WO2024014465A1 - Aromatic polycarbonate resin composition and light-diffusing molded article - Google Patents

Aromatic polycarbonate resin composition and light-diffusing molded article Download PDF

Info

Publication number
WO2024014465A1
WO2024014465A1 PCT/JP2023/025622 JP2023025622W WO2024014465A1 WO 2024014465 A1 WO2024014465 A1 WO 2024014465A1 JP 2023025622 W JP2023025622 W JP 2023025622W WO 2024014465 A1 WO2024014465 A1 WO 2024014465A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
light
formula
aromatic polycarbonate
group
Prior art date
Application number
PCT/JP2023/025622
Other languages
French (fr)
Japanese (ja)
Inventor
厚史 長尾
Original Assignee
住化ポリカーボネート株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住化ポリカーボネート株式会社 filed Critical 住化ポリカーボネート株式会社
Priority to JP2024503793A priority Critical patent/JPWO2024014465A1/ja
Publication of WO2024014465A1 publication Critical patent/WO2024014465A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Definitions

  • the present invention relates to an aromatic polycarbonate resin composition and a light-diffusing molded article.
  • polycarbonate resin Since polycarbonate resin has excellent impact resistance, heat resistance, transparency, etc., it has conventionally been used for molded products such as light guide plates, various lenses, and nameplates.
  • Light-diffusing molded products made of resin compositions containing aromatic polycarbonate resins and light-diffusing agents such as inorganic particles and polymeric particles have better heat resistance and dimensional stability than light-diffusing molded products made of acrylic resin. Because of its excellent performance, it can be used for light covers, meters, signboards (especially internally illuminated type), resin window glass, light diffusion plates for image reading devices or image display devices (for example, light used in backlight modules for liquid crystal display devices, etc.).
  • Patent Document 1 describes that fluidity is improved by adding a pentaerythritol-based ester compound and lowering the molecular weight of an aromatic polycarbonate-based resin through transesterification.
  • Patent Document 1 meets the requirements of materials in recent years, such as low reduction in transparency and light transmittance even when molded at high temperatures for thin wall molding, and large size. However, it is not possible to fully satisfy the requirements that
  • light-diffusing molded products for example, light-diffusing plates for image display devices
  • in-vehicle image display devices as thin as about 0.3 mm
  • high-temperature conditions such as light irradiation.
  • a material with high light diffusivity that does not reduce its transparency and light transmittance even when exposed to the environment for an extremely long period of time.In other words, even if it is large, it does not lose its light transmittance, and yet the light source cannot be seen through it. is now in demand.
  • the present invention does not impair the inherent properties of polycarbonate resin such as heat resistance and mechanical strength, has excellent thermal stability, and has high transparency, light transmittance, and light diffusivity. .Even if a large molded product with a thickness of about 3 mm (for example, a light diffusion plate for an image display device) is exposed to high temperature conditions such as light irradiation for an extremely long period of time, the transparency and light transmittance will not deteriorate.
  • An object of the present invention is to provide an aromatic polycarbonate resin composition that does not easily cause clouding or coloring, that is, has high light diffusivity without reducing light transmittance even when it is large, and yet does not allow the light source to be seen through it. purpose.
  • an aromatic polycarbonate resin containing a predetermined amount of a linear aromatic polycarbonate resin, a polyether derivative (B), and a light diffusing agent (C).
  • the composition has excellent thermal stability and high light transmittance without impairing the inherent properties of polycarbonate resin such as heat resistance and mechanical strength, and is molded into a thin molded product of about 0.3 mm.
  • the present invention has been completed based on the discovery that even when the light guide plate is exposed to high temperature conditions such as by irradiation with a light source for a long period of time, there is little decrease in transparency and permeability (hard to cause clouding or coloration).
  • the present invention provides a linear aromatic polycarbonate resin (A), a polyether derivative (B), a light diffusing agent (C), a phosphorus antioxidant (D), and an aromatic compound represented by the following formula (1).
  • the polycarbonate resin composition of the present invention does not impair the inherent properties of polycarbonate resin such as heat resistance and mechanical strength, has excellent thermal stability, and has high transparency, light transmittance, and light diffusivity. Even when the resulting molded product is exposed for a long period of time to high-temperature conditions such as the blazing sun and/or irradiation with a light source, its transparency and permeability are unlikely to decrease (it is unlikely to become cloudy or colored). Therefore, even if it is a thin molded product (diffusion plate) with a thickness of about 0.3 mm, for example, it is unlikely that the hue will change and the appearance will deteriorate (deterioration), and it can be used under high temperature conditions caused by the external environment or light source.
  • a polycarbonate resin composition that does not easily reduce transparency (does not easily become cloudy or colored) even when exposed to water for a long period of time, that is, has a high light diffusing property that does not reduce light transmittance and does not allow the light source to be seen through. It can provide products and has extremely high industrial value.
  • the aromatic polycarbonate resin composition of the embodiment of the present invention comprises a linear aromatic polycarbonate resin (A), a polyether derivative (B), a light diffusing agent (C), and, if necessary, a phosphorus antioxidant. (D) and/or a specific aromatic compound (E).
  • the aromatic polycarbonate resin composition according to the embodiment can further contain an epoxy compound and/or other components, etc., if necessary.
  • the "linear aromatic polycarbonate resin (A)" is a polycarbonate resin based on an aromatic compound, and as long as the aromatic polycarbonate resin composition targeted by the present invention can be obtained.
  • branched aromatic polycarbonates are excluded from the scope of the present invention as much as possible because they reduce transparency and light transmittance.
  • linear aromatic polycarbonate resins include polymers obtained by a phosgene method in which various dihydroxydiaryl compounds and phosgene are reacted, or a transesterification method in which a dihydroxydiaryl compound is reacted with a carbonate ester such as diphenyl carbonate. can.
  • Representative examples include polycarbonate resins made from 2,2-bis(4-hydroxyphenyl)propane (bisphenol A).
  • examples of the dihydroxydiaryl compound include bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)butane, 2 , 2-bis(4-hydroxyphenyl)octane, bis(4-hydroxyphenyl)phenylmethane, 2,2-bis(4-hydroxyphenyl-3-methylphenyl)propane, 1,1-bis(4-hydroxy- 3-tert-butylphenyl)propane, 2,2-bis(4-hydroxy-3-bromophenyl)propane, 2,2-bis(4-hydroxy-3,5-dibromophenyl)propane, 2,2-bis Bis(hydroxyaryl)alkanes such as (4-hydroxy-3,5-dichlorophenyl)propane; 1,1-bis(4-hydroxyphenyl)cyclopentane, 1,1-bis(4-hydroxyphenyl)cyclohexan
  • Bis(hydroxyaryl)cycloalkanes dihydroxydiarylethers such as 4,4'-dihydroxydiphenyl ether and 4,4'-dihydroxy-3,3'-dimethyldiphenyl ether; dihydroxydiaryl such as 4,4'-dihydroxydiphenyl sulfide Sulfides; dihydroxydiaryl sulfoxides such as 4,4'-dihydroxydiphenyl sulfoxide and 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide; 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxy- Examples include dihydroxydiarylsulfones such as 3,3'-dimethyldiphenylsulfone. These can be used alone or in combination. In addition to these, piperazine, dipiperidyl hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, etc. can be used in combination.
  • the viscosity average molecular weight of the linear aromatic polycarbonate resin (A) is preferably 10,000 to 100,000, more preferably 12,000 to 30,000.
  • a molecular weight regulator, a catalyst, etc. can be used as necessary.
  • the polyether derivative (B) is a derivative of a polyether compound, and is not particularly limited as long as the aromatic polycarbonate resin composition targeted by the present invention can be obtained. do not have.
  • Such polyether derivatives include, as a typical example, a polyether derivative represented by the following formula (2).
  • Formula (2) RO-(X-O)m(Y-O)n-R' (In the formula, R and R' each independently represent a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, X is a straight chain alkylene group or a branched alkylene group having 2 to 4 carbon atoms, and Y is Represents a linear alkylene group or branched alkylene group having 2 to 5 carbon atoms, X and Y may be the same or different, m and n each independently represent 3 to 60, and m+n is 6 to 120)
  • the weight average molecular weight of the polyether derivative represented by formula (2) is preferably 500 to 8,000, more preferably 1,000 to 4,000.
  • a commercially available product can be used as the polyether derivative represented by formula (2).
  • the polyether derivative represented by formula (2) may be a compound represented by formula (2-1) below.
  • the weight average molecular weight of the polyether derivative represented by formula (2-1) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000.
  • the polyether derivative represented by formula (2) may be a compound represented by formula (2-2) below.
  • the weight average molecular weight of the polyether derivative represented by formula (2-2) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000.
  • the polyether derivative represented by formula (2-2) commercially available products can be used.
  • the polyether derivative represented by formula (2) may be a compound represented by formula (2-3) below.
  • the weight average molecular weight of the polyether derivative represented by formula (2-3) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000.
  • polyether derivative represented by formula (2-3) commercially available products can be used.
  • the polyether derivative represented by the formula (2) includes a polyether derivative represented by the following formula (3), a polyether derivative represented by the formula (4), a polyether derivative represented by the formula (5), A polyether derivative represented by formula (6), a polyether derivative represented by formula (7), a polyether derivative represented by formula (8), a polyether derivative represented by formula (9), a polyether derivative represented by formula ( It is preferable that at least one selected from the group including the polyether derivative represented by formula (10) and the polyether derivative represented by formula (11) is included.
  • the polyether derivative represented by the formula (2-1) is a polyether derivative represented by the following formula (3), a polyether derivative represented by the formula (4), or a polyether derivative represented by the formula (5). It is preferable that at least one selected from the group consisting of derivatives, polyether derivatives represented by formula (6), and polyether derivatives represented by formula (7) is included.
  • the polyether derivative represented by formula (2-2) contains at least one selected from the group including the polyether derivative represented by formula (8) and the polyether derivative represented by formula (9). It is preferable.
  • the polyether derivative represented by formula (2-3) contains at least one selected from the group including the polyether derivative represented by formula (10) and the polyether derivative represented by formula (11). It is preferable.
  • Formula (3) HO-( CH2CH2CH2CH2O ) m (CH( CH3 ) CH2O ) n - H (In the formula, m and n each independently represent 3 to 60, and m+n represents 8 to 90.)
  • polyether derivative represented by formula (3) a modified glycol containing a tetramethylene glycol unit and a propylene glycol unit is suitable.
  • Commercial products can be used as such polyether derivatives, such as Polyserine DCB-1000 (weight average molecular weight 1000), Polyserine DCB-2000 (weight average molecular weight 2000), and Polyserine DCB manufactured by NOF Corporation. -4000 (weight average molecular weight 4000), etc. can be used.
  • the weight average molecular weight of the polyether derivative represented by formula (3) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000.
  • Formula (4) HO- ( CH2CH2CH2CH2O ) m ( CH2CH2CH ( CH3 ) CH2O )n- H (In the formula, m and n each independently represent 3 to 60, and m+n represents 8 to 90.)
  • polyether derivative represented by formula (4) a modified glycol containing a tetramethylene glycol unit and a 2-methyltetramethylene glycol unit is preferable.
  • Commercial products can be used as such polyether derivatives, such as PTG-L1000 (weight average molecular weight 1000), PTG-L2000 (weight average molecular weight 2000) manufactured by Hodogaya Chemical Industry Co., Ltd. -L3000 (weight average molecular weight 3000) etc. can be used.
  • the weight average molecular weight of the polyether derivative represented by formula (4) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000.
  • polyether derivative represented by formula (5) a modified glycol containing an ethylene glycol unit and a propylene glycol unit is preferred.
  • Commercially available products can be used as such polyether derivatives, such as Unilube 50DE-25 (weight average molecular weight 1750) and Unilube 75DE-25 (weight average molecular weight 1400) manufactured by NOF Corporation. can.
  • the weight average molecular weight of the polyether derivative represented by formula (5) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000.
  • Formula (6) RO-( CH2CH2CH2CH2O )m(CH( CH3 ) CH2O ) n - H (In the formula, R represents an alkyl group having 1 to 30 carbon atoms, m and n each independently represent 3 to 60, and m+n represents 8 to 90.)
  • polyether derivative represented by formula (6) a modified glycol containing a tetramethylene glycol unit and a propylene glycol unit and having a butyl group at one end or a stearyl group at one end is suitable.
  • Commercial products can be used as such polyether derivatives, such as Polyserine BC-1000 (butyl group at one end, weight average molecular weight 1000), Polyserine SC-1000 (stearyl group at one end), manufactured by NOF Corporation. group, weight average molecular weight 1000), etc. can be used.
  • the weight average molecular weight of the polyether derivative represented by formula (6) is preferably 500 to 8,000, more preferably 1,000 to 4,000.
  • Formula (7) RO-( CH2CH2O )m(CH( CH3 ) CH2O ) n -H (In the formula, R represents an alkyl group having 1 to 30 carbon atoms, m and n each independently represent 3 to 60, and m+n represents 8 to 90.)
  • polyether derivative represented by formula (7) a modified glycol containing an ethylene glycol unit and a propylene glycol unit and having a butyl group at one end or a stearyl group at one end is suitable.
  • Commercially available products can be used as such polyether derivatives, such as Unilube 50MB-11 (butyl group at one end, weight average molecular weight 1000), Unilube 50MB-26 (butyl group at one end, manufactured by NOF Corporation), Unilube 50MB-72 (butyl group at one end, weight average molecular weight 3000), Unilube 10MS-250KB (stearyl group at one end, weight average molecular weight 2000), etc. can be used.
  • the weight average molecular weight of the polyether derivative represented by formula (7) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000.
  • Formula (8) HO-( CH2CH2CH2CH2O ) m ( CH2CH2O ) n - H (In the formula, m and n each independently represent 3 to 60, and m+n represents 8 to 90.)
  • polyether derivative represented by formula (8) a modified glycol containing a tetramethylene glycol unit and an ethylene glycol unit is preferable.
  • Commercially available products can be used as such polyether derivatives, such as Polyserine DC3000E (weight average molecular weight 3000) and Polyserine DC1800E (weight average molecular weight 1800) manufactured by NOF Corporation.
  • the weight average molecular weight of the polyether derivative represented by formula (8) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000.
  • polytetramethylene glycol is preferred.
  • Commercial products can be used as such polyether derivatives, such as PTG-650SN (weight average molecular weight 650), PTG-850SN (weight average molecular weight 850), and PTG- manufactured by Hodogaya Chemical Industry Co., Ltd. 1000SN (weight average molecular weight 1000), PTG-1400SN (weight average molecular weight 1400), PTG-2000SN (weight average molecular weight 2000), or PTG-2900 (weight average molecular weight 2900) can be used.
  • the weight average molecular weight of the polyether derivative (polytetramethylene glycol) represented by formula (9) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000.
  • Formula (10) Formula: HO-(CH( CH3 ) CH2O )q-H (In the formula, q represents 7 to 120.)
  • polypropylene glycol is preferred.
  • Commercial products can be used as such polyether derivatives, such as Polyglycol P2000P (weight average molecular weight 2000) manufactured by Dow Chemical, Uniol D-1000 (weight average molecular weight 1000) manufactured by NOF Corporation, Uniol D-2000 (weight average molecular weight 2000), Uniol D-4000 (weight average molecular weight 4000), etc. can be used.
  • the weight average molecular weight of the polyether derivative (polypropylene glycol) represented by formula (10) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000.
  • polybutylene glycol is preferable.
  • Commercial products can be used as such polyether derivatives, such as Uniol PB-500 (weight average molecular weight 500), Uniol PB-1000 (weight average molecular weight 1000), and Uniol PB manufactured by NOF Corporation. -2000 (weight average molecular weight 2000), etc. can be used.
  • the weight average molecular weight of the polyether derivative (polybutylene glycol) represented by formula (11) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000.
  • the polyether derivative represented by the general formula (2) generally has high heat resistance, and a molded article obtained by molding an aromatic polycarbonate resin composition containing the polyether derivative at a high temperature has high brightness and light transmittance.
  • Each of the polyether derivatives represented by the formulas (2) to (11) above can be used as long as the aromatic polycarbonate resin composition and optical molded article targeted by the present invention can be obtained. It can contain repeating units other than repeating units. Examples of such repeating units include repeating units based on impurities that may be included in the starting materials of polyether derivatives, repeating units based on initiators (polymerization initiators) used during polymerization, etc. can.
  • examples of the polymerization initiator include the following compounds. Examples include hydrogenated bisphenol A, bisphenol A, isosorbide, glycerin, pentaerythritol, sorbitol, and glucose.
  • polyserine 60DB-2000H (manufactured by NOF Corporation) represented by the following formula (3') can also be used (formula 3 -2)).
  • the weight average molecular weight of the polyether derivative represented by formula (3-2) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000.
  • the polyether derivative (B) used in the present invention has appropriate lipophilicity, it also has excellent compatibility with the aromatic polycarbonate resin (A). Transparency can be maintained without reducing the transparency of a molded article obtained from the blended aromatic polycarbonate resin composition.
  • the weight average molecular weight of such polyether derivative (B) is preferably 500 to 8,000, more preferably 1,000 to 4,000.
  • the CPR (unit: dimensionless) (Controlled Polymerization Rate: index indicating the amount of basic substance in the polyether derivative: according to JIS K1557-4) of the polyether derivative (B) used in the present invention ) is preferably 2.0 or less, more preferably 1.0 or less.
  • the polyether derivative (B) has excellent compatibility with the polycarbonate resin, suppresses decomposition and deterioration, has excellent storage stability, and improves the hue of the resulting polycarbonate resin composition. less likely to have a negative impact on
  • the CPR of polyserine DCB-2000 which corresponds to the polyether derivative (B) represented by the above formula (3), is less than 1.0.
  • the CPR of Polyserine 60DB-2000H (manufactured by NOF Corporation), which corresponds to B), is less than 1.0
  • PTG-1000SN manufactured by NOF Corporation
  • polyether derivative (B) represented by the above formula (9) has a CPR of less than 1.0
  • (manufactured by Hodogaya Chemical Industry Co., Ltd.) has a CPR of less than 1.0.
  • the pH of the polyether derivative (B) used in the present invention is preferably 5.0 or more and less than 7.5, and 6. More preferably, it is 0 or more and less than 7.0.
  • the pH of the polyether derivative (B) is 5.0 or more and less than 7.5, decomposition and deterioration are suppressed, the storage stability is excellent, and the hue of the obtained polycarbonate resin composition is unlikely to be adversely affected.
  • the pH of polyserine DCB-2000 which corresponds to the polyether derivative (B) represented by the above formula (3), is 6.7.
  • the pH of Polyserine 60DB-2000H (manufactured by NOF Corporation) corresponding to (manufactured by Kagaku Kogyo Co., Ltd.) has a pH of 6.7.
  • the temperature at which the weight of the polyether derivative (B) used in the present invention reaches 90% is: The temperature is preferably 300°C or higher, more preferably 330°C or higher.
  • the temperature at which the polyether derivative (B) reaches 90% weight is 300° C. or higher, decomposition and deterioration are suppressed, the storage stability is excellent, and the hue of the resulting polycarbonate resin composition is unlikely to be adversely affected.
  • the temperature at which 90% weight of polyserine DCB-2000, which corresponds to the polyether derivative (B) represented by the above formula (3), is 330°C;
  • the temperature at which 90% weight of polyserine 60DB-2000H (manufactured by NOF Corporation), which corresponds to the ether derivative (B), reaches 90% is 400°C.
  • the amount of the polyether derivative is 0.1 to 2.0 parts by weight, preferably 0.3 to 1.8 parts by weight, based on 100 parts by weight of the aromatic polycarbonate resin (A). If the amount of the polyether derivative is less than 0.1 parts by weight, the effect of improving light transmittance and hue may be insufficient. Conversely, if the amount of the polyether derivative exceeds 2.0 parts by weight, the haze rate may increase and the light transmittance may decrease.
  • the light diffusing agent (C) is not particularly limited as long as it can scatter light inside the polycarbonate resin composition, and there are particular restrictions on the chemical composition such as polymeric and inorganic types. There isn't.
  • the light diffusing agent (C) is added to the linear polycarbonate resin (A) and dispersed by a known method such as melt mixing using an extruder, it is not compatible with the matrix phase or is difficult to be compatible with the matrix phase. It is necessary to exist as particles.
  • fine particles having light diffusing ability are preferable.
  • Such fine particles include inorganic fine particles and polymer fine particles.
  • the inorganic fine particles include glass fillers, calcium carbonate, barium sulfate, silica, talc, mica, wollastonite, titanium oxide, and the like. Among these, calcium carbonate is preferred.
  • the shape of the inorganic fine particles is preferably granular (including amorphous) or plate rather than fibrous. For example, in the case of glass fillers, glass beads, glass balloons, glass milled fibers, glass flakes, ultra-thin glass flakes (manufactured by a sol-gel method), amorphous glass, etc. may be used. Similarly, various shapes of other inorganic fine particles can be employed.
  • the fine polymer particles are preferably spherical from the viewpoint of light diffusivity, and the closer the shape is to a perfect sphere, the more preferable they are.
  • Commercially available products can be used as the light diffusing agent.
  • Tospearl (registered trademark) 120S” manufactured by Momentive Performance Materials Japan is used as a silicone light diffusing agent
  • Gelz Pearl (registered trademark) GM-0449S” and “Gantz Pearl GM-0205S” manufactured by Aica Kogyo Co., Ltd., and "Chemisnow (registered trademark) KMR-3TA” manufactured by Soken Chemical Co., Ltd. can be used.
  • the light diffusing agent (C) fine particles obtained by copolymerizing a styrene monomer, a methyl methacrylate monomer, and a crosslinking agent (styrene-methyl methacrylate copolymerized crosslinked fine particles) can also be suitably used. It can be obtained using general emulsion polymerization methods, solution polymerization methods, dispersion polymerization methods, suspension polymerization methods, bulk polymerization methods, soap-free polymerization methods, seed polymerization methods, and the like. Among these polymerization methods, emulsion polymerization, dispersion polymerization, and suspension polymerization are preferred, and emulsion polymerization and dispersion polymerization are particularly preferred from the viewpoint of physical properties of the light diffusing plate.
  • the crosslinking agent used in the crosslinked styrene-methyl methacrylate copolymer particles may be any radically polymerizable monomer containing two or more vinyl groups or (meth)acryloyl groups.
  • Such specific examples include, for example, divinylbenzene, ethylene glycol diacrylate, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythol tetraacrylate, pentaerythol tetramethacrylate.
  • These crosslinking agents may be used alone or in combination of two or more.
  • the average particle diameter of the crosslinked styrene-methyl methacrylate copolymer particles is 5 to 30 ⁇ m. A more preferable average particle diameter is in the range of 8 to 20 ⁇ m. If the average particle size is less than 5 ⁇ m, the surface state of the resulting light diffusing plate will maintain smoothness, resulting in insufficient light scattering and poor light diffusivity; if the average particle size exceeds 30 ⁇ m, the resulting light diffusing plate may Since the surface condition approaches smoothness, light travels straight and passes through the surface, resulting in a decrease in light scattering and poor light diffusivity and light source transmission prevention properties, which is not preferable. Common methods for measuring the average particle diameter of fine particles include the Coulter method, dynamic light scattering method, centrifugal sedimentation method, and the like.
  • the refractive index of the crosslinked styrene-methyl methacrylate copolymer particles is in the range of 1.54 to 1.57. A more preferable range is 1.55 to 1.57. If the refractive index is less than 1.54, haze may occur and light transmittance may decrease. Moreover, when it exceeds 1.57, light diffusivity may decrease.
  • the refractive index can be changed by adjusting the polymerization ratio of each monomer of styrene and methyl methacrylate when copolymerizing the fine particles.
  • styrene-methyl methacrylate copolymer crosslinked fine particles for example, SMX-12R (average particle size 12.3 ⁇ m, refractive index 1.56) manufactured by Sekisui Plastics Co., Ltd., or GMS-6121 (average particle size manufactured by Guide Win Special Chemicals) A diameter of 11.3 ⁇ m and a refractive index of 1.56) are commercially available.
  • SMX-12R average particle size 12.3 ⁇ m, refractive index 1.56 manufactured by Sekisui Plastics Co., Ltd.
  • GMS-6121 average particle size manufactured by Guide Win Special Chemicals
  • a common method for measuring the refractive index of crosslinked styrene-methyl methacrylate copolymer particles includes the Becke method. Resin particles are placed on a slide glass, and a refractive liquid (manufactured by CARGILLE: Cargill standard refractive liquid) is dropped. Mix the resin particles and refractive liquid thoroughly, irradiate them with a sodium lamp from below, and observe the outline of the particles from above. If the outline cannot be seen, it is assumed that the refractive index of the refractive liquid and the resin particles are equal.
  • the absolute value of the difference between the refractive index of the light diffusing agent and the refractive index of the aromatic polycarbonate resin is preferably 0.02 to 0.2.
  • the refractive index of the light diffusing agent is lower than the refractive index of the aromatic polycarbonate resin.
  • the average particle size of the diffusing agent is preferably 0.1 to 50 ⁇ m, more preferably 0.5 to 10 ⁇ m, and particularly preferably 1 to 5 ⁇ m. If the average particle size of the light diffusing agent is too small, a sufficient light-dispersing effect cannot be obtained, and if it is too large, the surface of the molded article may become rough or the mechanical strength of the molded article may decrease.
  • the average particle size of the light diffusing agent is the volume average particle size measured by the Coulter counter method. In the call counter method, an electrolyte in which sample particles are suspended is passed through a pore (aperture), and the particle size is determined by reading the change in the voltage pulse that is generated in proportion to the volume of the particles. Furthermore, by measuring the voltage pulse height one by one, a volume distribution histogram of sample particles can be obtained. Particle size or particle size distribution measurement using such a coal counter method is the most frequently used particle size distribution measuring device.
  • the light diffusing agent (C) preferably has a refractive index difference ( ⁇ n) of 0.01 or more with respect to the polycarbonate resin (A).
  • ⁇ n refractive index difference
  • a light diffuser is also used.
  • the difference in refractive index from the polycarbonate resin is more preferably 0.05 or more, particularly preferably 0.07 or more.
  • the mass average particle diameter of the light diffusing agent (C) is usually 0.5 ⁇ m or more, preferably 1 ⁇ m or more, more preferably 1.5 ⁇ m or more, and usually 30 ⁇ m or less, preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less. , more preferably 5 ⁇ m or less, particularly preferably 3 ⁇ m or less. If the mass average particle size is too small, the resulting polycarbonate resin composition will have poor light diffusivity, and when used as a diffuser plate, etc., the light source will tend to show through or have poor visibility; If it is too high, the diffusion effect on the content may become low.
