WO2024014340A1 - Mother glass sheet and method for manufacturing mother glass sheet - Google Patents

Mother glass sheet and method for manufacturing mother glass sheet Download PDF

Info

Publication number
WO2024014340A1
WO2024014340A1 PCT/JP2023/024629 JP2023024629W WO2024014340A1 WO 2024014340 A1 WO2024014340 A1 WO 2024014340A1 JP 2023024629 W JP2023024629 W JP 2023024629W WO 2024014340 A1 WO2024014340 A1 WO 2024014340A1
Authority
WO
WIPO (PCT)
Prior art keywords
mother glass
glass plate
evaluation
width direction
inspection
Prior art date
Application number
PCT/JP2023/024629
Other languages
French (fr)
Japanese (ja)
Inventor
誠一 森田
拡志 澤里
隆雄 岡
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2024014340A1 publication Critical patent/WO2024014340A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • the present disclosure relates to a mother glass plate and a method for manufacturing a mother glass plate.
  • Patent Document 1 discloses an example of an HDD board.
  • an HDD substrate when manufacturing a 3.5-inch HDD substrate, first, a large-area mother glass plate with a size of 1300 x 1500 mm to 2400 x 2800 mm, for example, and a small-area rectangular glass plate ( Cut out a large number of pieces (about 100mm square). Thereafter, an HDD substrate (also called a platter blank) is manufactured by processing each of the rectangular glass plates into a circular shape.
  • a method for measuring the shape accuracy of an HDD substrate is to measure the flatness of a rectangular glass plate before it is processed into a circular shape using an oblique incidence interferometer, targeting a circular area of the glass plate that corresponds to the HDD substrate.
  • the flatness required for a 3.5-inch HDD substrate is as severe as 50 ⁇ m or less in an upright state without the influence of gravity.
  • a mother glass plate for inspection is collected from the mother glass plate production line.
  • the shape accuracy of the sampled mother glass plate for inspection is measured. Specifically, a large number of rectangular glass plates (about 100 mm square) are cut out from a mother glass plate for inspection. These many rectangular glass plates are arranged along the drawing direction and the width direction of the mother glass plate for inspection. Thereafter, the flatness of each cut rectangular glass plate is measured using an oblique incidence interferometer. If the flatness values of all the rectangular glass plates are within the allowable range, it is determined that the mother glass plate satisfies the shape accuracy standard for HDD substrates, and the shape accuracy of the mother glass plate is guaranteed. .
  • the shape accuracy of the mother glass plate for inspection is measured by measuring the flatness of a large number of rectangular glass plates.
  • the bottom line is that the above procedure involves actually cutting out a large number of rectangular glass plates corresponding to the size of the final product (HDD board) from a mother glass plate for inspection, and then ensuring that each piece has the required shape accuracy. If it satisfies the criteria, it is determined that the mother glass plate satisfies the shape accuracy criteria for HDD substrates.
  • the number of rectangular glass plates cut out from the mother glass plate for inspection may reach several hundred pieces.
  • a total of 10 rows along the drawing direction and 25 columns along the width direction of the mother glass plate for inspection are used. This meant cutting out 250 rectangular glass plates. Then, it is necessary to measure the shape accuracy of each of the 250 sheets. Therefore, there is a problem in that it takes a lot of effort and time to measure the shape accuracy of the mother glass plate for inspection.
  • the technical problem to be solved is that when manufacturing mother glass plates for HDD boards that require high shape accuracy, if a step of measuring the shape accuracy of the mother glass plate for inspection is included, The objective is to reduce the effort and time required for measurement while ensuring measurement accuracy.
  • a method for manufacturing a mother glass plate to solve the above problems includes a production process in which mother glass plates are continuously produced on a production line, a sampling process in which a mother glass plate for inspection is collected from the production line, Mother glass for hard disk drives, comprising: a measurement process for measuring the shape accuracy of a mother glass plate for inspection; and a pass/fail judgment process for judging the pass/fail of a plurality of mother glass plates produced in a production process based on the results of the measurement process.
  • the mother glass plate has a rectangular shape having a first side along the sheet drawing direction and a second side along the width direction perpendicular to the sheet drawing direction, and and the second side each has a length of 1000 mm or more and a thickness of 0.3 mm or more and 0.7 mm or less, and the sampling process is performed at predetermined intervals, and the effective part of the sampled mother glass plate for inspection is A plurality of rectangular first evaluation regions with a side length of 300 mm or more and 700 mm or less are arranged and set in the width direction with respect to the effective part so as to satisfy the entire width.
  • the process (hereinafter referred to as , front and back deflection difference measuring process) is executed.
  • the shape accuracy can be more efficiently achieved than when measuring the shape accuracy of a mother glass plate for inspection by measuring the flatness of a large number of rectangular glass plates using an oblique incidence interferometer. can be measured. This is due to the following reasons (A) and (B).
  • (A) The size of each first evaluation region (length of one side is 300 mm or more and 700 mm or less) can be made larger than the size of the rectangular glass plate when using a grazing incidence interferometer. The number can be significantly reduced.
  • the number of first evaluation regions can be significantly reduced compared to the number of rectangular glass plates.
  • the shape accuracy of the mother glass plate for inspection can be accurately measured. In other words, it is possible to accurately determine whether or not the mother glass plate for inspection satisfies the required standard of shape accuracy. The reason for this is as follows. The shape of a mother glass plate (mother glass plate for inspection) does not change locally in a small area, but gradually changes in a large area.
  • the shape accuracy of the first evaluation area shape accuracy based on the front and back deflection difference
  • the shape accuracy when cut out to a smaller size than the first evaluation area can also be guaranteed.
  • the number of objects to be measured can be significantly reduced, and the measurement can be performed accurately. As a result, it is possible to reduce the effort and time required for measurement while ensuring measurement accuracy.
  • the amount of change in the front and back deflection difference between the corresponding first evaluation areas between the mother glass plates for inspection sampled in two successive sampling processes is measured.
  • a step of calculating each (hereinafter referred to as "inter-corresponding region deflection difference change amount calculation step") is executed. After that, a pass/fail determination process is performed to determine whether or not the plurality of mother glass plates produced in the production process are acceptable based on the results of the measurement process.
  • a plurality of mother glass plates can be determined to be acceptable if both of the following [Condition 1] and [Condition 2] are satisfied.
  • multiple mother glass plates refers to the mother glass plates for inspection that were collected in the first and second sampling processes of two successive sampling processes, respectively, as the preceding inspection plate and the subsequent inspection plate. This refers to a plurality of mother glass plates sandwiched between a preceding inspection plate and a subsequent inspection plate on a production line. [Condition 1]: Each of the mother glass plates for inspection (the plate for the preceding inspection and the plate for the subsequent inspection) collected in two successive sampling steps satisfies the required standard of shape accuracy.
  • the measurement step includes a step of calculating the amount of change in the front and back deflection difference between the first evaluation regions adjacent in the width direction for each mother glass plate for inspection. It is preferable to further provide.
  • the measurement step it is possible to clarify the change in the shape of the mother glass plate for inspection along the width direction based on the amount of change in the front and back deflection difference between the first evaluation regions adjacent in the width direction. Therefore, it becomes possible to more accurately measure the shape accuracy of the mother glass plate for inspection.
  • This is advantageous when a mother glass plate is required to have higher shape accuracy and a mother glass plate that satisfies the requirement is selected (determined as acceptable in the pass/fail determination process). For example, in addition to satisfying both Conditions 1 and 2 above, after calculating the amount of change in the front and back deflection difference between the first evaluation areas adjacent in the width direction, all of the calculated values are less than or equal to the threshold value. In this case, if the pass/fail determination step is made to determine pass, a mother glass plate with even higher shape accuracy can be obtained.
  • the measuring step is a step of measuring the front and back deflection difference along the board drawing direction and the width direction for each of the second evaluation areas, respectively;
  • the method may further include the step of calculating the amount of change in the front and back deflection difference between the corresponding first evaluation area and second evaluation area.
  • the front and back deflections in the second evaluation area along the board drawing direction and the width direction, as well as the front and back deflections between the first and second evaluation areas adjacent in the board drawing direction can be measured.
  • changes in the shape of the mother glass plate for inspection along the drawing direction can be clarified. Therefore, it becomes possible to more accurately measure the shape accuracy of the mother glass plate for inspection. This is advantageous when a mother glass plate is required to have higher shape accuracy and a mother glass plate that satisfies the requirement is selected (determined as acceptable in the pass/fail determination process).
  • a plurality of third evaluation areas are further added to the width direction end area of the effective part of the sampled mother glass plate for inspection.
  • the width of the width direction end area is 30% or less of the length of the second side
  • the measurement step includes a step of measuring the flatness of each of the plurality of third evaluation regions using an optical interferometer. You may also have more.
  • the shape of the mother glass plate for inspection is likely to change, such as warping easily occurring. Therefore, regarding the width direction end area, in addition to measuring the front and back deflection difference in the first evaluation area mentioned above, we also set multiple third evaluation areas and measured the flatness of the multiple third evaluation areas using an optical interferometer. By measuring each degree, the shape accuracy of the mother glass plate for inspection can be measured more accurately.
  • the plurality of third evaluation regions are set in the width direction end area of the effective portion of the mother glass plate for inspection, and are not set in the entire effective portion of the mother glass plate for inspection. Therefore, an increase in the number of measurement targets due to the setting of a plurality of third evaluation regions is suppressed to a minimum, so that it is possible to eliminate the possibility that efficient measurement of the shape accuracy of the mother glass plate for inspection will be hindered.
  • the third evaluation region may have a rectangular shape with one side of 50 mm or more and 150 mm or less.
  • the size of the third evaluation area corresponds to the size of the HDD board (2.5 inch size or 3.5 inch size). Specifically, the size of the third evaluation area corresponds to the size of the rectangular glass plate before being processed into a circular shape. Therefore, it is advantageous in ensuring the shape accuracy of the mother glass plate for HDD substrates.
  • the third evaluation area is a part of the first evaluation area.
  • the first evaluation area and the third evaluation area can be measured. It is no longer necessary to cut out and from separate areas of the mother glass plate for inspection. Furthermore, regarding the third evaluation area, in addition to the measurement of the front and back deflection difference carried out for the first evaluation area, which is the basis of the third evaluation area, flatness measurement will also be carried out. The shape accuracy of the mother glass plate for inspection can be measured more accurately.
  • the mother glass plate has a defect inside, and the defect depth measurement step of measuring the depth from the main surface of the mother glass plate to the defect and a defect evaluation step of evaluating defects based on the measured depth.
  • the main surface of the glass plate cut into small pieces from the mother glass plate may be mechanically polished. Therefore, even if the mother glass plate has internal defects such as foreign objects or bubbles, if the depth from the main surface of the mother glass plate to the defect is less than a predetermined value, polishing will remove the defect. can be removed. In this way, a mother glass plate whose defects can be removed in a post-process can be used without being discarded as a defective product. Therefore, by executing the defect depth measurement process and the defect evaluation process, defects are classified into acceptable defects (defects that can be removed) whose depth is below a predetermined value and reject defects whose depth is greater than a predetermined value. By evaluating the mother glass plate based on the number, size, and type of reject defects, the yield of the mother glass plate can be improved.
  • the mother glass plate that can be manufactured by the above manufacturing method has a rectangular shape with a first side along the sheet drawing direction and a second side along the width direction orthogonal to the sheet drawing direction.
  • a mother glass plate for a hard disk drive having a first side and a second side each having a length of 1000 mm or more and a thickness of 0.3 mm or more and 0.7 mm or less, the mother glass plate having an effective
  • a plurality of rectangular first evaluation areas are set so as to fill the entire width of the section.
  • the values of the front and back deflection differences are all within the range of ⁇ 0.5 mm, and the front and back deflection differences are , is a value converted to a 350 mm square size.
  • this mother glass plate when converted to a 350 mm square size, the values of the front and back deflection differences along the sheet drawing direction and width direction in all the first evaluation areas are within the range of ⁇ 0.5 mm. This ensures high shape accuracy. Therefore, this mother glass plate is suitable as a mother glass plate for an HDD substrate that requires high shape accuracy.
  • the amount of change in the front and back deflection difference between the first evaluation regions adjacent in the width direction is 0.3 mm or less, respectively.
  • the change in the shape of the mother glass plate along the width direction will be small, so it is more suitable as a mother glass plate for an HDD substrate that requires high shape accuracy.
  • the position in the width direction is the same as the first evaluation area, and the first evaluation area corresponds to each of the plurality of first evaluation areas.
  • a second evaluation area adjacent to the area in the board pulling direction is further set, and when the front and back deflection differences are measured along the board pulling direction and the width direction for each of the second evaluation areas, the value of the front and back deflection difference is determined. It is preferable that both of them fall within the range of ⁇ 0.5 mm, and that the amount of change in the front and back deflection difference between the corresponding first evaluation area and second evaluation area is each 0.3 mm or less.
  • the change in shape of the mother glass plate along the drawing direction will be small, so it is more suitable as a mother glass plate for an HDD substrate that requires high shape accuracy.
  • a plurality of rectangular third evaluations are performed in a range where the distance from the first side is 30% or less of the length of the second side.
  • a region is set, each side of the third evaluation region is 100 mm, and when the flatness of all the third evaluation regions is measured using an optical interferometer, the flatness is 50 ⁇ m or less. It is preferable.
  • the size of the third evaluation area corresponds to the size of the HDD substrate (specifically, the size of the rectangular glass plate before being processed into a circle). Further, the flatness in all the third evaluation regions is 50 ⁇ m or less, and high flatness is ensured. Therefore, it is suitable as a mother glass plate for HDD substrates.
  • the mother glass plate according to any one of (8) to (11) above preferably has a longitudinal elastic modulus of 80 GPa or more.
  • the mother glass plate according to any of (8) to (12) above may have internal defects, and the depth of the defect from the main surface of the mother glass plate is 25 ⁇ m or less. It is preferable.
  • the defects in the mother glass plate is 25 ⁇ m or less from the main surface, the defects can be removed by mechanically polishing the main surface in the manufacturing process of manufacturing an HDD substrate from the mother glass plate. As shown above, even if there is a defect inside the mother glass plate, as long as the depth of the defect is 25 ⁇ m or less from the main surface, it can be used as a glass plate for HDD substrates without being discarded as a defective product. Therefore, the yield can be improved.
  • the mother glass plate according to the present disclosure when manufacturing a mother glass plate for an HDD substrate that requires high shape accuracy, if the step of measuring the shape accuracy of a mother glass plate for inspection is included, The effort and time required for measurement can be reduced while ensuring measurement accuracy. Further, the mother glass plate according to the present disclosure is suitable as a mother glass plate for an HDD substrate that requires high shape accuracy.
  • FIG. 3 is a plan view showing a mother glass plate.
  • FIG. 3 is a plan view showing a mother glass plate.
  • FIG. 3 is a plan view showing a mother glass plate.
  • FIG. 3 is a plan view showing a mother glass plate.
  • FIG. 3 is a plan view showing an enlarged view of the periphery of the first evaluation area on the mother glass plate.
  • FIG. 3 is a diagram for explaining a method of measuring the difference in deflection between the front and back sides. It is a figure which shows the measurement result of the front and back deflection difference along the board drawing direction of several first evaluation areas. It is a figure which shows the measurement result of the front and back deflection difference along the width direction of several first evaluation areas.
  • FIG. 7 is a diagram showing the measurement results of the front and back deflection difference along the width direction of the first evaluation area and the measurement result of the front and back deflection difference along the width direction of the second evaluation area.
  • FIG. 3 is a cross-sectional view schematically showing a mother glass plate.
  • FIG. 2 is a cross-sectional view schematically showing a glass plate cut out from a mother glass plate. It is a sectional view showing a production process in a method of manufacturing a mother glass plate. It is a schematic diagram which shows the collection process in the manufacturing method of a mother glass plate. It is a figure which shows the measurement result of a part of measurement process in the manufacturing method of a mother glass plate. It is a figure which shows the measurement result of a part of measurement process in the manufacturing method of a mother glass plate.
  • FIG. 1 shows a mother glass plate 1.
  • the mother glass plate 1 is a glass cut from a glass ribbon formed by a down-draw method or a float method.
  • This mother glass plate 1 is a mother glass for a product glass plate that requires high shape accuracy.
  • multiple product glass plates are cut from the mother glass plate 1.
  • the mother glass plate 1 of this embodiment is a mother glass for a 3.5-inch HDD substrate (glass substrate for a hard disk drive).
  • the mother glass plate 1 may be a mother glass of an HDD substrate of another size (for example, 2.5 inch size).
  • the present mother glass plate 1 has a rectangular shape having a first side 2 along the sheet drawing direction and a second side 3 along the width direction orthogonal to the sheet drawing direction.
  • the "drawing direction” of the mother glass plate 1 is a direction that coincides with the drawing direction of the glass ribbon during molding of the glass ribbon.
  • the "width direction” of the mother glass plate 1 is a direction that coincides with the width direction of the glass ribbon.
  • the board drawing direction can be observed as a striped pattern by emitting light from a light source (for example, a xenon light) in a dark room while adjusting the angle of the mother glass plate 1 and projecting the transmitted light onto a screen. Therefore, even in the mother glass plate 1 cut out from a glass ribbon, it is possible to determine the drawing direction and the width direction.
  • the present mother glass plate 1 has a longitudinal elastic modulus of 80 GPa or more.
  • the thickness of the mother glass plate 1 is 0.3 mm or more and 0.7 mm or less.
  • the length 2y of the first side 2 and the length 3x of the second side 3 are each 1000 mm or more.
  • the mother glass plate 1 is G8.5 size
  • the length 2y of the first side 2 is 2200 mm
  • the length 3x of the second side 3 is 2500 mm.
  • the present invention is not limited to this, and the mother glass plate 1 may have other sizes, such as G6 size, for example.
  • the mother glass plate 1 is preferably alkali-free glass or alkali aluminosilicate glass.
  • the glass composition in mol%, is SiO 2 60-75%, Al 2 O 3 5-20%, B 2 O 3 0-15%, Li 2 O + Na 2 O + K 2 O (Li 2 O , Na 2 O and K 2 O) 0 to less than 1%, MgO 0 to 10%, CaO 0 to 15%, SrO 0 to 10%, and BaO 0 to 10%.
  • the following glass composition examples (1) or (2) are particularly preferred.
  • the glass composition is SiO 2 : 50-75%, Al 2 O 3 : 10-30%, B 2 O 3 : 0-12%, Li 2 O: 0-10% in mol%. , Na 2 O: 2 to 18%, and K 2 O: 0 to 5%.
  • the following glass composition examples (3) or (4) are particularly preferred.
  • the entire area (total area) is an effective part.
  • the "effective area” is an area of the mother glass plate 1 that will later become a product glass plate. Note that in this embodiment, the entire area of the mother glass plate 1 is the effective portion, but this is not the case. If only a part of the area of the mother glass plate 1 becomes a product glass plate later, only the part of the area becomes an effective part.
  • a plurality of rectangular first evaluation areas 41 are set so as to fill the entire width of the effective portion (the full width of the mother glass plate 1). .
  • the plurality of first evaluation areas 41 are set so as to fill the entire width of the effective part” means that all points in the width direction of the effective part are set so as to fill the entire width of the effective part. It is to be included within either range.
  • the plurality of first evaluation areas 41 have the same size.
  • the dimension 41ay of the vertical side 41a extending in the board drawing direction and the dimension 41bx of the horizontal side 41b extending in the width direction are each 300 mm or more and 700 mm or less.
  • the dimension 41ay of the vertical side 41a is 500 mm
  • the dimension 41bx of the horizontal side 41b is 400 mm
  • the size of the first evaluation area 41 is larger than the size of the product glass plate (here, a 3.5-inch HDD substrate).
  • first evaluation areas 41 there are seven first evaluation areas 41.
  • the number of first evaluation regions 41 is not limited to seven, and the number of first evaluation regions 41 may be increased or decreased as appropriate, for example, depending on the size of mother glass plate 1.
  • the seven first evaluation areas 41 may be distinguished by being expressed as first evaluation areas A, B, . . . , F, G in the order of arrangement.
  • first evaluation areas 41 Five first evaluation areas B to F near the center in the width direction of the mother glass plate 1 are arranged in a line along the width direction of the mother glass plate 1 without gaps.
  • the two first evaluation areas A and G located at both ends of the mother glass plate 1 in the width direction are located at positions shifted from the five first evaluation areas B to F in the sheet drawing direction.
  • the first evaluation area A and the first evaluation area B, and the first evaluation area F and the first evaluation area G are located offset in the board drawing direction, but some areas overlap in the width direction. are doing.
  • first evaluation regions 41 are located near the center of the mother glass plate 1 in the drawing direction, but the present invention is not limited to this.
  • Each of the seven first evaluation regions 41 may be located at any position in the board drawing direction. That is, the location of each first evaluation area 41 may be shifted from the position illustrated in FIG. 1 in the board pulling direction. Therefore, as a form of setting the first evaluation area 41 on the mother glass plate 1, the form shown in FIGS. 2 and 3 may be adopted.
  • seven first evaluation areas 41 are arranged in a zigzag pattern.
  • all seven first evaluation regions 41 are arranged in a line without gaps along the width direction.
  • the position in the width direction is the same as that of the first evaluation region 41, and the first evaluation region 41 and the board
  • a second evaluation area 42 (indicated by a two-dot chain line in FIG. 4) adjacent to each other in the pulling direction is further set.
  • the second evaluation area 42 may be set above or below the first evaluation area 41 along the board drawing direction.
  • the dimension 42ay of the vertical side 42a extending in the board drawing direction of the second evaluation area 42 and the dimension 42bx of the horizontal side 42b extending in the width direction are the same as the dimension 41ay of the vertical side 41a of the first evaluation area 41, and , is preferably the same as the dimension 41bx of the horizontal side 41b (see FIG. 1 for dimensions 41ay and 41bx).
  • the seven second evaluation areas 42 may be distinguished by being expressed as second evaluation areas H, I, . . . M, N in the order of arrangement.
  • This mother glass plate 1 has a widthwise end area 5 (shown with diagonal lines in FIGS. 1 to 4).
  • the widthwise end areas 5 are set at one end and the other end of the mother glass plate 1 in the width direction, respectively.
  • the width dimension 5x of the width direction end area 5 is a dimension whose upper limit is 30% of the length 3x of the second side 3. That is, the widthwise end area 5 corresponds to a range in the mother glass plate 1 where the distance from the first side 2 is 30% or less of the length 3x of the second side 3.
  • the mother glass plate 1 is likely to warp (particularly in the range where the distance from the first side 2 is up to 300 mm).
  • a thick ear portion is formed further outside the width direction end area 5 in the width direction.
  • a plurality of rectangular third evaluation regions 6 are set in the width direction end area 5.
  • a plurality of third evaluation areas 6 are set in an area of the widthwise end area 5 that overlaps with the first evaluation area 41 . That is, each of the plurality of third evaluation areas 6 is a part of the first evaluation area 41.
  • the third evaluation area 6 may be set in a different area from the first evaluation area 41 in the widthwise end area 5 (an area that does not overlap with the first evaluation area 41). Further, the third evaluation area 6 may be positioned at any position in the board drawing direction as long as it is set within the width direction end area 5.
  • width direction end areas 5 are set at one end and the other end in the width direction of the mother glass plate 1
  • the width of the mother glass plate 1 is also set for the plurality of third evaluation regions 6. They are set at one end and the other end in the direction, respectively.
  • the third evaluation regions 6 are arranged in five rows along the board drawing direction and in two rows along the width direction at each of one end side and the other end side in the width direction. There is. Therefore, in this embodiment, the total number of third evaluation regions 6 set on the mother glass plate 1 is twenty.
  • the number of rows of third evaluation regions 6 along the board drawing direction and the width direction may be increased or decreased as appropriate. As an example, there may be 5 to 10 rows in the drawing direction and 1 to 3 rows in the width direction.
  • the third evaluation area 6 located at the outermost side in the width direction has no mother glass plate 1 in the area. It is preferable that the width direction edge of the (effective portion) be included.
  • Each side of the third evaluation region 6 is 50 mm or more and 150 mm or less.
  • the third evaluation area 6 of this embodiment has a square shape of 100 mm square. Note that, unlike this embodiment, when the product glass plate is a 2.5-inch HDD substrate, the third evaluation area 6 may be, for example, a 75 mm square.
  • the first evaluation areas 41 and 41 adjacent to each other in the width direction are considered as one set, and a total of 6 sets (set of A, B, set of B, C, . . . set of E, F, F , G), front and back deflections of two sides along the board drawing direction (two vertical sides 41a) and two sides along the width direction (two horizontal sides 41b) between the first evaluation areas 41,
  • each calculated value is 0.3 mm or less.
  • the calculated value of the amount of change ⁇ d1 is 0.2 mm or less, and even more preferable that it is 0.1 mm or less.
  • adjacent in the width direction refers not only to the case where both the first evaluation regions 41, 41 are located right next to each other, as in the pair A and B in FIG. This includes cases where both first evaluation areas 41, 41 are located at positions shifted in the board drawing direction, as in the set A and B in FIGS. 1 and 2.
  • each calculated value is preferably 0.3 mm or less, more preferably 0.2 mm or less, and even more preferably 0.1 mm or less.
  • the calculated value of the amount of change ⁇ d2 is 0.2 mm or less, and even more preferable that it is 0.1 mm or less. Note that only the amount of change ⁇ d2 between the front and back deflection difference d1 between the two sides of the first evaluation area 41 along the board drawing direction and the front and back deflection difference d2 between the two sides along the board drawing direction of the second evaluation area 42 is calculated. You can also calculate it.
  • the calculated values are each preferably 0.3 mm or less, more preferably 0.2 mm or less, and even more preferably 0.1 mm or less. preferable.
  • the front and back deflection difference d1 is measured according to the following procedure. As mentioned above, the front and back deflection difference d1 is measured in both the board drawing direction and the width direction for each of the seven first evaluation areas 41. Let us take as an example a case where the front and back deflection difference d1 along the front and back sides is measured.
  • the front and back deflection difference d1 is the deflection W1 when the front surface of the front and back surfaces of the first evaluation area A is placed on the upper side (indicated by the solid line), and the deflection W1 when the back side is placed on the upper side (indicated by the dashed-dotted line).
  • the first evaluation area A is supported by two support members 7, 7 extending in parallel with a distance L between them. In this embodiment, the distance L is 350 mm.
  • the vertical side 41a of the first evaluation area A is bridged between the two support members 7, 7.
  • the horizontal side 41b of the first evaluation area A is spanned between the two supporting members 7, 7.
  • the deflection W1 and the deflection W2 are measured for each of the two sides (two vertical sides 41a) extending in the board drawing direction
  • the front and back deflection difference d1 is measured for each of the two sides extending in the board drawing direction. That is, from the measurement mode shown in FIG. 6, two measured values, ie, the front and back deflection difference d1 on one side of the two vertical sides 41a and the front and back deflection difference d1 on the other side, are obtained.
  • the front and back deflection difference d1 Following the measurement procedure of the front and back deflection difference d1 described above, for each of the seven first evaluation areas 41, two sides along the board drawing direction (two vertical sides 41a) and two sides along the width direction (two horizontal sides) are measured. When the front and back deflection difference d1 of the side 41b) is measured, a total of 28 measured values are obtained as the front and back deflection difference d1. Note that since the values of the deflection W1 and the deflection W2 change depending on the length of the distance L, the value of the front and back deflection difference d1 may also change.
  • the measurement results of the front and back deflection differences d1 of the two sides along the board drawing direction of the seven first evaluation areas 41 (first evaluation areas A to G) are illustrated in FIG.
  • the measurement results of the front and back deflection difference d1 are illustrated in FIG. In FIGS. 7 and 8, the measurement results on one of the two sides are shown connected with a solid line, and the measurement results on the other side are shown connected with a chain line.
  • the measurement results of the front and back deflection difference d2 of the corresponding side (one of the two vertical sides 42a) of the second evaluation area 42 (second evaluation areas H to N) are displayed together in FIG. 11 (d1 are connected by a solid line, and d2 is connected by a chain line).
  • the flatness of each third evaluation region 6 is measured by the following method. That is, using a grazing incidence interferometer (product name: FT-17 or FT-900) manufactured by NIDEK, the flatness is measured with each third evaluation region 6 in an upright state. Specifically, the flatness of a circular region corresponding to the HDD substrate in each third evaluation region 6 is measured. Of course, other oblique incidence interferometers may be used. Then, the flatness value in the upright state is taken as the flatness value of each third evaluation region 6. A total of 20 flatness values obtained are all 50 ⁇ m or less. As a result, [shape accuracy criterion E] is satisfied.
  • the amount of change ⁇ d1 in the front and back deflection difference d1 of the first evaluation region 41, the front and back deflection difference d2 of the second evaluation region 42, the front and back deflection difference d1 of the first evaluation region 41, and the front and back deflection difference d2 of the second evaluation region 42 may not be considered.
  • the mother glass plate 1 may have internal defects 1d represented by foreign objects, bubbles, etc. At this time, if the depth of the defect 1d from the main surface (front surface 1a or back surface 1b) of the mother glass plate 1 is less than or equal to a predetermined value, the defect 1d may be removed during the process of manufacturing the HDD substrate from the mother glass plate 1. As a result, no defect 1d remains on the finally obtained HDD substrate.
  • the depth of the defect 1d from the main surface (front surface 1a or back surface 1b) of the mother glass plate 1 is preferably 25 ⁇ m or less, more preferably 20 ⁇ m or less, still more preferably 15 ⁇ m or less, and most preferably Preferably it is 10 ⁇ m or less. Defects 1d existing at a depth within this range can be suitably removed by mechanical polishing.
  • This manufacturing method consists of a production process P1 ( Figure 14) in which mother glass plates 1 are continuously produced on a production line, a sampling process P2 ( Figure 15) in which mother glass plates 8 for inspection are sampled from the production line, and a sampling process P2 ( Figure 15) in which mother glass plates 8 for inspection are sampled from the production line. It includes a measurement step of measuring the shape accuracy of the mother glass plate 8, and a pass/fail determination step of determining the pass/fail of the plurality of mother glass plates 1 produced in the production process P1 based on the results of the measurement step. Then, each of the plurality of mother glass plates 1 that passed the pass/fail determination process is obtained as a mother glass (mother glass for a 3.5-inch HDD substrate in this embodiment) with guaranteed shape accuracy.
  • a manufacturing apparatus 9 is used to execute the production process P1.
  • the manufacturing device 9 is a device that continuously molds the glass ribbon Gr.
  • the manufacturing apparatus 9 includes a forming furnace 10 that forms the glass ribbon Gr, an annealing furnace 11 that slowly cools the glass ribbon Gr (annealing process), a cooling zone 12 that cools the glass ribbon Gr to around room temperature, and these forming furnaces 10,
  • Each of the slow cooling furnace 11 and the cooling zone 12 is provided with a pair of rollers 13 provided in a plurality of upper and lower stages.
  • a molded body 14 for molding a glass ribbon Gr from molten glass Gm by an overflow down-draw method is arranged in the internal space of the molding furnace 10.
  • the molten glass Gm supplied to the molded body 14 overflows from a groove (not shown) formed in the top 14a of the molded body 14 to both sides.
  • the overflowing molten glass Gm passes along both side surfaces 14b of the wedge-shaped molded body 14 and joins at the lower end of the molded body 14, thereby forming a glass ribbon Gr continuously.
  • the glass ribbon Gr is in a vertical position (preferably in a vertical position), and the direction Q is the drawing direction.
  • the internal space of the slow cooling furnace 11 has a predetermined temperature gradient downward.
  • the glass ribbon Gr is slowly cooled so that its temperature decreases as it moves downward through the interior space of the slow cooling furnace 11. This slow cooling reduces the internal strain of the glass ribbon Gr.
  • the temperature gradient in the internal space of the lehr 11 can be adjusted by a heating device (for example, a heater) provided on the inner surface of the lehr 11.
  • the plurality of roller pairs 13 are configured to sandwich the widthwise ends of the vertically oriented glass ribbon Gr from both the front and back sides.
  • the plurality of roller pairs 13 may include rollers whose ends are not sandwiched.
  • the distance between the rollers constituting the roller pair 13 may be made larger than the thickness of the end portion, so that the end portion passes between the rollers.
  • the outside of the wall 15 that partitions the forming furnace 10, the slow cooling furnace 11, and the cooling zone 12 is surrounded by an outer enclosure 16 (for example, a building).
  • an outer enclosure 16 for example, a building
  • partition portions 17 and 18 for example, the floor surface of each floor of the building
  • partitions 17 and 18 divide the space between the wall 15 and the outer envelope 16 into a room R1 surrounding the lehr 11 and a room R2 surrounding the cooling zone 12.
  • the manufacturing device 9 includes a cutting device 19 below the cooling zone 12.
  • the cutting device 19 is configured to sequentially cut out the glass plates Gs (the original glass of the mother glass plate 1) from the glass ribbon Gr by cutting the glass ribbon Gr in a vertical position in the width direction every predetermined length. be done.
  • the cutting device 19 includes a wheel cutter (not shown) that runs on one side of the glass ribbon Gr descending from the cooling zone 12 to form a scribe line S along the width direction of the glass ribbon Gr; Bending stress is applied around the scribe line S while holding the contact portion 20 that supports the area where S is formed from the other side of the glass ribbon Gr and the glass ribbon Gr in the portion corresponding to the glass plate Gs.
  • a holding section 21 that performs an operation for this purpose (operation in the V direction) is provided.
  • the wheel cutter is configured to form a scribe line S over the entire width or a part of the width direction of the glass ribbon Gr while descending to follow the descending glass ribbon Gr.
  • the scribe line S is also formed at the end including the relatively thick ear, but the scribe line S does not need to be formed at the end.
  • the scribe line S may be formed by laser irradiation or the like. Further, since the end portion including the ear portion is cut and removed from the glass plate Gs in a post-process, no ear portion remains in the produced mother glass plate 1.
  • the contact portion 20 is composed of an elongated bar that descends to follow the descending glass ribbon Gr and comes into contact with the entire width or a portion of the glass ribbon Gr in the width direction.
  • the contact surface with the glass ribbon Gr in the contact portion 20 may be a plane or a curved surface curved in the width direction.
  • the holding part 21 is composed of a chuck that holds the end of the glass ribbon Gr in the width direction from both the front and back sides.
  • a plurality of holding parts 21 are provided at intervals in the longitudinal direction of the glass ribbon Gr.
  • the holding portions 21 are provided for one end and the other end in the width direction of the glass ribbon Gr, respectively. All of the plurality of holding parts 21 for one side end are held by the same arm (not shown). Similarly, all of the plurality of holding parts 21 for the other end are held by the same arm (not shown). By the operation of these arms, the plurality of holding parts 21 for one side end and the other side end follow the descending glass ribbon Gr and curve the glass ribbon Gr using the contact part 20 as a fulcrum. (movement in the V direction).
  • the holding part 21 is not limited to the form in which it holds the end portion of the glass ribbon Gr, but may be in a form in which it holds either the front or back surface of the glass ribbon Gr by suction, for example.
  • Each glass plate Gs cut from the glass ribbon Gr includes a rectangular effective portion that will later become the mother glass plate 1, and end portions located on both sides in the width direction with the effective portion in between.
  • the ends include thick ears.
  • the effective portion is cut out by cutting and removing the end portion from the glass plate Gs.
  • a scribe line is formed along the sheet drawing direction on the glass plate Gs (formed along the boundary between the effective part and the end part), and a break cut is performed along the scribe line. By doing so, both ends of the glass plate Gs in the width direction are cut and removed. Thereby, the effective portion is cut out from the glass plate Gs to obtain the mother glass plate 1.
  • the glass ribbon Gr by appropriately annealing the glass ribbon Gr in the annealing performed in the annealing furnace 11 described above, a predetermined shape accuracy can be obtained in the glass ribbon Gr and the mother glass plate 1 obtained from this glass ribbon Gr. I can do it.
  • the ambient temperature of the glass ribbon Gr changes over time within the slow cooling temperature range, it will affect the shape accuracy of the glass ribbon Gr (mother glass plate 1). Therefore, by suppressing the differential pressure fluctuation between the room R1 surrounding the lehr 11 and the cooling zone 12 (inner space of the cooling zone 12 divided by the wall 15), the temperature inside the lehr 11 is kept constant.
  • the range of variation in the differential pressure between the room R1 surrounding the slow cooling furnace 11 and the cooling zone 12 was set to 0.5 Pa to 1.5 Pa.
  • the "fluctuation range of differential pressure” means the difference between the maximum value and the minimum value of the differential pressure between the room R1 surrounding the lehr 11 and the cooling zone 12 during the period of producing the mother glass plate 1.
  • FIG. 15 a plurality of mother glass plates 1 are displayed side by side in the order in which they were produced in the production process P1.
  • the mother glass plates 1 on the right side of the row are mother glass plates 1 that were produced earlier in chronological order.
  • a test mother glass plate 8 whose shape accuracy is to be measured in the measurement process is sampled.
  • the sampling step P2 is executed at predetermined time intervals (for example, every 2 to 24 hours). That is, the left side of the two mother glass plates 8 for inspection shown in FIG. 15 is the mother glass plate 8 for inspection taken after a predetermined time period from the right side.
  • the mother glass plate 8 for inspection on the right side, which was sampled first, will be referred to as the plate for preceding inspection 8a
  • the mother glass plate 8 for inspection on the left side, sampled later, will be referred to as the plate for subsequent inspection.
  • the plate for subsequent inspection There may be cases where a distinction is made.
  • the time interval for performing the collection process P2 is shorter than the time interval before the molding conditions are changed.
  • the number of mother glass plates 8 for inspection sampled in one sampling process P2 may be one as in this embodiment. It is also possible to use a plurality of sheets.
  • ⁇ Measurement process> In the measurement process, first, a plurality of (seven in this embodiment) first evaluation regions 41 and widthwise end areas 5 are set on the preliminary inspection board 8a, as shown in FIG. , a plurality of (seven in this embodiment) second evaluation regions 42 are set as shown in FIG. A total of 20 third evaluation regions 6 (10 on each side and 10 on the other end) are set. Note that a plurality of first evaluation areas 41 may be set in the same manner as shown in FIGS. 2 and 3.
  • Step 1 For each of the seven first evaluation regions 41 (first evaluation regions A to G), the front and back deflection differences d1 along the board drawing direction and the width direction are measured.
  • the specific procedure for measuring the front and back deflection difference d1 is the same as the procedure described above.
  • a total of 28 front and back deflection differences d1 (14 in the board drawing direction and 14 in the width direction) are measured for one advance inspection board 8a.
  • Step 2 Adjacent first evaluation areas 41 and 41 are set as one set, totaling 6 sets (set of A, B, set of B, C, ... set of E, F, set of F, G)
  • the amount of change ⁇ d1 in the front and back deflection difference d1 between the first evaluation regions 41, 41 along the board drawing direction and the width direction is calculated.
  • the manner of calculating the amount of change ⁇ d1 is the same as the manner described above.
  • a total of 24 change amounts ⁇ d1 (12 in the board drawing direction and 12 in the width direction) are calculated for one advance inspection board 8a.
  • only the amount of change ⁇ d1 in the front and back deflection difference d1 along the width direction may be calculated.
  • Step 3 For each of the seven second evaluation regions 42 (second evaluation regions H to N), the front and back deflection differences d2 along the board drawing direction and the width direction are respectively measured.
  • the specific procedure for measuring the front and back deflection difference d2 is the same as the procedure described above.
  • a total of 28 front and back deflection differences d2 (14 in the board drawing direction and 14 in the width direction) are measured for one advance inspection board 8a.
  • Step 4 With the corresponding first evaluation area 41 and second evaluation area 42 as one set, a total of 7 sets (A, H group, B, I group, . . . F, M group, G, N sets), the amount of change ⁇ d2 between the front and back deflection difference d1 of the four sides of the first evaluation area 41 and the front and back deflection difference d2 of the corresponding four sides of the corresponding second evaluation area 42 is calculated.
  • the manner in which the amount of change ⁇ d2 is calculated is the same as the manner described above. As a result, a total of 28 variations ⁇ d2 are calculated for one advance inspection board 8a.
  • Step 5 Measure the flatness of all third evaluation regions 6 using an optical interferometer.
  • the method of measuring flatness is similar to the method described above. As a result, a total of 20 flatness values are measured for one advance inspection board 8a.
  • a first evaluation area 41, a widthwise end area 5, a second evaluation area 42, and a third evaluation area 6 were set in the same manner as the preceding inspection board 8a. Then, the above [Step 1] to [Step 5] are executed. As a result, for one subsequent inspection board 8b, a total of 28 front and back deflection differences d1, a total of 28 front and back deflection differences d2, a total of 24 changes ⁇ d1, a total of 28 changes ⁇ d2, and a total of 20 flatness values are measured and calculated.
  • the front and back deflection differences d1 and d2 are measured, the amounts of change ⁇ d1 and ⁇ d2 are calculated, and the flatness is measured for each of the plurality of plates.
  • Step 6 Corresponding first evaluation area between the mother glass plates for inspection 8 and 8 (between the preceding inspection plate 8a and the subsequent inspection plate 8b) sampled in two consecutive sampling steps P2 41, 41 (first evaluation areas A, between A, B, between B, ... F, between F, G, along the width direction)
  • the amount of change ⁇ d3 in the front and back deflection difference d1 is calculated.
  • FIG. 16 examples of the amount of change ⁇ d3 are shown in FIG. 16 (results for one of the two sides extending in the board drawing direction) and FIG. 17 (results for one of the two sides extending in the width direction).
  • What is shown in FIGS. 16 and 17 by a solid line is the measurement result of the front and back deflection difference d1 for the preceding test board 8a, and what is shown by a chain line is the corresponding front and back deflection for the subsequent test board 8b.
  • These are the measurement results of the difference d1.
  • the amount of change ⁇ d3 is calculated to be 28 in total (14 in the board drawing direction and 14 in the width direction) when there is one each of the preceding inspection board 8a and the subsequent inspection board 8b.
  • the method may further include a defect depth measuring step and a defect evaluation step of evaluating the defect 1d based on the measured depth.
  • a defect depth measuring step When performing both of these steps, among the plurality of mother glass plates 1 that were judged to be acceptable in the above pass/fail judgment process, only the mother glass plates 1 that were also judged to be acceptable based on the results of the defect evaluation process are selected. It can also be treated as one that satisfies the quality of the mother glass plate 1 of the HDD board.
  • ⁇ Defect depth measurement process> it is possible to measure the depth of the defect 1d using various known measuring methods. For example, from among the images taken of the mother glass plate 1 at a plurality of focal lengths, an image that is most focused on the defect 1d is selected, and based on the focal position of the image, the defect 1d from the main surface is (the depth along the thickness direction of the mother glass plate 1) can be calculated.
  • ⁇ Defect evaluation process In the defect evaluation process, if the depth of the defect 1d measured in the defect depth measurement process is below a predetermined value (for example, 25 ⁇ m or less, 20 ⁇ m or less, 15 ⁇ m or less, 10 ⁇ m or less), the size and type of the defect 1d are determined. Regardless, the defect 1d is determined to be an acceptable defect. At that time, a defect whose depth from one main surface is less than or equal to a predetermined value may be determined to be an acceptable defect, but a defect whose depth from one main surface is less than or equal to a predetermined value may be determined to be an acceptable defect.
  • a predetermined value for example, 25 ⁇ m or less, 20 ⁇ m or less, 15 ⁇ m or less, 10 ⁇ m or less
  • the mother glass plate 1 determines a defect whose depth from the other main surface is less than or equal to a predetermined value as an acceptable defect. If the mother glass plate 1 has only acceptable defects, the mother glass plate 1 is determined to be acceptable. On the other hand, if the depth of the defect 1d is greater than a predetermined value, the defect 1d is determined to be a reject defect. Thereafter, the pass/fail of the mother glass plate 1 is determined based on the number, size, and type of reject defects included in the mother glass plate 1, and the mother glass plate 1 determined to be rejected is discarded. By performing such a defect evaluation process, it can be determined that the mother glass plate 1 having only acceptable defects satisfies the quality as the mother glass plate 1 for an HDD substrate, and the yield of the mother glass plate 1 can be improved. can do.

