WO2023136455A1 - 배터리 상태 추정 방법 및 그 방법을 제공하는 배터리 시스템 - Google Patents

배터리 상태 추정 방법 및 그 방법을 제공하는 배터리 시스템 Download PDF

Info

Publication number
WO2023136455A1
WO2023136455A1 PCT/KR2022/018435 KR2022018435W WO2023136455A1 WO 2023136455 A1 WO2023136455 A1 WO 2023136455A1 KR 2022018435 W KR2022018435 W KR 2022018435W WO 2023136455 A1 WO2023136455 A1 WO 2023136455A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
state
identification information
charge
estimation
Prior art date
Application number
PCT/KR2022/018435
Other languages
English (en)
French (fr)
Inventor
최건
김동현
홍성주
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22920784.0A priority Critical patent/EP4382933A1/en
Priority to CN202280061417.1A priority patent/CN117957453A/zh
Publication of WO2023136455A1 publication Critical patent/WO2023136455A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/003Measuring mean values of current or voltage during a given time interval
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0038Circuits for comparing several input signals and for indicating the result of this comparison, e.g. equal, different, greater, smaller (comparing pulses or pulse trains according to amplitude)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for estimating a state of a battery, such as SOC (State of Charge), SOH (State of Health), SOP (State of Power), etc. (hereinafter, SOX), and a battery system that provides the method. it's about
  • Batteries mounted in high-output products such as electric vehicles or hybrid vehicles include a plurality of cells connected in series or parallel to supply a high voltage to a load. Since the performance of a battery in an eco-friendly vehicle is directly related to the performance of the vehicle, the role of a battery management system (BMS) that efficiently manages the state of the battery is important.
  • BMS battery management system
  • the BMS is a battery current flowing through the battery, a plurality of cell voltages of a plurality of battery cells, and battery temperature (hereinafter, battery data) based on the state of charge (SOC, state of charge), health state ( SOH, State of Health), output state (SOP, State of Power), etc. are estimated, and the state of the battery is diagnosed based on the estimated result. If an error occurs as a result of diagnosing the state of the battery, the BMS transmits the diagnosis result to the upper system (eg, car, bike, ESS, etc.) in which the battery system is mounted to ensure overall safety and safety of the upper system. Allow performance to be managed.
  • the upper system eg, car, bike, ESS, etc.
  • the BMS includes a SOC estimation model, a SOH estimation model, and a SOP estimation model, and each estimation model determines the state of charge (SOC), state of health (SOH), and state of output (SOP) of the battery based on battery data. guess
  • the present invention provides a battery state estimation method for estimating a battery state (SOC, SOH, SOP, etc.) by reflecting weights optimized for an upper system equipped with a battery system in a plurality of estimation models, and a battery system providing the method. is to provide
  • a battery system includes a battery including a plurality of battery cells, a communication unit configured to communicate with a system in which the battery system is mounted and receiving identification information of the system, a plurality of cell voltages of the plurality of battery cells, A monitoring unit for collecting battery information of at least one of current and temperature of the battery, a plurality of batteries for estimating the state of charge (SOC) of each of the plurality of battery cells based on the battery information according to a predetermined algorithm.
  • SOC state of charge
  • An SOC estimation model a storage unit for storing a first weight corresponding to the identification information, and applying the first weight to a plurality of states of charge estimated by the plurality of SOC estimation models for each of the plurality of battery cells and a control unit that calculates an average value of the first state of charge by summing the results.
  • the control unit calculates an average value of a second state of charge by summing a result of applying a second weight corresponding to the identification information and a predetermined estimation condition to the plurality of states of charge for each of the plurality of battery cells.
  • the estimation condition may be determined according to a result of comparing each of the collected cell voltages with a predetermined reference value.
  • the storage unit may include a plurality of identification information for each of a plurality of systems mountable to the battery system, a plurality of first weights corresponding to each of the plurality of identification information, and a plurality of values corresponding to each of the plurality of identification information and the estimation condition.
  • the second weight of may be stored.
  • a battery system including a plurality of battery cells, a communication unit for communicating with a system in which the battery system is mounted and receiving identification information of the system, a plurality of cell voltages of the plurality of battery cells, A monitoring unit that collects battery information of at least one of current and temperature of the battery, and a plurality of cells that estimate the state of health (SOH) of each of the plurality of battery cells based on the battery information according to a predetermined algorithm.
  • a storage unit for storing an SOH estimation model of , a first weight corresponding to the identification information, and a plurality of health states estimated by the plurality of SOH estimation models for each of the plurality of battery cells. and a controller that calculates an average value of the first health state by summing up the applied results.
  • the control unit calculates an average value of the second health state by adding a result of applying a second weight corresponding to the identification information and a predetermined estimation condition to the plurality of health states for each of the plurality of battery cells.
  • the estimation condition may be determined according to a result of comparing each of the collected cell voltages with a predetermined reference value.
  • the storage unit may include a plurality of identification information for each of a plurality of systems mountable to the battery system, a plurality of first weights corresponding to each of the plurality of identification information, and a plurality of values corresponding to each of the plurality of identification information and the estimation condition.
  • the second weight of may be stored.
  • a method for estimating a battery state includes determining a first weight corresponding to identification information of a system in which a battery system is mounted, and determining a plurality of weights included in a battery based on battery information according to a predetermined algorithm.
  • the determining of the weight may include determining a second weight corresponding to identification information of the system and a predetermined estimation condition, and the calculating may include the plurality of states of charge for each of the plurality of battery cells. An average value of the second state of charge may be calculated by summing the result of applying the second weight to .
  • the estimation condition may be determined according to a result of comparing each of the plurality of cell voltages with a predetermined reference value.
  • reliability of an estimated result can be increased by estimating a battery state by reflecting weights optimized for an environment in which a battery is used, that is, a higher-level system in which a battery system is installed, in a plurality of estimation models.
  • the reliability of the estimated result can be remarkably increased. .
  • FIG. 1 is a conceptual diagram illustrating an upper system in which a battery system according to an exemplary embodiment is mounted.
  • FIG. 2 is a block diagram illustrating the battery system of FIG. 1 in detail.
  • FIG. 3 is a block diagram illustrating in detail the functions of the controller (MCU) of FIG. 2 .
  • FIG. 4 is a flowchart illustrating a method for estimating a battery state according to another embodiment.
  • FIG. 1 is a conceptual diagram illustrating an upper system in which a battery system according to an embodiment is mounted
  • FIG. 2 is a block diagram illustrating the battery system of FIG. 1 in detail
  • FIG. 3 is a function of a control unit (MCU) of FIG. 2 It is a block diagram explaining in detail.
  • MCU control unit
  • the upper system 1 is a system in which the battery system 2 is mounted.
  • the upper system 1 may include all systems requiring batteries.
  • the upper system 1 may include a car, a bike, an energy storage system (ESS), and the like.
  • ESS energy storage system
  • the battery system 2 includes a customized State of X (SOX) estimation algorithm in the upper system 1.
  • SOX State of X
  • the battery system 2 identifies the upper system 1 in which the current battery system 2 is mounted, and according to the corresponding state of X (SOX) estimation algorithm, the battery state (SOX, State) of X) is estimated.
  • the battery system 2 charges a battery in which the characteristics of the individual upper system 1 are well reflected.
  • the state (SOC, State of Charge), health state (SOH, State of Health), output state (SOP, State of Power), etc. can be estimated. That is, the battery system 2 according to an embodiment may estimate the battery state (SOX, State of X) with high precision.
  • the battery system 2 includes a battery 10, a relay 20, a current sensor 30, and a battery management system (BMS) 40.
  • BMS battery management system
  • the battery 10 may include a plurality of battery cells (Cell1-Celln) electrically connected in series and parallel.
  • the battery cell may be a rechargeable secondary battery.
  • a predetermined number of battery cells are connected in series to form a battery module, a predetermined number of battery modules are connected in series to form a battery pack, and a predetermined number of battery packs are connected in parallel to form a battery bank ( battery bank) to supply desired power.
  • 1 shows a battery 10 in which a plurality of battery cells (Cell1-Celln) are connected in series, but is not limited thereto, and the battery 10 may be configured in units of battery modules, battery packs, or battery banks. .
  • Each of the plurality of battery cells (Cell1-Celln) is electrically connected to the BMS 40 through wires.
  • the BMS 40 collects and analyzes various information about battery cells including information about a plurality of battery cells (Cell1-Celln) to control charging and discharging of the battery cells, protection operation, etc., and operation of the relay 20. can control.
  • the battery 10 includes a plurality of battery cells (Cell1-Celln) connected in series, and is connected between two output terminals OUT1 and OUT2 of the battery system 2, and the battery system 2
  • a relay 20 is connected between the positive electrode and the first output terminal OUT1
  • a current sensor 30 is connected between the negative electrode of the battery system 2 and the second output terminal OUT2.
  • the relay 20 controls electrical connection between the battery system 2 and an external device.
  • the relay 20 When the relay 20 is turned on, the battery system 2 and the external device are electrically connected to charge or discharge, and when the relay 20 is turned off, the battery system 2 and the external device are electrically separated.
  • the external device may be a charger in a charging cycle in which power is supplied to the battery 10 to charge it, and a load in a discharging cycle in which the battery 10 discharges power to the external device.
  • the current sensor 30 is connected in series to a current path between the battery 10 and an external device.
  • the current sensor 30 may measure the battery current flowing through the battery 10 and transmit the measurement result to the BMS 40 .
  • the battery current may correspond to the cell current.
  • the battery current may be a charging current or a discharging current.
  • the battery system 2 may further include a temperature sensor (not shown) for measuring the temperature of the battery 10 .
  • the temperature sensor may measure the temperature of the battery 10 and transmit the measurement result to the BMS 40 .
  • the temperature of each of the plurality of battery cells (Cell1-Celln) may be estimated based on the temperature of the battery 10 .
  • the BMS 40 includes a monitoring unit 41, a storage unit 43, a communication unit 45, and a control unit 47.
  • the monitoring unit 41 is electrically connected to an anode and a cathode of each of the plurality of battery cells Cell1 to Celln, and measures a cell voltage of each of the plurality of battery cells Cell1 to Celln.
  • the battery current value measured by the current sensor 30 and the battery temperature value measured by the temperature sensor may be transmitted to the monitoring unit 41 .
  • the monitoring unit 41 transfers information about the measured cell voltage, battery current, and battery temperature to the controller 47 .
  • the monitoring unit 41 measures the cell voltage of each of the plurality of battery cells (Cell1-Celln) every predetermined cycle during a rest period in which charging and discharging does not occur, and based on the measured cell voltage The cell current can be calculated.
  • the monitoring unit 41 may transmit the cell voltage and cell current of each of the plurality of battery cells Cell1 to Celln to the control unit 47 .