  • the light diffusing agent (C) may be used alone or in combination of two or more in any combination and ratio. It is preferable to use a silicone light diffusing agent and another light diffusing agent together.
  • An inorganic light diffusing agent may be used in combination with any one of a silicone light diffusing agent, an acrylic light diffusing agent, and styrene-methyl methacrylate copolymer crosslinked fine particles.
  • a silicone light diffusing agent an acrylic light diffusing agent, or a styrene-methyl methacrylate copolymer crosslinked fine particle
  • the amount of silicone or organic diffusing agent can be reduced. The same light diffusivity as before can be obtained.
  • titanium oxide white pigment
  • TIPAQUE registered trademark
  • PC-3 manufactured by Ishihara Sangyo Co., Ltd.
  • CP-K manufactured by Resino Color Industries, Ltd.
  • KRONOS registered trademark 2233 manufactured by Kronos, etc.
  • the blending amount of the light diffusing agent (C) is preferably 0.1 to 6.0 parts by weight, and more preferably 1.0 to 5.0 parts by weight, based on 100 parts by weight of the linear aromatic polycarbonate resin (A). preferable. If it is less than 0.1 part by weight, light will not be sufficiently scattered and the effect of preventing the visibility of the light source will be poor, and if it exceeds 6.0 parts by weight, the transmittance may decrease significantly.
  • the aromatic polycarbonate resin composition of the embodiment of the present invention may contain a phosphorus antioxidant (D), if necessary.
  • a phosphorus antioxidant D
  • the aromatic polycarbonate resin composition simultaneously contains the polyether derivative (B), the diffusing agent (C), and the phosphorus antioxidant (D)
  • the phosphorus antioxidant (D) is not particularly limited as long as it can obtain the aromatic polycarbonate resin composition targeted by the present invention, but includes phosphite compounds having the following phosphite structure. It is preferable.
  • the phosphorus antioxidant (D) is a phosphite compound represented by the following formula (12), a phosphite compound represented by the following formula (13), It is preferable to contain at least one compound selected from a phosphoric acid ester compound, a phosphorous acid ester compound represented by the following formula (14), and a phosphite compound represented by the following formula (15).
  • the phosphorus antioxidant (D) contains, for example, a compound represented by the following formula (12).
  • R 1 represents an alkyl group having 1 to 20 carbon atoms, and a represents an integer of 0 to 3.
  • R 1 is an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms.
  • Examples of the compound represented by formula (12) include triphenyl phosphite, tricresyl phosphite, tris(2,4-di-t-butylphenyl) phosphite, trisnonylphenyl phosphite, etc. .
  • tris(2,4-di-t-butylphenyl) phosphite is particularly suitable; for example, it is commercially available as Irgafos 168 manufactured by BASF ("Irgafos" is a registered trademark of BFA Societas Europe). available at.
  • the phosphorus antioxidant (D) contains, for example, a compound represented by the following formula (13).
  • R 2 , R 3 , R 5 and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 5 to 8 carbon atoms, and a cycloalkyl group having 6 to 12 carbon atoms.
  • R 4 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • X represents a single bond, a sulfur atom, or the formula: -CHR 7 - (Here, R 7 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a cycloalkyl group having 5 to 8 carbon atoms.)
  • A represents a group represented by a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a cycloalkyl group having 1 to 8 carbon atoms Alkylene group or formula: *-COR 8 - (where R 8 represents a single bond or an alkylene group having 1 to 8 carbon atoms, and * represents a bond on the oxygen side)
  • One of Y and Z represents a hydroxyl group, an alkoxy group having
  • R 2 , R 3 , R 5 and R 6 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 5 to 8 carbon atoms, or a cycloalkyl group having 6 to 8 carbon atoms.
  • examples of the alkyl group having 1 to 8 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, group, t-pentyl group, i-octyl group, t-octyl group, 2-ethylhexyl group and the like.
  • examples of the cycloalkyl group having 5 to 8 carbon atoms include cyclopentyl group, cyclohexyl group, cycloheptyl group, and cyclooctyl group.
  • alkylcycloalkyl group having 6 to 12 carbon atoms examples include 1-methylcyclopentyl group, 1-methylcyclohexyl group, and 1-methyl-4-i-propylcyclohexyl group.
  • aralkyl group having 7 to 12 carbon atoms examples include benzyl group, ⁇ -methylbenzyl group, ⁇ , ⁇ -dimethylbenzyl group, and the like.
  • R 2 , R 3 and R 5 are each independently an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 5 to 8 carbon atoms, or an alkylcycloalkyl group having 6 to 12 carbon atoms.
  • R 2 and R 5 are preferably each independently a t-alkyl group such as a t-butyl group, a t-pentyl group, or a t-octyl group, a cyclohexyl group, or a 1-methylcyclohexyl group.
  • R 3 is a carbon number such as methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, t-pentyl group, etc. It is preferably an alkyl group of 1 to 5, and more preferably a methyl group, t-butyl group or t-pentyl group.
  • the R 6 is preferably a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a cycloalkyl group having 5 to 8 carbon atoms, and is preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an i-propyl group. More preferably, it is an alkyl group having 1 to 5 carbon atoms such as , n-butyl group, i-butyl group, sec-butyl group, t-butyl group, or t-pentyl group.
  • R 4 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • alkyl group having 1 to 8 carbon atoms include the alkyl groups exemplified in the explanation of R 2 , R 3 , R 5 and R 6 above.
  • R 4 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and more preferably a hydrogen atom or a methyl group.
  • X represents a single bond, a sulfur atom, or a group represented by the formula: -CHR 7 -.
  • R 7 in the formula: -CHR 7 - represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a cycloalkyl group having 5 to 8 carbon atoms.
  • Examples of the alkyl group having 1 to 8 carbon atoms and the cycloalkyl group having 5 to 8 carbon atoms include the alkyl groups and cycloalkyl groups exemplified in the explanation of R 2 , R 3 , R 5 and R 6 above, respectively. It will be done.
  • X is a single bond, a methylene group, or a methylene group substituted with a methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, etc.
  • it is a single bond, and more preferably a single bond.
  • A represents an alkylene group having 1 to 8 carbon atoms or a group represented by the formula: *-COR 8 -.
  • alkylene group having 1 to 8 carbon atoms include methylene group, ethylene group, propylene group, butylene group, pentamethylene group, hexamethylene group, octamethylene group, 2,2-dimethyl-1,3-propylene group, etc. are mentioned, preferably a propylene group.
  • R 8 in the formula: *-COR 8 - represents a single bond or an alkylene group having 1 to 8 carbon atoms. Examples of the alkylene group having 1 to 8 carbon atoms representing R 8 include the alkylene groups exemplified in the explanation of A above.
  • R 8 is preferably a single bond or an ethylene group. Further, * in the formula: *-COR 8 - is a bond on the oxygen base paper side, and indicates that the carbonyl group is bonded to the oxygen atom of the phosphite group.
  • one of Y and Z represents a hydroxyl group, an alkoxy group having 1 to 8 carbon atoms, or an aralkyloxy group having 7 to 12 carbon atoms, and the other represents a hydrogen atom or a carbon number 1 to 8 represents an alkyl group.
  • the alkoxy group having 1 to 8 carbon atoms include methoxy group, ethoxy group, propoxy group, t-butoxy group, and pentyloxy group.
  • Examples of the aralkyloxy group having 7 to 12 carbon atoms include benzyloxy group, ⁇ -methylbenzyloxy group, ⁇ , ⁇ -dimethylbenzyloxy group, and the like.
  • Examples of the alkyl group having 1 to 8 carbon atoms include the alkyl groups exemplified in the explanation of R 2 , R 3 , R 5 and R 6 above.
  • Examples of the compound represented by formula (13) include 2,4,8,10-tetra-t-butyl-6-[3-(3-methyl-4-hydroxy-5-t-butylphenyl)propoxy [dibenzo[d,f][1,3,2]dioxaphosphepine, 6-[3-(3,5-di-t-butyl-4-hydroxyphenyl)propoxy]-2,4,8, 10-tetra-t-butyldibenzo[d,f][1,3,2]dioxaphosphepine, 6-[3-(3,5-di-t-butyl-4-hydroxyphenyl)propoxy]- 4,8-di-t-butyl-2,10-dimethyl-12H-dibenzo[d,g][1,3,2]dioxaphosphosine, 6-[3-(3,5-di-t- butyl-4-hydroxyphenyl)propionyloxy]-4,8-di-t-butyl
  • 2,4,8,10-tetra-t-butyl-6-[3-(3-methyl -4-hydroxy-5-t-butylphenyl)propoxy]dibenzo[d,f][1,3,2]dioxaphosphepine is suitable, for example, Sumilizer GP (manufactured by Sumitomo Chemical Co., Ltd.) Sumilizer" is commercially available as a registered trademark).
  • the phosphorus antioxidant (D) contains, for example, a compound represented by the following formula (14).
  • R 9 and R 10 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group optionally substituted with an alkyl group, and b and c each independently represent 0 Indicates an integer between ⁇ 3.
  • Examples of the compound represented by formula (14) include bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, and the like.
  • Bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite is commercially available under the trade name "ADEKA STAB PEP-24G" manufactured by ADEKA.
  • ADEKA STAB PEP-36 (“ADEKA STAB” is a registered trademark) manufactured by ADEKA Corporation is commercially available.
  • the phosphorus antioxidant (D) contains, for example, a compound represented by the following formula (15).
  • R 11 to R 18 each independently represent an alkyl group or an alkenyl group having 1 to 3 carbon atoms.
  • R 11 and R 12 , R 13 and R 14 , R 15 and R 16 , R 17 and R 18 may combine with each other to form a ring.
  • R 19 to R 22 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • d to g each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. is an integer from 0 to 5.
  • X 1 to X 4 each independently represent a single bond or a carbon atom. When X 1 to X 4 are single bonds, among R 11 to R 22 , The functional group connected to the single bond is excluded from general formula (15).
  • a specific example of the compound represented by formula (15) includes bis(2,4-dicumylphenyl)pentaerythritol diphosphite. This is manufactured by Dover Chemical Company, product name “Doverphos (registered trademark) S-9228", manufactured by ADEKA Company, product name “ADEKASTAB PEP-45” (bis(2,4-dicumylphenyl) pentaerythritol diphosphite) It is commercially available as .
  • the above-mentioned aromatic polycarbonate resin composition that satisfies at least one selected from the following is preferred:
  • the phosphite compound represented by the formula (12) contains tris(2,4-di-t-butylphenyl)phosphite;
  • the phosphite compound represented by the formula (13) is 2,4,8,10-tetra-t-butyl-6-[3-(3-methyl-4-hydroxy-5-t-butylphenyl) ) propoxy]dibenzo[d,f][1,3,2]dioxaphosphepine;
  • the phosphite compound represented by the formula (14) is 3,9-bis(2,6-di-tert-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa-3, 9-diphosphaspiro[5,5]undecane; and the phosphite compound represented by formula (15) contains bis(2,4-dicumylphenyl)
  • the amount of the phosphorus antioxidant (D) is preferably 0.5 parts by weight or less, more preferably 0.02 to 0.2 parts by weight, based on 100 parts by weight of the aromatic polycarbonate resin (A). .
  • the aromatic polycarbonate resin composition of the embodiment of the present invention includes a polyether derivative (B), a light diffusing agent (C), a phosphorus antioxidant (D), and an aromatic polycarbonate represented by the following formula (1). It is more preferable that the compound (E) is included. In this way, by using the polyether derivative (B), the light diffusing agent (C), the phosphorous antioxidant (D), and the aromatic compound (E), the excellent properties required for light diffusing molded products can be achieved. While maintaining optical properties, it is possible to prevent deterioration such as aging deterioration in addition to deterioration caused by usage conditions of a molded article made of the obtained aromatic polycarbonate resin composition.
  • thermal deterioration caused by long-term irradiation of an optical molded article made from an aromatic polycarbonate resin composition with a light source (such as an LED light source) is effectively prevented.
  • a light-diffusion molded product is exposed to harsh conditions such as under the scorching sun and/or continues to receive light irradiation for a long time, the temperature of the surface of the molded product may rise.
  • Thermal deterioration of the aromatic polycarbonate resin (A) may progress little by little.
  • the polyether derivative (B) in the resin composition may be modified, impairing the transparency (brightness or light transmittance) expected of aromatic polycarbonate resin compositions used in ordinary light-diffusing molded products, and making molding difficult. Clouding or coloring (light to dark coloring) may occur on the surface of the product.
  • the specific aromatic compound (E) of the following formula (1) is particularly effective as a compound that inhibits deterioration such as modification of the polyether derivative (B).
  • the polyether in the molded article can be It has been found that the deterioration of the derivative (B) can be suppressed to reduce or alleviate the phenomenon of cloudiness or coloration (light to deep coloration).
  • the amount of the aromatic compound (E) used in the embodiment of the present invention is preferably 0.003 parts by weight or less based on 100 parts by weight of the aromatic polycarbonate resin (A).
  • the amount of the aromatic compound (E) should be 0.0001 parts by weight per 100 parts by weight of the aromatic polycarbonate resin (A). Parts by weight or more.
  • the amount of the aromatic compound (E) is more preferably 0.0005 parts by weight or more and 0.003 parts by weight or less based on 100 parts by weight of the aromatic polycarbonate resin (A). If the amount of the aromatic compound (C) is less than 0.0001 part by weight, the effect of inhibiting clouding or coloring will be insufficient. On the other hand, if the amount of the aromatic compound (C) exceeds 0.003 parts by weight, it is not desirable because it may not be possible to achieve the high level of light transmittance and hue required for an optical molded article.
  • the aromatic polycarbonate resin composition according to the embodiment includes, for example, an ultraviolet absorber, which is a component that further improves the weather resistance of the resulting aromatic polycarbonate resin composition. It can be used as appropriate depending on the purpose of the molded product obtained by molding the product.
  • ultraviolet absorber for example, ultraviolet absorbers that are usually blended into polycarbonate resin, such as benzotriazole compounds, triazine compounds, benzophenone compounds, and oxalic acid anilide compounds, may be used alone or in combination of two or more. Can be used.
  • benzotriazole compounds include 2-(2-hydroxy-5-t-octylphenyl)benzotriazole and 2-(3-tert-butyl-2-hydroxy-5-methylphenyl). -5-chloro-2H-benzotriazole, 2-(3,5-di-tert-pentyl-2-hydroxyphenyl)-2H-benzotriazole, 2-(2H-benzotriazole-2-yl)-4- methyl-6-( 3,4,5,6-tetrahydrophthalimidylmethyl)phenol, 2-(2-hydroxy-4-octyloxyphenyl)-2H-benzotriazole, 2-(2-hydroxy-5-tert-octylph enyl)-2H-benzotriazole, 2-[2 '-hydroxy-3,5-di(1,1-dimethylbenzyl)phenyl]-2H-benzotriazole, 2,2'-Methylenbis[6-(2H-benzotriazol-2-
  • 2-(2-hydroxy-5-t-octylphenyl)benzotriazole and the like are particularly suitable, such as TINUVIN 329 manufactured by BASF (TINUVIN is a registered trademark) and Seasorb manufactured by Cipro Kasei Co., Ltd. 709, Chemisorb 79 manufactured by ChemiPro Kasei Co., Ltd., and the like are commercially available.
  • triazine compounds examples include 2,4-diphenyl-6-(2-hydroxyphenyl-4-hexyloxyphenyl)1,3,5-triazine, 2-[4,6-bis(2,4-dimethyl) phenyl)-1,3,5-triazin-2-yl]-5-(octyloxy)phenol, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[( hexyl)oxy]phenol, etc., and for example, TINUVIN 1577 manufactured by BASF is commercially available.
  • oxalic acid anilide compound for example, Sanduvor VSU manufactured by Clariant Japan Co., Ltd. is commercially available.
  • benzophenone compounds include 2,4-dihydroxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, and the like.
  • the amount of the ultraviolet absorber is 0 to 1.0 parts by weight, preferably 0 to 0.5 parts by weight, based on 100 parts by weight of the aromatic polycarbonate resin (A). If the amount of the ultraviolet absorber exceeds 1.0 parts by weight, the initial hue of the resulting aromatic polycarbonate resin composition may be reduced. Moreover, when the amount of the ultraviolet absorber is 0.1 part by weight or more, the effect of further improving the weather resistance of the aromatic polycarbonate resin composition is particularly exhibited.
  • the aromatic polycarbonate resin composition of the embodiment of the present invention can contain an epoxy compound (F).
  • an epoxy compound (F) in this way, when the aromatic polycarbonate resin composition contains the polyether derivative (B), the aromatic compound (E), and the epoxy compound (F) at the same time, it is possible to obtain the excellent optical properties required for a light-diffusing molded article. While maintaining and improving, it is possible to prevent deterioration such as deterioration due to usage conditions and aging deterioration without deteriorating the initial optical properties of the molded product made of the resulting aromatic polycarbonate resin composition.
  • the epoxy compound (F) is not particularly limited as long as it has at least one epoxy group in its molecule and can provide the aromatic polycarbonate resin composition targeted by the present invention.
  • the epoxy compound (F) is, for example, 3',4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, epoxidized soybean oil, ⁇ -caprolactone modified 3',4'-epoxycyclohexylmethyl 3,4- It can include epoxycyclohexane carboxylate, epoxy group-containing acrylic/styrene polymer, 2,2-bis(4-hydroxycyclohexyl)propane-diglycidyl ether, and the like.
  • the epoxy compound (F) contains 3',4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate.
  • the aromatic polycarbonate resin composition of the embodiment of the present invention preferably contains 0.001 to 0.2 parts by weight of the epoxy compound (F) based on 100 parts by weight of the linear aromatic polycarbonate resin, and preferably contains 0.001 to 0.2 parts by weight of the epoxy compound (F). It is more preferable to contain 0.002 to 0.1 part by weight, and particularly preferably 0.005 to 0.05 part by weight.
  • the aromatic polycarbonate resin composition of the embodiment of the present invention contains 0.001 to 0.2 parts by weight of the epoxy compound (E) with respect to 100 parts by weight of the linear aromatic polycarbonate resin, the composition has light diffusing properties.
  • the aromatic polycarbonate resin composition according to the embodiment may contain, for example, a heat stabilizer, other antioxidant, coloring agent, mold release agent, softener, antistatic agent, within the range that does not impair the effects of the present invention.
  • a heat stabilizer other antioxidant, coloring agent, mold release agent, softener, antistatic agent
  • additives such as additives, impact modifiers, polymers other than the linear aromatic polycarbonate resin, etc. may be appropriately blended.
  • the aromatic polycarbonate resin composition of the embodiment of the present invention is prepared by mixing a linear aromatic polycarbonate resin, a polyether derivative (B), and a light diffusing agent (C), and optionally adding a phosphorus antioxidant ( D), an aromatic compound (E), an epoxy compound (F), the above-mentioned various additives, a polymer other than the linear aromatic polycarbonate resin, etc. can be exemplified.
  • the manufacturing method is not particularly limited, and the types and amounts of each component can be adjusted as appropriate.
  • the method of mixing the components is not particularly limited, and examples include a method of mixing with a known mixer such as a tumbler and a ribbon blender, and a method of melt-kneading with an extruder. By these methods, pellets of aromatic polycarbonate resin compositions can be easily obtained.
  • the aromatic compound (E) may be mixed before melt-kneading, or may be added to or mixed with the polyether derivative (B) in advance.
  • the shape and size of the aromatic polycarbonate resin composition pellets obtained as described above are not particularly limited, and may be any shape and size that common resin pellets have.
  • the shape of the pellet includes an elliptical cylinder shape, a cylindrical shape, and the like.
  • the size of the pellet it is preferable that the length is about 2 to 8 mm, and in the case of an elliptical columnar shape, it is preferable that the long axis of the ellipse in cross section is about 2 to 8 mm, and the short axis of about 1 to 4 mm.
  • the diameter of the circular cross section is about 1 to 6 mm.
  • each pellet obtained may have such a size, or all pellets forming a pellet aggregate may have such a size, and the average value of the pellet aggregate may be this size.
  • the size may be similar, and there is no particular limitation.
  • the light-diffusing molded article of the embodiment of the present invention can be obtained by molding the above-mentioned aromatic polycarbonate resin composition.
  • a large and thin light diffusing plate (particularly a light diffusing plate for an image display device), a light diffusing plate having a surface area of 500 to 50,000 cm 2 can be obtained.
  • the surface area of the light diffusing plate is preferably 1,000 to 25,000 cm 2 and the thickness is preferably 0.3 to 3 mm.
  • the aromatic polycarbonate resin composition of the present invention it is possible to produce a light diffusing plate that is large in size, has high dimensional stability, and is thin (lightweight).
  • the manufacturing method of the light-diffusing molded product is not particularly limited.
  • the aromatic Examples include a method of molding a polycarbonate resin composition.
  • the light-diffusing molded product according to the present invention includes, for example, a light-diffusing plate, a light-diffusing film, electronic/electrical equipment, parts of OA equipment, vehicle parts, mechanical parts, agricultural materials, fishing materials, transportation containers, packaging containers, and miscellaneous goods. etc.
  • a light diffusing plate for image display devices a light diffusing plate used in a backlight module of a liquid crystal display device, etc., a light diffusing plate used in a screen of a projection type display device such as a projector television, etc.
  • Various light sources can be used as backlight modules for liquid crystal display devices and the like.
  • Linear aromatic polycarbonate resin Polycarbonate resin synthesized from bisphenol A and carbonyl chloride, viscosity average molecular weight: 15,000, SD Polycarbonate 200-80 (trade name) manufactured by Sumika Polycarbonate Co., Ltd., "SD Polycarbonate” is a registered trademark of Sumika Polycarbonate Co., Ltd. , hereinafter also referred to as (A1).
  • Tris(2,4-di-t-butylphenyl)phosphite represented by the following formula: Irgafos 168 (trade name) manufactured by BASF, hereinafter also referred to as (D1).
  • Epoxy compound (F) 3',4'-Epoxycyclohexylmethyl-3,4-epoxycyclohexylcarboxylate Celoxide 2021P (trade name) manufactured by Daicel Chemical Industries, Ltd., hereinafter also referred to as (F1).
  • Examples 1 to 14 and Comparative Examples 1 and 2 The above raw materials were put into a tumbler at once in the proportions shown in Table 1, and after dry mixing for 10 minutes, the melting temperature was adjusted to 230°C using a twin-screw extruder (TEX30 ⁇ , manufactured by Japan Steel Works, Ltd.). The mixture was melt-kneaded to obtain pellets of the aromatic polycarbonate resin compositions of Examples 1 to 11 and Comparative Examples 1 and 2.
  • the pellets obtained in Examples and Comparative Examples are both approximately elliptical cylinder-shaped, and each aggregate of 100 pellets has an average length of about 5.1 mm to about 5.4 mm and an elliptical cross section.
  • the average value of the long axis was about 4.1 mm to about 4.3 mm, and the average value of the short axis was about 2.2 mm to about 2.3 mm.
  • each evaluation test piece was prepared and subjected to evaluation according to the following method. The results are shown in Table 1.
  • Method for preparing test piece After drying the obtained pellets at 120°C for 4 hours or more, they were molded into 50mm width x 90mm length using an injection molding machine (ROBOSHOT S2000i100A, manufactured by Fanuc Corporation) at a molding temperature of 290°C and a mold temperature of 80°C. A three-stage plate-shaped test piece (3 mm thick part: 35 mm in length / 2 mm thick part: 30 mm in length / 1 mm thick part: 25 mm in length) was created.
  • ROBOSHOT S2000i100A injection molding machine
  • Total light transmittance (%): The total light transmittance was measured using a 1 mm portion of the obtained three-tiered plate-shaped test piece in accordance with JIS K7361. The larger the numerical value, the better the light transmittance of the molded article. A molded article with a thickness of 1 mm and a total light transmittance value of 40% or more was evaluated as good, and other cases were evaluated as poor.
  • Light diffusivity (degrees) Light diffusivity (D50) was determined using a 1 mm portion of the three-tiered plate-shaped test piece used in 1 above using an automatic variable angle photometer (Goniophotometer GP-1R manufactured by Murakami Color Research Institute). The detailed measurement method is as follows. The larger this value is, the better the light diffusivity of the molded article is. A straight light beam from the light source of an automatic variable angle photometer is applied to the test piece from the normal direction, the intensity of the transmitted light is measured with a movable receiver, and the transmittance is plotted against the angle from the normal direction. The angle (D50) at which the transmittance becomes 50% of the straight light transmittance was determined. The unit is "degrees", and light diffusivity (D50) of 30 degrees or more was considered good.
  • Light source transparency prevention (visual judgment): A rectangular hole of 3 cm x 5 cm was made in the center of a 20W straight tube LED lamp manufactured by Philips, and an injection molded plate of 3 cm x 5 cm x 1 mm was placed in the hole at a height of approximately 1.5 cm from the LED light source. . The ability to prevent the light source from seeing through was visually determined from a height of about 20 cm above the injection molded plate installed on the LED lamp. If sufficient light diffusivity was provided and the outline of the LED light source disappeared, it was judged to be extremely good. A case where the outline of the LED light source was slightly visible was judged as good, and a case where the outline of the LED light source was clearly visible due to poor light diffusivity was judged as poor.
  • Tables 1 to 3 also show the raw materials, blending ratios, and evaluation results of each example and comparative example.
  • the aromatic polycarbonate resin compositions of Examples 1 to 14 contain a linear aromatic polycarbonate resin, a polyether derivative (B), and a light diffusing agent (C), and optionally a phosphorus antioxidant (D). ), an aromatic compound (E), an epoxy compound (F), etc., in specific proportions. Therefore, the test piece molded from the aromatic polycarbonate resin composition has the required high total light transmittance, light diffusivity, and light source visibility resistance, has a low degree of yellowness, and shows almost no deterioration after the heating test. None.
  • a molded article made from such an aromatic polycarbonate resin composition has a low degree of yellowness and excellent hue, and also shows almost no deterioration after a heating test.
  • the aromatic polycarbonate resin composition of Comparative Example 1 contained a small amount of light diffusing agent, so the degree of light diffusion was low and the property of preventing light source transmission was poor. Further, the aromatic polycarbonate resin composition of Comparative Example 2 had a low total light transmittance because the amount of the light diffusing agent was large.
  • the components described in the detailed description include not only components that are essential for solving the problem, but also components that are not essential for solving the problem in order to exemplify the above technology. obtain. Therefore, just because these non-essential components are described in the detailed description, it should not be immediately determined that those non-essential components are essential.
  • the aromatic polycarbonate resin composition of the present invention does not impair the inherent properties of the polycarbonate resin, such as heat resistance and mechanical strength, and has excellent thermal stability and weather resistance. Even when a molded article containing the composition is heated, it has excellent appearance and optical properties. Therefore, even when used in applications where the surface of the diffuser plate is continuously heated by long-term irradiation of a thin diffused light source with a thickness of about 0.3 mm, the hue of the obtained diffuser plate may change and the appearance may change. There is no deterioration in optical properties, and the value of industrial use is extremely high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides an aromatic polycarbonate resin composition which has excellent thermal stability, high transparency, high light transmittance and high light diffusibility, and is not susceptible to a decrease in the transparency and the light transmittance without deteriorating inherent characteristics of the polycarbonate resin such as heat resistance and mechanical strength. The present invention provides an aromatic polycarbonate resin composition which contains a linear aromatic polycarbonate resin (A), a polyether derivative (B), a light-diffusing agent (C), a phosphorus antioxidant (D) and an aromatic compound (E) that is represented by formula (1), wherein 0.1-2.0 parts by weight of the polyether derivative (B), 0.1-6.0 parts by weight of the light-diffusing agent (C), up to 0.5 part by weight of the phosphorus antioxidant (D) and up to 0.003 part by weight of the aromatic compound (E) are contained per 100 parts by weight of the linear aromatic polycarbonate resin (A).

