the first and second overvoltage detection units 400 and 500.
  • the BMIC 300 inputs the battery status signal measured by the monitoring unit 200, generates a diagnostic signal from the measured status information, and transmits it to the MCU 600.
  • the BMIC 300 may compare the battery voltage measured by the monitoring unit 200 with a set voltage range and generate a diagnostic signal according to the comparison result.
  • the BMIC (300) compares the battery voltage with the set voltage range and generates diagnostic signals of different levels in the case of abnormal voltage outside the set voltage range and in the case of normal voltage. It can be transmitted to the MCU (600).
  • an abnormal current can be determined by determining whether it is within or outside the set current range and a diagnostic signal can be generated accordingly.
  • the BMIC (300) and the MCU (600) may be connected through a predetermined communication line. Accordingly, the diagnostic signal can be transmitted from the output terminal of the BMIC (300) to the input terminal of the MCU (600) through a communication line. Meanwhile, the BMIC 300 can control the battery 100 according to a control signal transmitted from the MCU 600. For example, the BMIC 300 may discharge a balancing target cell among a plurality of battery cells through a cell balancing circuit according to a cell balancing signal transmitted from the MCU 600. To this end, the BMIC 300 may generate a plurality of switching signals according to the cell balancing signal of the MCU 600.
  • a plurality of battery cells may be connected to switches, and each switching signal may control the switching operation of the corresponding switch.
  • the switch When an on-level switching signal is supplied to the corresponding switch, the switch is turned on and the corresponding battery cell is discharged.
  • the BMIC 300 and the MCU 600 can be connected through a communication line to input and output certain data or signals. That is, an output unit for outputting status signals such as BMIC 300 diagnostic signals to the MCU 600 through a communication line, and an input unit for inputting signals such as a cell balancing signal from the BMIC 300 through a communication line.
  • a communication department including:
  • the first overvoltage detection unit 400 is connected to the monitoring unit 200 and receives the voltage measurement value of the battery 100 from the monitoring unit 200. That is, the first overvoltage detection unit 400 receives the voltage measurement value of the battery 100 from the voltage sensor of the monitoring unit 200.
  • the first overvoltage detector 400 compares the voltage of the battery 100 with the first reference voltage.
  • the first reference voltage of the first overvoltage detection unit 400 may be set to a fault level lower than the second reference voltage of the second overvoltage detection unit 500. Accordingly, the first overvoltage detection unit 400 serves to check whether the second overvoltage detection unit 500 has detected the voltage of the battery 100 in a normal state.
  • the first overvoltage detector 400 outputs first detection signals of different levels according to a comparison result between the first reference voltage and the voltage of the battery 100. For example, the first overvoltage detection unit 400 outputs a low level first detection signal when the voltage of the battery 100 is lower than the first reference voltage, and the first overvoltage detection unit 400 outputs a low level first detection signal when the voltage of the battery 100 is lower than the first reference voltage. If it is higher than the voltage, a high level first detection signal is output.
  • the first detection signal from the first overvoltage detector 400 is transmitted to the MCU (600). This first overvoltage detection unit 400 may be provided in case overvoltage detection is not possible due to a diagnosis error in the BMIC 300.
  • the second overvoltage detection unit 500 is connected to the monitoring unit 200 and receives the voltage measurement value of the battery 100 from the monitoring unit 200. That is, the second overvoltage detection unit 500 receives the voltage measurement value of the battery 100 from the voltage sensor of the monitoring unit 200 at the same time as the first overvoltage detection unit 400.
  • the second overvoltage detector 500 compares the voltage of the battery 100 with the second reference voltage using the second reference voltage.
  • the second reference voltage of the second overvoltage detection unit 500 may be set to a fail level that is greater than the first reference voltage of the first overvoltage detection unit 400. That is, the second overvoltage detector 500 actually has a reference voltage for entering the safe state.
  • the second overvoltage detector 500 outputs second detection signals of different levels according to the comparison result between the second reference voltage and the voltage of the battery 100. For example, the second overvoltage detector 500 outputs a low level second detection signal when the voltage of the battery 100 is lower than the second reference voltage, and the second overvoltage detector 500 outputs a low level second detection signal when the voltage of the battery 100 is lower than the second reference voltage. If it is higher than the voltage, a high level second detection signal is output.
  • the second detection signal from the second overvoltage detector 500 is transmitted to the MCU (600).
  • This second overvoltage detection unit 500 may be provided together with the first overvoltage detection unit 400 according to the present invention in case overvoltage detection is impossible due to a diagnosis error in the BMIC 300.
  • the MCU 600 may receive a diagnostic signal from the BMIC 300, monitor the state of the battery 100, and control the battery 100 according to the state of the battery 100. For example, when a diagnostic signal for battery voltage or current abnormality is input from the BMIC 300, the MCU 600 can stop the operation of the battery using functions such as communication off.
  • the MCU 600 may include an abnormality diagnosis unit 610. That is, when the voltage of the battery 100 is outside the set voltage range or the current of the battery 100 is outside the set current range, according to the abnormality diagnosis signal generated, the fault diagnosis unit 610 of the MCU 600 determines the battery ( 100) operation can be stopped.
  • the MCU 600 can control battery operations, such as charging and discharging the battery or cell balancing, according to the diagnostic signal from the BMIC 300.
  • the MCU 600 may include a battery control unit 620. That is, when the battery voltage is within the set voltage range or the battery current is within the set current range, the battery control unit 620 of the MCU 600 may stop the operation of the battery according to a normal diagnosis signal. At this time, the MCU 600 can control charging of the battery through the battery control unit 620 when the voltage or current of the battery is low, and control discharging of the battery when the voltage or current is stable. Additionally, the MCU 600 may control cell balancing when at least one battery cell is higher than a set voltage or current through the battery control unit 620.
  • the MCU 600 can control cell balancing through the BMIC 300 by outputting a balancing control signal to the BMIC 300.
  • the MCU 600 may be connected to the BMIC 300 through a predetermined communication line. That is, the MCU 600 has an input unit for inputting status signals such as diagnostic signals from the BMIC 300 through a communication line, and an output unit for outputting signals such as a cell balancing signal to the BMIC 300 through a communication line.
  • a communication unit including (TX) may be provided.
  • the MCU 600 detects not only the voltage of the battery 100 diagnosed from the BMIC 300 but also the first and second detection signals from the first and second overvoltage detectors 400 and 500. Enter each. That is, the MCU 600 may include first and second detection signal input units 630 and 640 for inputting the first and second detection signals from the first and second overvoltage detection units 400 and 500, respectively. . The MCU 600 can use the first and second detection signals to diagnose abnormalities in the BMIC 300, the first and second overvoltage detection units 400 and 500, and their surrounding circuits. For this purpose, the MCU 600 may include a comparison judgment unit 650.
  • the comparison and judgment unit 650 detects the first and second detection signals of the first and second overvoltage detection units 400 and 500, respectively. 2
  • abnormalities in the BMIC (300), the first and second overvoltage detection units (400, 500), and their surrounding circuits can be diagnosed. That is, the MCU 600 receives input from the BMIC 300 through the abnormality diagnosis unit 610 when the second detection signal is generated from the second overvoltage detection unit 500, that is, when the second detection signal is input at a high level.
  • a measurement error in the BMIC 300 or MCU 600 can be diagnosed by comparing the voltage of the battery 100 and the second reference voltage of the second overvoltage detector 500.
  • the MCU 600 detects the first and second overvoltage detection units 400 according to the first detection signal from the first overvoltage detection unit 400. , 500), at least one error can be diagnosed. That is, when the second detection signal is not generated, that is, when the second detection signal is input at a low level, the MCU 600 detects the BMIC 300, the first and second overvoltage detection units 400 and 500, and the MCU 600. It is determined that the and its peripheral circuits are operating normally, and a diagnostic operation is performed when the second detection signal is input at a high level.
  • the driving method according to the diagnostic operation of the MCU 600 will be described in more detail as follows.
  • the MCU 600 detects the maximum voltage (cell max voltage) of the battery 100 from the BMIC 300 and the second overvoltage detector 500. Compare the second reference voltage. If the maximum voltage of the battery 100 is higher than the second reference voltage, the second overvoltage detector 500 determines that it is operating normally. However, when the second detection signal from the second overvoltage detector 500 is input at a high level and the maximum voltage of the battery 100 is lower than the second reference voltage, the MCU 600 detects a voltage measurement error or It can be determined that an abnormality has occurred in the second overvoltage detection unit 500.
  • the battery may be damaged due to an error in the BMIC 300 or the MCU 600. It may be determined that the voltage is measured incorrectly or that the second detection signal is incorrectly output from the second overvoltage detection unit 500 due to an error in the second overvoltage detection unit 500 or its surrounding circuitry.
  • the MCU 600 detects the first Since the reference voltage is lower than the second reference voltage, it can be determined that the second overvoltage detector 500 is operating normally.
  • the second detection signal is input at a high level from the second overvoltage detection unit 500 and the first detection signal is input at a low level from the first overvoltage detection unit 400, the first and second overvoltage detection units 400, 500), it can be determined that at least one of them has malfunctioned. In other words, it can be determined that an abnormality has occurred in the overvoltage detection unit.
  • the battery device includes first and second overvoltage detection units 400 and 500 between the BMCI 300 and the MCU 600. That is, the present invention is provided with one more overvoltage detection unit compared to the prior art.
  • the first and second overvoltage detectors 400 and 500 have different first and second reference voltages, and the first reference voltage has a lower value than the second reference voltage.
  • the first and second overvoltage detection units 400 and 500 compare the voltage of the battery 100 measured by the monitoring unit 200 with the first and second reference voltages, respectively, and output first and second detection signals, respectively. do.
  • the first and second overvoltage detectors 400 and 500 respectively generate first and second detection signals and supply them to the MCU 600.
  • the MCU 600 can use the first and second detection signals to diagnose abnormalities in the BMIC 300, the first and second overvoltage detection units 400 and 500, and their surrounding circuits. That is, when the second detection signal is generated from the second overvoltage detector 500, the MCU 600 determines the voltage of the battery 100 input from the BMIC 300 and the second reference voltage of the second overvoltage detector 500. By comparison, measurement errors in the BMIC (300) or MCU (600) can be diagnosed.
  • the MCU 600 detects the first and second overvoltage detection units 400 according to the first detection signal from the first overvoltage detection unit 400. , 500), at least one error can be diagnosed. That is, when the second detection signal is not generated, that is, when the second detection signal is input at a low level, the MCU 600 detects the BMIC 300, the first and second overvoltage detection units 400 and 500, and the MCU 600. It is determined that the and its peripheral circuits are operating normally, and a diagnostic operation is performed when the second detection signal is input at a high level.
  • the present invention can prevent false detection problems caused by failure of the overvoltage detection unit or failure of circuits around the overvoltage detection unit.
  • the present invention can prevent false detection problems caused by failure of the overvoltage detection unit or failure of circuits around the overvoltage detection unit.
  • two overvoltage detection units with different reference voltages it is possible to prevent the problem of the overvoltage detection unit failing to properly detect the overvoltage due to failure of the overvoltage detection unit itself or failure of circuitry around the overvoltage detection unit.
  • FIG. 3 is a flowchart for explaining a method of operating a battery device according to an embodiment of the present invention.
  • a process of measuring the state of the battery 100 S110
  • S120 a process of determining whether a second detection signal is generated because the second reference voltage (Vref2) is higher than the battery measurement voltage (S130), and a process of determining normal operation if the second detection signal is not generated (S140) ) and, when the second detection signal is generated, a process of comparing the maximum voltage (Vmax) of the battery 100 and the second reference voltage (Vref2) (S150), and the maximum voltage (Vmax) of the battery 100 is compared to the second reference voltage (Vref2).
  • a process of determining that the second overvoltage detection unit 500 is operating normally (S160), and if the maximum voltage of the battery 100 is lower than the second reference voltage, a voltage measurement error of the battery 100
  • a process of determining that an abnormality has occurred in the second overvoltage detection unit 500 (S170), a process of determining whether the second detection signal is generated and the first detection signal is generated (S180), and the process of determining whether the first detection signal is generated (S180)
  • a process of determining that the second overvoltage detection unit 500 is operating normally (S190), and a process of determining that at least one of the first and second overvoltage detection units is operating abnormally if the first detection signal is not generated (S200)
  • S150 and S180 may be performed simultaneously or sequentially. When performed sequentially, S150 may be performed first and S180 may be performed later, or conversely, S180 may be performed first and then S150.
  • the monitoring unit 200 monitors the status of the battery 100.
  • the monitoring unit 200 may measure the current, voltage, temperature, etc. of the battery 100.
  • the monitoring unit 200 can measure the status of the battery pack, battery module, and battery cell.
  • the monitoring unit 200 may include at least one current sensor, at least one voltage sensor, and at least one temperature sensor.
  • the current sensor, voltage sensor, and temperature sensor may periodically measure the current, voltage, and temperature of the battery 100 and provide the measurement results to the BMIC 300.
  • the current sensor can generate a signal corresponding to the magnitude of the charging current.
  • the current sensor can measure not only the charging current but also the magnitude of the discharging current.
  • the voltage sensor generates a signal corresponding to the voltage applied between the anode and cathode of the battery 100.
  • the voltage sensor may include a differential amplification circuit that outputs a voltage signal corresponding to the voltage difference between the positive and negative terminals of the battery 100.
  • the temperature sensor may be a thermal coupler, for example, used to measure temperature. The temperature sensor generates a signal corresponding to the temperature of the battery 100.
  • the monitoring unit 200 may be connected to the first and second overvoltage detection units 400 and 500 and provide voltage measurement results to the first and second overvoltage detection units 400 and 500. That is, the voltage of the battery 100 measured from the voltage sensor is provided to the first and second overvoltage detection units 400 and 500, and can be used to detect the overvoltage of the first and second overvoltage detection units 400 and 500. .
  • the BMIC 300 inputs the battery status signal measured by the monitoring unit 200, generates a diagnostic signal from the measured status information, and transmits it to the MCU 600.
  • the BMIC 300 may compare the battery voltage measured by the monitoring unit 200 with a set voltage range and generate a diagnostic signal according to the comparison result.
  • the BMIC (300) compares the battery voltage with the set voltage range and generates diagnostic signals of different levels in the case of abnormal voltage outside the set voltage range and in the case of normal voltage. It can be transmitted to the MCU (600).
  • an abnormal current can be determined by determining whether it is within or outside the set current range and a diagnostic signal can be generated accordingly.
  • the BMIC (300) and the MCU (600) may be connected through a predetermined communication line. Accordingly, the diagnostic signal can be transmitted from the output terminal of the BMIC (300) to the input terminal of the MCU (600) through a communication line.
  • the first and second overvoltage detection units 400 and 500 respectively receive the measured voltage values of the battery 100 from the monitoring unit 200 with the first and second reference voltages Vref1 and Vref2, respectively.
  • the first and second overvoltage detectors 400 and 500 compare the voltage of the battery 100 with the first and second reference voltages, respectively.
  • the first reference voltage of the first overvoltage detection unit 400 may be set to a fault level lower than the second reference voltage of the second overvoltage detection unit 500, and the second reference voltage may be set to a fault level lower than the second reference voltage of the second overvoltage detection unit 500. It can be set to a higher fail level.
  • the first and second overvoltage detectors 400 and 500 output first and second detection signals of different levels, respectively, according to a comparison result between the first and second reference voltages and the voltage of the battery 100.
  • the first overvoltage detection unit 400 outputs a low level first detection signal when the voltage of the battery 100 is lower than the first reference voltage, and the first overvoltage detection unit 400 outputs a low level first detection signal when the voltage of the battery 100 is lower than the first reference voltage. If it is higher than the voltage, a high level first detection signal is output.
  • the second overvoltage detector 500 outputs a low level second detection signal when the voltage of the battery 100 is lower than the second reference voltage, and the second overvoltage detector 500 outputs a low level second detection signal when the voltage of the battery 100 is lower than the second reference voltage. If it is high, a high level second detection signal is output.
  • the first and second overvoltage detectors 400 and 500 generate first and second detection signals, respectively, when the battery voltage is higher than the first and second reference voltages.
  • the first and second detection signals from the first and second overvoltage detectors 400 and 500 are transmitted to the MCU 600, respectively.
  • the MCU 600 determines whether the second detection signal is input from the second overvoltage detection unit 500. That is, when the voltage of the battery 100 is higher than the second reference voltage and the second overvoltage detection unit 500 generates a second detection signal at a high level and outputs it to the MCU 600, the MCU 600 detects the second detection signal at a high level. Determine whether the detection signal is input at high level.
  • ⁇ 056> S170 when the second detection signal from the second overvoltage detection unit 500 is input at a high level and the maximum voltage of the battery 100 is lower than the second reference voltage, the MCU 600 detects the battery 100 It can be determined that there is a voltage measurement error or an abnormality in the second overvoltage detection unit 500. That is, if the maximum voltage of the battery 100 from the BMIC 300 is lower than the second reference voltage, the battery voltage is measured incorrectly due to an error in the BMIC 300 or the MCU 600, or the second overvoltage detection unit ( It may be determined that the second detection signal is incorrectly output from the second overvoltage detection unit 500 due to an error in the second overvoltage detection unit 500 or its surrounding circuitry.
  • the MCU 600 determines whether the second detection signal is input at a high level from the second overvoltage detector 500 and at the same time the first detection signal is input at a high level from the first overvoltage detector 400. judge.
  • ⁇ 059> S200 when the second detection signal is input at a high level from the second overvoltage detection unit 500 and the first detection signal is input at a low level from the first overvoltage detection unit 400, the first and second It may be determined that at least one of the overvoltage detection units 400 and 500 has malfunctioned. In other words, it can be determined that an abnormality has occurred in the overvoltage detection unit.
  • BMIC 400 First overvoltage detection unit