  • the storage unit 43 stores system identification information (APP ID), weights, a plurality of estimation models for estimating a battery state (SOX, State of X), and battery information.
  • the battery state (SOX, State of X) includes the battery cell's state of charge (SOC, State of Charge), the battery cell's state of health (SOH, State of Health), the battery cell's output state (SOP, State of Power), etc. can include
  • the battery information may include battery-related information such as cell voltage, battery current, and battery temperature.
  • the storage unit 43 may store a plurality of SOC estimation models for estimating SOC of each of a plurality of battery cells included in the battery 10 based on battery information according to a predetermined algorithm.
  • a first SOC estimation model and a second SOC estimation model that is, two SOC estimation models are shown, but are not limited thereto, and the BMS 40 may include three or more SOC estimation models.
  • the storage unit 43 is a first SOC estimation model for estimating the state of charge (SOC) according to the conventionally well-known Coulomb Counting Method, OCV (Open Circuit Voltage Method) )-SOC relationship, a second SOC estimation model for estimating the state of charge (SOC), a third SOC estimation model for estimating the state of charge (SOC) based on the terminal voltage, and the like may be stored.
  • SOC state of charge
  • OCV Open Circuit Voltage Method
  • the storage unit 43 may store a plurality of SOH estimation models for estimating the state of health (SOH) of each of a plurality of battery cells included in the battery 10 based on battery information according to a predetermined algorithm.
  • 3 shows a first SOH estimation model and a second SOH estimation model, that is, two SOH estimation models, but is not limited thereto, and the BMS 40 may include three or more SOH estimation models.
  • the storage unit 43 is a first SOH estimation model for estimating the state of health (SOH) based on the well-known OCV-SOH relationship, and the health based on the SOC-SOH relationship.
  • a second SOH estimation model for estimating the state of health (SOH) may be stored.
  • SOH state of health
  • SOH state of health
  • DCIR Direct Current Internal Resistance
  • the storage unit 43 may store a plurality of SOP estimation models for estimating the output state (SOP) of each of a plurality of battery cells included in the battery 10 based on battery information according to a predetermined algorithm.
  • 3 shows a first SOP estimation model and a second SOP estimation model, that is, two SOP estimation models, but is not limited thereto, and the BMS 40 may include three or more SOP estimation models.
  • the storage unit 43 stores a first SOP estimation model, current data, and voltage data for estimating an output state (SOP) based on DCIR (DCIR), which is widely known in the art.
  • a third SOP estimation model for estimating the output state SOP may be stored.
  • the system identification information may be identification information for distinguishing a system in which the battery system 2 is mounted.
  • the weight may be a value previously set in the upper system 1 and stored in the storage unit 43 in order to estimate a customized battery state SOX.
  • the weight may include a plurality of first weights corresponding to the system identification information (APP ID).
  • the weight may include system identification information (APP ID) and a plurality of second weights corresponding to a predetermined estimation condition. A more detailed description will be given with the control unit 47 below.
  • the estimation condition may be a condition reflecting the current state of the battery cell.
  • the estimation condition may be determined according to a result of comparing a cell voltage of a battery cell with a predetermined reference value.
  • the estimation condition may include a condition determined by a cell voltage of a battery cell, a battery current, or a battery temperature.
  • the estimation condition is not limited to cell voltage, battery current, and battery temperature, and may include various conditions reflecting the current state of the battery 10 or battery cell.
  • the communication unit 45 communicates with the upper system 1 and receives identification information of the upper system 1 (hereinafter referred to as system identification information).
  • system identification information For example, the control unit 47 may store the system identification information (APP ID) received by the communication unit 45 in the storage unit 43 .
  • the control unit 47 determines a weight corresponding to at least one of the system identification information (APP ID) received through the communication unit 45 and a predetermined estimation condition, and estimates the battery state SOX based on the determined weight. .
  • APP ID system identification information
  • the controller 47 includes a first module 471 for estimating the state (SOX) of the battery 10 and a first module 471 for diagnosing the battery 10 according to a predetermined criterion based on the estimated value. It may include 2 modules (473).
  • the first module 471 determines a weight corresponding to at least one of system identification information (APP ID) and a predetermined estimation condition.
  • the first module 471 applies the determined weight to a plurality of estimation results estimated by a plurality of SOX estimation models, and calculates an average value by summing the plurality of estimation results to which the weights are applied.
  • APP ID system identification information
  • Table 1 below is an example of a plurality of first weights corresponding to predetermined system identification information (APP ID).
  • the first weight may be a weight considering only the system identification information (APP ID), and the corresponding value may be different for each estimation model as shown in Table 1 below.
  • the first module 471 applies a first weight of 0.7 corresponding to the first SOC value A1 estimated by the first SOC estimation module and , by applying a first weight of 0.3 corresponding to the second SOC value A2 estimated by the second SOC estimation module , the average value of the state of charge (SOC) for the first battery cell ( ) can be calculated.
  • the first module 471 may calculate the average value Aave of the state of charge (SOC) of the first battery cell as 51.2%. In the same way, the first module 471 may calculate the average value Aave of the state of charge (SOC) of each of the plurality of battery cells, such as the second battery cell and the third battery cell.
  • Table 2 below is an example of a plurality of second weights corresponding to predetermined system identification information (APP ID) and estimation conditions.
  • the second weight may be a weight considering both system identification information (APP ID) and estimation conditions, and the corresponding value may be different for each estimation model as shown in Table 2 below.
  • the estimation condition is described as a condition determined according to a comparison result between the cell voltage and a predetermined reference value (eg, 3.7V), but as described above, the estimation condition is not limited to the cell voltage and the reference value. no.
  • a predetermined reference value eg, 3.7V
  • the first module 471 applies a second weight of 0.7 corresponding to the first SOC value A1 estimated by the first SOC estimation module and , by applying a second weight of 0.3 corresponding to the second SOC value A2 estimated by the second SOC estimation module , the average value of the state of charge (SOC) for the first battery cell ( ) can be calculated.
  • the first module 471 may calculate the average value Aave of the state of charge (SOC) of the first battery cell as 51.2%. In the same way, the first module 471 may calculate the average value Aave of the state of charge (SOC) of each of the plurality of battery cells, such as the second battery cell and the third battery cell.
  • the first module 471 applies a second weight of 0.5 corresponding to the first SOC value A1 estimated by the first SOC estimation module and , by applying a second weight of 0.5 corresponding to the second SOC value A2 estimated by the second SOC estimation module , the average value of the state of charge (SOC) for the first battery cell ( ) can be calculated.
  • the first module 471 may calculate the average value Aave of the state of charge (SOC) of the first battery cell as 52%. In the same way, the first module 471 may calculate the average value Aave of the state of charge (SOC) of each of the plurality of battery cells, such as the second battery cell and the third battery cell.
  • the first module 471 uses the plurality of SOH estimation models and the plurality of SOP estimation models shown in FIG. 3 in the same manner as described above, and the average value of the state of health (SOH) for each of the plurality of battery cells ( Bave) and the average value (Cave) of the output state (SOP) can be calculated.
  • the second module 473 determines the average value of the battery state (SOX) calculated by the first module 471 as the battery state (SOX) value, and performs fault diagnosis for the battery 10 based on this value.
  • the second module 473 may diagnose the battery 10 as a failure state when the average value (Bave) of the state of health (SOH) is smaller than a preset reference value.
  • FIG. 4 is a flowchart illustrating a method for estimating a battery state according to another embodiment.
  • the BMS 40 determines identification information (APP ID) of the upper system 1 in which the battery system 2 is mounted and weights corresponding to predetermined estimation conditions (S100).
  • APP ID identification information
  • S100 predetermined estimation conditions
  • the BMS 40 may first determine a first weight or a second weight based on a battery state to be estimated (SOX), system identification information (APP ID), and whether estimation conditions are applied.
  • SOX battery state to be estimated
  • APP ID system identification information
  • the BMS 40 when the battery state (SOX) is estimated by considering only the identification information (APP ID) of the upper system 1 in which the battery system 2 is mounted, the BMS 40 stores the storage unit 43 A first weight may be determined from the pre-stored Table 1.
  • the BMS 40 determines the first SOC estimated by the first SOC estimating module.
  • a first weight (0.7) to be applied to the value A1 and a first weight (0.3) corresponding to the second SOC value A2 estimated by the second SOC estimation module may be determined.
  • the BMS 40 when estimating the battery state (SOX) in consideration of the identification information (APP ID) and estimation conditions of the upper system 1 in which the battery system 2 is mounted, the BMS 40 is a storage unit ( 43), the second weight may be determined from Table 2 previously stored.
  • the first SOC estimation module estimates the first A second weight 0.5 to be applied to the SOC value A1 and a second weight 0.5 corresponding to the second SOC value A2 estimated by the second SOC estimation module may be determined.
  • the BMS 40 provides information on the battery state SOX for each of a plurality of battery cells from each of a plurality of SOX estimation models for estimating the battery state SOX based on the battery information according to a predetermined algorithm.
  • Collect (S200) Collect (S200).
  • the BMS 40 provides information on a first SOC value A1 estimated by the first SOC estimation module and a second SOC value A2 estimated by the second SOC estimation module. can be collected.
  • the BMS 40 may collect information on the first SOH value B1 estimated by the first SOH estimation module and the second SOH value B2 estimated by the second SOH estimation module.
  • the BMS 40 may collect information on the first SOP value C1 estimated by the first SOP estimation module and the second SOP value C2 estimated by the second SOP estimation module. there is.
  • the BMS 40 calculates an average value of the battery states SOX by summing the results of applying weights to each of the plurality of battery states SOX (S300).
  • the BMS 40 applies a second weight of 0.5 corresponding to the first SOC value A1 estimated by the first SOC estimation module and , by applying a second weight of 0.5 corresponding to the second SOC value A2 estimated by the second SOC estimation module , the average value of the state of charge (SOC) for the first battery cell ( ) can be calculated.
  • the BMS 40 calculates the average value Aave of the SOC of the first battery cell. can be calculated as 52%.
  • the BMS 40 may diagnose a faulty state of the battery, determine whether to perform cell balancing, and the like, based on the average value of the estimated battery state (SOX).
  • the battery 10 has a state of charge (SOC), state of health (SOH), and state of output (SOP) according to the environment in which it is used, that is, the upper system 1 and the current state of the battery (cell voltage, cell temperature, etc.)
  • SOC state of charge
  • SOH state of health
  • SOP state of output
  • the current state (SOX) of the battery 10 can be estimated with higher precision by applying a weight reflecting the situation as described above to the result estimated by the plurality of estimation models as well as using a plurality of estimation models. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은, 배터리의 상태를 추정하는 방법 및 그 방법을 제공하는 배터리 시스템에 관한 것으로, 본 발명의 배터리 시스템은, 복수의 배터리 셀을 포함하는 배터리, 배터리 시스템이 탑재되는 시스템과 통신하여 상기 시스템의 식별정보를 수신하는 통신부, 상기 복수의 배터리 셀의 복수의 셀 전압, 상기 배터리의 전류 및 온도 중 적어도 하나의 배터리 정보를 수집하는 모니터링부, 소정의 알고리즘에 따라 상기 배터리 정보에 기초하여 상기 복수의 배터리 셀 각각의 충전상태(SOC, State of Charge)를 추정하는 복수의 SOC 추정모델과, 상기 식별정보에 대응하는 제1 가중치를 저장하는 저장부, 그리고 상기 복수의 배터리 셀 각각에 대하여, 상기 복수의 SOC 추정모델이 추정한 복수의 충전상태에 상기 제1 가중치를 적용한 결과를 합산하여 제1 충전상태의 평균값을 산출하는 제어부를 포함한다.