Description

芳香族ポリカーボネート樹脂組成物および光拡散性成形品Aromatic polycarbonate resin composition and light-diffusing molded product
 本発明は、芳香族ポリカーボネート樹脂組成物および光拡散性成形品に関する。 The present invention relates to an aromatic polycarbonate resin composition and a light-diffusing molded article.
 ポリカーボネート樹脂は、耐衝撃性、耐熱性及び透明性等に優れるので、従来、導光板、各種レンズ及び銘板等の成形品に利用されている。芳香族ポリカーボネート系樹脂に無機微粒子、高分子微粒子等の光拡散剤を配合した樹脂組成物からなる光拡散性成形品は、アクリル樹脂からなる光拡散性成形品に比べ、耐熱性および寸法安定性に優れることから、電灯カバー、メーター、看板(特に内照式)、樹脂窓ガラス、画像読取装置または画像表示装置用の光拡散板(例えば、液晶表示装置等のバックライトモジュールに使用される光拡散板、プロジェクターテレビ等の投影型表示スクリーンに使用される光拡散板等)、光拡散フィルム(例えば、液晶表示装置の輝度向上等に利用される高透過光拡散フィルム等)等、幅広い分野で使用されている。 Since polycarbonate resin has excellent impact resistance, heat resistance, transparency, etc., it has conventionally been used for molded products such as light guide plates, various lenses, and nameplates. Light-diffusing molded products made of resin compositions containing aromatic polycarbonate resins and light-diffusing agents such as inorganic particles and polymeric particles have better heat resistance and dimensional stability than light-diffusing molded products made of acrylic resin. Because of its excellent performance, it can be used for light covers, meters, signboards (especially internally illuminated type), resin window glass, light diffusion plates for image reading devices or image display devices (for example, light used in backlight modules for liquid crystal display devices, etc.). Used in a wide range of fields, such as diffusion plates, light diffusion plates used in projection display screens such as projector televisions, etc.), light diffusion films (for example, high-transmission light diffusion films used to improve the brightness of liquid crystal display devices, etc.) It is used.
 近年の画像表示装置の大型化、薄肉化(軽量化)、形状複雑化、高性能化等に伴って、光拡散性成形品、特に画像表示装置に用いられる光拡散板および光拡散フィルムにも、大型化、薄肉化(軽量化)、形状複雑化、高性能化等の要望が高まっており、成形加工時の流動性に優れた芳香族ポリカーボネート系樹脂組成物が求められている。 In recent years, as image display devices have become larger, thinner (lighter), more complex in shape, and more sophisticated, light-diffusing molded products, especially light-diffusing plates and films used in image display devices, are also becoming more and more popular. There are increasing demands for larger sizes, thinner walls (lighter weight), more complex shapes, higher performance, etc., and aromatic polycarbonate resin compositions with excellent fluidity during molding are in demand.
 特許文献1には、ペンタエリスリトール系エステル化合物を添加し、エステル交換により芳香族ポリカーボネート系樹脂を低分子量化することで流動性を向上させることが記載されている。 Patent Document 1 describes that fluidity is improved by adding a pentaerythritol-based ester compound and lowering the molecular weight of an aromatic polycarbonate-based resin through transesterification.
国際公開第2013/011977号International Publication No. 2013/011977
 しかしながら、特許文献1に開示のポリカーボネート樹脂組成物は、近年の材料に求められる要求、例えば、薄肉成形を行うため高温で成形加工した場合でも透明性・光透過率の低下が少ないこと、大型化が可能であること等を充分に満足し得るものではない。 However, the polycarbonate resin composition disclosed in Patent Document 1 meets the requirements of materials in recent years, such as low reduction in transparency and light transmittance even when molded at high temperatures for thin wall molding, and large size. However, it is not possible to fully satisfy the requirements that
 更に、近年、成形加工された0.3mm程度の薄型のサイズの車載用画像表示装置に用いられる光拡散性成形品(例えば、画像表示装置用の光拡散板)が、光照射等による高温条件下に極めて長期にわたり暴露された場合でも、透明性・光透過性の低下が少なく、すなわち、大型であっても光透過性を落とさずに、それでいて光源が透けて見えない光拡散性の高い材料が、求められつつある。 Furthermore, in recent years, light-diffusing molded products (for example, light-diffusing plates for image display devices) used in in-vehicle image display devices as thin as about 0.3 mm have been exposed to high-temperature conditions such as light irradiation. A material with high light diffusivity that does not reduce its transparency and light transmittance even when exposed to the environment for an extremely long period of time.In other words, even if it is large, it does not lose its light transmittance, and yet the light source cannot be seen through it. is now in demand.
 本発明は、ポリカーボネート樹脂が本来有する耐熱性、機械的強度等の特性が損なわれることがなく、熱安定性に優れ、透明性・光線透過率・光拡散性が高く、しかも成形加工された0.3mm程度の薄型の大型の成形品(例えば、画像表示装置用の光拡散板)が、光照射等による高温条件下に極めて長期にわたり暴露された場合でも、透明性・光透過性の低下を生じ難く(白濁及び着色を生じ難く)、すなわち、大型であっても光透過性を落とさずに、それでいて光源が透けて見えない光拡散性の高い、芳香族ポリカーボネート樹脂組成物を提供することを目的とする。 The present invention does not impair the inherent properties of polycarbonate resin such as heat resistance and mechanical strength, has excellent thermal stability, and has high transparency, light transmittance, and light diffusivity. .Even if a large molded product with a thickness of about 3 mm (for example, a light diffusion plate for an image display device) is exposed to high temperature conditions such as light irradiation for an extremely long period of time, the transparency and light transmittance will not deteriorate. An object of the present invention is to provide an aromatic polycarbonate resin composition that does not easily cause clouding or coloring, that is, has high light diffusivity without reducing light transmittance even when it is large, and yet does not allow the light source to be seen through it. purpose.
 本発明者らは、かかる課題を解決するために鋭意検討を行った結果、直鎖状芳香族ポリカーボネート樹脂、ポリエーテル誘導体(B)及び光拡散剤(C)を、所定量含む芳香族ポリカーボネート樹脂組成物が、ポリカーボネート樹脂が本来有する耐熱性、機械的強度等の特性を損なうことなく、熱安定性に優れ、光線透過率が高く、しかも、成形加工された0.3mm程度の薄型の成形品(導光板)が光源照射等による高温条件下に長期に亘り暴露された場合でも、透明性・透過性の低下が少ない(白濁又は着色を生じ難い)ことを見出し、本発明を完成した。 As a result of intensive studies to solve this problem, the present inventors have developed an aromatic polycarbonate resin containing a predetermined amount of a linear aromatic polycarbonate resin, a polyether derivative (B), and a light diffusing agent (C). The composition has excellent thermal stability and high light transmittance without impairing the inherent properties of polycarbonate resin such as heat resistance and mechanical strength, and is molded into a thin molded product of about 0.3 mm. The present invention has been completed based on the discovery that even when the light guide plate is exposed to high temperature conditions such as by irradiation with a light source for a long period of time, there is little decrease in transparency and permeability (hard to cause clouding or coloration).
 すなわち、本発明は、直鎖状芳香族ポリカーボネート樹脂(A)、ポリエーテル誘導体(B)、光拡散剤(C)、リン系酸化防止剤(D)及び下記式(1)で表される芳香族化合物(E)を含む芳香族ポリカーボネート樹脂組成物であって、該直鎖状芳香族ポリカーボネート樹脂(A)100重量部に対してポリエーテル誘導体(B)を0.1~2.0重量部、光拡散剤(C)を0.1~6.0重量部、リン系酸化防止剤(D)を0.5重量部まで、芳香族化合物(E)を0.003重量部まで含有する、芳香族ポリカーボネート樹脂組成物およびそれを成形してなる光拡散性成形品を提供する。
式(1):
That is, the present invention provides a linear aromatic polycarbonate resin (A), a polyether derivative (B), a light diffusing agent (C), a phosphorus antioxidant (D), and an aromatic compound represented by the following formula (1). An aromatic polycarbonate resin composition containing a group compound (E), comprising 0.1 to 2.0 parts by weight of a polyether derivative (B) based on 100 parts by weight of the linear aromatic polycarbonate resin (A). , containing 0.1 to 6.0 parts by weight of the light diffusing agent (C), up to 0.5 parts by weight of the phosphorus antioxidant (D), and up to 0.003 parts by weight of the aromatic compound (E), Provided are an aromatic polycarbonate resin composition and a light-diffusing molded article formed from the same.
Formula (1):
 本発明のポリカーボネート樹脂組成物は、ポリカーボネート樹脂が本来有する耐熱性、機械的強度等の特性が損なわれることがなく、熱安定性に優れ、透明性・光線透過率・光拡散性が高く、しかも得られる成形品が、炎天下環境及び/又は光源照射等による高温条件下に長期に亘り暴露された場合でも、透明性・透過性が低下し難い(白濁又は着色を生じ難い)。よって、例えば厚さ0.3mm程度の薄型の成形品(拡散板)であっても、色相が変化して外観が低下(劣化)することを生じ難く、外部環境や光源に起因する高温条件下に長期間暴露された場合でも、透明性の低下を生じ難く(白濁又は着色を生じ難く)、すなわち、光透過性を落とさずに、それでいて光源が透けて見えない光拡散性の高いポリカーボネート樹脂組成物を提供でき、工業的利用価値が極めて高い。 The polycarbonate resin composition of the present invention does not impair the inherent properties of polycarbonate resin such as heat resistance and mechanical strength, has excellent thermal stability, and has high transparency, light transmittance, and light diffusivity. Even when the resulting molded product is exposed for a long period of time to high-temperature conditions such as the blazing sun and/or irradiation with a light source, its transparency and permeability are unlikely to decrease (it is unlikely to become cloudy or colored). Therefore, even if it is a thin molded product (diffusion plate) with a thickness of about 0.3 mm, for example, it is unlikely that the hue will change and the appearance will deteriorate (deterioration), and it can be used under high temperature conditions caused by the external environment or light source. A polycarbonate resin composition that does not easily reduce transparency (does not easily become cloudy or colored) even when exposed to water for a long period of time, that is, has a high light diffusing property that does not reduce light transmittance and does not allow the light source to be seen through. It can provide products and has extremely high industrial value.
 以下に、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Embodiments will be described in detail below. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of well-known matters or redundant explanations of substantially the same configurations may be omitted. This is to avoid unnecessary redundancy in the following description and to facilitate understanding by those skilled in the art.
 なお、発明者らは当業者が本発明を充分に理解するために以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。 The inventors provide the following explanations so that those skilled in the art may fully understand the present invention, and do not intend these to limit the subject matter recited in the claims.
 本発明の実施形態の芳香族ポリカーボネート樹脂組成物は、直鎖状芳香族ポリカーボネート樹脂(A)、ポリエーテル誘導体(B)および光拡散剤(C)と、必要に応じて、リン系酸化防止剤(D)及び/又は特定の芳香族化合物(E)を含む。実施形態に係る芳香族ポリカーボネート樹脂組成物は、更に必要に応じて、エポキシ化合物及び/又はその他の成分等を含むことができる。 The aromatic polycarbonate resin composition of the embodiment of the present invention comprises a linear aromatic polycarbonate resin (A), a polyether derivative (B), a light diffusing agent (C), and, if necessary, a phosphorus antioxidant. (D) and/or a specific aromatic compound (E). The aromatic polycarbonate resin composition according to the embodiment can further contain an epoxy compound and/or other components, etc., if necessary.
 本発明の実施形態において、「直鎖状芳香族ポリカーボネート樹脂(A)」は、芳香族化合物に基づくポリカーボネート樹脂であって、本発明が目的とする芳香族ポリカーボネート樹脂組成物を得ることができる限り特に制限されることはないが、分岐状芳香族ポリカーボネートは、透明性・光透過性を低下させるため本発明の範囲から極力除くものとする。直鎖状芳香族ポリカーボネート樹脂として、例えば、種々のジヒドロキシジアリール化合物とホスゲンとを反応させるホスゲン法、又はジヒドロキシジアリール化合物とジフェニルカーボネート等の炭酸エステルとを反応させるエステル交換法によって得られる重合体を例示できる。代表例は、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)から製造されたポリカーボネート樹脂を含む。 In an embodiment of the present invention, the "linear aromatic polycarbonate resin (A)" is a polycarbonate resin based on an aromatic compound, and as long as the aromatic polycarbonate resin composition targeted by the present invention can be obtained. Although not particularly limited, branched aromatic polycarbonates are excluded from the scope of the present invention as much as possible because they reduce transparency and light transmittance. Examples of linear aromatic polycarbonate resins include polymers obtained by a phosgene method in which various dihydroxydiaryl compounds and phosgene are reacted, or a transesterification method in which a dihydroxydiaryl compound is reacted with a carbonate ester such as diphenyl carbonate. can. Representative examples include polycarbonate resins made from 2,2-bis(4-hydroxyphenyl)propane (bisphenol A).
 前記ジヒドロキシジアリール化合物として、ビスフェノールAの他に、例えば、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)フェニルメタン、2,2-ビス(4-ヒドロキシフェニル-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-第三ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3、5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン等のビス(ヒドロキシアリール)アルカン類;1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン等のビス(ヒドロキシアリール)シクロアルカン類;4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル等のジヒドロキシジアリールエーテル類;4,4’-ジヒドロキシジフェニルスルフィド等のジヒドロキシジアリールスルフィド類;4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類;4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類を例示できる。これらは単独で又は組み合せて使用できる。これらの他にも、ピペラジン、ジピペリジルハイドロキノン、レゾルシン、4,4’-ジヒドロキシジフェニル等を組み合わせて使用することができる。 In addition to bisphenol A, examples of the dihydroxydiaryl compound include bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)butane, 2 , 2-bis(4-hydroxyphenyl)octane, bis(4-hydroxyphenyl)phenylmethane, 2,2-bis(4-hydroxyphenyl-3-methylphenyl)propane, 1,1-bis(4-hydroxy- 3-tert-butylphenyl)propane, 2,2-bis(4-hydroxy-3-bromophenyl)propane, 2,2-bis(4-hydroxy-3,5-dibromophenyl)propane, 2,2-bis Bis(hydroxyaryl)alkanes such as (4-hydroxy-3,5-dichlorophenyl)propane; 1,1-bis(4-hydroxyphenyl)cyclopentane, 1,1-bis(4-hydroxyphenyl)cyclohexane, etc. Bis(hydroxyaryl)cycloalkanes; dihydroxydiarylethers such as 4,4'-dihydroxydiphenyl ether and 4,4'-dihydroxy-3,3'-dimethyldiphenyl ether; dihydroxydiaryl such as 4,4'-dihydroxydiphenyl sulfide Sulfides; dihydroxydiaryl sulfoxides such as 4,4'-dihydroxydiphenyl sulfoxide and 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide; 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxy- Examples include dihydroxydiarylsulfones such as 3,3'-dimethyldiphenylsulfone. These can be used alone or in combination. In addition to these, piperazine, dipiperidyl hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, etc. can be used in combination.
 直鎖状芳香族ポリカーボネート樹脂(A)の粘度平均分子量は、10000~100000であることが好ましく、12000~30000であることがより好ましい。なお、このような芳香族ポリカーボネート樹脂(A)を製造する際には分子量調節剤、触媒等を必要に応じて使用することができる。 The viscosity average molecular weight of the linear aromatic polycarbonate resin (A) is preferably 10,000 to 100,000, more preferably 12,000 to 30,000. In addition, when producing such an aromatic polycarbonate resin (A), a molecular weight regulator, a catalyst, etc. can be used as necessary.
 本発明の実施形態において、ポリエーテル誘導体(B)とは、ポリエーテル化合物の誘導体であって、本発明が目的とする芳香族ポリカーボネート樹脂組成物を得ることができる限り、特に限定されるものではない。そのようなポリエーテル誘導体は、代表例として、下記式(2)で表されるポリエーテル誘導体を含む。 In the embodiment of the present invention, the polyether derivative (B) is a derivative of a polyether compound, and is not particularly limited as long as the aromatic polycarbonate resin composition targeted by the present invention can be obtained. do not have. Such polyether derivatives include, as a typical example, a polyether derivative represented by the following formula (2).
 式(2):
 RO-(X-O)m(Y-O)n-R’
(式中、RおよびR’は、各々独立して水素原子又は炭素数1~30のアルキル基を示し、Xは、炭素数2~4の直鎖アルキレン基又は分岐アルキレン基を、Yは、炭素数2~5の直鎖アルキレン基又は分岐アルキレン基を示し、XとYは同一であっても異なっていても良く、m及びnは、各々独立して、3~60を示し、m+nは6~120を示す。)式(2)で表されるポリエーテル誘導体の重量平均分子量は、500~8000であることが好ましく、1000~4000であることがより好ましい。式(2)で表されるポリエーテル誘導体は、市販品を使用することができる。
Formula (2):
RO-(X-O)m(Y-O)n-R'
(In the formula, R and R' each independently represent a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, X is a straight chain alkylene group or a branched alkylene group having 2 to 4 carbon atoms, and Y is Represents a linear alkylene group or branched alkylene group having 2 to 5 carbon atoms, X and Y may be the same or different, m and n each independently represent 3 to 60, and m+n is 6 to 120) The weight average molecular weight of the polyether derivative represented by formula (2) is preferably 500 to 8,000, more preferably 1,000 to 4,000. A commercially available product can be used as the polyether derivative represented by formula (2).
 式(2)で表されるポリエーテル誘導体は、下記式(2-1)で表される化合物であっても良い。
 式(2-1):
 RO-(X-O)m(Y-O)n-R’
(式中、RおよびR’は、各々独立して水素原子又は炭素数1~30のアルキル基を示し、Xは、炭素数2~4の直鎖アルキレン基を、Yは、炭素数2~5の分岐アルキレン基を示し、m及びnは、各々独立して、3~60を示し、m+nは8~90を示す。)
 式(2-1)で表されるポリエーテル誘導体の重量平均分子量は、500~8000であることが好ましく、1000~4000であることがより好ましい。式(2-1)で表されるポリエーテル誘導体は、市販品を使用することができる。
The polyether derivative represented by formula (2) may be a compound represented by formula (2-1) below.
Formula (2-1):
RO-(X-O)m(Y-O)n-R'
(In the formula, R and R' each independently represent a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, X is a linear alkylene group having 2 to 4 carbon atoms, and Y is a linear alkylene group having 2 to 4 carbon atoms. 5 branched alkylene group, m and n each independently represent 3 to 60, and m+n represents 8 to 90.)
The weight average molecular weight of the polyether derivative represented by formula (2-1) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000. As the polyether derivative represented by formula (2-1), commercially available products can be used.
 式(2)で表されるポリエーテル誘導体は、下記式(2-2)で表される化合物であっても良い。
 式(2-2):
 RO-(X-O)m(Y-O)n-R’
(式中、RおよびR’は、各々独立して水素原子又は炭素数1~30のアルキル基を示し、Xは、炭素数2~4の直鎖アルキレン基を、Yは、炭素数2~5の直鎖アルキレン基を示し、XとYは同一であっても異なっていても良く、m及びnは、各々独立して、3~60を示し、m+nは6~100を示す。)
 式(2-2)で表されるポリエーテル誘導体の重量平均分子量は、500~8000であることが好ましく、1000~4000であることがより好ましい。式(2-2)で表されるポリエーテル誘導体は、市販品を使用することができる。
The polyether derivative represented by formula (2) may be a compound represented by formula (2-2) below.
Formula (2-2):
RO-(X-O)m(Y-O)n-R'
(In the formula, R and R' each independently represent a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, X is a linear alkylene group having 2 to 4 carbon atoms, and Y is a linear alkylene group having 2 to 4 carbon atoms. 5, X and Y may be the same or different, m and n each independently represent 3 to 60, and m+n represents 6 to 100.)
The weight average molecular weight of the polyether derivative represented by formula (2-2) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000. As the polyether derivative represented by formula (2-2), commercially available products can be used.
 式(2)で表されるポリエーテル誘導体は、下記式(2-3)で表される化合物であっても良い。
 式(2-3):
 RO-(X-O)m(Y-O)n-R’
(式中、RおよびR’は、各々独立して水素原子又は炭素数1~30のアルキル基を示し、Xは、炭素数2~4の分岐アルキレン基を、Yは、炭素数2~5の分岐アルキレン基を示し、XとYは同一であっても異なっていても良く、m及びnは、各々独立して、3~60を示し、m+nは6~120を示す。)
 式(2-3)で表されるポリエーテル誘導体の重量平均分子量は、500~8000であることが好ましく、1000~4000であることがより好ましい。式(2-3)で表されるポリエーテル誘導体は、市販品を使用することができる。
The polyether derivative represented by formula (2) may be a compound represented by formula (2-3) below.
Formula (2-3):
RO-(X-O)m(Y-O)n-R'
(In the formula, R and R' each independently represent a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, X is a branched alkylene group having 2 to 4 carbon atoms, and Y is a branched alkylene group having 2 to 5 carbon atoms. represents a branched alkylene group, X and Y may be the same or different, m and n each independently represent 3 to 60, and m+n represents 6 to 120.)
The weight average molecular weight of the polyether derivative represented by formula (2-3) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000. As the polyether derivative represented by formula (2-3), commercially available products can be used.
 式(2)で表されるポリエーテル誘導体は、下記式(3)で表されるポリエーテル誘導体、式(4)で表されるポリエーテル誘導体、式(5)で表されるポリエーテル誘導体、式(6)で表されるポリエーテル誘導体、式(7)で表されるポリエーテル誘導体、式(8)で表されるポリエーテル誘導体、式(9)で表されるポリエーテル誘導体、式(10)で表されるポリエーテル誘導体及び式(11)で表されるポリエーテル誘導体を含む群から選択される少なくとも1種を含むことが好ましい。 The polyether derivative represented by the formula (2) includes a polyether derivative represented by the following formula (3), a polyether derivative represented by the formula (4), a polyether derivative represented by the formula (5), A polyether derivative represented by formula (6), a polyether derivative represented by formula (7), a polyether derivative represented by formula (8), a polyether derivative represented by formula (9), a polyether derivative represented by formula ( It is preferable that at least one selected from the group including the polyether derivative represented by formula (10) and the polyether derivative represented by formula (11) is included.
 式(2-1)で表されるポリエーテル誘導体は、下記式(3)で表されるポリエーテル誘導体、式(4)で表されるポリエーテル誘導体、式(5)で表されるポリエーテル誘導体、式(6)で表されるポリエーテル誘導体及び式(7)で表されるポリエーテル誘導体を含む群から選択される少なくとも1種を含むことが好ましい。 The polyether derivative represented by the formula (2-1) is a polyether derivative represented by the following formula (3), a polyether derivative represented by the formula (4), or a polyether derivative represented by the formula (5). It is preferable that at least one selected from the group consisting of derivatives, polyether derivatives represented by formula (6), and polyether derivatives represented by formula (7) is included.
 式(2-2)で表されるポリエーテル誘導体は、式(8)で表されるポリエーテル誘導体及び式(9)で表されるポリエーテル誘導体を含む群から選択される少なくとも1種を含むことが好ましい。 The polyether derivative represented by formula (2-2) contains at least one selected from the group including the polyether derivative represented by formula (8) and the polyether derivative represented by formula (9). It is preferable.
