WO2023090692A1 - 배터리 시스템 - Google Patents

배터리 시스템 Download PDF

Info

Publication number
WO2023090692A1
WO2023090692A1 PCT/KR2022/016932 KR2022016932W WO2023090692A1 WO 2023090692 A1 WO2023090692 A1 WO 2023090692A1 KR 2022016932 W KR2022016932 W KR 2022016932W WO 2023090692 A1 WO2023090692 A1 WO 2023090692A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
balancing
voltage
cell
bmic
Prior art date
Application number
PCT/KR2022/016932
Other languages
English (en)
French (fr)
Inventor
윤선우
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202280021393.7A priority Critical patent/CN116998084A/zh
Priority to EP22895899.7A priority patent/EP4300760A1/en
Priority to JP2023558852A priority patent/JP2024511178A/ja
Publication of WO2023090692A1 publication Critical patent/WO2023090692A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/10Control circuit supply, e.g. means for supplying power to the control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a battery system.
  • a battery pack may include a plurality of battery cells connected in series and/or parallel.
  • a cell balancing operation may be performed to balance a voltage between the plurality of battery cells.
  • the cell balancing operation may be implemented by discharging current flowing in a battery cell in which a deviation occurs among a plurality of battery cells through a balancing load.
  • a battery monitoring integrated circuit that monitors the voltage of a battery cell requires power supply to perform a voltage monitoring operation, and also requires supply of standby power even during a period in which monitoring is not performed. Accordingly, a power source for supplying power to the battery monitoring integrated circuit is required.
  • a battery system capable of supplying power to a battery monitoring integrated circuit using power consumed in a cell balancing operation among the plurality of battery cells is provided.
  • a battery system includes a battery pack including a plurality of battery cells, a BMIC for monitoring a plurality of cell voltages for each of the plurality of battery cells, and a target battery cell that requires cell balancing among the plurality of battery cells.
  • a power conversion unit including a plurality of balancing batteries charged by, a DC-DC converter that receives voltages from the plurality of balancing batteries and converts them into output voltages, and the output voltage is greater than or equal to a predetermined level for driving the BMIC.
  • a power supply unit supplying the output voltage to the BMIC when the
  • the power supply unit may regulate a voltage supplied from the battery pack to a predetermined level for driving the BMIC and supply the regulated voltage to the BMIC.
  • the battery may further include a plurality of MUXs for connecting a target battery cell requiring cell balancing among the plurality of battery cells to one of the plurality of balancing batteries.
  • the power conversion unit may operate the DC-DC converter when voltages output from the plurality of balancing batteries are equal to or greater than a predetermined threshold voltage.
  • the power converter further includes an ADC that measures voltages output from the plurality of balancing batteries and generates a voltage measurement signal, and determines whether the plurality of balancing batteries are charged by the target battery cell based on the voltage measurement signal. can be controlled.
  • the power converter may not operate.
  • a PTC element positioned on a current path through which one of the plurality of balancing batteries is charged by cell balancing of the target battery cell may be further included.
  • a PTC element positioned on a current path between the plurality of balancing batteries may be further included.
  • the power supply unit receives a resistor connected to a wire connected to the battery pack, a capacitor charged with a voltage generated using the voltage of the battery pack, and a drive voltage supplied from the BMIC to a base terminal, and a collector terminal to which the resistor is charged. is connected, the capacitor is connected to the emitter terminal, and operates when the voltage of the emitter terminal does not reach the voltage level of the base terminal, and supplies a voltage generated from the voltage of the collector terminal to the BMIC.
  • a battery system includes a battery pack including a plurality of battery cells, a BMIC for measuring a plurality of cell voltages for each of the plurality of battery cells, and receiving the plurality of cell voltages to determine the plurality of cell voltages.
  • An MCU for determining a target battery cell among battery cells that requires cell balancing, a plurality of balancing batteries charged by cell balancing, and a control of the MCU to connect the determined target battery cell to a corresponding one of the plurality of balancing batteries.
  • a MUX a DC-DC converter that converts voltages input from the plurality of balancing batteries to generate an output voltage, and a higher voltage among voltages generated using the output voltage of the DC-DC converter and the voltage of the battery pack is the BMIC It includes a power supply unit that supplies
  • the DC-DC converter may operate when a voltage input from the plurality of balancing batteries exceeds a predetermined threshold voltage.
  • a battery system includes a plurality of battery packs each including a plurality of battery cells, and a plurality of slave BMSs managing the battery packs for each of the plurality of battery packs - the plurality of slave BMSs.
  • Each includes a BMIC connected to a corresponding plurality of battery cells to measure a plurality of cell voltages and control cell balancing-, a plurality of balancing batteries included in each of the plurality of slave BMSs and charged by cell balancing , a DC-DC converter generating an output voltage by converting the voltage supplied from the plurality of balancing batteries, and a higher voltage among voltages generated using the output voltage of the DC-DC converter and the voltage of the battery pack, the BMIC It includes a power supply unit that supplies
  • a voltage measurement signal obtained by measuring voltages supplied from the plurality of balancing batteries is received from the plurality of slave BMSs, and a control signal capable of controlling the plurality of slave BMSs is generated based on the voltage measurement signals to obtain the plurality of A master BMS transmitting to the slave BMS may be further included.
  • the master BMS may generate a control signal including a control command for turning on the DC-DC converter.
  • a battery system capable of supplying power to a battery monitoring integrated circuit using power consumed in a cell balancing operation between the plurality of battery cells in a battery pack including a plurality of battery cells. Through this, power consumption of the battery system may be reduced.
  • FIG. 1 is a circuit diagram schematically illustrating a battery system according to an embodiment.
  • FIG. 2 is a diagram illustrating a MUX according to an embodiment.
  • FIG. 3 is a diagram illustrating a balancing battery unit according to an exemplary embodiment.
  • FIG. 4 is a diagram schematically illustrating a state in which a PTC unit, a power conversion unit, and a power supply unit are connected to each other.
  • FIG. 5 is a circuit diagram schematically illustrating a battery system having a current sensor according to an exemplary embodiment.
  • FIG. 6 is an exemplary diagram schematically illustrating a connection relationship between a battery system connected to a plurality of battery packs according to an embodiment.
  • FIG. 7 is a circuit diagram schematically illustrating an embodiment of a detailed configuration of the SBMS of FIG. 6 .
  • a program implemented as a set of commands embodying control algorithms necessary for controlling other components may be installed in a component that controls another component under a specific control condition among components according to an embodiment.
  • the control component may generate output data by processing input data and stored data according to an installed program.
  • the control component may include a non-volatile memory for storing programs and a memory for storing data.
  • FIG. 1 is a circuit diagram schematically illustrating a battery system according to an embodiment.
  • the battery system 1 includes a battery pack 10, a battery monitoring integrated circuit 20, a main controller 30, a plurality of MUXs 40 and 41, a balancing battery unit 50, and a PTC. It may include a unit 60, a power conversion unit 70, a power supply unit 80, and relays 90 and 91.
  • the battery monitoring integrated circuit is hereinafter referred to as a battery monitoring integrated circuit (BMIC).
  • the main control unit is hereinafter referred to as a Main Control Unit (MCU).
  • MCU Main Control Unit
  • the external device 2 may include a load and charging device such as an inverter or converter.
  • a load and charging device such as an inverter or converter.
  • both ends of the battery system 1 may be connected to the charger and supplied with power from the charger to be charged.
  • both ends of the battery system 1 are connected to the load so that power supplied by the battery pack 10 can be discharged through the load.
  • the battery pack 10 includes a plurality of battery cells 11 to 16 connected in series.
  • the battery pack 10 is illustrated as including six battery cells 11 to 16 connected in series, but this is an example, and the invention is not limited thereto, and the battery pack 10 includes two or more batteries connected in series.
  • a cell, two or more battery cells connected in parallel may be implemented as a plurality of battery cells connected in series.
  • cell balancing described herein may refer to a charge equalization operation for battery cells having a value greater than or equal to a reference value among a plurality of battery cells 11 to 16 included in the battery pack 10 .
  • the reference value is a value set based on the cell voltages of the plurality of battery cells 11 to 16 and may be a representative value for the plurality of cell voltages.
  • the representative value may be an average value, a median value, a minimum value, and the like.
  • the conventional charge equalization operation may be implemented by transferring the charge stored in the cell requiring cell balancing to a battery cell having a low cell voltage, or discharging the charge stored in the cell requiring cell balancing using a discharge load. .
  • the charge equalization operation may be implemented in a manner of transferring charges stored in cells requiring cell balancing to a balancing battery.
  • Power consumed by the BMIC 20 can be divided into monitoring power required for monitoring and standby power in a sleep state.
  • Monitoring power is power consumed by the BMIC 20 while monitoring.
  • Standby power is power consumed by the BMIC 20 in a sleep state in which monitoring is not performed. Since standby power is consumed even during long-term transportation and storage, both monitoring power and standby power must be considered when calculating the power consumption of the BMIC 20 .
  • the charging energy of each of the plurality of battery cells 11 to 16 may be reduced by the power consumption of the BMIC 20 .
  • a balancing battery is charged with energy generated from a charge equalization operation of a cell requiring cell balancing, and the electric power charged in the balancing battery is supplied to the BMIC 20.
  • the electric power charged in the balancing battery is supplied to the BMIC 20.
  • the BMIC 20 is connected to each battery cell of the plurality of battery cells 11-16 and measures a plurality of voltages measured from both ends of the plurality of battery cells 11-16 through a plurality of input terminals P1-P7. Acquire signals VS1-VS7.
  • the anode of each of the plurality of battery cells 11-16 (eg, 11) is connected to a corresponding input terminal (eg, P1) among the plurality of input terminals P1 to P6 through a wire, and a plurality of A negative electrode of each of the battery cells 11 to 16 (eg, 11) is connected to a corresponding input terminal (eg, P2) of the plurality of input terminals P2 to P7 through a wire.
  • the measurement signal VS1 is the voltage of the positive electrode of the battery cell 11 and is input to the BMIC 20 through the input terminal P1
  • the measurement signal VS2 is the voltage of the negative electrode of the battery cell 11 or It is the voltage of the positive electrode of the battery cell 12, and is input to the BMIC 20 through the input terminal P2.
  • the BMIC 20 may transmit a plurality of cell voltage signals indicating cell voltages of a plurality of battery cells derived from the plurality of voltage measurement signals VS1 to VS7 to the MCU 30 .
  • the BMIC 20 may generate a cell voltage signal according to a voltage obtained by subtracting a cathode voltage from an anode voltage of each of a plurality of battery cells, and transmit the generated cell voltage signal to the MCU 30 .
  • the MCU 30 receives a plurality of cell voltage signals, and determines a battery cell (hereinafter, a target battery cell) requiring cell balancing among the plurality of battery cells 11 to 16 based on the plurality of cell voltage signals.
  • the MCU 30 controls the target battery cell to be connected to the balancing battery unit 50 through the plurality of MUXs 40 and 41, and then the balancing battery unit 50 is connected to the power converter through the PTC unit 60 ( 70), and control the power converter 70 to supply power to the BMIC 20.
  • the corresponding balancing battery can be charged by energy discharged from the target battery cell.
  • the power conversion unit 70 converts the voltage stored in the balancing battery unit 50 into a voltage suitable for driving the BMIC 20 to obtain the BMIC ( 20) can be supplied.
  • the MCU 30 For the above control, the MCU 30 generates and transmits a plurality of MUX control signals MCS1 and MCS2 to a plurality of MUXs 40 and 41, generates a plurality of switch control signals SC1-SC4, It is transmitted to the PTC unit 60 and can be transmitted to the power conversion unit 70 through the converter control signal (CCS).
  • the MCU 30 controls whether the power conversion unit 70 is enabled through the converter control signal CCS, and can receive the battery signal BS generated from the battery ADC of the power conversion unit 70. .
  • Each of the plurality of MUXs 40 and 41 may connect a target battery cell among a plurality of corresponding battery cells to the balancing battery unit 50 .
  • a plurality of battery cells corresponding to each of the plurality of MUXs 40 and 41 means a plurality of battery cells connected to the corresponding MUX. 1, it is shown that the MUX 40 is connected to three battery cells 11-13, and the MUX 41 is connected to three battery cells 14-16.
  • Each of the plurality of MUXs 40 and 41 (eg, 40) is a positive electrode and a negative electrode of a target battery cell among a plurality of connected battery cells (eg, 11-13) among a plurality of battery cells 11-16.
  • Each of the plurality of wires 101 to 104 may be connected to corresponding wires 101 and 102 .
  • the number of the plurality of MUXs 40 and 41 is shown to be two, but the invention is not limited thereto, and the battery system 1 may include one or more MUXs.
  • the description of the operation of the MUX 40 may be equally applied to the MUX 41.
  • the MUX 40 connects a target battery cell among a plurality of corresponding battery cells 11 to 13 to the balancing battery unit 50 according to the plurality of MUX control signals MCS1.
  • the MUX 41 connects a target battery cell among a plurality of corresponding battery cells 14 to 16 to the balancing battery unit 50 according to the plurality of MUX control signals MCS2.
  • the plurality of control signals MCS1 may include a plurality of switching signals MS1 to MS6 for controlling a plurality of switching elements constituting the MUX circuit 40 .
  • One ends of the relays 90 and 91 are connected to the battery pack 10, and the other ends of the relays 90 and 91 are connected to at least one element in the external device 2.
  • the closing and opening of the relays 90 and 91 are controlled according to the relay control signals RSC1 and RSC2 supplied from the MCU 30 .
  • FIG. 2 is a diagram illustrating a MUX according to an embodiment.
  • the MCU 30 When a target battery cell among the plurality of battery cells 11 to 16 is determined, the MCU 30 generates a plurality of MUX control signals MCS1 and MCS2 for connecting the target battery cell to the balancing battery unit 50.
  • the MUX 40 includes a plurality of switching elements 411 to 416, and each of the plurality of switching signals MS1 to MS6 may control a switching operation of a corresponding switching element.
  • the MCU 30 When the battery cell 11 of the plurality of battery cells 11-13 is a target battery cell, the MCU 30 generates the switching signals MS1 and MS4 among the plurality of switching signals MS1-MS6 to an on level, The switching elements 411 and 414 may be turned on by the on-level switching signals MS1 and MS4. Then, the battery cell 11 may be connected to the balancing battery unit 50 through the MUX 40 .
  • off-level switching signals MS2, MS3, MS5, and MS6 from the MCU 30 are applied to the plurality of switching elements 412, 413, 415, and 416 connected to the battery cells 12 and 13 that are not the target battery cells. is supplied, and the plurality of switching elements 412, 413, 415, and 416 may be in an off state.
  • the MUX 41 may also include the same configuration as the MUX 40 and operate in the same manner.
  • selecting a target battery cell from among a plurality of battery cells (eg, 11-13) and connecting the positive and negative electrodes of the target battery cell to the wire 101 and the wire 102, respectively may be implemented through a circuit including a field effect transistor (FET) element.