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Protection Of Static Devices (AREA)

Abstract

본 발명은 배터리의 상태를 진단하는 BMIC(battery monitoring IC); 배터리 전압을 제 1 기준 전압과 비교하여 제 1 검출 신호를 생성하는 제 1 과전압 검출부; 상기 배터리 전압을 상기 제 1 기준 전압과 다른 제 2 기준 전압과 비교하여 제 2 검출 신호를 생성하는 제 2 과전압 검출부; 및 상기 BMIC로부터의 진단 신호에 따라 배터리를 제어하고, 상기 제 1 및 제 2 검출 신호에 따라 장치 내의 이상을 진단하는 MCU를 포함하는 배터리 관리 장치 및 방법을 제공한다.

Description

배터리 관리 장치 및 방법
<001> 본 발명의 배터리 관리 장치(Battery management system)에 관한 것으로, 특히 배터리 관리 장치의 BMIC(battery monitoring IC)와 MCU(Main Control Unit)의 계측 오류로 인한 진단 불량을 방지할 수 있는 배터리 관리 장치 및 방법에 관한 것이다. 나아가, 이를 방지하기 위한 과전압 검출 IC를 적용함에 있어서, 종래의 과전압 검출 IC의 진단에 오류가 발생하는 경우가 있는데, 본 발명은 종래 과전압 검출 IC의 진단 오류를 방지하는 배터리 관리 장치 및 방법에 관한 것이다.
<002> 충방전이 가능한 이차전지, 즉 배터리(battery)는 스마트폰 등의 모바일 기기의 에너지원으로 널리 이용되고 있다. 뿐만 아니라, 배터리는 화석 연료를 사용하는 가솔린 차량, 디젤 차량 등에 의한 대기오염 등을 해결하기 위한 방안으로 제시되는 전기 자동차, 하이브리드 전기 자동차 등의 친환경 자동차의 에너지원으로도 사용되고 있다. 배터리를 이용하는 애플리케이션의 종류는 매우 다양화되고 있으며, 향후에는 지금보다는 많은 분야와 제품들에 배터리가 적용될 것으로 예상된다.
<003> 현재 상용화된 배터리로는 니켈 카드뮴 배터리, 니켈 수소 배터리, 니켈 아연 배터리, 리튬 이온 배터리 등이 있는데, 이 중에서 리튬 이온 배터리는 니켈 계열의 배터리에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다. 또한, 리튬 이온 배터리는 소형, 경향으로 제작할 수 있으므로 이동 기기의 전원으로 사용되며, 전기 자동차의 전원으로 사용 범위가 확장되어 차세대 에너지 저장 매체로 주목을 받고 있다.
<004> 배터리를 동력으로 이용하는 전기전자 기기 등은 배터리의 동작을 제어하기 위해 배터리 관리 장치(battery management system; BMS) 등이 구비되어야 한다. BMS는 배터리의 온도, 전압 및 전류 등의 상태를 모니터링하고, 모니터링된 배터리의 상태를 기초로 배터리의 밸런싱, SOC(State Of Charge) 추정을 통한 충전 또는 방전 등을 제어할 수 있다. 이러한 BMS는 배터리의 상태를 모니터링하여 진단 신호를 생성하기 위한 BMIC(battery monitoring IC)와, 배터리의 상태에 따라 배터리를 제어하기 위한 메인 제어 유닛(Main Control Unit; MCU)를 포함할 수 있다. 이때, BMIC와 MCU는 소정의 통신 라인으로 연결되어 데이터 또는 신호를 입출력한다. 즉, BMIC는 배터리를 대상으로 측정된 전압, 전류 및 온도 등의 상태 정보로부터 진단 신호를 생성하여 MCU로 전달한다. 또한, MCU는 BMIC로부터 진단 신호를 입력 받아 배터리의 상태를 판단하고, 배터리의 상태에 따른 판단 결과에 따라 배터리를 제어할 수 있다.
<005> 한편, 배터리 관리 장치는 MCU나 BMIC의 계측 오류로 인해 배터리의 예를 들어 과전압(Over Voltage)을 진단하지 못할 수도 있으며, 이러한 상황에서 배터리를 안전 상태(Safety state)로 유지하기 위해 과전압 검출부를 구비한다. 과전압 검출부는 배터리의 전압 모니터링 결과를 받아 배터리의 전압이 설정된 전압을 초과하는 과전압인지를 검출한다. 이때, 과전압 검출부는 배터리 관리 장치 내에 하나 마련될 수 있다. 즉, 종래에는 BMS 내에 과전압 검출부가 하나 마련되어 배터리의 전압 모니터링 결과가 설정된 전압을 초과하는 과전압인지를 검출하고, MCU를 통해 배터리가 안전 상태로 유지되도록 한다.
<006> 그런데, 하나의 과전압 검출부를 이용하여 과전압을 판단하는 종래 기술에 의하면 과전압 검출부의 고장이나 과전압 검출부 주변 회로의 고장에 의해 오검출의 문제가 발생할 수 있다. 즉, 과전압 검출부 자체가 고장나거나 과전압 검출부 주변 회로의 고장에 의해 과전압 검출부가 과전압을 제대로 검출하지 못하는 문제가 발생될 수 있다. 이렇게 하나의 과전압 검출부의 고장으로 인해 과전압을 제대로 검출하지 못하게 되면 배터리를 제어하지 못해 배터리를 사용하지 못하는 등이 문제가 발생할 수 있다.
<007> 관련 선행기술로는 아래와 같은 문헌들이 있다.
KR 10-2021-0049470 A (2021. 5. 6.)
JP 2011-002350 A(2011. 1. 6)
KR 2008-0021255 A(2008. 3. 7)
<008> 본 발명은 과전압 검출부의 오검출을 방지할 수 있는 배터리 관리 장치 및 방법을 제공한다.
<009> 본 발명은 기준 전압이 다른 적어도 두개의 과전압 검출부를 구비하여 배터리 전압을 검출함으로써 과전압의 오검출을 방지할 수 있는 배터리 관리 장치 및 방법을 제공한다.
<010> 본 발명의 일 예에 따른 배터리 관리 장치는 배터리의 상태를 진단하는 BMIC(Battery Monitoring Integrated Circuit); 배터리 전압을 제 1 기준 전압과 비교하여 제 1 검출 신호를 생성하는 제 1 과전압 검출부; 상기 배터리 전압을 상기 제 1 기준 전압과 다른 제 2 기준 전압과 비교하여 제 2 검출 신호를 생성하는 제 2 과전압 검출부; 및 상기 BMIC로부터의 진단 신호에 따라 배터리를 제어하고, 상기 제 1 및 제 2 검출 신호에 따라 장치 내의 이상을 진단하는 MCU(Micro Controller Unit)를 포함한다.
<011> 상기 제 1 기준 전압은 상기 제 2 기준 전압보다 낮다.
<012> 상기 제 1 과전압 검출부는 상기 배터리 전압이 상기 제 1 기준 전압보다 높으면 상기 제 1 검출 신호를 생성하고, 상기 제 2 과전압 검출부는 상기 배터리 전압이 상기 제 1 기준 전압보다 높으면 상기 제 1 검출 신호를 생성한다.
<013> 상기 MCU는 상기 제 2 검출 신호가 발생되지 않으면, BMIC, 제 1 및 제 2 과전압 검출부, 그리고 그 주변 회로가 정상 동작하는 것으로 판단한다.
<014> 상기 MCU는 상기 제 2 검출 신호가 발생되는 경우, 배터리의 최대 전압과 상기 제 2 기준 전압을 비교한다.
<015> 상기 MCU는 상기 배터리의 최대 전압이 상기 제 2 기준 전압보다 높으면 상기 제 2 과전압 검출부의 정상 동작으로 판단하고, 상기 배터리의 최대 전압이 상기 제 2 기준 전압보다 낮으면 BMIC 또는 MCU의 배터리 전압 계측 오류 또는 상기 제 2 과전압 검출부의 이상 발생으로 판단한다.
<016> 상기 MCU는 상기 제 2 검출 신호가 발생되는 경우 상기 제 1 검출 신호에 따라 상기 제 1 및 제 2 과전압 검출부 중 적어도 어느 하나의 오류로 판단한다.
<017> 상기 제 2 검출 신호가 발생되고 상기 제 1 검출 신호가 발생되면 상기 제 2 과전압 검출부가 정상 동작하는 것으로 판단한다.
<018> 상기 제 2 검출 신호가 발생되고 상기 제 1 검출 신호가 발생되지 않으면 상기 제 1 및 제 2 과전압 검출부 중 적어도 하나가 이상 동작한 것으로 판단한다.