Abstract

This method for manufacturing a mother glass sheet includes a collection step P2 for collecting a mother glass sheet 8 for inspection, and a measurement step for measuring the shape accuracy of the mother glass sheet 8 for inspection, wherein: the collection step P2 is executed every prescribed period of time, and sets a plurality of rectangular first evaluation regions 41 so as to satisfy the full width of the effective portion of the collected mother glass sheet 8 for inspection; and the measurement step includes a step for measuring a front-to-back deflection difference d1 along a sheet drawing direction and width direction for each first evaluation region 41, and a step for calculating a change amount Δd3 of the front-to-back deflection difference d1 between corresponding first evaluation regions 41, 41 between mother glass sheets 8, 8 for inspection collected in two consecutive collection steps P2.

Description

マザーガラス板およびマザーガラス板の製造方法Mother glass plate and method for manufacturing mother glass plate
 本開示は、マザーガラス板およびマザーガラス板の製造方法に関する。 The present disclosure relates to a mother glass plate and a method for manufacturing a mother glass plate.
 高い平坦度が要求されるガラス板の一例として、ハードディスクドライブ用のガラス基板(以下、HDD基板と表記)が挙げられる。特許文献1には、HDD基板の一例が開示されている。 An example of a glass plate that requires high flatness is a glass substrate for a hard disk drive (hereinafter referred to as an HDD substrate). Patent Document 1 discloses an example of an HDD board.
 HDD基板を製造する態様の一例として、3.5インチサイズのHDD基板を製造する場合、まず、例えば1300×1500mm~2400×2800mmサイズの大面積のマザーガラス板から小面積の矩形状ガラス板(100mm角程度のサイズ)を多数切り出す。その後、矩形状ガラス板のそれぞれを円形に加工することによりHDD基板(プラッターブランクとも呼ばれる)を製造する。 As an example of a mode of manufacturing an HDD substrate, when manufacturing a 3.5-inch HDD substrate, first, a large-area mother glass plate with a size of 1300 x 1500 mm to 2400 x 2800 mm, for example, and a small-area rectangular glass plate ( Cut out a large number of pieces (about 100mm square). Thereafter, an HDD substrate (also called a platter blank) is manufactured by processing each of the rectangular glass plates into a circular shape.
 HDD基板の形状精度を測定する手法としては、円形に加工される前の矩形状ガラス板について、当該ガラス板のHDD基板に対応する円形の領域を対象に、斜入射干渉計を用いて平坦度を測定する手法がある。ここで、一例ではあるが、3.5インチサイズのHDD基板に要求される平坦度は、重力の影響がない直立状態で50μm以下と厳しいものである。 A method for measuring the shape accuracy of an HDD substrate is to measure the flatness of a rectangular glass plate before it is processed into a circular shape using an oblique incidence interferometer, targeting a circular area of the glass plate that corresponds to the HDD substrate. There is a method to measure Here, as an example, the flatness required for a 3.5-inch HDD substrate is as severe as 50 μm or less in an upright state without the influence of gravity.
特表2020-510950号公報Special Publication No. 2020-510950
 このとおりHDD基板の形状精度には厳しい要求があることから、HDD基板の元となるマザーガラス板を製造するに際しては、例えば、以下の手順でマザーガラス板の形状精度を保証する必要がある。 As described above, there are strict requirements for the shape accuracy of the HDD substrate, so when manufacturing the mother glass plate that is the basis of the HDD board, it is necessary to ensure the shape accuracy of the mother glass plate by, for example, the following procedure.
 まず、マザーガラス板の製造ラインから検査用マザーガラス板を採取する。続いて、この採取した検査用マザーガラス板の形状精度を測定する。具体的には、検査用マザーガラス板から多数の矩形状ガラス板(100mm角程度のサイズ)を切り出す。これら多数の矩形状ガラス板は、検査用マザーガラス板の板引き方向および幅方向に沿って配列されている。その後、切り出した矩形状ガラス板の一枚一枚に対し、斜入射干渉計を用いた平坦度の測定を実施する。そして、全ての矩形状ガラス板の平坦度の値が許容範囲内であれば、マザーガラス板がHDD基板用として形状精度の基準を満たしていると判定し、マザーガラス板の形状精度を保証する。 First, a mother glass plate for inspection is collected from the mother glass plate production line. Next, the shape accuracy of the sampled mother glass plate for inspection is measured. Specifically, a large number of rectangular glass plates (about 100 mm square) are cut out from a mother glass plate for inspection. These many rectangular glass plates are arranged along the drawing direction and the width direction of the mother glass plate for inspection. Thereafter, the flatness of each cut rectangular glass plate is measured using an oblique incidence interferometer. If the flatness values of all the rectangular glass plates are within the allowable range, it is determined that the mother glass plate satisfies the shape accuracy standard for HDD substrates, and the shape accuracy of the mother glass plate is guaranteed. .
 このとおり、マザーガラス板の形状精度を保証するに際しては、多数の矩形状ガラス板の平坦度を測定することで検査用マザーガラス板の形状精度を測定する。詰る所、上述の手順は、最終製品(HDD基板)のサイズに対応する矩形状ガラス板を検査用マザーガラス板から実際に多数切り出した上で、その一枚一枚が要求される形状精度を満たしていれば、マザーガラス板がHDD基板用として形状精度の基準を満たしているとするものである。 As described above, when ensuring the shape accuracy of the mother glass plate, the shape accuracy of the mother glass plate for inspection is measured by measuring the flatness of a large number of rectangular glass plates. The bottom line is that the above procedure involves actually cutting out a large number of rectangular glass plates corresponding to the size of the final product (HDD board) from a mother glass plate for inspection, and then ensuring that each piece has the required shape accuracy. If it satisfies the criteria, it is determined that the mother glass plate satisfies the shape accuracy criteria for HDD substrates.
 上述の手順でマザーガラス板の形状精度を保証する場合、検査用マザーガラス板から切り出す矩形状ガラス板の枚数が数百枚にも及ぶことがある。一例を挙げると、2200×2500mmサイズの検査用マザーガラス板の一部を使用する場合、当該検査用マザーガラス板の板引き方向に沿って10列分、幅方向に沿って25列分、合計250枚分もの矩形状ガラス板を切り出すことになる。そして、250枚の一枚一枚に対して形状精度を測定する必要がある。このため、検査用マザーガラス板の形状精度の測定に多くの手間と時間が掛かるという問題がある。 When ensuring the shape accuracy of the mother glass plate using the above procedure, the number of rectangular glass plates cut out from the mother glass plate for inspection may reach several hundred pieces. For example, when using a part of a mother glass plate for inspection with a size of 2200 x 2500 mm, a total of 10 rows along the drawing direction and 25 columns along the width direction of the mother glass plate for inspection are used. This meant cutting out 250 rectangular glass plates. Then, it is necessary to measure the shape accuracy of each of the 250 sheets. Therefore, there is a problem in that it takes a lot of effort and time to measure the shape accuracy of the mother glass plate for inspection.
 上述の事情に鑑みて解決すべき技術的課題は、高い形状精度が要求されるHDD基板のマザーガラス板を製造するに際し、検査用マザーガラス板の形状精度を測定する工程が含まれる場合に、測定の精度を確保した上で測定に要する手間と時間を削減することである。 In view of the above-mentioned circumstances, the technical problem to be solved is that when manufacturing mother glass plates for HDD boards that require high shape accuracy, if a step of measuring the shape accuracy of the mother glass plate for inspection is included, The objective is to reduce the effort and time required for measurement while ensuring measurement accuracy.
(1) 上記の課題を解決するためのマザーガラス板の製造方法は、製造ラインでマザーガラス板を連続的に生産する生産工程と、製造ラインから検査用マザーガラス板を採取する採取工程と、検査用マザーガラス板の形状精度を測定する測定工程と、測定工程の結果に基づいて生産工程で生産した複数のマザーガラス板の合否を判定する合否判定工程と、を備えるハードディスクドライブ用のマザーガラスの製造方法であって、マザーガラス板は、板引き方向に沿った第一辺と、板引き方向と直交する幅方向に沿った第二辺とを有する矩形状であり、かつ、第一辺および第二辺のそれぞれの長さが1000mm以上、厚さが0.3mm以上0.7mm以下であり、採取工程は、所定時間ごとに実行すると共に、採取した検査用マザーガラス板の有効部の全幅を充足するように、有効部に対して一辺の長さが300mm以上700mm以下である複数の矩形状の第一評価領域を幅方向に配列して設定し、測定工程は、複数の第一評価領域の各々について、板引き方向および幅方向に沿った表裏撓み差をそれぞれ測定する工程と、連続する二回の採取工程で採取した検査用マザーガラス板間での、対応する第一評価領域間における表裏撓み差の変化量をそれぞれ算出する工程と、を備える。 (1) A method for manufacturing a mother glass plate to solve the above problems includes a production process in which mother glass plates are continuously produced on a production line, a sampling process in which a mother glass plate for inspection is collected from the production line, Mother glass for hard disk drives, comprising: a measurement process for measuring the shape accuracy of a mother glass plate for inspection; and a pass/fail judgment process for judging the pass/fail of a plurality of mother glass plates produced in a production process based on the results of the measurement process. In the manufacturing method, the mother glass plate has a rectangular shape having a first side along the sheet drawing direction and a second side along the width direction perpendicular to the sheet drawing direction, and and the second side each has a length of 1000 mm or more and a thickness of 0.3 mm or more and 0.7 mm or less, and the sampling process is performed at predetermined intervals, and the effective part of the sampled mother glass plate for inspection is A plurality of rectangular first evaluation regions with a side length of 300 mm or more and 700 mm or less are arranged and set in the width direction with respect to the effective part so as to satisfy the entire width. For each of the evaluation areas, the process of measuring the front and back deflection differences along the sheet drawing direction and the width direction, respectively, and the corresponding first evaluation area between mother glass plates for inspection sampled in two successive sampling processes. and calculating the amount of change in the difference in deflection between the front and back surfaces.
 本製造方法の測定工程では、検査用マザーガラス板の形状精度を測定するに際し、複数の第一評価領域の各々について、板引き方向および幅方向に沿った表裏撓み差をそれぞれ測定する工程(以下、表裏撓み差測定工程と表記)を実行する。このような測定態様によれば、斜入射干渉計を用いて、多数の矩形状ガラス板の平坦度を測定することで検査用マザーガラス板の形状精度を測定する場合に比べ、効率よく形状精度を測定できる。これは下記の(A),(B)の理由によるものである。(A)個々の第一評価領域のサイズ(一辺の長さが300mm以上700mm以下)を、斜入射干渉計を用いる場合における矩形状ガラス板のサイズよりも大きくできることに由来して、測定対象の数を大幅に削減できる。すなわち、矩形状ガラス板の数と比較して、第一評価領域の数を大幅に削減することが可能となる。(B)上述のとおり第一評価領域のサイズを大きくしても、検査用マザーガラス板の形状精度の測定を正確に実施できる。つまり、要求される形状精度の基準を検査用マザーガラス板が満たしているか否かを正確に判別できる。この理由は以下のとおりである。マザーガラス板(検査用マザーガラス板)は、小さな領域で局所的に形状が変化するものではなく、大きな領域で緩やかに形状が変化するものである。そのため、第一評価領域の形状精度(表裏撓み差に基づく形状精度)を保証できれば、第一評価領域よりも小さいサイズ(最終製品のサイズ等)に切り出した場合における形状精度も保証できるからである。上記(A),(B)の理由から、本測定工程によれば、検査用マザーガラス板の形状精度を測定するに際し、測定対象の数を大幅に削減できると共に、測定を正確に実施できる。その結果、測定の精度を確保した上で測定に要する手間と時間を削減することが可能となる。 In the measurement process of this manufacturing method, when measuring the shape accuracy of the mother glass plate for inspection, the process (hereinafter referred to as , front and back deflection difference measuring process) is executed. According to this measurement mode, the shape accuracy can be more efficiently achieved than when measuring the shape accuracy of a mother glass plate for inspection by measuring the flatness of a large number of rectangular glass plates using an oblique incidence interferometer. can be measured. This is due to the following reasons (A) and (B). (A) The size of each first evaluation region (length of one side is 300 mm or more and 700 mm or less) can be made larger than the size of the rectangular glass plate when using a grazing incidence interferometer. The number can be significantly reduced. That is, the number of first evaluation regions can be significantly reduced compared to the number of rectangular glass plates. (B) As described above, even if the size of the first evaluation area is increased, the shape accuracy of the mother glass plate for inspection can be accurately measured. In other words, it is possible to accurately determine whether or not the mother glass plate for inspection satisfies the required standard of shape accuracy. The reason for this is as follows. The shape of a mother glass plate (mother glass plate for inspection) does not change locally in a small area, but gradually changes in a large area. Therefore, if the shape accuracy of the first evaluation area (shape accuracy based on the front and back deflection difference) can be guaranteed, the shape accuracy when cut out to a smaller size than the first evaluation area (such as the size of the final product) can also be guaranteed. . For the reasons (A) and (B) above, according to this measurement process, when measuring the shape accuracy of the mother glass plate for inspection, the number of objects to be measured can be significantly reduced, and the measurement can be performed accurately. As a result, it is possible to reduce the effort and time required for measurement while ensuring measurement accuracy.
 本製造方法の測定工程では、表裏撓み差測定工程に加え、連続する二回の採取工程で採取した検査用マザーガラス板間での、対応する第一評価領域間における表裏撓み差の変化量をそれぞれ算出する工程(以下、対応領域間撓み差変化量算出工程と表記)を実行する。その後には、測定工程の結果に基づいて生産工程で生産した複数のマザーガラス板の合否を判定する合否判定工程を実行する。そして、本製造方法においては、下記の[条件1]及び[条件2]の両方を満たしている場合に、複数のマザーガラス板を合格と判定することができる。なお、「複数のマザーガラス板」とは、連続する二回の採取工程のうち、先の採取工程および後の採取工程でそれぞれ採取した検査用マザーガラス板を先行検査用板および後続検査用板としたときに、製造ライン上にて先行検査用板と後続検査用板との相互間に挟まれる複数のマザーガラス板を指す。[条件1]:連続する二回の採取工程で採取した検査用マザーガラス板(先行検査用板および後続検査用板)のそれぞれが、要求される形状精度の基準を満たしていること。詳細には、先行検査用板および後続検査用板の双方において、複数の第一評価領域の各々について、板引き方向および幅方向に沿った表裏撓み差をそれぞれ測定したとき(表裏撓み差測定工程を実行したとき)に、全ての第一評価領域での板引き方向および幅方向に沿った表裏撓み差の値が許容範囲内であること。[条件2]:連続する二回の採取工程で採取した検査用マザーガラス板間(先行検査用板と後続検査用板との間)での、対応する第一評価領域間における表裏撓み差の変化量を算出したとき(対応領域間撓み差変化量算出工程を実行したとき)に、全ての算出値が許容範囲内であること。例えば、1枚の検査用マザーガラス板に第一評価領域が7つ存在する場合には、7つの全てにおいて、対応する第一評価領域間における表裏撓み差の変化量が許容範囲内である必要がある。一方、[条件1]及び[条件2]のいずれか片方でも満たさない場合には、上記の複数のマザーガラス板を不合格と判定することができる。 In the measurement process of this manufacturing method, in addition to the process of measuring the front and back deflection difference, the amount of change in the front and back deflection difference between the corresponding first evaluation areas between the mother glass plates for inspection sampled in two successive sampling processes is measured. A step of calculating each (hereinafter referred to as "inter-corresponding region deflection difference change amount calculation step") is executed. After that, a pass/fail determination process is performed to determine whether or not the plurality of mother glass plates produced in the production process are acceptable based on the results of the measurement process. In this manufacturing method, a plurality of mother glass plates can be determined to be acceptable if both of the following [Condition 1] and [Condition 2] are satisfied. In addition, "multiple mother glass plates" refers to the mother glass plates for inspection that were collected in the first and second sampling processes of two successive sampling processes, respectively, as the preceding inspection plate and the subsequent inspection plate. This refers to a plurality of mother glass plates sandwiched between a preceding inspection plate and a subsequent inspection plate on a production line. [Condition 1]: Each of the mother glass plates for inspection (the plate for the preceding inspection and the plate for the subsequent inspection) collected in two successive sampling steps satisfies the required standard of shape accuracy. In detail, when measuring the front and back deflection differences along the board pulling direction and the width direction for each of the plurality of first evaluation regions for both the preceding inspection board and the subsequent inspection board (front and back deflection difference measurement step ), the values of the front and back deflection differences along the board drawing direction and width direction in all the first evaluation areas must be within the allowable range. [Condition 2]: The difference in front and back deflection between the corresponding first evaluation areas between the mother glass plates for inspection (between the preceding inspection plate and the subsequent inspection plate) sampled in two successive sampling steps. When the amount of change is calculated (when the step of calculating the amount of change in deflection difference between corresponding regions is executed), all calculated values are within the allowable range. For example, if there are seven first evaluation regions on one mother glass plate for inspection, the amount of change in the front and back deflection difference between the corresponding first evaluation regions must be within the allowable range in all seven. There is. On the other hand, if either [Condition 1] or [Condition 2] is not satisfied, the plurality of mother glass plates described above can be determined to be rejected.
(2) 上記(1)の製造方法において、測定工程は、個々の検査用マザーガラス板を対象として、幅方向に隣り合う第一評価領域間における表裏撓み差の変化量をそれぞれ算出する工程をさらに備えることが好ましい。 (2) In the manufacturing method of (1) above, the measurement step includes a step of calculating the amount of change in the front and back deflection difference between the first evaluation regions adjacent in the width direction for each mother glass plate for inspection. It is preferable to further provide.
 このようにすれば、測定工程において、幅方向に隣り合う第一評価領域間における表裏撓み差の変化量に基づいて、検査用マザーガラス板の幅方向に沿った形状の変化を明らかにできる。そのため、検査用マザーガラス板の形状精度を更に正確に測定することが可能となる。これにより、マザーガラス板に一層高い形状精度が要求され、当該要求を満足させるマザーガラス板を選別する(合否判定工程にて合格と判定する)場合に有利となる。例えば、上記の条件1及び条件2の両方を満たすことに加え、幅方向に隣り合う第一評価領域間における表裏撓み差の変化量をそれぞれ算出した上で、算出値の全てが閾値以下である場合に合否判定工程にて合格と判定するようにすれば、一層高い形状精度のマザーガラス板が得られる。 In this way, in the measurement step, it is possible to clarify the change in the shape of the mother glass plate for inspection along the width direction based on the amount of change in the front and back deflection difference between the first evaluation regions adjacent in the width direction. Therefore, it becomes possible to more accurately measure the shape accuracy of the mother glass plate for inspection. This is advantageous when a mother glass plate is required to have higher shape accuracy and a mother glass plate that satisfies the requirement is selected (determined as acceptable in the pass/fail determination process). For example, in addition to satisfying both Conditions 1 and 2 above, after calculating the amount of change in the front and back deflection difference between the first evaluation areas adjacent in the width direction, all of the calculated values are less than or equal to the threshold value. In this case, if the pass/fail determination step is made to determine pass, a mother glass plate with even higher shape accuracy can be obtained.
(3) 上記(1)または(2)の製造方法において、採取工程では、複数の第一評価領域の各々に対応させて、第一評価領域と幅方向の位置が同一であり、且つ、第一評価領域と板引き方向に隣り合う第二評価領域をさらに設定し、測定工程は、第二評価領域の各々について、板引き方向および幅方向に沿った表裏撓み差をそれぞれ測定する工程と、対応する第一評価領域と第二評価領域との間の表裏撓み差の変化量をそれぞれ算出する工程と、をさらに備えていてもよい。 (3) In the manufacturing method of (1) or (2) above, in the sampling step, in correspondence with each of the plurality of first evaluation regions, A second evaluation area adjacent to the first evaluation area in the board drawing direction is further set, and the measuring step is a step of measuring the front and back deflection difference along the board drawing direction and the width direction for each of the second evaluation areas, respectively; The method may further include the step of calculating the amount of change in the front and back deflection difference between the corresponding first evaluation area and second evaluation area.
 このようにすれば、測定工程において、第二評価領域における板引き方向および幅方向に沿った表裏撓み差、並びに板引き方向に隣り合う第一評価領域と第二評価領域との間の表裏撓み差の変化量に基づいて、検査用マザーガラス板の板引き方向に沿った形状の変化を明らかにできる。そのため、検査用マザーガラス板の形状精度を更に正確に測定することが可能となる。これにより、マザーガラス板に一層高い形状精度が要求され、当該要求を満足させるマザーガラス板を選別する(合否判定工程にて合格と判定する)場合に有利となる。例えば、上記の条件1及び条件2の両方を満たすことに加え、第二評価領域における板引き方向および幅方向に沿った表裏撓み差、並びに板引き方向に隣り合う第一評価領域と第二評価領域との間の表裏撓み差の変化量をそれぞれ算出した上で、算出値の全てが閾値以下である場合に合否判定工程にて合格と判定するようにすれば、一層高い形状精度のマザーガラス板が得られる。 In this way, in the measurement process, the front and back deflections in the second evaluation area along the board drawing direction and the width direction, as well as the front and back deflections between the first and second evaluation areas adjacent in the board drawing direction, can be measured. Based on the amount of change in the difference, changes in the shape of the mother glass plate for inspection along the drawing direction can be clarified. Therefore, it becomes possible to more accurately measure the shape accuracy of the mother glass plate for inspection. This is advantageous when a mother glass plate is required to have higher shape accuracy and a mother glass plate that satisfies the requirement is selected (determined as acceptable in the pass/fail determination process). For example, in addition to satisfying both Conditions 1 and 2 above, the difference in front and back deflection along the board drawing direction and width direction in the second evaluation area, and the first evaluation area and second evaluation area adjacent to the board drawing direction. If the amount of change in the front and back deflection difference between the regions is calculated, and if all of the calculated values are below the threshold, it will be judged as passing in the pass/fail judgment process, then mother glass with even higher shape accuracy can be created. A board is obtained.
(4) 上記(1)~(3)のいずれかの製造方法において、採取工程では、採取した検査用マザーガラス板の有効部における幅方向端部エリアに対し、複数の第三評価領域をさらに設定すると共に、幅方向端部エリアの幅が第二辺の長さの30%以下であり、測定工程は、光学式干渉計により、複数の第三評価領域の平坦度をそれぞれ測定する工程をさらに備えていてもよい。 (4) In any of the manufacturing methods (1) to (3) above, in the sampling step, a plurality of third evaluation areas are further added to the width direction end area of the effective part of the sampled mother glass plate for inspection. In addition, the width of the width direction end area is 30% or less of the length of the second side, and the measurement step includes a step of measuring the flatness of each of the plurality of third evaluation regions using an optical interferometer. You may also have more.