 式(2-3)で表されるポリエーテル誘導体は、式(10)で表されるポリエーテル誘導体及び式(11)で表されるポリエーテル誘導体を含む群から選択される少なくとも1種を含むことが好ましい。 The polyether derivative represented by formula (2-3) contains at least one selected from the group including the polyether derivative represented by formula (10) and the polyether derivative represented by formula (11). It is preferable.
 式(3):
 HO-(CHCHCHCHO)m(CH(CH)CHO)n-H
(式中、m及びnは、各々独立して、3~60を示し、m+nは、8~90を示す。)
Formula (3):
HO-( CH2CH2CH2CH2O ) m (CH( CH3 ) CH2O ) n - H
(In the formula, m and n each independently represent 3 to 60, and m+n represents 8 to 90.)
 式(3)で表されるポリエーテル誘導体として、テトラメチレングリコールユニットとプロピレングリコールユニットを含む変性グリコールが好適である。そのようなポリエーテル誘導体として、市販品を使用することができ、例えば、日油(株)製、ポリセリンDCB-1000(重量平均分子量1000)、ポリセリンDCB-2000(重量平均分子量2000)、ポリセリンDCB-4000(重量平均分子量4000)等を利用できる。式(3)で表されるポリエーテル誘導体の重量平均分子量は、500~8000であることが好ましく、1000~4000であることがより好ましい。 As the polyether derivative represented by formula (3), a modified glycol containing a tetramethylene glycol unit and a propylene glycol unit is suitable. Commercial products can be used as such polyether derivatives, such as Polyserine DCB-1000 (weight average molecular weight 1000), Polyserine DCB-2000 (weight average molecular weight 2000), and Polyserine DCB manufactured by NOF Corporation. -4000 (weight average molecular weight 4000), etc. can be used. The weight average molecular weight of the polyether derivative represented by formula (3) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000.
 式(4):
 HO-(CHCHCHCHO)m(CHCHCH(CH)CHO)n-H
(式中、m及びnは、各々独立して、3~60を示し、m+nは、8~90を示す。)
Formula (4):
HO- ( CH2CH2CH2CH2O ) m ( CH2CH2CH ( CH3 ) CH2O )n- H
(In the formula, m and n each independently represent 3 to 60, and m+n represents 8 to 90.)
 式(4)で表されるポリエーテル誘導体として、テトラメチレングリコールユニットと2-メチルテトラメチレングリコールユニットを含む変性グリコールが好ましい。そのようなポリエーテル誘導体として、市販品を使用することができ、例えば、保土谷化学工業(株)製のPTG-L1000(重量平均分子量1000)、PTG-L2000(重量平均分子量2000)、又はPTG-L3000(重量平均分子量3000)等を利用できる。式(4)で表されるポリエーテル誘導体の重量平均分子量は、500~8000であることが好ましく、1000~4000であることがより好ましい。 As the polyether derivative represented by formula (4), a modified glycol containing a tetramethylene glycol unit and a 2-methyltetramethylene glycol unit is preferable. Commercial products can be used as such polyether derivatives, such as PTG-L1000 (weight average molecular weight 1000), PTG-L2000 (weight average molecular weight 2000) manufactured by Hodogaya Chemical Industry Co., Ltd. -L3000 (weight average molecular weight 3000) etc. can be used. The weight average molecular weight of the polyether derivative represented by formula (4) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000.
 式(5):
 HO-(CHCHO)m(CH(CH)CHO)n-H
(式中、m及びnは、各々独立して、3~60を示し、m+nは、8~90を示す。)
Formula (5):
HO- ( CH2CH2O )m(CH( CH3 ) CH2O )n-H
(In the formula, m and n each independently represent 3 to 60, and m+n represents 8 to 90.)
 式(5)で表されるポリエーテル誘導体として、エチレングリコールユニットとプロピレングリコールユニットを含む変性グリコールが好ましい。そのようなポリエーテル誘導体として、市販品を使用することができ、例えば、日油(株)製、ユニルーブ50DE-25(重量平均分子量1750)、ユニルーブ75DE-25(重量平均分子量1400)等を使用できる。式(5)で表されるポリエーテル誘導体の重量平均分子量は、500~8000であることが好ましく、1000~4000であることがより好ましい。 As the polyether derivative represented by formula (5), a modified glycol containing an ethylene glycol unit and a propylene glycol unit is preferred. Commercially available products can be used as such polyether derivatives, such as Unilube 50DE-25 (weight average molecular weight 1750) and Unilube 75DE-25 (weight average molecular weight 1400) manufactured by NOF Corporation. can. The weight average molecular weight of the polyether derivative represented by formula (5) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000.
 式(6):
 RO-(CHCHCHCHO)m(CH(CH)CHO)n-H
(式中、Rは炭素数1~30のアルキル基を示し、m及びnは、各々独立して、3~60を示し、m+nは、8~90を示す。)
Formula (6):
RO-( CH2CH2CH2CH2O )m(CH( CH3 ) CH2O ) n - H
(In the formula, R represents an alkyl group having 1 to 30 carbon atoms, m and n each independently represent 3 to 60, and m+n represents 8 to 90.)
 式(6)で表されるポリエーテル誘導体として、テトラメチレングリコールユニットとプロピレングリコールユニットを含む、片末端ブチル基又は片末端ステアリル基の変性グリコールが好適である。そのようなポリエーテル誘導体として、市販品を使用することができ、例えば、日油(株)製、ポリセリンBC-1000(片末端ブチル基、重量平均分子量1000)、ポリセリンSC-1000(片末端ステアリル基、重量平均分子量1000)等を使用できる。式(6)で表されるポリエーテル誘導体の重量平均分子量は、500~8000であることが好ましく、1000~4000であることがより好ましい。 As the polyether derivative represented by formula (6), a modified glycol containing a tetramethylene glycol unit and a propylene glycol unit and having a butyl group at one end or a stearyl group at one end is suitable. Commercial products can be used as such polyether derivatives, such as Polyserine BC-1000 (butyl group at one end, weight average molecular weight 1000), Polyserine SC-1000 (stearyl group at one end), manufactured by NOF Corporation. group, weight average molecular weight 1000), etc. can be used. The weight average molecular weight of the polyether derivative represented by formula (6) is preferably 500 to 8,000, more preferably 1,000 to 4,000.
 式(7):
 RO-(CHCHO)m(CH(CH)CHO)n-H
(式中、Rは炭素数1~30のアルキル基を示し、m及びnは、各々独立して、3~60を示し、m+nは、8~90を示す。)
Formula (7):
RO-( CH2CH2O )m(CH( CH3 ) CH2O ) n -H
(In the formula, R represents an alkyl group having 1 to 30 carbon atoms, m and n each independently represent 3 to 60, and m+n represents 8 to 90.)
 式(7)で表されるポリエーテル誘導体として、エチレングリコールユニットとプロピレングリコールユニットを含む、片末端ブチル基又は片末端ステアリル基の変性グリコールが好適である。そのようなポリエーテル誘導体として、市販品を使用することができ、例えば、日油(株)製、ユニルーブ50MB-11(片末端ブチル基、重量平均分子量1000)、ユニルーブ50MB-26(片末端ブチル基、重量平均分子量2000)、ユニルーブ50MB-72(片末端ブチル基、重量平均分子量3000)、ユニルーブ10MS-250KB(片末端ステアリル基、重量平均分子量2000)等を利用できる。式(7)で表されるポリエーテル誘導体の重量平均分子量は、500~8000であることが好ましく、1000~4000であることがより好ましい。 As the polyether derivative represented by formula (7), a modified glycol containing an ethylene glycol unit and a propylene glycol unit and having a butyl group at one end or a stearyl group at one end is suitable. Commercially available products can be used as such polyether derivatives, such as Unilube 50MB-11 (butyl group at one end, weight average molecular weight 1000), Unilube 50MB-26 (butyl group at one end, manufactured by NOF Corporation), Unilube 50MB-72 (butyl group at one end, weight average molecular weight 3000), Unilube 10MS-250KB (stearyl group at one end, weight average molecular weight 2000), etc. can be used. The weight average molecular weight of the polyether derivative represented by formula (7) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000.
 式(8):
 HO-(CHCHCHCHO)m(CHCHO)n-H
(式中、m及びnは、各々独立して、3~60を示し、m+nは、8~90を示す。)
Formula (8):
HO-( CH2CH2CH2CH2O ) m ( CH2CH2O ) n - H
(In the formula, m and n each independently represent 3 to 60, and m+n represents 8 to 90.)
 式(8)で表されるポリエーテル誘導体として、テトラメチレングリコールユニットとエチレングリコールユニットを含む変性グリコールが好ましい。そのようなポリエーテル誘導体として、市販品を使用することができ、例えば、日油(株)製、ポリセリンDC3000E(重量平均分子量3000)、ポリセリンDC1800E(重量平均分子量1800)等を使用できる。式(8)で表されるポリエーテル誘導体の重量平均分子量は、500~8000であることが好ましく、1000~4000であることがより好ましい。 As the polyether derivative represented by formula (8), a modified glycol containing a tetramethylene glycol unit and an ethylene glycol unit is preferable. Commercially available products can be used as such polyether derivatives, such as Polyserine DC3000E (weight average molecular weight 3000) and Polyserine DC1800E (weight average molecular weight 1800) manufactured by NOF Corporation. The weight average molecular weight of the polyether derivative represented by formula (8) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000.
 式(9):
 HO-(CHCHCHCHO)p-H
 (式中、pは、6~100を示す。)
Formula (9):
HO- ( CH2CH2CH2CH2O ) p - H
(In the formula, p represents 6 to 100.)
 式(9)で表されるポリエーテル誘導体として、ポリテトラメチレングリコールが好ましい。そのようなポリエーテル誘導体として、市販品を使用することができ、例えば、保土谷化学工業(株)製のPTG-650SN(重量平均分子量650)、PTG-850SN(重量平均分子量850)、PTG-1000SN(重量平均分子量1000)、PTG-1400SN(重量平均分子量1400)、PTG-2000SN(重量平均分子量2000)、又はPTG-2900(重量平均分子量2900)等を使用できる。式(9)で表されるポリエーテル誘導体(ポリテトラメチレングリコール)の重量平均分子量は、500~8000であることが好ましく、1000~4000であることがより好ましい。 As the polyether derivative represented by formula (9), polytetramethylene glycol is preferred. Commercial products can be used as such polyether derivatives, such as PTG-650SN (weight average molecular weight 650), PTG-850SN (weight average molecular weight 850), and PTG- manufactured by Hodogaya Chemical Industry Co., Ltd. 1000SN (weight average molecular weight 1000), PTG-1400SN (weight average molecular weight 1400), PTG-2000SN (weight average molecular weight 2000), or PTG-2900 (weight average molecular weight 2900) can be used. The weight average molecular weight of the polyether derivative (polytetramethylene glycol) represented by formula (9) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000.
 式(10):
 式:HO-(CH(CH)CHO)q-H
 (式中、qは、7~120を示す。)
Formula (10):
Formula: HO-(CH( CH3 ) CH2O )q-H
(In the formula, q represents 7 to 120.)
 式(10)で表されるポリエーテル誘導体として、ポリプロピレングリコールが好ましい。そのようなポリエーテル誘導体として、市販品を使用することができ、例えば、ダウケミカル製ポリグリコールP2000P(重量平均分子量2000)、日油(株)製、ユニオールD-1000(重量平均分子量1000)、ユニオールD-2000(重量平均分子量2000)、ユニオールD-4000(重量平均分子量4000)等を使用できる。式(10)で表されるポリエーテル誘導体(ポリプロピレングリコール)の重量平均分子量は、500~8000であることが好ましく、1000~4000であることがより好ましい。 As the polyether derivative represented by formula (10), polypropylene glycol is preferred. Commercial products can be used as such polyether derivatives, such as Polyglycol P2000P (weight average molecular weight 2000) manufactured by Dow Chemical, Uniol D-1000 (weight average molecular weight 1000) manufactured by NOF Corporation, Uniol D-2000 (weight average molecular weight 2000), Uniol D-4000 (weight average molecular weight 4000), etc. can be used. The weight average molecular weight of the polyether derivative (polypropylene glycol) represented by formula (10) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000.
 式(11):
 HO-(CH(C)CHO)r-H
 (式中、rは、6~100を示す。)
Formula (11):
HO-(CH ( C2H5 ) CH2O )r-H
(In the formula, r represents 6 to 100.)
 式(11)で表されるポリエーテル誘導体として、ポリブチレングリコールが好ましい。そのようなポリエーテル誘導体として、市販品を使用することができ、例えば、日油(株)製、ユニオールPB-500(重量平均分子量500)、ユニオールPB-1000(重量平均分子量1000)、ユニオールPB-2000(重量平均分子量2000)等を使用できる。式(11)で表されるポリエーテル誘導体(ポリブチレングリコール)の重量平均分子量は、500~8000であることが好ましく、1000~4000であることがより好ましい。 As the polyether derivative represented by formula (11), polybutylene glycol is preferable. Commercial products can be used as such polyether derivatives, such as Uniol PB-500 (weight average molecular weight 500), Uniol PB-1000 (weight average molecular weight 1000), and Uniol PB manufactured by NOF Corporation. -2000 (weight average molecular weight 2000), etc. can be used. The weight average molecular weight of the polyether derivative (polybutylene glycol) represented by formula (11) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000.
 前記一般式(2)で表されるポリエーテル誘導体は、概ね耐熱性が高く該ポリエーテル誘導体を配合した芳香族ポリカーボネート樹脂組成物を高温で成形した成形品は、輝度や光線透過率が高い。 The polyether derivative represented by the general formula (2) generally has high heat resistance, and a molded article obtained by molding an aromatic polycarbonate resin composition containing the polyether derivative at a high temperature has high brightness and light transmittance.
 尚、前記式(2)~式(11)で表されるポリエーテル誘導体の各々は、本発明が目的とする芳香族ポリカーボネート樹脂組成物及び光学用成形品を得られる限り、各式に記載の繰り返し単位以外の繰り返し単位を含むことができる。そのような繰り返し単位として、例えば、ポリエーテル誘導体の出発原料中に含まれ得る不純物に基づく繰り返し単位、重合の際に使用される開始剤(重合開始剤)に基づく繰り返し単位等を例示することができる。 Each of the polyether derivatives represented by the formulas (2) to (11) above can be used as long as the aromatic polycarbonate resin composition and optical molded article targeted by the present invention can be obtained. It can contain repeating units other than repeating units. Examples of such repeating units include repeating units based on impurities that may be included in the starting materials of polyether derivatives, repeating units based on initiators (polymerization initiators) used during polymerization, etc. can.
 ポリエーテル誘導体の合成時に重合開始剤が使用される場合には、重合開始剤として、例えば、下記の化合物を例示することができる。水素添加ビスフェノールA、ビスフェノールA、イソソルバイド、グリセリン、ペンタエリスリトール、ソルビトール、グルコース等を例示することができる。 When a polymerization initiator is used during the synthesis of a polyether derivative, examples of the polymerization initiator include the following compounds. Examples include hydrogenated bisphenol A, bisphenol A, isosorbide, glycerin, pentaerythritol, sorbitol, and glucose.
 このような重合開始剤に基づく繰り返し単位を含むポリエーテル誘導体として、例えば、下記式(3’)で表されるポリセリン60DB-2000H(日油(株)製)を使用することもできる(式3-2参照)。
 式(3’):
(式中、m1+m2が、式(3)のmに対応し、n1+n2が、式(3)のnに対応する。)
As a polyether derivative containing a repeating unit based on such a polymerization initiator, for example, polyserine 60DB-2000H (manufactured by NOF Corporation) represented by the following formula (3') can also be used (formula 3 -2)).
Formula (3'):
(In the formula, m1+m2 corresponds to m in formula (3), and n1+n2 corresponds to n in formula (3).)
 式(3-2)で表されるポリエーテル誘導体の重量平均分子量は、500~8000であることが好ましく、1000~4000であることがより好ましい。 The weight average molecular weight of the polyether derivative represented by formula (3-2) is preferably from 500 to 8,000, more preferably from 1,000 to 4,000.
 また、本発明にて使用されるポリエーテル誘導体(B)は、適度な親油性を有することから、芳香族ポリカーボネート樹脂(A)との相溶性にも優れるので、該ポリエーテル誘導体(B)を配合した芳香族ポリカーボネート樹脂組成物から得られる成形品の透明性を低下させることがなく透明性を維持できる。このようなポリエーテル誘導体(B)の重量平均分子量は、500~8000が好ましく1000~4000がより好ましい。 In addition, since the polyether derivative (B) used in the present invention has appropriate lipophilicity, it also has excellent compatibility with the aromatic polycarbonate resin (A). Transparency can be maintained without reducing the transparency of a molded article obtained from the blended aromatic polycarbonate resin composition. The weight average molecular weight of such polyether derivative (B) is preferably 500 to 8,000, more preferably 1,000 to 4,000.
 更に、本発明にて使用されるポリエーテル誘導体(B)のCPR(単位:無次元)(Controlled Polymerization Rate:ポリエーテル誘導体中の塩基性物質の量を示す指標:JIS K1557-4に準拠して測定される)は、2.0以下であることが好ましく、1.0以下であることがより好ましい。CPRが2.0以下である場合、ポリエーテル誘導体(B)は、ポリカーボネート樹脂との相溶性に優れるとともに、分解及び劣化が抑制されて、貯蔵安定性に優れ、得られるポリカーボネート樹脂組成物の色相に悪影響を与えにくい。例えば、上述の式(3)で表されるポリエーテル誘導体(B)に該当するポリセリンDCB-2000のCPRは、1.0未満であり、上述の式(3)で表されるポリエーテル誘導体(B)に該当するポリセリン60DB-2000H(日油(株)製)のCPRは1.0未満であり、上述の式(9)で表されるポリエーテル誘導体(B)に該当するPTG-1000SN(保土谷化学工業(株)社製)のCPRは1.0未満である。 Furthermore, the CPR (unit: dimensionless) (Controlled Polymerization Rate: index indicating the amount of basic substance in the polyether derivative: according to JIS K1557-4) of the polyether derivative (B) used in the present invention ) is preferably 2.0 or less, more preferably 1.0 or less. When the CPR is 2.0 or less, the polyether derivative (B) has excellent compatibility with the polycarbonate resin, suppresses decomposition and deterioration, has excellent storage stability, and improves the hue of the resulting polycarbonate resin composition. less likely to have a negative impact on For example, the CPR of polyserine DCB-2000, which corresponds to the polyether derivative (B) represented by the above formula (3), is less than 1.0. The CPR of Polyserine 60DB-2000H (manufactured by NOF Corporation), which corresponds to B), is less than 1.0, and PTG-1000SN (manufactured by NOF Corporation), which corresponds to polyether derivative (B) represented by the above formula (9), has a CPR of less than 1.0. (manufactured by Hodogaya Chemical Industry Co., Ltd.) has a CPR of less than 1.0.
 更にまた、本発明にて使用されるポリエーテル誘導体(B)のpH(JIS K1557-5に準拠して測定される)は、5.0以上、7.5未満であることが好ましく、6.0以上、7.0未満であることがより好ましい。ポリエーテル誘導体(B)のpHが、5.0以上、7.5未満である場合、分解及び劣化が抑制されて、貯蔵安定性に優れ、得られるポリカーボネート樹脂組成物の色相に悪影響を与えにくい。例えば、上述の式(3)で表されるポリエーテル誘導体(B)に該当するポリセリンDCB-2000のpHは、6.7であり、上述の式(3)で表されるポリエーテル誘導体(B)に該当するポリセリン60DB-2000H(日油(株)製)のpHは6.8であり、上述の式(9)で表されるポリエーテル誘導体(B)に該当するPTG-1000SN(保土谷化学工業(株)社製)のpHは6.7である。 Furthermore, the pH of the polyether derivative (B) used in the present invention (measured according to JIS K1557-5) is preferably 5.0 or more and less than 7.5, and 6. More preferably, it is 0 or more and less than 7.0. When the pH of the polyether derivative (B) is 5.0 or more and less than 7.5, decomposition and deterioration are suppressed, the storage stability is excellent, and the hue of the obtained polycarbonate resin composition is unlikely to be adversely affected. . For example, the pH of polyserine DCB-2000, which corresponds to the polyether derivative (B) represented by the above formula (3), is 6.7. The pH of Polyserine 60DB-2000H (manufactured by NOF Corporation) corresponding to (manufactured by Kagaku Kogyo Co., Ltd.) has a pH of 6.7.
 更に、本発明にて使用されるポリエーテル誘導体(B)の90%重量となる温度(又は重量減少率が10%となる温度)(JIS K7120に準拠する熱重量測定で測定される)は、300℃以上であることが好ましく、330℃以上であることがより好ましい。ポリエーテル誘導体(B)の90%重量となる温度が、300℃以上である場合、分解及び劣化が抑制されて、貯蔵安定性に優れ、得られるポリカーボネート樹脂組成物の色相に悪影響を与えにくい。例えば、上述の式(3)で表されるポリエーテル誘導体(B)に該当するポリセリンDCB-2000の90%重量となる温度は、330℃であり、上述の式(3)で表されるポリエーテル誘導体(B)に該当するポリセリン60DB-2000H(日油(株)製)の90%重量となる温度は400℃である。 Furthermore, the temperature at which the weight of the polyether derivative (B) used in the present invention reaches 90% (or the temperature at which the weight reduction rate becomes 10%) (measured by thermogravimetry according to JIS K7120) is: The temperature is preferably 300°C or higher, more preferably 330°C or higher. When the temperature at which the polyether derivative (B) reaches 90% weight is 300° C. or higher, decomposition and deterioration are suppressed, the storage stability is excellent, and the hue of the resulting polycarbonate resin composition is unlikely to be adversely affected. For example, the temperature at which 90% weight of polyserine DCB-2000, which corresponds to the polyether derivative (B) represented by the above formula (3), is 330°C; The temperature at which 90% weight of polyserine 60DB-2000H (manufactured by NOF Corporation), which corresponds to the ether derivative (B), reaches 90% is 400°C.
 ポリエーテル誘導体の量は、芳香族ポリカーボネート樹脂(A)100重量部に対して、0.1~2.0重量部であり、0.3~1.8重量部が好ましい。ポリエーテル誘導体の量が0.1重量部未満の場合は、光線透過率及び色相の向上効果が不充分であり得る。逆にポリエーテル誘導体の量が2.0重量部を超える場合は、曇化率が上昇して光線透過率が低下し得る。 The amount of the polyether derivative is 0.1 to 2.0 parts by weight, preferably 0.3 to 1.8 parts by weight, based on 100 parts by weight of the aromatic polycarbonate resin (A). If the amount of the polyether derivative is less than 0.1 parts by weight, the effect of improving light transmittance and hue may be insufficient. Conversely, if the amount of the polyether derivative exceeds 2.0 parts by weight, the haze rate may increase and the light transmittance may decrease.
 本発明の実施形態において、光拡散剤(C)は、ポリカーボネート樹脂組成物の内部で光を散乱させることができるものであれば特に限定されず、高分子系および無機系など化学組成上特に制限はない。ただし、直鎖状ポリカーボネート樹脂(A)に光拡散剤(C)を添加し、押出機による溶融混合など公知の方法にて分散させた際にマトリックス相と相溶しないか、又は相溶しにくく粒子として存在することが必要である。 In the embodiment of the present invention, the light diffusing agent (C) is not particularly limited as long as it can scatter light inside the polycarbonate resin composition, and there are particular restrictions on the chemical composition such as polymeric and inorganic types. There isn't. However, when the light diffusing agent (C) is added to the linear polycarbonate resin (A) and dispersed by a known method such as melt mixing using an extruder, it is not compatible with the matrix phase or is difficult to be compatible with the matrix phase. It is necessary to exist as particles.
 光拡散剤(C)としては、光拡散能を有する微粒子が好ましい。このような微粒子としては、無機微粒子および高分子微粒子が挙げられる。無機微粒子としては、ガラス充填材、炭酸カルシウム、硫酸バリウム、シリカ、タルク、マイカ、ワラストナイト、酸化チタン等が挙げられる。これらのうち、炭酸カルシウムが好ましい。無機微粒子の形状は、繊維状よりは粒状(不定形を含む)または板状が好ましい。例えば、ガラス充填材の場合、ガラスビーズ、ガラスバルーン、ガラスミルドファイバー、ガラスフレーク、極薄ガラスフレーク(ゾル-ゲル法により製造される)、不定形ガラス等が挙げられる。他の無機微粒子においても同様に、様々な形状のものを採用できる。 As the light diffusing agent (C), fine particles having light diffusing ability are preferable. Such fine particles include inorganic fine particles and polymer fine particles. Examples of the inorganic fine particles include glass fillers, calcium carbonate, barium sulfate, silica, talc, mica, wollastonite, titanium oxide, and the like. Among these, calcium carbonate is preferred. The shape of the inorganic fine particles is preferably granular (including amorphous) or plate rather than fibrous. For example, in the case of glass fillers, glass beads, glass balloons, glass milled fibers, glass flakes, ultra-thin glass flakes (manufactured by a sol-gel method), amorphous glass, etc. may be used. Similarly, various shapes of other inorganic fine particles can be employed.
