WO2024014165A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2024014165A1
WO2024014165A1 PCT/JP2023/020488 JP2023020488W WO2024014165A1 WO 2024014165 A1 WO2024014165 A1 WO 2024014165A1 JP 2023020488 W JP2023020488 W JP 2023020488W WO 2024014165 A1 WO2024014165 A1 WO 2024014165A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer edge
hole
sleeve
semiconductor device
edge portion
Prior art date
Application number
PCT/JP2023/020488
Other languages
English (en)
French (fr)
Inventor
仁隆 宮越
力宏 丸山
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN202380015435.0A priority Critical patent/CN118382929A/zh
Publication of WO2024014165A1 publication Critical patent/WO2024014165A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R9/00Structural associations of a plurality of mutually-insulated electrical connecting elements, e.g. terminal strips or terminal blocks; Terminals or binding posts mounted upon a base or in a case; Bases therefor
    • H01R9/16Fastening of connecting parts to base or case; Insulating connecting parts from base or case

Definitions

  • the present invention relates to a semiconductor device.
  • a technique for soldering a connecting element having a cylindrical shaft into which a connecting pin is inserted and a flange provided at its end onto a conductive area of a circuit carrier, and applying the connecting element to the end face of the flange from its flat surface is known in which a plurality of webs protruding at a predetermined height are provided along the outer edge of a flange (Patent Document 1).
  • a contact part has a hollow hole into which an external terminal fits, and a flange is provided at the lower end to be soldered to a metal area on an insulating substrate.
  • a technique is known in which a concave portion is provided from the peripheral end toward the outer peripheral end of the flange, and a cutout portion such as a chamfered portion, a stepped portion, or a concave surface processing portion is provided at the lower end of the cylinder interior (Patent Document 2).
  • a plurality of protrusions are attached to the flange part connected to the end of the cylindrical part of the cylindrical part to be soldered to the circuit layer of the laminated board, and the distance between adjacent protrusions is larger than the inner diameter of the cylindrical part.
  • a technique for providing a plurality of protrusions as shown in FIG. There is a known technique for providing the same (Patent Document 3).
  • the sleeve In a semiconductor device in which a cylindrical part called a sleeve for inserting an external terminal is connected to the conductive layer of an insulated circuit board having an insulating substrate and a conductive layer disposed on its main surface, the sleeve One end of the external terminal is inserted into the hole using, for example, an automatic insertion machine.
  • an automatic insertion machine When inserting an external terminal using an automatic insertion machine, first, prior to insertion, the sleeve is binarized based on an image taken from the sleeve side of the insulated circuit board, and the holes in the sleeve are The center position of is detected. Then, one end portion of the external terminal is inserted into the center position of the hole of the sleeve detected in this manner by an automatic insertion machine.
  • the sleeve usually includes a cylindrical portion having a hole and flange portions provided at both open ends of the cylindrical portion.
  • the end face of the flange part of such a sleeve where image acquisition and binarization processing are performed based on the image, has the above-mentioned unevenness in consideration of the solder joint between the flange part and the conductive layer of the insulated circuit board.
  • the center position of the hole in the sleeve detected by the binarization process may be However, deviation from the original center position may occur.
  • the automatic insertion machine will insert one end of the external terminal into the shifted center position, resulting in the external terminal being inserted into the sleeve at an angle. It may happen that it is inserted.
  • Such an inclination of the external terminal may cause damage due to collision of the other end that is misaligned when the other end of the external terminal opposite to the sleeve insertion side is inserted into a component such as a circuit board. This may lead to incorrect insertion, such as not being inserted into the insertion position.
  • the present invention can suppress a shift in the center position of a hole detected by binarization processing based on an image of the flange portion of the sleeve, and can suppress the shift in the center position of the hole, which is
  • the purpose of this invention is to realize a semiconductor device that can suppress the
  • One aspect includes an insulating circuit board having an insulating substrate and a conductive layer disposed on a main surface of the insulating substrate, and a sleeve connected to the conductive layer, the sleeve being perpendicular to the conductive layer.
  • a cylindrical portion having a hole extending in a direction; and a flange portion provided at an open end of the cylindrical portion; 1 a plurality of convex portions extending from an outer edge portion to an outer periphery of the flange portion; and a plurality of convex portions each provided between the plurality of convex portions as viewed from the open end side, and extending from a second outer edge portion on the inner surface to the outer periphery.
  • a semiconductor device that has a bottom surface that is continuous with an inner surface.
  • one aspect includes an insulating circuit board having an insulating substrate and a conductive layer disposed on a main surface of the insulating substrate, and a sleeve connected to the conductive layer, the sleeve being connected to the conductive layer.
  • a cylindrical portion having a hole extending in a direction perpendicular to the direction of a plurality of convex portions extending from a first outer edge portion to an outer periphery of the flange portion; a plurality of recesses extending to an outer periphery, and the total length of the first outer edge portion is greater than or equal to the total length of the second outer edge portion when viewed from the open end side.
  • FIG. 1 is a diagram (part 1) illustrating an example of a semiconductor device.
  • FIG. 2 is a diagram (part 2) illustrating an example of a semiconductor device.
  • FIG. 2 is a diagram (part 1) illustrating insertion of an external terminal into a sleeve mounted on an insulated circuit board.
  • FIG. 2 is a diagram (part 2) illustrating insertion of an external terminal into a sleeve mounted on an insulated circuit board.
  • FIG. 3 is a diagram (part 3) illustrating insertion of an external terminal into a sleeve mounted on an insulated circuit board.
  • FIG. 4 is a diagram (part 4) illustrating insertion of an external terminal into a sleeve mounted on an insulated circuit board.
  • FIG. 1 is a diagram (part 1) illustrating an example of a semiconductor device.
  • FIG. 2 is a diagram (part 1) illustrating insertion of an external terminal into a sleeve mounted on an insulated circuit board.
  • FIG. 2 is a
  • FIG. 2 is a diagram (part 1) illustrating an example of the sleeve according to the first embodiment.
  • FIG. 2 is a diagram (part 2) illustrating an example of the sleeve according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a state of the sleeve according to the first embodiment at the time of photographing. It is a figure explaining an example of the sleeve concerning a 2nd embodiment. It is a figure explaining an example of the sleeve concerning a 3rd embodiment.
  • FIG. 7 is a diagram (part 1) illustrating an example of the sleeve according to the fourth embodiment.
  • FIG. 7 is a diagram (part 2) illustrating an example of the sleeve according to the fourth embodiment.
  • FIG. 7 is a diagram illustrating an example of a semiconductor device according to a seventh embodiment.
  • FIG. 1 and 2 are diagrams illustrating an example of a semiconductor device.
  • FIG. 1 shows a circuit diagram of an example of a semiconductor device.
  • FIG. 2 schematically shows a cross-sectional view of a main part of an example of a semiconductor device.
  • FIG. 1 shows a circuit diagram of a semiconductor device 1 including a three-phase voltage source inverter circuit.
  • a semiconductor device 1 shown in FIG. 1 is an example of a PIM (Power Integrated Module) including an inverter circuit using a voltage-type PWM (Pulse Width Modulation) control method.
  • the semiconductor device 1 includes a converter circuit section 2, an inverter circuit section 3, a regenerative power discharge circuit section 4 (dynamic brake section), and a thermistor 5.
  • the converter circuit unit 2 includes a diode bridge circuit 2a for R, S, and T phases of a three-phase AC power source, and rectifies the AC power to convert it into a DC power.
  • the inverter circuit unit 3 outputs three-phase AC power of U-phase, V-phase, and W-phase from the DC power supply under PWM control.
  • the inverter circuit section 3 includes a semiconductor element 3a and a semiconductor element 3b connected in series.
  • a switching element such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) is used for the semiconductor element 3a and the semiconductor element 3b, respectively.
  • a diode element such as an FWD (Free Wheeling Diode) or an SBD (Schottky Barrier Diode) may be connected to each of the switch elements used in the semiconductor element 3a and the semiconductor element 3b.
  • FWD Free Wheeling Diode
  • SBD Schottky Barrier Diode
  • an RC (Reverse Conducting)-IGBT in which an IGBT 3aa and an FWD 3ab are connected is used as the semiconductor element 3a
  • an RC-IGBT in which an IGBT 3ba and an FWD 3bb are connected is used as the semiconductor element 3b.
  • the collector of the IGBT 3aa and the cathode of the FWD 3ab are connected, and the emitter of the IGBT 3aa and the anode of the FWD 3ab are connected.
  • the collector of the IGBT 3ba and the cathode of the FWD 3bb are connected, and the emitter of the IGBT 3ba and the anode of the FWD 3bb are connected.
  • the emitter of IGBT 3aa of semiconductor element 3a and the collector of IGBT 3ba of semiconductor element 3b are connected.
  • the semiconductor element 3 a constitutes an upper arm of the inverter circuit section 3 .
  • the semiconductor element 3b constitutes a lower arm of the inverter circuit section 3.
  • the collector of the semiconductor element 3a is connected to a positive (P) terminal.
  • the emitter of the semiconductor element 3b is connected to the negative (N) terminal.
  • a connection node between the semiconductor element 3a and the semiconductor element 3b connected in series is connected to an output terminal from which an output current is output.
  • the semiconductor element 3a constituting the upper arm is not limited to one that includes one set of IGBT 3aa and FWD 3ab, but may be one in which a plurality of sets including one set of IGBT 3aa and FWD 3ab are connected in parallel.
  • the semiconductor element 3b constituting the lower arm is not limited to one including one set of IGBT 3ba and FWD 3bb, but may be one in which a plurality of sets including one set of IGBT 3ba and FWD 3bb are connected in parallel.
  • Three sets of semiconductor elements 3a and semiconductor elements 3b constituting the upper and lower arms as described above are connected in parallel to each other between the PN terminals to realize the inverter circuit section 3.
  • the three sets of output terminals of the semiconductor element 3a and the semiconductor element 3b correspond to U-phase, V-phase, and W-phase output nodes in the inverter circuit section 3, respectively, and are connected to a load, such as a motor.
  • a semiconductor element 3a including an IGBT 3aa and an FWD 3ab, and a semiconductor element 3b including an IGBT 3ba and an FWD 3bb are illustrated.
  • other switching elements such as MOSFETs may be used instead of IGBT3aa and IGBT3ba, and other diode elements such as SBD may be used instead of FWD3ab and FWD3bb.
  • the regenerative power discharge circuit section 4 includes a semiconductor element 4a such as an IGBT and a diode 4b, and is used to suppress a voltage rise due to energy generated during regenerative operation of the motor.
  • the thermistor 5 is housed inside the module, insulated from the main circuit, and is used for temperature detection to suppress destruction due to abnormal heat generation due to increased loss of the IGBT.
  • the semiconductor device 1 that implements the above circuit may have a configuration as shown in FIG. 2, for example.
  • the semiconductor device 1 (also referred to as a "semiconductor module") shown in the example of FIG. 2 includes an insulated circuit board 10, a semiconductor element 20, a sleeve 30, an external terminal 40, a case 50, and a sealing resin 60.