 検査用マザーガラス板の有効部における幅方向端部エリアでは、反りが発生しやすいなど検査用マザーガラス板の形状が変化しやすい。そのため、幅方向端部エリアについては、上述の第一評価領域の表裏撓み差の測定に加え、複数の第三評価領域を設定した上で、光学式干渉計により複数の第三評価領域の平坦度をそれぞれ測定するようにすれば、検査用マザーガラス板の形状精度をより正確に測定できる。なお、複数の第三評価領域は、検査用マザーガラス板の有効部の幅方向端部エリアに設定されており、検査用マザーガラス板の有効部全体に設定されているわけではない。そのため、複数の第三評価領域を設定したことによる測定対象の数の増加は最小限に抑制されるので、効率的な検査用マザーガラス板の形状精度の測定が阻害される恐れは排除できる。 In the width direction end area of the effective part of the mother glass plate for inspection, the shape of the mother glass plate for inspection is likely to change, such as warping easily occurring. Therefore, regarding the width direction end area, in addition to measuring the front and back deflection difference in the first evaluation area mentioned above, we also set multiple third evaluation areas and measured the flatness of the multiple third evaluation areas using an optical interferometer. By measuring each degree, the shape accuracy of the mother glass plate for inspection can be measured more accurately. Note that the plurality of third evaluation regions are set in the width direction end area of the effective portion of the mother glass plate for inspection, and are not set in the entire effective portion of the mother glass plate for inspection. Therefore, an increase in the number of measurement targets due to the setting of a plurality of third evaluation regions is suppressed to a minimum, so that it is possible to eliminate the possibility that efficient measurement of the shape accuracy of the mother glass plate for inspection will be hindered.
(5) 上記(4)の製造方法において、第三評価領域は、1辺が50mm以上150mm以下の矩形状であってもよい。 (5) In the manufacturing method of (4) above, the third evaluation region may have a rectangular shape with one side of 50 mm or more and 150 mm or less.
 このようにすれば、第三評価領域のサイズがHDD基板のサイズ(2.5インチサイズや3.5インチサイズ)に対応したものとなる。詳細には、第三評価領域のサイズが上述の円形に加工される前の矩形状ガラス板のサイズに準じたものとなる。従って、HDD基板用のマザーガラス板の形状精度を保証する上で有利となる。 In this way, the size of the third evaluation area corresponds to the size of the HDD board (2.5 inch size or 3.5 inch size). Specifically, the size of the third evaluation area corresponds to the size of the rectangular glass plate before being processed into a circular shape. Therefore, it is advantageous in ensuring the shape accuracy of the mother glass plate for HDD substrates.
(6) 上記(4)又は(5)の製造方法において、第三評価領域は、第一評価領域の一部であることが好ましい。 (6) In the manufacturing method of (4) or (5) above, it is preferable that the third evaluation area is a part of the first evaluation area.
 このようにすれば、第一評価領域に対する表裏撓み差の測定と、第三評価領域に対する光学式干渉計による平坦度の測定と、の双方を実施するにあたり、第一評価領域と第三評価領域とを検査用マザーガラス板の別々の領域から切り出す必要がなくなる。さらに、第三評価領域については、当該第三評価領域の元となる第一評価領域に対して実施された表裏撓み差の測定に加え、平坦度の測定についても実施されることになるため、検査用マザーガラス板の形状精度を更に正確に測定できる。 In this way, when measuring the front and back deflection difference for the first evaluation area and measuring the flatness using an optical interferometer for the third evaluation area, the first evaluation area and the third evaluation area can be measured. It is no longer necessary to cut out and from separate areas of the mother glass plate for inspection. Furthermore, regarding the third evaluation area, in addition to the measurement of the front and back deflection difference carried out for the first evaluation area, which is the basis of the third evaluation area, flatness measurement will also be carried out. The shape accuracy of the mother glass plate for inspection can be measured more accurately.
(7) 上記(1)~(6)のいずれかの製造方法において、マザーガラス板は内部に欠陥を有し、マザーガラス板の主面から欠陥までの深さを測定する欠陥深さ測定工程と、測定された深さに基づいて欠陥を評価する欠陥評価工程と、をさらに備えていてもよい。 (7) In any of the manufacturing methods (1) to (6) above, the mother glass plate has a defect inside, and the defect depth measurement step of measuring the depth from the main surface of the mother glass plate to the defect and a defect evaluation step of evaluating defects based on the measured depth.
 マザーガラス板からHDD基板を製造する製造工程では、マザーガラス板から小片に切り出したガラス板の主面を機械研磨する場合がある。このため、マザーガラス板が内部に異物や泡等の欠陥を有している場合であっても、マザーガラス板の主面から欠陥までの深さが所定の値以下であれば、研磨により欠陥を取り除くことができる。このように後工程で欠陥を取り除くことが可能なマザーガラス板は、不良品として廃棄することなく使用できる場合がある。従って、欠陥深さ測定工程および欠陥評価工程の実行により、深さが所定の値以下である合格欠陥(取り除きが可能な欠陥)と、深さが所定の値より大きい不合格欠陥とに分類し、不合格欠陥の数、大きさ、及び種類に基づいてマザーガラス板を評価することで、マザーガラス板の歩留まりを向上することができる。 In the manufacturing process of manufacturing an HDD substrate from a mother glass plate, the main surface of the glass plate cut into small pieces from the mother glass plate may be mechanically polished. Therefore, even if the mother glass plate has internal defects such as foreign objects or bubbles, if the depth from the main surface of the mother glass plate to the defect is less than a predetermined value, polishing will remove the defect. can be removed. In this way, a mother glass plate whose defects can be removed in a post-process can be used without being discarded as a defective product. Therefore, by executing the defect depth measurement process and the defect evaluation process, defects are classified into acceptable defects (defects that can be removed) whose depth is below a predetermined value and reject defects whose depth is greater than a predetermined value. By evaluating the mother glass plate based on the number, size, and type of reject defects, the yield of the mother glass plate can be improved.
(8) また、上記の製造方法により製造が可能なマザーガラス板は、板引き方向に沿った第一辺と、板引き方向と直交する幅方向に沿った第二辺とを有する矩形状であり、かつ、第一辺および第二辺のそれぞれの長さが1000mm以上、厚さが0.3mm以上0.7mm以下であるハードディスクドライブ用のマザーガラス板であって、当該マザーガラス板の有効部の全幅を充足するように、複数の矩形状の第一評価領域が設定され、複数の第一評価領域は、板引き方向の辺が500mmかつ幅方向の辺が400mmであり、全ての第一評価領域の各々について、板引き方向および幅方向に沿った表裏撓み差をそれぞれ測定した場合に、表裏撓み差の値がいずれも±0.5mmの範囲内に収まり、表裏撓み差の値は、350mm角サイズに換算した値である。 (8) In addition, the mother glass plate that can be manufactured by the above manufacturing method has a rectangular shape with a first side along the sheet drawing direction and a second side along the width direction orthogonal to the sheet drawing direction. A mother glass plate for a hard disk drive having a first side and a second side each having a length of 1000 mm or more and a thickness of 0.3 mm or more and 0.7 mm or less, the mother glass plate having an effective A plurality of rectangular first evaluation areas are set so as to fill the entire width of the section. When measuring the front and back deflection differences along the board drawing direction and the width direction for each evaluation area, the values of the front and back deflection differences are all within the range of ±0.5 mm, and the front and back deflection differences are , is a value converted to a 350 mm square size.
 本マザーガラス板では、350mm角サイズに換算した場合に、全ての第一評価領域における板引き方向および幅方向に沿った表裏撓み差の値が、いずれも±0.5mmの範囲内に収まっており、高い形状精度が確保されている。従って、本マザーガラス板は、高い形状精度が要求されるHDD基板のマザーガラス板として好適である。 In this mother glass plate, when converted to a 350 mm square size, the values of the front and back deflection differences along the sheet drawing direction and width direction in all the first evaluation areas are within the range of ±0.5 mm. This ensures high shape accuracy. Therefore, this mother glass plate is suitable as a mother glass plate for an HDD substrate that requires high shape accuracy.
(9) 上記(8)のマザーガラス板においては、幅方向に隣り合う第一評価領域間での表裏撓み差の変化量が、それぞれ0.3mm以下であることが好ましい。 (9) In the mother glass plate of (8) above, it is preferable that the amount of change in the front and back deflection difference between the first evaluation regions adjacent in the width direction is 0.3 mm or less, respectively.
 このようになっていれば、マザーガラス板の幅方向に沿った形状の変化が小さいことになるため、高い形状精度が要求されるHDD基板のマザーガラス板として更に好適である。 If this is the case, the change in the shape of the mother glass plate along the width direction will be small, so it is more suitable as a mother glass plate for an HDD substrate that requires high shape accuracy.
(10) 上記(8)又は(9)のマザーガラス板においては、複数の第一評価領域の各々に対応して、第一評価領域と幅方向の位置が同一であり、且つ、第一評価領域と板引き方向に隣り合う第二評価領域がさらに設定され、第二評価領域の各々について、板引き方向および幅方向に沿った表裏撓み差をそれぞれ測定した場合に、表裏撓み差の値がいずれも±0.5mmの範囲内に収まり、対応する第一評価領域と第二評価領域との間の表裏撓み差の変化量が、それぞれ0.3mm以下であることが好ましい。 (10) In the mother glass plate of (8) or (9) above, the position in the width direction is the same as the first evaluation area, and the first evaluation area corresponds to each of the plurality of first evaluation areas. A second evaluation area adjacent to the area in the board pulling direction is further set, and when the front and back deflection differences are measured along the board pulling direction and the width direction for each of the second evaluation areas, the value of the front and back deflection difference is determined. It is preferable that both of them fall within the range of ±0.5 mm, and that the amount of change in the front and back deflection difference between the corresponding first evaluation area and second evaluation area is each 0.3 mm or less.
 このようになっていれば、マザーガラス板の板引き方向に沿った形状の変化が小さいことになるため、高い形状精度が要求されるHDD基板のマザーガラス板として更に好適である。 If this is the case, the change in shape of the mother glass plate along the drawing direction will be small, so it is more suitable as a mother glass plate for an HDD substrate that requires high shape accuracy.
(11) 上記(8)~(10)のいずれかのマザーガラス板においては、第一辺からの距離が第二辺の長さの30%以下である範囲に複数の矩形状の第三評価領域が設定され、第三評価領域は、各辺が100mmであり、全ての第三評価領域の各々について、光学式干渉計により平坦度を測定した場合に、平坦度がいずれも50μm以下であることが好ましい。 (11) In the mother glass plate according to any of (8) to (10) above, a plurality of rectangular third evaluations are performed in a range where the distance from the first side is 30% or less of the length of the second side. A region is set, each side of the third evaluation region is 100 mm, and when the flatness of all the third evaluation regions is measured using an optical interferometer, the flatness is 50 μm or less. It is preferable.
 このようになっていれば、第三評価領域のサイズがHDD基板のサイズ(詳細には円形に加工される前の矩形状ガラス板のサイズ)に対応したものとなる。そして、全ての第三評価領域における平坦度がいずれも50μm以下であり、高い平坦度が確保されている。従って、HDD基板のマザーガラス板として好適なものとなる。 In this case, the size of the third evaluation area corresponds to the size of the HDD substrate (specifically, the size of the rectangular glass plate before being processed into a circle). Further, the flatness in all the third evaluation regions is 50 μm or less, and high flatness is ensured. Therefore, it is suitable as a mother glass plate for HDD substrates.
(12) 上記(8)~(11)のいずれかのマザーガラス板においては、縦弾性係数が80GPa以上であることが好ましい。 (12) The mother glass plate according to any one of (8) to (11) above preferably has a longitudinal elastic modulus of 80 GPa or more.
 このような値の縦弾性係数を有していれば、HDD基板のマザーガラス板として一層好適なものとなる。 If it has a longitudinal elastic modulus of such a value, it will be more suitable as a mother glass plate for an HDD substrate.
(13) 上記(8)~(12)のいずれかのマザーガラス板においては、内部に欠陥を有していてもよく、欠陥は当該マザーガラス板の主面からの深さが25μm以下であることが好ましい。 (13) The mother glass plate according to any of (8) to (12) above may have internal defects, and the depth of the defect from the main surface of the mother glass plate is 25 μm or less. It is preferable.
 マザーガラス板が有する欠陥の深さが主面から25μm以下であれば、当該マザーガラス板からHDD基板を製造する製造工程で主面を機械研磨することにより、欠陥を取り除くことができる。このとおりマザーガラス板の内部に欠陥が含まれていたとしても、当該欠陥の深さが主面から25μm以下であれば、不良品として廃棄することなくHDD基板用ガラス板として使用することができるので、歩留まりを向上させることができる。 If the depth of defects in the mother glass plate is 25 μm or less from the main surface, the defects can be removed by mechanically polishing the main surface in the manufacturing process of manufacturing an HDD substrate from the mother glass plate. As shown above, even if there is a defect inside the mother glass plate, as long as the depth of the defect is 25 μm or less from the main surface, it can be used as a glass plate for HDD substrates without being discarded as a defective product. Therefore, the yield can be improved.
 本開示に係るマザーガラス板の製造方法によれば、高い形状精度が要求されるHDD基板のマザーガラス板を製造するに際し、検査用マザーガラス板の形状精度を測定する工程が含まれる場合に、測定の精度を確保した上で測定に要する手間と時間を削減できる。また、本開示に係るマザーガラス板は、高い形状精度が要求されるHDD基板のマザーガラス板として好適である。 According to the method for manufacturing a mother glass plate according to the present disclosure, when manufacturing a mother glass plate for an HDD substrate that requires high shape accuracy, if the step of measuring the shape accuracy of a mother glass plate for inspection is included, The effort and time required for measurement can be reduced while ensuring measurement accuracy. Further, the mother glass plate according to the present disclosure is suitable as a mother glass plate for an HDD substrate that requires high shape accuracy.
マザーガラス板を示す平面図である。FIG. 3 is a plan view showing a mother glass plate. マザーガラス板を示す平面図である。FIG. 3 is a plan view showing a mother glass plate. マザーガラス板を示す平面図である。FIG. 3 is a plan view showing a mother glass plate. マザーガラス板を示す平面図である。FIG. 3 is a plan view showing a mother glass plate. マザーガラス板における第一評価領域の周辺を拡大して示す平面図である。FIG. 3 is a plan view showing an enlarged view of the periphery of the first evaluation area on the mother glass plate. 表裏撓み差の測定方法を説明するための図である。FIG. 3 is a diagram for explaining a method of measuring the difference in deflection between the front and back sides. 複数の第一評価領域の板引き方向に沿った表裏撓み差の測定結果を示す図である。It is a figure which shows the measurement result of the front and back deflection difference along the board drawing direction of several first evaluation areas. 複数の第一評価領域の幅方向に沿った表裏撓み差の測定結果を示す図である。It is a figure which shows the measurement result of the front and back deflection difference along the width direction of several first evaluation areas. 複数の第二評価領域の板引き方向に沿った表裏撓み差の測定結果を示す図である。It is a figure which shows the measurement result of the front and back deflection difference along the board drawing direction of several second evaluation areas. 複数の第二評価領域の幅方向に沿った表裏撓み差の測定結果を示す図である。It is a figure which shows the measurement result of the front and back deflection difference along the width direction of several second evaluation areas. 第一評価領域の板引き方向に沿った表裏撓み差の測定結果と、第二評価領域の板引き方向に沿った表裏撓み差の測定結果を示す図である。It is a figure which shows the measurement result of the front and back deflection difference along the board pulling direction of a 1st evaluation area, and the measurement result of the front and back bending difference along the board pulling direction of a 2nd evaluation area. 第一評価領域の幅方向に沿った表裏撓み差の測定結果と、第二評価領域の幅方向に沿った表裏撓み差の測定結果を示す図である。FIG. 7 is a diagram showing the measurement results of the front and back deflection difference along the width direction of the first evaluation area and the measurement result of the front and back deflection difference along the width direction of the second evaluation area. マザーガラス板を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a mother glass plate. マザーガラス板から切り出したガラス板を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a glass plate cut out from a mother glass plate. マザーガラス板の製造方法における生産工程を示す断面図である。It is a sectional view showing a production process in a method of manufacturing a mother glass plate. マザーガラス板の製造方法における採取工程を示す模式図である。It is a schematic diagram which shows the collection process in the manufacturing method of a mother glass plate. マザーガラス板の製造方法における測定工程の一部の測定結果を示す図である。It is a figure which shows the measurement result of a part of measurement process in the manufacturing method of a mother glass plate. マザーガラス板の製造方法における測定工程の一部の測定結果を示す図である。It is a figure which shows the measurement result of a part of measurement process in the manufacturing method of a mother glass plate.
 以下、実施形態に係るマザーガラス板およびマザーガラス板の製造方法について、添付の図面を参照しながら説明する。まずマザーガラス板から説明する。 Hereinafter, a mother glass plate and a method for manufacturing the mother glass plate according to an embodiment will be described with reference to the attached drawings. First, I will explain the mother glass plate.
 図1にマザーガラス板1を示す。本マザーガラス板1は、ダウンドロー法やフロート法により成形したガラスリボンから切り出されたガラスである。本マザーガラス板1は、高い形状精度が要求される製品ガラス板のマザーガラスである。製品ガラス板を製造するに際しては、本マザーガラス板1から製品ガラス板が多面取りされる。詳細には、本実施形態のマザーガラス板1は、3.5インチサイズのHDD基板(ハードディスクドライブ用のガラス基板)のマザーガラスである。勿論この限りではなく、マザーガラス板1は、他のサイズ(例えば2.5インチサイズ)のHDD基板のマザーガラスであってもよい。 FIG. 1 shows a mother glass plate 1. The mother glass plate 1 is a glass cut from a glass ribbon formed by a down-draw method or a float method. This mother glass plate 1 is a mother glass for a product glass plate that requires high shape accuracy. When manufacturing a product glass plate, multiple product glass plates are cut from the mother glass plate 1. Specifically, the mother glass plate 1 of this embodiment is a mother glass for a 3.5-inch HDD substrate (glass substrate for a hard disk drive). Of course, the present invention is not limited to this, and the mother glass plate 1 may be a mother glass of an HDD substrate of another size (for example, 2.5 inch size).
 本マザーガラス板1は、板引き方向に沿った第一辺2と、板引き方向と直交する幅方向に沿った第二辺3とを有する矩形状をなしている。ここで、マザーガラス板1の「板引き方向」とは、ガラスリボンの成形時における当該ガラスリボンの板引き方向と一致する方向である。一方、マザーガラス板1の「幅方向」とは、ガラスリボンの幅方向と一致する方向である。板引き方向は、例えば、暗室でマザーガラス板1の角度を調整しながら光源(例えばキセノンライト)から光を照射し、その透過光をスクリーンに投影することで筋状の縞模様として観測できる。従って、ガラスリボンから切り出されたマザーガラス板1においても、板引き方向および幅方向の判別が可能である。 The present mother glass plate 1 has a rectangular shape having a first side 2 along the sheet drawing direction and a second side 3 along the width direction orthogonal to the sheet drawing direction. Here, the "drawing direction" of the mother glass plate 1 is a direction that coincides with the drawing direction of the glass ribbon during molding of the glass ribbon. On the other hand, the "width direction" of the mother glass plate 1 is a direction that coincides with the width direction of the glass ribbon. The board drawing direction can be observed as a striped pattern by emitting light from a light source (for example, a xenon light) in a dark room while adjusting the angle of the mother glass plate 1 and projecting the transmitted light onto a screen. Therefore, even in the mother glass plate 1 cut out from a glass ribbon, it is possible to determine the drawing direction and the width direction.
 本マザーガラス板1は、その縦弾性係数が80GPa以上である。本マザーガラス板1の厚さは0.3mm以上0.7mm以下である。第一辺2の長さ2yおよび第二辺3の長さ3xはそれぞれ1000mm以上である。ここで、本実施形態では、マザーガラス板1はG8.5サイズであり、第一辺2の長さ2yは2200mmであり、第二辺3の長さ3xは2500mmである。勿論この限りではなく、マザーガラス板1は、例えばG6サイズ等の他のサイズであっても構わない。 The present mother glass plate 1 has a longitudinal elastic modulus of 80 GPa or more. The thickness of the mother glass plate 1 is 0.3 mm or more and 0.7 mm or less. The length 2y of the first side 2 and the length 3x of the second side 3 are each 1000 mm or more. Here, in this embodiment, the mother glass plate 1 is G8.5 size, the length 2y of the first side 2 is 2200 mm, and the length 3x of the second side 3 is 2500 mm. Of course, the present invention is not limited to this, and the mother glass plate 1 may have other sizes, such as G6 size, for example.
 マザーガラス板1は、無アルカリガラス又はアルカリアルミノシリケートガラスであることが好ましい。 The mother glass plate 1 is preferably alkali-free glass or alkali aluminosilicate glass.
 無アルカリガラスの場合、ガラス組成として、モル%で、SiO2 60~75%、Al23 5~20%、B23 0~15%、Li2O+Na2O+K2O(Li2O、Na2O及びK2Oの合量) 0~1%未満、MgO 0~10%、CaO 0~15%、SrO 0~10%、BaO 0~10%を含有することが好ましい。以下のガラス組成例(1)又は(2)が特に好ましい。
(1)ガラス組成として、モル%で、SiO2 62~72%、Al23 9.5~16%(特に11~15%)、B23 1~8%(特に2~4%)、Li2O+Na2O+K2O 0~1%未満(特に0~0.5%)、MgO 1~9%(特に4~8%)、CaO 2~10%(特に3~8%)、SrO 0.1~5%(特に1~3%)、BaO 0.1~5%(特に1~3%)を含有することが好ましい。
(2)ガラス組成として、モル%で、SiO2 67~77%、Al23 9~14%、B23 0~3%(特に0~1%未満)、Li2O+Na2O+K2O 0~1%未満(特に0~0.5%)、MgO 0~5%(特に2~5%)、CaO 0~10%(特に6~9%)、SrO 0~5%、BaO 0~7%(特に3~6%)を含有することが好ましい。
In the case of alkali-free glass, the glass composition, in mol%, is SiO 2 60-75%, Al 2 O 3 5-20%, B 2 O 3 0-15%, Li 2 O + Na 2 O + K 2 O (Li 2 O , Na 2 O and K 2 O) 0 to less than 1%, MgO 0 to 10%, CaO 0 to 15%, SrO 0 to 10%, and BaO 0 to 10%. The following glass composition examples (1) or (2) are particularly preferred.
(1) Glass composition: SiO 2 62-72%, Al 2 O 3 9.5-16% (especially 11-15%), B 2 O 3 1-8% (especially 2-4%) in terms of mol%. ), Li 2 O + Na 2 O + K 2 O 0 to less than 1% (especially 0 to 0.5%), MgO 1 to 9% (especially 4 to 8%), CaO 2 to 10% (especially 3 to 8%), It is preferable to contain 0.1 to 5% (especially 1 to 3%) of SrO and 0.1 to 5% (especially 1 to 3%) of BaO.
(2) Glass composition: SiO 2 67-77%, Al 2 O 3 9-14%, B 2 O 3 0-3% (particularly less than 0-1%), Li 2 O+Na 2 O+K 2 O 0 to less than 1% (especially 0 to 0.5%), MgO 0 to 5% (especially 2 to 5%), CaO 0 to 10% (especially 6 to 9%), SrO 0 to 5%, BaO 0 The content is preferably 7% (particularly 3 to 6%).
 アルカリアルミノシリケートガラスの場合、ガラス組成として、モル%でSiO2:50~75%、Al23:10~30%、B23:0~12%、Li2O:0~10%、Na2O:2~18%、K2O:0~5%を含有することが好ましい。以下のガラス組成例(3)又は(4)が特に好ましい。
(3)ガラス組成として、モル%で、SiO2:60~70%、Al23:10~14%、B23:0~3%、Li2O:0~1%、Na2O:12~18%、K2O:0~2%を含有することが好ましい。
(4)ガラス組成として、モル%で、SiO2:65~75%、Al23:10~30%、B23:0~12%、Li2O:5~10%、Na2O:2~10%、K2O:0~3%を含有することが好ましい。
In the case of alkali aluminosilicate glass, the glass composition is SiO 2 : 50-75%, Al 2 O 3 : 10-30%, B 2 O 3 : 0-12%, Li 2 O: 0-10% in mol%. , Na 2 O: 2 to 18%, and K 2 O: 0 to 5%. The following glass composition examples (3) or (4) are particularly preferred.
(3) Glass composition, in mol%, SiO 2 : 60-70%, Al 2 O 3 : 10-14%, B 2 O 3 : 0-3%, Li 2 O: 0-1%, Na 2 It is preferable to contain O: 12 to 18% and K 2 O: 0 to 2%.
(4) Glass composition, in mol%, SiO 2 : 65-75%, Al 2 O 3 : 10-30%, B 2 O 3 : 0-12%, Li 2 O: 5-10%, Na 2 It is preferable to contain O: 2 to 10% and K 2 O: 0 to 3%.
 本マザーガラス板1では、その全領域(全面積)が有効部となっている。ここで、「有効部」とは、マザーガラス板1において後に製品ガラス板となる領域である。なお、本実施形態ではマザーガラス板1の全領域が有効部となっているが、この限りではない。マザーガラス板1の一部の領域のみが後に製品ガラス板となる場合にあっては、当該一部の領域のみが有効部となる。 In this mother glass plate 1, the entire area (total area) is an effective part. Here, the "effective area" is an area of the mother glass plate 1 that will later become a product glass plate. Note that in this embodiment, the entire area of the mother glass plate 1 is the effective portion, but this is not the case. If only a part of the area of the mother glass plate 1 becomes a product glass plate later, only the part of the area becomes an effective part.