 高分子微粒子としては、光拡散性の観点から球状であるものが好ましく、真球状に近い形態であるほどより好ましい。シリコーン系光拡散剤、アクリル系光拡散剤、シリコーンゴム状弾性体、ポリメチルシルセスキオキサン、アクリル系、スチレン系、ポリエステル系、ポリオレフィン系、ウレタン系、ナイロン系、スチレン-(メタ)アクリレート系、フッ素系、ノルボルネン系、シリコーン系などの有機系拡散剤など等が挙げられるが、特に有機微粒子であるシリコーン系光拡散剤、アクリル系光拡散剤が好ましい。光拡散剤としては市販品を用いることができ、例えば、シリコーン系光拡散剤としてはモメンティブ・パフォーマンス・マテリアルズ・ジャパン社製「トスパール(登録商標)120S」が、また、アクリル系光拡散剤としてはアイカ工業社製「ガンツパール(登録商標)GM-0449S」、「ガンツパールGM-0205S」、綜研化学社製「ケミスノー(登録商標)KMR-3TA」などを用いることができる。 The fine polymer particles are preferably spherical from the viewpoint of light diffusivity, and the closer the shape is to a perfect sphere, the more preferable they are. Silicone light diffusing agent, acrylic light diffusing agent, silicone rubber-like elastic body, polymethylsilsesquioxane, acrylic type, styrene type, polyester type, polyolefin type, urethane type, nylon type, styrene-(meth)acrylate type , fluorine-based, norbornene-based, silicone-based, and other organic diffusing agents, among which silicone-based light diffusing agents and acrylic-based light diffusing agents, which are organic fine particles, are particularly preferred. Commercially available products can be used as the light diffusing agent. For example, "Tospearl (registered trademark) 120S" manufactured by Momentive Performance Materials Japan is used as a silicone light diffusing agent, and For example, "Gantz Pearl (registered trademark) GM-0449S" and "Gantz Pearl GM-0205S" manufactured by Aica Kogyo Co., Ltd., and "Chemisnow (registered trademark) KMR-3TA" manufactured by Soken Chemical Co., Ltd. can be used.
 光拡散剤(C)として、スチレンモノマーとメチルメタクリレートモノマーと架橋剤とを共重合して得られる微粒子(スチレン-メチルメタクリレート共重合架橋微粒子)も好適に用いられ得る。一般的な乳化重合法、溶液重合法、分散重合法、懸濁重合法、塊状重合法、ソープフリー重合法、シード重合法等を用いて得ることができる。これらの重合方法の中で、乳化重合法、分散重合法、懸濁重合法が好ましく、光拡散板の物性の点から、乳化重合法、分散重合法が特に好ましい。 As the light diffusing agent (C), fine particles obtained by copolymerizing a styrene monomer, a methyl methacrylate monomer, and a crosslinking agent (styrene-methyl methacrylate copolymerized crosslinked fine particles) can also be suitably used. It can be obtained using general emulsion polymerization methods, solution polymerization methods, dispersion polymerization methods, suspension polymerization methods, bulk polymerization methods, soap-free polymerization methods, seed polymerization methods, and the like. Among these polymerization methods, emulsion polymerization, dispersion polymerization, and suspension polymerization are preferred, and emulsion polymerization and dispersion polymerization are particularly preferred from the viewpoint of physical properties of the light diffusing plate.
 スチレン-メチルメタクリレート共重合架橋微粒子に使用される架橋剤としては、ビニル基または(メタ)アクリロイル基を2つ以上含有するラジカル重合可能なモノマーであればよい。そのような具体例としては、例えば、ジビニルベンゼン、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリストールテトラアクリレート、ペンタエリストールテトラメタアクリレートが挙げられる。そして、これらの架橋剤は、1種であっても2種以上を併用してもかまわない。 The crosslinking agent used in the crosslinked styrene-methyl methacrylate copolymer particles may be any radically polymerizable monomer containing two or more vinyl groups or (meth)acryloyl groups. Such specific examples include, for example, divinylbenzene, ethylene glycol diacrylate, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythol tetraacrylate, pentaerythol tetramethacrylate. . These crosslinking agents may be used alone or in combination of two or more.
 スチレン-メチルメタクリレート共重合架橋微粒子の平均粒子径は、5~30μmである。より好ましい平均粒子径は、8~20μmの範囲である。平均粒子径が5μm未満では得られる光拡散板の表面状態が平滑性を維持することから光の散乱が充分には得られず光拡散性に劣り、また30μmを超えると得られる光拡散板の表面状態が平滑に近づくため光が直進し透過してしまうことから光の散乱が低下して光拡散性、光源透過防止性に劣るので好ましくない。微粒子の平均粒子径を測定する一般的な方法としては、コールター法、動的光散乱法、遠心沈降法等が挙げられる。 The average particle diameter of the crosslinked styrene-methyl methacrylate copolymer particles is 5 to 30 μm. A more preferable average particle diameter is in the range of 8 to 20 μm. If the average particle size is less than 5 μm, the surface state of the resulting light diffusing plate will maintain smoothness, resulting in insufficient light scattering and poor light diffusivity; if the average particle size exceeds 30 μm, the resulting light diffusing plate may Since the surface condition approaches smoothness, light travels straight and passes through the surface, resulting in a decrease in light scattering and poor light diffusivity and light source transmission prevention properties, which is not preferable. Common methods for measuring the average particle diameter of fine particles include the Coulter method, dynamic light scattering method, centrifugal sedimentation method, and the like.
 スチレン-メチルメタクリレート共重合架橋微粒子の屈折率は、1.54~1.57の範囲である。より好ましい範囲は、1.55~1.57の範囲である。屈折率が1.54未満では、ヘーズが発生して光透過性が低下する場合がある。また、1.57を超えると、光拡散性が低下する場合がある。屈折率は、微粒子を共重合する際のスチレンとメチルメタクリレートのそれぞれのモノマーの重合比率を調整することにより変化させることができる。 The refractive index of the crosslinked styrene-methyl methacrylate copolymer particles is in the range of 1.54 to 1.57. A more preferable range is 1.55 to 1.57. If the refractive index is less than 1.54, haze may occur and light transmittance may decrease. Moreover, when it exceeds 1.57, light diffusivity may decrease. The refractive index can be changed by adjusting the polymerization ratio of each monomer of styrene and methyl methacrylate when copolymerizing the fine particles.
 スチレン-メチルメタクリレート共重合架橋微粒子としては、例えば、積水化成品工業社製SMX-12R(平均粒径12.3μm、屈折率1.56)、またはGuide Win Special Chemicals社製GMS-6121(平均粒径11.3μm、屈折率1.56)等が商業的に入手可能である。 As the styrene-methyl methacrylate copolymer crosslinked fine particles, for example, SMX-12R (average particle size 12.3 μm, refractive index 1.56) manufactured by Sekisui Plastics Co., Ltd., or GMS-6121 (average particle size manufactured by Guide Win Special Chemicals) A diameter of 11.3 μm and a refractive index of 1.56) are commercially available.
 スチレン-メチルメタクリレート共重合架橋微粒子の屈折率を測定する一般的な方法としては、ベッケ法が挙げられる。スライドガラス上に樹脂粒子を載せ、屈折液(CARGILLE社製:カーギル標準屈折液)を滴下する。樹脂粒子と屈折液をよく混ぜ、下からナトリウムランプを照射し上部から粒子の輪郭を観察して、輪郭が見えない場合、屈折液と樹脂粒子の屈折率が等しいとする。光拡散剤の屈折率と、芳香族ポリカーボネート樹脂の屈折率との差の絶対値は、0.02~0.2であることが好ましい。屈折率の差がこの範囲にあることにより、光拡散性と全光線透過率とを高いレベルで両立させることが可能となる。光拡散剤の屈折率は、芳香族ポリカーボネート樹脂の屈折率よりも低いことがより好ましい。 A common method for measuring the refractive index of crosslinked styrene-methyl methacrylate copolymer particles includes the Becke method. Resin particles are placed on a slide glass, and a refractive liquid (manufactured by CARGILLE: Cargill standard refractive liquid) is dropped. Mix the resin particles and refractive liquid thoroughly, irradiate them with a sodium lamp from below, and observe the outline of the particles from above. If the outline cannot be seen, it is assumed that the refractive index of the refractive liquid and the resin particles are equal. The absolute value of the difference between the refractive index of the light diffusing agent and the refractive index of the aromatic polycarbonate resin is preferably 0.02 to 0.2. By having a difference in refractive index within this range, it becomes possible to achieve both high levels of light diffusivity and total light transmittance. It is more preferable that the refractive index of the light diffusing agent is lower than the refractive index of the aromatic polycarbonate resin.
 拡散剤の好ましい平均粒径は0.1~50μmであり、より好ましくは0.5~10μmであり、特に好ましくは1~5μmである。光拡散剤の平均粒径が小さ過ぎると、十分な光分散効果が得られず、大き過ぎると成形体表面に肌荒れを起こしたり、成形品の機械的強度が低下したりする。ここで、光拡散剤の平均粒径とは、コールターカウンター法にて測定した体積平均粒子径を採用する。コールカウンター法は、サンプル粒子を懸濁させた電解質を細孔(アパチャ-)に通過させ、そのときに粒子の体積に比例して発生する電圧パルスの変化を読み取って粒子径を定量するもので、また電圧パルス高を1個ずつ計測処理して、サンプル粒子の体積分布ヒストグラムを得ることができる。このようなコールカウンター法による粒径又は粒径分布測定は、粒度分布測定装置として最も多用されているものである。 The average particle size of the diffusing agent is preferably 0.1 to 50 μm, more preferably 0.5 to 10 μm, and particularly preferably 1 to 5 μm. If the average particle size of the light diffusing agent is too small, a sufficient light-dispersing effect cannot be obtained, and if it is too large, the surface of the molded article may become rough or the mechanical strength of the molded article may decrease. Here, the average particle size of the light diffusing agent is the volume average particle size measured by the Coulter counter method. In the call counter method, an electrolyte in which sample particles are suspended is passed through a pore (aperture), and the particle size is determined by reading the change in the voltage pulse that is generated in proportion to the volume of the particles. Furthermore, by measuring the voltage pulse height one by one, a volume distribution histogram of sample particles can be obtained. Particle size or particle size distribution measurement using such a coal counter method is the most frequently used particle size distribution measuring device.
 また、光拡散剤(C)としては、光拡散性の点から、ポリカーボネート樹脂(A)との屈折率差(Δn)が0.01以上のものが好ましい。また、光拡散性を十分に発揮させて、例えば成形体(光拡散板等)の後ろの光源が透けて見える等の不具合を抑制し、更には、十分な輝度を発揮させるため、光拡散剤は、ポリカーボネート樹脂との屈折率の差が、0.05以上がより好ましく、0.07以上が特に好ましい。 Furthermore, from the viewpoint of light diffusivity, the light diffusing agent (C) preferably has a refractive index difference (Δn) of 0.01 or more with respect to the polycarbonate resin (A). In addition, in order to fully exhibit light diffusivity and suppress problems such as the light source behind the molded body (light diffuser plate, etc.) being visible through the molded body, and to exhibit sufficient brightness, a light diffuser is also used. The difference in refractive index from the polycarbonate resin is more preferably 0.05 or more, particularly preferably 0.07 or more.
 また、光拡散剤(C)の質量平均粒径は、通常0.5μm以上、好ましくは1μm以上、さらに好ましくは1.5μm以上であり、通常30μm以下、好ましくは20μm以下、より好ましくは10μm以下、さらに好ましくは5μm以下、特に好ましくは3μm以下である。質量平均粒径が小さ過ぎると、得られるポリカーボネート樹脂組成物の光拡散性が劣り、拡散板等として使用した場合に光源が透けて見えたり、視認性に劣ったりする傾向があり、逆に大き過ぎると含有量に対する拡散効果が低くなる可能性がある。 The mass average particle diameter of the light diffusing agent (C) is usually 0.5 μm or more, preferably 1 μm or more, more preferably 1.5 μm or more, and usually 30 μm or less, preferably 20 μm or less, more preferably 10 μm or less. , more preferably 5 μm or less, particularly preferably 3 μm or less. If the mass average particle size is too small, the resulting polycarbonate resin composition will have poor light diffusivity, and when used as a diffuser plate, etc., the light source will tend to show through or have poor visibility; If it is too high, the diffusion effect on the content may become low.
 なお、光拡散剤(C)は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。シリコーン系光拡散剤と他の光拡散剤を併用するのが好ましい。 Note that the light diffusing agent (C) may be used alone or in combination of two or more in any combination and ratio. It is preferable to use a silicone light diffusing agent and another light diffusing agent together.
 シリコーン系光拡散剤、アクリル系光拡散剤及びスチレン-メチルメタクリレート共重合架橋微粒子のいずれかと、無機系光拡散剤(無機微粒子)とを併用しても良い。シリコーン系光拡散剤、アクリル系光拡散剤及びスチレン-メチルメタクリレート共重合架橋微粒子のいずれかと無機系光拡散剤とを併用した場合、シリコーン系または有機系拡散剤の配合量を削減しつつ、削減前と同様の光拡散性を得ることができる。併用する無機系光拡散剤としては、酸化チタン(白色顔料)が好ましい。酸化チタンとしては、石原産業(株)製TIPAQUE(登録商標) PC-3、レジノカラー工業(株)製CP-K、Kronos社製KRONOS(登録商標)2233等を使用することができる。 An inorganic light diffusing agent (inorganic fine particles) may be used in combination with any one of a silicone light diffusing agent, an acrylic light diffusing agent, and styrene-methyl methacrylate copolymer crosslinked fine particles. When an inorganic light diffusing agent is used in combination with a silicone light diffusing agent, an acrylic light diffusing agent, or a styrene-methyl methacrylate copolymer crosslinked fine particle, the amount of silicone or organic diffusing agent can be reduced. The same light diffusivity as before can be obtained. As the inorganic light diffusing agent used in combination, titanium oxide (white pigment) is preferable. As the titanium oxide, TIPAQUE (registered trademark) PC-3 manufactured by Ishihara Sangyo Co., Ltd., CP-K manufactured by Resino Color Industries, Ltd., KRONOS (registered trademark) 2233 manufactured by Kronos, etc. can be used.
 光拡散剤(C)の配合量は、直鎖状芳香族ポリカーボネート樹脂(A)100重量部に対し、0.1~6.0重量部が好ましく、1.0~5.0重量部がさらに好ましい。0.1重量部未満では光が充分に散乱せず光源の視認性防止の効果に劣り、また6.0重量部を超えると透過率が著しく低下するおそれがある。 The blending amount of the light diffusing agent (C) is preferably 0.1 to 6.0 parts by weight, and more preferably 1.0 to 5.0 parts by weight, based on 100 parts by weight of the linear aromatic polycarbonate resin (A). preferable. If it is less than 0.1 part by weight, light will not be sufficiently scattered and the effect of preventing the visibility of the light source will be poor, and if it exceeds 6.0 parts by weight, the transmittance may decrease significantly.
 本発明の実施形態の芳香族ポリカーボネート樹脂組成物は、必要に応じて、リン系酸化防止剤(D)を含んでもよい。芳香族ポリカーボネート樹脂組成物が、ポリエーテル誘導体(B)と拡散剤(C)とリン系酸化防止剤(D)とを同時に含む場合、光拡散性成形品に求められる優れた光学特性を維持向上させつつ、特に、得られる芳香族ポリカーボネート樹脂組成物からなる成形品の初期光学特性を劣化させず、加えて使用状況に起因する劣化を防止することが出来る。 The aromatic polycarbonate resin composition of the embodiment of the present invention may contain a phosphorus antioxidant (D), if necessary. When the aromatic polycarbonate resin composition simultaneously contains the polyether derivative (B), the diffusing agent (C), and the phosphorus antioxidant (D), it maintains and improves the excellent optical properties required for light-diffusing molded products. In particular, it is possible to prevent the initial optical properties of the molded article made from the resulting aromatic polycarbonate resin composition from deteriorating, and also to prevent deterioration due to usage conditions.
 リン系酸化防止剤(D)は、本発明が目的とする芳香族ポリカーボネート樹脂組成物を得られる限り特に制限されることはないが、下記亜リン酸エステル構造を有する亜リン酸エステル化合物を含むことが好ましい。
The phosphorus antioxidant (D) is not particularly limited as long as it can obtain the aromatic polycarbonate resin composition targeted by the present invention, but includes phosphite compounds having the following phosphite structure. It is preferable.
 本発明の実施形態の芳香族ポリカーボネート樹脂組成物は、前記リン系酸化防止剤(D)が、下記式(12)で表される亜リン酸エステル化合物、下記式(13)で表される亜リン酸エステル化合物、下記式(14)で表される亜リン酸エステル化合物及び下記式(15)で表される亜リン酸エステル化合物から選択される少なくとも1種以上の化合物を含むことが好ましい。 In the aromatic polycarbonate resin composition of the embodiment of the present invention, the phosphorus antioxidant (D) is a phosphite compound represented by the following formula (12), a phosphite compound represented by the following formula (13), It is preferable to contain at least one compound selected from a phosphoric acid ester compound, a phosphorous acid ester compound represented by the following formula (14), and a phosphite compound represented by the following formula (15).
 リン系酸化防止剤(D)は、例えば、下記式(12)で表される化合物を含むことが好ましい。 It is preferable that the phosphorus antioxidant (D) contains, for example, a compound represented by the following formula (12).
 式(12):
(式中、Rは、炭素数1~20のアルキル基を示し、aは、0~3の整数を示す)
Formula (12):
(In the formula, R 1 represents an alkyl group having 1 to 20 carbon atoms, and a represents an integer of 0 to 3.)
 前記式(12)において、Rは、炭素数1~20のアルキル基であるが、さらには、炭素数1~10のアルキル基であることが好ましい。 In the formula (12), R 1 is an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms.
 式(12)で表される化合物としては、例えば、トリフェニルホスファイト、トリクレジルホスファイト、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、トリスノニルフェニルホスファイト等が挙げられる。これらの中でも、特にトリス(2,4-ジ-t-ブチルフェニル)フォスファイトが好適であり、例えば、BASF社製のイルガフォス168(「イルガフォス」はビーエーエスエフ ソシエタス・ヨーロピアの登録商標)として商業的に入手可能である。 Examples of the compound represented by formula (12) include triphenyl phosphite, tricresyl phosphite, tris(2,4-di-t-butylphenyl) phosphite, trisnonylphenyl phosphite, etc. . Among these, tris(2,4-di-t-butylphenyl) phosphite is particularly suitable; for example, it is commercially available as Irgafos 168 manufactured by BASF ("Irgafos" is a registered trademark of BFA Societas Europe). available at.
 リン系酸化防止剤(D)は、例えば、下記式(13)で表される化合物を含むことが好ましい。 It is preferable that the phosphorus antioxidant (D) contains, for example, a compound represented by the following formula (13).
 式(13):
(式中、R、R、R及びRは、それぞれ独立して、水素原子、炭素数1~8のアルキル基、炭素数5~8のシクロアルキル基、炭素数6~12のアルキルシクロアルキル基、炭素数7~12のアラルキル基又はフェニル基を示す。Rは、水素原子又は炭素数1~8のアルキル基を示す。Xは、単結合、硫黄原子又は式:-CHR-(ここで、Rは、水素原子、炭素数1~8のアルキル基又は炭素数5~8のシクロアルキル基を示す)で表される基を示す。Aは、炭素数1~8のアルキレン基又は式:*-COR-(ここで、Rは、単結合又は炭素数1~8のアルキレン基を示し、*は、酸素側の結合手であることを示す)で表される基を示す。Y及びZは、いずれか一方がヒドロキシル基、炭素数1~8のアルコキシ基又は炭素数7~12のアラルキルオキシ基を示し、もう一方が水素原子又は炭素数1~8のアルキル基を示す。)
Formula (13):
(In the formula, R 2 , R 3 , R 5 and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 5 to 8 carbon atoms, and a cycloalkyl group having 6 to 12 carbon atoms. Represents an alkylcycloalkyl group, an aralkyl group having 7 to 12 carbon atoms, or a phenyl group.R 4 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.X represents a single bond, a sulfur atom, or the formula: -CHR 7 - (Here, R 7 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a cycloalkyl group having 5 to 8 carbon atoms.) A represents a group represented by a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a cycloalkyl group having 1 to 8 carbon atoms Alkylene group or formula: *-COR 8 - (where R 8 represents a single bond or an alkylene group having 1 to 8 carbon atoms, and * represents a bond on the oxygen side) One of Y and Z represents a hydroxyl group, an alkoxy group having 1 to 8 carbon atoms, or an aralkyloxy group having 7 to 12 carbon atoms, and the other represents a hydrogen atom or a group having 1 to 8 carbon atoms. (Indicates an alkyl group.)
 式(13)において、R、R、R及びRは、それぞれ独立して、水素原子、炭素数1~8のアルキル基、炭素数5~8のシクロアルキル基、炭素数6~12のアルキルシクロアルキル基、炭素数7~12のアラルキル基又はフェニル基を示す。 In formula (13), R 2 , R 3 , R 5 and R 6 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 5 to 8 carbon atoms, or a cycloalkyl group having 6 to 8 carbon atoms. 12 alkylcycloalkyl group, an aralkyl group having 7 to 12 carbon atoms, or a phenyl group.
 ここで、炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、t-ペンチル基、i-オクチル基、t-オクチル基、2-エチルヘキシル基等が挙げられる。炭素数5~8のシクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。炭素数6~12のアルキルシクロアルキル基としては、例えば、1-メチルシクロペンチル基、1-メチルシクロヘキシル基、1-メチル-4-i-プロピルシクロヘキシル基等が挙げられる。炭素数7~12のアラルキル基としては、例えば、ベンジル基、α-メチルベンジル基、α,α-ジメチルベンジル基等が挙げられる。 Here, examples of the alkyl group having 1 to 8 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, group, t-pentyl group, i-octyl group, t-octyl group, 2-ethylhexyl group and the like. Examples of the cycloalkyl group having 5 to 8 carbon atoms include cyclopentyl group, cyclohexyl group, cycloheptyl group, and cyclooctyl group. Examples of the alkylcycloalkyl group having 6 to 12 carbon atoms include 1-methylcyclopentyl group, 1-methylcyclohexyl group, and 1-methyl-4-i-propylcyclohexyl group. Examples of the aralkyl group having 7 to 12 carbon atoms include benzyl group, α-methylbenzyl group, α,α-dimethylbenzyl group, and the like.
 前記R、R及びRは、それぞれ独立して、炭素数1~8のアルキル基、炭素数5~8のシクロアルキル基又は炭素数6~12のアルキルシクロアルキル基であることが好ましい。特に、R及びRは、それぞれ独立して、t-ブチル基、t-ペンチル基、t-オクチル基等のt-アルキル基、シクロヘキシル基又は1-メチルシクロヘキシル基であることが好ましい。特に、Rは、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、t-ペンチル基等の炭素数1~5のアルキル基であることが好ましく、メチル基、t-ブチル基又はt-ペンチル基であることがさらに好ましい。 It is preferable that R 2 , R 3 and R 5 are each independently an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 5 to 8 carbon atoms, or an alkylcycloalkyl group having 6 to 12 carbon atoms. . In particular, R 2 and R 5 are preferably each independently a t-alkyl group such as a t-butyl group, a t-pentyl group, or a t-octyl group, a cyclohexyl group, or a 1-methylcyclohexyl group. In particular, R 3 is a carbon number such as methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, t-pentyl group, etc. It is preferably an alkyl group of 1 to 5, and more preferably a methyl group, t-butyl group or t-pentyl group.
 前記Rは、水素原子、炭素数1~8のアルキル基又は炭素数5~8のシクロアルキル基であることが好ましく、水素原子、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、t-ペンチル基等の炭素数1~5のアルキル基であることがさらに好ましい。 The R 6 is preferably a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a cycloalkyl group having 5 to 8 carbon atoms, and is preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an i-propyl group. More preferably, it is an alkyl group having 1 to 5 carbon atoms such as , n-butyl group, i-butyl group, sec-butyl group, t-butyl group, or t-pentyl group.
 式(13)において、Rは、水素原子又は炭素数1~8のアルキル基を示す。炭素数1~8のアルキル基としては、例えば、前記R、R、R及びRの説明にて例示したアルキル基が挙げられる。特に、Rは、水素原子又は炭素数1~5のアルキル基であることが好ましく、水素原子又はメチル基であることがさらに好ましい。 In formula (13), R 4 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. Examples of the alkyl group having 1 to 8 carbon atoms include the alkyl groups exemplified in the explanation of R 2 , R 3 , R 5 and R 6 above. In particular, R 4 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and more preferably a hydrogen atom or a methyl group.
 式(13)において、Xは、単結合、硫黄原子又は式:-CHR-で表される基を示す。ここで、式:-CHR-中のRは、水素原子、炭素数1~8のアルキル基又は炭素数5~8のシクロアルキル基を示す。炭素数1~8のアルキル基及び炭素数5~8のシクロアルキル基としては、例えば、それぞれ前記R、R、R及びRの説明にて例示したアルキル基及びシクロアルキル基が挙げられる。特に、Xは、単結合、メチレン基、又はメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基等で置換されたメチレン基であることが好ましく、単結合であることがさらに好ましい。 In formula (13), X represents a single bond, a sulfur atom, or a group represented by the formula: -CHR 7 -. Here, R 7 in the formula: -CHR 7 - represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a cycloalkyl group having 5 to 8 carbon atoms. Examples of the alkyl group having 1 to 8 carbon atoms and the cycloalkyl group having 5 to 8 carbon atoms include the alkyl groups and cycloalkyl groups exemplified in the explanation of R 2 , R 3 , R 5 and R 6 above, respectively. It will be done. In particular, X is a single bond, a methylene group, or a methylene group substituted with a methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, etc. Preferably, it is a single bond, and more preferably a single bond.