<019> 본 발명의 다른 예에 따른 배터리 관리 방법은 배터리의 상태를 계측하는 과정과, 배터리의 전압 계측값을 제 1 및 제 2 과전압 검출부 각각의 제 1 및 제 2 기준 전압과 각각 비교하는 과정과, 상기 제 2 기준 전압이 배터리 계측 전압보다 높아 상기 제 2 과전압 검출부로부터 제 2 검출 신호가 발생되었는지를 판단하는 과정과, 상기 제 2 검출 신호가 발생되지 않으면 정상 동작으로 판단하는 과정과, 상기 제 2 검출 신호가 발생되면 배터리의 최대 전압과 상기 제 2 기준 전압을 비교하는 과정과, 상기 배터리의 최대 전압이 상기 제 2 기준 전압보다 높으면 상기 제 2 과전압 검출부가 정상 동작한 것으로 판단하는 과정과, 상기 배터리의 최대 전압이 상기 제 2 기준 전압보다 낮으면 배터리의 전압 계측 오류 또는 상기 제 2 과전압 검출부의 이상 발생으로 판단하는 과정을 포함한다.
<020> 상기 제 1 기준 전압은 상기 제 2 기준 전압보다 낮다.
<021> 상기 제 2 검출 신호가 발생되고 상기 제 1 검출 신호가 발생되었는지를 판단하는 과정과, 상기 제 1 검출 신호가 발생되는 경우 상기 제 2 과전압 검출부가 정상 동작하는 것으로 판단하는 과정과, 상기 제 1 검출 신호가 발생되지 않은 경우 제 1 및 제 2 과전압 검출부 중 적어도 하나가 이상 동작한 것으로 판단하는 과정을 더 포함한다.
<022> 본 발명의 실시 예에 따른 배터리 관리 장치는 BMCI와 MCU 사이에 서로 다른 제 1 및 제 2 기준 전압을 갖는 제 1 및 제 2 과전압 검출부를 포함한다. 제 1 및 제 2 과전압 검출부는 배터리의 계측 전압을 제 1 및 제 2 기준 전압과 각각 비교하여 제 1 및 제 2 검출 신호를 각각 MCU로 출력한다. MCU는 제 1 및 제 2 검출 신호를 이용하여 BMIC와 제 1 및 제 2 과전압 검출부, 그리고 그 주변 회로의 이상을 진단할 수 있다. 즉, MCU는 제 2 검출 신호가 발생되는 경우 BMIC로부터 입력된 배터리의 전압과 제 2 기준 전압을 비교하여 BMIC 또는 MCU의 계측 오류를 진단할 수 있다. 또한, MCU는 제 2 검출 신호가 발생되는 경우 제 1 검출 신호의 발생 여부에 따라 제 1 및 제 2 과전압 검출부 중 적어도 어느 하나의 오류를 진단할 수 있다.
<023> 따라서, 본 발명은 종래에 비해 과전압 검출부의 고장이나 과전압 검출부 주변 회로의 고장에 의한 오검출 문제를 방지할 수 있다. 즉, 서로 다른 기준 전압을 갖는 두개의 과전압 검출부를 이용함으로써 과전압 검출부 자체가 고장나거나 과전압 검출부 주변 회로의 고장에 의해 과전압 검출부가 과전압을 제대로 검출하지 못하는 문제를 방지할 수 있다.
<024> 도 1은 본 발명의 일 실시 예에 따른 배터리 관리 장치의 구성을 설명하기 위한 블럭도이다.
<025> 도 2는 본 발명의 일 실시 예에 따른 배터리 관리 장치의 MCU의 구성을 설명하기 위한 블럭도이다.
<026> 도 3은 본 발명의 일 실시 예에 따른 배터리 관리 장치의 구동 방법을 설명하기 위한 흐름도이다.
<027> 이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
<028> 도 1은 본 발명의 일 실시 예에 따른 배터리 장치의 구성을 설명하기 위한 블럭도이다. 즉, 도 1은 배터리와 배터리 관리 장치를 포함하는 배터리 장치의 블럭도이다. 또한, 도 2는 본 발명의 일 실시 예에 따른 배터리 관리 시스템의 MCU의 구성을 설명하기 위한 블럭도이다.
<029> 도 1을 참조하면, 본 발명의 일 실시 예에 따른 배터리 장치는 충방전 가능한 복수의 배터리 셀을 포함하는 배터리(100)와, 배터리(100)의 상태를 모니터링하는 모니터링부(200)와, 배터리(100)의 모니터링 결과에 따라 배터리(100)의 상태를 진단하는 BMIC(battery monitoring IC)(300)와, 제 1 기준 전압을 가지며 모니터링부(200)로부터의 배터리(100) 전압을 제 1 기준 전압과 비교하는 제 1 과전압 검출부(400)와, 제 1 기준 전압과 다른 제 2 기준 전압을 가지며 모니터링부(200)로부터의 배터리(100) 전압을 제 2 기준 전압과 비교하는 제 2 과전압 검출부(500)와, BMIC(300)와 통신을 통해 신호를 주고받고 제 1 및 제 2 과전압 검출부(400, 500)으로부터 검출 신호를 수신하여 배터리(100)의 상태에 따라 배터리(100)를 제어하기 위한 MCU(600)를 포함할 수 있다. 여기서, 모니터링부(200), BMIC(300), 제 1 및 제 2 과전압 검출부(400, 500), MCU(600)가 배터리 관리 장치를 이룬다. 이러한 본 발명에 따른 배터리 및 배터리 관리 장치를 포함하는 배터리 장치를 각 구성별로 좀더 상세히 설명하면 다음과 같다.
<030> 1. 배터리
<031> 배터리(100)는 전력 소모 장치에 에너지를 제공하여 전력 소모 장치를 구동시키는 전기 에너지원이다. 여기서, 전력 소모 장치는 스마트폰 등의 모바일 기기와, 전기 스쿠터, 전기 자동차, 하이브리드 전기 자동차 등 이송 수단을 포함할 수 있다. 배터리(100)는 적어도 하나의 배터리 팩을 포함할 수 있다. 이때, 적어도 하나의 패터리 팩은 각각 복수의 배터리 모듈을 포함할 수 있으며, 배터리 모듈은 충방전 가능한 복수의 배터리 셀 포함할 수 있다. 즉, 배터리(100)는 복수의 배터리 셀을 포함하고, 복수의 배터리 셀을 소정 단위로 묶어 배터리 모듈을 이룰 수도 있으며, 복수의 배터리 모듈이 하나의 배터리 팩을 이룰 수 있다. 한편, 복수의 배터리 셀은 전력 소모 장치의 스펙(specification)에 부합되도록 다양한 방법으로 직렬 및/또는 병렬 연결될 수 있다. 물론, 복수의 배터리 셀을 각각 포함하는 복수의 배터리 팩 또한 직렬 및/또는 병렬 연결될 수 있다. 여기서, 배터리 셀의 종류는 특별히 한정되지 않으며, 예컨대 리튬 이온 배터리, 리튬 폴리머 배터리, 니켈 카드뮴 배터리, 니켈 수소 배터리, 니켈 아연 배터리 등으로 구성할 수 있다.
<032> 2. 모니터링부
<033> 모니터링부(200)는 배터리(100)의 상태를 모니터링하기 위해 마련될 수 있다. 예를 들어, 모니터링부(200)는 배터리(100)의 전류, 전압, 온도 등을 측정할 수 있다. 또한, 모니터링부(200)는 배터리 팩, 배터리 모듈 및 배터리 셀의 상태를 측정할 수 있다. 즉, 모니터링부(200)는 복수의 배터리 셀 각각의 상태를 측정할 수도 있고, 복수의 배터리 셀이 묶인 배터리 모듈의 상태를 측정할 수도 있으며, 복수의 배터리 모듈이 묶인 배터리 팩의 상태를 측정할 수도 있다. 이를 위해 모니터링부(200)는 복수의 센서를 포함할 수 있다. 즉, 모니터링부(200)는 적어도 하나의 전류 센서, 적어도 하나의 전압 센서 및 적어도 하나의 온도 센서를 포함할 수 있다. 전류 센서, 전압 센서 및 온도 센서는 배터리(100)의 전류, 전압 및 온도를 주기적으로 측정하고 측정 결과를 BMIC(300)로 제공할 수 있다. 측정 결과는 아날로그 신호 또는 디지털 신호로서 BMIC(300)에 제공될 수 있다. 여기서, 전류 센서는 충전 전류의 크기에 상응하는 신호를 생성할 수 있다. 물론, 전류 센서는 충전 전류 뿐만 아니라 방전 전류의 크기도 측정할 수 있다. 이를 위해 전류 센서는 예를 들어 배터리(100)에서 충방전 전류가 흐르는 경로인 충방전 경로 상에 설치될 수 있다. 한편, 본 발명에 따른 전류 센서는 션트 저항을 포함할 수 있다. 또한, 전압 센서는 배터리(100)의 양극과 음극 사이에 인가되는 전압에 상응하는 신호를 생성한다. 전압 센서는 일 예시로서 배터리(100)의 양극 및 음극 단자 사이의 전압 차이에 상응하는 전압 신호를 출력하는 차동 증폭 회로를 포함할 수 있다. 그리고, 온도 센서는 온도 측정에 사용되는 일 예로 써머 커플러일 수 있다. 온도 센서는 배터리(100)의 온도에 상응하는 신호를 생성한다. 또한, 온도 센서는 배터리(100)의 온도를 측정하는 온도 센서 이외에 배터리(100)의 열이 발산되는 외부의 온도를 측정하는 외부 온도 센서를 더 포함할 수 있다. 외부 온도 센서는 온도 센서와 동일한 센서류로 구성될 수 있고, 외부의 온도에 상응하는 신호를 생성한다. 한편, 모니터링부(200)는 제 1 및 제 2 과전압 검출부(400, 500)와 연결되어 제 1 및 제 2 과전압 검출부(400, 500)에 전압 측정 결과를 제공할 수 있다. 즉, 전압 센서로부터 측정된 배터리(100)의 전압은 제 1 및 제 2 과전압 검출부(400, 500)로 제공되고, 제 1 및 제 2 과전압 검출부(400, 500)의 과전압 검출에 이용될 수 있다.