 本マザーガラス板1では、有効部の全幅(マザーガラス板1の全幅)を充足するように、複数の矩形状の第一評価領域41(図1に二点鎖線で示す)が設定されている。なお、「有効部の全幅を充足するように、複数の第一評価領域41が設定される」の意味するところは、有効部の幅方向における全ての箇所が、複数の第一評価領域41のいずれかの幅内には含まれることである。複数の第一評価領域41は相互に同一のサイズを有する。各第一評価領域41において、板引き方向に延びた縦辺41aの寸法41ay、及び、幅方向に延びた横辺41bの寸法41bxは、それぞれ300mm以上700mm以下である。本実施形態では、縦辺41aの寸法41ayが500mmであり、横辺41bの寸法41bxが400mmである。ここで、第一評価領域41のサイズは、製品ガラス板(ここでは3.5インチサイズのHDD基板)のサイズよりも大きくなっている。 In this mother glass plate 1, a plurality of rectangular first evaluation areas 41 (indicated by two-dot chain lines in FIG. 1) are set so as to fill the entire width of the effective portion (the full width of the mother glass plate 1). . Note that "the plurality of first evaluation areas 41 are set so as to fill the entire width of the effective part" means that all points in the width direction of the effective part are set so as to fill the entire width of the effective part. It is to be included within either range. The plurality of first evaluation areas 41 have the same size. In each first evaluation region 41, the dimension 41ay of the vertical side 41a extending in the board drawing direction and the dimension 41bx of the horizontal side 41b extending in the width direction are each 300 mm or more and 700 mm or less. In this embodiment, the dimension 41ay of the vertical side 41a is 500 mm, and the dimension 41bx of the horizontal side 41b is 400 mm. Here, the size of the first evaluation area 41 is larger than the size of the product glass plate (here, a 3.5-inch HDD substrate).
 本実施形態では第一評価領域41が7つ存在する。なお、第一評価領域41の数は7つに限定されず、例えばマザーガラス板1のサイズに応じて第一評価領域41の数を適宜増減させて構わない。ここで、以下の説明では、7つの第一評価領域41について、その並びの順に第一評価領域A、B、・・・F、Gと表記して区別する場合がある。 In this embodiment, there are seven first evaluation areas 41. Note that the number of first evaluation regions 41 is not limited to seven, and the number of first evaluation regions 41 may be increased or decreased as appropriate, for example, depending on the size of mother glass plate 1. Here, in the following description, the seven first evaluation areas 41 may be distinguished by being expressed as first evaluation areas A, B, . . . , F, G in the order of arrangement.
 7つの第一評価領域41のうち、マザーガラス板1の幅方向中央寄りの5つの第一評価領域B~Fは、マザーガラス板1の幅方向に沿って隙間なく一列に配列されている。その一方、マザーガラス板1の幅方向両端にそれぞれ位置する2つの第一評価領域A,Gは、5つの第一評価領域B~Fに対して板引き方向にずれた位置に所在している。なお、第一評価領域Aと第一評価領域B、及び、第一評価領域Fと第一評価領域Gは、板引き方向にずれて所在しているが、幅方向において一部の領域が重複している。 Among the seven first evaluation areas 41, five first evaluation areas B to F near the center in the width direction of the mother glass plate 1 are arranged in a line along the width direction of the mother glass plate 1 without gaps. On the other hand, the two first evaluation areas A and G located at both ends of the mother glass plate 1 in the width direction are located at positions shifted from the five first evaluation areas B to F in the sheet drawing direction. . Note that the first evaluation area A and the first evaluation area B, and the first evaluation area F and the first evaluation area G are located offset in the board drawing direction, but some areas overlap in the width direction. are doing.
 本実施形態では、マザーガラス板1の板引き方向における中央付近に7つの第一評価領域41が所在しているが、これに限定されるものではない。7つの第一評価領域41の各々の所在位置は、板引き方向において任意の位置であってよい。つまり、各第一評価領域41の所在位置は、図1に例示した位置から板引き方向にずれていても構わない。従って、マザーガラス板1に対して第一評価領域41を設定する形態として、図2や図3に示す形態を採用してもよい。図2に示す形態では、7つの第一評価領域41がジグザグに配列されている。一方、図3に示す形態では、7つの第一評価領域41の全てが幅方向に沿って隙間なく一列に配列されている。 In this embodiment, seven first evaluation regions 41 are located near the center of the mother glass plate 1 in the drawing direction, but the present invention is not limited to this. Each of the seven first evaluation regions 41 may be located at any position in the board drawing direction. That is, the location of each first evaluation area 41 may be shifted from the position illustrated in FIG. 1 in the board pulling direction. Therefore, as a form of setting the first evaluation area 41 on the mother glass plate 1, the form shown in FIGS. 2 and 3 may be adopted. In the form shown in FIG. 2, seven first evaluation areas 41 are arranged in a zigzag pattern. On the other hand, in the form shown in FIG. 3, all seven first evaluation regions 41 are arranged in a line without gaps along the width direction.
 本実施形態では、図4に示すように、7つの第一評価領域41の各々に対応して、第一評価領域41と幅方向の位置が同一であり、且つ、第一評価領域41と板引き方向に隣り合う第二評価領域42(図4に二点鎖線で示す)がさらに設定される。第二評価領域42は、板引き方向に沿って第一評価領域41の上側に設定されていてもよく、下側に設定されていてもよい。また、第二評価領域42の板引き方向に延びた縦辺42aの寸法42ay、及び、幅方向に延びた横辺42bの寸法42bxは、第一評価領域41の縦辺41aの寸法41ay、及び、横辺41bの寸法41bx(寸法41ay、寸法41bxについては図1を参照)と同一であることが好ましい。ここで、以下の説明では、7つの第二評価領域42について、その並びの順に第二評価領域H、I、・・・M、Nと表記して区別する場合がある。 In this embodiment, as shown in FIG. 4, corresponding to each of the seven first evaluation regions 41, the position in the width direction is the same as that of the first evaluation region 41, and the first evaluation region 41 and the board A second evaluation area 42 (indicated by a two-dot chain line in FIG. 4) adjacent to each other in the pulling direction is further set. The second evaluation area 42 may be set above or below the first evaluation area 41 along the board drawing direction. Furthermore, the dimension 42ay of the vertical side 42a extending in the board drawing direction of the second evaluation area 42 and the dimension 42bx of the horizontal side 42b extending in the width direction are the same as the dimension 41ay of the vertical side 41a of the first evaluation area 41, and , is preferably the same as the dimension 41bx of the horizontal side 41b (see FIG. 1 for dimensions 41ay and 41bx). Here, in the following description, the seven second evaluation areas 42 may be distinguished by being expressed as second evaluation areas H, I, . . . M, N in the order of arrangement.
 本マザーガラス板1には、幅方向端部エリア5(図1~図4に斜線を施して示す)が設定されている。幅方向端部エリア5は、マザーガラス板1の幅方向における一方端側と他方端側とにそれぞれ設定されている。幅方向端部エリア5の幅寸法5xは、第二辺3の長さ3xの30%を上限とする寸法である。つまり、幅方向端部エリア5は、マザーガラス板1において第一辺2からの距離が第二辺3の長さ3xの30%以下となる範囲にあたる。幅方向端部エリア5では、マザーガラス板1に反りが発生しやすい(特に第一辺2からの距離が300mmまでの範囲)。なお、ガラスリボンの成形時には、幅方向端部エリア5の更に幅方向外側に厚肉な耳部が形成される。 This mother glass plate 1 has a widthwise end area 5 (shown with diagonal lines in FIGS. 1 to 4). The widthwise end areas 5 are set at one end and the other end of the mother glass plate 1 in the width direction, respectively. The width dimension 5x of the width direction end area 5 is a dimension whose upper limit is 30% of the length 3x of the second side 3. That is, the widthwise end area 5 corresponds to a range in the mother glass plate 1 where the distance from the first side 2 is 30% or less of the length 3x of the second side 3. In the width direction end area 5, the mother glass plate 1 is likely to warp (particularly in the range where the distance from the first side 2 is up to 300 mm). In addition, when forming the glass ribbon, a thick ear portion is formed further outside the width direction end area 5 in the width direction.
 図5に示すように、幅方向端部エリア5には、複数の矩形状の第三評価領域6(図5に斜線を施して示す)が設定されている。詳細には、幅方向端部エリア5のうちの第一評価領域41と重複している領域に、複数の第三評価領域6が設定されている。つまり、複数の第三評価領域6の各々は、いずれも第一評価領域41の一部となっている。しかしながらこの限りではなく、第三評価領域6は、幅方向端部エリア5のうちの第一評価領域41とは異なる領域(第一評価領域41と重複しない領域)に設定されていてもよい。また、第三評価領域6は、幅方向端部エリア5内に設定される限りで、板引き方向における位置は任意であってよい。なお、幅方向端部エリア5は、マザーガラス板1の幅方向における一方端側と他方端側とにそれぞれ設定されているため、複数の第三評価領域6についても、マザーガラス板1の幅方向における一方端側と他方端側とにそれぞれ設定されている。 As shown in FIG. 5, a plurality of rectangular third evaluation regions 6 (shown with diagonal lines in FIG. 5) are set in the width direction end area 5. Specifically, a plurality of third evaluation areas 6 are set in an area of the widthwise end area 5 that overlaps with the first evaluation area 41 . That is, each of the plurality of third evaluation areas 6 is a part of the first evaluation area 41. However, this is not limited to this, and the third evaluation area 6 may be set in a different area from the first evaluation area 41 in the widthwise end area 5 (an area that does not overlap with the first evaluation area 41). Further, the third evaluation area 6 may be positioned at any position in the board drawing direction as long as it is set within the width direction end area 5. In addition, since the width direction end areas 5 are set at one end and the other end in the width direction of the mother glass plate 1, the width of the mother glass plate 1 is also set for the plurality of third evaluation regions 6. They are set at one end and the other end in the direction, respectively.
 本実施形態では、幅方向における一方端側と他方端側との各々において、板引き方向に沿って5列分、幅方向に沿って2列分の第三評価領域6が隙間なく配列されている。従って、本実施形態においてマザーガラス板1に設定された第三評価領域6の総数は20となる。板引き方向および幅方向に沿った第三評価領域6の列数は、適宜増減させてよい。一例として、板引き方向に5~10列、幅方向に1~3列としてよい。ここで、板引き方向および幅方向に沿った第三評価領域6の列数の多寡に関わらず、幅方向にて最も外側に位置する第三評価領域6は、当該領域中にマザーガラス板1(有効部)の幅方向端縁(エッジ)を含んでいることが好ましい。 In this embodiment, the third evaluation regions 6 are arranged in five rows along the board drawing direction and in two rows along the width direction at each of one end side and the other end side in the width direction. There is. Therefore, in this embodiment, the total number of third evaluation regions 6 set on the mother glass plate 1 is twenty. The number of rows of third evaluation regions 6 along the board drawing direction and the width direction may be increased or decreased as appropriate. As an example, there may be 5 to 10 rows in the drawing direction and 1 to 3 rows in the width direction. Here, regardless of the number of rows of the third evaluation areas 6 along the board drawing direction and the width direction, the third evaluation area 6 located at the outermost side in the width direction has no mother glass plate 1 in the area. It is preferable that the width direction edge of the (effective portion) be included.
 第三評価領域6は、各辺が50mm以上150mm以下である。本実施形態の第三評価領域6は100mm角の正方形をなしている。なお、本実施形態とは異なり、製品ガラス板が2.5インチサイズのHDD基板である場合には、例えば第三評価領域6を75mm角の正方形としても構わない。 Each side of the third evaluation region 6 is 50 mm or more and 150 mm or less. The third evaluation area 6 of this embodiment has a square shape of 100 mm square. Note that, unlike this embodiment, when the product glass plate is a 2.5-inch HDD substrate, the third evaluation area 6 may be, for example, a 75 mm square.
 以上に説明した本マザーガラス板1では、当該マザーガラス板1から7つの第一評価領域41を切り出した場合に、下記の[形状精度基準A]及び[形状精度基準B]が満たされる。 In the mother glass plate 1 described above, when seven first evaluation regions 41 are cut out from the mother glass plate 1, the following [shape accuracy criterion A] and [shape accuracy criterion B] are satisfied.
 [形状精度基準A]:7つの第一評価領域41(第一評価領域A~G)の各々について、板引き方向に沿った2辺(2つの縦辺41a)および幅方向に沿った2辺(2つの横辺41b)の表裏撓み差d1をそれぞれ測定した場合(合計28個の表裏撓み差d1を測定した場合)に、表裏撓み差d1の値がいずれも±0.5mmの範囲内に収まる。なお、表裏撓み差d1の値が±0.3mmの範囲内に収まればより好ましく、±0.2mmの範囲内に収まれば更に好ましく、±0.1mmの範囲内に収まれば最も好ましい。 [Shape accuracy standard A]: For each of the seven first evaluation areas 41 (first evaluation areas A to G), two sides along the board drawing direction (two vertical sides 41a) and two sides along the width direction. When the front and back deflection differences d1 of (two horizontal sides 41b) are measured respectively (when a total of 28 front and back deflection differences d1 are measured), the values of the front and back deflection differences d1 are all within the range of ±0.5 mm. It fits. In addition, it is more preferable that the value of the front and back deflection difference d1 falls within the range of ±0.3 mm, even more preferably that it falls within the range of ±0.2 mm, and most preferably that it falls within the range of ±0.1 mm.
 [形状精度基準B]:幅方向に隣り合う第一評価領域41,41を1組として、全6組(A,Bの組、B,Cの組、・・・E,Fの組、F,Gの組)において、第一評価領域41,41間での板引き方向に沿った2辺(2つの縦辺41a)および幅方向に沿った2辺(2つの横辺41b)の表裏撓み差d1の変化量Δd1を算出した場合(合計24個の変化量Δd1を算出した場合)に、算出値がそれぞれ0.3mm以下となる。なお、変化量Δd1の算出値が0.2mm以下であればより好ましく、0.1mm以下であれば更に好ましい。ここで、「幅方向に隣り合う」とは、図3のA,Bの組のように、真横で隣り合うように両第一評価領域41,41が所在している場合のみでなく、例えば図1及び図2におけるA,Bの組のように、両第一評価領域41,41が板引き方向にずれた位置に所在している場合を含む。なお、板引き方向に沿った2辺の表裏撓み差d1の変化量Δd1については算出を省略し、幅方向に沿った2辺の表裏撓み差d1の変化量Δd1のみを算出しても良い。この場合(合計12個の変化量Δd1を算出した場合)の算出値は、それぞれ0.3mm以下であることが好ましく、0.2mm以下であればより好ましく、0.1mm以下であれば更に好ましい。 [Shape accuracy standard B]: The first evaluation areas 41 and 41 adjacent to each other in the width direction are considered as one set, and a total of 6 sets (set of A, B, set of B, C, . . . set of E, F, F , G), front and back deflections of two sides along the board drawing direction (two vertical sides 41a) and two sides along the width direction (two horizontal sides 41b) between the first evaluation areas 41, When the amount of change Δd1 of the difference d1 is calculated (when a total of 24 amounts of change Δd1 are calculated), each calculated value is 0.3 mm or less. In addition, it is more preferable that the calculated value of the amount of change Δd1 is 0.2 mm or less, and even more preferable that it is 0.1 mm or less. Here, "adjacent in the width direction" refers not only to the case where both the first evaluation regions 41, 41 are located right next to each other, as in the pair A and B in FIG. This includes cases where both first evaluation areas 41, 41 are located at positions shifted in the board drawing direction, as in the set A and B in FIGS. 1 and 2. Note that the calculation of the amount of change Δd1 in the front and back deflection difference d1 of the two sides along the board drawing direction may be omitted, and only the change amount Δd1 of the front and back deflection difference d1 of the two sides along the width direction may be calculated. In this case (when a total of 12 changes Δd1 are calculated), each calculated value is preferably 0.3 mm or less, more preferably 0.2 mm or less, and even more preferably 0.1 mm or less. .
 さらに、本マザーガラス板1では、7つの第一評価領域41に加えて、7つの第二評価領域42を切り出した場合に、下記の[形状精度基準C]及び[形状精度基準D]が満たされる。 Furthermore, in this mother glass plate 1, when seven second evaluation regions 42 are cut out in addition to the seven first evaluation regions 41, the following [shape accuracy criterion C] and [shape accuracy criterion D] are satisfied. It will be done.
 [形状精度基準C]:7つの第二評価領域42(第二評価領域H~N)の各々について、板引き方向に沿った2辺(2つの縦辺42a)および幅方向に沿った2辺(2つの横辺42b)の表裏撓み差d2をそれぞれ測定した場合(合計28個の表裏撓み差d2を測定した場合)に、表裏撓み差d2の値がいずれも±0.5mmの範囲内に収まる。なお、表裏撓み差d2の値が±0.3mmの範囲内に収まればより好ましく、±0.2mmの範囲内に収まれば更に好ましく、±0.1mmの範囲内に収まれば最も好ましい。 [Shape accuracy standard C]: For each of the seven second evaluation regions 42 (second evaluation regions H to N), two sides along the board drawing direction (two vertical sides 42a) and two sides along the width direction. When the front and back deflection differences d2 of (two horizontal sides 42b) are measured respectively (when a total of 28 front and back deflection differences d2 are measured), the values of the front and back deflection differences d2 are all within the range of ±0.5 mm. It fits. In addition, it is more preferable that the value of the front and back deflection difference d2 falls within the range of ±0.3 mm, even more preferably that it falls within the range of ±0.2 mm, and most preferably that it falls within the range of ±0.1 mm.
 [形状精度基準D]:対応する第一評価領域41と第二評価領域42とを1組として、全7組(A,Hの組、B,Iの組、・・・F,Mの組、G,Nの組)において、第一評価領域41の4辺(2つの縦辺41aと2つの横辺41b)の表裏撓み差d1と、対応する第二評価領域42の対応する4辺(2つの縦辺42aと2つの横辺42b)の表裏撓み差d2との間の変化量Δd2を算出した場合(合計28個の変化量Δd2を算出した場合)に、算出値がそれぞれ0.3mm以下となる。なお、変化量Δd2の算出値が0.2mm以下であればより好ましく、0.1mm以下であれば更に好ましい。なお、第一評価領域41の板引き方向に沿った2辺の表裏撓み差d1と、第二評価領域42の板引き方向に沿った2辺の表裏撓み差d2と、の変化量Δd2のみを算出しても良い。つまり、第一評価領域41の幅方向に延びた2辺の表裏撓み差d1と、第二評価領域42の幅方向に延びた2辺の表裏撓み差d2と、の変化量Δd2の算出については省略してもよい。この場合、(合計14個の変化量Δd2を算出した場合)の算出値は、それぞれ0.3mm以下であることが好ましく、0.2mm以下であればより好ましく、0.1mm以下であれば更に好ましい。 [Shape accuracy standard D]: A total of 7 sets (sets A, H, sets B, I, ... sets F, M), with the corresponding first evaluation area 41 and second evaluation area 42 as one set. , G, N), the front and back deflection difference d1 between the four sides (two vertical sides 41a and two horizontal sides 41b) of the first evaluation area 41 and the corresponding four sides ( When calculating the amount of change Δd2 between the front and back deflection difference d2 of the two vertical sides 42a and the two horizontal sides 42b (when calculating a total of 28 amounts of change Δd2), each calculated value is 0.3 mm. The following is true. Note that it is more preferable that the calculated value of the amount of change Δd2 is 0.2 mm or less, and even more preferable that it is 0.1 mm or less. Note that only the amount of change Δd2 between the front and back deflection difference d1 between the two sides of the first evaluation area 41 along the board drawing direction and the front and back deflection difference d2 between the two sides along the board drawing direction of the second evaluation area 42 is calculated. You can also calculate it. In other words, regarding the calculation of the amount of change Δd2 between the front and back deflection difference d1 between the two sides extending in the width direction of the first evaluation area 41 and the front and back deflection difference d2 between the two sides extending in the width direction of the second evaluation area 42, May be omitted. In this case, the calculated values (when a total of 14 changes Δd2 are calculated) are each preferably 0.3 mm or less, more preferably 0.2 mm or less, and even more preferably 0.1 mm or less. preferable.
 さらに、本マザーガラス板1では、7つの第一評価領域41の各々から全ての第三評価領域6を切り出した場合に、下記の[形状精度基準E]が満たされる。 Furthermore, in this mother glass plate 1, when all the third evaluation regions 6 are cut out from each of the seven first evaluation regions 41, the following [shape accuracy criterion E] is satisfied.
 [形状精度基準E]:全ての第三評価領域6について、光学式干渉計により平坦度を測定した場合(合計20個の平坦度を測定した場合)に、平坦度の値がいずれも50μm以下である。なお、平坦度の値が30μm以下であればより好ましく、20μm以下であれば更に好ましく、10μm以下であれば最も好ましい。 [Shape accuracy standard E]: When the flatness of all third evaluation regions 6 is measured using an optical interferometer (when a total of 20 flatness measurements are taken), all flatness values are 50 μm or less. It is. The flatness value is more preferably 30 μm or less, even more preferably 20 μm or less, and most preferably 10 μm or less.
 以下、[形状精度基準A]~[形状精度基準E]の詳細について説明する。 Hereinafter, details of [shape accuracy standard A] to [shape accuracy standard E] will be explained.
 [形状精度基準A]及び[形状精度基準B]を満たすか否かを判別するにあたり、表裏撓み差d1を以下の手順により測定する。なお、上述のとおり、表裏撓み差d1は、7つの第一評価領域41の各々を対象として、板引き方向および幅方向の両方の測定を行うが、ここでは第一評価領域Aの板引き方向に沿った表裏撓み差d1を測定する場合を例に挙げる。 In determining whether or not [Shape Accuracy Standard A] and [Shape Accuracy Standard B] are satisfied, the front and back deflection difference d1 is measured according to the following procedure. As mentioned above, the front and back deflection difference d1 is measured in both the board drawing direction and the width direction for each of the seven first evaluation areas 41. Let us take as an example a case where the front and back deflection difference d1 along the front and back sides is measured.
 図6に示すように、表裏撓み差d1は、第一評価領域Aの表裏面のうちの表面を上側にした場合(実線で示す場合)の撓みW1と、裏面を上側にした場合(一点鎖線で示す場合)の撓みW2とを計測し、W1-W2を求めることで測定する(d1=W1-W2)。このとき、距離Lを隔て平行に延びた2つの支持部材7,7により第一評価領域Aを支持させる。本実施形態では距離Lは350mmである。ここでは板引き方向に沿った撓みを計測するため、第一評価領域Aの縦辺41aを2つの支持部材7,7間に架け渡す。勿論、幅方向に沿った表裏撓み差d1を測定するに際し、幅方向に沿った撓みを計測するにあたっては、第一評価領域Aの横辺41bを2つの支持部材7,7間に架け渡す。ここで、撓みW1および撓みW2は、板引き方向に延びる2辺(2つの縦辺41a)の各々について計測され、表裏撓み差d1は、板引き方向に延びる2辺の各々について測定される。つまり、図6に示した測定態様から、2つの縦辺41aの一方の表裏撓み差d1と他方の表裏撓み差d1との2つの測定値が得られる。 As shown in FIG. 6, the front and back deflection difference d1 is the deflection W1 when the front surface of the front and back surfaces of the first evaluation area A is placed on the upper side (indicated by the solid line), and the deflection W1 when the back side is placed on the upper side (indicated by the dashed-dotted line). In the case shown by ), the deflection W2 is measured and W1-W2 is determined (d1=W1-W2). At this time, the first evaluation area A is supported by two support members 7, 7 extending in parallel with a distance L between them. In this embodiment, the distance L is 350 mm. Here, in order to measure the deflection along the board pulling direction, the vertical side 41a of the first evaluation area A is bridged between the two support members 7, 7. Of course, when measuring the front and back deflection difference d1 along the width direction, the horizontal side 41b of the first evaluation area A is spanned between the two supporting members 7, 7. Here, the deflection W1 and the deflection W2 are measured for each of the two sides (two vertical sides 41a) extending in the board drawing direction, and the front and back deflection difference d1 is measured for each of the two sides extending in the board drawing direction. That is, from the measurement mode shown in FIG. 6, two measured values, ie, the front and back deflection difference d1 on one side of the two vertical sides 41a and the front and back deflection difference d1 on the other side, are obtained.
 上述した表裏撓み差d1の測定手順に倣い、7つの第一評価領域41の各々について、板引き方向に沿った2辺(2つの縦辺41a)および幅方向に沿った2辺(2つの横辺41b)の表裏撓み差d1を測定すると、表裏撓み差d1の値として合計28個の測定値が得られる。なお、上記の距離Lの長短により撓みW1および撓みW2の値は変化するため、表裏撓み差d1の値についても変化し得る。このため、距離Lが350mmでない場合には、表裏撓み差d1の値を距離Lが350mmである場合の値(d1=(W1-W2)×350/L)に換算する。ここで、7つの第一評価領域41(第一評価領域A~G)の板引き方向に沿った2辺の表裏撓み差d1の測定結果を図7に例示し、幅方向に沿った2辺の表裏撓み差d1の測定結果を図8に例示する。図7及び図8においては、2辺の一方の測定結果を実線で結んで表示し、他方の測定結果を鎖線で結んで表示している。 Following the measurement procedure of the front and back deflection difference d1 described above, for each of the seven first evaluation areas 41, two sides along the board drawing direction (two vertical sides 41a) and two sides along the width direction (two horizontal sides) are measured. When the front and back deflection difference d1 of the side 41b) is measured, a total of 28 measured values are obtained as the front and back deflection difference d1. Note that since the values of the deflection W1 and the deflection W2 change depending on the length of the distance L, the value of the front and back deflection difference d1 may also change. Therefore, when the distance L is not 350 mm, the value of the front and back deflection difference d1 is converted to the value when the distance L is 350 mm (d1=(W1-W2)×350/L). Here, the measurement results of the front and back deflection differences d1 of the two sides along the board drawing direction of the seven first evaluation areas 41 (first evaluation areas A to G) are illustrated in FIG. The measurement results of the front and back deflection difference d1 are illustrated in FIG. In FIGS. 7 and 8, the measurement results on one of the two sides are shown connected with a solid line, and the measurement results on the other side are shown connected with a chain line.