  • the insulated circuit board 10 includes an insulated substrate 11, a conductive layer 12, a conductive layer 13, and a conductive layer 14 disposed on a main surface 11a of the insulated substrate 11, and a main surface 11b of the insulated substrate 11 opposite to the main surface 11a.
  • a conductive layer 15 is arranged.
  • the insulating substrate 11 a substrate made of alumina, composite ceramics containing alumina as a main component, aluminum nitride, silicon nitride, or the like is used.
  • a conductive material such as copper is used for the conductive layer 12, the conductive layer 13, the conductive layer 14, and the conductive layer 15.
  • a DCB (Direct Copper Bonding) board is used as the insulated circuit board 10.
  • AMB Active Metal Brazed
  • Other substrates such as an AMB (Active Metal Brazed) substrate may be used as the insulated circuit board 10.
  • the semiconductor element 20 and the sleeve 30 are mounted on predetermined positions of the conductive layer 12, the conductive layer 13, and the conductive layer 14 provided on the main surface 11a side of the insulating substrate 11 of the insulated circuit board 10, respectively.
  • the semiconductor element 20 functioning as a switch element of the upper arm of the inverter circuit section 3 is mounted on the conductive layer 12, and the inverter circuit is mounted on the conductive layer 13.
  • a semiconductor element 20 that functions as a switch element on the lower arm of the section 3 is mounted.
  • Each semiconductor element 20 uses a switch element such as an IGBT or a MOSFET.
  • each semiconductor element 20 is integrated with a diode element such as an FWD or an SBD.
  • the semiconductor element 20 of the inverter circuit section 3 is provided with a collector electrode on one surface and a gate electrode and an emitter electrode on the other surface.
  • the collector electrode is connected to the conductive layer 12 using a bonding material such as solder or sintered material, and the emitter electrode is connected to the conductive layer 13 using a wire 71.
  • the wire 72 connected to the gate electrode of the semiconductor element 20 on the upper arm is connected to a gate terminal provided on the case 50 or a conductive layer connected thereto.
  • the collector electrode is connected to the conductive layer 13 using a bonding material such as solder or sintered material, and the emitter electrode is connected to the conductive layer 14 using a wire 73.
  • the wire 74 connected to the gate electrode of the semiconductor element 20 on the lower arm is connected to a gate terminal provided on the case 50 or a conductive layer connected thereto.
  • the semiconductor elements 20 of the upper and lower arms are connected in series using the conductive layer 12 , the conductive layer 13 , the conductive layer 14 , and the wire 71 and the wire 73 .
  • the number of semiconductor elements 20 mounted on the insulated circuit board 10 is not limited to this. Further, the semiconductor elements 20 mounted on the insulated circuit board 10 are not limited to those used in the inverter circuit section 3 as described above, but include those used for the regenerative power discharge circuit section 4 as described above. It can be done. Moreover, the diode bridge circuit 2a used in the converter circuit section 2 as described above, the diode 4b used in the regenerative power discharge circuit section 4, etc. can be mounted on the insulated circuit board 10.
  • the sleeve 30 is mounted on the conductive layer 12, the conductive layer 13, and the conductive layer 14, respectively.
  • the sleeve 30 is made of a conductive material such as copper.
  • Each sleeve 30 includes a cylindrical portion 32 having a hole 31 extending in a direction D1 perpendicular to each of the conductive layers 12, 13, and 14, and flange portions 33 provided at both open ends of the cylindrical portion 32, respectively. Equipped with A flange portion 33 provided at one of the open ends of each sleeve 30 is bonded (solder bonded) to a predetermined one of the conductive layers 12, 13, and 14 via solder 80.
  • Sleeve 30 is electrically connected to a predetermined one of conductive layer 12 , conductive layer 13 , and conductive layer 14 via solder 80 .
  • a pin-shaped one is used for the external terminal 40.
  • One first end 41 of the pin-shaped external terminal 40 is inserted into the hole 31 of the sleeve 30 mounted on the insulated circuit board 10.
  • the first end 41 of the external terminal 40 is inserted and fixed into the hole 31 of the sleeve 30 by press-fitting, fitting, or the like.
  • the external terminal 40 is electrically connected to the sleeve 30 by inserting the first end 41 into the hole 31 of the sleeve 30 .
  • the external terminal 40 inserted into the sleeve 30 mounted on the conductive layer 12 functions as a P terminal
  • the external terminal 40 inserted into the sleeve 30 mounted on the conductive layer 14 functions as an N terminal
  • the external terminal 40 inserted into the sleeve 30 mounted on the conductive layer 13 functions as an output terminal (U phase, V phase, or W phase).
  • FIG. 2 shows three sleeves 30 and the external terminals 40 inserted therein in cross-sectional view
  • the number of sleeves 30 and external terminals 40 mounted on the insulated circuit board 10 is limited to this number. It's not a thing.
  • the case 50 is provided so as to cover the side of the insulated circuit board 10 on which the semiconductor element 20 and the sleeve 30 are mounted.
  • a resin case formed using a resin material such as PPS (Poly-Phenylene-Sulfide) resin is used.
  • the lower end of the case 50 is fixed to the edge of the insulated circuit board 10 using an adhesive or the like (not shown).
  • An opening 51 is provided in the case 50 at a position facing the sleeve 30 mounted on the insulated circuit board 10.
  • the external terminal 40 with the first end 41 inserted into the sleeve 30 is inserted into the opening 51 of the case 50 and the other second end 42 opposite to the first end 41 inserted into the sleeve 30. is pulled out of the case 50.
  • the second end portion 42 of the external terminal 40 pulled out from the case 50 is inserted into a connection hole of a circuit board (not shown here) having a connection hole at a position corresponding to the external terminal 40, for example. , connected.
  • a circuit board not shown here
  • the second end portion 42 of the external terminal 40 may have a press-fit shape that can be inserted into and connected to a connection hole of such a circuit board.
  • a sealing resin 60 is provided inside the case 50 to seal the insulated circuit board 10, the semiconductor element 20 mounted thereon, the sleeve 30, and the like.
  • a resin material such as epoxy resin or phenol resin, or a gel material such as silicone is used.
  • the sealing resin 60 may contain an insulating filler such as silica.
  • Multiple types of materials may be used for the sealing resin 60, for example, a laminated structure in which a gel material such as silicone is provided as a buffer coating material in the lower layer and a resin material such as epoxy resin is provided in the upper layer. You can also.
  • a base plate, a heat sink, a cooler, etc. may be connected to the conductive layer 15 side of the insulated circuit board 10, which is opposite to the side on which the semiconductor element 20, sleeve 30, etc. are mounted.
  • a base plate, a heat sink, a cooler, etc. are bonded to the conductive layer 15 via a thermally conductive material such as TIM (Thermal Interface Material), solder, or sintered material.
  • the external terminals 40 are inserted into the sleeve 30 after the sleeve 30 is mounted on the insulated circuit board 10 and before the case 50 and the sealing resin 60 are placed. be exposed.
  • an automatic insertion machine is used to insert the external terminal 40.
  • the sleeve 30 is binarized based on an image obtained by photographing the insulated circuit board 10 from the sleeve 30 side. , the center position of the hole 31 of the sleeve 30 is detected.
  • the first end 41 of the external terminal 40 is inserted into the center position of the hole 31 of the sleeve 30 detected in this manner by an automatic insertion machine. Insertion of the external terminal 40 into the sleeve 30 mounted on the insulated circuit board 10 will be explained with reference to FIGS. 3 to 6.
  • FIG. 3 to 6 are diagrams illustrating insertion of an external terminal into a sleeve mounted on an insulated circuit board.
  • FIG. 3A schematically shows a plan view of essential parts of an example of the insulated circuit board 10 on which the sleeve 30 is mounted.
  • FIG. 3B schematically shows a cross-sectional view of a main part of an example of the image acquisition process of the insulated circuit board 10 on which the sleeve 30 is mounted.
  • a plurality of sleeves 30 are mounted on a predetermined conductive layer (not shown) of the insulated circuit board 10 via solder 80.
  • Sleeve 30 may be mounted at various locations on insulated circuit board 10.
  • the sleeve 30 is mounted via solder 80 on the central region 10a of the insulated circuit board 10 and the outer peripheral region 10b surrounding the central region 10a, as shown in FIGS. 3(A) and 3(B). Ru.
  • the insulated circuit board 10 on which the sleeve 30 is mounted is illuminated from the mounting surface side of the sleeve 30 and photographed using the imaging device 100 to obtain an image. be done. Based on the acquired image, the sleeve 30 is binarized and the center position of the hole 31 of the sleeve 30 is detected.
  • the sleeve 30 located in the central region 10a of the insulated circuit board 10 is photographed from directly above it, while the sleeve 30 located in the outer peripheral region 10b of the insulated circuit board 10 is photographed.
  • the sleeve 30 is photographed at an angle from an oblique direction.
  • the sleeve 30 usually includes a cylindrical portion 32 having a hole 31, and flange portions 33 provided at both open ends of the cylindrical portion 32.
  • a concave portion is formed on the end face of the flange portion 33 of the sleeve 30 to serve as a path for exhausting volatile gas such as flux generated during soldering between the flange portion 33 and the insulated circuit board 10. , whereby irregularities are provided.
  • the sleeve 30 is provided with such irregularities on the end surfaces of the flange portions 33 at both open ends thereof.
  • FIG. 4(A) schematically shows a plan view of a main part of an example of an image of the sleeve 30 taken from directly above.
  • FIG. 4(B) schematically shows a plan view of a main part of an example of an image of the sleeve 30 taken at an angle.
  • convex portions 34Z are arranged at three locations along the outer periphery 33Za of the flange portion 33Z provided on both open end sides of the cylindrical portion 32Z, and A sleeve 30Z is illustrated in which a recess 35Z is disposed in a region extending from the periphery to an outer periphery 33Za between adjacent convex portions 34Z of a flange portion 33Z.
  • the uneven shape of the sleeve 30Z is described in the above-mentioned Patent Document 1 and the like.
  • the upper opening end side (imaging surface side)
  • the outline of the hole 31Z overlaps with the outline of the hole 31Z on the lower open end side (solder joint surface side).
  • the convex portion 34Z suppresses the formation of a shadow on the end surface of the flange portion 33Z on the imaging surface side.
  • FIG. 4B shows an example in which the sleeve 30Z is photographed by the imaging device 100 (FIG. 3) with illumination applied from the left side of the drawing.
  • the entire circumference of the hole 31Z is surrounded by the concave portion 35Z, so when the photograph is taken at an angle, the shadow 110 caused by the unevenness of the flange portion 33Z may extend to the concave portion 35Z.
  • the boundary between the hole 31Z or its inner wall surface 31Za and the concave portion 35Z of the flange portion 33Z surrounding it becomes unclear over a relatively long area of the edge of the hole 31Z, and the binarization process
  • the area where the image is recognized may be a different area from the original area of the hole 31Z.
  • the area of the hole 31Z and the area of the shadow 110 formed on the recess 35Z outside the hole 31Z may be mistakenly recognized as the hole 31Z of the sleeve 30Z. Therefore, when the sleeve 30Z is photographed at an angle, a deviation may occur in the outline of the hole 31Z recognized as an image through the binarization process. If a circle is set in an area corresponding to the outline of the displaced hole 31Z (an area including the hole 31Z and its outer shadow 110), and the center of the circle is detected as the center 37Za of the hole 31Z, the original center A deviation occurs between the position of 37Z and the position of 37Z. In this way, when the sleeve 30Z is photographed at an angle, the original position of the center 37Z of the hole 31Z may not be detected with high accuracy.