<034> 3. BMIC
<035> BMIC(300)는 모니터링부(200)에서 측정된 배터리의 상태 신호를 입력하고, 측정된 상태 정보로부터 진단 신호를 생성하여 MCU(600)로 전달한다. 예를 들어, BMIC(300)는 모니터링부(200)로부터 측정된 배터리 전압을 설정 전압 범위와 비교하여 비교 결과에 따른 진단 신호를 생성할 수 있다. 구체적인 예로서, 배터리 전압이 3V 내지 4.5V로 설정된 경우 BMIC(300)는 배터리 전압을 설정 전압 범위와 비교하여 설정 전압 범위 이외의 이상 전압의 경우와 정상 전압인 경우 다른 레벨의 진단 신호를 생성하여 MCU(600)에 전달할 수 있다. 전류의 경우에도 설정 전류 범위 이내인지 벗어났는지를 판단하여 이상 전류를 판단하고 그에 따른 진단 신호를 생성할 수 있다. BMIC(300)와 MCU(600)의 소정의 통신 라인을 통해 연결될 수 있다. 따라서, 진단 신호는 BMIC(300)의 출력단으로부터 통신 라인을 통해 MCU(600)의 입력단으로 전달될 수 있다. 한편, BMIC(300)는 MCU(600)로부터 전송되는 제어 신호에 따라 배터리(100)를 제어할 수 있다. 예를 들어, BMIC(300)는 MCU(600)로부터 전송되는 셀 밸런싱 신호에 따라 복수의 배터리 셀 중 밸런싱 대상 셀을 셀 밸런싱 회로를 통해 방전시킬 수 있다. 이를 위해 BMIC(300)는 MCU(600)의 셀 밸런싱 신호에 따라 복수의 스위칭 신호를 생성할 수 있다. 이때, 복수의 배터리 셀은 스위치가 연결될 수 있고, 스위칭 신호 각각은 대응하는 스위치의 스위칭 동작을 제어할 수 있다. 온 레벨의 스위칭 신호가 대응하는 스위치에 공급되면, 스위치가 턴온 되어 해당 배터리 셀이 방전한다. 이렇게 BMIC(300)와 MCU(600)는 소정의 데이터 또는 신호를 입출력하기 위해 통신 라인으로 연결될 수 있다. 즉, BMIC(300) 진단 신호 등의 상태 신호를 통신 라인을 통해 MCU(600)로 출력하기 위한 출력부와, BMIC(300)로부터 셀 밸런싱 신호 등의 신호를 통신 라인을 통해 입력하기 위한 입력부를 포함하는 통신부가 마련될 수 있다.
<036> 4. 제 1 과전압 검출부
<037> 제 1 과전압 검출부(400)는 모니터링부(200)와 연결되어 모니터링부(200)로부터 배터리(100)의 전압 계측값을 수신한다. 즉, 제 1 과전압 검출부(400)는 모니터링부(200)의 전압 센서로부터 배터리(100)의 전압 계측값을 수신한다. 제 1 과전압 검출부(400)는 제 1 기준 전압을 가지고 배터리(100)의 전압과 제 1 기준 전압을 비교한다. 여기서, 제 1 과전압 검출부(400)의 제 1 기준 전압은 제 2 과전압 검출부(500)의 제 2 기준 전압보다 낮은 펄트 레벨(fault level)로 설정될 수 있다. 따라서, 제 1 과전압 검출부(400)는 제 2 과전압 검출부(500)가 정상적인 상태에서 배터리(100)의 전압을 검출했는지 확인하는 역할을 한다. 한편, 제 1 과전압 검출부(400)는 제 1 기준 전압과 배터리(100) 전압의 비교 결과에 따라 서로 다른 레벨의 제 1 검출 신호를 출력한다. 예를 들어, 제 1 과전압 검출부(400)는 배터리(100)의 전압이 제 1 기준 전압보다 낮으면 로우(low) 레벨의 제 1 검출 신호를 출력하고, 배터리(100)의 전압이 제 1 기준 전압보다 높으면 하이(high) 레벨의 제 1 검출 신호를 출력한다. 제 1 과전압 검출부(400)로부터의 제 1 검출 신호는 MCU(600)로 전달된다. 이러한 제 1 과전압 검출부(400)는 BMIC(300)의 진단 오류로 인해 과전압 검출이 불가능한 것을 대비하여 마련될 수 있다.
<038> 5. 제 2 과전압 검출부
<039> 제 2 과전압 검출부(500)는 모니터링부(200)와 연결되어 모니터링부(200)로부터 배터리(100)의 전압 계측값을 수신한다. 즉, 제 2 과전압 검출부(500)는 제 1 과전압 검출부(400)와 동시에 모니터링부(200)의 전압 센서로부터 배터리(100)의 전압 계측값을 수신한다. 제 2 과전압 검출부(500)는 제 2 기준 전압을 가지고 배터리(100)의 전압과 제 2 기준 전압을 비교한다. 여기서, 제 2 과전압 검출부(500)의 제 2 기준 전압은 제 1 과전압 검출부(400)의 제 1 기준 전압보다 큰 페일 레벨(fail level)로 설정될 수 있다. 즉, 제 2 과전압 검출부(500)는 실제로 안전 상태로 진입하기 위한 기준 전압을 가지고 있다. 한편, 제 2 과전압 검출부(500)는 제 2 기준 전압과 배터리(100) 전압의 비교 결과에 따라 서로 다른 레벨의 제 2 검출 신호를 출력한다. 예를 들어, 제 2 과전압 검출부(500)는 배터리(100)의 전압이 제 2 기준 전압보다 낮으면 로우(low) 레벨의 제 2 검출 신호를 출력하고, 배터리(100)의 전압이 제 2 기준 전압보다 높으면 하이(high) 레벨의 제 2 검출 신호를 출력한다. 제 2 과전압 검출부(500)로부터의 제 2 검출 신호는 MCU(600)로 전단된다. 이러한 제 2 과전압 검출부(500)는 BMIC(300)의 진단 오류로 인해 과전압 검출이 불가능한 것을 대비하여 본 발명에 따라 제 1 과전압 검출부(400)와 함께 마련될 수 있다.
<040> 6. MCU
<041> MCU(600)는 BMIC(300)로부터 진단 신호를 입력 받아 배터리(100)의 상태를 모니터링하고, 배터리(100)의 상태에 따라 배터리(100)를 제어할 수 있다. 예를 들어 BMIC(300)로부터 배터리 전압 또는 전류의 이상 진단 신호를 입력하면 MCU(600)는 통신 오프 등의 기능을 이용하여 배터리의 동작을 정지시킬 수 있다. 이를 위해 MCU(600)는 이상 진단부(610)를 포함할 수 있다. 즉, 배터리(100)의 전압이 설정 전압 범위를 벗어나는 경우 또는 배터리(100)의 전류가 설정 전류 범위를 벗어나는 경우 발생되는 이상 진단 신호에 따라 MCU(600)의 이상 진단부(610)는 배터리(100)의 동작을 정지시킬 수 있다. 또한, MCU(600)는 BMIC(300)의 진단 신호에 따라 배터리의 충방전 또는 셀 밸런싱 등 배터리의 동작을 제어할 수 있다. 이를 위해 MCU(600)는 배터리 제어부(620)를 포함할 수 있다. 즉, 배터리의 전압이 설정 전압 범위 이내의 경우 또는 배터리의 전류가 설정 전류 범위 이내의 경우 정상 진단 신호에 따라 MCU(600)의 배터리 제어부(620)는 배터리의 동작을 정지시킬 수 있다. 이때, MCU(600)는 배터리 제어부(620)를 통해 배터리의 전압 또는 전류가 낮은 경우 배터리의 충전을 제어하도록 할 수 있고, 전압 또는 전류가 안정적인 경우 배터리의 방전을 제어하도록 할 수 있다. 또한, MCU(600)는 배터리 제어부(620)를 통해 적어도 하나의 배터리 셀이 설정 전압 또는 전류보다 높은 경우 셀 밸런싱을 제어하도록 할 수 있다. 셀 밸런싱을 위해 MCU(600)는 BMIC(300)에 밸런싱 제어 신호를 출력하여 BMIC(300)를 통해 셀 밸런싱을 제어할 수 있다. 이러한 동작을 위해 MCU(600)는 BMIC(300)와 소정의 통신 라인으로 연결될 수 있다. 즉, MCU(600)는 BMIC(300)로부터 진단 신호 등의 상태 신호를 통신 라인을 통해 입력하기 위한 입력부와, BMIC(300)에 셀 밸런싱 신호 등의 신호를 통신 라인을 통해 출력하기 위한 출력부(TX)를 포함하는 통신부가 마련될 수 있다.