 図7及び図8に例示した測定結果のとおり、合計28個(板引き方向で14個、幅方向で14個)の表裏撓み差d1の測定値は、いずれも±0.5mmの範囲内に収まっている(-0.5mm≦d1≦0.5mm)。これにより、[形状精度基準A]が満たされる。 As shown in the measurement results shown in Figures 7 and 8, a total of 28 measurements (14 in the drawing direction and 14 in the width direction) of the front and back deflection differences d1 were all within the range of ±0.5 mm. (-0.5mm≦d1≦0.5mm). As a result, [shape accuracy criterion A] is satisfied.
 また、合計24個(板引き方向で12個、幅方向で12個)の変化量Δd1(図7及び図8の各々では、12個算出される変化量Δd1のうちの1つのみを表示)の算出値は、それぞれ0.3mm以下となっている(|Δd1|≦0.3mm)。これにより、[形状精度基準B]が満たされる。 In addition, a total of 24 changes Δd1 (12 in the board drawing direction and 12 in the width direction) (in each of FIGS. 7 and 8, only one of the 12 calculated changes Δd1 is shown) The calculated values of are each 0.3 mm or less (|Δd1|≦0.3 mm). As a result, [shape accuracy criterion B] is satisfied.
 [形状精度基準C]及び[形状精度基準D]を満たすか否かを判別するにあたり、第二評価領域42の板引き方向に沿った2辺(2つの縦辺42a)および幅方向に沿った2辺(2つの横辺42b)の表裏撓み差d2を測定する手順は、上述の表裏撓み差d1の測定手順と同様である。ここで、7つの第二評価領域42(第二評価領域H~N)の板引き方向に沿った2辺の表裏撓み差d2の測定結果を図9に例示し、7つの第二評価領域42(第二評価領域H~N)の幅方向に沿った2辺の表裏撓み差d2の測定結果を図10に例示する。図9及び図10においては、2辺の一方の測定結果を実線で結んで表示し、他方の測定結果を鎖線で結んで表示している。 In determining whether or not [shape accuracy standard C] and [shape accuracy standard D] are satisfied, two sides (two vertical sides 42a) along the board drawing direction of the second evaluation area 42 and along the width direction The procedure for measuring the front and back deflection difference d2 between the two sides (the two horizontal sides 42b) is the same as the procedure for measuring the front and back deflection difference d1 described above. Here, the measurement results of the front and back deflection differences d2 of the two sides along the board drawing direction of the seven second evaluation regions 42 (second evaluation regions H to N) are illustrated in FIG. The measurement results of the front and back deflection difference d2 between the two sides along the width direction (second evaluation regions H to N) are illustrated in FIG. In FIGS. 9 and 10, the measurement results on one side of the two sides are shown connected with a solid line, and the measurement results on the other side are shown connected with a chain line.
 図9及び図10に例示した測定結果の通り、合計28個(板引き方向で14個、幅方向で14個)の表裏撓み差d2の測定値は、いずれも±0.5mmの範囲内に収まっている(-0.5mm≦d2≦0.5mm)。これにより、[形状精度基準C]が満たされる。 As shown in the measurement results shown in FIGS. 9 and 10, a total of 28 measurements (14 in the drawing direction and 14 in the width direction) of the front and back deflection differences d2 were all within the range of ±0.5 mm. (-0.5mm≦d2≦0.5mm). As a result, [shape accuracy criterion C] is satisfied.
 さらに、7つの第一評価領域41(第一評価領域A~G)の板引き方向に沿った1辺(2つの縦辺41aのうちの片方)の表裏撓み差d1の測定結果と、7つの第二評価領域42(第二評価領域H~N)の対応する1辺(2つの縦辺42aのうちの片方)の表裏撓み差d2の測定結果と、を一緒に図11に表示する(d1を実線で結んで表示、d2を鎖線で結んで表示)。また、7つの第一評価領域41(第二評価領域A~G)の幅方向に沿った1辺(2つの横辺41bのうちの片方)の表裏撓み差d1の測定結果と、7つの第二評価領域42(第二評価領域H~N)の対応する1辺(2つの横辺42bのうちの片方)の表裏撓み差d2の測定結果と、を一緒に図12に表示する(d1を実線で結んで表示、d2を鎖線で結んで表示)。合計14個(板引き方向で7個、幅方向で7個)の変化量Δd2(図11及び図12の各々では、7個算出される変化量Δd2のうちの1つのみを表示)の算出値は、それぞれ0.3mm以下となっている(|Δd2|≦0.3mm)。これにより、[形状精度基準D]が満たされる。 Furthermore, the measurement results of the front and back deflection difference d1 of one side (one of the two vertical sides 41a) along the board drawing direction of the seven first evaluation areas 41 (first evaluation areas A to G) and the seven The measurement results of the front and back deflection difference d2 of the corresponding side (one of the two vertical sides 42a) of the second evaluation area 42 (second evaluation areas H to N) are displayed together in FIG. 11 (d1 are connected by a solid line, and d2 is connected by a chain line). In addition, the measurement results of the front and back deflection difference d1 of one side (one of the two horizontal sides 41b) along the width direction of the seven first evaluation areas 41 (second evaluation areas A to G) and the seven first evaluation areas 41 (second evaluation areas A to G) The measurement results of the front and back deflection difference d2 of the corresponding side (one of the two horizontal sides 42b) of the second evaluation area 42 (second evaluation area H to N) are displayed together in FIG. d2 is shown connected by a solid line, and d2 is shown connected by a dashed line). Calculation of a total of 14 changes Δd2 (7 in the board drawing direction and 7 in the width direction) (in each of FIGS. 11 and 12, only one of the 7 calculated changes Δd2 is shown) The values are each 0.3 mm or less (|Δd2|≦0.3 mm). As a result, [shape accuracy criterion D] is satisfied.
 [形状精度基準E]を満たすか否かを判別するにあたり、各第三評価領域6の平坦度を以下の手法により測定する。すなわち、ニデック社製の斜入射干渉計(製品名:FT-17又はFT-900)を用いて、各第三評価領域6を直立状態とした上で平坦度の測定を行う。具体的には、各第三評価領域6におけるHDD基板に対応する円形の領域の平坦度を測定する。勿論、他の斜入射干渉計を用いても構わない。そして、当該直立状態での平坦度の値を各第三評価領域6の平坦度の値とする。得られた合計20個の平坦度の値は、いずれも50μm以下である。これにより、[形状精度基準E]が満たされる。 In determining whether the [shape accuracy criterion E] is satisfied, the flatness of each third evaluation region 6 is measured by the following method. That is, using a grazing incidence interferometer (product name: FT-17 or FT-900) manufactured by NIDEK, the flatness is measured with each third evaluation region 6 in an upright state. Specifically, the flatness of a circular region corresponding to the HDD substrate in each third evaluation region 6 is measured. Of course, other oblique incidence interferometers may be used. Then, the flatness value in the upright state is taken as the flatness value of each third evaluation region 6. A total of 20 flatness values obtained are all 50 μm or less. As a result, [shape accuracy criterion E] is satisfied.
 上記の[形状精度基準A]~[形状精度基準E]が満たされることにより、マザーガラス板1の形状精度が保証される。なお、マザーガラス板1の形状精度を保証するに際しては、[形状精度基準A]が満たされることを必須とする一方、[形状精度基準B]、[形状精度基準C]、[形状精度基準D]、及び[形状精度基準E]が満たされるか否かは任意とする場合もある。つまり、第一評価領域41の表裏撓み差d1の変化量Δd1、第二評価領域42の表裏撓み差d2、第一評価領域41の表裏撓み差d1と第二評価領域42の表裏撓み差d2との間の変化量Δd2、および第三評価領域6の平坦度については考慮しない場合もある。 By satisfying the above [Shape Accuracy Criteria A] to [Shape Accuracy Criteria E], the shape accuracy of the mother glass plate 1 is guaranteed. In order to guarantee the shape accuracy of the mother glass plate 1, it is essential that [shape accuracy standard A] is satisfied, while [shape accuracy standard B], [shape accuracy standard C], and [shape accuracy standard D] are satisfied. ], and whether or not [shape accuracy criterion E] are satisfied may be determined arbitrarily. That is, the amount of change Δd1 in the front and back deflection difference d1 of the first evaluation region 41, the front and back deflection difference d2 of the second evaluation region 42, the front and back deflection difference d1 of the first evaluation region 41, and the front and back deflection difference d2 of the second evaluation region 42. The amount of change Δd2 between and the flatness of the third evaluation region 6 may not be considered.
 図13aに示すように、本マザーガラス板1は内部に異物や泡等に代表される欠陥1dを有している場合がある。このとき、マザーガラス板1の主面(表面1aあるいは裏面1b)からの欠陥1dの深さが所定の値以下であれば、当該マザーガラス板1からHDD基板を製造する過程で欠陥1dが取り除かれ、最終的に得られるHDD基板には欠陥1dが残存しなくなる。 As shown in FIG. 13a, the mother glass plate 1 may have internal defects 1d represented by foreign objects, bubbles, etc. At this time, if the depth of the defect 1d from the main surface (front surface 1a or back surface 1b) of the mother glass plate 1 is less than or equal to a predetermined value, the defect 1d may be removed during the process of manufacturing the HDD substrate from the mother glass plate 1. As a result, no defect 1d remains on the finally obtained HDD substrate.
 詳述すると、HDD基板を製造する過程では、マザーガラス板1から小片に切り出した複数のガラス板1X(HDD基板の元となるガラス板)の各々について、当該ガラス板1Xの主面を機械研磨する場合がある。そのため、マザーガラス板1のうち、後に機械研磨により除去される表層部(図13aにて斜線を施して示した部位)に存在する欠陥1dは、機械研磨に伴ってガラス板1Xから除去される(図13bに機械研磨後のガラス板1Xを示す)。従って、HDD基板には欠陥1dが残存しなくなる。 Specifically, in the process of manufacturing an HDD substrate, the main surface of each of the plurality of glass plates 1X (glass plates from which the HDD substrate is made) cut into small pieces from the mother glass plate 1 is mechanically polished. There are cases where Therefore, defects 1d existing in the surface layer portion of the mother glass plate 1 (the shaded area in FIG. 13a) that will be removed later by mechanical polishing are removed from the glass plate 1X by mechanical polishing. (Figure 13b shows the glass plate 1X after mechanical polishing). Therefore, no defect 1d remains on the HDD substrate.
 ここで、マザーガラス板1の主面(表面1aあるいは裏面1b)からの欠陥1dの深さは、好ましくは25μm以下であり、より好ましくは20μm以下であり、さらに好ましくは15μm以下であり、最も好ましくは10μm以下である。このような範囲の深さに存在する欠陥1dであれば、機械研磨に伴って好適に除去できる。 Here, the depth of the defect 1d from the main surface (front surface 1a or back surface 1b) of the mother glass plate 1 is preferably 25 μm or less, more preferably 20 μm or less, still more preferably 15 μm or less, and most preferably Preferably it is 10 μm or less. Defects 1d existing at a depth within this range can be suitably removed by mechanical polishing.
 以下、上記のマザーガラス板1の製造方法について説明する。 Hereinafter, a method for manufacturing the above mother glass plate 1 will be explained.
 本製造方法は、製造ラインでマザーガラス板1を連続的に生産する生産工程P1(図14)と、製造ラインから検査用マザーガラス板8を採取する採取工程P2(図15)と、検査用マザーガラス板8の形状精度を測定する測定工程と、測定工程の結果に基づいて生産工程P1で生産した複数のマザーガラス板1の合否を判定する合否判定工程と、を備える。そして、合否判定工程にて合格となった複数のマザーガラス板1の各々が、形状精度が保証されたマザーガラス(本実施形態では3.5インチサイズのHDD基板のマザーガラス)として得られる。 This manufacturing method consists of a production process P1 (Figure 14) in which mother glass plates 1 are continuously produced on a production line, a sampling process P2 (Figure 15) in which mother glass plates 8 for inspection are sampled from the production line, and a sampling process P2 (Figure 15) in which mother glass plates 8 for inspection are sampled from the production line. It includes a measurement step of measuring the shape accuracy of the mother glass plate 8, and a pass/fail determination step of determining the pass/fail of the plurality of mother glass plates 1 produced in the production process P1 based on the results of the measurement step. Then, each of the plurality of mother glass plates 1 that passed the pass/fail determination process is obtained as a mother glass (mother glass for a 3.5-inch HDD substrate in this embodiment) with guaranteed shape accuracy.
<生産工程>
 図14に示すように、生産工程P1の実行には製造装置9が用いられる。製造装置9は、ガラスリボンGrを連続成形する装置である。製造装置9は、ガラスリボンGrを成形する成形炉10と、ガラスリボンGrを徐冷(アニール処理)する徐冷炉11と、ガラスリボンGrを室温付近まで冷却する冷却ゾーン12と、これら成形炉10、徐冷炉11及び冷却ゾーン12のそれぞれに、上下複数段に設けられたローラ対13と、を備える。
<Production process>
As shown in FIG. 14, a manufacturing apparatus 9 is used to execute the production process P1. The manufacturing device 9 is a device that continuously molds the glass ribbon Gr. The manufacturing apparatus 9 includes a forming furnace 10 that forms the glass ribbon Gr, an annealing furnace 11 that slowly cools the glass ribbon Gr (annealing process), a cooling zone 12 that cools the glass ribbon Gr to around room temperature, and these forming furnaces 10, Each of the slow cooling furnace 11 and the cooling zone 12 is provided with a pair of rollers 13 provided in a plurality of upper and lower stages.
 成形炉10の内部空間には、オーバーフローダウンドロー法により溶融ガラスGmからガラスリボンGrを成形する成形体14が配置されている。成形体14に供給された溶融ガラスGmは、成形体14の頂部14aに形成された溝(図示省略)から両側方に溢れ出るようになっている。これら溢れ出た溶融ガラスGmが、楔状をなす成形体14の両側面14bを伝って当該成形体14の下端で合流することで、ガラスリボンGrが連続成形される。ガラスリボンGrは縦姿勢(好ましくは鉛直姿勢)であり、方向Qが板引き方向である。 A molded body 14 for molding a glass ribbon Gr from molten glass Gm by an overflow down-draw method is arranged in the internal space of the molding furnace 10. The molten glass Gm supplied to the molded body 14 overflows from a groove (not shown) formed in the top 14a of the molded body 14 to both sides. The overflowing molten glass Gm passes along both side surfaces 14b of the wedge-shaped molded body 14 and joins at the lower end of the molded body 14, thereby forming a glass ribbon Gr continuously. The glass ribbon Gr is in a vertical position (preferably in a vertical position), and the direction Q is the drawing direction.
 徐冷炉11の内部空間は、下方に向かって所定の温度勾配を有する。ガラスリボンGrは、徐冷炉11の内部空間を下方に向かって移動するに連れて温度が低くなるように徐冷される。この徐冷によりガラスリボンGrの内部歪が低減される。徐冷炉11の内部空間の温度勾配は、徐冷炉11の内面に設けた加熱装置(例えば、ヒーターなど)により調整することができる。 The internal space of the slow cooling furnace 11 has a predetermined temperature gradient downward. The glass ribbon Gr is slowly cooled so that its temperature decreases as it moves downward through the interior space of the slow cooling furnace 11. This slow cooling reduces the internal strain of the glass ribbon Gr. The temperature gradient in the internal space of the lehr 11 can be adjusted by a heating device (for example, a heater) provided on the inner surface of the lehr 11.
 複数のローラ対13は、縦姿勢のガラスリボンGrにおける幅方向の端部を表裏両側から挟むようになっている。なお、徐冷炉11の内部空間などでは、複数のローラ対13の中に端部を挟まないものが含まれていてもよい。換言すれば、ローラ対13を構成するローラ同士の間隔を端部の厚みよりも大きくし、ローラ同士の間を端部が通過するようにしてもよい。 The plurality of roller pairs 13 are configured to sandwich the widthwise ends of the vertically oriented glass ribbon Gr from both the front and back sides. In addition, in the internal space of the slow cooling furnace 11, etc., the plurality of roller pairs 13 may include rollers whose ends are not sandwiched. In other words, the distance between the rollers constituting the roller pair 13 may be made larger than the thickness of the end portion, so that the end portion passes between the rollers.
 なお、本実施形態では、成形炉10、徐冷炉11及び冷却ゾーン12を区画する壁部15の外側が、外包囲体16(例えば、建屋など)で取り囲まれている。壁部15と外包囲体16との間の空間には、冷却ゾーン12の上端部および下端部に対応する位置に、それぞれ仕切り部17,18(例えば、建屋の各階のフロア面など)が設けられている。これら仕切り部17,18により、壁部15と外包囲体16との間の空間は、徐冷炉11を囲む部屋R1と、冷却ゾーン12を囲む部屋R2とに分割されている。 In this embodiment, the outside of the wall 15 that partitions the forming furnace 10, the slow cooling furnace 11, and the cooling zone 12 is surrounded by an outer enclosure 16 (for example, a building). In the space between the wall portion 15 and the outer enclosure 16, partition portions 17 and 18 (for example, the floor surface of each floor of the building) are provided at positions corresponding to the upper and lower ends of the cooling zone 12, respectively. It is being These partitions 17 and 18 divide the space between the wall 15 and the outer envelope 16 into a room R1 surrounding the lehr 11 and a room R2 surrounding the cooling zone 12.
 製造装置9は、冷却ゾーン12の下方に切断装置19を備える。切断装置19は、縦姿勢のガラスリボンGrを所定の長さ毎に幅方向に切断することで、ガラスリボンGrからガラス板Gs(マザーガラス板1の元となるガラス)を順次切り出すように構成される。 The manufacturing device 9 includes a cutting device 19 below the cooling zone 12. The cutting device 19 is configured to sequentially cut out the glass plates Gs (the original glass of the mother glass plate 1) from the glass ribbon Gr by cutting the glass ribbon Gr in a vertical position in the width direction every predetermined length. be done.
 切断装置19は、冷却ゾーン12から降下してきたガラスリボンGrの一方面上を走行することで、ガラスリボンGrの幅方向に沿ってスクライブ線Sを形成するホイールカッター(図示省略)と、スクライブ線Sが形成された領域をガラスリボンGrの他方面側から支持する接触部20と、ガラス板Gsに対応する部分のガラスリボンGrを保持した状態で、スクライブ線Sの周辺に曲げ応力を作用させるための動作(V方向の動作)を行う保持部21と、を備えている。 The cutting device 19 includes a wheel cutter (not shown) that runs on one side of the glass ribbon Gr descending from the cooling zone 12 to form a scribe line S along the width direction of the glass ribbon Gr; Bending stress is applied around the scribe line S while holding the contact portion 20 that supports the area where S is formed from the other side of the glass ribbon Gr and the glass ribbon Gr in the portion corresponding to the glass plate Gs. A holding section 21 that performs an operation for this purpose (operation in the V direction) is provided.
 ホイールカッターは、降下中のガラスリボンGrに追従降下しつつ、ガラスリボンGrの幅方向の全幅又は一部にスクライブ線Sを形成する構成となっている。本実施形態では、相対的に厚みが大きい耳部を含んだ端部にもスクライブ線Sが形成されるが、端部にはスクライブ線Sを形成しなくてもよい。なお、スクライブ線Sはレーザーの照射等によって形成してもよい。また、耳部を含んだ端部は、後工程でガラス板Gsから切断除去されるため、生産されたマザーガラス板1には耳部が残っていない。 The wheel cutter is configured to form a scribe line S over the entire width or a part of the width direction of the glass ribbon Gr while descending to follow the descending glass ribbon Gr. In this embodiment, the scribe line S is also formed at the end including the relatively thick ear, but the scribe line S does not need to be formed at the end. Note that the scribe line S may be formed by laser irradiation or the like. Further, since the end portion including the ear portion is cut and removed from the glass plate Gs in a post-process, no ear portion remains in the produced mother glass plate 1.
 接触部20は、降下中のガラスリボンGrに追従降下しつつ、ガラスリボンGrの幅方向の全幅又は一部と接触する長尺なバーから構成されている。接触部20におけるガラスリボンGrとの接触面は、平面や幅方向に湾曲した曲面であってよい。 The contact portion 20 is composed of an elongated bar that descends to follow the descending glass ribbon Gr and comes into contact with the entire width or a portion of the glass ribbon Gr in the width direction. The contact surface with the glass ribbon Gr in the contact portion 20 may be a plane or a curved surface curved in the width direction.
 保持部21は、ガラスリボンGrの幅方向の端部を表裏両側から挟むチャックで構成されている。保持部21は、ガラスリボンGrの長手方向に間隔を空けて複数が設けられている。保持部21は、ガラスリボンGrの幅方向の一方側端部用および他方側端部用がそれぞれ設けられている。一方側端部用の複数の保持部21は、これらの全てが同一のアーム(図示省略)によって保持されている。同様にして、他方側端部用の複数の保持部21も、これらの全てが同一のアーム(図示省略)によって保持されている。これらのアームの動作により、一方側端部用および他方側端部用の複数の保持部21が、降下中のガラスリボンGrに追従降下しつつ、接触部20を支点としてガラスリボンGrを湾曲させるための動作(V方向の動作)を行う。これにより、スクライブ線Sの周辺に曲げ応力を付与し、ガラスリボンGrをスクライブ線Sに沿って折割切断する。この折割切断に伴い、ガラスリボンGrからガラス板Gsが切り出される。そして、この折割切断を繰り返すことで、ガラスリボンGrから連続的にガラス板Gsを切り出す。なお、保持部21は、ガラスリボンGrの端部を挟んで保持する形態に限らず、例えば、ガラスリボンGrの表裏面のいずれかを吸着保持する形態であってもよい。 The holding part 21 is composed of a chuck that holds the end of the glass ribbon Gr in the width direction from both the front and back sides. A plurality of holding parts 21 are provided at intervals in the longitudinal direction of the glass ribbon Gr. The holding portions 21 are provided for one end and the other end in the width direction of the glass ribbon Gr, respectively. All of the plurality of holding parts 21 for one side end are held by the same arm (not shown). Similarly, all of the plurality of holding parts 21 for the other end are held by the same arm (not shown). By the operation of these arms, the plurality of holding parts 21 for one side end and the other side end follow the descending glass ribbon Gr and curve the glass ribbon Gr using the contact part 20 as a fulcrum. (movement in the V direction). As a result, bending stress is applied around the scribe line S, and the glass ribbon Gr is broken along the scribe line S. Along with this breaking and cutting, a glass plate Gs is cut out from the glass ribbon Gr. Then, by repeating this breaking and cutting, glass plates Gs are continuously cut out from the glass ribbon Gr. In addition, the holding part 21 is not limited to the form in which it holds the end portion of the glass ribbon Gr, but may be in a form in which it holds either the front or back surface of the glass ribbon Gr by suction, for example.
 ガラスリボンGrから切り出した各ガラス板Gsは、後にマザーガラス板1となる矩形状の有効部と、有効部を間に挟んで幅方向両側に存在する端部とを含んでいる。端部は厚肉な耳部を含んでいる。マザーガラス板1を生産するに際しては、ガラス板Gsから端部を切断除去することで有効部を切り出す。有効部の切り出しにあたっては、例えば、ガラス板Gsに対する板引き方向に沿ったスクライブ線の形成(有効部と端部との境界に沿って形成)、及び、スクライブ線に沿った折割切断を実施することで、ガラス板Gsの幅方向両端の端部を切断除去する。これにより、ガラス板Gsから有効部を切り出してマザーガラス板1を得る。 Each glass plate Gs cut from the glass ribbon Gr includes a rectangular effective portion that will later become the mother glass plate 1, and end portions located on both sides in the width direction with the effective portion in between. The ends include thick ears. When producing the mother glass plate 1, the effective portion is cut out by cutting and removing the end portion from the glass plate Gs. In cutting out the effective part, for example, a scribe line is formed along the sheet drawing direction on the glass plate Gs (formed along the boundary between the effective part and the end part), and a break cut is performed along the scribe line. By doing so, both ends of the glass plate Gs in the width direction are cut and removed. Thereby, the effective portion is cut out from the glass plate Gs to obtain the mother glass plate 1.
 ここで、上記の徐冷炉11で実施される徐冷でガラスリボンGrを適切に徐冷することで、ガラスリボンGr及びこのガラスリボンGrから得られるマザーガラス板1において、所定の形状精度を得ることができる。このとき、徐冷の温度域内でガラスリボンGrの周囲温度が経時変化すると、ガラスリボンGr(マザーガラス板1)の形状精度に影響を与える。従って、徐冷炉11を囲む部屋R1と冷却ゾーン12(壁部15で区画される冷却ゾーン12の内部空間)の差圧変動を抑制することで、徐冷炉11内の温度を一定に保つようにする。具体的には、徐冷炉11を囲む部屋R1と冷却ゾーン12の差圧の変動幅を、0.5Pa~1.5Paとした。なお、「差圧の変動幅」とは、マザーガラス板1を生産する期間における徐冷炉11を囲む部屋R1と冷却ゾーン12の差圧の最大値と最小値の差を意味する。 Here, by appropriately annealing the glass ribbon Gr in the annealing performed in the annealing furnace 11 described above, a predetermined shape accuracy can be obtained in the glass ribbon Gr and the mother glass plate 1 obtained from this glass ribbon Gr. I can do it. At this time, if the ambient temperature of the glass ribbon Gr changes over time within the slow cooling temperature range, it will affect the shape accuracy of the glass ribbon Gr (mother glass plate 1). Therefore, by suppressing the differential pressure fluctuation between the room R1 surrounding the lehr 11 and the cooling zone 12 (inner space of the cooling zone 12 divided by the wall 15), the temperature inside the lehr 11 is kept constant. Specifically, the range of variation in the differential pressure between the room R1 surrounding the slow cooling furnace 11 and the cooling zone 12 was set to 0.5 Pa to 1.5 Pa. Note that the "fluctuation range of differential pressure" means the difference between the maximum value and the minimum value of the differential pressure between the room R1 surrounding the lehr 11 and the cooling zone 12 during the period of producing the mother glass plate 1.