  • FET field effect transistor
  • the balancing battery may be charged by receiving energy from target battery cells connected through wires 101 and 102 .
  • FIG. 3 is a diagram illustrating a balancing battery unit according to an exemplary embodiment.
  • the balancing battery unit 50 may include a plurality of balancing batteries 500 and 501 and a plurality of PTC elements 510 and 511 .
  • the number of the plurality of balancing batteries 500 and 501 and the plurality of PTC elements 510 and 511 is shown to be two, respectively, but the invention is not limited thereto, and each number is based on the number of MUXs may increase or decrease.
  • the anode of the balancing battery 500 is connected to the wiring 101, and the cathode of the balancing battery 500 is connected to the wiring 102.
  • the PTC element 510 may be formed on the wiring 101 .
  • the PTC element 510 may be formed on the wiring 102 unlike that shown in FIG. 3 .
  • the PTC element 510 may be implemented as a resistance element having a positive temperature coefficient.
  • the anode of the balancing battery 501 is connected to the wiring 103, and the cathode of the balancing battery 501 is connected to the wiring 104.
  • the PTC element 511 may be formed on the wiring 103 .
  • the PTC element 511 may be formed on the wiring 104 unlike that shown in FIG. 3 .
  • the PTC element 511 may be implemented as a resistance element having a positive temperature coefficient.
  • FIG. 4 is a diagram schematically illustrating a state in which a PTC unit, a power conversion unit, and a power supply unit are connected to each other.
  • the PTC unit 60 includes four switches 601-604 and a PTC element 600.
  • the switch 601 is connected between the wiring 105 and the wiring 110, and performs a switching operation by the switch control signal SC1, thereby balancing the battery 500 and the input terminal P71 of the DC-DC converter 700 control the connection between
  • the switch 602 is connected between the wiring 106 and the wiring 109, and performs a switching operation by the switch control signal SC2, thereby balancing the battery 500 and the input terminal P72 of the DC-DC converter 700 control the connection between
  • the switch 603 is connected between the wiring 107 and the wiring 110, and performs a switching operation by the switch control signal SC3, thereby balancing the battery 501 and the input terminal P71 of the DC-DC converter 700 control the connection between
  • the switch 604 is connected between the wiring 108 and the wiring 109, and performs a switching operation by the switch control signal SC4, thereby balancing the battery 500 and the input terminal P72 of the DC-DC converter 700 control the connection between
  • An on level of the plurality of switch control signals SC1 to SC4 may be a high level, and an off level may be a low level. That is, the switches 601 to 604 may be turned on according to the high level switch control signals SC1 - SC4 , and the switches 601 - 604 may be turned off according to the low level switch control signals SC1 - SC4 .
  • the plurality of switches 601 and 602 are controlled by the low level switch control signals SC1 and SC2. can be turned off While the balancing battery 501 is being charged by the target battery cell through the wirings 103 and 104, the plurality of switches 603 and 604 are controlled by the low level switch control signals SC3 and SC4. can be turned off
  • the plurality of switches 601 to 604 may be turned on by the plurality of switch control signals SC1 to SC4 having a high level.
  • the positive pole of the balancing battery 500 is connected to the input terminal P71 of the DC-DC converter 700 through wires 105 and 110, and the balancing battery 500
  • the negative electrode of is connected to the input terminal (P72) of the DC-DC converter 700 through wires 106 and 109, and the positive electrode of the balancing battery 501 is connected to the DC-DC converter 700 through wires 107 and 110.
  • the negative pole of the balancing battery 501 is connected to the input terminal (P72) of the DC-DC converter (700) through wires (108, 109).
  • the PTC unit 60 may include a PTC element 600 to limit balancing between the plurality of balancing batteries 500 and 501 .
  • the PTC device 600 may be formed on a current path between the balancing batteries 500 and 501 .
  • a PTC element 600 is formed on the wiring 105 .
  • the PTC element 600 may be formed on the wiring 107 unlike that shown in FIG. 4 .
  • balancing current may flow due to balancing between the balancing batteries 500 and the balancing batteries 501 . Since the PTC device 600 is located on the path of the balancing current, resistance increases as the balancing current increases, thereby limiting the balancing current. When a short circuit occurs due to the balancing current, the resistance of the PTC device 600 rapidly increases, thereby blocking the balancing current.
  • the power conversion unit 70 includes a DC-DC converter 700 and an analog-to-digital converter (Analog-Digital Converter, ADC) 710 .
  • ADC Analog-Digital Converter
  • the ADC 710 may receive the voltage of each of the plurality of balancing batteries 500 and 501 through the wire 110 and transmit the generated battery voltage measurement signal BS to the MCU 30 .
  • the MCU 30 checks the voltage of each of the balancing batteries 500 and 501 after balancing through the voltage measurement signal BS received from the ADC 710 to prevent each balancing battery 500 and 501 from becoming overvoltage.
  • a plurality of MUXs (40, 41) are controlled. For example, if at least one of the balancing batteries 500 and 501 is in an overvoltage state, the MCU 30 generates a plurality of MUX control signals (MCS1) even if there is a battery cell that needs balancing among the plurality of battery cells 11-16. , MCS2) may be maintained at an off level, and the target battery cell may be discharged through another cell balancing circuit, for example, a passive cell balancing circuit.
  • MCS1 MUX control signals
  • the MCU 30 While measuring the voltages of the balancing batteries 500 and 501, the MCU 30 supplies an off-level voltage to the hold terminal 720 through the converter control signal CCS to operate the DC-DC converter 700. can be stopped
  • the hold terminal 720 is connected to the contact point between the two resistors R1 and R2, and the voltage of the hold terminal 720 is supplied to the enable pin P70 to control the operation of the DC-DC converter 700. there is. For example, when the voltage of the hold terminal 720 drops below a predetermined threshold voltage, the DC-DC converter 700 may not operate.
  • the voltage of the hold terminal 720 may be a voltage in which the voltage of the input terminal P71 of the DC-DC converter 700 is divided to the enable pin P70 by two resistors R1 and R2.
  • the fact that the voltage of the hold terminal 720 is lower than a predetermined threshold voltage may indicate that the voltage of the input terminal P71 is lowered to a predetermined threshold value or less.
  • the MCU 30 may supply the converter control signal CCS of an on level to the hold terminal 720 to operate the DC-DC converter 700 .
  • the MCU 30 may stop the operation of the DC-DC converter 700 by supplying the off-level converter control signal CCS to the hold terminal 720 .
  • the voltage of the hold terminal 720 may not follow the voltage supplied from the balancing battery unit 50 .
  • the power converter 70 may maintain the output voltage of the DC-DC converter 700 at a predetermined level through the hold terminal 720 .
  • the predetermined level may be a normal level capable of driving the BMIC 20 .
  • the power supply unit 80 operates according to the drive voltage supplied from the terminal P8 of the BMIC 20 through the wire 112, and converts the voltage supplied from the battery pack 10 through the wire 113 to the BMIC 20. It is regulated to a power supply voltage of a level suitable for and supplied to the terminal (P9) of the BMIC (20).
  • the output voltage supplied from the power conversion unit 70 is transmitted to the power supply unit 80 through the wiring 111, and the power supply unit 80 may not operate when the output voltage of the power conversion unit 70 is at a normal level.
  • the normal level may be a level suitable for driving the BMIC 20 .
  • the power supply unit 80 includes a transistor (Q1), a resistor (R), and a capacitor (C).
  • One end of the resistor R is connected to the wiring 113 connected to the positive electrode of the battery pack 10, the other end of the resistor R is connected to the collector terminal of the transistor Q1, and the emitter of the transistor Q1
  • the terminal terminal is connected to one end of the capacitor (C), and the other end of the capacitor (C) is connected to the ground.
  • the drive voltage supplied from the BMIC 20 is input to the base terminal of the transistor Q1.
  • the BMIC 20 may receive the voltage charged in the capacitor C of the power supply unit 80 as the power supply voltage and regulate the power voltage by controlling the switching operation of the transistor Q1 according to the level of the power supply voltage.
  • An output terminal of the DC-DC converter 700 is connected to a contact between an emitter terminal of the transistor Q1 and one end of the capacitor C through a wiring 111 .
  • the output voltage of the DC-DC converter 700 may be greater than or equal to the drive voltage. That is, when the output voltage of the DC-DC converter 700 is at a normal level, the transistor Q1 of the power supply unit 80 does not operate, so the power supply voltage is not supplied from the power supply unit 80 to the BMIC 20, and DC-DC The output voltage of the converter 700 becomes the power supply voltage of the BMIC 20.
  • the output voltage of the DC-DC converter 700 When the output voltage of the DC-DC converter 700 is at a normal level, the output voltage of the DC-DC converter 700 is supplied to the BMIC 20 through the wire 111 as it is. In addition, when the output voltage of the DC-DC converter 700 is lowered to a level lower than the normal level, the transistor Q1 of the power supply unit 80 may operate. Then, the power supply voltage is supplied from the power supply unit 80 to the BMIC 20 instead of the output voltage of the DC-DC converter 700 . Accordingly, the power supply unit 80 may supply the BMIC 20 with a higher voltage among voltages generated using the voltage of the output terminal of the DC-DC converter 700 and the voltage of the battery pack 10 as the power supply voltage.
  • FIG. 5 is a circuit diagram schematically illustrating a battery system having a current sensor according to an exemplary embodiment.
  • the battery system 1 may include current sensors 51 and 52 between the plurality of MUXs 40 and 41 and the balancing battery unit 50 .
  • the battery system 1000 of FIG. 5 may be regarded as the same as the battery system 1 of FIG. 1 except that the current sensor 51 is added, and duplicate descriptions are omitted.
  • the current sensor 51 may check the amount of current flowing through a wire connecting the target battery cell and the balancing batteries 500 and 501 .
  • the current sensor 51 is provided on the wire 101
  • the current sensor 52 is shown as provided on the wire 103, but the invention is not limited thereto, and the target battery cell and A balancing battery may be provided on at least one of the wirings 101 to 104 connected thereto.
  • the current sensors 51 and 52 may be implemented as hall sensors.
  • the current sensors 51 and 52 may measure the current flowing through the wires 101 and 103 to generate a current measurement signal (not shown) and transmit it to the MCU 30 .
  • the MCU 30 detects the charging current of the balancing batteries 500 and 501 based on the received current measurement signal, estimates the amount of charge of the balancing batteries 500 and 501, or detects an overcurrent to control a protection operation. there is.
  • FIG. 6 is an exemplary diagram schematically illustrating a connection relationship between a battery system connected to a plurality of battery packs according to an exemplary embodiment.
  • the battery system 2000 includes a plurality of battery packs 100, 200, and 300, a master battery management system (MBMS) 21, and a plurality of slave battery management systems (SBMS). (22-24).
  • Each of the plurality of battery packs 100, 200, and 300 is illustrated as including six battery cells connected in series, but this is an example, and the invention is not limited thereto, and each of the plurality of battery packs 100, 200, and 300 may be implemented as two or more battery cells connected in series, or a plurality of battery cells in which two or more battery cells connected in parallel are connected in series.
  • the battery system 2000 is illustrated as including three battery packs 100, 200, and 300 connected in series, but the invention is not limited thereto as an example, and the battery system 2000 includes two or more batteries. Packs may be included.
  • each of the plurality of battery packs 100, 200, and 300 includes a plurality of SBMSs 22- 24
  • the corresponding SBMS 22 is connected.
  • Each of the plurality of SBMSs 22-24 is connected to each of a plurality of battery cells of a corresponding battery pack (eg, 100).
  • the MBMS 21 may perform the functions performed by the MCU 30 of one embodiment shown in FIGS. 1 and 5 .
  • the plurality of SBMSs 22 - 24 measure information necessary for managing the battery system 2000 (eg, voltages of a plurality of cells, temperatures of battery packs, etc.) and transmit signals indicative of the measurement results through wired/wireless communication. It can be sent to MBMS (21). 6 shows that the MBMS 21 and a plurality of SBMSs 22-24 are connected to each other in a daisy chain structure, but this is an example, and the invention is not limited thereto, and the MBMS 21 and the plurality The SBMS (22-24) of the can be directly or indirectly connected to each other for wired/wireless communication.
  • FIG. 7 is a circuit diagram schematically illustrating an embodiment of a detailed configuration of the SBMS of FIG. 6 .
  • the BMS 22 of FIG. 7 is shown as relating to one SBMS 22 among the plurality of SBMSs 22-24 of FIG. 6, the same may be applied to each of the plurality of SBMSs 22-24. .
  • FIG. 7 An operation in which the MCU 30 controls the plurality of MUXs 40 and 41, the PTC unit 60 and the power conversion unit 70 in the battery system 1 and 1000 shown in FIGS. 1 and 5 is shown in FIG. 7
  • the MBMS 31 may be implemented as controlling a plurality of MUXs 40 and 41 , the PTC unit 60 and the power conversion unit 70 .
  • the BMIC 220 is a slave device including the plurality of cell voltages of the plurality of battery cells 1001 to 1006, the temperature of the battery pack 100, and the battery signal BS received from the battery ADC of the power conversion unit 70.
  • a signal SS can be generated and transmitted to the MBMS 21.
  • the MBMS 21 may generate a control signal CS capable of controlling the plurality of SBMSs 22-24 based on the slave signals SS received from the plurality of SBMSs 22-24.
  • the MBMS 21 can transmit the generated control signal (CS) to a plurality of SBMSs 22-24.
  • the control signal CS may include a plurality of MUX control signals MCS1-MCS2, a plurality of switch control signals SC1-SC4, and a converter control signal CCS.
  • the MBMS 21 determines a target battery cell requiring cell balancing among a plurality of battery cells 1001 to 1006, and connects the target battery cell to the balancing battery unit 50 through a plurality of MUXs 40 and 41. Controls the MUXs 40 and 41, and then controls them to be connected to the power converter 70 through the PTC unit 60, and controls the power converter 70 to supply power to the BMIC 220. can The MBMS 21 may generate and transmit a signal CS including a control command for the above control to the SBMS 22.
  • the MBMS 21 generates a control command corresponding to each SBMS in the same manner for the SBMS 23 and 24 as well as the SBMS 22, and generates a signal including control commands corresponding to a plurality of SBMSs 22-24.
  • (CS) can be generated and transmitted to a plurality of SBMSs 22-24.
  • the BMIC 220 generates a plurality of MUX control signals MCS1 and MCS2 according to the signal CS received from the MBMS 21 and transfers them to the plurality of MUXs 40 and 41, and a plurality of switch control signals SC1 -SC4) may be generated and transmitted to the PTC unit 60, and transmitted to the power conversion unit 70 through the converter control signal (CCS).
  • the BMIC 220 may control whether the power converter 70 is enabled through the converter control signal CCS.
  • the corresponding balancing battery can be charged by energy discharged from the target battery cell.
  • the power conversion unit 70 converts the voltage stored in the balancing battery unit 50 into a voltage suitable for driving the BMIC 220 to obtain the BMIC ( 220) can be supplied.
  • the MBMS 21 sends the BMIC 220 from the power conversion unit 70.
  • a control signal CS including a control command for enabling the power converter 70 to receive power may be transmitted to the BMIC 220 .
  • the BMIC 220 may generate a converter control signal (CCS) enabling the power conversion unit 70 according to the control signal CS and transmit the converter control signal CCS to the power conversion unit 70 .
  • CCS converter control signal
  • the MBMS 21 operates a plurality of MUXs 40 , 41) may be transmitted to the BMIC 220.
  • the BMIC 220 is a plurality of off-level MUXs that maintain the plurality of MUXs 40 and 41 in an off state even if there are battery cells that need to be balanced among the plurality of battery cells 1001 to 1006 according to the control signal CS.
  • Control signals MCS1 and MCS2 may be generated and transmitted to the plurality of MUXs 40 and 41 .