  • the external terminal 40 is inserted by an automatic insertion machine into the center 37Z and center 37Za of the hole 31Z detected by the image acquisition and binarization processing as described above. Examples of the inserted state of the external terminal 40 are shown in FIGS. 5 and 6.
  • FIG. 5(A) schematically shows a plan view of essential parts of an example of a state in which the external terminal 40 is inserted into the center 37Z of the hole 31Z detected in the sleeve 30Z taken from directly above.
  • FIG. 5(B) schematically shows a cross-sectional view of essential parts of an example of a state in which the external terminal 40 is inserted into the center 37Z of the hole 31Z detected in the sleeve 30Z taken from directly above.
  • FIG. 5(B) is a sectional view taken along line VV in FIG. 5(A). Further, FIG.
  • FIG. 6(A) schematically shows a plan view of essential parts of an example of a state in which the external terminal 40 is inserted into the center 37Za of the hole 31Z detected in the sleeve 30Z photographed at an angle. It shows.
  • FIG. 6(B) schematically shows a cross-sectional view of a main part of an example of a state in which the external terminal 40 is inserted into the center 37Za of the hole 31Z detected in the sleeve 30Z photographed at an angle. There is.
  • FIG. 6(B) is a sectional view taken along line VI-VI in FIG. 6(A).
  • the center 37Z of the hole 31Z detected by image acquisition and binarization processing is accurately detected at the original position.
  • the first end 41 of the external terminal 40 is inserted into the center 37Z of the hole 31Z at the original position by an automatic insertion machine.
  • the square bar-shaped external terminal 40 is press-fitted or fitted in such a manner that the outer peripheral portion (corner portion) thereof deforms the inner wall surface 31Za of the hole 31Z.
  • FIGS. 5(A) and 5(B) the sleeve 30Z is photographed from directly above and the center 37Z of the hole 31Z is accurately detected in its original position. In this state, the external terminal 40 can be inserted.
  • the center 37Za of the hole 31Z detected by image acquisition and binarization processing may be detected shifted from the original position of the center 37Z.
  • the first end 41 of the external terminal 40 is inserted by the automatic insertion machine into the center 37Za of the hole 31Z that is shifted from the original position.
  • the square bar-shaped external terminal 40 is press-fitted or fitted so that its outer circumferential portion (corner portion) deforms the inner wall surface 31Za of the hole 31Z, the outer circumferential portion of the external terminal 40 is inserted into the hole 31Z.
  • the semiconductor device 1 when the sleeve 30Z shown in FIGS. 4 to 6 is arranged as the sleeve 30, the first end 41 of the external terminal 40 is inserted into the sleeve 30Z. , the second end 42 opposite to the first end 41 is pulled out of the case 50. Then, the second end portion 42 pulled out from the case 50 is inserted into, for example, a connection hole of a circuit board having a connection hole, and is connected to the circuit board.
  • FIGS. 6(A) and 6(B) if the external terminal 40 is inserted into the sleeve 30Z in an inclined state, the second end portion 42, which is deviated from its original position, may be inserted into the circuit. There is a risk that the external terminal 40 or the circuit board may be damaged by colliding with the board, or that the second end 42 of the external terminal 40 may not be inserted into the connection hole of the circuit board, resulting in an insertion failure.
  • FIGS. 7 and 8 are diagrams illustrating an example of the sleeve according to the first embodiment.
  • FIG. 7 schematically shows a perspective view of essential parts of an example of the sleeve.
  • FIG. 8(A) schematically shows a plan view of essential parts of an example of the sleeve.
  • FIG. 8(B) schematically shows a cross-sectional view of a main part of an example of the sleeve.
  • FIG. 8(B) is a sectional view taken along line VIII-VIII of FIG. 8(A).
  • a sleeve 30A as shown in FIGS. 7, 8(A) and 8(B) is mounted. be done.
  • the sleeve 30A includes a cylindrical portion 32 having a hole 31, and flange portions 33 provided at both open ends of the cylindrical portion 32.
  • Each of the flange parts 33 has a plurality of convex parts 34 and a plurality of concave parts 35 provided between them.
  • a flange portion 33 having three convex portions 34 and three concave portions 35 therebetween is illustrated.
  • the flange portions 33 provided at both open ends of the cylindrical portion 32 have the same configuration.
  • the plurality of convex portions 34 have the same shape, and the plurality of concave portions 35 have the same shape.
  • Each of the groups of convex parts 34 of the flange part 33 extends from the first outer edge part 36a of the inner surface 36 of the hole 31 to the outer periphery 33a of the flange part 33 in a plan view seen from one open end side of the cylindrical part 32. Placed.
  • Each convex portion 34 has a top surface 34a that is continuous with the inner surface 36 at a first outer edge portion 36a.
  • the first outer edge portion 36a has a bent portion continuous with the top surface 34a.
  • a terminal end 36d of the inner surface 36 of the first outer edge portion 36a is located within a first plane 91 (FIG. 8(B)) that includes the top surface 34a.
  • the group of convex portions 34 is arranged rotationally symmetrically with respect to the center 37 of the hole 31 (FIG. 8(A)) as an axis of symmetry in a plan view seen from one open end side of the cylindrical portion 32.
  • the three convex portions 34 are arranged so as to be rotationally symmetrical by 120° with respect to the center 37 of the hole 31 as an symmetrical axis.
  • Each of the groups of concave portions 35 of the flange portion 33 is arranged so as to extend from the second outer edge portion 36b on the inner surface 36 of the hole 31 to the outer circumference 33a of the flange portion 33 in a plan view seen from one open end side of the cylindrical portion 32. be done.
  • Each recess 35 has a bottom surface 35a continuous with the inner surface 36 at the second outer edge 36b.
  • the second outer edge portion 36b has a bent portion continuous with the bottom surface 35a.
  • the terminal end 36e of the inner surface 36 at the second outer edge portion 36b is located within the second plane 92 including the bottom surface 35a (FIG. 8(B)).
  • the group of recesses 35 is arranged rotationally symmetrically with respect to the center 37 of the hole 31 as an axis of symmetry when viewed in plan from one open end side of the cylindrical portion 32 (FIG. 8(A)).
  • the three recesses 35 are arranged so as to be rotationally symmetrical by 120° with respect to the center 37 of the hole 31 as an symmetrical axis.
  • Each recess 35 is arranged such that the depth from the top surface 34a of the protrusion 34 to the bottom surface 35a of the recess 35 is, for example, 0.055 mm or less.
  • the total length L1 of the first outer edge portion 36a (FIG. 8(A)) is equal to the second It is provided on the flange portion 33 so as to be longer than the total length L2 (FIG. 8(A)) of the outer edge portion 36b.
  • the length L1 of the first outer edge portion 36a is the length of the transition point from the first outer edge portion 36a to the top surface 34a of the convex portion 34, or the point of the terminal end 36d of the inner surface 36 at the first outer edge portion 36a.
  • the length of the second outer edge 36b may be the length of the transition point from the second outer edge 36b to the bottom surface 35a of the recess 35, or the length of the end 36e of the inner surface 36 at the second outer edge 36b. I can say it.
  • the group of recesses 35 has a length L3 (FIG. 8(A) ) is provided on the flange portion 33 so as to be the same as the length L4 (FIG. 8(A)), which is a straight line connecting both ends of the outer periphery 33a of the flange portion 33. That is, each recess 35 extends with a constant width from the second outer edge 36b on the inner surface 36 of the hole 31 to the outer periphery 33a of the flange portion 33.
  • the sleeve 30A having the flange portion 33 as shown in FIGS. 7, 8(A) and 8(B) can be used as the sleeve 30 of the semiconductor device 1 as shown in FIG. , or at least in the outer peripheral region 10b of the central region 10a and the outer peripheral region 10b.
  • One of the flange portions 33 on both open end sides of the sleeve 30A is joined to the conductive layer 12, the conductive layer 13, or the conductive layer 14 of the insulated circuit board 10 via the solder 80, as described above.
  • the solder 80 used to join the sleeve 30A contains volatile components such as flux.
  • volatile components such as flux.
  • flux and the like in the solder 80 may evaporate and gas may be generated.
  • a group of recesses 35 that communicate from the hole 31 (the second outer edge portion 36b on the inner surface 36 thereof) to the outer periphery 33a are arranged. Therefore, gas such as flux generated from the solder 80 during bonding is discharged to the outside of the flange portion 33 through the hole 31 of the sleeve 30A as well as through the group of recesses 35.
  • the gas pressure will rise excessively, and the molten solder 80 will scatter at the same time as the gas is exhausted and adhere to the inner surface 36 of the hole 31. This may lead to a situation where the insertion of the external terminal 40 inserted into the terminal is obstructed.
  • gas such as flux is discharged to the outside of the flange portion 33 through the group of recesses 35 provided in the flange portion 33, so that an excessive increase in gas pressure and the resulting scattering of the solder 80 are prevented. can be suppressed effectively.
  • a group of convex portions 34 provided with a group of concave portions 35 in between is arranged from the hole 31 (the first outer edge portion 36a on the inner surface 36 thereof) to the outer periphery 33a. They are arranged rotationally symmetrically about the center 37 as an axis of symmetry. Therefore, the posture of the sleeve 30A when the flange portion 33 is joined using the solder 80 is stabilized, and it is possible to prevent the sleeve 30A from being connected to the insulated circuit board 10 in an inclined state.
  • the external terminal 40 is connected to the sleeve 30A. That is, the first end 41 of the external terminal 40 is inserted into the hole 31 of the sleeve 30A.
  • an image is taken from the side of the flange portion 33 opposite to the side of the flange portion 33 joined to the insulated circuit board 10 with the solder 80 as described above. is acquired, binarization processing is performed based on the image, and the center 37 of the hole 31 of the sleeve 30A is detected.
  • a group of convex portions 34 extending from the first outer edge portion 36a on the inner surface 36 of the hole 31 to the outer periphery 33a of the flange portion 33 is arranged on the flange portion 33 of the sleeve 30A. Furthermore, a group of recesses 35 extending from the second outer edge 36b on the inner surface 36 of the hole 31 to the outer periphery 33a of the flange 33 is arranged. In other words, the top surface 34a of the convex portion 34 group extends to the first outer edge portion 36a of the hole 31, and the bottom surface 35a of the recess portion 35 group extends to the second outer edge portion 36b of the hole 31.
  • FIG. 9 is a diagram illustrating an example of the state of the sleeve at the time of photographing according to the first embodiment.
  • FIG. 9 schematically shows a plan view of a main part of an example of an image of a sleeve taken at an angle.
  • FIG. 9 shows an example in which the sleeve 30 is illuminated from the left side of the drawing and photographed by the imaging device 100 (FIG. 3).
  • the top surface 34a of the group of convex portions 34 extends to the first outer edge portion 36a of the hole 31.