<採取工程>
 図15には、生産工程P1で生産された順番で複数のマザーガラス板1を並べて表示している。並びの右側のマザーガラス板1ほど、時系列の上で先に生産されたマザーガラス板1である。これらマザーガラス板1の中から、測定工程で形状精度を測定する対象となる検査用マザーガラス板8を採取する。採取工程P2は所定時間(例えば2~24時間)ごとに実行している。つまり、図15に示す2枚の検査用マザーガラス板8のうちの左側は、右側の所定時間後に採取した検査用マザーガラス板8である。ここで、以下の説明では、先に採取した右側の検査用マザーガラス板8を先行検査用板8aと表記し、後に採取した左側の検査用マザーガラス板8を後続検査用板8bと表記して区別する場合がある。
<Collection process>
In FIG. 15, a plurality of mother glass plates 1 are displayed side by side in the order in which they were produced in the production process P1. The mother glass plates 1 on the right side of the row are mother glass plates 1 that were produced earlier in chronological order. From these mother glass plates 1, a test mother glass plate 8 whose shape accuracy is to be measured in the measurement process is sampled. The sampling step P2 is executed at predetermined time intervals (for example, every 2 to 24 hours). That is, the left side of the two mother glass plates 8 for inspection shown in FIG. 15 is the mother glass plate 8 for inspection taken after a predetermined time period from the right side. Here, in the following explanation, the mother glass plate 8 for inspection on the right side, which was sampled first, will be referred to as the plate for preceding inspection 8a, and the mother glass plate 8 for inspection on the left side, sampled later, will be referred to as the plate for subsequent inspection. There may be cases where a distinction is made.
 なお、上述した生産工程P1にてガラスリボンGrの成形条件を変更した場合には、採取工程P2を実行する時間間隔を、成形条件の変更前における時間間隔よりも短くすることが好ましい。また、1回の採取工程P2で採取する検査用マザーガラス板8の枚数(先行検査用板8aの枚数や後続検査用板8bの枚数)は、本実施形態のように1枚であってもよいし、複数枚であってもよい。 Note that when the molding conditions for the glass ribbon Gr are changed in the production process P1 described above, it is preferable that the time interval for performing the collection process P2 is shorter than the time interval before the molding conditions are changed. Further, the number of mother glass plates 8 for inspection sampled in one sampling process P2 (the number of plates 8a for preceding inspection and the number of plates 8b for subsequent inspection) may be one as in this embodiment. It is also possible to use a plurality of sheets.
<測定工程>
 測定工程では、はじめに、先行検査用板8aを対象として、図1に示したのと同様に複数(本実施形態では7つ)の第一評価領域41および幅方向端部エリア5を設定すると共に、図4に示したのと同様に複数(本実施形態では7つ)の第二評価領域42を設定し、さらに図5に示したのと同様に複数(本実施形態では幅方向の一方端側と他方端側とで10個ずつの合計20個)の第三評価領域6を設定する。なお、図2及び図3に示したのと同様に複数の第一評価領域41を設定してもよい。
<Measurement process>
In the measurement process, first, a plurality of (seven in this embodiment) first evaluation regions 41 and widthwise end areas 5 are set on the preliminary inspection board 8a, as shown in FIG. , a plurality of (seven in this embodiment) second evaluation regions 42 are set as shown in FIG. A total of 20 third evaluation regions 6 (10 on each side and 10 on the other end) are set. Note that a plurality of first evaluation areas 41 may be set in the same manner as shown in FIGS. 2 and 3.
 次に、先行検査用板8aに対して以下の[工程1]~[工程5]を実行する。 Next, the following [Step 1] to [Step 5] are performed on the preliminary inspection board 8a.
 [工程1]:7つの第一評価領域41(第一評価領域A~G)の各々について、板引き方向および幅方向に沿った表裏撓み差d1をそれぞれ測定する。表裏撓み差d1の具体的な測定手順は、既述の手順と同様である。これにより、1枚の先行検査用板8aについて、合計28個(板引き方向で14個、幅方向で14個)の表裏撓み差d1が測定される。 [Step 1]: For each of the seven first evaluation regions 41 (first evaluation regions A to G), the front and back deflection differences d1 along the board drawing direction and the width direction are measured. The specific procedure for measuring the front and back deflection difference d1 is the same as the procedure described above. As a result, a total of 28 front and back deflection differences d1 (14 in the board drawing direction and 14 in the width direction) are measured for one advance inspection board 8a.
 [工程2]:隣り合う第一評価領域41,41を1組として、全6組(A,Bの組、B,Cの組、・・・E,Fの組、F,Gの組)において、第一評価領域41,41間での板引き方向および幅方向に沿った表裏撓み差d1の変化量Δd1を算出する。変化量Δd1を算出する態様は、既述の態様と同様である。これにより、1枚の先行検査用板8aについて、合計24個(板引き方向で12個、幅方向で12個)の変化量Δd1が算出される。ただし、[工程2]においては、幅方向に沿った表裏撓み差d1の変化量Δd1のみを算出してもよい。 [Step 2]: Adjacent first evaluation areas 41 and 41 are set as one set, totaling 6 sets (set of A, B, set of B, C, ... set of E, F, set of F, G) In this step, the amount of change Δd1 in the front and back deflection difference d1 between the first evaluation regions 41, 41 along the board drawing direction and the width direction is calculated. The manner of calculating the amount of change Δd1 is the same as the manner described above. As a result, a total of 24 change amounts Δd1 (12 in the board drawing direction and 12 in the width direction) are calculated for one advance inspection board 8a. However, in [Step 2], only the amount of change Δd1 in the front and back deflection difference d1 along the width direction may be calculated.
 [工程3]:7つの第二評価領域42(第二評価領域H~N)の各々について、板引き方向および幅方向に沿った表裏撓み差d2をそれぞれ測定する。表裏撓み差d2の具体的な測定手順は、既述の手順と同様である。これにより、1枚の先行検査用板8aについて、合計28個(板引き方向で14個、幅方向で14個)の表裏撓み差d2が測定される。 [Step 3]: For each of the seven second evaluation regions 42 (second evaluation regions H to N), the front and back deflection differences d2 along the board drawing direction and the width direction are respectively measured. The specific procedure for measuring the front and back deflection difference d2 is the same as the procedure described above. As a result, a total of 28 front and back deflection differences d2 (14 in the board drawing direction and 14 in the width direction) are measured for one advance inspection board 8a.
 [工程4]:対応する第一評価領域41及び第二評価領域42を1組として、全7組(A,Hの組、B,Iの組、・・・F,Mの組、G,Nの組)において、第一評価領域41の4辺の表裏撓み差d1と、対応する第二評価領域42の対応する4辺の表裏撓み差d2との変化量Δd2を算出する。変化量Δd2を算出する態様は、既述の態様と同様である。これにより、1枚の先行検査用板8aについて、合計28個の変化量Δd2が算出される。ただし、[工程4]においては、第一評価領域41の板引き方向に沿った2辺の表裏撓み差d1と、対応する第二評価領域42の板引き方向に沿った2辺の表裏撓み差d2との変化量Δd2のみを算出してもよい。 [Step 4]: With the corresponding first evaluation area 41 and second evaluation area 42 as one set, a total of 7 sets (A, H group, B, I group, . . . F, M group, G, N sets), the amount of change Δd2 between the front and back deflection difference d1 of the four sides of the first evaluation area 41 and the front and back deflection difference d2 of the corresponding four sides of the corresponding second evaluation area 42 is calculated. The manner in which the amount of change Δd2 is calculated is the same as the manner described above. As a result, a total of 28 variations Δd2 are calculated for one advance inspection board 8a. However, in [Step 4], the front and back deflection difference d1 between the two sides along the board drawing direction of the first evaluation area 41 and the front and back deflection difference between the two sides along the board drawing direction of the corresponding second evaluation area 42 are determined. Only the amount of change Δd2 with respect to d2 may be calculated.
 [工程5]:全ての第三評価領域6について、光学式干渉計により平坦度を測定する。平坦度を測定する手法は、既述の手法と同様である。これにより、1枚の先行検査用板8aについて、合計20個の平坦度の値が測定される。 [Step 5]: Measure the flatness of all third evaluation regions 6 using an optical interferometer. The method of measuring flatness is similar to the method described above. As a result, a total of 20 flatness values are measured for one advance inspection board 8a.
 上記の表裏撓み差d1、d2の測定、変化量Δd1、Δd2の算出、及び平坦度の測定は、先行検査用板8aが複数枚である場合には、複数枚の各々について測定・算出する。 When there are a plurality of advance inspection plates 8a, the measurement of the front and back deflection differences d1 and d2, the calculation of the changes Δd1 and Δd2, and the flatness measurement are performed for each of the plurality of plates 8a.
 次に、後続検査用板8bを対象として、先行検査用板8aと同様にして、第一評価領域41、幅方向端部エリア5、第二評価領域42、及び第三評価領域6を設定した上で、上記[工程1]~[工程5]を実行する。これにより、1枚の後続検査用板8bについて、合計28個の表裏撓み差d1、合計28個の表裏撓み差d2、合計24個の変化量Δd1、合計28個の変化量Δd2、及び合計20個の平坦度の値が測定・算出される。勿論、後続検査用板8bが複数枚である場合には、複数枚の各々について表裏撓み差d1、d2の測定、変化量Δd1、Δd2の算出、及び平坦度の測定を行う。 Next, for the subsequent inspection board 8b, a first evaluation area 41, a widthwise end area 5, a second evaluation area 42, and a third evaluation area 6 were set in the same manner as the preceding inspection board 8a. Then, the above [Step 1] to [Step 5] are executed. As a result, for one subsequent inspection board 8b, a total of 28 front and back deflection differences d1, a total of 28 front and back deflection differences d2, a total of 24 changes Δd1, a total of 28 changes Δd2, and a total of 20 flatness values are measured and calculated. Of course, when there are a plurality of plates 8b for subsequent inspection, the front and back deflection differences d1 and d2 are measured, the amounts of change Δd1 and Δd2 are calculated, and the flatness is measured for each of the plurality of plates.
 次に、以下の[工程6]を実行する。 Next, perform the following [Step 6].
 [工程6]:連続する二回の採取工程P2で採取した検査用マザーガラス板8,8間(先行検査用板8aと後続検査用板8bとの間)での、対応する第一評価領域41,41間(第一評価領域A,A同士の間、B,B同士の間、・・・F,F同士の間、G,G同士の間)における板引き方向および幅方向に沿った表裏撓み差d1の変化量Δd3をそれぞれ算出する。 [Step 6]: Corresponding first evaluation area between the mother glass plates for inspection 8 and 8 (between the preceding inspection plate 8a and the subsequent inspection plate 8b) sampled in two consecutive sampling steps P2 41, 41 (first evaluation areas A, between A, B, between B, ... F, between F, G, along the width direction) The amount of change Δd3 in the front and back deflection difference d1 is calculated.
 ここで、変化量Δd3の例を図16(板引き方向に延びた2辺のうち1辺の結果)及び図17(幅方向に延びた2辺のうち1辺の結果)に示す。図16及び図17に実線で結んで示すのは、先行検査用板8aについての表裏撓み差d1の測定結果であり、鎖線で結んで示すのは、後続検査用板8bについての対応する表裏撓み差d1の測定結果である。なお、両図においては、対応する第一評価領域A,A同士間での変化量Δd3のみを表示している。変化量Δd3は、先行検査用板8aと後続検査用板8bとが1枚ずつである場合に、合計28個(板引き方向で14個、幅方向で14個)が算出される。 Here, examples of the amount of change Δd3 are shown in FIG. 16 (results for one of the two sides extending in the board drawing direction) and FIG. 17 (results for one of the two sides extending in the width direction). What is shown in FIGS. 16 and 17 by a solid line is the measurement result of the front and back deflection difference d1 for the preceding test board 8a, and what is shown by a chain line is the corresponding front and back deflection for the subsequent test board 8b. These are the measurement results of the difference d1. Note that in both figures, only the amount of change Δd3 between the corresponding first evaluation areas A and A is displayed. The amount of change Δd3 is calculated to be 28 in total (14 in the board drawing direction and 14 in the width direction) when there is one each of the preceding inspection board 8a and the subsequent inspection board 8b.
<合否判定工程>
 合否判定工程では、以下の[基準1]~[基準6]の全てを満たす場合に、図15に示した範囲Z内にある複数のマザーガラス板1(先行検査用板8aと後続検査用板8bとの相互間に挟まれる複数のマザーガラス板1)を合格とする。つまり、HDD基板のマザーガラス板1としての品質を満たしているものとする。一方、[基準1]~[基準6]のいずれか一つでも満たさない場合には、範囲Z内にある複数のマザーガラス板1を不合格とする。つまり、HDD基板のマザーガラス板1としての品質を満たしていないものとする。
<Pass/Fail Judgment Process>
In the pass/fail judgment process, if all of the following [Criteria 1] to [Criteria 6] are satisfied, a plurality of mother glass plates 1 (preceding inspection plate 8a and subsequent inspection plate A plurality of mother glass plates 1) sandwiched between the two mother glass plates 1) and 8b are accepted. In other words, it is assumed that the quality of the mother glass plate 1 of the HDD substrate is satisfied. On the other hand, if any one of [Criteria 1] to [Criteria 6] is not satisfied, the plurality of mother glass plates 1 within the range Z are rejected. In other words, it is assumed that the quality of the mother glass plate 1 of the HDD substrate is not satisfied.
 [基準1]:先行検査用板8aおよび後続検査用板8bの双方において、[工程1]で測定された全ての表裏撓み差d1が±0.5mmの範囲内に収まる(-0.5mm≦d1≦0.5mm)。なお、全ての表裏撓み差d1が±0.3mmの範囲内に収まっていればより好ましく、±0.2mmの範囲内に収まっていれば更に好ましく、±0.1mmの範囲内に収まっていれば最も好ましい。 [Criteria 1]: For both the preceding inspection board 8a and the subsequent inspection board 8b, all front and back deflection differences d1 measured in [Step 1] fall within the range of ±0.5 mm (-0.5 mm≦ d1≦0.5mm). In addition, it is more preferable that all front and back deflection differences d1 fall within the range of ±0.3 mm, even more preferably that they fall within the range of ±0.2 mm, and it is preferable that they fall within the range of ±0.1 mm. most preferred.
 [基準2]:先行検査用板8aおよび後続検査用板8bの双方において、[工程2]で算出された全ての変化量Δd1が0.3mm以下となる(|Δd1|≦0.3mm)。なお、全ての変化量Δd1が0.2mm以下であればより好ましく、0.1mm以下であれば更に好ましい。 [Criteria 2]: In both the preceding inspection plate 8a and the subsequent inspection plate 8b, all the amounts of change Δd1 calculated in [Step 2] are 0.3 mm or less (|Δd1|≦0.3 mm). In addition, it is more preferable that all the amounts of change Δd1 are 0.2 mm or less, and even more preferable that they are 0.1 mm or less.
 [基準3]:先行検査用板8aおよび後続検査用板8bの双方において、[工程3]で測定された全ての表裏撓み差d2が±0.5mmの範囲内に収まる(-0.5mm≦d2≦0.5mm)。なお、全ての表裏撓み差d2が±0.3mmの範囲内に収まっていればより好ましく、±0.2mmの範囲内に収まっていれば更に好ましく、±0.1mmの範囲内に収まっていれば最も好ましい。 [Criteria 3]: For both the preceding inspection board 8a and the subsequent inspection board 8b, all front and back deflection differences d2 measured in [Step 3] fall within the range of ±0.5 mm (-0.5 mm≦ d2≦0.5mm). In addition, it is more preferable that all front and back deflection differences d2 fall within the range of ±0.3 mm, even more preferably that they fall within the range of ±0.2 mm, and it is preferable that they fall within the range of ±0.1 mm. most preferred.
 [基準4]:先行検査用板8aおよび後続検査用板8bの双方において、[工程4]で算出された全ての変化量Δd2が0.3mm以下となる(|Δd2|≦0.3mm)。なお、全ての変化量Δd2が0.2mm以下であればより好ましく、0.1mm以下であれば更に好ましい。 [Criteria 4]: In both the preceding inspection plate 8a and the subsequent inspection plate 8b, all the amounts of change Δd2 calculated in [Step 4] are 0.3 mm or less (|Δd2|≦0.3 mm). In addition, it is more preferable that all the amounts of change Δd2 are 0.2 mm or less, and even more preferable that they are 0.1 mm or less.
 [基準5]:先行検査用板8aおよび後続検査用板8bの双方において、[工程5]で測定された全ての平坦度の値が50μm以下である。なお、全ての平坦度の値が30μm以下であればより好ましく、20μm以下であれば更に好ましく、10μm以下であれば最も好ましい。 [Criteria 5]: All flatness values measured in [Step 5] are 50 μm or less on both the preceding inspection board 8a and the subsequent inspection board 8b. In addition, it is more preferable that all the flatness values are 30 μm or less, even more preferably 20 μm or less, and most preferably 10 μm or less.
 [基準6]:[工程6]で算出された全ての変化量Δd3が0.3mm以下となる(|Δd3|≦0.3mm)。なお、全ての変化量Δd3が0.2mm以下であればより好ましく、0.1mm以下であれば更に好ましい。 [Criteria 6]: All the amounts of change Δd3 calculated in [Step 6] are 0.3 mm or less (|Δd3|≦0.3 mm). In addition, it is more preferable that all the amounts of change Δd3 are 0.2 mm or less, and even more preferable that they are 0.1 mm or less.
 ここで、本実施形態では、測定工程において[工程1]~[工程6]の全てを実行しているが、これに限定されるものではない。[工程1]及び[工程6]のみを必須とし、他の[工程2]、[工程3]、[工程4]、及び[工程5]については、実行するか否かを任意としてもよい。例えば、生産工程P1におけるガラスリボンGrの成形条件を変更した場合や、生産されたマザーガラス板1の形状精度に悪化の傾向が認められた場合(例えば、表裏撓み差d1の絶対値|d1|や変化量Δd3が増大する傾向にある場合)等にのみ、[工程2]、[工程3]、[工程4]、及び[工程5]を実行するようにしてもよい。 Here, in this embodiment, all of [Step 1] to [Step 6] are executed in the measurement process, but the present invention is not limited to this. Only [Step 1] and [Step 6] may be required, and whether or not to perform the other [Step 2], [Step 3], [Step 4], and [Step 5] may be optional. For example, if the molding conditions of the glass ribbon Gr in the production process P1 are changed, or if the shape accuracy of the produced mother glass plate 1 tends to deteriorate (for example, the absolute value of the front and back deflection difference d1 |d1| [Step 2], [Step 3], [Step 4], and [Step 5] may be performed only when the amount of change Δd3 tends to increase.
 測定工程にて[工程1]及び[工程6]のみを必須とした場合には、合否判定工程では、[基準1]及び[基準6]のみを満たせば、図15に示した範囲Z内にある複数のマザーガラス板1を合格としてよい。つまり、HDD基板のマザーガラス板1としての品質を満たしているものとして構わない。 If only [Step 1] and [Step 6] are required in the measurement process, in the pass/fail judgment process, if only [Criterion 1] and [Criterion 6] are satisfied, the result will be within the range Z shown in Figure 15. A certain number of mother glass plates 1 may be accepted. In other words, it does not matter if it satisfies the quality requirements for the mother glass plate 1 of the HDD substrate.
 また、本製造方法は、マザーガラス板1に含まれる異物や泡等に代表される欠陥1dについて、マザーガラス板1の主面(表面1aあるいは裏面1b)から欠陥1dまでの深さを測定する欠陥深さ測定工程と、測定された深さに基づいて欠陥1dを評価する欠陥評価工程と、をさらに備えていてもよい。これら両工程を実行する場合には、上記の合否判定工程で合格と判定された複数のマザーガラス板1のうち、さらに欠陥評価工程の結果からも合格と判定されたマザーガラス板1のみを、HDD基板のマザーガラス板1としての品質を満たすものと扱うこともできる。 In addition, in this manufacturing method, regarding defects 1d, which are typified by foreign objects, bubbles, etc. contained in the mother glass plate 1, the depth from the main surface (front surface 1a or back surface 1b) of the mother glass plate 1 to the defect 1d is measured. The method may further include a defect depth measuring step and a defect evaluation step of evaluating the defect 1d based on the measured depth. When performing both of these steps, among the plurality of mother glass plates 1 that were judged to be acceptable in the above pass/fail judgment process, only the mother glass plates 1 that were also judged to be acceptable based on the results of the defect evaluation process are selected. It can also be treated as one that satisfies the quality of the mother glass plate 1 of the HDD board.
<欠陥深さ測定工程>
 欠陥深さ測定工程では、公知の種々の測定方法により欠陥1dの深さを測定することが可能である。一例を挙げると、複数の焦点距離でマザーガラス板1を撮像した画像の中から、欠陥1dに最も焦点が合った画像を選択し、その画像の焦点位置に基づいて、主面からの欠陥1dの深さ(マザーガラス板1の厚み方向に沿った深さ)を算出することができる。
<Defect depth measurement process>
In the defect depth measuring step, it is possible to measure the depth of the defect 1d using various known measuring methods. For example, from among the images taken of the mother glass plate 1 at a plurality of focal lengths, an image that is most focused on the defect 1d is selected, and based on the focal position of the image, the defect 1d from the main surface is (the depth along the thickness direction of the mother glass plate 1) can be calculated.
<欠陥評価工程>
 欠陥評価工程では、欠陥深さ測定工程で測定した欠陥1dの深さが所定の値以下(例えば25μm以下、20μm以下、15μm以下、10μm以下など)であれば、欠陥1dの大きさ、及び種類に関わらず、その欠陥1dを合格欠陥と判定する。その際、一方の主面からの深さが所定の値以下である欠陥を合格欠陥と判定してもよいが、一方の主面からの深さが所定の値以下である欠陥を合格欠陥と判定すると共に、他方の主面からの深さが所定の値以下である欠陥を合格欠陥と判定することが好ましい。マザーガラス板1が合格欠陥のみを有する場合は、マザーガラス板1を合格と判定する。一方で、欠陥1dの深さが所定の値より大きい場合は、その欠陥1dを不合格欠陥と判定する。その後、マザーガラス板1に含まれる不合格欠陥の数、大きさ、及び種類に基づいて、マザーガラス板1の合否が判定され、不合格と判定されたマザーガラス板1は廃棄される。このような欠陥評価工程を行うことで、合格欠陥のみを備えるマザーガラス板1がHDD基板のマザーガラス板1としての品質を満たしていると判定することができ、マザーガラス板1の歩留まりを向上することができる。
<Defect evaluation process>
In the defect evaluation process, if the depth of the defect 1d measured in the defect depth measurement process is below a predetermined value (for example, 25 μm or less, 20 μm or less, 15 μm or less, 10 μm or less), the size and type of the defect 1d are determined. Regardless, the defect 1d is determined to be an acceptable defect. At that time, a defect whose depth from one main surface is less than or equal to a predetermined value may be determined to be an acceptable defect, but a defect whose depth from one main surface is less than or equal to a predetermined value may be determined to be an acceptable defect. At the same time, it is preferable to determine a defect whose depth from the other main surface is less than or equal to a predetermined value as an acceptable defect. If the mother glass plate 1 has only acceptable defects, the mother glass plate 1 is determined to be acceptable. On the other hand, if the depth of the defect 1d is greater than a predetermined value, the defect 1d is determined to be a reject defect. Thereafter, the pass/fail of the mother glass plate 1 is determined based on the number, size, and type of reject defects included in the mother glass plate 1, and the mother glass plate 1 determined to be rejected is discarded. By performing such a defect evaluation process, it can be determined that the mother glass plate 1 having only acceptable defects satisfies the quality as the mother glass plate 1 for an HDD substrate, and the yield of the mother glass plate 1 can be improved. can do.
1     マザーガラス板
1a    表面(主面)
1b    裏面(主面)
1d    欠陥
2     マザーガラス板の第一辺
3     マザーガラス板の第二辺
41    第一評価領域
42    第二評価領域
5     幅方向端部エリア
6     第三評価領域
8     検査用マザーガラス板
8a    先行検査用板
8b    後続検査用板
d1    表裏撓み差
Δd1   表裏撓み差の変化量
d2    表裏撓み差
Δd2   表裏撓み差の変化量
Δd3   表裏撓み差の変化量
P1    生産工程
P2    採取工程
1 Mother glass plate 1a surface (main surface)
1b Back side (main side)
1d Defect 2 First side of mother glass plate 3 Second side of mother glass plate 41 First evaluation area 42 Second evaluation area 5 Width direction end area 6 Third evaluation area 8 Mother glass plate for inspection 8a Prior inspection plate 8b Plate for subsequent inspection d1 Front and back deflection difference Δd1 Amount of change in the front and back deflection difference d2 Front and back deflection difference Δd2 Amount of change in the front and back deflection difference Δd3 Amount of change in the front and back deflection difference P1 Production process P2 Sampling process