Abstract

배터리 시스템은, 복수의 배터리 셀을 포함하는 배터리 팩, 상기 복수의 배터리 셀 각각에 대한 복수의 셀 전압을 모니터링하는 BMIC, 상기 복수의 배터리 셀 중 셀 밸런싱이 필요한 대상 배터리 셀에 의해 충전되는 복수의 밸런싱 배터리, 상기 복수의 밸런싱 배터리로부터 전압을 입력 받아, 출력 전압으로 변환하는 DC-DC 컨버터를 포함하는 전력 변환부, 및 상기 출력 전압이 상기 BMIC를 구동시키기 위한 소정 레벨 이상일 때, 상기 출력 전압을 상기 BMIC에 공급하는 전원부를 포함한다.

Description

배터리 시스템
관련 출원(들)과의 상호 인용
본 출원은 2021년 11월 16일자 한국 특허 출원 제10-2021-0157764호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 개시는, 배터리 시스템에 관한 것이다.
배터리 팩은 직렬 및/또는 병렬로 연결된 복수의 배터리 셀을 포함할 수 있다. 배터리 팩이 복수의 배터리 셀을 포함하는 경우, 복수의 배터리 셀 간의 전압 균형을 맞추기 위한 셀 밸런싱 동작이 이루어질 수 있다. 셀 밸런싱 동작은, 복수의 배터리 셀 중 편차가 발생된 배터리 셀에 흐르는 전류를 밸런싱 부하를 통해 방전시키는 방식으로 구현될 수 있다.
또한 배터리 셀의 전압을 모니터링하는 배터리 모니터링 집적 회로는, 전압 모니터링 동작을 수행하기 위한 전력 공급이 필요하고, 모니터링을 수행하지 않는 기간에도, 대기 전력의 공급이 필요한다. 따라서, 배터리 모니터링 집적 회로에 전력을 공급하기 위한 전원이 필요하다.
복수의 배터리 셀들을 포함하는 배터리 팩에서, 복수의 배터리 셀 간의 셀 밸런싱 동작에서 소비되는 전력을 이용하여 배터리 모니터링 집적 회로에 전력을 공급할 수 있는 배터리 시스템을 제공하고자 한다.
발명의 한 특징에 따른 배터리 시스템은, 복수의 배터리 셀을 포함하는 배터리 팩, 상기 복수의 배터리 셀 각각에 대한 복수의 셀 전압을 모니터링하는 BMIC, 상기 복수의 배터리 셀 중 셀 밸런싱이 필요한 대상 배터리 셀에 의해 충전되는 복수의 밸런싱 배터리, 상기 복수의 밸런싱 배터리로부터 전압을 입력 받아, 출력 전압으로 변환하는 DC-DC 컨버터를 포함하는 전력 변환부, 및 상기 출력 전압이 상기 BMIC를 구동시키기 위한 소정 레벨 이상일 때, 상기 출력 전압을 상기 BMIC에 공급하는 전원부를 포함한다.
상기 전원부는, 상기 출력 전압이 상기 BMIC를 구동시키기 위한 소정 레벨 미만이면, 상기 배터리 팩으로부터 공급되는 전압을 상기 BMIC를 구동시키기 위한 소정 레벨의 전압으로 레귤레이트 하여 상기 BMIC에 공급할 수 있다.
상기 복수의 배터리 셀 중 셀 밸런싱이 필요한 대상 배터리 셀을 상기 복수의 밸런싱 배터리 중 하나에 연결하는 복수의 MUX를 더 포함할 수 있다.
상기 전력 변환부는, 상기 복수의 밸런싱 배터리로부터 출력되는 전압이 소정의 임계 전압 이상일 때 상기 DC-DC 컨버터를 동작시킬 수 있다.
상기 전력 변환부는, 상기 복수의 밸런싱 배터리로부터 출력되는 전압을 측정하여 전압 측정 신호를 생성하는 ADC를 더 포함하고, 상기 전압 측정 신호에 기초하여 상기 대상 배터리 셀에 의한 상기 복수의 밸런싱 배터리의 충전 여부가 제어될 수 있다.
상기 ADC가 상기 복수의 밸런싱 배터리로부터 출력되는 전압을 측정하는 동안, 상기 전력 변환부는 동작하지 않을 수 있다.
상기 대상 배터리 셀의 셀 밸런싱에 의해 상기 복수의 밸런싱 배터리 중 어느 하나가 충전되는 전류 경로 상에 위치하는 PTC 소자를 더 포함할 수 있다.
상기 복수의 밸런싱 배터리가 서로 병렬로 연결되는 경우, 상기 복수의 밸런싱 배터리 사이의 전류 경로 상에 위치하는 PTC 소자를 더 포함할 수 있다.
상기 전원부는, 상기 배터리 팩에 연결된 배선과 연결된 저항, 상기 배터리 팩의 전압을 이용하여 생성된 전압이 충전되는 커패시터, 및 베이스 단에 상기 BMIC로부터 공급되는 드라이브 전압이 입력되고, 컬렉터 단에 상기 저항이 연결되며, 에미터 단에 상기 커패시터가 연결되어, 상기 에미터 단의 전압이 상기 베이스 단의 전압 레벨에 도달하지 못하면 동작하여 상기 컬렉터 단의 전압으로부터 생성된 전압을 상기 BMIC에 공급하는 트렌지스터를 포함할 수 있다.
또한, 발명의 다른 특징에 따른 배터리 시스템은, 복수의 배터리 셀을 포함하는 배터리 팩, 상기 복수의 배터리 셀 각각에 대한 복수의 셀 전압을 측정하는 BMIC, 상기 복수의 셀 전압을 수신하여 상기 복수의 배터리 셀 중 셀 밸런싱이 필요한 대상 배터리 셀을 결정하는 MCU, 셀 밸런싱에 의해 충전되는 복수의 밸런싱 배터리, 상기 MCU의 제어에 따라 상기 결정된 대상 배터리 셀과 상기 복수의 밸런싱 배터리 중 대응하는 하나에 연결하는 MUX, 상기 복수의 밸런싱 배터리로부터 입력되는 전압을 변환하여 출력 전압을 생성하는 DC-DC 컨버터, 상기 DC-DC 컨버터의 출력 전압 및 상기 배터리 팩의 전압을 이용하여 생성한 전압 중 높은 전압을 상기 BMIC에 공급하는 전원부를 포함한다.
상기 DC-DC 컨버터는, 상기 복수의 밸런싱 배터리로부터 입력되는 전압이 소정의 임계 전압 이상을 때 동작할 수 있다.
또한, 발명의 또 다른 특징에 따른 배터리 시스템은, 각각 복수의 배터리 셀을 포함하는 복수의 배터리 팩, 상기 복수의 배터리 팩 각각에 대하여, 배터리 팩을 관리하는 복수의 슬레이브 BMS - 상기 복수의 슬레이브 BMS 각각은 대응하는 복수의 배터리 셀에 연결되어 복수의 복수의 셀 전압을 측정하고, 셀 밸런싱을 제어하는 BMIC를 포함-, 상기 복수의 슬레이브 BMS 각각에 포함되어 셀 밸런싱에 의해 충전되는 복수의 밸런싱 배터리, 상기 복수의 밸런싱 배터리로부터 공급되는 전압을 변환하여 출력 전압을 생성하는 DC-DC 컨버터, 및 상기 DC-DC 컨버터의 출력 전압 및 상기 배터리 팩의 전압을 이용하여 생성한 전압 중 높은 전압을 상기 BMIC에 공급하는 전원부를 포함한다.
상기 복수의 슬레이브 BMS로부터 상기 복수의 밸런싱 배터리로부터 공급되는 전압을 측정한 전압 측정 신호를 수신하고, 상기 전압 측정 신호에 기초하여 상기 복수의 슬레이브 BMS를 제어할 수 있는 제어 신호를 생성하여 상기 복수의 슬레이브 BMS에 전송하는 마스터 BMS를 더 포함할 수 있다.
상기 복수의 밸런싱 배터리로부터 공급되는 전압이 소정의 임계 전압 이상일 때, 상기 마스터 BMS는 상기 DC-DC 컨버터를 온 시키는 제어 명령을 포함하는 제어 신호를 생성할 수 있다.
복수의 배터리 셀들을 포함하는 배터리 팩에서, 복수의 배터리 셀 간의 셀 밸런싱 동작에서 소비되는 전력을 이용하여 배터리 모니터링 집적 회로에 전력을 공급할 수 있는 배터리 시스템을 제공한다. 이를 통해, 배터리 시스템의 전력 소모를 저감할 수 있다.
도 1은 일 실시예에 따른 배터리 시스템을 도식적으로 나타낸 회로도이다.
도 2는 일 실시예에 따른 MUX를 나타낸 도면이다.
도 3은 일 실시예에 따른 밸런싱 배터리부를 나타낸 도면이다.
도 4는 PTC부, 전력 변환부, 및 전원부가 서로 연결된 모습을 도식적으로 나타낸 도면이다.
도 5는 일 실시예에 따라 전류 센서를 구비한 배터리 시스템을 도식적으로 나타낸 회로도이다.
도 6은 일 실시예에 따른 복수의 배터리 팩과 연결된 배터리 시스템의 연결관계를 도식적으로 나타낸 예시도이다.
도 7은 도 6의 SBMS의 세부 구성의 일 실시예를 도식적으로 나타낸 회로도이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 동일하거나 유사한 구성요소에는 동일, 유사한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및/또는 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
일 실시예에 따른 구성들 중 특정 제어 조건에서 다른 구성을 제어하는 구성에는, 다른 구성을 제어하기 위해 필요한 제어 알고리즘을 구체화한 명령어의 집합으로 구현된 프로그램이 설치될 수 있다. 제어 구성은 설치된 프로그램에 따라 입력 데이터 및 저장된 데이터를 처리하여 출력 데이터를 생성할 수 있다. 제어 구성은 프로그램을 저장하는 비휘발성 메모리 및 데이터를 저장하는 메모리를 포함할 수 있다.
도 1은 일 실시예에 따른 배터리 시스템을 도식적으로 나타낸 회로도이다.
도 1을 참조하면, 배터리 시스템(1)은, 배터리 팩(10), 배터리 모니터링 집적 회로(20), 메인 제어부(30), 복수의 MUX(40, 41), 밸런싱 배터리부(50), PTC부(60), 전력 변환부(70), 전원부(80), 및 릴레이(90, 91)를 포함할 수 있다. 배터리 모니터링 집적 회로를 이하, BMIC(Battery Monitoring Integrated Circuit)라 한다. 메인 제어부를 이하, MCU(Main Control Unit)라 한다.
외부 장치(2)는 인버터, 컨버터 등의 부하 및 충전 장치를 포함할 수 있다. 외부 장치(2)가 충전기인 경우, 배터리 시스템(1)의 양단은 충전기에 연결되어 충전기로부터 전력을 공급받아 충전될 수 있다. 외부 장치(2)가 부하인 경우, 배터리 시스템(1)의 양단은 부하에 연결되어 배터리 팩(10)이 공급하는 전력이 부하를 통해 방전될 수 있다.
배터리 팩(10)은, 직렬 연결된 복수의 배터리 셀(11-16)을 포함한다. 도 1에서는 배터리 팩(10)이 직렬 연결된 6개의 배터리 셀(11-16)을 포함하는 것으로 도시되어 있으나, 이는 일 예로 발명이 이에 한정되지 않으며, 배터리 팩(10)은 직렬로 연결된 2 이상의 배터리 셀, 병렬 연결된 2 이상의 배터리 셀이 복수 개 직렬 연결된 복수의 배터리 셀로 구현될 수 있다.