 式(13)において、Aは、炭素数1~8のアルキレン基又は式:*-COR-で表される基を示す。炭素数1~8のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、2,2-ジメチル-1,3-プロピレン基等が挙げられ、好ましくはプロピレン基である。また、式:*-COR-におけるRは、単結合又は炭素数1~8のアルキレン基を示す。Rを示す炭素数1~8のアルキレン基としては、例えば、前記Aの説明にて例示したアルキレン基が挙げられる。Rは、単結合又はエチレン基であることが好ましい。また、式:*-COR-における*は、酸素原紙側の結合手であり、カルボニル基がフォスファイト基の酸素原子と結合していることを示す。 In formula (13), A represents an alkylene group having 1 to 8 carbon atoms or a group represented by the formula: *-COR 8 -. Examples of the alkylene group having 1 to 8 carbon atoms include methylene group, ethylene group, propylene group, butylene group, pentamethylene group, hexamethylene group, octamethylene group, 2,2-dimethyl-1,3-propylene group, etc. are mentioned, preferably a propylene group. Further, R 8 in the formula: *-COR 8 - represents a single bond or an alkylene group having 1 to 8 carbon atoms. Examples of the alkylene group having 1 to 8 carbon atoms representing R 8 include the alkylene groups exemplified in the explanation of A above. R 8 is preferably a single bond or an ethylene group. Further, * in the formula: *-COR 8 - is a bond on the oxygen base paper side, and indicates that the carbonyl group is bonded to the oxygen atom of the phosphite group.
 式(13)において、Y及びZは、いずれか一方がヒドロキシル基、炭素数1~8のアルコキシ基又は炭素数7~12のアラルキルオキシ基を示し、もう一方が水素原子又は炭素数1~8のアルキル基を示す。炭素数1~8のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、t-ブトキシ基、ペンチルオキシ基等が挙げられる。炭素数7~12のアラルキルオキシ基としては、例えば、ベンジルオキシ基、α-メチルベンジルオキシ基、α,α-ジメチルベンジルオキシ基等が挙げられる。炭素数1~8のアルキル基としては、例えば、前記R、R、R及びRの説明にて例示したアルキル基が挙げられる。 In formula (13), one of Y and Z represents a hydroxyl group, an alkoxy group having 1 to 8 carbon atoms, or an aralkyloxy group having 7 to 12 carbon atoms, and the other represents a hydrogen atom or a carbon number 1 to 8 represents an alkyl group. Examples of the alkoxy group having 1 to 8 carbon atoms include methoxy group, ethoxy group, propoxy group, t-butoxy group, and pentyloxy group. Examples of the aralkyloxy group having 7 to 12 carbon atoms include benzyloxy group, α-methylbenzyloxy group, α,α-dimethylbenzyloxy group, and the like. Examples of the alkyl group having 1 to 8 carbon atoms include the alkyl groups exemplified in the explanation of R 2 , R 3 , R 5 and R 6 above.
 式(13)で表される化合物としては、例えば、2,4,8,10-テトラ-t-ブチル-6-〔3-(3-メチル-4-ヒドロキシ-5-t-ブチルフェニル)プロポキシ〕ジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン、6-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロポキシ]-2,4,8,10-テトラ-t-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン、6-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロポキシ]-4,8-ジ-t-ブチル-2,10-ジメチル-12H-ジベンゾ[d,g][1,3,2]ジオキサホスホシン、6-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-4,8-ジ-t-ブチル-2,10-ジメチル-12H-ジベンゾ[d,g][1,3,2]ジオキサホスホシン等が挙げられる。これらの中でも、特に光学特性が求められる分野に、得られる芳香族ポリカーボネート樹脂組成物を用いる場合には、2,4,8,10-テトラ-t-ブチル-6-〔3-(3-メチル-4-ヒドロキシ-5-t-ブチルフェニル)プロポキシ〕ジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピンが好適であり、例えば、住友化学(株)製のスミライザーGP(「スミライザー」は登録商標)として商業的に入手可能である。 Examples of the compound represented by formula (13) include 2,4,8,10-tetra-t-butyl-6-[3-(3-methyl-4-hydroxy-5-t-butylphenyl)propoxy [dibenzo[d,f][1,3,2]dioxaphosphepine, 6-[3-(3,5-di-t-butyl-4-hydroxyphenyl)propoxy]-2,4,8, 10-tetra-t-butyldibenzo[d,f][1,3,2]dioxaphosphepine, 6-[3-(3,5-di-t-butyl-4-hydroxyphenyl)propoxy]- 4,8-di-t-butyl-2,10-dimethyl-12H-dibenzo[d,g][1,3,2]dioxaphosphosine, 6-[3-(3,5-di-t- butyl-4-hydroxyphenyl)propionyloxy]-4,8-di-t-butyl-2,10-dimethyl-12H-dibenzo[d,g][1,3,2]dioxaphosphosine, etc. . Among these, 2,4,8,10-tetra-t-butyl-6-[3-(3-methyl -4-hydroxy-5-t-butylphenyl)propoxy]dibenzo[d,f][1,3,2]dioxaphosphepine is suitable, for example, Sumilizer GP (manufactured by Sumitomo Chemical Co., Ltd.) Sumilizer" is commercially available as a registered trademark).
 リン系酸化防止剤(D)は、例えば、下記式(14)で表される化合物を含むことが好ましい。 It is preferable that the phosphorus antioxidant (D) contains, for example, a compound represented by the following formula (14).
 式(14):
(式中、R及びR10は、それぞれ独立して、炭素数1~20のアルキル基又はアルキル基で置換されていてもよいアリール基を示し、b及びcは、それぞれ独立して、0~3の整数を示す。)
Formula (14):
(In the formula, R 9 and R 10 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group optionally substituted with an alkyl group, and b and c each independently represent 0 Indicates an integer between ~3.)
 式(14)で表される化合物としては、例えば、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジフォスファイト、フェニルビスフェノールAペンタエリスリトールジフォスファイト等が挙げられる。ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジフォスファイトは、ADEKA社製、商品名「アデカスタブPEP-24G」として商業的に入手可能である。(株)ADEKA製のアデカスタブPEP-36(「アデカスタブ」は登録商標)が商業的に入手可能である。 Examples of the compound represented by formula (14) include bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, and the like. Bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite is commercially available under the trade name "ADEKA STAB PEP-24G" manufactured by ADEKA. ADEKA STAB PEP-36 (“ADEKA STAB” is a registered trademark) manufactured by ADEKA Corporation is commercially available.
 リン系酸化防止剤(D)は、例えば、下記式(15)で表される化合物を含むことが好ましい。 It is preferable that the phosphorus antioxidant (D) contains, for example, a compound represented by the following formula (15).
 式(15):
Formula (15):
(式中、R11~R18は、それぞれ独立に、炭素数1~3のアルキル基またはアルケニル基を示す。R11とR12、R13とR14、R15とR16、R17とR18とは、互いに結合して環を形成していても良い。R19~R22は、それぞれ独立に、水素原子または炭素数1~20のアルキル基を示す。d~gは、それぞれ独立して、0~5の整数である。X~Xは、それぞれ独立に、単結合または炭素原子を示す。X~Xが単結合である場合、R11~R22のうち、当該単結合に繋がった官能基は一般式(15)から除外される。) (In the formula, R 11 to R 18 each independently represent an alkyl group or an alkenyl group having 1 to 3 carbon atoms. R 11 and R 12 , R 13 and R 14 , R 15 and R 16 , R 17 and R 18 may combine with each other to form a ring. R 19 to R 22 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. d to g each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. is an integer from 0 to 5.X 1 to X 4 each independently represent a single bond or a carbon atom. When X 1 to X 4 are single bonds, among R 11 to R 22 , The functional group connected to the single bond is excluded from general formula (15).)
 式(15)で表される化合物の具体例としては、例えばビス(2,4-ジクミルフェニル)ペンタエリスリトールジフォスファイトが挙げられる。これは、Dover Chemical社製、商品名「Doverphos(登録商標) S-9228」、ADEKA社製、商品名「アデカスタブPEP-45」(ビス(2,4-ジクミルフェニル)ペンタエリスリトールジフォスファイト)として商業的に入手可能である。 A specific example of the compound represented by formula (15) includes bis(2,4-dicumylphenyl)pentaerythritol diphosphite. This is manufactured by Dover Chemical Company, product name "Doverphos (registered trademark) S-9228", manufactured by ADEKA Company, product name "ADEKASTAB PEP-45" (bis(2,4-dicumylphenyl) pentaerythritol diphosphite) It is commercially available as .
 下記のことから選択される少なくとも1を満たす、上述の芳香族ポリカーボネート樹脂組成物が好ましい:
 前記式(12)で表される亜リン酸エステル化合物が、トリス(2,4-ジ-t-ブチルフェニル)フォスファイトを含むこと;
 前記式(13)で表される亜リン酸エステル化合物が、2,4,8,10-テトラ-t-ブチル-6-[3-(3-メチル-4-ヒドロキシ-5-t-ブチルフェニル)プロポキシ]ジベンゾ[d,f][1,3,2]ジオキサホスフェピンを含むこと;
 前記式(14)で表される亜リン酸エステル化合物が、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5,5]ウンデカンを含むこと;及び
 前記式(15)で表される亜リン酸エステル化合物が、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジフォスファイトを含むこと。
The above-mentioned aromatic polycarbonate resin composition that satisfies at least one selected from the following is preferred:
The phosphite compound represented by the formula (12) contains tris(2,4-di-t-butylphenyl)phosphite;
The phosphite compound represented by the formula (13) is 2,4,8,10-tetra-t-butyl-6-[3-(3-methyl-4-hydroxy-5-t-butylphenyl) ) propoxy]dibenzo[d,f][1,3,2]dioxaphosphepine;
The phosphite compound represented by the formula (14) is 3,9-bis(2,6-di-tert-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa-3, 9-diphosphaspiro[5,5]undecane; and the phosphite compound represented by formula (15) contains bis(2,4-dicumylphenyl)pentaerythritol diphosphite.
 リン系酸化防止剤(D)の量は、芳香族ポリカーボネート樹脂(A)100重量部に対して、0.5重量部以下であることが好ましく、0.02~0.2重量部がより好ましい。 The amount of the phosphorus antioxidant (D) is preferably 0.5 parts by weight or less, more preferably 0.02 to 0.2 parts by weight, based on 100 parts by weight of the aromatic polycarbonate resin (A). .
 本発明の実施形態の芳香族ポリカーボネート樹脂組成物は、ポリエーテル誘導体(B)と共に、光拡散剤(C)、リン系酸化防止剤(D)、以下の式(1)で表される芳香族化合物(E)を含むことがより好ましい。このように、ポリエーテル誘導体(B)、光拡散剤(C)、リン系酸化防止剤(D)、該芳香族化合物(E)を使用することにより、光拡散性成形品に求められる優れた光学特性を維持しつつ、得られる芳香族ポリカーボネート樹脂組成物からなる成形品の使用状況に起因する劣化に加え、エージング劣化などの劣化を防止することが出来る。 The aromatic polycarbonate resin composition of the embodiment of the present invention includes a polyether derivative (B), a light diffusing agent (C), a phosphorus antioxidant (D), and an aromatic polycarbonate represented by the following formula (1). It is more preferable that the compound (E) is included. In this way, by using the polyether derivative (B), the light diffusing agent (C), the phosphorous antioxidant (D), and the aromatic compound (E), the excellent properties required for light diffusing molded products can be achieved. While maintaining optical properties, it is possible to prevent deterioration such as aging deterioration in addition to deterioration caused by usage conditions of a molded article made of the obtained aromatic polycarbonate resin composition.
 例えば、芳香族ポリカーボネート樹脂組成物から成形される光学用成形品が光源(LED光源等)によって長期間光照射されることによる熱劣化(白濁又は着色)が効果的に防止される。光拡散成形品は、炎天下等過酷な条件下で及び/又は光照射を長時間受け続けると、当該成形品表面の温度が上昇することがあり、芳香族ポリカーボネート樹脂組成物に含まれる直鎖状芳香族ポリカーボネート樹脂(A)の熱劣化が少しずつ進行し得る。更に、樹脂組成物中のポリエーテル誘導体(B)が変性し得、通常の光拡散成形品に用いられる芳香族ポリカーボネート樹脂組成物に期待される透明性(輝度又は光透過性)を損ない、成形品表面に白濁又は着色(淡~濃着色)現象が生じ得る。 For example, thermal deterioration (cloudiness or coloration) caused by long-term irradiation of an optical molded article made from an aromatic polycarbonate resin composition with a light source (such as an LED light source) is effectively prevented. When a light-diffusion molded product is exposed to harsh conditions such as under the scorching sun and/or continues to receive light irradiation for a long time, the temperature of the surface of the molded product may rise. Thermal deterioration of the aromatic polycarbonate resin (A) may progress little by little. Furthermore, the polyether derivative (B) in the resin composition may be modified, impairing the transparency (brightness or light transmittance) expected of aromatic polycarbonate resin compositions used in ordinary light-diffusing molded products, and making molding difficult. Clouding or coloring (light to dark coloring) may occur on the surface of the product.
 本願発明者らは、この課題に鑑み、鋭意検討した結果、ポリエーテル誘導体(B)の変性等の劣化を抑止する化合物として、次式(1)の特定芳香族化合物(E)が特に効果的であり、特定芳香族化合物(E)をポリエーテル誘導体(B)に予め添加するか、あるいは芳香族ポリカーボネート樹脂組成物を得るための溶融混練前に添加することにより、成形品中でのポリエーテル誘導体(B)の劣化を抑止して白濁又は着色(淡~濃着色)現象を低減又は緩和できることを見出した。
 式(1):
In view of this problem, the inventors of the present application have made extensive studies and found that the specific aromatic compound (E) of the following formula (1) is particularly effective as a compound that inhibits deterioration such as modification of the polyether derivative (B). By adding the specific aromatic compound (E) to the polyether derivative (B) in advance or before melt-kneading to obtain the aromatic polycarbonate resin composition, the polyether in the molded article can be It has been found that the deterioration of the derivative (B) can be suppressed to reduce or alleviate the phenomenon of cloudiness or coloration (light to deep coloration).
Formula (1):
 本発明の実施形態で使用される芳香族化合物(E)の量は、芳香族ポリカーボネート樹脂(A)100重量部に対して、0.003重量部以下であることが好ましい。芳香族化合物(E)によるポリエーテル誘導体(B)の変性抑制の効果を得るためには、芳香族ポリカーボネート樹脂(A)100重量部に対して、芳香族化合物(E)の量が0.0001重量部以上とする。芳香族化合物(E)の量は、芳香族ポリカーボネート樹脂(A)100重量部に対して、0.0005重量部以上0.003重量部以下がより好ましい。芳香族化合物(C)の量が0.0001重量部未満の場合は、白濁又は着色の抑止効果が不充分である。逆に芳香族化合物(C)の量が0.003重量部を超える場合、光学成形体に要求される高水準の光線透過率及び色相を達成できない場合があるため望ましくない。 The amount of the aromatic compound (E) used in the embodiment of the present invention is preferably 0.003 parts by weight or less based on 100 parts by weight of the aromatic polycarbonate resin (A). In order to obtain the effect of inhibiting the modification of the polyether derivative (B) by the aromatic compound (E), the amount of the aromatic compound (E) should be 0.0001 parts by weight per 100 parts by weight of the aromatic polycarbonate resin (A). Parts by weight or more. The amount of the aromatic compound (E) is more preferably 0.0005 parts by weight or more and 0.003 parts by weight or less based on 100 parts by weight of the aromatic polycarbonate resin (A). If the amount of the aromatic compound (C) is less than 0.0001 part by weight, the effect of inhibiting clouding or coloring will be insufficient. On the other hand, if the amount of the aromatic compound (C) exceeds 0.003 parts by weight, it is not desirable because it may not be possible to achieve the high level of light transmittance and hue required for an optical molded article.
 以上の成分に加えて、実施の形態に係る芳香族ポリカーボネート樹脂組成物は、例えば、得られる芳香族ポリカーボネート樹脂組成物の耐候性をより向上させる成分である紫外線吸収剤を、芳香族ポリカーボネート樹脂組成物を成形して得られる成形品の用途に応じて適宜用いることができる。 In addition to the above components, the aromatic polycarbonate resin composition according to the embodiment includes, for example, an ultraviolet absorber, which is a component that further improves the weather resistance of the resulting aromatic polycarbonate resin composition. It can be used as appropriate depending on the purpose of the molded product obtained by molding the product.
 紫外線吸収剤としては、例えば、ベンゾトリアゾール系化合物、トリアジン系化合物、ベンゾフェノン系化合物、シュウ酸アニリド系化合物等の、ポリカーボネート樹脂に通常配合される紫外線吸収剤を、単独で又は2種以上を組み合わせて用いることができる。 As the ultraviolet absorber, for example, ultraviolet absorbers that are usually blended into polycarbonate resin, such as benzotriazole compounds, triazine compounds, benzophenone compounds, and oxalic acid anilide compounds, may be used alone or in combination of two or more. Can be used.
 ベンゾトリアゾール系化合物としては、例えば、ベンゾトリアゾール系化合物としては、2-(2-ヒドロキシ-5-t-オクチルフェニル)ベンゾトリアゾール、2-(3-tert-butyl-2-hydroxy-5-methylphenyl)-5-chloro-2H-benzotriazole、2-(3,5-di-tert-pentyl-2-hydroxyphenyl)-2H-benzotriazole、2-(2H-benzotriazole-2-yl)-4-methyl-6-(3,4,5,6-tetrahydrophthalimidylmethyl)phenol、2-(2-hydroxy-4-octyloxyphenyl)-2H-benzotriazole、2-(2-hydroxy-5-tert-octylphenyl)-2H-benzotriazole、2-[2’-hydroxy-3,5-di(1,1-dimethylbenzyl)phenyl]-2H-benzotriazole、2,2’-Methylenbis[6-(2H-benzotriazol-2-yl)4-(1,1,3,3-tetramethylbutyl)phenol]などが挙げられる。なかでも、特に、2-(2-ヒドロキシ-5-t-オクチルフェニル)ベンゾトリアゾール等が好適であり、例えば、BASF社製のTINUVIN 329(TINUVINは登録商標)、シプロ化成(株)製のシーソーブ709、ケミプロ化成(株)製のケミソーブ79等が商業的に入手可能である。 Examples of benzotriazole compounds include 2-(2-hydroxy-5-t-octylphenyl)benzotriazole and 2-(3-tert-butyl-2-hydroxy-5-methylphenyl). -5-chloro-2H-benzotriazole, 2-(3,5-di-tert-pentyl-2-hydroxyphenyl)-2H-benzotriazole, 2-(2H-benzotriazole-2-yl)-4- methyl-6-( 3,4,5,6-tetrahydrophthalimidylmethyl)phenol, 2-(2-hydroxy-4-octyloxyphenyl)-2H-benzotriazole, 2-(2-hydroxy-5-tert-octylph enyl)-2H-benzotriazole, 2-[2 '-hydroxy-3,5-di(1,1-dimethylbenzyl)phenyl]-2H-benzotriazole, 2,2'-Methylenbis[6-(2H-benzotriazol-2-yl)4-(1,1,3, 3-tetramethylbutyl)phenol] and the like. Among these, 2-(2-hydroxy-5-t-octylphenyl)benzotriazole and the like are particularly suitable, such as TINUVIN 329 manufactured by BASF (TINUVIN is a registered trademark) and Seasorb manufactured by Cipro Kasei Co., Ltd. 709, Chemisorb 79 manufactured by ChemiPro Kasei Co., Ltd., and the like are commercially available.
 トリアジン系化合物としては、例えば、2,4-ジフェニル-6-(2-ヒドロキシフェニル-4-ヘキシルオキシフェニル)1,3,5-トリアジン、2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)フェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]フェノール等が挙げられ、例えば、BASF社製のTINUVIN 1577等が商業的に入手可能である。 Examples of triazine compounds include 2,4-diphenyl-6-(2-hydroxyphenyl-4-hexyloxyphenyl)1,3,5-triazine, 2-[4,6-bis(2,4-dimethyl) phenyl)-1,3,5-triazin-2-yl]-5-(octyloxy)phenol, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[( hexyl)oxy]phenol, etc., and for example, TINUVIN 1577 manufactured by BASF is commercially available.
 シュウ酸アニリド系化合物としては、例えば、クラリアントジャパン(株)製のSanduvor VSU等が商業的に入手可能である。 As the oxalic acid anilide compound, for example, Sanduvor VSU manufactured by Clariant Japan Co., Ltd. is commercially available.
 ベンゾフェノン系化合物としては、例えば、2、4-dihydroxybenzophenone、2-hydroxy-4-n-octoxybenzophenoneなどが挙げられる。 Examples of benzophenone compounds include 2,4-dihydroxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, and the like.
 紫外線吸収剤の量は、芳香族ポリカーボネート樹脂(A)100重量部に対して0~1.0重量部であり、0~0.5重量部であることが好ましい。紫外線吸収剤の量が1.0重量部を超える場合は、得られる芳香族ポリカーボネート樹脂組成物の初期の色相が低下するおそれがある。また、紫外線吸収剤の量が0.1重量部以上の場合は、特に、芳香族ポリカーボネート樹脂組成物の耐候性をより向上させる効果が大きく奏される。 The amount of the ultraviolet absorber is 0 to 1.0 parts by weight, preferably 0 to 0.5 parts by weight, based on 100 parts by weight of the aromatic polycarbonate resin (A). If the amount of the ultraviolet absorber exceeds 1.0 parts by weight, the initial hue of the resulting aromatic polycarbonate resin composition may be reduced. Moreover, when the amount of the ultraviolet absorber is 0.1 part by weight or more, the effect of further improving the weather resistance of the aromatic polycarbonate resin composition is particularly exhibited.
 本発明の実施形態の芳香族ポリカーボネート樹脂組成物は、エポキシ化合物(F)を含むことができる。このように、芳香族ポリカーボネート樹脂組成物が、ポリエーテル誘導体(B)と芳香族化合物(E)とエポキシ化合物(F)とを同時に含む場合、光拡散性成形品に求められる優れた光学特性を維持向上させつつ、得られる芳香族ポリカーボネート樹脂組成物からなる成形品の初期光学特性を劣化させず、使用状況に起因する劣化やエージング劣化などの劣化を防止することが出来る。 The aromatic polycarbonate resin composition of the embodiment of the present invention can contain an epoxy compound (F). In this way, when the aromatic polycarbonate resin composition contains the polyether derivative (B), the aromatic compound (E), and the epoxy compound (F) at the same time, it is possible to obtain the excellent optical properties required for a light-diffusing molded article. While maintaining and improving, it is possible to prevent deterioration such as deterioration due to usage conditions and aging deterioration without deteriorating the initial optical properties of the molded product made of the resulting aromatic polycarbonate resin composition.
 エポキシ化合物(F)は、少なくとも1つのエポキシ基を分子内に有し、本発明が目的とする芳香族ポリカーボネート樹脂組成物を得られる限り、特に制限されることはない。エポキシ化合物(F)は、例えば、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、エポキシ化大豆油、ε-カプロラクトン変性3',4'-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレート、エポキシ基含有アクリル・スチレン系ポリマー、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン-ジグリシジルエーテル等を含むことができる。エポキシ化合物(F)は、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレートを含むことが好ましい。 The epoxy compound (F) is not particularly limited as long as it has at least one epoxy group in its molecule and can provide the aromatic polycarbonate resin composition targeted by the present invention. The epoxy compound (F) is, for example, 3',4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, epoxidized soybean oil, ε-caprolactone modified 3',4'-epoxycyclohexylmethyl 3,4- It can include epoxycyclohexane carboxylate, epoxy group-containing acrylic/styrene polymer, 2,2-bis(4-hydroxycyclohexyl)propane-diglycidyl ether, and the like. Preferably, the epoxy compound (F) contains 3',4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate.
 本発明の実施形態の芳香族ポリカーボネート樹脂組成物は、直鎖状芳香族ポリカーボネート樹脂100重量部に対して、エポキシ化合物(F)を、0.001~0.2重量部含むことが好ましく、0.002~0.1重量部含むことがより好ましく、0.005~0.05重量部含むことが特に好ましい。本発明の実施形態の芳香族ポリカーボネート樹脂組成物は、直鎖状芳香族ポリカーボネート樹脂100重量部に対して、エポキシ化合物(E)を、0.001~0.2重量部含む場合、光拡散性成形品に求められる優れた光学特性を維持向上させつつ、得られる芳香族ポリカーボネート樹脂組成物からなる成形品の初期光学特性(積算透過率および黄色度)を向上させ、使用状況に起因する劣化やエージング劣化などの劣化を防止することが出来る。 The aromatic polycarbonate resin composition of the embodiment of the present invention preferably contains 0.001 to 0.2 parts by weight of the epoxy compound (F) based on 100 parts by weight of the linear aromatic polycarbonate resin, and preferably contains 0.001 to 0.2 parts by weight of the epoxy compound (F). It is more preferable to contain 0.002 to 0.1 part by weight, and particularly preferably 0.005 to 0.05 part by weight. When the aromatic polycarbonate resin composition of the embodiment of the present invention contains 0.001 to 0.2 parts by weight of the epoxy compound (E) with respect to 100 parts by weight of the linear aromatic polycarbonate resin, the composition has light diffusing properties. While maintaining and improving the excellent optical properties required for molded products, we improve the initial optical properties (integrated transmittance and yellowness) of molded products made from the resulting aromatic polycarbonate resin composition, and prevent deterioration caused by usage conditions. Deterioration such as aging deterioration can be prevented.