<042> 또한, 본 발명에 따른 MCU(600)는 BMIC(300)로부터 진단된 배터리(100)의 전압 뿐만 아니라 제 1 및 제 2 과전압 검출부(400, 500)로부터 제 1 및 제 2 검출 신호를 각각 입력한다. 즉, MCU(600)는 제 1 및 제 2 과전압 검출부(400, 500)로부터 제 1 및 제 2 검출 신호를 각각 입력하기 위한 제 1 및 제 2 검출 신호 입력부(630, 640)를 포함할 수 있다. MCU(600)는 제 1 및 제 2 검출 신호를 이용하여 BMIC(300)와 제 1 및 제 2 과전압 검출부(400, 500), 그리고 그 주변 회로의 이상을 진단할 수 있다. 이를 위해 MCU(600)는 비교판단부(650)를 포함할 수 있다. 비교판단부(650)는 제 1 및 제 2 과전압 검출부(400, 500)로부터의 제 1 및 제 2 검출 신호가 입력되는 경우 제 1 및 제 2 과전압 검출부(400, 500) 각각의 제 1 및 제 2 기준 전압과 배터리 전압을 비교하여 BMIC(300)와 제 1 및 제 2 과전압 검출부(400, 500), 그리고 그 주변 회로의 이상을 진단할 수 있다. 즉, MCU(600)는 제 2 과전압 검출부(500)로부터 제 2 검출 신호가 발생되는 경우, 즉 제 2 검출 신호가 하이 레벨로 입력되는 경우 BMIC(300)로부터 이상 진단부(610)를 통해 입력된 배터리(100)의 전압과 제 2 과전압 검출부(500)의 제 2 기준 전압을 비교하여 BMIC(300) 또는 MCU(600)의 계측 오류를 진단할 수 있다. 또한, MCU(600)는 제 2 과전압 검출부(500)로부터 제 2 검출 신호가 하이 레벨로 입력되는 경우 제 1 과전압 검출부(400)로부터의 제 1 검출 신호에 따라 제 1 및 제 2 과전압 검출부(400, 500) 중 적어도 어느 하나의 오류를 진단할 수 있다. 즉, MCU(600)는 제 2 검출 신호가 발생되지 않으면, 즉 제 2 검출 신호가 로우 레벨로 입력되면 BMIC(300), 제 1 및 제 2 과전압 검출부(400, 500), 그리고 MCU(600) 및 그 주변 회로가 정상 동작하는 것으로 판단하고, 제 2 검출 신호가 하이 레벨로 입력되면 진단 동작을 수행한다. 이러한 MCU(600)의 진단 동작에 따른 구동 방법을 좀더 상세히 설명하면 다음과 같다. MCU(600)는 제 2 과전압 검출부(500)로부터의 제 2 검출 신호가 하이 레벨로 입력되면 BMIC(300)로부터의 배터리(100)의 최대 전압(cell max voltage)과 제 2 과전압 검출부(500)의 제 2 기준 전압을 비교한다. 배터리(100)의 최대 전압이 제 2 기준 전압보다 높으면 제 2 과전압 검출부(500)가 정상 동작한 것으로 판단한다. 그런데, 제 2 과전압 검출부(500)로부터의 제 2 검출 신호가 하이 레벨로 입력되고 배터리(100)의 최대 전압이 제 2 기준 전압보다 낮으면 MCU(600)는 배터리(100)의 전압 계측 오류 또는 제 2 과전압 검출부(500)의 이상 발생으로 판단할 수 있다. 즉, 제 2 과전압 검출부(500)의 제 2 기준 전압이 BMIC(300)로부터의 배터리(100)의 최대 전압이 제 2 기준 전압보다 낮으면 BMIC(300) 또는 MCU(600) 등의 오류로 배터리 전압이 잘못 계측된 경우이거나, 제 2 과전압 검출부(500) 또는 그 주변 회로 이상으로 제 2 과전압 검출부(500)로부터 제 2 검출 신호가 잘못 출력되는 경우로 판단될 수 있다.
<043> 또한, MCU(600)는 제 2 과전압 검출부(500)로부터 제 2 검출 신호가 하이 레벨로 입력되는 동시에 제 1 과전압 검출부(400)로부터 제 1 검출 신호가 하이 레벨로 입력되는 경우 제 1 기준 전압이 제 2 기준 전압보다 낮으므로 제 2 과전압 검출부(500)가 정상 동작하는 것으로 판단할 수 있다. 그러나, 제 2 과전압 검출부(500)로부터 제 2 검출 신호가 하이 레벨로 입력되는 동시에 제 1 과전압 검출부(400)로부터 제 1 검출 신호가 로우 레벨로 입력되는 경우 제 1 및 제 2 과전압 검출부(400, 500) 중 적어도 하나가 이상 동작한 것으로 판단할 수 있다. 즉, 과전압 검출부의 이상 발생으로 판단할 수 있다.
<044> 상기한 바와 같이 본 발명의 일 실시 예에 따른 배터리 장치는 BMCI(300)와 MCU(600) 사이에 제 1 및 제 2 과전압 검출부(400, 500)를 구비한다. 즉, 본 발명은 종래에 비해 과전압 검출부가 하나 더 구비된다. 여기서, 제 1 및 제 2 과전압 검출부(400, 500)는 서로 다른 제 1 및 제 2 기준 전압을 가지며, 제 1 기준 전압이 제 2 기준 전압보다 낮은 값을 갖는다. 제 1 및 제 2 과전압 검출부(400, 500)는 모니터링부(200)에 의해 계측된 배터리(100)의 전압을 제 1 및 제 2 기준 전압과 각각 비교하여 제 1 및 제 2 검출 신호를 각각 출력한다. 제 1 및 제 2 과전압 검출부(400, 500)는 배터리 전압이 제 1 및 제 2 기준 전압보다 각각 크면 제 1 및 2 검출 신호를 각각 발생시켜 MCU(600)로 공급한다. MCU(600)는 제 1 및 제 2 검출 신호를 이용하여 BMIC(300)와 제 1 및 제 2 과전압 검출부(400, 500), 그리고 그 주변 회로의 이상을 진단할 수 있다. 즉, MCU(600)는 제 2 과전압 검출부(500)로부터 제 2 검출 신호가 발생되는 경우 BMIC(300)로부터 입력된 배터리(100)의 전압과 제 2 과전압 검출부(500)의 제 2 기준 전압을 비교하여 BMIC(300) 또는 MCU(600)의 계측 오류를 진단할 수 있다. 또한, MCU(600)는 제 2 과전압 검출부(500)로부터 제 2 검출 신호가 하이 레벨로 입력되는 경우 제 1 과전압 검출부(400)로부터의 제 1 검출 신호에 따라 제 1 및 제 2 과전압 검출부(400, 500) 중 적어도 어느 하나의 오류를 진단할 수 있다. 즉, MCU(600)는 제 2 검출 신호가 발생되지 않으면, 즉 제 2 검출 신호가 로우 레벨로 입력되면 BMIC(300), 제 1 및 제 2 과전압 검출부(400, 500), 그리고 MCU(600) 및 그 주변 회로가 정상 동작하는 것으로 판단하고, 제 2 검출 신호가 하이 레벨로 입력되면 진단 동작을 수행한다.
<045> 따라서, 본 발명은 종래 기술에 비해 과전압 검출부의 고장이나 과전압 검출부 주변 회로의 고장에 의한 오검출 문제를 방지할 수 있다. 즉, 서로 다른 기준 전압을 갖는 두개의 과전압 검출부를 이용함으로써 과전압 검출부 자체가 고장나거나 과전압 검출부 주변 회로의 고장에 의해 과전압 검출부가 과전압을 제대로 검출하지 못하는 문제를 방지할 수 있다.
<046> 도 3은 본 발명의 일 실시 예에 따른 배터리 장치의 운용 방법을 설명하기 위한 흐름도이다.
<047> 도 3을 참조하면, 배터리(100)의 상태를 계측하는 과정(S110)과, 배터리(100)의 전압 계측값을 제 1 및 제 2 기준 전압(Vref1, Vref2)과 각각 비교하는 과정(S120)과, 제 2 기준 전압(Vref2)이 배터리 계측 전압보다 높아 제 2 검출 신호가 발생되었는지를 판단하는 과정(S130)과, 제 2 검출 신호가 발생되지 않으면 정상 동작으로 판단하는 과정(S140)과, 제 2 검출 신호가 발생되면 배터리(100)의 최대 전압(Vmax)과 제 2 기준 전압(Vref2)을 비교하는 과정(S150)과, 배터리(100)의 최대 전압(Vmax)이 제 2 기준 전압(Vref2)보다 높으면 제 2 과전압 검출부(500)가 정상 동작한 것으로 판단하는 과정(S160)과, 배터리(100)의 최대 전압이 제 2 기준 전압보다 낮으면 배터리(100)의 전압 계측 오류 또는 제 2 과전압 검출부(500)의 이상 발생으로 판단하는 과정(S170)과, 제 2 검출 신호가 발생되고 제 1 검출 신호가 발생되었는지를 판단하는 과정(S180)과, 제 1 검출 신호가 발생되는 경우 제 2 과전압 검출부(500)가 정상 동작하는 것으로 판단하는 과정(S190)과, 제 1 검출 신호가 발생되지 않은 경우 제 1 및 제 2 과전압 검출부 중 적어도 하나가 이상 동작한 것으로 판단하는 과정(S200)을 포함할 수 있다. 여기서, S150과 S180은 동시에 실시될 수도 있고 순차적으로 실시될 수도 있다. 순차적으로 실시되는 경우 S150이 먼저 실시되고 S180이 나중에 실시될 수도 있고, 이와 반대로 S180이 먼저 실시된 후 S150이 실시될 수도 있다.
<048> 이러한 본 발명의 일 실시 예에 따른 배터리 장치의 운용 방법을 각 과정별로 좀더 상세히 설명하면 다음과 같다.