이하, 본 명세서에서 설명되는 셀 밸런싱은 배터리 팩(10)에 포함된 복수의 배터리 셀(11-16) 중 기준 값 이상인 배터리 셀에 대한 전하 균등화 동작을 의미할 수 있다. 기준 값은 복수의 배터리 셀(11-16)의 셀 전압에 기초하여 설정되는 값으로, 복수의 셀 전압에 대한 대표값일 수 있다. 대표값은 평균값, 중간값, 최소값 등일 수 있다. 종래 전하 균등화 동작은 셀 밸런싱이 필요한 셀에 저장된 전하를 셀 전압이 낮은 배터리 셀에 전달하는 방식으로 구현되거나, 방전 부하를 이용하여 셀 밸런싱이 필요한 셀에 저장된 전하를 방전하는 방식으로 구현될 수 있다. 그러나, 일 실시예에 따르면, 전하 균등화 동작은 셀 밸런싱이 필요한 셀에 저장된 전하를 밸런싱 배터리에 전달하는 방식으로 구현될 수 있다.
BMIC(20)가 소비하는 전력은, 모니터링에 필요한 모니터링 전력 및 슬립 상태에서의 대기 전력으로 구분할 수 있다. 모니터링 전력은, BMIC(20)가 모니터링을 수행하면서 소모하는 전력이다. 대기 전력은, BMIC(20)가 모니터링을 수행하지 않는 슬립 상태에서 소비하는 전력이다. 장시간 운송, 보관시에도 대기 전력이 소비되므로, BMIC(20)의 소비 전력을 산출할 때, 모니터링 전력 및 대기 전력 모두가 고려되어야 한다. BMIC(20)의 소비 전력에 의해 복수의 배터리 셀(11-16) 각각의 충전 에너지는 감소할 수 있다.
이하, 도 1 내지 도 5를 참조하여, 셀 밸런싱이 필요한 셀의 전하 균등화 동작에서 발생하는 에너지로 밸런싱 배터리를 충전하고, 밸런싱 배터리에 충전된 전력을 BMIC(20)에 공급하는 일 실시예에 대해서 설명한다.
BMIC(20)는 복수의 배터리 셀(11-16) 각각의 배터리 셀에 연결되어 있고, 복수의 입력단(P1-P7)을 통해 복수의 배터리 셀(11-16) 양단으로부터 측정된 복수의 전압 측정 신호(VS1-VS7)를 획득한다. 복수의 배터리 셀(11-16) 각각(예를 들어, 11)의 양극은, 배선을 통해 복수의 입력단(P1-P6) 중 대응하는 입력단(예를 들어, P1)에 연결되어 있고, 복수의 배터리 셀(11-16) 각각(예를 들어, 11)의 음극은, 배선을 통해 복수의 입력단(P2-P7) 중 대응하는 입력단(예를 들어, P2)에 연결되어 있다. 예를 들어, 측정 신호(VS1)는 배터리 셀(11)의 양극 전압이고, 입력단(P1)을 통해 BMIC(20)에 입력되며, 측정 신호(VS2)는 배터리 셀(11)의 음극의 전압 또는 배터리 셀(12)의 양극의 전압이고, 입력단(P2)을 통해 BMIC(20)에 입력된다.
BMIC(20)는 복수의 전압 측정 신호(VS1-VS7)로부터 도출된 복수의 배터리 셀의 셀 전압을 지시하는 복수의 셀 전압 신호를 MCU(30)에 전송할 수 있다. 예를 들어, BMIC(20)는 복수의 배터리 셀 각각의 양극 전압에서 음극 전압을 뺀 전압에 따라 셀 전압 신호를 생성하여 MCU(30)에 전송할 수 있다.
MCU(30)는 복수의 셀 전압 신호를 수신하고, 복수의 셀 전압 신호에 기초하여 복수의 배터리 셀(11-16) 중 셀 밸런싱이 필요한 배터리 셀(이하, 대상 배터리 셀)을 결정한다. MCU(30)는 대상 배터리 셀을 복수의 MUX(40, 41)를 통해 밸런싱 배터리부(50)에 연결되도록 제어하고, 이어서 밸런싱 배터리부(50)를 PTC부(60)를 통해 전력 변환부(70)에 연결되도록 제어하며, 전력 변환부(70)를 제어하여 BMIC(20)에 전력을 공급하도록 할 수 있다. 대상 배터리 셀이 복수의 MUX(40, 41) 중 대응하는 MUX를 통해 밸런싱 배터리부(50)의 대응하는 밸런싱 배터리에 연결되면, 대상 배터리 셀로부터 방전된 에너지에 의해 대응하는 밸런싱 배터리가 충전될 수 있다. 밸런싱 배터리부(50)와 전력 변환부(70)가 연결되면, 전력 변환부(70)는 밸런싱 배터리부(50)에 저장된 전압을 BMIC(20)를 구동하는데 적합한 레벨의 전압으로 변환하여 BMIC(20)에 공급할 수 있다.
MCU(30)는, 위와 같은 제어를 위해서, 복수의 MUX 제어 신호(MCS1, MCS2)를 생성하여 복수의 MUX(40, 41)에 전달하고, 복수의 스위치 제어 신호(SC1-SC4)를 생성하여 PTC부(60)에 전달하며, 컨버터 제어 신호(CCS)를 통하여 전력 변환부(70)에 전달할 수 있다. MCU(30)는, 컨버터 제어 신호(CCS)를 통하여 전력 변환부(70)에 인에이블 여부를 제어하며, 전력 변환부(70)의 배터리 ADC로부터 생성된 배터리 신호(BS)를 수신할 수 있다.
복수의 MUX(40, 41) 각각은 대응하는 복수의 배터리 셀 중 대상 배터리 셀을 밸런싱 배터리부(50)와 연결할 수 있다. 복수의 MUX(40, 41) 각각에 대응하는 복수의 배터리 셀이란, 해당 MUX에 연결되어 있는 복수의 배터리 셀을 의미한다. 도 1에는, MUX(40)가, 3개의 배터리 셀(11-13)에 연결되어 있고, MUX(41)가, 3개의 배터리 셀(14-16)에 연결되어 있는 것으로 도시되어 있다.
복수의 MUX(40, 41) 각각(예를 들어, 40)은, 복수의 배터리 셀(11-16) 중 연결된 복수의 배터리 셀(예를 들어, 11-13) 중에서 대상 배터리 셀의 양극 및 음극 각각을 복수의 배선(101-104) 중 대응하는 배선(101, 102)에 연결할 수 있다. 도 1에서는 복수의 MUX(40, 41)의 개수가 2개인 것으로 도시되어 있으나, 발명이 이에 한정되지 않으며, 배터리 시스템(1)은 1 이상의 MUX를 포함할 수 있다. 이하, MUX(40)의 동작에 관한 설명은, MUX(41)에 대해서도 동일하게 적용될 수 있다.
MUX(40)는 복수의 MUX 제어 신호(MCS1)에 따라 대응하는 복수의 배터리 셀(11-13) 중 대상 배터리 셀을 밸런싱 배터리부(50)에 연결한다. MUX(41)는 복수의 MUX 제어 신호(MCS2)에 따라 대응하는 복수의 배터리 셀(14-16) 중 대상 배터리 셀을 밸런싱 배터리부(50)에 연결한다. 복수의 제어 신호(MCS1)는 MUX 회로(40)를 구성하는 복수의 스위칭 소자를 제어하기 위한 복수의 스위칭 신호(MS1-MS6)를 포함할 수 있다.
릴레이(90, 91)의 일단은 배터리 팩(10)에 연결되어 있고, 릴레이(90, 91)의 타단은 외부 장치(2)에서 적어도 하나의 구성과 연결되어 있다. 릴레이(90, 91)의 닫힘 및 개방은 MCU(30)로부터 공급되는 릴레이 제어 신호(RSC1, RSC2)에 따라 제어된다.
도 2는 일 실시예에 따른 MUX를 나타낸 도면이다.
MCU(30)는 복수의 배터리 셀(11-16) 중 대상 배터리 셀이 결정되면, 대상 배터리 셀을 밸런싱 배터리부(50)에 연결하기 위한 복수의 MUX 제어 신호(MCS1, MCS2)를 생성한다.
도 2에 도시된 바와 같이, MUX(40)는 복수의 스위칭 소자(411-416)를 포함하고, 복수의 스위칭 신호(MS1-MS6) 각각은 대응하는 스위칭 소자의 스위칭 동작을 제어할 수 있다. 복수의 배터리 셀(11-13) 중 배터리 셀(11)이 대상 배터리 셀일 때, MCU(30)는 복수의 스위칭 신호(MS1-MS6) 중 스위칭 신호(MS1, MS4)를 온 레벨로 생성하고, 스위칭 소자(411, 414)가 온 레벨의 스위칭 신호(MS1, MS4)에 의해 온 될 수 있다. 그러면, 배터리 셀(11)이 MUX(40)를 통해 밸런싱 배터리부(50)에 연결될 수 있다. 이때, 대상 배터리 셀이 아닌 배터리 셀(12, 13)에 연결된 복수의 스위칭 소자(412, 413, 415, 416)에는 MCU(30)로부터 오프 레벨의 스위칭 신호(MS2, MS3, MS5, MS6)가 공급되고, 복수의 스위칭 소자(412, 413, 415, 416)는 오프 상태일 수 있다.
MUX(41)도 MUX(40)와 동일한 구성을 포함하고, 동일한 방식으로 동작할 수 있다.
일 실시예에 따르면, 복수의 배터리 셀(예를 들어, 11-13) 중에서 대상 배터리 셀을 선택하여, 대상 배터리 셀의 양극 및 음극 각각을 배선(101) 및 배선(102)에 연결하는 것은, MUX(40) 대신에 전계 효과 트렌지스터(Field Effect Transistor, FET) 소자를 포함하는 회로를 통해 구현될 수 있다.
밸런싱 배터리부(50)에서는, 배선(101) 및 배선(102)을 통해 연결된 대상 배터리 셀로부터 에너지를 공급받아 밸런싱 배터리가 충전될 수 있다.
도 3은 일 실시예에 따른 밸런싱 배터리부를 나타낸 도면이다.
이하 도 3을 참조하여 밸런싱 배터리부(50)의 세부 구성을 설명한다.
밸런싱 배터리부(50)는, 복수의 밸런싱 배터리(500, 501), 및 복수의 PTC 소자(510, 511)를 포함할 수 있다.
도 1에서는 복수의 밸런싱 배터리(500, 501) 및 복수의 PTC 소자(510, 511)의 개수가 각각 2개인 것으로 도시되어 있으나, 발명이 이에 한정되지 않으며, 각각의 개수는 MUX의 개수에 기초하여 증감될 수 있다.
밸런싱 배터리(500)의 양극은 배선(101)에 연결되고, 밸런싱 배터리(500)의 음극은 배선(102)에 연결되어 있다. PTC 소자(510)는, 배선(101) 상에 형성되어 있을 수 있다. PTC 소자(510)는 도 3에 도시된 것과 달리 배선(102) 상에 형성되어 있을 수 있다. PTC 소자(510)는 정 온도 계수(Positive Temperature Coefficient) 를 가지는 저항 소자로 구현될 수 있다. 밸런싱 배터리(500)가 복수의 배터리 셀(11-13) 중 대상 배터리 셀에 연결되어 충전될 때, 충전 전류에 의해 온도가 증가할 경우 PTC 소자(510)의 저항이 증가하여 충전 전류를 제한할 수 있다. 예를 들어, PTC 소자(510)는, 단락(Short)시 발생하는 열에 의해 저항이 급격히 상승하여 배선(101)에 흐르는 전류를 차단할 수 있다.