Description

배터리 상태 추정 방법 및 그 방법을 제공하는 배터리 시스템
관련 출원(들)과의 상호 인용
본 출원은 2022년 01월 14일자 한국 특허 출원 제10-2022-0005739호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은, 배터리의 SOC(State of Charge), SOH(State of Health), SOP(State of Power) 등(이하, SOX)과 같은 배터리의 상태를 추정하는 방법 및 그 방법을 제공하는 배터리 시스템에 관한 것이다.
전기 자동차 또는 하이브리드 자동차와 같이 고출력 제품에 탑재되는 배터리는 부하에 고전압을 공급하여야 하므로 직렬 또는 병렬 연결된 다수의 셀을 포함한다. 친환경 자동차에 있어 배터리의 성능은 곧 자동차의 성능과 직결되는 문제이므로 배터리의 상태를 효율적으로 관리하는 배터리 관리 시스템(Battery Management System, 이하 BMS)의 역할이 중요하다.
BMS는, 배터리에 흐르는 배터리 전류, 복수의 배터리 셀의 복수의 셀 전압 및 배터리 온도 등(이하 배터리 데이터)에 기초하여 배터리(또는 배터리 셀)의 충전상태(SOC, State of Charge), 건강상태(SOH, State of Health), 출력상태(SOP, State of Power) 등을 추정하고, 추정된 결과에 기초하여 배터리의 상태를 진단한다. 배터리의 상태를 진단한 결과 이상(error)이 발행하는 경우, BMS는, 진단 결과를 배터리 시스템이 탑재된 상위 시스템(예를 들어, 자동차, 바이크, ESS 등)에 전송하여 상위 시스템의 전반적인 안전 및 성능이 관리될 수 있도록 한다.
한편, 배터리 셀의 비선형성으로 인해, 배터리의 충전상태(SOC), 건강상태(SOH), 출력상태(SOP) 등은 직접 측정이 불가능하다. 이에, BMS는, SOC 추정모델, SOH 추정모델, SOP 추정모델들을 포함하고, 각 추정모델들은 배터리 데이터에 기반하여 배터리의 충전상태(SOC), 건강상태(SOH), 출력상태(SOP) 등을 추정한다.
그러나, 직접적인 측정 방법이 아니라 간접적인 추정 방법으로 도출된 결과에 기초하여 배터리를 진단함으로써, 진단 결과를 신뢰하기 어려운 문제가 있다. 이를 해결하기 위해, 최근 복수의 추정모델에 가중치를 반영하여 충전상태(SOC) 등을 추정하는 방법이 사용되고 있다. 그러나, 이 또한, 배터리 시스템이 탑재된 상위 시스템의 종류나 상태 등을 고려하지 않고 일률적으로 정해진 가중치를 반영함으로써, 추정 방법에 대한 신뢰도 문제를 근본적으로 해결하지 못하고 있다.
본 발명은, 배터리 시스템이 탑재된 상위 시스템에 최적화된 가중치를 복수의 추정모델에 반영하여 배터리의 상태(SOC, SOH, SOP 등)를 추정하는 배터리 상태 추정 방법 및 그 방법을 제공하는 배터리 시스템을 제공하는 것이다.
본 발명의 일 특징에 따른 배터리 시스템은, 복수의 배터리 셀을 포함하는 배터리, 배터리 시스템이 탑재되는 시스템과 통신하여 상기 시스템의 식별정보를 수신하는 통신부, 상기 복수의 배터리 셀의 복수의 셀 전압, 상기 배터리의 전류 및 온도 중 적어도 하나의 배터리 정보를 수집하는 모니터링부, 소정의 알고리즘에 따라 상기 배터리 정보에 기초하여 상기 복수의 배터리 셀 각각의 충전상태(SOC, State of Charge)를 추정하는 복수의 SOC 추정모델과, 상기 식별정보에 대응하는 제1 가중치를 저장하는 저장부, 그리고 상기 복수의 배터리 셀 각각에 대하여, 상기 복수의 SOC 추정모델이 추정한 복수의 충전상태에 상기 제1 가중치를 적용한 결과를 합산하여 제1 충전상태의 평균값을 산출하는 제어부를 포함한다.
상기 제어부는, 상기 복수의 배터리 셀 각각에 대하여, 상기 식별정보 및 기 설정된 소정의 추정조건에 대응하는 제2 가중치를 상기 복수의 충전상태에 적용한 결과를 합산하여 제2 충전상태의 평균값을 산출할 수 있다.
상기 추정조건은, 상기 수집된 복수의 셀 전압 각각을 소정의 기준값을 비교한 결과에 따라 결정될 수 있다.
상기 저장부는, 상기 배터리 시스템이 탑재 가능한 복수의 시스템 각각에 대한 복수의 식별정보, 상기 복수의 식별정보 각각에 대응하는 복수의 제1 가중치, 상기 복수의 식별정보 및 상기 추정조건 각각에 대응하는 복수의 제2 가중치가 저장될 수 있다.
본 발명의 다른 특징에 따른 배터리 시스템은, 복수의 배터리 셀을 포함하는 배터리, 배터리 시스템이 탑재되는 시스템과 통신하여 상기 시스템의 식별정보를 수신하는 통신부, 상기 복수의 배터리 셀의 복수의 셀 전압, 상기 배터리의 전류, 및 온도 중 적어도 하나의 배터리 정보를 수집하는 모니터링부, 소정의 알고리즘에 따라 상기 배터리 정보에 기초하여 상기 복수의 배터리 셀 각각의 건강상태(SOH, State of Health)를 추정하는 복수의 SOH 추정모델과, 상기 식별정보에 대응하는 제1 가중치를 저장하는 저장부, 그리고 상기 복수의 배터리 셀 각각에 대하여, 상기 복수의 SOH 추정모델이 추정한 복수의 건강상태에 상기 제1 가중치를 적용한 결과를 합산하여 제1 건강상태의 평균값을 산출하는 제어부를 포함한다.
상기 제어부는, 상기 복수의 배터리 셀 각각에 대하여, 상기 식별정보 및 기 설정된 소정의 추정조건에 대응하는 제2 가중치를 상기 복수의 건강상태에 적용한 결과를 합산하여 제2 건강상태의 평균값을 산출할 수 있다.
상기 추정조건은, 상기 수집된 복수의 셀 전압 각각을 소정의 기준값과 비교한 결과에 따라 결정될 수 있다.
상기 저장부는, 상기 배터리 시스템이 탑재 가능한 복수의 시스템 각각에 대한 복수의 식별정보, 상기 복수의 식별정보 각각에 대응하는 복수의 제1 가중치, 상기 복수의 식별정보 및 상기 추정조건 각각에 대응하는 복수의 제2 가중치가 저장될 수 있다.
본 발명의 또 다른 특징에 따른 배터리 상태 추정 방법은, 배터리 시스템이 탑재되는 시스템의 식별정보에 대응하는 제1 가중치를 결정하는 단계, 소정의 알고리즘에 따라 배터리 정보에 기초하여 배터리에 포함된 복수의 배터리 셀 각각의 충전상태(SOC, State of Charge)를 추정하는 복수의 SOC 추정모델로부터 복수의 충전상태를 수신하는 단계, 그리고 상기 복수의 배터리 셀 각각에 대하여, 상기 복수의 충전상태에 상기 제1 가중치를 적용한 결과를 합산하여 제1 충전상태의 평균값을 산출하는 단계를 포함하고, 상기 배터리 정보는, 상기 복수의 배터리 셀의 복수의 셀 전압, 상기 배터리의 전류 및 온도 중 적어도 하나를 포함한다.
상기 가중치를 결정하는 단계는, 상기 시스템의 식별정보 및 기 설정된 소정의 추정조건에 대응하는 제2 가중치를 결정하고, 상기 산출하는 단계는, 상기 복수의 배터리 셀 각각에 대하여, 상기 복수의 충전상태에 상기 제2 가중치를 적용한 결과를 합산하여 제2 충전상태의 평균값을 산출할 수 있다.
상기 추정조건은, 상기 복수의 셀 전압 각각을 소정의 기준값과 비교한 결과에 따라 결정될 수 있다.
본 발명은, 배터리가 사용되는 환경 즉, 배터리 시스템이 탑재된 상위 시스템에 최적화된 가중치를 복수의 추정모델에 반영하여 배터리의 상태를 추정함으로써, 추정된 결과의 신뢰도를 높일 수 있다.
본 발명은, 배터리 시스템이 탑재된 상위 시스템뿐만 아니라 배터리의 현재 상태(셀 전압 등)까지 고려한 가중치를 복수의 추정모델에 반영하여 배터리의 상태를 추정함으로써, 추정된 결과의 신뢰도를 현저히 높일 수 있다.
도 1은 일 실시예에 따른 배터리 시스템이 탑재되는 상위 시스템을 설명하는 개념도이다.
도 2는 도 1의 배터리 시스템을 상세하게 설명하는 블록도이다.