<049> S110 : 모니터링부(200)는 배터리(100)의 상태를 모니터링한다. 예를 들어, 모니터링부(200)는 배터리(100)의 전류, 전압, 온도 등을 측정할 수 있다. 이때, 모니터링부(200)는 배터리 팩, 배터리 모듈 및 배터리 셀의 상태를 측정할 수 있다. 이를 위해 모니터링부(200)는 적어도 하나의 전류 센서, 적어도 하나의 전압 센서 및 적어도 하나의 온도 센서를 포함할 수 있다. 전류 센서, 전압 센서 및 온도 센서는 배터리(100)의 전류, 전압 및 온도를 주기적으로 측정하고 측정 결과를 BMIC(300)로 제공할 수 있다. 여기서, 전류 센서는 충전 전류의 크기에 상응하는 신호를 생성할 수 있다. 물론, 전류 센서는 충전 전류 뿐만 아니라 방전 전류의 크기도 측정할 수 있다. 또한, 전압 센서는 배터리(100)의 양극과 음극 사이에 인가되는 전압에 상응하는 신호를 생성한다. 전압 센서는 일 예시로서 배터리(100)의 양극 및 음극 단자 사이의 전압 차이에 상응하는 전압 신호를 출력하는 차동 증폭 회로를 포함할 수 있다. 그리고, 온도 센서는 온도 측정에 사용되는 일 예로 써머 커플러일 수 있다. 온도 센서는 배터리(100)의 온도에 상응하는 신호를 생성한다. 또한, 모니터링부(200)는 제 1 및 제 2 과전압 검출부(400, 500)와 연결되어 제 1 및 제 2 과전압 검출부(400, 500)에 전압 측정 결과를 제공할 수 있다. 즉, 전압 센서로부터 측정된 배터리(100)의 전압은 제 1 및 제 2 과전압 검출부(400, 500)로 제공되고, 제 1 및 제 2 과전압 검출부(400, 500)의 과전압 검출에 이용될 수 있다.
<050> 한편, BMIC(300)는 모니터링부(200)에서 측정된 배터리의 상태 신호를 입력하고, 측정된 상태 정보로부터 진단 신호를 생성하여 MCU(600)로 전달한다. 예를 들어, BMIC(300)는 모니터링부(200)로부터 측정된 배터리 전압을 설정 전압 범위와 비교하여 비교 결과에 따른 진단 신호를 생성할 수 있다. 구체적인 예로서, 배터리 전압이 3V 내지 4.5V로 설정된 경우 BMIC(300)는 배터리 전압을 설정 전압 범위와 비교하여 설정 전압 범위 이외의 이상 전압의 경우와 정상 전압인 경우 다른 레벨의 진단 신호를 생성하여 MCU(600)에 전달할 수 있다. 전류의 경우에도 설정 전류 범위 이내인지 벗어났는지를 판단하여 이상 전류를 판단하고 그에 따른 진단 신호를 생성할 수 있다. BMIC(300)와 MCU(600)의 소정의 통신 라인을 통해 연결될 수 있다. 따라서, 진단 신호는 BMIC(300)의 출력단으로부터 통신 라인을 통해 MCU(600)의 입력단으로 전달될 수 있다.
<051> S120 : 모니터링부(200)에 의한 배터리(100)의 전압 계측값을 제 1 및 제 2 과전압 검출부(400, 500)의 제 1 및 제 2 기준 전압(Vref1, Vref2)과 각각 비교한다. 이를 위해 제 1 및 제 2 과전압 검출부(400, 500)는 제 1 및 제 2 기준 전압(Vref1, Vref2)을 각각 가지고 모니터링부(200)로부터 배터리(100)의 전압 계측값을 각각 수신한다. 그리고, 제 1 및 제 2 과전압 검출부(400, 500)는 배터리(100)의 전압과 제 1 및 제 2 기준 전압을 각각 비교한다. 여기서, 제 1 과전압 검출부(400)의 제 1 기준 전압은 제 2 과전압 검출부(500)의 제 2 기준 전압보다 낮은 펄트 레벨(fault level)로 설정될 수 있고, 제 2 기준 전압은 제 1 기준 전압보다 높은 페일 레벨(fail level)로 설정될 수 있다. 한편, 제 1 및 제 2 과전압 검출부(400, 500)는 제 1 및 제 2 기준 전압과 배터리(100) 전압의 비교 결과에 따라 서로 다른 레벨의 제 1 및 제 2 검출 신호를 각각 출력한다. 예를 들어, 제 1 과전압 검출부(400)는 배터리(100)의 전압이 제 1 기준 전압보다 낮으면 로우(low) 레벨의 제 1 검출 신호를 출력하고, 배터리(100)의 전압이 제 1 기준 전압보다 높으면 하이(high) 레벨의 제 1 검출 신호를 출력한다. 또한, 제 2 과전압 검출부(500)는 배터리(100)의 전압이 제 2 기준 전압보다 낮으면 로우(low) 레벨의 제 2 검출 신호를 출력하고, 배터리(100)의 전압이 제 2 기준 전압보다 높으면 하이(high) 레벨의 제 2 검출 신호를 출력한다. 즉, 제 1 및 제 2 과전압 검출부(400, 500)는 배터리 전압이 제 1 및 제 2 기준 전압보다 높은 경우 제 1 및 제 2 검출 신호를 각각 발생시킨다. 제 1 및 제 2 과전압 검출부(400, 500)로부터의 제 1 및 제 2 검출 신호는 MCU(600)로 각각 전달된다.
<052> S130 : MCU(600)는 제 2 과전압 검출부(500)로부터 제 2 검출 신호가 입력되었는지를 판단한다. 즉, 배터리(100)의 전압이 제 2 기준 전압보다 높아 제 2 과전압 검출부(500)가 제 2 검출 신호를 하이(high) 레벨로 발생하여 MCU(600)로 출력하면 MCU(600)는 제 2 검출 신호가 하이 레벨로 입력되었는지 판단한다.
<053> S140 : 제 2 과전압 검출부(500)로부터 제 2 검출 신호가 입력되지 않으면, 즉 배터리(100)의 전압이 제 2 기준 전압보다 낮아 로우 레벨의 제 2 검출 신호가 입력되면 MCU(600)는 정상 동작으로 판단한다. 즉, 이러한 경우 MCU(600)는 BMIC(300), 제 1 및 제 2 과전압 검출부(400, 500), MCU(600), 그리고 그 주변 회로가 정상 동작하는 것으로 판단할 수 있다.
<054> S150 : 제 2 과전압 검출부(500)로부터 제 2 검출 신호가 입력된 것으로 판단되면 MCU(600)는 BMIC(300)로부터의 배터리(100)의 최대 전압(Vmax)과 제 2 과전압 검출부(500)의 제 2 기준 전압(Vref2)을 비교한다.
<055> S160 : 배터리(100)의 최대 전압이 제 2 기준 전압보다 높으면 제 2 과전압 검출부(500)가 정상 동작하는 것으로 판단한다.
<056> S170 : 그런데, 제 2 과전압 검출부(500)로부터의 제 2 검출 신호가 하이 레벨로 입력되고 배터리(100)의 최대 전압이 제 2 기준 전압보다 낮으면 MCU(600)는 배터리(100)의 전압 계측 오류 또는 제 2 과전압 검출부(500)의 이상 발생으로 판단할 수 있다. 즉, BMIC(300)로부터의 배터리(100)의 최대 전압이 제 2 기준 전압보다 낮으면 BMIC(300) 또는 MCU(600) 등의 오류로 배터리 전압이 잘못 계측된 경우이거나, 제 2 과전압 검출부(500) 또는 그 주변 회로 이상으로 제 2 과전압 검출부(500)로부터 제 2 검출 신호가 잘못 출력되는 경우로 판단될 수 있다.
<057> S180 : 또한, MCU(600)는 제 2 과전압 검출부(500)로부터 제 2 검출 신호가 하이 레벨로 입력되는 동시에 제 1 과전압 검출부(400)로부터 제 1 검출 신호가 하이 레벨로 입력되는지를 판단한다.
<058> S190 : 제 2 검출 신호와 동시에 제 1 검출 신호가 하이 레벨로 입력되는 경우 제 2 과전압 검출부(500)가 정상 동작하는 것으로 판단할 수 있다.
<059> S200 : 그러나, 제 2 과전압 검출부(500)로부터 제 2 검출 신호가 하이 레벨로 입력되는 동시에 제 1 과전압 검출부(400)로부터 제 1 검출 신호가 로우 레벨로 입력되는 경우 제 1 및 제 2 과전압 검출부(400, 500) 중 적어도 하나가 이상 동작한 것으로 판단할 수 있다. 즉, 과전압 검출부의 이상 발생으로 판단할 수 있다.
<060> 상기한 바와 같은 본 발명의 기술적 사상은 상기 실시 예에 따라 구체적으로 기술되었으나, 상기 실시 예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주지해야 한다. 또한, 본 발명의 기술분야에서 당업자는 본 발명의 기술 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.
<061> 본 발명에서 사용된 각 구성의 도면부호의 명칭은 다음과 같다.
100 : 배터리 200 : 모니터링부
300 : BMIC 400 : 제 1 과전압 검출부
500 : 제 2 과전압 검출부 600 : MCU