밸런싱 배터리(501)의 양극은 배선(103)에 연결되고, 밸런싱 배터리(501)의 음극은 배선(104)에 연결되어 있다. PTC 소자(511)는, 배선(103) 상에 형성되어 있을 수 있다. PTC 소자(511)는 도 3에 도시된 것과 달리 배선(104) 상에 형성되어 있을 수 있다. PTC 소자(511)는 정 온도 계수(Positive Temperature Coefficient) 를 가지는 저항 소자로 구현될 수 있다. 밸런싱 배터리(501)가 복수의 배터리 셀(14-16) 중 대상 배터리 셀에 연결되어 충전될 때, 충전 전류에 의해 온도가 증가할 경우 PTC 소자(511)의 저항이 증가하여 충전 전류를 제한할 수 있다. 예를 들어, PTC 소자(511)는, 단락(Short)시 발생하는 열에 의해 저항이 급격히 상승하여 배선(103)에 흐르는 전류를 차단할 수 있다.
이하 도 4를 참조하여 PTC부(60), 전력 변환부(70) 및 전원부(80)의 세부 구성을 설명한다.
도 4는 PTC부, 전력 변환부, 및 전원부가 서로 연결된 모습을 도식적으로 나타낸 도면이다.
PTC부(60)는 4 개의 스위치(601-604) 및 PTC 소자(600)를 포함한다.
스위치(601)는 배선(105)과 배선(110) 사이에 연결되어 있고, 스위치 제어 신호(SC1)에 의해 스위칭 동작함으로써, 밸런싱 배터리(500)와 DC-DC 컨버터(700)의 입력단(P71) 사이의 연결을 제어한다. 스위치(602)는 배선(106)과 배선(109) 사이에 연결되어 있고, 스위치 제어 신호(SC2)에 의해 스위칭 동작함으로써, 밸런싱 배터리(500)와 DC-DC 컨버터(700)의 입력단(P72) 사이의 연결을 제어한다. 스위치(603)는 배선(107)과 배선(110) 사이에 연결되어 있고, 스위치 제어 신호(SC3)에 의해 스위칭 동작함으로써, 밸런싱 배터리(501)와 DC-DC 컨버터(700)의 입력단(P71) 사이의 연결을 제어한다. 스위치(604)는 배선(108)과 배선(109) 사이에 연결되어 있고, 스위치 제어 신호(SC4)에 의해 스위칭 동작함으로써, 밸런싱 배터리(500)와 DC-DC 컨버터(700)의 입력단(P72) 사이의 연결을 제어한다.
복수의 스위치 제어 신호(SC1-SC4)의 온 레벨은 하이 레벨이고, 오프 레벨은 로우 레벨일 수 있다. 즉, 하이 레벨의 스위치 제어 신호(SC1-SC4)에 따라 스위치(601-604)가 온 되고, 로우 레벨의 스위치 제어 신호(SC1-SC4)에 따라 스위치(601-604)가 오프될 수 있다.
배선(101) 및 배선(102)을 통해 대상 배터리 셀에 의해 밸런싱 배터리(500)가 충전되는 동안, 로우 레벨의 복수의 스위치 제어 신호(SC1, SC2)에 의해 복수의 스위치(601, 602)는 오프될 수 있다. 배선(103) 및 배선(104)을 통해 대상 배터리 셀에 의해 밸런싱 배터리(501)가 충전되는 동안, 로우 레벨의 복수의 스위치 제어 신호(SC3, SC4)에 의해 복수의 스위치(603, 604)는 오프될 수 있다.
밸런싱 동작이 종료된 후, 하이 레벨의 복수의 스위치 제어 신호(SC1-SC4)에 의해 복수의 스위치(601-604)는 온 될 수 있다.
복수의 스위치(601-604)가 온 일 때, 밸런싱 배터리(500)의 양극은 배선(105, 110)을 통해 DC-DC 컨버터(700)의 입력단(P71)에 연결되고, 밸런싱 배터리(500)의 음극은 배선(106, 109)을 통해 DC-DC 컨버터(700)의 입력단(P72)에 연결되며, 밸런싱 배터리(501)의 양극은 배선(107, 110)을 통해 DC-DC 컨버터(700)의 입력단(P71)에 연결되고, 밸런싱 배터리(501)의 음극은 배선(108, 109)을 통해 DC-DC 컨버터(700)의 입력단(P72)에 연결된다.
복수의 스위치(601-604)가 온 되면, 복수의 밸런싱 배터리(500, 501) 간의 전위차로 복수의 밸런싱 배터리(500, 501) 간의 밸런싱이 발생할 수 있다. PTC부(60)는 이러한 복수의 밸런싱 배터리(500, 501) 간의 밸런싱을 제한하기 위하여 PTC 소자(600)를 포함할 수 있다.
PTC 소자(600)는 밸런싱 배터리(500, 501) 간의 전류 경로 상에 형성될 수 있다. 도 4에서는 배선(105) 상에 PTC 소자(600)가 형성되어 있다. PTC 소자(600)는 도 4에 도시된 것과 달리 배선(107) 상에 형성되어 있을 수 있다. 복수의 스위치(601-604)가 모두 온 상태일 때, 밸런싱 배터리(500)과 밸런싱 배터리(501) 간의 밸런싱에 의해 밸런싱 전류가 흐를 수 있다. PTC 소자(600)는 밸런싱 전류의 경로 상에 위치하고 있으므로, 밸런싱 전류가 증가할수록 저항이 증가하여 밸런싱 전류를 제한할 수 있다. 밸런싱 전류에 의해 단락(Short)이 발생하면, PTC 소자(600)의 저항이 급격히 증가하여 밸런싱 전류를 차단할 수 있다.
전력 변환부(70)는, DC-DC 컨버터(700) 및 아날로그-디지털 컨버터(Analog-Digital Converter, ADC)(710)를 포함한다.
ADC(710)는 배선(110)을 통해 복수의 밸런싱 배터리(500, 501) 각각의 전압을 입력 받아 생성된 배터리 전압 측정 신호(BS)를 MCU(30)에 전송할 수 있다. MCU(30)는 ADC(710)로부터 수신되는 전압 측정 신호(BS)를 통해 밸런싱 이후의 밸런싱 배터리(500, 501) 각각의 전압을 확인하여 각 밸런싱 배터리(500, 501)가 과전압 상태가 되지 않도록 복수의 MUX(40, 41)를 제어한다. 예를 들어, MCU(30)는 밸런싱 배터리(500, 501)가 중 적어도 하나가 과전압 상태라면, 복수의 배터리 셀(11-16) 중 밸런싱이 필요한 배터리 셀이 있더라도, 복수의 MUX 제어 신호(MCS1, MCS2)를 오프 레벨로 유지하고, 대상 배터리 셀을 다른 셀 밸런싱 회로 예를 들어, 패시브 방식의 셀 밸런싱 회로를 통해 방전시킬 수 있다.
밸런싱 배터리(500, 501)의 전압을 측정하는 동안, MCU(30)는 컨버터 제어 신호(CCS)를 통해 홀드 단자(720)에 오프 레벨의 전압을 공급하여 DC-DC 컨버터(700)의 동작을 정지시킬 수 있다.
홀드 단자(720)는 두 저항(R1, R2) 사이의 접점에 연결되고, 홀드 단자(720)의 전압은 인에이블 핀(P70)에 공급되어 DC-DC 컨버터(700)의 동작을 제어할 수 있다. 예를 들어, 홀드 단자(720)의 전압이 소정의 임계 전압 이하로 낮아지면 DC-DC 컨버터(700)는 동작하지 않을 수 있다. 홀드 단자(720)의 전압은, DC-DC 컨버터(700)의 입력단(P71) 전압이, 두 저항(R1, R2)에 의해 인에이블 핀(P70)에 분배되는 전압일 수 있다. 홀드 단자(720)의 전압이 소정의 임계 전압 이하로 낮아진 것은, 입력단(P71)의 전압이 소정의 임계치 이하로 낮아진 것을 나타낼 수 있다.
또는, MCU(30)는 홀드 단자(720)에 온 레벨의 컨버터 제어 신호(CCS)를 공급하여, DC-DC 컨버터(700)를 동작시킬 수 있다. 또한 MCU(30)는 홀드 단자(720)에 오프 레벨의 컨버터 제어 신호(CCS)를 공급하여, DC-DC 컨버터(700)의 동작을 정지시킬 수 있다. 이 경우, 홀드 단자(720)의 전압은 밸런싱 배터리부(50)로부터 공급되는 전압에 따르지 않을 수 있다.
전력 변환부(70)는 홀드 단자(720)에 의해 DC-DC 컨버터(700)의 출력 전압을 소정 레벨로 유지할 수 있다. 여기서 소정 레벨은, BMIC(20)를 구동시킬 수 있는 정상 레벨일 수 있다.
전원부(80)는 배선(112)을 통해 BMIC(20)의 단자(P8)로부터 공급되는 드라이브 전압에 따라 동작하여, 배선(113)을 통해 배터리 팩(10)으로부터 공급되는 전압을 BMIC(20)에 적합한 레벨의 전원 전압으로 레귤레이트하여 BMIC(20)의 단자(P9)에 공급한다.
전원부(80)에는 배선(111)을 통해 전력 변환부(70)로부터 공급되는 출력 전압이 전달되고, 전원부(80)는 전력 변환부(70)의 출력 전압이 정상 레벨일 때 동작하지 않을 수 있다. 예를 들어, 정상 레벨은, BMIC(20)가 구동하는 데 적합한 레벨일 수 있다.
전원부(80)는 트랜지스터(Q1), 저항(R), 및 커패시터(C)를 포함한다. 저항(R)의 일단은 배터리 팩(10)의 양극에 연결된 배선(113)과 연결되어 있고, 저항(R)의 타단은 트랜지스터(Q1)의 컬렉터 단에 연결되어 있으며, 트랜지스터(Q1)의 에미터 단은 커패시터(C)의 일단에 연결되어 있고, 커패시터(C)의 타단은 그라운드에 연결되어 있다. 트랜지스터(Q1)의 베이스 단에는 BMIC(20)로부터 공급되는 드라이브 전압이 입력된다. BMIC(20)는 전원부(80)의 커패시터(C)에 충전된 전압을 전원 전압으로 공급받고, 전원 전압의 레벨에 따라 트랜지스터(Q1)의 스위칭 동작을 제어하여 전원 전압을 레귤레이트할 수 있다.