도 3은 도 2의 제어부(MCU)의 기능을 상세하게 설명하는 블록도이다.
도 4는 다른 실시예에 따른 배터리 상태 추정 방법을 설명하는 흐름도이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 동일하거나 유사한 구성요소에는 동일, 유사한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및/또는 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도 1은 일 실시예에 따른 배터리 시스템이 탑재되는 상위 시스템을 설명하는 개념도이고, 도 2는 도 1의 배터리 시스템을 상세하게 설명하는 블록도이며, 도 3은 도 2의 제어부(MCU)의 기능을 상세하게 설명하는 블록도이다.
도 1을 참고하면, 상위 시스템(1)은 배터리 시스템(2)이 탑재되는 시스템이다.
상위 시스템(1)은 배터리가 필요한 모든 시스템을 포함할 수 있다. 예를 들어, 상위 시스템(1)은 자동차, 바이크, 에너지저장시스템(ESS, Energy Storage System) 등을 포함할 수 있다.
배터리 시스템(2)은, 상위 시스템(1)에 맞춤형 SOX(State of X) 추정 알고리즘을 포함한다. 일 실시예에 따라, 배터리 시스템(2)은, 현재 배터리 시스템(2)이 탑재된 상위 시스템(1)을 식별하고, 그에 대응하는 SOX(State of X) 추정 알고리즘에 따라 배터리 상태(SOX, State of X)를 추정한다.
그러면, 다양한 상위 시스템(1)에 사용 가능한 표준 배터리가 특정 상위 시스템(1)에 탑재되어 사용되는 경우에도, 배터리 시스템(2)은, 개별 상위 시스템(1)의 특징이 잘 반영되는 배터리의 충전상태(SOC, State of Charge), 건강상태(SOH, State of Health), 출력상태(SOP, State of Power) 등을 추정할 수 있다. 즉, 일 실시예에 따른 배터리 시스템(2)은, 배터리 상태(SOX, State of X)를 정밀도 높게 추정할 수 있다.
도 2를 참고하면, 배터리 시스템(2)은, 배터리(10), 릴레이(20), 전류센서(30), 그리고 BMS(Battery Management System)(40)을 포함한다.
배터리(10)는, 전기적으로 직렬 및 병렬 연결되어 있는 복수의 배터리 셀(Cell1-Celln)을 포함할 수 있다. 어떤 실시예에서, 배터리 셀은 충전 가능한 2차 전지일 수 있다. 소정 개수의 배터리 셀이 직렬 연결되어 배터리 모듈(battery module)을 구성하고, 소정 개수의 배터리 모듈이 직렬 연결되어 배터리 팩(battery pack)을 구성하고, 소정 개수의 배터리 팩이 병렬 연결되어 배터리 뱅크(battery bank)를 구성하여, 원하는 전력을 공급할 수 있다. 도 1에는, 복수의 배터리 셀(Cell1-Celln)이 직렬 연결된 배터리(10)를 도시하고 있으나, 이에 한정되지 않고, 배터리(10)는 배터리 모듈, 배터리 팩, 또는 배터리 뱅크 단위로 구성될 수 있다.
복수의 배터리 셀(Cell1-Celln) 각각은 배선을 통해 BMS(40)에 전기적으로 연결되어 있다. BMS(40)는 복수의 배터리 셀(Cell1-Celln)에 대한 정보를 포함한 배터리 셀에 관한 다양한 정보를 취합 및 분석하여 배터리 셀의 충전 및 방전, 보호 동작 등을 제어하고, 릴레이(20)의 동작을 제어할 수 있다.
도 1에서는, 배터리(10)는 직렬 연결되어 있는 복수의 배터리 셀(Cell1-Celln)을 포함하고, 배터리 시스템(2)의 두 출력단(OUT1, OUT2) 사이에 연결되어 있으며, 배터리 시스템(2)의 양극과 제1 출력단(OUT1) 사이에 릴레이(20)가 연결되어 있고, 배터리 시스템(2)의 음극과 제2 출력단(OUT2) 사이에 전류센서(30)가 연결되어 있다. 도 1에 도시된 구성들 및 구성들 간의 연결 관계는 일 예로 발명이 이에 한정되는 것은 아니다.
릴레이(20)는 배터리 시스템(2)과 외부장치 간의 전기적 연결을 제어한다. 릴레이(20)가 온 되면, 배터리 시스템(2)과 외부장치가 전기적으로 연결되어 충전 또는 방전이 수행되고, 릴레이(20)가 오프 되면, 배터리 시스템(2)과 외부장치가 전기적으로 분리된다. 이때, 외부장치는 배터리(10)에 전력을 공급하여 충전하는 충전 사이클에서는 충전기이고, 배터리(10)가 외부장치로 전력을 방전하는 방전 사이클에서는 부하일 수 있다.
전류센서(30)는 배터리(10)와 외부장치간 전류 경로에 직렬 연결되어 있다. 전류센서(30)는 배터리(10)에 흐르는 배터리 전류를 측정하고, 측정 결과를 BMS(40)에 전달할 수 있다. 예를 들어, 복수의 배터리 셀(Cell1-Celln)이 직렬 연결되는 경우, 배터리 전류는 셀 전류에 대응할 수 있다. 이때, 배터리 전류는, 즉, 충전 전류 또는 방전 전류일 수 있다.
도 2에는 도시하지 않았으나, 배터리 시스템(2)은 배터리(10)의 온도를 측정하는 온도센서(미도시)를 더 포함할 수 있다. 온도센서는, 배터리(10)의 온도를 측정하고, 측정 결과를 BMS(40)에 전달할 수 있다. 복수의 배터리 셀(Cell1-Celln) 각각의 셀의 온도는 배터리(10)의 온도에 기초하여 추정될 수 있다.
BMS(40)는 모니터링부(41), 저장부(43), 통신부(45), 그리고 제어부(47)를 포함한다.
모니터링부(41)는, 복수의 배터리 셀(Cell1-Celln) 각각의 양극 및 음극에 전기적으로 연결되어, 복수의 배터리 셀(Cell1-Celln) 각각의 셀 전압을 측정한다. 전류센서(30)에 의해 측정된 배터리 전류 값 및 온도센서(미도시)에 의해 측정된 배터리 온도 값은 모니터링부(41)로 전달될 수 있다. 모니터링부(41)는 측정된 셀 전압, 배터리 전류, 및 배터리 온도에 대한 정보를 제어부(47)에 전달한다.
예를 들어, 모니터링부(41)는 충전 및 방전이 발생하지 않는 휴식(rest) 기간에 복수의 배터리 셀(Cell1-Celln) 각각의 셀 전압을 소정 주기 마다 측정하고, 측정된 셀 전압에 기초하여 셀 전류를 계산할 수 있다. 모니터링부(41)는 복수의 배터리 셀(Cell1-Celln) 각각의 셀 전압 및 셀 전류를 제어부(47)에 전달할 수 있다.
저장부(43)는, 시스템 식별정보(APP ID), 가중치, 배터리 상태(SOX, State of X)를 추정하는 복수의 추정모델, 및 배터리 정보가 저장된다. 배터리 상태(SOX, State of X)는, 배터리 셀의 충전상태(SOC, State of Charge), 배터리 셀의 건강상태(SOH, State of Health), 배터리 셀의 출력상태(SOP, State of Power) 등을 포함할 수 있다. 이때, 배터리 정보는 셀 전압, 배터리 전류, 및 배터리 온도 등 배터리와 관련된 정보를 포함할 수 있다.
저장부(43)는, 소정의 알고리즘에 따라 배터리 정보에 기초하여 배터리(10)에 포함된 복수의 배터리 셀 각각의 충전상태(SOC)를 추정하는 복수의 SOC 추정모델을 저장할 수 있다. 도 3에서는, 제1 SOC 추정모델 및 제2 SOC 추정모델 즉, 두 개의 SOC 추정모델을 도시하고 있으나 이에 한정되는 것은 아니며, BMS(40)는 세 개 이상의 SOC 추정모델을 포함할 수 있다.
예를 들어, 도 3을 참고하면, 저장부(43)는, 기존에 널리 알려진 전류 적산법(Coulomb Counting Method)에 따라 충전상태(SOC)를 추정하는 제1 SOC 추정모델, OCV(Open Circuit Voltage Method)-SOC 관계에 기초하여 충전상태(SOC)를 추정하는 제2 SOC 추정모델, 단자전압에 기초하여 충전상태(SOC)를 추정하는 제3 SOC 추정모델 등이 저장될 수 있다.