  • the holes 31 are image-recognized as black areas, and the top surfaces 34a of the convex portions 34 group, in which shadows 110 are less likely to occur, are image-recognized as white areas.
  • the boundary between the first outer edge 36a of the hole 31 and the top surface 34a of the group of protrusions 34 may become unclear due to the influence of the shadow 110, or the edge of the hole 31 may become relatively narrow due to the influence of the shadow 110. Obscuration over a long area can be suppressed.
  • the deviation of the center 37 of the hole 31 from the original position has been caused by the outer circumferential area of the sleeve 30 connected to the central area 10a and the outer circumferential area 10b of the insulated circuit board 10, which is easily affected by shadows during image capture. 10b tended to occur in the sleeve 30. Therefore, by arranging the sleeve 30A including the flange portion 33 having the above-described convex portions 34 groups and concave portions 35 groups in at least the outer peripheral region 10b of the insulated circuit board 10, the position of the center 37 of the hole 31 can be adjusted. It becomes possible to suppress deviation and perform accurate detection.
  • the external terminal 40 is inserted by the automatic insertion machine into the position of the center 37 of the hole 31 detected as described above, as shown in FIG. 2 above. Since the first end 41 of the external terminal 40 is inserted into the hole 31 whose center 37 has been detected with high precision, the inclination of the external terminal 40 with respect to the sleeve 30A can be effectively suppressed. Since the inclination of the external terminal 40 is suppressed, damage or insertion failure due to collision of the second end 42 when attempting to insert the second end 42 into a circuit board or the like can be suppressed.
  • FIG. 10 is a diagram illustrating an example of a sleeve according to the second embodiment.
  • FIG. 10(A) schematically shows a plan view of essential parts of an example of the sleeve.
  • FIG. 10(B) schematically shows a cross-sectional view of a main part of an example of the sleeve.
  • FIG. 10(B) is a sectional view taken along line XX in FIG. 10(A).
  • a sleeve 30B as shown in FIGS. 10(A) and 10(B) is mounted as the sleeve 30 mounted on the insulated circuit board 10 of the semiconductor device 1 shown in FIG. 2 above.
  • the sleeve 30B has a configuration in which a flange portion 33 having a plurality (for example, three) of convex portions 34 and a plurality of (for example, three) concave portions 35 is provided at both open ends of the cylindrical portion 32.
  • the flange portions 33 at both open ends have the same configuration.
  • the plurality of convex portions 34 have the same shape, and the plurality of concave portions 35 have the same shape.
  • Each of the groups of convex parts 34 of the flange part 33 extends from the first outer edge part 36a of the inner surface 36 of the hole 31 to the outer periphery 33a of the flange part 33 in a plan view seen from one open end side of the cylindrical part 32. Placed.
  • Each convex portion 34 has a top surface 34a that is continuous with the inner surface 36 at a first outer edge portion 36a.
  • the first outer edge portion 36a has a curved surface portion continuous with the top surface 34a.
  • a terminal end 36d of the inner surface 36 of the first outer edge portion 36a is located within a first plane 91 (FIG. 10(B)) including the top surface 34a.
  • the group of convex portions 34 is arranged rotationally symmetrically with respect to the center 37 of the hole 31 (FIG. 10(A)) as an axis of symmetry in a plan view seen from one open end side of the cylindrical portion 32.
  • the three convex portions 34 are arranged so as to be rotationally symmetrical by 120° with respect to the center 37 of the hole 31 as an symmetrical axis.
  • Each of the groups of concave portions 35 of the flange portion 33 is arranged so as to extend from the second outer edge portion 36b on the inner surface 36 of the hole 31 to the outer circumference 33a of the flange portion 33 in a plan view seen from one open end side of the cylindrical portion 32. be done.
  • Each recess 35 has a bottom surface 35a continuous with the inner surface 36 at the second outer edge 36b.
  • the second outer edge portion 36b has a bent portion continuous with the bottom surface 35a.
  • a terminal end 36e of the inner surface 36 at the second outer edge portion 36b is located within a second plane 92 (FIG. 10(B)) that includes the bottom surface 35a.
  • the group of recesses 35 is arranged rotationally symmetrically with respect to the center 37 of the hole 31 (FIG. 10(A)) as an axis of symmetry in a plan view as viewed from one open end side of the cylindrical portion 32.
  • the three recesses 35 are arranged so as to be rotationally symmetrical by 120° with respect to the center 37 of the hole 31 as an symmetrical axis.
  • Each recess 35 is arranged such that the depth from the top surface 34a of the protrusion 34 to the bottom surface 35a of the recess 35 is, for example, 0.055 mm or less.
  • the convex portion 34 group and the concave portion 35 group have a length L1 of the first outer edge portion 36a (FIG. 10(A)), for example, in a plan view when viewed from one open end side of the cylindrical portion 32. are provided on the flange portion 33 such that the sum of the lengths L2 (FIG. 10(A)) of the second outer edge portion 36b is greater than or equal to the sum of the lengths L2 (FIG. 10(A)).
  • the group of recesses 35 has, for example, a length L3 (see FIG. 10(A)) is provided on the flange portion 33 so that the length L4 (FIG. 10(A)) is the same as the length L4 (FIG. 10(A)) obtained by connecting both ends of the outer periphery 33a of the flange portion 33 with a straight line. That is, each recess 35 extends with a constant width from the second outer edge 36b on the inner surface 36 of the hole 31 to the outer periphery 33a of the flange portion 33.
  • the first outer edge 36a of the inner surface 36 of the hole 31 has a curved surface.
  • the sleeve 30B is different from the sleeve 30A described in the first embodiment in that it has such a configuration.
  • a flat top surface 34a of the convex portion 34 extends continuously from the terminal end 36d of the first outer edge portion 36a having a curved surface portion to the outer periphery 33a.
  • the curved surface portion of the first outer edge portion 36a may be formed unavoidably in manufacturing the sleeve 30B, and may be formed by grinding or pressing the bent portion (see FIG. 8(B) above).
  • the second outer edge portion 36b of the inner surface 36 of the hole 31 has a bent portion, similar to the sleeve 30A described in the first embodiment.
  • a flat bottom surface 35a of the recess 35 extends continuously from the terminal end 36e of the second outer edge 36b having a bent portion to the outer periphery 33a.
  • the same effects as the sleeve 30A described in the first embodiment can also be obtained by the sleeve 30B having such a configuration. That is, since the flange portion 33 is provided with a group of recesses 35 communicating from the hole 31 to the outer periphery 33a, gas generated during soldering of the sleeve 30B is discharged to the outside of the flange portion 33 through the group of recesses 35. Splashing of the solder 80 due to an increase in gas pressure can be effectively suppressed.
  • the group of convex portions 34 is arranged from the hole 31 to the outer periphery 33a, and is also arranged rotationally symmetrically about the center 37 of the hole 31 as an axis of symmetry, so that the posture of the sleeve 30B during soldering is stabilized and its inclination is suppressed. It will be done.
  • the flange part 33 and the conductive layer of the insulated circuit board 10 (the conductive layer 12 , the space existing between the conductive layer 13 or the conductive layer 14) is expanded, the amount of solder 80 interposed between the flange portion 33 and the conductive layer of the insulated circuit board 10 is increased, and the bonding strength is increased. .
  • a space for the solder 80 to accumulate is secured between the curved surface portion of the flange portion 33 of the sleeve 30B and the conductive layer of the insulated circuit board 10, and the solder 80 remains in the space, thereby reducing the amount of solder 80 that enters the hole 31. , the amount of solder 80 creeping up the inner surface 36 is reduced.
  • a group of convex portions 34 and a group of concave portions 35 extend from the hole 31 to the outer periphery 33a of the flange portion 33.
  • the top surface 34a of the convex portion 34 group extends to the first outer edge portion 36a of the hole 31, and the bottom surface 35a of the recess portion 35 group extends to the second outer edge portion 36b of the hole 31. Therefore, in detecting the position of the center 37 of the hole 31 before inserting the external terminal 40, the first outer edge 36a (curved surface) and the second outer edge of the hole 31 are detected by binarization processing based on the image of the flange 33.
  • the first outer edge portions 36a that are continuous with the top surfaces 34a of the convex portions 34, which are not easily affected by shadows, are image-recognized with high accuracy. That is, the boundary between the first outer edge portion 36a of the hole 31 and the top surface 34a of the group of convex portions 34 is prevented from becoming unclear due to the influence of shadows. As a result, the position of the first outer edge 36a of the hole 31 is image-recognized with high accuracy, and the outline of the hole 31 is image-recognized with high accuracy based on the information on the position of the first outer edge 36a.
  • the image recognition accuracy of the first outer edge portion 36a and the resulting image recognition accuracy of the outline of the hole 31 will be increased. It increases.
  • FIG. 11 is a diagram illustrating an example of a sleeve according to the third embodiment.
  • FIG. 11(A) schematically shows a plan view of essential parts of an example of the sleeve.
  • FIG. 11(B) schematically shows a cross-sectional view of a main part of an example of the sleeve.
  • FIG. 11(B) is a sectional view taken along line XI-XI of FIG. 11(A).
  • a sleeve 30C as shown in FIGS. 11(A) and 11(B) is mounted as the sleeve 30 mounted on the insulated circuit board 10 of the semiconductor device 1 shown in FIG. 2 above.
  • the sleeve 30B has a configuration in which a flange portion 33 having a plurality (for example, three) of convex portions 34 and a plurality of (for example, three) concave portions 35 is provided at both open ends of the cylindrical portion 32.
  • the flange portions 33 at both open ends have the same configuration.
  • the plurality of convex portions 34 have the same shape, and the plurality of concave portions 35 have the same shape.
  • Each of the groups of convex parts 34 of the flange part 33 extends from the first outer edge part 36a of the inner surface 36 of the hole 31 to the outer periphery 33a of the flange part 33 in a plan view seen from one open end side of the cylindrical part 32. Placed.
  • Each convex portion 34 has a top surface 34a that is continuous with the inner surface 36 at a first outer edge portion 36a.
  • the first outer edge portion 36a has a bent portion continuous with the top surface 34a.
  • a terminal end 36d of the inner surface 36 of the first outer edge portion 36a is located within a first plane 91 (FIG. 11(B)) including the top surface 34a.
  • the group of convex portions 34 is arranged rotationally symmetrically with respect to the center 37 of the hole 31 (FIG. 11(A)) as an axis of symmetry when viewed in plan from one open end side of the cylindrical portion 32.
  • the three convex portions 34 are arranged so as to be rotationally symmetrical by 120° with respect to the center 37 of the hole 31 as an symmetrical axis.
  • Each of the groups of concave portions 35 of the flange portion 33 is arranged so as to extend from the second outer edge portion 36b on the inner surface 36 of the hole 31 to the outer circumference 33a of the flange portion 33 in a plan view seen from one open end side of the cylindrical portion 32. be done.
  • Each recess 35 has a bottom surface 35a continuous with the inner surface 36 at the second outer edge 36b.
  • the second outer edge portion 36b has a curved surface portion continuous with the bottom surface 35a.
  • a terminal end 36e of the inner surface 36 at the second outer edge portion 36b is located within a second plane 92 (FIG. 11(B)) including the bottom surface 35a.