 さらに、実施の形態に係る芳香族ポリカーボネート樹脂組成物には、本発明における効果を損なわない範囲で、例えば、熱安定剤、他の酸化防止剤、着色剤、離型剤、軟化剤、帯電防止剤、衝撃性改良剤等の各種添加剤、直鎖状芳香族ポリカーボネート樹脂以外のポリマー等が適宜配合されていてもよい。 Furthermore, the aromatic polycarbonate resin composition according to the embodiment may contain, for example, a heat stabilizer, other antioxidant, coloring agent, mold release agent, softener, antistatic agent, within the range that does not impair the effects of the present invention. Various additives such as additives, impact modifiers, polymers other than the linear aromatic polycarbonate resin, etc. may be appropriately blended.
 本発明の実施形態の芳香族ポリカーボネート樹脂組成物は、直鎖状芳香族ポリカーボネート樹脂、ポリエーテル誘導体(B)及び光拡散剤(C)を混合し、必要に応じて、リン系酸化防止剤(D)、芳香族化合物(E)、エポキシ化合物(F)、前記各種添加剤、及び直鎖状芳香族ポリカーボネート樹脂以外のポリマー等を混合する製造方法を例示することができる。本発明が目的とする芳香族ポリカーボネート樹脂組成物を得ることができる限り、その製造方法は特に制限されることはなく、各成分の種類及び量を適宜調整することができる。成分の混合方法も特に制限されることはなく、例えば、タンブラー、及びリボンブレンダー等の公知の混合機にて混合する方法や、押出機にて溶融混練する方法を例示できる。これらの方法により、芳香族ポリカーボネート樹脂組成物のペレットを容易に得ることができる。芳香族化合物(E)は、溶融混練前に混合してもよいし、予めポリエーテル誘導体(B)に添加又は混合してもよい。 The aromatic polycarbonate resin composition of the embodiment of the present invention is prepared by mixing a linear aromatic polycarbonate resin, a polyether derivative (B), and a light diffusing agent (C), and optionally adding a phosphorus antioxidant ( D), an aromatic compound (E), an epoxy compound (F), the above-mentioned various additives, a polymer other than the linear aromatic polycarbonate resin, etc. can be exemplified. As long as the aromatic polycarbonate resin composition targeted by the present invention can be obtained, the manufacturing method is not particularly limited, and the types and amounts of each component can be adjusted as appropriate. The method of mixing the components is not particularly limited, and examples include a method of mixing with a known mixer such as a tumbler and a ribbon blender, and a method of melt-kneading with an extruder. By these methods, pellets of aromatic polycarbonate resin compositions can be easily obtained. The aromatic compound (E) may be mixed before melt-kneading, or may be added to or mixed with the polyether derivative (B) in advance.
 前記のごとく得られる芳香族ポリカーボネート樹脂組成物のペレットの形状及び大きさには特に限定がなく、一般的な樹脂ペレットが有する形状及び大きさであればよい。例えば、ペレットの形状としては、楕円柱状、円柱状等が挙げられる。ペレットの大きさとしては、長さが2~8mm程度であることが好適であり、楕円柱状の場合、断面楕円の長径が2~8mm程度、短径が1~4mm程度であることが好適であり、円柱状の場合、断面円の直径が1~6mm程度であることが好適である。なお、得られたペレット1つずつがこのような大きさであってもよく、ペレット集合体を形成する全てのペレットがこのような大きさであってもよく、ペレット集合体の平均値がこのような大きさであってもよく、特に限定はない。 The shape and size of the aromatic polycarbonate resin composition pellets obtained as described above are not particularly limited, and may be any shape and size that common resin pellets have. For example, the shape of the pellet includes an elliptical cylinder shape, a cylindrical shape, and the like. As for the size of the pellet, it is preferable that the length is about 2 to 8 mm, and in the case of an elliptical columnar shape, it is preferable that the long axis of the ellipse in cross section is about 2 to 8 mm, and the short axis of about 1 to 4 mm. In the case of a cylindrical shape, it is preferable that the diameter of the circular cross section is about 1 to 6 mm. Note that each pellet obtained may have such a size, or all pellets forming a pellet aggregate may have such a size, and the average value of the pellet aggregate may be this size. The size may be similar, and there is no particular limitation.
 本発明の実施形態の光拡散性成形品は、上記の芳香族ポリカーボネート樹脂組成物を成形して得ることができる。大型かつ薄肉の光拡散板(特に画像表示装置用光拡散板)としては、表面積が500~50000cmである光拡散板が得られる。光拡散板の表面積は1000~25000cmが好ましく、厚さは0.3~3mmが好ましい。このように、本発明の芳香族ポリカーボネート系樹脂組成物によれば、大型であり、寸法安定性が高く、かつ薄肉(軽量)である光拡散板を製造できる。 The light-diffusing molded article of the embodiment of the present invention can be obtained by molding the above-mentioned aromatic polycarbonate resin composition. As a large and thin light diffusing plate (particularly a light diffusing plate for an image display device), a light diffusing plate having a surface area of 500 to 50,000 cm 2 can be obtained. The surface area of the light diffusing plate is preferably 1,000 to 25,000 cm 2 and the thickness is preferably 0.3 to 3 mm. As described above, according to the aromatic polycarbonate resin composition of the present invention, it is possible to produce a light diffusing plate that is large in size, has high dimensional stability, and is thin (lightweight).
 本発明が目的とする光拡散性成形品を得ることができる限り、光拡散性成形品の製造方法は特に限定されることはなく、例えば、公知の射出成形法、圧縮成形法等により芳香族ポリカーボネート樹脂組成物を成形する方法が挙げられる。 As long as the light-diffusing molded product targeted by the present invention can be obtained, the manufacturing method of the light-diffusing molded product is not particularly limited. For example, the aromatic Examples include a method of molding a polycarbonate resin composition.
 本発明に係る光拡散性成形品は、例えば、光拡散板、光拡散フィルム、電子・電気機器、OA機器の部品、車両部品、機械部品、農業資材、漁業資材、搬送容器、包装容器、雑貨等が挙げられる。具体的には、画像表示装置用光拡散板(液晶表示装置等のバックライトモジュールに用いられる光拡散板、プロジェクターテレビ等の投影型表示装置のスクリーンに用いられる光拡散板等)等として好適である。液晶表示装置等のバックライトモジュールとしては、各種の光源(冷陰極管、LED等)を用いることができる。 The light-diffusing molded product according to the present invention includes, for example, a light-diffusing plate, a light-diffusing film, electronic/electrical equipment, parts of OA equipment, vehicle parts, mechanical parts, agricultural materials, fishing materials, transportation containers, packaging containers, and miscellaneous goods. etc. Specifically, it is suitable as a light diffusing plate for image display devices (a light diffusing plate used in a backlight module of a liquid crystal display device, etc., a light diffusing plate used in a screen of a projection type display device such as a projector television, etc.), etc. be. Various light sources (cold cathode tubes, LEDs, etc.) can be used as backlight modules for liquid crystal display devices and the like.
 以上のように、本発明の例示として、実施の形態を説明した。しかしながら、本発明における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。 As described above, the embodiments have been described as illustrations of the present invention. However, the technology of the present invention is not limited to this, and can also be applied to embodiments in which changes, replacements, additions, omissions, etc. are made as appropriate.
 以下に、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に制限されるものではない。なお、特に断りがない限り、「部」及び「%」はそれぞれ重量基準である。 EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples. In addition, unless otherwise specified, "part" and "%" are each based on weight.
 原料として以下のものを使用した。
1.直鎖状芳香族ポリカーボネート樹脂:
 ビスフェノールAと塩化カルボニルとから合成されたポリカーボネート樹脂
 粘度平均分子量:15000、住化ポリカーボネート(株)製のSDポリカ 200-80(商品名)、「SDポリカ」は住化ポリカーボネート(株)の登録商標、以下(A1)ともいう。
The following materials were used as raw materials.
1. Linear aromatic polycarbonate resin:
Polycarbonate resin synthesized from bisphenol A and carbonyl chloride, viscosity average molecular weight: 15,000, SD Polycarbonate 200-80 (trade name) manufactured by Sumika Polycarbonate Co., Ltd., "SD Polycarbonate" is a registered trademark of Sumika Polycarbonate Co., Ltd. , hereinafter also referred to as (A1).
2.ポリエーテル誘導体(B):
2-1.テトラメチレングリコールユニットとプロピレングリコールユニットからなる変性グリコール(ランダム共重合)
 重量平均分子量:2000、pH:6.7(JIS K1557-5)、日油(株)製のポリセリンDCB-2000(商品名)、以下(B1)ともいう。
2. Polyether derivative (B):
2-1. Modified glycol consisting of tetramethylene glycol unit and propylene glycol unit (random copolymerization)
Weight average molecular weight: 2000, pH: 6.7 (JIS K1557-5), Polycerin DCB-2000 (trade name) manufactured by NOF Corporation, hereinafter also referred to as (B1).
2-2.エチレングリコールユニットとプロピレングリコールユニットからなる変性グリコール(ランダム共重合)
 重量平均分子量:1750、日油(株)製のユニルーブ50DE-25(商品名)、以下(B2)ともいう。
2-2. Modified glycol consisting of ethylene glycol unit and propylene glycol unit (random copolymerization)
Weight average molecular weight: 1750, UNILUBE 50DE-25 (trade name) manufactured by NOF Corporation, hereinafter also referred to as (B2).
2-3.ポリテトラメチレングリコール
 重量平均分子量:1000、保土谷化学工業(株)製のPTG-1000SN(商品名)、以下(B3)ともいう
2-3. Polytetramethylene glycol Weight average molecular weight: 1000, PTG-1000SN (trade name) manufactured by Hodogaya Chemical Industry Co., Ltd., hereinafter also referred to as (B3)
3.光拡散剤(C):
3-1.ポリメチルシルセスキオキサン系拡散剤
 モメンティブ社製のトスパール120S(商品名)、以下(C1)ともいう。
3-2.アクリル系拡散剤
 アイカ工業(株)製のGM-0449S(商品名)、以下(C2)ともいう。
3-3.スチレン-メチルメタクリレート共重合架橋微粒子
 積水化成品工業社製のSMX-12R(商品名)、以下(C3)ともいう。
3-4.無機系拡散剤(酸化チタン)
 石原産業(株)製のTIPAQUE(登録商標)PC-3(商品名)、以下(C4)ともいう)
3. Light diffusing agent (C):
3-1. Polymethylsilsesquioxane-based diffusing agent Tospearl 120S (trade name) manufactured by Momentive, hereinafter also referred to as (C1).
3-2. Acrylic diffusing agent GM-0449S (trade name) manufactured by Aica Kogyo Co., Ltd., hereinafter also referred to as (C2).
3-3. Styrene-methyl methacrylate copolymer crosslinked fine particles SMX-12R (trade name) manufactured by Sekisui Plastics Co., Ltd., hereinafter also referred to as (C3).
3-4. Inorganic diffusing agent (titanium oxide)
TIPAQUE (registered trademark) PC-3 (product name) manufactured by Ishihara Sangyo Co., Ltd. (hereinafter also referred to as (C4))
4.リン系酸化防止剤(D):
4-1.以下の式で表される、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト
 BASF社製のイルガフォス168(商品名)、以下(D1)ともいう。
4. Phosphorous antioxidant (D):
4-1. Tris(2,4-di-t-butylphenyl)phosphite, represented by the following formula:
Irgafos 168 (trade name) manufactured by BASF, hereinafter also referred to as (D1).
4-2.以下の式で表される、2,4,8,10-テトラ-t-ブチル-6-〔3-(3-メチル-4-ヒドロキシ-5-t-ブチルフェニル)プロポキシ〕ジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン
 住友化学(株)製のスミライザーGP(商品名)、以下(D2)ともいう。
4-2. 2,4,8,10-tetra-t-butyl-6-[3-(3-methyl-4-hydroxy-5-t-butylphenyl)propoxy]dibenzo[d,f ] [1,3,2] Dioxaphosphepine
Sumilizer GP (trade name) manufactured by Sumitomo Chemical Co., Ltd., hereinafter also referred to as (D2).
4-3.以下の式で表される、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジフォスファイト(IUPAC名:3,9-ビス[2,4-ビス(α,α-ジメチルベンジル)フェノキシ]-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン)
 Dover Chemical社製のDoverphos S-9228(商品名)、以下(D3)ともいう。
4-3. Bis(2,4-dicumylphenyl)pentaerythritol diphosphite (IUPAC name: 3,9-bis[2,4-bis(α,α-dimethylbenzyl)phenoxy]-2) represented by the following formula: , 4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane)
Doverphos S-9228 (trade name) manufactured by Dover Chemical, hereinafter also referred to as (D3).
4-4.以下の式で表される、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジフォスファイト(IUPAC名:3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5,5]ウンデカン)
 ADEKA製のアデカスタブPEP-36(商品名)、以下(D4)ともいう。
5.芳香族化合物(E):
 3,5-ジ-t-ブチル-4-ヒドロキシトルエン
 和光純薬工業(株)製、以下(E1)ともいう。
4-4. Bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite (IUPAC name: 3,9-bis(2,6-di-tert-butyl- (4-methylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5,5]undecane)
ADEKA STAB PEP-36 (trade name), hereinafter also referred to as (D4).
5. Aromatic compound (E):
3,5-di-t-butyl-4-hydroxytoluene Manufactured by Wako Pure Chemical Industries, Ltd., hereinafter also referred to as (E1).
6.エポキシ化合物(F)
 3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキシルカルボキシレート
 (株)ダイセル化学工業製のセロキサイド2021P(商品名)、以下(F1)ともいう。
6. Epoxy compound (F)
3',4'-Epoxycyclohexylmethyl-3,4-epoxycyclohexylcarboxylate Celoxide 2021P (trade name) manufactured by Daicel Chemical Industries, Ltd., hereinafter also referred to as (F1).
(実施例1~14及び比較例1及び2)
 前記各原料を、表1に示す割合にて一括してタンブラーに投入し、10分間乾式混合した後、二軸押出機((株)日本製鋼所製、TEX30α)を用いて、溶融温度230℃にて溶融混練し、実施例1~11、並びに、比較例1及び2の各々の芳香族ポリカーボネート樹脂組成物のペレットを得た。なお、実施例及び比較例で得られたペレットはいずれも、ほぼ楕円柱状であり、ペレット100個からなる集合体は、各々長さの平均値が約5.1mm~約5.4mm、断面楕円の長径の平均値が約4.1mm~約4.3mm、短径の平均値が約2.2mm~約2.3mmであった。
(Examples 1 to 14 and Comparative Examples 1 and 2)
The above raw materials were put into a tumbler at once in the proportions shown in Table 1, and after dry mixing for 10 minutes, the melting temperature was adjusted to 230°C using a twin-screw extruder (TEX30α, manufactured by Japan Steel Works, Ltd.). The mixture was melt-kneaded to obtain pellets of the aromatic polycarbonate resin compositions of Examples 1 to 11 and Comparative Examples 1 and 2. The pellets obtained in Examples and Comparative Examples are both approximately elliptical cylinder-shaped, and each aggregate of 100 pellets has an average length of about 5.1 mm to about 5.4 mm and an elliptical cross section. The average value of the long axis was about 4.1 mm to about 4.3 mm, and the average value of the short axis was about 2.2 mm to about 2.3 mm.
 得られたペレットを用い、以下の方法にしたがって、各評価用試験片を作製して評価に供した。その結果を表1に示す。 Using the obtained pellets, each evaluation test piece was prepared and subjected to evaluation according to the following method. The results are shown in Table 1.
(試験片の作製方法)
 得られたペレットを120℃で4時間以上乾燥した後、射出成形機(ファナック(株)製、ROBOSHOT S2000i100A)を用い、成形温度290℃、金型温度80℃にて、幅50mm×長さ90mmの3段プレート状試験片(厚み3mm部分:長さ35mm/厚み2mm部分:長さ30mm/厚み1mm部分:長さ25mm)を作成した
(Method for preparing test piece)
After drying the obtained pellets at 120°C for 4 hours or more, they were molded into 50mm width x 90mm length using an injection molding machine (ROBOSHOT S2000i100A, manufactured by Fanuc Corporation) at a molding temperature of 290°C and a mold temperature of 80°C. A three-stage plate-shaped test piece (3 mm thick part: 35 mm in length / 2 mm thick part: 30 mm in length / 1 mm thick part: 25 mm in length) was created.
(試験片の評価方法)
1.全光線透過率(%):
 得られた3段プレート状試験片の1mm部分を用い、JIS K7361に準拠して全光線透過率を測定した。数値が大きいほど、成形品の光透過性が良好であることを示す。厚み1mmの成形品で全光線透過率の値が40%以上を良好○、それ以外を×とした。
(Test piece evaluation method)
1. Total light transmittance (%):
The total light transmittance was measured using a 1 mm portion of the obtained three-tiered plate-shaped test piece in accordance with JIS K7361. The larger the numerical value, the better the light transmittance of the molded article. A molded article with a thickness of 1 mm and a total light transmittance value of 40% or more was evaluated as good, and other cases were evaluated as poor.
2.光拡散度(度):
 上記1で用いた3段プレート状試験片の1mm部分を用い、自動変角光度計(村上色彩技術研究所製ゴニオフォトメーターGP-1R)により光拡散性(D50)を求めた。詳細な測定法は以下のとおりである。この数値が大きいほど成形品の光拡散性が良好であることを示す。自動変角光度計の光源からの直進光線を試験片の法線方向から当て、可動式受光器にて透過光の強度を測定し、法線方向からの角度に対して透過率をプロットし、直進光透過率の50%の透過率になるところの角度(D50)を求めた。単位は「度」であり、光拡散性(D50)が30度以上を良好とした。
2. Light diffusivity (degrees):
Light diffusivity (D50) was determined using a 1 mm portion of the three-tiered plate-shaped test piece used in 1 above using an automatic variable angle photometer (Goniophotometer GP-1R manufactured by Murakami Color Research Institute). The detailed measurement method is as follows. The larger this value is, the better the light diffusivity of the molded article is. A straight light beam from the light source of an automatic variable angle photometer is applied to the test piece from the normal direction, the intensity of the transmitted light is measured with a movable receiver, and the transmittance is plotted against the angle from the normal direction. The angle (D50) at which the transmittance becomes 50% of the straight light transmittance was determined. The unit is "degrees", and light diffusivity (D50) of 30 degrees or more was considered good.
3.光源透視防止性(目視判定):
 フィリップス製20W形直管形LEDランプの中央部に3cm×5cmの長方形状の穴を開け、その部分に3cm×5cm×1mmの射出成形板をLED光源から約1.5cmの高さに設置した。光源透視防止性は、LEDランプに設置した射出成形板上約20cmの高さから目視判定した。十分な光拡散性を備え、LED光源の輪郭が消失している場合は、極めて良好◎と判定した。LED光源の輪郭がやや分かる場合を良好○、光拡散性が乏しくLED光源の輪郭がはっきり分かる場合を不良×と判定した。
3. Light source transparency prevention (visual judgment):
A rectangular hole of 3 cm x 5 cm was made in the center of a 20W straight tube LED lamp manufactured by Philips, and an injection molded plate of 3 cm x 5 cm x 1 mm was placed in the hole at a height of approximately 1.5 cm from the LED light source. . The ability to prevent the light source from seeing through was visually determined from a height of about 20 cm above the injection molded plate installed on the LED lamp. If sufficient light diffusivity was provided and the outline of the LED light source disappeared, it was judged to be extremely good. A case where the outline of the LED light source was slightly visible was judged as good, and a case where the outline of the LED light source was clearly visible due to poor light diffusivity was judged as poor.
4.黄色度:
 得られた3段プレート状試験片の1mm部分を用い、分光光度計((株)日立製作所製、UH4150)にて、標準光源D65を用い、10度視野にて各々の試験片の加熱試験前後の黄色度(以下、YI)を求めた。加熱試験は、上記試験片をエスペック社製イナートオーブンIPHH-201Mの中に設置し、90℃で500時間保持することによって行った。なお、YIが4.0以下を良好◎、4.0を超え、5.0以下を使用可○、5.0を超えると不良×とした。
4. Yellowness:
Using a 1 mm section of the obtained three-tiered plate-shaped test piece, a spectrophotometer (manufactured by Hitachi, Ltd., UH4150) was used to conduct a heating test on each test piece at a 10-degree field of view using a standard light source D65. The yellowness index (hereinafter referred to as YI) was determined. The heating test was conducted by placing the above test piece in an inert oven IPHH-201M manufactured by ESPEC and holding it at 90° C. for 500 hours. In addition, when YI was 4.0 or less, it was evaluated as good ◎, when it exceeded 4.0 and 5.0 or less, it was evaluated as usable ○, and when it exceeded 5.0, it was evaluated as poor.
 表1~3に、各実施例及び比較例の原料及び配合割合、評価結果を併せて示す。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Tables 1 to 3 also show the raw materials, blending ratios, and evaluation results of each example and comparative example.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 実施例1~14の芳香族ポリカーボネート樹脂組成物は、直鎖状芳香族ポリカーボネート樹脂、ポリエーテル誘導体(B)及び光拡散剤(C)を含み、必要に応じて、リン系酸化防止剤(D)、芳香族化合物(E)及びエポキシ化合物(F)等を、各々特定の割合で含む。したがって、該芳香族ポリカーボネート樹脂組成物から成形された試験片は、必要とされる全光線透過率、光拡散性、光源透視防止性が高く、黄色度が小さく、かつ加熱試験後の劣化も殆ど無い。 The aromatic polycarbonate resin compositions of Examples 1 to 14 contain a linear aromatic polycarbonate resin, a polyether derivative (B), and a light diffusing agent (C), and optionally a phosphorus antioxidant (D). ), an aromatic compound (E), an epoxy compound (F), etc., in specific proportions. Therefore, the test piece molded from the aromatic polycarbonate resin composition has the required high total light transmittance, light diffusivity, and light source visibility resistance, has a low degree of yellowness, and shows almost no deterioration after the heating test. None.
 そして、このような芳香族ポリカーボネート樹脂組成物を成形した成形品は、黄色度が小さく色相に優れ、しかも加熱試験後の劣化も殆ど無い。 A molded article made from such an aromatic polycarbonate resin composition has a low degree of yellowness and excellent hue, and also shows almost no deterioration after a heating test.
 これに対して、比較例1の芳香族ポリカーボネート樹脂組成物は、光拡散剤の配合量が少ないので、光拡散度が低く、光源透視防止性が悪かった。また、比較例2の芳香族ポリカーボネート樹脂組成物は、光拡散剤の配合量が多いため、全光線透過率が低くなった。 On the other hand, the aromatic polycarbonate resin composition of Comparative Example 1 contained a small amount of light diffusing agent, so the degree of light diffusion was low and the property of preventing light source transmission was poor. Further, the aromatic polycarbonate resin composition of Comparative Example 2 had a low total light transmittance because the amount of the light diffusing agent was large.
 以上のように本発明における技術の例示として実施の形態を説明した。そのために詳細な説明を提供した。 The embodiments have been described above as illustrations of the technology of the present invention. A detailed explanation was provided for this purpose.
 したがって、詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 Therefore, the components described in the detailed description include not only components that are essential for solving the problem, but also components that are not essential for solving the problem in order to exemplify the above technology. obtain. Therefore, just because these non-essential components are described in the detailed description, it should not be immediately determined that those non-essential components are essential.
 また、上述の実施の形態は、本発明における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Further, since the above-described embodiments are for illustrating the technology of the present invention, various changes, substitutions, additions, omissions, etc. can be made within the scope of the claims or equivalents thereof.
 本発明の芳香族ポリカーボネート樹脂組成物は、ポリカーボネート樹脂が本来有する耐熱性、機械的強度等の特性が損なわれることがなく、熱安定性及び耐候性に優れ、しかも、本発明の芳香族ポリカーボネート樹脂組成物を含む成形品を加熱した場合でも外観及び光学特性に優れたものである。よって、例えば厚さ0.3mm程度の薄型の拡散光源の拡散板表面への長期照射により加熱状態が継続されるような用途に用いた場合でも、得られる拡散板の色相が変化して外観や光学特性が低下することもなく、工業的利用価値が極めて高い。
 