저장부(43)는, 소정의 알고리즘에 따라 배터리 정보에 기초하여 배터리(10)에 포함된 복수의 배터리 셀 각각의 건강상태(SOH)를 추정하는 복수의 SOH 추정모델을 저장할 수 있다. 도 3에서는, 제1 SOH 추정모델 및 제2 SOH 추정모델 즉, 두 개의 SOH 추정모델을 도시하고 있으나 이에 한정되는 것은 아니며, BMS(40)는 세 개 이상의 SOH 추정모델을 포함할 수 있다.
예를 들어, 도 3을 참고하면, 저장부(43)는, 기존에 널리 알려진 OCV-SOH 관계에 기초하여 건강상태(SOH)를 추정하는 제1 SOH 추정모델, SOC-SOH 관계에 기초하여 건강상태(SOH)를 추정하는 제2 SOH 추정모델, 배터리 셀의 직류 내부 저항(DCIR, Direct Current Internal Resistance)에 기초하여 건강상태(SOH)를 추정하는 제3 SOH 추정모델 등이 저장될 수 있다.
저장부(43)는, 소정의 알고리즘에 따라 배터리 정보에 기초하여 배터리(10)에 포함된 복수의 배터리 셀 각각의 출력상태(SOP)를 추정하는 복수의 SOP 추정모델이 저장될 수 있다. 도 3에서는, 제1 SOP 추정모델 및 제2 SOP 추정모델 즉, 두 개의 SOP 추정모델을 도시하고 있으나 이에 한정되는 것은 아니며, BMS(40)는 세 개 이상의 SOP 추정모델을 포함할 수 있다.
예를 들어, 도 3을 참고하면, 저장부(43)는, 기존에 널리 알려진 직류 내부 저항(DCIR)에 기초하여 출력상태(SOP)를 추정하는 제1 SOP 추정모델, 전류 데이터 및 전압 데이터를 이용하여 회귀분석법에 의해 산출된 I-V 프로파일과 방전 하한 전압과의 교차하는 점에 기초하여 출력상태(SOP)를 추정하는 제2 SOP 추정모델, 배터리 데이터로부터 칼만 필터와 같은 적응적 계산 알고리즘을 이용하여 출력상태(SOP)를 추정하는 제3 SOP 추정모델 등이 저장될 수 있다.
시스템 식별정보(APP ID)는, 배터리 시스템(2)이 탑재되는 시스템을 구별하는 식별정보일 수 있다. 예를 들어, 저장부(43)는, 차량 시스템의 식별정보(E_Vehicle, APP ID=001), 바이크 시스템의 식별정보(E_Bike, APP ID=002), ESS 시스템의 식별정보(E_ESS, APP ID=003) 등의 다양한 시스템 식별정보(APP ID)가 저장될 수 있다.
가중치는, 상위 시스템(1)에 맞춤형 배터리 상태(SOX)를 추정하기 위해 기 설정되어 저장부(43)에 저장되는 값일 수 있다. 일 실시예에 따라, 가중치는, 시스템 식별정보(APP ID)에 대응하는 복수의 제1 가중치를 포함할 수 있다. 다른 실시예에 따라, 가중치는, 시스템 식별정보(APP ID) 및 소정의 추정조건에 대응하는 복수의 제2 가중치를 포함할 수 있다. 보다 상세한 설명은, 이하 제어부(47)와 함께 설명한다.
추정조건은, 배터리 셀의 현재 상태를 반영하는 조건일 수 있다. 예를 들어, 추정조건은, 배터리 셀의 셀 전압을 소정의 기준값과 비교한 결과에 따라 결정될 수 있다. 다른 예를 들어, 추정조건은, 배터리 셀의 셀 전압, 배터리 전류 또는 배터리 온도에 의해 결정되는 조건을 포함할 수 있다. 그러나, 추정조건은 셀 전압, 배터리 전류, 및 배터리 온도에 한정되는 것은 아니며, 배터리(10) 또는 배터리 셀의 현재 상태를 반영하는 다양한 조건을 포함할 수 있다.
통신부(45)는, 상위 시스템(1)과 통신하여 상위 시스템(1)의 식별정보(이하, 시스템 식별정보)를 수신한다. 예를 들어, 제어부(47)는 통신부(45)가 수신한 시스템 식별정보(APP ID)를 저장부(43)에 저장할 수 있다.
제어부(47)는, 통신부(45)를 통해 수신한 시스템 식별정보(APP ID) 및 소정의 추정조건 중 적어도 하나에 대응하는 가중치를 결정하고, 결정한 가중치에 기초하여 배터리 상태(SOX)를 추정한다.
도 3을 참고하면, 제어부(47)는, 배터리(10)의 상태(SOX)를 추정하는 제1 모듈(471) 및 추정된 값을 기초로 소정의 기준에 따라 배터리(10)를 진단하는 제2 모듈(473)을 포함할 수 있다.
제1 모듈(471)은, 시스템 식별정보(APP ID) 및 소정의 추정조건 중 적어도 하나에 대응하는 가중치를 결정한다. 제1 모듈(471)은, 결정한 가중치를 복수의 SOX 추정모델이 추정한 복수의 추정결과에 적용하고, 가중치가 적용된 복수의 추정결과를 합산하여 평균값을 산출한다.
하기 표 1은, 소정의 시스템 식별정보(APP ID)에 대응하는 복수의 제1 가중치에 대한 일 예시이다. 앞서 설명한 바와 같이, 제1 가중치는 시스템 식별정보(APP ID)만을 고려한 가중치일 수 있으며, 하기 표 1과 같이 추정모델마다 대응하는 값이 상이할 수 있다.
Figure PCTKR2022018435-appb-img-000001
예를 들어, 상위 시스템(1)이 차량 시스템(E_Vehicle, APP ID=001)인 것으로 가정하자. 도 3 및 표 1을 참고하면, 제1 모듈(471)은, 제1 SOC 추정 모듈이 추정한 제1 SOC 값(A1)에 대응하는 제1 가중치 0.7를 적용하고
Figure PCTKR2022018435-appb-img-000002
, 제2 SOC 추정 모듈이 추정한 제2 SOC 값(A2)에 대응하는 제1 가중치 0.3을 적용하여
Figure PCTKR2022018435-appb-img-000003
, 제1 배터리 셀에 대한 충전상태(SOC)의 평균값(
Figure PCTKR2022018435-appb-img-000004
)을 산출할 수 있다.
구체적으로, 제1 배터리 셀에 대해, 제1 SOC 추정 모듈이 추정한 제1 SOC 값(A1)이 50%이고, 제2 SOC 추정 모듈이 추정한 제2 SOC 값(A2)이 54%인 경우, 제1 모듈(471)은, 제1 배터리 셀에 대한 충전상태(SOC)의 평균값(Aave)을 51.2%로 산출할 수 있다. 동일한 방법으로, 제1 모듈(471)은, 제2 배터리 셀, 제3 배터리 셀 등 복수의 배터리 셀 각각에 대한 충전상태(SOC)의 평균값(Aave)을 산출할 수 있다.
하기 표 2는, 소정의 시스템 식별정보(APP ID) 및 추정조건에 대응하는 복수의 제2 가중치에 대한 일 예시이다. 앞서 설명한 바와 같이, 제2 가중치는 시스템 식별정보(APP ID) 및 추정조건을 모두 고려한 가중치일 수 있으며, 하기 표2와 같이 추정모델마다 대응하는 값이 상이할 수 있다.
Figure PCTKR2022018435-appb-img-000005
표 2에서는, 추정조건을 셀 전압과 소정의 기준값(예를 들어, 3.7V)의 비교 결과에 따라 결정되는 조건으로 설명하고 있으나, 앞서 설명한 바와 같이 추정조건이 상기 셀 전압 및 기준값에 한정되는 것은 아니다.
예를 들어, 표 2를 참고하면, 상위 시스템(1)이 차량 시스템(E_Vehicle, APP ID=001)이고, 현재 배터리(10)에 포함된 제1 배터리 셀의 셀 전압이 3.7V 이상이라고 가정하자. 도 3 및 표 2를 참고하면, 제1 모듈(471)은, 제1 SOC 추정 모듈이 추정한 제1 SOC 값(A1)에 대응하는 제2 가중치 0.7를 적용하고
Figure PCTKR2022018435-appb-img-000006
, 제2 SOC 추정 모듈이 추정한 제2 SOC 값(A2)에 대응하는 제2 가중치 0.3을 적용하여
Figure PCTKR2022018435-appb-img-000007
, 제1 배터리 셀에 대한 충전상태(SOC)의 평균값(
Figure PCTKR2022018435-appb-img-000008
)을 산출할 수 있다.