  • the group of recesses 35 is arranged rotationally symmetrically with respect to the center 37 of the hole 31 (FIG. 11(A)) as an axis of symmetry in a plan view as viewed from one open end side of the cylindrical portion 32.
  • the three recesses 35 are arranged so as to be rotationally symmetrical by 120° with respect to the center 37 of the hole 31 as an symmetrical axis.
  • Each recess 35 is arranged such that the depth from the top surface 34a of the protrusion 34 to the bottom surface 35a of the recess 35 is, for example, 0.055 mm or less.
  • the convex portion 34 group and the concave portion 35 group have a length L1 of the first outer edge portion 36a (FIG. 11(A)), for example, in a plan view when viewed from one open end side of the cylindrical portion 32. are provided on the flange portion 33 such that the sum of the lengths L2 (FIG. 11(A)) of the second outer edge portion 36b is greater than or equal to the sum of the lengths L2 (FIG. 11(A)) of the second outer edge portions 36b.
  • the group of recesses 35 has, for example, a length L3 (see FIG. 11(A)) is provided on the flange portion 33 so that the length L4 (FIG. 11(A)) is the same as the length L4 (FIG. 11(A)) obtained by connecting both ends of the outer periphery 33a of the flange portion 33 with a straight line. That is, each recess 35 extends with a constant width from the second outer edge 36b on the inner surface 36 of the hole 31 to the outer periphery 33a of the flange portion 33.
  • the second outer edge 36b of the inner surface 36 of the hole 31 has a curved surface.
  • the sleeve 30C differs from the sleeve 30A described in the first embodiment in that it has such a configuration.
  • a flat bottom surface 35a of the recessed portion 35 extends continuously from the terminal end 36e of the second outer edge portion 36b having a curved surface portion to the outer periphery 33a.
  • the curved surface portion of the second outer edge portion 36b may be formed unavoidably in manufacturing the sleeve 30C, and may be formed by grinding or pressing the bent portion (see FIG. 8(B) above).
  • the first outer edge portion 36a of the inner surface 36 of the hole 31 has a bent portion, similar to the sleeve 30A described in the first embodiment.
  • the flat top surface 34a of the convex portion 34 extends continuously from the terminal end 36d of the first outer edge portion 36a having the bent portion to the outer periphery 33a.
  • the same effects as the sleeve 30A described in the first embodiment can also be obtained by the sleeve 30C having such a configuration. That is, since the flange portion 33 is provided with a group of recesses 35 communicating from the hole 31 to the outer periphery 33a, gas generated during soldering of the sleeve 30C is discharged to the outside of the flange portion 33 through the group of recesses 35. Splashing of the solder 80 due to an increase in gas pressure can be effectively suppressed.
  • the group of convex portions 34 is arranged from the hole 31 to the outer periphery 33a, and is also arranged rotationally symmetrically about the center 37 of the hole 31 as an axis of symmetry, so that the posture of the sleeve 30C during soldering is stabilized and its inclination is suppressed. It will be done.
  • the flange part 33 and the conductive layer of the insulated circuit board 10 (the conductive layer 12, The space existing between the conductive layer 13 or the conductive layer 14) is expanded, the amount of solder 80 interposed between the flange portion 33 and the conductive layer of the insulated circuit board 10 is increased, and the bonding strength is increased.
  • a space for the solder 80 to accumulate is secured between the curved surface portion of the flange portion 33 of the sleeve 30C and the conductive layer of the insulated circuit board 10, and the solder 80 remains in the space, thereby reducing the amount of solder 80 that enters the hole 31. , the amount of solder 80 creeping up the inner surface 36 is reduced.
  • a group of convex portions 34 and a group of concave portions 35 extend from the hole 31 to the outer periphery 33a of the flange portion 33.
  • the top surface 34a of the convex portion 34 group extends to the first outer edge portion 36a of the hole 31, and the bottom surface 35a of the recess portion 35 group extends to the second outer edge portion 36b of the hole 31.
  • the first outer edge 36a (bent portion) and the second outer edge of the hole 31 are Of the portion 36b (curved surface portion), the first outer edge portion 36a that is continuous with the top surface 34a of the convex portion 34, which is not easily affected by shadows, is image-recognized with high accuracy. That is, the boundary between the first outer edge portion 36a of the hole 31 and the top surface 34a of the group of convex portions 34 is prevented from becoming unclear due to the influence of shadows.
  • the position of the first outer edge 36a of the hole 31 is image-recognized with high accuracy
  • the outline of the hole 31 is image-recognized with high accuracy based on the information on the position of the first outer edge 36a. If the total length L1 of the first outer edge portion 36a is set to be greater than or equal to the total length L2 of the second outer edge portion 36b, the image recognition accuracy of the first outer edge portion 36a and the resulting image recognition accuracy of the outline of the hole 31 will be increased. It increases.
  • the first outer edge 36a of the inner surface 36 of the hole 31 continuous with the group of convex portions 34 has a curved surface portion
  • the second outer edge portion 36a of the inner surface 36 of the hole 31 continuous with the group of concave portions 35 has a curved surface portion.
  • a configuration in which the outer edge portion 36b has a bent portion is illustrated (FIGS. 10(A) and 10(B)).
  • the first outer edge portion 36a of the inner surface 36 of the hole 31 continuous with the group of convex portions 34 has a bent portion
  • the second outer edge portion 36a of the inner surface 36 of the hole 31 continuous with the group of concave portions 35 has a bent portion.
  • FIGS. 11(A) and 11(B) A configuration in which the outer edge portion 36b has a curved surface portion is illustrated (FIGS. 11(A) and 11(B)).
  • the first outer edge portion 36a of the inner surface 36 of the hole 31 continuous with the group of convex portions 34 and the second outer edge portion 36b of the inner surface 36 of the hole 31 continuous with the group of concave portions 35 both have a curved surface portion. It is also possible to do this. Thereby, the effects described in both the second and third embodiments can be obtained.
  • FIGS. 12 and 13 are diagrams illustrating an example of the sleeve according to the fourth embodiment.
  • FIG. 12 schematically shows a perspective view of essential parts of an example of the sleeve.
  • FIG. 13(A) schematically shows a plan view of essential parts of an example of the sleeve.
  • FIG. 13(B) schematically shows a cross-sectional view of a main part of an example of the sleeve.
  • FIG. 13(B) is a sectional view taken along line XIII-XIII of FIG. 13(A).
  • a sleeve 30D as shown in FIGS. 12, 13(A) and 13(B) is mounted. be done.
  • the sleeve 30D has a configuration in which a flange portion 33 having a plurality (for example, three) of convex portions 34 and a plurality of (for example, three) concave portions 35 is provided at both open ends of the cylindrical portion 32.
  • the flange portions 33 at both open ends have the same configuration.
  • the plurality of convex portions 34 have the same shape, and the plurality of concave portions 35 have the same shape.
  • Each of the groups of convex parts 34 of the flange part 33 extends from the first outer edge part 36a of the inner surface 36 of the hole 31 to the outer periphery 33a of the flange part 33 in a plan view seen from one open end side of the cylindrical part 32. Placed.
  • Each convex portion 34 has a top surface 34a that is continuous with the inner surface 36 at a first outer edge portion 36a.
  • the first outer edge portion 36a has a curved surface portion continuous with the top surface 34a.
  • a terminal end 36d of the inner surface 36 of the first outer edge portion 36a is located within a first plane 91 (FIG. 13(B)) that includes the top surface 34a.
  • the group of convex portions 34 is arranged rotationally symmetrically with respect to the center 37 of the hole 31 (FIG. 13(A)) as an axis of symmetry in a plan view seen from one open end side of the cylindrical portion 32.
  • the three convex portions 34 are arranged so as to be rotationally symmetrical by 120° with respect to the center 37 of the hole 31 as an symmetrical axis.
  • Each of the groups of concave portions 35 of the flange portion 33 is arranged so as to extend from the second outer edge portion 36b on the inner surface 36 of the hole 31 to the outer circumference 33a of the flange portion 33 in a plan view seen from one open end side of the cylindrical portion 32. be done.
  • Each recess 35 has a bottom surface 35a that is continuous with the inner surface 36 at the second outer edge 36b.
  • the second outer edge portion 36b has a curved surface portion continuous with the bottom surface 35a.
  • the terminal end 36e of the inner surface 36 at the second outer edge portion 36b is located within a second plane 92 (FIG. 13(B)) that includes the bottom surface 35a.
  • the group of recesses 35 is arranged rotationally symmetrically with respect to the center 37 of the hole 31 (FIG. 13(A)) as an axis of symmetry in a plan view as viewed from one open end side of the cylindrical portion 32.
  • the three recesses 35 are arranged so as to be rotationally symmetrical by 120° with respect to the center 37 of the hole 31 as an symmetrical axis.
  • Each recess 35 is arranged such that the depth from the top surface 34a of the protrusion 34 to the bottom surface 35a of the recess 35 is, for example, 0.055 mm or less.
  • the curved surface portion of the first outer edge portion 36a begins to curve from the end of the inner wall 36c extending linearly in the direction D1 on the inner surface 36 of the hole 31, and starts to curve from the end to the top surface of the group of convex portions 34. It is formed by a curved surface extending to 34a.
  • the group of recesses 35 is formed to a depth such that the edge of the bottom surface 35a on the hole 31 side, that is, the terminal end 36e of the second outer edge portion 36b is located within the curved surface.
  • the curved surface portion of the first outer edge portion 36a and the curved surface portion of the second outer edge portion 36b are both part of the curved surface extending from the end of the inner wall 36c of the hole 31 to the top surface 34a and the bottom surface 35a.
  • the convex portion 34 group and the concave portion 35 group have a length L1 of the first outer edge portion 36a (FIG. 13(A)), for example, in a plan view when viewed from one open end side of the cylindrical portion 32. are provided on the flange portion 33 so that the sum of the lengths L2 (FIG. 13(A)) of the second outer edge portion 36b is greater than or equal to the sum of the lengths L2 (FIG. 13(A)) of the second outer edge portions 36b.
  • the group of recesses 35 has, for example, a length L3 (see FIG. 13(A)) is provided on the flange portion 33 so that the length L4 (FIG. 13(A)) is the same as the length L4 (FIG. 13(A)) obtained by connecting both ends of the outer periphery 33a of the flange portion 33 with a straight line. That is, each recess 35 extends with a constant width from the second outer edge 36b on the inner surface 36 of the hole 31 to the outer periphery 33a of the flange portion 33.
  • the first outer edge 36a and the second outer edge 36b of the inner surface 36 of the hole 31 have curved surfaces.
  • the sleeve 30D differs from the sleeve 30A described in the first embodiment in that it has such a configuration.
  • the flat top surface 34a of the convex portion 34 extends continuously from the terminal end 36d of the first outer edge portion 36a having a curved surface portion to the outer periphery 33a, and continues from the terminal end 36e of the second outer edge portion 36b having a curved surface portion to a recessed portion.
  • a flat bottom surface 35a of 35 extends to the outer periphery 33a.