The aromatic polycarbonate resin composition of the present invention does not impair the inherent properties of the polycarbonate resin, such as heat resistance and mechanical strength, and has excellent thermal stability and weather resistance. Even when a molded article containing the composition is heated, it has excellent appearance and optical properties. Therefore, even when used in applications where the surface of the diffuser plate is continuously heated by long-term irradiation of a thin diffused light source with a thickness of about 0.3 mm, the hue of the obtained diffuser plate may change and the appearance may change. There is no deterioration in optical properties, and the value of industrial use is extremely high.

Claims (6)

  1.  直鎖状芳香族ポリカーボネート樹脂(A)、ポリエーテル誘導体(B)、光拡散剤(C)、リン系酸化防止剤(D)及び下記式(1)で表される芳香族化合物(E)を含む芳香族ポリカーボネート樹脂組成物であって、
     該直鎖状芳香族ポリカーボネート樹脂(A)100重量部に対して、ポリエーテル誘導体(B)を0.1~2.0重量部、光拡散剤(C)を0.1~6.0重量部、リン系酸化防止剤(D)を0.5重量部まで、芳香族化合物(E)を0.003重量部まで含有する、芳香族ポリカーボネート樹脂組成物。
     式(1):
    A linear aromatic polycarbonate resin (A), a polyether derivative (B), a light diffusing agent (C), a phosphorus antioxidant (D), and an aromatic compound (E) represented by the following formula (1). An aromatic polycarbonate resin composition comprising:
    For 100 parts by weight of the linear aromatic polycarbonate resin (A), 0.1 to 2.0 parts by weight of the polyether derivative (B) and 0.1 to 6.0 parts by weight of the light diffusing agent (C). An aromatic polycarbonate resin composition containing up to 0.5 parts by weight of a phosphorus antioxidant (D) and up to 0.003 parts by weight of an aromatic compound (E).
    Formula (1):
  2.  前記ポリエーテル誘導体(B)が、下記式(2)で表され、500~8000の重量平均分子量を有するポリエーテル誘導体を含む、請求項1に記載の芳香族ポリカーボネート樹脂組成物。
     式(2):
     RO-(X-O)m(Y-O)n-R’
    (式中、RおよびR’は、それぞれ独立して水素原子または炭素数1~30のアルキル基を示し、Xは、炭素数2~4の直鎖アルキレン基又は分岐アルキレン基を示し、Yは、炭素数2~5の直鎖アルキレン基又は分岐アルキレン基を示し、XとYは同一であっても異なっていても良く、m及びnは、各々独立して、3~60を示し、m+nは6~120を示す。)
    The aromatic polycarbonate resin composition according to claim 1, wherein the polyether derivative (B) includes a polyether derivative represented by the following formula (2) and having a weight average molecular weight of 500 to 8,000.
    Formula (2):
    RO-(X-O)m(Y-O)n-R'
    (In the formula, R and R' each independently represent a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, X represents a straight chain alkylene group or a branched alkylene group having 2 to 4 carbon atoms, and Y represents , represents a linear alkylene group or branched alkylene group having 2 to 5 carbon atoms, X and Y may be the same or different, m and n each independently represent 3 to 60, m+n indicates 6 to 120.)
  3.  前記光拡散剤(C)が、シリコーン系光拡散剤、アクリル系光拡散剤及び無機微粒子、またはそれらの併用剤である、請求項1に記載の芳香族ポリカーボネート樹脂組成物。 The aromatic polycarbonate resin composition according to claim 1, wherein the light diffusing agent (C) is a silicone light diffusing agent, an acrylic light diffusing agent, inorganic fine particles, or a combination thereof.
  4.  熱安定剤、着色剤、離型剤、軟化剤、帯電防止剤及び衝撃性改良剤を含む群から選択される少なくとも1種を更に含有する、請求項1に記載の芳香族ポリカーボネート樹脂組成物。 The aromatic polycarbonate resin composition according to claim 1, further comprising at least one selected from the group consisting of a heat stabilizer, a colorant, a mold release agent, a softener, an antistatic agent, and an impact modifier.
  5.  請求項1~4のいずれかに記載の芳香族ポリカーボネート樹脂組成物を含む、光拡散性成形品。 A light-diffusing molded article comprising the aromatic polycarbonate resin composition according to any one of claims 1 to 4.
  6.  前記光拡散性成形品が、画像表示装置用の光拡散板または光拡散フィルムである、請求項5に記載の光拡散性成形品。
     
    The light-diffusing molded product according to claim 5, wherein the light-diffusing molded product is a light-diffusing plate or a light-diffusing film for an image display device.
PCT/JP2023/025622 2022-07-13 2023-07-11 Aromatic polycarbonate resin composition and light-diffusing molded article WO2024014465A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024503793A JPWO2024014465A1 (en) 2022-07-13 2023-07-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-112757 2022-07-13
JP2022112757 2022-07-13

Publications (1)

Publication Number Publication Date
WO2024014465A1 true WO2024014465A1 (en) 2024-01-18

Family

ID=89536741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025622 WO2024014465A1 (en) 2022-07-13 2023-07-11 Aromatic polycarbonate resin composition and light-diffusing molded article

Country Status (3)

Country Link
JP (1) JPWO2024014465A1 (en)
TW (1) TW202411346A (en)
WO (1) WO2024014465A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063361A (en) * 2005-08-30 2007-03-15 Teijin Chem Ltd Antistatic polycarbonate resin composition
JP2009221472A (en) * 2008-02-22 2009-10-01 Toray Ind Inc Thermoplastic resin composition
JP2020045391A (en) * 2018-09-14 2020-03-26 出光興産株式会社 Polycarbonate resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063361A (en) * 2005-08-30 2007-03-15 Teijin Chem Ltd Antistatic polycarbonate resin composition
JP2009221472A (en) * 2008-02-22 2009-10-01 Toray Ind Inc Thermoplastic resin composition
JP2020045391A (en) * 2018-09-14 2020-03-26 出光興産株式会社 Polycarbonate resin composition

Also Published As

Publication number Publication date
JPWO2024014465A1 (en) 2024-01-18
TW202411346A (en) 2024-03-16

Similar Documents

Publication Publication Date Title
US7935750B2 (en) Polycarbonate light diffusing resin composition
JP5063873B2 (en) Light diffusing polycarbonate resin composition and light diffusing plate using the resin composition
US20090080079A1 (en) Light diffusive polycarbonate resin composition and light diffusive plate using said resin composition
JP2007023227A (en) Resin composition for light-diffusing member and light-diffusing member
CN111630108B (en) Aromatic polycarbonate resin composition and optical molded article
JP6480068B1 (en) Aromatic polycarbonate resin composition and optical molded article
CN111334020B (en) Aromatic polycarbonate resin composition and optical molded article
MX2008002389A (en) Light-scattering moulded body with a high level of light transmission.
JP2006257299A (en) Light-diffusing resin composition
JP6629473B1 (en) Aromatic polycarbonate resin composition and optical molded article
JP5417928B2 (en) Light diffusing polycarbonate resin composition
JP5093832B2 (en) Thermoplastic resin composition having excellent light diffusibility and light diffusing plate comprising the same
WO2024014465A1 (en) Aromatic polycarbonate resin composition and light-diffusing molded article
JP2012092306A (en) Light-diffusive resin composition, light-diffusive member, and illumination cover
JP5317368B2 (en) Light diffusion plate
JP5370999B2 (en) Lighting cover
JP2024047406A (en) Aromatic polycarbonate resin composition and light-diffusing molded article
JP4837981B2 (en) Thermoplastic resin composition having excellent light diffusibility and light diffusing plate comprising the same
JP2016204543A (en) Light diffusion polycarbonate resin composition
JP4849502B2 (en) Light diffusing thermoplastic resin composition and light diffusing plate comprising the same
JP7198112B2 (en) Aromatic polycarbonate resin composition and molded article for optical use
JP7128082B2 (en) Thermoplastic resin mixture, thermoplastic resin composition and molded article
JP2011221512A (en) Optical sheet
KR20130060053A (en) Light diffusion polycarbonate resin comprsing high-density polyolefine system
KR20200137939A (en) Thermoplastic resin composition and light diffusion sheet produced therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839637

Country of ref document: EP

Kind code of ref document: A1