Claims (12)

  1. 배터리의 상태를 진단하는 BMIC(battery monitoring IC);
    배터리 전압을 제 1 기준 전압과 비교하여 제 1 검출 신호를 생성하는 제 1 과전압 검출부;
    상기 배터리 전압을 상기 제 1 기준 전압과 다른 제 2 기준 전압과 비교하여 제 2 검출 신호를 생성하는 제 2 과전압 검출부; 및
    상기 BMIC로부터의 진단 신호에 따라 배터리를 제어하고, 상기 제 1 및 제 2 검출 신호에 따라 장치 내의 이상을 진단하는 MCU;를 포함하는 배터리 관리 장치.
  2. 청구항 1에 있어서,
    상기 제 1 기준 전압은 상기 제 2 기준 전압보다 낮은 배터리 관리 장치.
  3. 청구항 1 또는 청구항 2에 있어서, 상기 제 1 과전압 검출부는 상기 배터리 전압이 상기 제 1 기준 전압보다 높으면 상기 제 1 검출 신호를 생성하고,
    상기 제 2 과전압 검출부는 상기 배터리 전압이 상기 제 1 기준 전압보다 높으면 상기 제 1 검출 신호를 생성하는 배터리 관리 장치.
  4. 청구항 3에 있어서, 상기 MCU는 상기 제 2 검출 신호가 발생되지 않으면, BMIC, 제 1 및 제 2 과전압 검출부, 그리고 그 주변 회로가 정상 동작하는 것으로 판단하는 배터리 관리 장치.
  5. 청구항 3에 있어서, 상기 MCU는 상기 제 2 검출 신호가 발생되는 경우, 배터리의 최대 전압과 상기 제 2 기준 전압을 비교하는 배터리 관리 장치.
  6. 청구항 5에 있어서, 상기 MCU는 상기 배터리의 최대 전압이 상기 제 2 기준 전압보다 높으면 상기 제 2 과전압 검출부의 정상 동작으로 판단하고,
    상기 배터리의 최대 전압이 상기 제 2 기준 전압보다 낮으면 BMIC 또는 MCU의 배터리 전압 계측 오류 또는 상기 제 2 과전압 검출부의 이상 발생으로 판단하는 배터리 관리 장치.
  7. 청구항 5에 있어서, 상기 MCU는 상기 제 2 검출 신호가 발생되는 경우 상기 제 1 검출 신호에 따라 상기 제 1 및 제 2 과전압 검출부 중 적어도 어느 하나의 오류를 판단하는 배터리 관리 장치.
  8. 청구항 7에 있어서, 상기 제 2 검출 신호가 발생되고 상기 제 1 검출 신호가 발생되면 상기 제 2 과전압 검출부가 정상 동작하는 것으로 판단하는 배터리 관리 장치.
  9. 청구항 8에 있어서, 상기 제 2 검출 신호가 발생되고 상기 제 1 검출 신호가 발생되지 않으면 상기 제 1 및 제 2 과전압 검출부 중 적어도 하나가 이상 동작한 것으로 판단하는 배터리 관리 장치.
  10. 배터리의 상태를 계측하는 과정과,
    배터리의 전압 계측값을 제 1 및 제 2 과전압 검출부 각각의 제 1 및 제 2 기준 전압과 각각 비교하는 과정과,
    상기 제 2 기준 전압이 배터리 계측 전압보다 높아 상기 제 2 과전압 검출부로부터 제 2 검출 신호가 발생되었는지를 판단하는 과정과,
    상기 제 2 검출 신호가 발생되지 않으면 정상 동작으로 판단하는 과정과,
    상기 제 2 검출 신호가 발생되면 배터리의 최대 전압과 상기 제 2 기준 전압을 비교하는 과정과,
    상기 배터리의 최대 전압이 상기 제 2 기준 전압보다 높으면 상기 제 2 과전압 검출부가 정상 동작한 것으로 판단하는 과정과,
    상기 배터리의 최대 전압이 상기 제 2 기준 전압보다 낮으면 배터리의 전압 계측 오류 또는 상기 제 2 과전압 검출부의 이상 발생으로 판단하는 과정을 포함하는 배터리 관리 방법.
  11. 청구항 10에 있어서, 상기 제 1 기준 전압은 상기 제 2 기준 전압보다 낮은 배터리 관리 방법.
  12. 청구항 10 또는 청구항 11에 있어서, 상기 제 2 검출 신호가 발생되고 상기 배터리 전압이 상기 제 1 기준 전압보다 높아 상기 제 1 검출 신호가 발생되었는지를 판단하는 과정과,
    상기 제 1 검출 신호가 발생되는 경우 상기 제 2 과전압 검출부가 정상 동작하는 것으로 판단하는 과정과,
    상기 제 1 검출 신호가 발생되지 않은 경우 제 1 및 제 2 과전압 검출부 중 적어도 하나가 이상 동작한 것으로 판단하는 과정을 포함하는 배터리 관리 방법.
PCT/KR2023/009970 2022-07-15 2023-07-12 배터리 관리 장치 및 방법 WO2024014880A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202380013723.2A CN117980759A (zh) 2022-07-15 2023-07-12 电池管理装置及方法
JP2024517544A JP2024535316A (ja) 2022-07-15 2023-07-12 バッテリー管理装置及び方法
EP23839971.1A EP4394414A1 (en) 2022-07-15 2023-07-12 Battery management device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0087606 2022-07-15
KR1020220087606A KR20240010263A (ko) 2022-07-15 2022-07-15 배터리 관리 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2024014880A1 true WO2024014880A1 (ko) 2024-01-18