  • the curved surface portions of the first outer edge portion 36a and the second outer edge portion 36b may be formed unavoidably in manufacturing the sleeve 30D, and the curved portions (see FIG. 8(B) above) may be formed by grinding or pressing. It may also be formed by
  • the same effects as the sleeve 30A described in the first embodiment can also be obtained by the sleeve 30D having such a configuration. That is, since the flange portion 33 is provided with a group of recesses 35 communicating from the hole 31 to the outer periphery 33a, gas generated during soldering of the sleeve 30D is discharged to the outside of the flange portion 33 through the group of recesses 35. Splashing of the solder 80 due to an increase in gas pressure can be effectively suppressed.
  • the group of convex portions 34 is arranged from the hole 31 to the outer periphery 33a, and is also arranged rotationally symmetrically about the center 37 of the hole 31 as an axis of symmetry, so that the posture of the sleeve 30D during soldering is stabilized and its inclination is suppressed. It will be done.
  • the first outer edge 36a continuous with the group of protrusions 34 and the second outer edge 36b continuous with the group of recesses 35 are both curved parts, so that the flange part
  • the space existing between 33 and the conductive layer (conductive layer 12, conductive layer 13, or conductive layer 14) of the insulated circuit board 10 is expanded, and the space is interposed between the flange part 33 and the conductive layer of the insulated circuit board 10.
  • the amount of solder 80 is increased, and the joint strength is increased.
  • a space for the solder 80 to accumulate is secured between the curved surface portion of the flange portion 33 of the sleeve 30D and the conductive layer of the insulated circuit board 10, and the solder 80 remains in the space, thereby reducing the amount of solder 80 that enters the hole 31. , the amount of solder 80 creeping up the inner surface 36 is reduced.
  • a group of convex portions 34 and a group of concave portions 35 extend from the hole 31 to the outer periphery 33a of the flange portion 33.
  • the top surface 34a of the convex portion 34 group extends to the first outer edge portion 36a of the hole 31, and the bottom surface 35a of the recess portion 35 group extends to the second outer edge portion 36b of the hole 31.
  • the first outer edge 36a (curved surface portion) and the second outer edge of the hole 31 are Of the portion 36b (curved surface portion), the first outer edge portion 36a that is continuous with the top surface 34a of the convex portion 34, which is not easily affected by shadows, is image-recognized with high accuracy. That is, the boundary between the first outer edge portion 36a of the hole 31 and the top surface 34a of the group of convex portions 34 is prevented from becoming unclear due to the influence of shadows.
  • the position of the first outer edge 36a of the hole 31 is image-recognized with high accuracy
  • the outline of the hole 31 is image-recognized with high accuracy based on the information on the position of the first outer edge 36a. If the total length L1 of the first outer edge portion 36a is set to be greater than or equal to the total length L2 of the second outer edge portion 36b, the image recognition accuracy of the first outer edge portion 36a and the resulting image recognition accuracy of the outline of the hole 31 will be increased. It increases.
  • FIG. 14 is a diagram illustrating an example of a sleeve according to the fifth embodiment.
  • FIG. 14(A) schematically shows a plan view of essential parts of an example of the sleeve.
  • FIG. 14(B) schematically shows a cross-sectional view of a main part of an example of the sleeve.
  • FIG. 14(B) is a sectional view taken along line XIV-XIV in FIG. 14(A).
  • a sleeve 30E as shown in FIGS. 14(A) and 14(B) is mounted as the sleeve 30 mounted on the insulated circuit board 10 of the semiconductor device 1 shown in FIG. 2 above.
  • the sleeve 30E has a configuration in which a flange portion 33 having a plurality (six as an example) of convex portions 34 and a plurality of (six as an example) recesses 35 is provided at both open ends of the cylindrical portion 32.
  • the flange portions 33 at both open ends have the same configuration.
  • the plurality of convex portions 34 have the same shape, and the plurality of concave portions 35 have the same shape.
  • Each of the groups of convex parts 34 of the flange part 33 extends from the first outer edge part 36a of the inner surface 36 of the hole 31 to the outer periphery 33a of the flange part 33 in a plan view seen from one open end side of the cylindrical part 32. Placed.
  • Each convex portion 34 has a top surface 34a that is continuous with the inner surface 36 at a first outer edge portion 36a.
  • the first outer edge portion 36a has a bent portion continuous with the top surface 34a.
  • a terminal end 36d of the inner surface 36 of the first outer edge portion 36a is located within a first plane 91 (FIG. 14(B)) that includes the top surface 34a.
  • the group of convex portions 34 extends radially in a direction from the center 37 of the hole 31 (FIG. 14(A)) toward the outer circumference 33a of the flange portion 33, when viewed from the side of one open end of the cylindrical portion 32. , placed.
  • the group of convex portions 34 is arranged rotationally symmetrically with respect to the center 37 of the hole 31 as an axis of symmetry when viewed in plan from one open end side of the cylindrical portion 32 .
  • six convex portions 34 are arranged so as to be rotationally symmetrical by 60° with respect to the center 37 of the hole 31 as an symmetrical axis.
  • Each of the groups of concave portions 35 of the flange portion 33 is arranged so as to extend from the second outer edge portion 36b on the inner surface 36 of the hole 31 to the outer circumference 33a of the flange portion 33 in a plan view seen from one open end side of the cylindrical portion 32. be done.
  • Each recess 35 has a bottom surface 35a that is continuous with the inner surface 36 at the second outer edge 36b.
  • the second outer edge portion 36b has a bent portion continuous with the bottom surface 35a.
  • a terminal end 36e of the inner surface 36 at the second outer edge portion 36b is located within a second plane 92 (FIG. 14(B)) that includes the bottom surface 35a.
  • the group of recesses 35 extends radially in a direction from the center 37 of the hole 31 (FIG. 14(A)) toward the outer periphery 33a of the flange portion 33 in a plan view from one open end side of the cylindrical portion 32. Placed.
  • the group of recesses 35 is arranged rotationally symmetrically with respect to the center 37 of the hole 31 as an axis of symmetry when viewed in plan from one open end side of the cylindrical portion 32 .
  • six recesses 35 are arranged so as to be rotationally symmetrical by 60° with respect to the center 37 of the hole 31 as an symmetrical axis.
  • Each recess 35 is arranged such that the depth from the top surface 34a of the protrusion 34 to the bottom surface 35a of the recess 35 is, for example, 0.055 mm or less.
  • the convex portion 34 group and the concave portion 35 group have a length L1 of the first outer edge portion 36a (FIG. 14(A)), for example, in a plan view when viewed from one open end side of the cylindrical portion 32. are provided on the flange portion 33 such that the sum of the lengths L2 (FIG. 14(A)) of the second outer edge portion 36b is greater than or equal to the sum of the lengths L2 (FIG. 14(A)) of the second outer edge portions 36b.
  • the group of recesses 35 has, for example, a length L3 (see FIG. 14(A)) is provided on the flange portion 33 so that the length L4 (FIG. 14(A)) is the same as the length L4 (FIG. 14(A)) obtained by connecting both ends of the outer periphery 33a of the flange portion 33 with a straight line. That is, each recess 35 extends with a constant width from the second outer edge 36b on the inner surface 36 of the hole 31 to the outer periphery 33a of the flange portion 33.
  • the same effects as the sleeve 30A described in the first embodiment can also be obtained by the sleeve 30E having such a configuration. That is, since the flange portion 33 is provided with a group of recesses 35 communicating from the hole 31 to the outer periphery 33a, gas generated during soldering of the sleeve 30E is discharged to the outside of the flange portion 33 through the group of recesses 35. Splashing of the solder 80 due to an increase in gas pressure can be effectively suppressed.
  • the group of convex portions 34 is arranged from the hole 31 to the outer periphery 33a, and is also arranged rotationally symmetrically about the center 37 of the hole 31 as an axis of symmetry, so that the posture of the sleeve 30E during soldering is stabilized and its inclination is suppressed. It will be done.
  • a group of convex portions 34 and a group of concave portions 35 extend from the hole 31 to the outer periphery 33a of the flange portion 33.
  • the top surface 34a of the convex portion 34 group extends to the first outer edge portion 36a of the hole 31, and the bottom surface 35a of the recess portion 35 group extends to the second outer edge portion 36b of the hole 31.
  • the first outer edge 36a (bent portion) and the second outer edge of the hole 31 are Among the portions 36b (bent portions), the first outer edge portions 36a that are continuous with the top surfaces 34a of the convex portions 34, which are not easily affected by shadows, are image-recognized with high accuracy. That is, the boundary between the first outer edge portion 36a of the hole 31 and the top surface 34a of the group of convex portions 34 is prevented from becoming unclear due to the influence of shadows.
  • the position of the first outer edge 36a of the hole 31 is image-recognized with high accuracy
  • the outline of the hole 31 is image-recognized with high accuracy based on the information on the position of the first outer edge 36a. If the total length L1 of the first outer edge portion 36a is set to be greater than or equal to the total length L2 of the second outer edge portion 36b, the image recognition accuracy of the first outer edge portion 36a and the resulting image recognition accuracy of the outline of the hole 31 will be increased. It increases.
  • the first outer edge 36a of the inner surface 36 of the hole 31, where the group of convex parts 34 of the flange part 33 are continuous has the above-mentioned structure instead of having a bent part.
  • it may be configured to have a curved surface portion.
  • the second outer edge portion 36b of the inner surface 36 of the hole 31 where the group of concave portions 35 of the flange portion 33 is continuous is replaced with the above-described bent portion.
  • the sleeve 30C described in the third embodiment may have a curved portion.
  • the first outer edge 36a and the second outer edge 36b of the inner surface 36 of the hole 31, to which the convex portion 34 group and the concave portion 35 group of the flange portion 33 are continuous are , instead of having both bent portions, they may each have a curved portion, as in the example of the sleeve 30D described in the fourth embodiment.
  • FIG. 15 is a diagram illustrating an example of a sleeve according to the sixth embodiment.
  • FIG. 15(A) schematically shows a plan view of essential parts of an example of the sleeve.
  • FIG. 15(B) schematically shows a cross-sectional view of a main part of an example of the sleeve.
  • FIG. 15(B) is a sectional view taken along line XV-XV in FIG. 15(A).
  • a sleeve 30F as shown in FIGS. 15(A) and 15(B) is mounted as the sleeve 30 mounted on the insulated circuit board 10 of the semiconductor device 1 shown in FIG. 2 above.
  • the sleeve 30F has a configuration in which a flange portion 33 having a plurality (for example, three) of convex portions 34 and a plurality of (for example, three) concave portions 35 is provided at both open ends of the cylindrical portion 32.
  • the flange portions 33 at both open ends have the same configuration.
  • the plurality of convex portions 34 have the same shape, and the plurality of concave portions 35 have the same shape.
  • Each of the groups of convex parts 34 of the flange part 33 extends from the first outer edge part 36a of the inner surface 36 of the hole 31 to the outer periphery 33a of the flange part 33 in a plan view seen from one open end side of the cylindrical part 32. Placed.
  • Each convex portion 34 has a top surface 34a that is continuous with the inner surface 36 at a first outer edge portion 36a.
  • the first outer edge portion 36a has a bent portion continuous with the top surface 34a.
  • a terminal end 36d of the inner surface 36 of the first outer edge portion 36a is located within a first plane 91 (FIG. 15(B)) that includes the top surface 34a.