구체적으로, 제1 배터리 셀에 대해, 제1 SOC 추정 모듈이 추정한 제1 SOC 값(A1)이 50%이고, 제2 SOC 추정 모듈이 추정한 제2 SOC 값(A2)이 54%인 경우, 제1 모듈(471)은, 제1 배터리 셀에 대한 충전상태(SOC)의 평균값(Aave)을 51.2%로 산출할 수 있다. 동일한 방법으로, 제1 모듈(471)은, 제2 배터리 셀, 제3 배터리 셀 등 복수의 배터리 셀 각각에 대한 충전상태(SOC)의 평균값(Aave)을 산출할 수 있다.
다른 예를 들어, 표 2를 참고하면, 상위 시스템(1)이 바이크 시스템(E_Bike, APP ID=002)이고, 현재 배터리(10)에 포함된 제1 배터리 셀의 셀 전압이 3.7V 미만이라고 가정하자. 도 3 및 표 2를 참고하면, 제1 모듈(471)은, 제1 SOC 추정 모듈이 추정한 제1 SOC 값(A1)에 대응하는 제2 가중치 0.5를 적용하고
Figure PCTKR2022018435-appb-img-000009
, 제2 SOC 추정 모듈이 추정한 제2 SOC 값(A2)에 대응하는 제2 가중치 0.5를 적용하여
Figure PCTKR2022018435-appb-img-000010
, 제1 배터리 셀에 대한 충전상태(SOC)의 평균값(
Figure PCTKR2022018435-appb-img-000011
)을 산출할 수 있다.
구체적으로, 제1 배터리 셀에 대해, 제1 SOC 추정 모듈이 추정한 제1 SOC 값(A1)이 50%이고, 제2 SOC 추정 모듈이 추정한 제2 SOC 값(A2)이 54%인 경우, 제1 모듈(471)은, 제1 배터리 셀에 대한 충전상태(SOC)의 평균값(Aave)을 52%로 산출할 수 있다. 동일한 방법으로, 제1 모듈(471)은, 제2 배터리 셀, 제3 배터리 셀 등 복수의 배터리 셀 각각에 대한 충전상태(SOC)의 평균값(Aave)을 산출할 수 있다.
상기 표 1 및 표 2에서는, 배터리(10)의 충전상태(SOC)에 대해서만 설명하고 있으나 이에 한정되는 것은 아니다. 제1 모듈(471)은, 앞서 설명한 방법과 동일한 방법으로 도 3에 도시된 복수의 SOH 추정모델 및 복수의 SOP 추정모델을 이용하여, 복수의 배터리 셀 각각에 대한 건강상태(SOH)의 평균값(Bave) 및 출력상태(SOP)의 평균값(Cave)을 산출할 수 있다.
제2 모듈(473)은, 제1 모듈(471)이 산출한 배터리 상태(SOX)의 평균값을 배터리 상태(SOX) 값으로 결정하고, 이를 기초로 배터리(10)에 대한 고장 진단 등을 수행할 수 있다. 예를 들어, 제2 모듈(473)은, 건강상태(SOH)의 평균값(Bave)이 기 설정된 기준값보다 작으면, 배터리(10)를 고장상태로 진단할 수 있다.
도 4는 다른 실시예에 따른 배터리 상태 추정 방법을 설명하는 흐름도이다.
이하 도 1 내지 도 4를 참고하여, 배터리 상태 추정 방법 및 그 방법을 제공하는 배터리 시스템을 설명한다.
도 4를 참고하면, BMS(40)는 배터리 시스템(2)이 탑재되는 상위 시스템(1)의 식별정보(APP ID) 및 기 설정된 소정의 추정조건에 대응하는 가중치를 결정한다(S100).
BMS(40)는, 먼저 추정할 배터리 상태(SOX), 시스템 식별정보(APP ID), 및 추정조건 적용 여부에 기초하여, 제1 가중치 또는 제2 가중치를 결정할 수 있다.
일 실시예에 따라, 배터리 시스템(2)이 탑재되는 상위 시스템(1)의 식별정보(APP ID)만을 고려하여 배터리 상태(SOX)를 추정하는 경우, BMS(40)는 저장부(43)에 기 저장된 상기 표 1에서 제1 가중치를 결정할 수 있다.
예를 들어, 차량 시스템(E_Vehicle, APP ID=001)에 탑재된 복수의 배터리 셀 각각의 충전상태(SOC)를 추정하는 경우, BMS(40)는, 제1 SOC 추정 모듈이 추정한 제1 SOC 값(A1)에 적용할 제1 가중치(0.7) 및 제2 SOC 추정 모듈이 추정한 제2 SOC 값(A2)에 대응하는 제1 가중치(0.3)를 결정할 수 있다.
다른 실시예에 따라, 배터리 시스템(2)이 탑재되는 상위 시스템(1)의 식별정보(APP ID) 및 추정조건을 고려하여 배터리 상태(SOX)를 추정하는 경우, BMS(40)는 저장부(43)에 기 저장된 상기 표 2에서 제2 가중치를 결정할 수 있다.
예를 들어, 바이크 시스템(E_Bike, APP ID=002)에 탑재된 복수의 배터리 셀 각각의 충전상태(SOC)를 셀 전압 3.7V 미만인 조건에서 추정하는 경우, 제1 SOC 추정 모듈이 추정한 제1 SOC 값(A1)에 적용할 제2 가중치(0.5) 및 제2 SOC 추정 모듈이 추정한 제2 SOC 값(A2)에 대응하는 제2 가중치(0.5)를 결정할 수 있다.
다음으로, BMS(40)는, 소정의 알고리즘에 따라 배터리 정보에 기초하여 배터리 상태(SOX)를 추정하는 복수의 SOX 추정모델 각각으로부터 복수의 배터리 셀 각각에 대한 배터리 상태(SOX)에 대한 정보를 수집한다(S200).
도 3을 참고하면, 예를 들어, BMS(40)는, 제1 SOC 추정 모듈이 추정한 제1 SOC 값(A1) 및 제2 SOC 추정 모듈이 추정한 제2 SOC 값(A2)에 대한 정보를 수집할 수 있다. 다른 예를 들어, BMS(40)는, 제1 SOH 추정 모듈이 추정한 제1 SOH 값(B1) 및 제2 SOH 추정 모듈이 추정한 제2 SOH 값(B2)에 대한 정보를 수집할 수 있다. 또 다른 예를 들어, BMS(40)는, 제1 SOP 추정 모듈이 추정한 제1 SOP 값(C1) 및 제2 SOP 추정 모듈이 추정한 제2 SOP 값(C2)에 대한 정보를 수집할 수 있다.
다음으로, BMS(40)는, 복수의 배터리 상태(SOX) 각각에 가중치를 적용한 결과를 합산하여 배터리 상태(SOX)의 평균값을 산출한다(S300).
예를 들어, 상위 시스템(1)이 바이크 시스템(E_Bike, APP ID=002)이고, 현재 배터리(10)에 포함된 제1 배터리 셀의 셀 전압이 3.7V 미만이라고 가정하자. 도 3 및 표 2를 참고하면, BMS(40)는, 제1 SOC 추정 모듈이 추정한 제1 SOC 값(A1)에 대응하는 제2 가중치 0.5를 적용하고
Figure PCTKR2022018435-appb-img-000012
, 제2 SOC 추정 모듈이 추정한 제2 SOC 값(A2)에 대응하는 제2 가중치 0.5를 적용하여
Figure PCTKR2022018435-appb-img-000013
, 제1 배터리 셀에 대한 충전상태(SOC)의 평균값(
Figure PCTKR2022018435-appb-img-000014
)을 산출할 수 있다. 구체적으로, 제1 SOC 값(A1)이 50%이고, 제2 SOC 값(A2)이 54%인 경우, BMS(40)는, 제1 배터리 셀에 대한 충전상태(SOC)의 평균값(Aave)을 52%로 산출할 수 있다.
이후, BMS(40)는, 추정한 배터리의 상태(SOX)의 평균값에 기초하여 배터리의 고장 상태 진단, 셀 밸런싱 여부 등을 결정할 수 있다.
정리하면, 배터리(10)는 사용되는 환경 즉, 상위 시스템(1) 및 배터리의 현재 상태(셀 전압, 셀 온도 등)에 따라 충전상태(SOC), 건강상태(SOH), 출력상태(SOP) 등을 정밀하게 추정할 수 있는 추정모델이 상이할 수 있다. 본 발명은, 복수의 추정모델을 사용할 뿐만 아니라, 복수의 추정모델이 추정한 결과에 상기와 같은 상황을 반영한 가중치를 적용하여 현재 배터리(10)의 상태(SOX)를 보다 정밀도 높게 추정할 수 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였으나, 본 발명의 권리범위가 이에 한정되는 것은 아니며 본 발명이 속하는 분야에서 통상의 지식을 가진 자가 여러 가지로 변형 및 개량한 형태 또한 본 발명의 권리범위에 속한다.