Family

ID=89537089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009970 WO2024014880A1 (ko) 2022-07-15 2023-07-12 배터리 관리 장치 및 방법

Country Status (5)

Country Link
EP (1) EP4394414A1 (ko)
JP (1) JP2024535316A (ko)
KR (1) KR20240010263A (ko)
CN (1) CN117980759A (ko)
WO (1) WO2024014880A1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080021255A (ko) 2006-09-01 2008-03-07 삼성전자주식회사 과전압 차단 회로, 구동 장치 및 이를 포함하는 액정 표시장치
JP2011002350A (ja) 2009-06-19 2011-01-06 Yazaki Corp 複数組電池の電圧測定装置
KR20160086738A (ko) * 2015-01-12 2016-07-20 주식회사 엘지화학 과전압 방지 회로, 그 제어방법 및 배터리 팩
KR20170134187A (ko) * 2016-05-26 2017-12-06 주식회사 엘지화학 배터리 시스템을 위한 진단 시스템
KR20190010004A (ko) * 2017-07-20 2019-01-30 현대오트론 주식회사 배터리 관리 시스템 및 그것의 동작 방법
KR20190037882A (ko) * 2017-09-29 2019-04-08 현대오트론 주식회사 배터리 관리 시스템 및 그것의 과충전 방지 방법
KR20210049470A (ko) 2019-10-25 2021-05-06 주식회사 엘지화학 배터리 관리 시스템 및 배터리 관리 방법
KR20210051461A (ko) * 2019-10-30 2021-05-10 주식회사 엘지화학 배터리 관리 시스템 및 배터리 셀의 과전압 판단 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080021255A (ko) 2006-09-01 2008-03-07 삼성전자주식회사 과전압 차단 회로, 구동 장치 및 이를 포함하는 액정 표시장치
JP2011002350A (ja) 2009-06-19 2011-01-06 Yazaki Corp 複数組電池の電圧測定装置
KR20160086738A (ko) * 2015-01-12 2016-07-20 주식회사 엘지화학 과전압 방지 회로, 그 제어방법 및 배터리 팩
KR20170134187A (ko) * 2016-05-26 2017-12-06 주식회사 엘지화학 배터리 시스템을 위한 진단 시스템
KR20190010004A (ko) * 2017-07-20 2019-01-30 현대오트론 주식회사 배터리 관리 시스템 및 그것의 동작 방법
KR20190037882A (ko) * 2017-09-29 2019-04-08 현대오트론 주식회사 배터리 관리 시스템 및 그것의 과충전 방지 방법
KR20210049470A (ko) 2019-10-25 2021-05-06 주식회사 엘지화학 배터리 관리 시스템 및 배터리 관리 방법
KR20210051461A (ko) * 2019-10-30 2021-05-10 주식회사 엘지화학 배터리 관리 시스템 및 배터리 셀의 과전압 판단 방법

Also Published As

Publication number Publication date
EP4394414A1 (en) 2024-07-03
JP2024535316A (ja) 2024-09-30
KR20240010263A (ko) 2024-01-23
CN117980759A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
WO2010101416A2 (ko) 배터리 팩의 전류측정부 이상 진단 방법 및 장치
WO2012165879A2 (en) Secondary battery management system and method for exchanging battery cell information
WO2011102576A1 (ko) 셀 밸런싱 회로의 이상 진단 장치 및 방법
WO2022019481A1 (ko) 통신 오류의 원인을 진단하기 위한 슬레이브 bms, 마스터 bms 및 배터리 팩
JP3196612B2 (ja) 組電池の監視装置
KR20130137389A (ko) 배터리 팩의 전류센서 이상 진단 장치 및 방법
WO2021049753A1 (ko) 배터리 진단 장치 및 방법
WO2021107323A1 (ko) 배터리 셀 이상 퇴화 진단 장치 및 방법
EP3882944A1 (en) Pyro igniter circuit and testing method
WO2021066394A1 (ko) 병렬 연결 셀의 연결 고장 검출 방법 및 시스템
WO2023136455A1 (ko) 배터리 상태 추정 방법 및 그 방법을 제공하는 배터리 시스템
WO2013115437A1 (ko) 배터리 팩의 고장 진단 방법 및 장치, 이를 이용한 전력 릴레이 어셈블리
WO2022265277A1 (ko) 배터리 관리 장치 및 방법
WO2019088504A1 (ko) 배터리 퇴화 진단 장치 및 방법
WO2021096043A1 (ko) 모듈 배터리 시스템
WO2017090980A1 (ko) 고전압 이차전지의 퓨즈 진단 장치
WO2024014880A1 (ko) 배터리 관리 장치 및 방법
WO2022177241A2 (ko) 배터리 관리 장치
WO2022019600A1 (ko) 이상 셀 진단 방법 및 이를 적용한 배터리 시스템
US20230084779A1 (en) Battery system and protection method thereof
WO2022080746A1 (ko) 배터리 상태 진단 장치 및 방법
WO2021125678A1 (ko) 병렬 배터리 릴레이 진단 장치 및 방법
WO2022080699A1 (ko) 배터리 시스템의 열 이벤트 감지 방법 및 이를 적용한 배터리 시스템
WO2015122746A1 (ko) 고장 발생 여부의 분석이 가능한 신호를 출력하는 배터리 관리 시스템 및 이를 포함하는 배터리 구동 시스템
WO2019124813A1 (ko) 메인 제어부 이상 진단 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024517544

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202380013723.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18695729

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023839971

Country of ref document: EP

Ref document number: 23839971.1

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023839971

Country of ref document: EP

Effective date: 20240327