  • the group of convex portions 34 is arranged rotationally symmetrically with respect to the center 37 of the hole 31 (FIG. 15(A)) as an axis of symmetry in a plan view as viewed from one open end side of the cylindrical portion 32.
  • the three convex portions 34 are arranged so as to be rotationally symmetrical by 120° with respect to the center 37 of the hole 31 as an symmetrical axis.
  • Each of the groups of concave portions 35 of the flange portion 33 is arranged so as to extend from the second outer edge portion 36b on the inner surface 36 of the hole 31 to the outer circumference 33a of the flange portion 33 in a plan view seen from one open end side of the cylindrical portion 32. be done.
  • Each recess 35 has a bottom surface 35a continuous with the inner surface 36 at the second outer edge 36b.
  • the second outer edge portion 36b has a bent portion continuous with the bottom surface 35a.
  • a terminal end 36e of the inner surface 36 at the second outer edge portion 36b is located within a second plane 92 (FIG. 15(B)) including the bottom surface 35a.
  • the group of recesses 35 is arranged rotationally symmetrically with respect to the center 37 of the hole 31 (FIG. 15(A)) as an axis of symmetry in a plan view when viewed from one open end side of the cylindrical portion 32.
  • the three recesses 35 are arranged so as to be rotationally symmetrical by 120° with respect to the center 37 of the hole 31 as an symmetrical axis.
  • Each recess 35 is arranged such that the depth from the top surface 34a of the protrusion 34 to the bottom surface 35a of the recess 35 is, for example, 0.055 mm or less.
  • the convex portion 34 group and the concave portion 35 group have a length L1 of the first outer edge portion 36a (FIG. 15(A)), for example, in a plan view when viewed from one open end side of the cylindrical portion 32. are provided on the flange portion 33 so that the sum of the lengths L2 (FIG. 15(A)) of the second outer edge portion 36b is greater than or equal to the total length L2 (FIG. 15(A)).
  • each of the groups of recesses 35 has a second outer edge portion extending in a direction from the center 37 of the hole 31 toward the outer periphery 33a of the flange portion 33, for example, in a plan view when viewed from one open end side of the cylindrical portion 32.
  • the planar shape is such that it extends with a constant first width from 36b to the middle, and extends with a second width larger than the first width from the middle to the outer periphery 33a.
  • each of the groups of recesses 35 is arranged so as to have a substantially T-shape when viewed from above from one open end side of the cylindrical portion 32.
  • the length L3 is a straight line connecting both ends of the second outer edge portion 36b that is continuous with the bottom surface 35a when viewed from the one open end side of the cylindrical portion 32.
  • (FIG. 15(A)) is equal to or less than the length L4 (FIG. 15(A)) obtained by connecting both ends of the outer periphery 33a of the flange portion 33 with a straight line.
  • the flange portion 33 of the sleeve 30F has a group of convex portions 34 with a planar shape corresponding to the group of concave portions 35 so as to sandwich the group of concave portions 35 having such a planar shape (or to be sandwiched between the group of concave portions 35). is placed.
  • the same effects as the sleeve 30A described in the first embodiment can also be obtained by the sleeve 30F having such a configuration. That is, since the flange portion 33 is provided with a group of recesses 35 communicating from the hole 31 to the outer periphery 33a, gas generated during soldering of the sleeve 30F is discharged to the outside of the flange portion 33 through the group of recesses 35. Splashing of the solder 80 due to an increase in gas pressure can be effectively suppressed.
  • the group of convex portions 34 is arranged from the hole 31 to the outer periphery 33a, and is also arranged rotationally symmetrically with respect to the center 37 of the hole 31 as an axis of symmetry, so that the posture of the sleeve 30F during soldering is stabilized and its inclination is suppressed. It will be done.
  • the sleeve 30F has a planar shape that widens from the middle in a direction from the center 37 of the hole 31 toward the outer periphery 33a of the flange portion 33 when viewed from one open end side of the cylindrical portion 32, that is,
  • the group of recesses 35 is arranged in a planar shape such that a length L3 of the second outer edge portion 36b connected with a straight line is less than or equal to a length L4 of the outer periphery 33a connected with a straight line.
  • the space existing between the flange portion 33 and the conductive layer (conductive layer 12, conductive layer 13, or conductive layer 14) of the insulated circuit board 10 is expanded, and the space between the flange portion 33 and the conductive layer of the insulated circuit board 10 is expanded.
  • the amount of solder 80 interposed in between increases, and the joint strength increases.
  • a group of convex portions 34 and a group of concave portions 35 extend from the hole 31 to the outer periphery 33a of the flange portion 33.
  • the top surface 34a of the convex portion 34 group extends to the first outer edge portion 36a of the hole 31, and the bottom surface 35a of the recess portion 35 group extends to the second outer edge portion 36b of the hole 31.
  • the first outer edge 36a (bent portion) and the second outer edge of the hole 31 are Among the portions 36b (bent portions), the first outer edge portions 36a that are continuous with the top surfaces 34a of the convex portions 34, which are not easily affected by shadows, are image-recognized with high accuracy. That is, the boundary between the first outer edge portion 36a of the hole 31 and the top surface 34a of the group of convex portions 34 is prevented from becoming unclear due to the influence of shadows.
  • the position of the first outer edge 36a of the hole 31 is image-recognized with high accuracy
  • the outline of the hole 31 is image-recognized with high accuracy based on the information on the position of the first outer edge 36a. If the total length L1 of the first outer edge portion 36a is set to be greater than or equal to the total length L2 of the second outer edge portion 36b, the image recognition accuracy of the first outer edge portion 36a and the resulting image recognition accuracy of the outline of the hole 31 will be increased. It increases.
  • the planar shape of the group of recesses 35 is not limited to this.
  • the group of recesses 35 has a length L3 (FIG. 15(A)), which is a straight line connecting both ends of the second outer edge 36b that is continuous with the bottom surface 35a, in a plan view when viewed from one open end side of the cylindrical portion 32.
  • various planar shapes may be adopted as long as the length L4 (FIG.
  • the group of recesses 35 may have a planar shape that is approximately isosceles trapezoidal in plan view, or a planar shape that widens in multiple steps in the direction from the center 37 of the hole 31 toward the outer periphery 33a of the flange portion 33. may be adopted.
  • the first outer edge 36a of the inner surface 36 of the hole 31 where the group of convex portions 34 of the flange portion 33 is continuous has the above-mentioned structure instead of having a bent portion.
  • it may be configured to have a curved surface portion.
  • the second outer edge portion 36b of the inner surface 36 of the hole 31 where the group of concave portions 35 of the flange portion 33 is continuous is replaced with the above-described bent portion.
  • the sleeve 30C described in the third embodiment may have a curved portion.
  • they may each have a curved portion, as in the example of the sleeve 30D described in the fourth embodiment.
  • the convex portion 34 group and the recessed portion 35 group of the flange portion 33 are arranged in the cylindrical portion 32 according to the example of the sleeve 30E described in the fifth embodiment.
  • it may be configured to be arranged radially in a direction from the center 37 of the hole 31 toward the outer periphery 33a of the flange portion 33.
  • FIG. 16 is a diagram illustrating an example of a semiconductor device according to the seventh embodiment.
  • FIG. 16 schematically shows a cross-sectional view of a main part of an example of a semiconductor device.
  • the semiconductor device 1A shown in FIG. 16 includes the semiconductor device 1 as shown in FIG.
  • the semiconductor module 1 includes the insulated circuit board 10, the semiconductor element 20, the sleeve 30, the external terminal 40, the case 50, and the sealing resin 60.
  • the insulated circuit board 10 includes an insulated substrate 11, a conductive layer 12, a conductive layer 13, and a conductive layer 14 disposed on one main surface 11a of the insulated substrate 11, and a conductive layer 12 disposed on the other main surface 11b of the insulated substrate 11. It has a layer 15.
  • a group of 20 semiconductor elements constituting an inverter circuit is mounted at predetermined positions on the conductive layer 12, the conductive layer 13, and the conductive layer 14 using a bonding material such as solder, wires 71 to 74, and the like.
  • the sleeve 30 is mounted at predetermined positions on the conductive layer 12 , the conductive layer 13 , and the conductive layer 14 using solder 80 .
  • the sleeves 30A, 30B, 30C, 30D, 30E, or 30F described in the first to sixth embodiments are mounted.
  • a first end 41 of an external terminal 40 is inserted into the sleeve 30 .
  • a case 50 is provided to cover the side of the insulated circuit board 10 on which the semiconductor element 20 and the sleeve 30 are mounted.
  • a second end 42 of the external terminal 40 opposite to the first end 41 inserted into the sleeve 30 is pulled out from the opening 51 of the case 50 .
  • a sealing resin 60 is provided inside the case 50 to seal the insulated circuit board 10, the semiconductor element 20 mounted thereon, the sleeve 30, and the like.
  • the second ends 42 of the external terminals 40 of the semiconductor module 1 having the above-described configuration are connected to the circuit board 200, which are drawn out to the outside of the case 50.
  • the circuit board 200 includes an insulating substrate 201 , a connection hole 202 provided to penetrate the insulating substrate 201 , and a circuit pattern 203 provided on the surface of the insulating substrate 201 and the inner wall of the connection hole 202 .
  • the connection hole 202 of the circuit board 200 is provided at a position corresponding to the external terminal 40 of the semiconductor module 1. By inserting the second end 42 of the external terminal 40 of the semiconductor module 1 into the connection hole 202 of the circuit board 200, the second end 42 is connected to the circuit pattern 203 provided on the inner wall of the connection hole 202. Ru.
  • the second end portion 42 of the external terminal 40 may have a press-fit shape that can be inserted into and connected to the connection hole 202, or may be connected by solder or the like after being inserted into the connection hole 202. Thereby, the semiconductor module 1 is electrically connected to the circuit board 200 via the external terminal 40.
  • the sleeves 30A, 30B, 30C, 30D, 30E, or 30F described in the first to sixth embodiments are mounted.
  • the center position of the hole 31 can be detected with high accuracy by binarization processing based on an image photographed from the flange portion 33 side.
  • the first end 41 of the external terminal 40 is inserted into the sleeve 30 at the detected center position of the hole 31 by an automatic insertion machine. Since the center position of the hole 31 is detected with high accuracy, the inclination of the external terminal 40 with the first end 41 inserted into the hole 31 can be suppressed.
  • the flange portions 33 at both open ends of the sleeve 30 have the same shape on the side closer to the insulated circuit board 10 and the side closer to the circuit board 200. Therefore, during manufacturing, there is no need to manage which flange portion 33 of both open ends should be located closer to the insulated circuit board 10 or closer to the circuit board 200, making it possible to reduce manufacturing costs.