Claims (11)

  1. 복수의 배터리 셀을 포함하는 배터리,
    배터리 시스템이 탑재되는 상위 시스템과 통신하여 상기 상위 시스템의 식별정보를 수신하는 통신부,
    상기 복수의 배터리 셀의 복수의 셀 전압, 상기 배터리의 전류 및 온도 중 적어도 하나의 배터리 정보를 수집하는 모니터링부,
    소정의 알고리즘에 따라 상기 배터리 정보에 기초하여 상기 복수의 배터리 셀 각각의 충전상태(SOC, State of Charge)를 추정하는 복수의 SOC 추정모델과, 상기 식별정보에 대응하는 제1 가중치를 저장하는 저장부, 그리고
    상기 복수의 배터리 셀 각각에 대하여, 상기 복수의 SOC 추정모델이 추정한 복수의 충전상태에 상기 제1 가중치를 적용한 결과를 합산하여 제1 충전상태의 평균값을 산출하는 제어부를 포함하는, 배터리 시스템.
  2. 제1항에 있어서,
    상기 제어부는,
    상기 복수의 배터리 셀 각각에 대하여, 상기 식별정보 및 기 설정된 소정의 추정조건에 대응하는 제2 가중치를 상기 복수의 충전상태에 적용한 결과를 합산하여 제2 충전상태의 평균값을 산출하는, 배터리 시스템.
  3. 제2항에 있어서,
    상기 추정조건은,
    상기 수집된 복수의 셀 전압 각각을 소정의 기준값을 비교한 결과에 따라 결정되는, 배터리 시스템.
  4. 제3항에 있어서,
    상기 저장부는,
    상기 배터리 시스템이 탑재 가능한 복수의 시스템 각각에 대한 복수의 식별정보, 상기 복수의 식별정보 각각에 대응하는 복수의 제1 가중치, 상기 복수의 식별정보 및 상기 추정조건 각각에 대응하는 복수의 제2 가중치가 저장되는, 배터리 시스템.
  5. 복수의 배터리 셀을 포함하는 배터리,
    배터리 시스템이 탑재되는 상위 시스템과 통신하여 상기 상위 시스템의 식별정보를 수신하는 통신부,
    상기 복수의 배터리 셀의 복수의 셀 전압, 상기 배터리의 전류, 및 온도 중 적어도 하나의 배터리 정보를 수집하는 모니터링부,
    소정의 알고리즘에 따라 상기 배터리 정보에 기초하여 상기 복수의 배터리 셀 각각의 건강상태(SOH, State of Health)를 추정하는 복수의 SOH 추정모델과, 상기 식별정보에 대응하는 제1 가중치를 저장하는 저장부, 그리고
    상기 복수의 배터리 셀 각각에 대하여, 상기 복수의 SOH 추정모델이 추정한 복수의 건강상태에 상기 제1 가중치를 적용한 결과를 합산하여 제1 건강상태의 평균값을 산출하는 제어부를 포함하는, 배터리 시스템.
  6. 제5항에 있어서,
    상기 제어부는,
    상기 복수의 배터리 셀 각각에 대하여, 상기 식별정보 및 기 설정된 소정의 추정조건에 대응하는 제2 가중치를 상기 복수의 건강상태에 적용한 결과를 합산하여 제2 건강상태의 평균값을 산출하는, 배터리 시스템.
  7. 제6항에 있어서,
    상기 추정조건은,
    상기 수집된 복수의 셀 전압 각각을 소정의 기준값과 비교한 결과에 따라 결정되는, 배터리 시스템.
  8. 제7항에 있어서,
    상기 저장부는,
    상기 배터리 시스템이 탑재 가능한 복수의 시스템 각각에 대한 복수의 식별정보, 상기 복수의 식별정보 각각에 대응하는 복수의 제1 가중치, 상기 복수의 식별정보 및 상기 추정조건 각각에 대응하는 복수의 제2 가중치가 저장되는, 배터리 시스템.
  9. 배터리 시스템이 탑재되는 상위 시스템의 식별정보에 대응하는 제1 가중치를 결정하는 단계,
    소정의 알고리즘에 따라 배터리 정보에 기초하여 배터리에 포함된 복수의 배터리 셀 각각의 충전상태(SOC, State of Charge)를 추정하는 복수의 SOC 추정모델로부터 복수의 충전상태를 수신하는 단계, 그리고
    상기 복수의 배터리 셀 각각에 대하여, 상기 복수의 충전상태에 상기 제1 가중치를 적용한 결과를 합산하여 제1 충전상태의 평균값을 산출하는 단계를 포함하고,
    상기 배터리 정보는,
    상기 복수의 배터리 셀의 복수의 셀 전압, 상기 배터리의 전류 및 온도 중 적어도 하나를 포함하는, 배터리 상태 추정 방법.
  10. 제9항에 있어서,
    상기 가중치를 결정하는 단계는,
    상기 시스템의 식별정보 및 기 설정된 소정의 추정조건에 대응하는 제2 가중치를 결정하고,
    상기 산출하는 단계는,
    상기 복수의 배터리 셀 각각에 대하여, 상기 복수의 충전상태에 상기 제2 가중치를 적용한 결과를 합산하여 제2 충전상태의 평균값을 산출하는, 배터리 상태 추정 방법.
  11. 제9항에 있어서,
    상기 추정조건은,
    상기 복수의 셀 전압 각각을 소정의 기준값과 비교한 결과에 따라 결정되는, 배터리 상태 추정 방법.
PCT/KR2022/018435 2022-01-14 2022-11-21 배터리 상태 추정 방법 및 그 방법을 제공하는 배터리 시스템 WO2023136455A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22920784.0A EP4382933A1 (en) 2022-01-14 2022-11-21 Battery state estimation method, and battery system for providing method
CN202280061417.1A CN117957453A (zh) 2022-01-14 2022-11-21 电池状态估计方法和提供该方法的电池系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220005739A KR20230109916A (ko) 2022-01-14 2022-01-14 배터리 상태 추정 방법 및 그 방법을 제공하는 배터리 시스템
KR10-2022-0005739 2022-01-14