DC-DC 컨버터(700)의 출력단은 배선(111)을 통해 트랜지스터(Q1)의 에미터 단과 커패시터(C)의 일단 사이의 접점에 연결되어 있다. 이때, DC-DC 컨버터(700)의 출력 전압이 정상 레벨일 때, DC-DC 컨버터(700)의 출력 전압은 드라이브 전압 이상일 수 있다. 즉, DC-DC 컨버터(700)의 출력 전압이 정상 레벨이면 전원부(80)의 트랜지스터(Q1)가 동작하지 않으므로, 전원부(80)로부터 BMIC(20)로 전원 전압이 공급되지 않고, DC-DC 컨버터(700)의 출력 전압이 BMIC(20)의 전원 전압이 된다. DC-DC 컨버터(700)의 출력 전압이 정상 레벨이면, DC-DC 컨버터(700)의 출력 전압이 배선(111)을 통해 BMIC(20)에 그대로 공급된다. 또한, DC-DC 컨버터(700)의 출력 전압이 정상 레벨 보다 낮은 레벨로 저하되면 전원부(80)의 트랜지스터(Q1)가 동작할 수 있다. 그러면, DC-DC 컨버터(700)의 출력 전압 대신 전원부(80)로부터 BMIC(20)로 전원 전압이 공급된다. 따라서, 전원부(80)는, DC-DC 컨버터(700)의 출력단 전압 및 배터리 팩(10)의 전압을 이용하여 생성한 전압 중 높은 전압을 전원 전압으로 하여 BMIC(20)에 공급할 수 있다.
도 5는 일 실시예에 따라 전류 센서를 구비한 배터리 시스템을 도식적으로 나타낸 회로도이다.
도 5를 참조하면, 배터리 시스템(1)에는, 복수의 MUX(40, 41) 및 밸런싱 배터리부(50) 사이에 전류 센서(51, 52)가 구비될 수 있다.
도 5의 배터리 시스템(1000)은, 전류 센서(51)가 부가된 것 이외에는, 도 1의 배터리 시스템(1)과 동일한 것으로 볼 수 있으며, 중복되는 설명은 생략한다.
전류 센서(51)는, 대상 배터리 셀과 밸런싱 배터리(500, 501)가 연결되는 배선에 흐르는 전류량을 체크할 수 있다. 도 5에는, 전류 센서(51)는 배선(101) 상에 구비되고, 전류 센서(52)는 배선(103) 상에 구비된 것으로 도시되어 있으나, 발명은 이에 한정되는 것이 아니고, 대상 배터리 셀과 밸런싱 배터리가 연결되는 배선(101-104) 중 적어도 하나에 구비될 수 있다. 전류 센서(51, 52)는 홀센서로 구현될 수 있다. 전류 센서(51, 52)는 배선(101, 103)에 흐르는 전류를 측정하여 전류 측정 신호(도시하지 않음)를 생성하여 MCU(30)에 전송할 수 있다. MCU(30)는 수신한 전류 측정 신호에 기초하여 밸런싱 배터리(500, 501)의 충전 전류를 감지하고, 밸런싱 배터리(500, 501)의 충전량을 추정하거나, 과전류를 감지하여 보호 동작을 제어할 수 있다.
이하, 도 6 및 도 7을 참조하여, 배터리 시스템에 복수의 배터리 팩이 포함되는 경우에 대하여 설명한다.
도 6은, 일 실시예에 따른 복수의 배터리 팩과 연결된 배터리 시스템의 연결관계를 도식적으로 나타낸 예시도이다.
배터리 시스템(2000)은, 복수의 배터리 팩(100, 200, 300), 마스터 배터리 관리 시스템(Master Battery Management System, MBMS)(21), 및 복수의 슬레이브 배터리 관리 시스템(Slave Battery Management System, SBMS)(22-24)을 포함할 수 있다. 복수의 배터리 팩(100, 200, 300) 각각은, 직렬 연결된 6개의 배터리 셀을 포함하는 것으로 도시되어 있으나, 이는 일 예로 발명이 이에 한정되지 않으며, 복수의 배터리 팩(100, 200, 300) 각각은 직렬로 연결된 2 이상의 배터리 셀, 병렬 연결된 2 이상의 배터리 셀이 복수 개 직렬 연결된 복수의 배터리 셀로 구현될 수 있다. 도 6에서는, 배터리 시스템(2000)이 직렬 연결된 3개의 배터리 팩(100, 200, 300)을 포함하는 것으로 도시되어 있으나, 이는 일 예로 발명이 이에 한정되지 않으며, 배터리 시스템(2000)은 2 이상의 배터리 팩을 포함할 수 있다.
도 6을 참조하면, 배터리 시스템에 복수의 배터리 팩(100, 200, 300)이 포함되면, 복수의 배터리 팩(100, 200, 300) 각각(예를 들어, 100)에는 복수의 SBMS(22-24) 중 대응하는 SBMS(22)가 연결되어 있다. 복수의 SBMS(22-24) 각각(예를 들어, 22)은, 대응하는 배터리 팩(예를 들어, 100)의 복수의 배터리 셀 각각에 연결되어 있다.
도 1 및 도 5에 도시된 일 실시예의 MCU(30)가 수행하는 기능을 MBMS(21)가 수행할 수 있다. 복수의 SBMS(22-24)는 배터리 시스템(2000)을 관리하는데 필요한 정보(예를 들어, 복수의 셀 전압, 배터리 팩의 온도 등)를 측정하고, 측정 결과를 지시하는 신호를 유무선 통신을 통해 MBMS(21)로 보낼 수 있다. 도 6은 MBMS(21) 및 복수의 SBMS(22-24)가 데이지 체인(Daisy Chain) 구조로 서로 연결되어 있는 것으로 도시되어 있으나, 이는 일 예로 발명이 이에 한정되지 않으며, MBMS(21) 및 복수의 SBMS(22-24)는 서로 직간접적으로 연결되어 유무선 통신할 수 있다.
도 7은, 도 6의 SBMS의 세부 구성의 일 실시예를 도식적으로 나타낸 회로도이다. 도 7의 BMS(22)는, 도 6의 복수의 SBMS(22-24) 중 하나의 SBMS(22)에 관한 것으로 도시되어 있으나, 복수의 SBMS(22-24) 각각에 대해 동일하게 적용될 수 있다.
도 1 및 도 5에 도시된 배터리 시스템(1, 1000)에서 MCU(30)가 복수의 MUX(40, 41), PTC부(60) 및 전력 변환부(70)를 제어하는 동작은, 도 7의 배터리 시스템(2000)에서 MBMS(31)가 복수의 MUX(40, 41), PTC부(60) 및 전력 변환부(70)를 제어하는 것으로 구현될 수 있다.
BMIC(220)는 복수의 배터리 셀(1001-1006)의 복수의 셀 전압, 배터리 팩(100)의 온도, 전력 변환부(70)의 배터리 ADC로부터 수신한 배터리 신호(BS) 등을 포함하는 슬레이브 신호(SS)를 생성하고, MBMS(21)에 전송할 수 있다.
MBMS(21)는, 복수의 SBMS(22-24)로부터 수신한 슬레이브 신호(SS)에 기초하여 복수의 SBMS(22-24)를 제어할 수 있는 제어 신호(CS)를 생성할 수 있다. MBMS(21)는, 생성한 제어 신호(CS)를 복수의 SBMS(22-24)에 전송할 수 있다. 제어 신호(CS)는, 복수의 MUX 제어 신호(MCS1-MCS2), 복수의 스위치 제어 신호(SC1-SC4), 및 컨버터 제어 신호(CCS)를 포함할 수 있다.
MBMS(21)는 복수의 배터리 셀(1001-1006) 중 셀 밸런싱이 필요한 대상 배터리 셀을 결정하고, 대상 배터리 셀을 복수의 MUX(40, 41)를 통해 밸런싱 배터리부(50)에 연결되도록 복수의 MUX(40, 41)을 제어하며, 이어서 PTC부(60)를 통해 전력 변환부(70)에 연결되도록 제어하고, 전력 변환부(70)를 제어하여 BMIC(220)에 전력을 공급하도록 할 수 있다. MBMS(21)는 위와 같은 제어를 위한 제어 명령을 포함하는 신호(CS)를 생성하여 SBMS(22)에 전송할 수 있다. MBMS(21)는 SBMS(22) 뿐만 아니라 SBMS(23, 24)에 대해서도 동일한 방식으로 각 SBMS에 대응하는 제어 명령을 생성하고, 복수의 SBMS(22-24)에 대응하는 제어 명령들을 포함하는 신호(CS)를 생성하여 복수의 SBMS(22-24)에 전송할 수 있다.
BMIC(220)는 MBMS(21)로부터 수신한 신호(CS)에 따라 복수의 MUX 제어 신호(MCS1, MCS2)를 생성하여 복수의 MUX(40, 41)에 전달하며, 복수의 스위치 제어 신호(SC1-SC4)를 생성하여 PTC부(60)에 전달하고, 컨버터 제어 신호(CCS)를 통하여 전력 변환부(70)에 전달할 수 있다. BMIC(220)는, 컨버터 제어 신호(CCS)를 통하여 전력 변환부(70)에 인에이블 여부를 제어할 수 있다.
대상 배터리 셀이 복수의 MUX(40, 41) 중 대응하는 MUX를 통해 밸런싱 배터리부(50)의 대응하는 밸런싱 배터리에 연결되면, 대상 배터리 셀로부터 방전된 에너지에 의해 대응하는 밸런싱 배터리가 충전될 수 있다. 밸런싱 배터리부(50)와 전력 변환부(70)가 연결되면, 전력 변환부(70)는 밸런싱 배터리부(50)에 저장된 전압을 BMIC(220)를 구동하는데 적합한 레벨의 전압으로 변환하여 BMIC(220)에 공급할 수 있다.
예를 들어, MBMS(21)는 슬레이브 신호(SS)에 따라 SBMS(22)의 전력 변환부(70)에 입력되는 입력 전압이 소정 전압 이상일 때, BMIC(220)가 전력 변환부(70)로부터 전력을 공급받을 수 있도록 전력 변환부(70)를 인에이블 시키는 제어 명령을 포함하는 제어 신호(CS)를 BMIC(220)에 전송할 수 있다. BMIC(220)는 제어 신호(CS)에 따라 전력 변환부(70)를 인에이블 시키는 컨버터 제어 신호(CCS)를 생성하여 전력 변환부(70)에 전달할 수 있다.
또한, MBMS(21)는 슬레이브 신호(SS)에 따라 SBMS(22)의 밸런싱 배터리부(50)에 포함된 복수의 밸런싱 배터리 중 적어도 하나가 과전압 상태라면, BMIC(220)가 복수의 MUX(40, 41)를 동작시키지 않는 제어 명령을 포함하는 제어 신호(CS)를 BMIC(220)에 전송할 수 있다. BMIC(220)는 제어 신호(CS)에 따라 복수의 배터리 셀(1001-1006) 중 밸런싱이 필요한 배터리 셀이 있더라도, 복수의 MUX(40, 41)를 오프 상태로 유지시키는 오프 레벨의 복수의 MUX 제어 신호(MCS1, MCS2)를 생성하여 복수의 MUX(40, 41)에 전달할 수 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였으나, 본 발명의 권리범위가 이에 한정되는 것은 아니며 본 발명이 속하는 분야에서 통상의 지식을 가진 자가 여러 가지로 변형 및 개량한 형태 또한 본 발명의 권리범위에 속한다.