Claims (13)

  1.  製造ラインでマザーガラス板を連続的に生産する生産工程と、前記製造ラインから検査用マザーガラス板を採取する採取工程と、前記検査用マザーガラス板の形状精度を測定する測定工程と、前記測定工程の結果に基づいて前記生産工程で生産した複数のマザーガラス板の合否を判定する合否判定工程と、を備えるハードディスクドライブ用のマザーガラス板の製造方法であって、
     前記マザーガラス板は、板引き方向に沿った第一辺と、前記板引き方向と直交する幅方向に沿った第二辺とを有する矩形状であり、かつ、前記第一辺および前記第二辺のそれぞれの長さが1000mm以上、厚さが0.3mm以上0.7mm以下であり、
     前記採取工程は、所定時間ごとに実行すると共に、採取した前記検査用マザーガラス板の有効部の全幅を充足するように、前記有効部に対して一辺の長さが300mm以上700mm以下である複数の矩形状の第一評価領域を幅方向に配列して設定し、
     前記測定工程は、前記複数の第一評価領域の各々について、板引き方向および幅方向に沿った表裏撓み差をそれぞれ測定する工程と、連続する二回の前記採取工程で採取した前記検査用マザーガラス板間での、対応する前記第一評価領域間における前記表裏撓み差の変化量をそれぞれ算出する工程と、を備えるマザーガラス板の製造方法。
    A production process of continuously producing mother glass plates on a production line, a sampling process of collecting a mother glass plate for inspection from said production line, a measurement process of measuring the shape accuracy of said mother glass plate for inspection, and said measurement. A method for manufacturing a mother glass plate for a hard disk drive, comprising: a pass/fail determination step of determining pass/fail of a plurality of mother glass plates produced in the production process based on the result of the process,
    The mother glass plate has a rectangular shape having a first side along the sheet drawing direction and a second side along the width direction perpendicular to the sheet drawing direction, and the first side and the second side The length of each side is 1000 mm or more, the thickness is 0.3 mm or more and 0.7 mm or less,
    The sampling process is carried out at predetermined intervals, and is performed at intervals of a predetermined time, and in order to fill the entire width of the effective part of the sampled mother glass plate for inspection, a plurality of pieces having a side length of 300 mm or more and 700 mm or less with respect to the effective part are collected. Arrange and set the rectangular first evaluation area in the width direction,
    The measurement step includes a step of measuring the front and back deflection differences along the board drawing direction and the width direction for each of the plurality of first evaluation regions, and the test mother sample collected in the two successive sampling steps. A method for manufacturing a mother glass plate, comprising the step of calculating the amount of change in the front and back deflection difference between the corresponding first evaluation regions between the glass plates.
  2.  前記測定工程は、個々の前記検査用マザーガラス板を対象として、幅方向に隣り合う前記第一評価領域間における前記表裏撓み差の変化量をそれぞれ算出する工程をさらに備える請求項1に記載のマザーガラス板の製造方法。 The measuring step further comprises the step of calculating the amount of change in the front and back deflection difference between the first evaluation regions adjacent in the width direction for each of the mother glass plates for inspection. Method of manufacturing mother glass plate.
  3.  前記採取工程では、前記複数の第一評価領域の各々に対応させて、前記第一評価領域と幅方向の位置が同一であり、且つ、前記第一評価領域と板引き方向に隣り合う第二評価領域をさらに設定し、
     前記測定工程は、前記第二評価領域の各々について、板引き方向および幅方向に沿った表裏撓み差をそれぞれ測定する工程と、対応する前記第一評価領域と前記第二評価領域との間の前記表裏撓み差の変化量をそれぞれ算出する工程と、をさらに備える請求項1又は2に記載のマザーガラス板の製造方法。
    In the sampling step, in correspondence with each of the plurality of first evaluation areas, a second evaluation area that is located at the same position in the width direction as the first evaluation area and that is adjacent to the first evaluation area in the board drawing direction is selected. further setting the evaluation area,
    The measurement step includes a step of measuring the front and back deflection differences along the board drawing direction and the width direction for each of the second evaluation regions, and a step of measuring the front and back deflection differences between the corresponding first evaluation region and the second evaluation region. 3. The method for manufacturing a mother glass plate according to claim 1, further comprising the step of calculating respective amounts of change in the front and back deflection differences.
  4.  前記採取工程では、採取した前記検査用マザーガラス板の前記有効部における幅方向端部エリアに対し、複数の第三評価領域をさらに設定すると共に、前記幅方向端部エリアの幅が前記第二辺の長さの30%以下であり、
     前記測定工程は、光学式干渉計により、前記複数の第三評価領域の平坦度をそれぞれ測定する工程をさらに備える請求項1又は2に記載のマザーガラス板の製造方法。
    In the sampling step, a plurality of third evaluation areas are further set in the widthwise end area of the effective portion of the sampled mother glass plate for inspection, and the width of the widthwise end area is set as the second evaluation area. 30% or less of the side length,
    3. The method for manufacturing a mother glass plate according to claim 1, wherein the measuring step further includes a step of measuring the flatness of each of the plurality of third evaluation regions using an optical interferometer.
  5.  前記第三評価領域は、1辺が50mm以上150mm以下の矩形状である請求項4に記載のマザーガラス板の製造方法。 The method for manufacturing a mother glass plate according to claim 4, wherein the third evaluation area has a rectangular shape with one side of 50 mm or more and 150 mm or less.
  6.  前記第三評価領域は、前記第一評価領域の一部である請求項4に記載のマザーガラス板の製造方法。 The method for manufacturing a mother glass plate according to claim 4, wherein the third evaluation area is a part of the first evaluation area.
  7.  前記マザーガラス板は内部に欠陥を有し、
     前記マザーガラス板の主面から前記欠陥までの深さを測定する欠陥深さ測定工程と、測定された前記深さに基づいて前記欠陥を評価する欠陥評価工程と、をさらに備える請求項1又は2に記載のマザーガラス板の製造方法。
    The mother glass plate has an internal defect,
    Claim 1 or 2, further comprising: a defect depth measuring step of measuring the depth from the main surface of the mother glass plate to the defect; and a defect evaluation step of evaluating the defect based on the measured depth. 2. The method for manufacturing a mother glass plate according to 2.
  8.  板引き方向に沿った第一辺と、前記板引き方向と直交する幅方向に沿った第二辺とを有する矩形状であり、かつ、前記第一辺および前記第二辺のそれぞれの長さが1000mm以上、厚さが0.3mm以上0.7mm以下であるハードディスクドライブ用のマザーガラス板であって、
     当該マザーガラス板には、当該マザーガラス板の有効部の全幅を充足するように、複数の矩形状の第一評価領域が設定され、
     前記複数の第一評価領域は、前記板引き方向の辺が500mmかつ前記幅方向の辺が400mmであり、
     全ての前記第一評価領域の各々について、板引き方向および幅方向に沿った表裏撓み差をそれぞれ測定した場合に、前記表裏撓み差の値がいずれも±0.5mmの範囲内に収まり、
     前記表裏撓み差の値は、350mm角サイズに換算した値であるマザーガラス板。
    A rectangular shape having a first side along the board drawing direction and a second side along the width direction perpendicular to the board drawing direction, and each length of the first side and the second side A mother glass plate for a hard disk drive having a thickness of 1000 mm or more and a thickness of 0.3 mm or more and 0.7 mm or less,
    A plurality of rectangular first evaluation areas are set on the mother glass plate so as to fill the entire width of the effective portion of the mother glass plate,
    The plurality of first evaluation regions have a side in the board drawing direction of 500 mm and a side in the width direction of 400 mm,
    For each of all the first evaluation regions, when the front and back deflection differences along the board drawing direction and the width direction are measured, the values of the front and back deflection differences are all within a range of ±0.5 mm,
    The value of the difference in deflection between the front and back surfaces is a value converted to a 350 mm square size of the mother glass plate.
  9.  当該マザーガラス板は、幅方向に隣り合う前記第一評価領域間での前記表裏撓み差の変化量が、それぞれ0.3mm以下である請求項8に記載のマザーガラス板。 The mother glass plate according to claim 8, wherein the amount of change in the front and back deflection difference between the first evaluation regions adjacent in the width direction is 0.3 mm or less, respectively.
  10.  前記複数の第一評価領域の各々に対応して、前記第一評価領域と幅方向の位置が同一であり、且つ、前記第一評価領域と板引き方向に隣り合う第二評価領域がさらに設定され、
     前記第二評価領域の各々について、板引き方向および幅方向に沿った表裏撓み差をそれぞれ測定した場合に、記表裏撓み差の値がいずれも±0.5mmの範囲内に収まり、
     対応する前記第一評価領域と前記第二評価領域との間の前記表裏撓み差の変化量が、それぞれ0.3mm以下である請求項8又は9に記載のマザーガラス板。
    A second evaluation area is further set corresponding to each of the plurality of first evaluation areas, the position being the same in the width direction as the first evaluation area, and adjacent to the first evaluation area in the board pulling direction. is,
    For each of the second evaluation regions, when the front and back deflection differences along the board drawing direction and the width direction are measured, the values of the front and back deflection differences are all within the range of ±0.5 mm,
    The mother glass plate according to claim 8 or 9, wherein the amount of change in the front and back deflection difference between the corresponding first evaluation area and the second evaluation area is each 0.3 mm or less.
  11.  当該マザーガラス板には、前記第一辺からの距離が第二辺の長さの30%以下である範囲に複数の矩形状の第三評価領域が設定され、
     前記第三評価領域は、各辺が100mmであり、
     全ての前記第三評価領域の各々について、光学式干渉計により平坦度を測定した場合に、前記平坦度がいずれも50μm以下である請求項8又は9に記載のマザーガラス板。
    A plurality of rectangular third evaluation areas are set on the mother glass plate in a range where the distance from the first side is 30% or less of the length of the second side,
    Each side of the third evaluation area is 100 mm,
    The mother glass plate according to claim 8 or 9, wherein the flatness of each of the third evaluation regions is 50 μm or less when measured by an optical interferometer.
  12.  当該マザーガラス板の縦弾性係数が80GPa以上である請求項8又は9に記載のマザーガラス板。 The mother glass plate according to claim 8 or 9, wherein the mother glass plate has a longitudinal elastic modulus of 80 GPa or more.
  13.  当該マザーガラス板は内部に欠陥を有し、
     前記欠陥は当該マザーガラス板の主面からの深さが25μm以下である請求項8又は9に記載のマザーガラス板。
    The mother glass plate has internal defects,
    The mother glass plate according to claim 8 or 9, wherein the defect has a depth of 25 μm or less from the main surface of the mother glass plate.
PCT/JP2023/024629 2022-07-13 2023-07-03 Mother glass sheet and method for manufacturing mother glass sheet WO2024014340A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022112330 2022-07-13
JP2022-112330 2022-07-13