Publications (1)

Publication Number Publication Date
WO2023136455A1 true WO2023136455A1 (ko) 2023-07-20

Family

ID=87279295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018435 WO2023136455A1 (ko) 2022-01-14 2022-11-21 배터리 상태 추정 방법 및 그 방법을 제공하는 배터리 시스템

Country Status (4)

Country Link
EP (1) EP4382933A1 (ko)
KR (1) KR20230109916A (ko)
CN (1) CN117957453A (ko)
WO (1) WO2023136455A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110111018A (ko) * 2010-04-02 2011-10-10 에스케이이노베이션 주식회사 배터리의 용량 열화 상태 측정 장치 및 방법
KR101717001B1 (ko) * 2014-07-25 2017-03-15 가부시끼가이샤 도시바 내부 상태 추정 시스템 및 그 추정 방법
KR20180043048A (ko) * 2016-10-19 2018-04-27 현대자동차주식회사 배터리 soh 추정 방법
KR20180101823A (ko) * 2017-03-06 2018-09-14 주식회사 엘지화학 배터리 셀 전압 데이터 처리 장치 및 방법
KR20190019316A (ko) * 2017-08-17 2019-02-27 삼성전자주식회사 배터리 상태 추정 방법 및 장치
KR20220005739A (ko) 2020-07-07 2022-01-14 삼성전기주식회사 터치 센싱 장치 및 이를 구비하는 전자 기기

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110111018A (ko) * 2010-04-02 2011-10-10 에스케이이노베이션 주식회사 배터리의 용량 열화 상태 측정 장치 및 방법
KR101717001B1 (ko) * 2014-07-25 2017-03-15 가부시끼가이샤 도시바 내부 상태 추정 시스템 및 그 추정 방법
KR20180043048A (ko) * 2016-10-19 2018-04-27 현대자동차주식회사 배터리 soh 추정 방법
KR20180101823A (ko) * 2017-03-06 2018-09-14 주식회사 엘지화학 배터리 셀 전압 데이터 처리 장치 및 방법
KR20190019316A (ko) * 2017-08-17 2019-02-27 삼성전자주식회사 배터리 상태 추정 방법 및 장치
KR20220005739A (ko) 2020-07-07 2022-01-14 삼성전기주식회사 터치 센싱 장치 및 이를 구비하는 전자 기기

Also Published As

Publication number Publication date
CN117957453A (zh) 2024-04-30
EP4382933A1 (en) 2024-06-12
KR20230109916A (ko) 2023-07-21

Similar Documents

Publication Publication Date Title
WO2021049753A1 (ko) 배터리 진단 장치 및 방법
WO2021006566A1 (ko) 배터리 셀 진단 장치 및 방법
WO2021020852A1 (ko) 배터리 관리 장치 및 배터리 관리 방법
WO2014084628A1 (ko) 배터리 전류 측정 장치 및 그 방법
WO2021107323A1 (ko) 배터리 셀 이상 퇴화 진단 장치 및 방법
WO2020055162A1 (ko) 스위치 진단 장치 및 방법
WO2020054924A1 (ko) 배터리의 상태를 셀 단위로 진단하는 장치 및 방법
WO2021085808A1 (ko) 온도 측정 장치, 이를 포함하는 배터리 장치 및 온도 측정 방법
WO2023136455A1 (ko) 배터리 상태 추정 방법 및 그 방법을 제공하는 배터리 시스템
WO2023101189A1 (ko) 셀 밸런싱 방법 및 그 방법을 제공하는 배터리 시스템
WO2022265277A1 (ko) 배터리 관리 장치 및 방법
WO2021125678A1 (ko) 병렬 배터리 릴레이 진단 장치 및 방법
WO2023080466A1 (ko) 배터리 관리 방법 및 이를 적용한 배터리 시스템
WO2023008904A1 (ko) 결함 있는 배터리 셀의 검출 방법 및 그 방법을 제공하는 배터리 관리 시스템
WO2023149673A1 (ko) 배터리 관리 장치 및 방법
WO2023214641A1 (ko) 배터리 진단 방법 및 그 방법을 제공하는 배터리 시스템
WO2023075163A1 (ko) 배터리 장치, 배터리 관리 시스템 및 진단 방법
WO2023090617A1 (ko) 배터리의 결함 진단 방법, 그 방법을 제공하는 배터리 진단 장치 및 배터리 시스템
WO2024101682A1 (ko) 배터리 시스템 및 이를 이용한 병렬 팩 제어 방법
WO2022085950A1 (ko) 배터리 장치 및 저항 상태 추정 방법
WO2023132526A1 (ko) 전력 저장 장치 및 그 운용 방법
WO2023224195A1 (ko) 배터리 진단 방법, 그 방법을 제공하는 배터리 진단 장치 및 배터리 시스템
WO2021125674A1 (ko) 배터리 진단 장치 및 방법
WO2022114559A1 (ko) 릴레이 상태 관리 장치 및 그것의 동작 방법
WO2023090692A1 (ko) 배터리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920784

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280061417.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022920784

Country of ref document: EP

Effective date: 20240308