Claims (14)

  1. 복수의 배터리 셀을 포함하는 배터리 팩;
    상기 복수의 배터리 셀 각각에 대한 복수의 셀 전압을 모니터링하는 BMIC;
    상기 복수의 배터리 셀 중 셀 밸런싱이 필요한 대상 배터리 셀에 의해 충전되는 복수의 밸런싱 배터리;
    상기 복수의 밸런싱 배터리로부터 전압을 입력 받아, 출력 전압으로 변환하는 DC-DC 컨버터를 포함하는 전력 변환부; 및
    상기 출력 전압이 상기 BMIC를 구동시키기 위한 소정 레벨 이상일 때, 상기 출력 전압을 상기 BMIC에 공급하는 전원부를 포함하는, 배터리 시스템.
  2. 제1항에 있어서,
    상기 전원부는,
    상기 출력 전압이 상기 BMIC를 구동시키기 위한 소정 레벨 미만이면, 상기 배터리 팩으로부터 공급되는 전압을 상기 BMIC를 구동시키기 위한 소정 레벨의 전압으로 레귤레이트 하여 상기 BMIC에 공급하는, 배터리 시스템.
  3. 제1항에 있어서,
    상기 복수의 배터리 셀 중 셀 밸런싱이 필요한 대상 배터리 셀을 상기 복수의 밸런싱 배터리 중 하나에 연결하는 복수의 MUX를 더 포함하는, 배터리 시스템.
  4. 제1항에 있어서,
    상기 전력 변환부는,
    상기 복수의 밸런싱 배터리로부터 출력되는 전압이 소정의 임계 전압 이상일 때 상기 DC-DC 컨버터를 동작시키는, 배터리 시스템.
  5. 제1항에 있어서,
    상기 전력 변환부는,
    상기 복수의 밸런싱 배터리로부터 출력되는 전압을 측정하여 전압 측정 신호를 생성하는 ADC를 더 포함하고,
    상기 전압 측정 신호에 기초하여 상기 대상 배터리 셀에 의한 상기 복수의 밸런싱 배터리의 충전 여부가 제어되는, 배터리 시스템.
  6. 제5항에 있어서,
    상기 ADC가 상기 복수의 밸런싱 배터리로부터 출력되는 전압을 측정하는 동안, 상기 전력 변환부는 동작하지 않는, 배터리 시스템.
  7. 제1항에 있어서,
    상기 대상 배터리 셀의 셀 밸런싱에 의해 상기 복수의 밸런싱 배터리 중 어느 하나가 충전되는 전류 경로 상에 위치하는 PTC 소자를 더 포함하는, 배터리 시스템
  8. 제1항에 있어서,
    상기 복수의 밸런싱 배터리가 서로 병렬로 연결되는 경우, 상기 복수의 밸런싱 배터리 사이의 전류 경로 상에 위치하는 PTC 소자를 더 포함하는, 배터리 시스템.
  9. 제1항에 있어서,
    상기 전원부는,
    상기 배터리 팩에 연결된 배선과 연결된 저항;
    상기 배터리 팩의 전압을 이용하여 생성된 전압이 충전되는 커패시터; 및
    베이스 단에 상기 BMIC로부터 공급되는 드라이브 전압이 입력되고, 컬렉터 단에 상기 저항이 연결되며, 에미터 단에 상기 커패시터가 연결되어, 상기 에미터 단의 전압이 상기 베이스 단의 전압 레벨에 도달하지 못하면 동작하여 상기 컬렉터 단의 전압으로부터 생성된 전압을 상기 BMIC에 공급하는 트렌지스터를 포함하는, 배터리 시스템.
  10. 복수의 배터리 셀을 포함하는 배터리 팩;
    상기 복수의 배터리 셀 각각에 대한 복수의 셀 전압을 측정하는 BMIC;
    상기 복수의 셀 전압을 수신하여 상기 복수의 배터리 셀 중 셀 밸런싱이 필요한 대상 배터리 셀을 결정하는 MCU;
    셀 밸런싱에 의해 충전되는 복수의 밸런싱 배터리;
    상기 MCU의 제어에 따라 상기 결정된 대상 배터리 셀과 상기 복수의 밸런싱 배터리 중 대응하는 하나에 연결하는 MUX;
    상기 복수의 밸런싱 배터리로부터 입력되는 전압을 변환하여 출력 전압을 생성하는 DC-DC 컨버터; 및
    상기 DC-DC 컨버터의 출력 전압 및 상기 배터리 팩의 전압을 이용하여 생성한 전압 중 높은 전압을 상기 BMIC에 공급하는 전원부를 포함하는, 배터리 시스템.
  11. 제10항에 있어서,
    상기 DC-DC 컨버터는,
    상기 복수의 밸런싱 배터리로부터 입력되는 전압이 소정의 임계 전압 이상을 때 동작하는, 배터리 시스템.
  12. 각각 복수의 배터리 셀을 포함하는 복수의 배터리 팩;
    상기 복수의 배터리 팩 각각에 대하여, 배터리 팩을 관리하는 복수의 슬레이브 BMS - 상기 복수의 슬레이브 BMS 각각은 대응하는 복수의 배터리 셀에 연결되어 복수의 복수의 셀 전압을 측정하고, 셀 밸런싱을 제어하는 BMIC를 포함-;
    상기 복수의 슬레이브 BMS 각각에 포함되어 셀 밸런싱에 의해 충전되는 복수의 밸런싱 배터리;
    상기 복수의 밸런싱 배터리로부터 공급되는 전압을 변환하여 출력 전압을 생성하는 DC-DC 컨버터; 및
    상기 DC-DC 컨버터의 출력 전압 및 상기 배터리 팩의 전압을 이용하여 생성한 전압 중 높은 전압을 상기 BMIC에 공급하는 전원부를 포함하는, 배터리 시스템.
  13. 제12항에 있어서,
    상기 복수의 슬레이브 BMS로부터 상기 복수의 밸런싱 배터리로부터 공급되는 전압을 측정한 전압 측정 신호를 수신하고, 상기 전압 측정 신호에 기초하여 상기 복수의 슬레이브 BMS를 제어할 수 있는 제어 신호를 생성하여 상기 복수의 슬레이브 BMS에 전송하는 마스터 BMS를 더 포함하는, 배터리 시스템.
  14. 제13항에 있어서,
    상기 복수의 밸런싱 배터리로부터 공급되는 전압이 소정의 임계 전압 이상일 때, 상기 마스터 BMS는 상기 DC-DC 컨버터를 온 시키는 제어 명령을 포함하는 제어 신호를 생성하는, 배터리 시스템.
PCT/KR2022/016932 2021-11-16 2022-11-01 배터리 시스템 WO2023090692A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280021393.7A CN116998084A (zh) 2021-11-16 2022-11-01 电池系统
EP22895899.7A EP4300760A1 (en) 2021-11-16 2022-11-01 Battery system
JP2023558852A JP2024511178A (ja) 2021-11-16 2022-11-01 バッテリシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0157764 2021-11-16
KR1020210157764A KR20230071500A (ko) 2021-11-16 2021-11-16 배터리 시스템