Publications (1)

Publication Number Publication Date
WO2024014340A1 true WO2024014340A1 (en) 2024-01-18

Family

ID=89536615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024629 WO2024014340A1 (en) 2022-07-13 2023-07-03 Mother glass sheet and method for manufacturing mother glass sheet

Country Status (1)

Country Link
WO (1) WO2024014340A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116726A (en) * 1997-06-17 1999-01-12 Hoya Corp Method and apparatus for measuring warpage
JPH11116267A (en) * 1996-09-04 1999-04-27 Hoya Corp Glass having high modulus of specific elasticity
JP2005174500A (en) * 2003-12-12 2005-06-30 Hoya Corp Manufacturing method of glass substrate for information recording medium
JP2013249254A (en) * 2008-03-28 2013-12-12 Furukawa Electric Co Ltd:The Method of manufacturing plate material and plate material
JP2017178711A (en) * 2016-03-31 2017-10-05 AvanStrate株式会社 Glass substrate for magnetic recording medium and manufacturing method therefor
JP2020508958A (en) * 2017-02-28 2020-03-26 コーニング インコーポレイテッド Glass article with reduced thickness variation, method for manufacturing the same, and apparatus therefor
JP2020101434A (en) * 2018-12-21 2020-07-02 日本電気硝子株式会社 Deflection measuring apparatus of glass plate, and manufacturing method of glass plate
JP2021124381A (en) * 2020-02-05 2021-08-30 日本電気硝子株式会社 Glass plate shape measuring method and glass article manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116267A (en) * 1996-09-04 1999-04-27 Hoya Corp Glass having high modulus of specific elasticity
JPH116726A (en) * 1997-06-17 1999-01-12 Hoya Corp Method and apparatus for measuring warpage
JP2005174500A (en) * 2003-12-12 2005-06-30 Hoya Corp Manufacturing method of glass substrate for information recording medium
JP2013249254A (en) * 2008-03-28 2013-12-12 Furukawa Electric Co Ltd:The Method of manufacturing plate material and plate material
JP2017178711A (en) * 2016-03-31 2017-10-05 AvanStrate株式会社 Glass substrate for magnetic recording medium and manufacturing method therefor
JP2020508958A (en) * 2017-02-28 2020-03-26 コーニング インコーポレイテッド Glass article with reduced thickness variation, method for manufacturing the same, and apparatus therefor
JP2020101434A (en) * 2018-12-21 2020-07-02 日本電気硝子株式会社 Deflection measuring apparatus of glass plate, and manufacturing method of glass plate
JP2021124381A (en) * 2020-02-05 2021-08-30 日本電気硝子株式会社 Glass plate shape measuring method and glass article manufacturing method

Similar Documents

Publication Publication Date Title
US9840436B2 (en) Methods for measuring the asymmetry of a glass-sheet manufacturing process
JP4930336B2 (en) Warpage inspection method and manufacturing method of glass substrate
CN111712471B (en) Glass substrate set and method for manufacturing same
WO2024014340A1 (en) Mother glass sheet and method for manufacturing mother glass sheet
CN114981218A (en) Glass plate manufacturing method and manufacturing device thereof
US10829412B2 (en) Carriers for microelectronics fabrication
TW202406864A (en) Mother glass plate and method of manufacturing mother glass plate
JP6379678B2 (en) Manufacturing method of glass substrate
CN110998298B (en) Method for manufacturing plate-shaped glass
CN112051212A (en) System and method for detecting defects in a substrate
JP2012137758A (en) Glass substrate
US20220048814A1 (en) Method for manufacturing a partially textured glass article
KR20220118994A (en) Method for making glass articles and glass articles
TW202035313A (en) Glass article production method and production device therefor
JP2017065981A (en) Method and device for measuring thermal shrinkage rate of glass substrate, and method for manufacturing glass substrate
WO2023171217A1 (en) Glass substrate
JP2013199405A (en) Glass substrate for plasma display and method for manufacturing the same
JP6403458B2 (en) Manufacturing method of glass substrate
KR20230072479A (en) A glass substrate and a manufacturing method of the glass substrate
JP2021169401A (en) Method for producing glass article and device for producing the same
TW202248167A (en) Glass plate for chemical reinforcement, method for manufacturing reinforced glass plate, and glass plate
KR20120027754A (en) Scribing method of assembled brittle substrates having steps
JP2016124746A (en) Production method of glass substrate, and production apparatus of glass substrate
JP2016124747A (en) Production method of glass substrate, and production apparatus of glass substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839512

Country of ref document: EP

Kind code of ref document: A1