Publications (1)

Publication Number Publication Date
WO2023090692A1 true WO2023090692A1 (ko) 2023-05-25

Family

ID=86397318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016932 WO2023090692A1 (ko) 2021-11-16 2022-11-01 배터리 시스템

Country Status (5)

Country Link
EP (1) EP4300760A1 (ko)
JP (1) JP2024511178A (ko)
KR (1) KR20230071500A (ko)
CN (1) CN116998084A (ko)
WO (1) WO2023090692A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246372A (ja) * 2009-04-09 2010-10-28 Ford Global Technologies Llc バッテリ監視制御システムおよび方法
KR20130040346A (ko) * 2011-10-14 2013-04-24 현대모비스 주식회사 이차전지 배터리의 균등화시스템
KR20140028350A (ko) * 2012-08-28 2014-03-10 에스케이이노베이션 주식회사 셀밸런싱 보조 셀을 이용한 배터리 장치
KR20160069077A (ko) * 2014-12-05 2016-06-16 현대오트론 주식회사 배터리 모니터링 방법 및 이를 실행하는 장치
US20210333328A1 (en) * 2019-01-04 2021-10-28 Rejoule Incorporated Apparatus and method for characterizing and managing stacked energy storage cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246372A (ja) * 2009-04-09 2010-10-28 Ford Global Technologies Llc バッテリ監視制御システムおよび方法
KR20130040346A (ko) * 2011-10-14 2013-04-24 현대모비스 주식회사 이차전지 배터리의 균등화시스템
KR20140028350A (ko) * 2012-08-28 2014-03-10 에스케이이노베이션 주식회사 셀밸런싱 보조 셀을 이용한 배터리 장치
KR20160069077A (ko) * 2014-12-05 2016-06-16 현대오트론 주식회사 배터리 모니터링 방법 및 이를 실행하는 장치
US20210333328A1 (en) * 2019-01-04 2021-10-28 Rejoule Incorporated Apparatus and method for characterizing and managing stacked energy storage cells

Also Published As

Publication number Publication date
KR20230071500A (ko) 2023-05-23
EP4300760A1 (en) 2024-01-03
CN116998084A (zh) 2023-11-03
JP2024511178A (ja) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2019022377A1 (ko) 마스터 배터리 관리 유닛 및 이를 포함하는 배터리팩
WO2018124511A1 (ko) 배터리의 충전 상태를 캘리브레이션하기 위한 배터리 관리 장치 및 방법
WO2019022378A1 (ko) 배터리 관리 유닛 및 이를 포함하는 배터리팩
WO2013119070A1 (ko) 양방향 디씨-디씨 컨버터를 이용한 배터리 관리 시스템의 셀 밸런싱 회로 장치
WO2019221368A1 (ko) 메인 배터리와 서브 배터리를 제어하기 위한 장치, 배터리 시스템 및 방법
WO2018021661A1 (ko) 션트저항을 이용한 전류 측정 장치
WO2014084628A1 (ko) 배터리 전류 측정 장치 및 그 방법
WO2018074807A1 (ko) 듀티 제어를 통한 효과적인 배터리 셀 밸런싱 방법 및 시스템
WO2019088558A1 (ko) 배터리 팩
WO2019078589A1 (ko) 배터리팩 및 그것을 포함하는 전력 시스템
WO2012023707A2 (ko) 배터리 팩 그리고 배터리 팩의 액티브 셀 밸런싱 방법
WO2020055162A1 (ko) 스위치 진단 장치 및 방법
WO2022177291A1 (ko) 배터리 관리 시스템, 배터리 팩, 에너지 저장 시스템 및 배터리 관리 방법
WO2017039164A1 (ko) Ups 배터리 충전용량 제어 방법
WO2021049753A1 (ko) 배터리 진단 장치 및 방법
WO2021085808A1 (ko) 온도 측정 장치, 이를 포함하는 배터리 장치 및 온도 측정 방법
WO2021033956A1 (ko) 배터리 시스템 및 배터리 시스템의 운용 방법
WO2023090692A1 (ko) 배터리 시스템
WO2022019600A1 (ko) 이상 셀 진단 방법 및 이를 적용한 배터리 시스템
WO2023287180A1 (ko) 배터리 진단 장치, 배터리 팩, 전기 차량 및 배터리 진단 방법
WO2022149958A1 (ko) 배터리 제어 장치, 배터리 시스템, 전원 공급 시스템 및 배터리 제어 방법
WO2020230991A1 (ko) 배터리 관리 시스템
WO2020059952A1 (ko) 배터리의 밸런싱 장치 및 방법
WO2020076126A1 (ko) 배터리 관리 장치 및 방법
WO2023008904A1 (ko) 결함 있는 배터리 셀의 검출 방법 및 그 방법을 제공하는 배터리 관리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895899

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18281922

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280021393.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023558852

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022895899

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022895899

Country of ref document: EP

Effective date: 20230929