  • the sleeve 30 has flange portions 33 at both open ends that can be connected to solder 80 using flux, and further has the same and appropriate shape so that the external terminal 40 can be inserted therein. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

スリーブの、フランジ部の画像に基づく2値化処理で検出される孔の中心位置のずれを抑える。 スリーブ(30A)は、半導体装置の絶縁回路基板の導電層に搭載され、孔(31)を有する円筒部(32)と、その開口端に設けられたフランジ部(33)とを備える。フランジ部(33)は、円筒部(32)の開口端側から見た平面視で、孔(31)の内面(36)における第1外縁部(36a)から外周(33a)まで延びる複数の凸部(34)と、それらの間にそれぞれ設けられて内面(36)における第2外縁部(36b)から外周(33a)まで延びる複数の凹部(35)とを有する。各凸部(34)は、第1外縁部(36a)において内面(36)と連続する頂面(34a)を有し、各凹部(35)は、第2外縁部(36b)において内面(36)と連続する底面(35a)を有する。

Description

半導体装置
 本発明は、半導体装置に関する。
 接続ピンが挿入される円筒状のシャフトとその端部に設けられたフランジとを有する接続要素を、回路キャリアの導電領域上に半田接合する技術、及び、そのフランジの端面に、その平坦面から所定の高さで突出させた複数のウェブを、フランジの外縁部に沿って設ける技術が知られている(特許文献1)。
 また、外部端子が嵌合する中空穴を有し、絶縁基板上の金属領域に半田接合されるフランジが下端部に設けられたコンタクト部品の、そのフランジの端面に、平坦な底面と筒の内周端からフランジ外周端に向かう凹部とを設け、筒内部下端に、面取り部、段差部又は凹面加工部といった切り欠き部を設ける技術が知られている(特許文献2)。
 また、積層基板の回路層に半田接合される筒状部品の、その円筒部の端に接続されたフランジ部に、複数の突部を、隣り合う突部間距離が円筒部内径よりも大きくなるように設ける技術、及び、複数の突部を、円筒部と接続する内周側の曲面部には設けず、曲面部に接続する外周側の円盤状平坦部に、フランジ部の外周に接するように設ける技術が知られている(特許文献3)。
米国特許出願公開第2009/0194884号明細書 国際公開第2014/148319号パンフレット 特開2017-11221号公報
 絶縁基板とその主面に配置された導電層とを有する絶縁回路基板の、その導電層に、外部端子を挿入するためのスリーブと称される筒状部品が接続された半導体装置では、そのスリーブの孔に、例えば、自動挿入機が用いられて、外部端子の一端部が挿入される。自動挿入機を用いた外部端子の挿入時には、まず、その挿入に先立ち、絶縁回路基板のスリーブ側からの撮影により取得された画像に基づき、そのスリーブの2値化処理が行われ、スリーブの孔の中心位置が検出される。そして、このようにして検出されたスリーブの孔の中心位置に対し、自動挿入機によって外部端子の一端部が挿入される。
 スリーブは、通常、孔を有する円筒部と、その両開口端にそれぞれ設けられたフランジ部とを含む構成とされる。このようなスリーブの、画像取得及びそれに基づく2値化処理が行われるフランジ部の端面には、フランジ部と絶縁回路基板の導電層との半田接合を考慮し、従来、上記のような凹凸が設けられる場合があった。しかし、この場合、スリーブのフランジ部側からの画像取得の際、その端面に設けられた凹凸の配置及びそれによる影のでき方によっては、2値化処理で検出されるスリーブの孔の中心位置に、本来の中心位置からのずれが生じることが起こり得る。2値化処理で検出される孔の中心位置にずれが生じると、そのずれた中心位置に対して自動挿入機で外部端子の一端部が挿入される結果、外部端子が傾いた状態でスリーブに挿入されることが起こり得る。
 このような外部端子の傾きは、その外部端子のスリーブ挿入側とは反対の他端部側を回路基板等の部品に挿入しようとする際、位置がずれた他端部の衝突による破損や所定の挿入位置に挿入されない挿入不良等を招く恐れがある。
 1つの側面では、本発明は、スリーブのそのフランジ部の画像に基づく2値化処理によって検出される孔の中心位置のずれを抑えることができ、スリーブに一端部が挿入される外部端子の傾きを抑えることができる半導体装置を実現することを目的とする。
 1つの態様では、絶縁基板と前記絶縁基板の主面に配置された導電層とを有する絶縁回路基板と、前記導電層に接続されたスリーブと、を含み、前記スリーブは、前記導電層に垂直な方向に延びる孔を有する円筒部と、前記円筒部の開口端に設けられたフランジ部と、を備え、前記フランジ部は、前記開口端側から見た平面視で、前記孔の内面における第1外縁部から前記フランジ部の外周まで延びる複数の凸部と、前記開口端側から見た平面視で、前記複数の凸部間にそれぞれ設けられ、前記内面における第2外縁部から前記外周まで延びる複数の凹部と、を含み、前記複数の凸部の各々は、前記第1外縁部において前記内面と連続する頂面を有し、前記複数の凹部の各々は、前記第2外縁部において前記内面と連続する底面を有する、半導体装置が提供される。
 また、1つの態様では、絶縁基板と前記絶縁基板の主面に配置された導電層とを有する絶縁回路基板と、前記導電層に接続されたスリーブと、を含み、前記スリーブは、前記導電層に垂直な方向に延びる孔を有する円筒部と、前記円筒部の開口端に設けられたフランジ部と、を備え、前記フランジ部は、前記開口端側から見た平面視で、前記孔の内面における第1外縁部から前記フランジ部の外周まで延びる複数の凸部と、前記開口端側から見た平面視で、前記複数の凸部間にそれぞれ設けられ、前記内面における第2外縁部から前記外周まで延びる複数の凹部と、を含み、前記開口端側から見た平面視で、前記第1外縁部の長さの合計は、前記第2外縁部の長さの合計以上である、半導体装置が提供される。
 1つの側面では、スリーブのそのフランジ部の画像に基づく2値化処理によって検出される孔の中心位置のずれを抑えることができ、スリーブに一端部が挿入される外部端子の傾きを抑えることができる半導体装置を実現することが可能になる。
 本発明の上記及び他の目的、特徴及び利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
半導体装置の一例について説明する図(その1)である。 半導体装置の一例について説明する図(その2)である。 絶縁回路基板に搭載されたスリーブへの外部端子の挿入について説明する図(その1)である。 絶縁回路基板に搭載されたスリーブへの外部端子の挿入について説明する図(その2)である。 絶縁回路基板に搭載されたスリーブへの外部端子の挿入について説明する図(その3)である。 絶縁回路基板に搭載されたスリーブへの外部端子の挿入について説明する図(その4)である。 第1の実施の形態に係るスリーブの一例について説明する図(その1)である。 第1の実施の形態に係るスリーブの一例について説明する図(その2)である。 第1の実施の形態に係るスリーブの撮影時の状態の一例について説明する図である。 第2の実施の形態に係るスリーブの一例について説明する図である。 第3の実施の形態に係るスリーブの一例について説明する図である。 第4の実施の形態に係るスリーブの一例について説明する図(その1)である。 第4の実施の形態に係るスリーブの一例について説明する図(その2)である。 第5の実施の形態に係るスリーブの一例について説明する図である。 第6の実施の形態に係るスリーブの一例について説明する図である。 第7の実施の形態に係る半導体装置の一例について説明する図である。
 はじめに、半導体装置の構成例について説明する。
 図1及び図2は半導体装置の一例について説明する図である。図1には、半導体装置の一例の回路図を示している。図2には、半導体装置の一例の要部断面図を模式的に示している。
 図1には、三相電圧形インバータ回路を含む半導体装置1の回路図を示している。図1に示す半導体装置1は、電圧形PWM(Pulse Width Modulation)制御方式のインバータ回路を含むPIM(Power Integrated Module)の一例である。半導体装置1は、コンバータ回路部2、インバータ回路部3、回生電力放電回路部4(ダイナミックブレーキ部)、及びサーミスタ5を含む。
 コンバータ回路部2は、三相交流電源のR相、S相、T相のダイオードブリッジ回路2aを備え、交流電源を整流して直流電源に変換する。
 インバータ回路部3は、PWM制御により直流電源からU相、V相、W相の三相交流電源を出力する。
 ここで、インバータ回路部3は、直列接続された半導体素子3a及び半導体素子3bを含む。半導体素子3a及び半導体素子3bにはそれぞれ、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal Oxide Semiconductor Field Effect Transistor)といったスイッチ素子が用いられる。半導体素子3a及び半導体素子3bに用いられるスイッチ素子にはそれぞれ、FWD(Free Wheeling Diode)やSBD(Schottky Barrier Diode)といったダイオード素子が接続されてもよい。図1の例では、半導体素子3aとして、IGBT3aaとFWD3abとが接続されたRC(Reverse Conducting)-IGBTが用いられ、半導体素子3bとして、IGBT3baとFWD3bbとが接続されたRC-IGBTが用いられている。
 半導体素子3aでは、IGBT3aaのコレクタとFWD3abのカソードとが接続され、IGBT3aaのエミッタとFWD3abのアノードとが接続される。半導体素子3bでは、IGBT3baのコレクタとFWD3bbのカソードとが接続され、IGBT3baのエミッタとFWD3bbのアノードとが接続される。半導体素子3aのIGBT3aaのエミッタと、半導体素子3bのIGBT3baのコレクタとが接続される。半導体素子3aは、インバータ回路部3の上アームを構成する。半導体素子3bは、インバータ回路部3の下アームを構成する。半導体素子3aのコレクタは、正極(P)端子と接続される。半導体素子3bのエミッタは、負極(N)端子と接続される。直列接続される半導体素子3aと半導体素子3bとの間の接続ノードは、出力電流が出力される出力端子と接続される。
 尚、上アームを構成する半導体素子3aは、一組のIGBT3aaとFWD3abとを含むものに限らず、一組のIGBT3aaとFWD3abとを含むものが複数組並列接続されたものであってもよい。下アームを構成する半導体素子3bは、一組のIGBT3baとFWD3bbとを含むものに限らず、一組のIGBT3baとFWD3bbとを含むものが複数組並列接続されたものであってもよい。
 上記のような上下アームを構成する半導体素子3a及び半導体素子3bの組が3つ、PN端子間において互いに並列接続され、インバータ回路部3が実現される。半導体素子3a及び半導体素子3bの3つの組の出力端子がそれぞれ、インバータ回路部3におけるU相、V相、W相の各出力ノードに相当し、負荷、例えば、モータと接続される。
 尚、ここでは、IGBT3aaとFWD3abとを含む半導体素子3a、及びIGBT3baとFWD3bbとを含む半導体素子3bを例示した。このほか、IGBT3aa及びIGBT3baに代えて、MOSFET等の他のスイッチ素子を用いてもよく、FWD3ab及びFWD3bbに代えて、SBD等の他のダイオード素子を用いてもよい。
 また、回生電力放電回路部4は、IGBT等の半導体素子4a及びダイオード4bを含み、モータの回生動作時に発生するエネルギーによる電圧上昇を抑えるために用いられる。
 サーミスタ5は、モジュール内部に主回路と絶縁されて内蔵され、IGBTの損失増大による異常発熱等による破壊を抑えるための温度検出に用いられる。
 上記回路を実現する半導体装置1は、例えば、図2に示すような構成を有するものとすることができる。
 図2の例に示す半導体装置1(「半導体モジュール」とも言う)は、絶縁回路基板10、半導体素子20、スリーブ30、外部端子40、ケース50及び封止樹脂60を含む。
 絶縁回路基板10は、絶縁基板11、絶縁基板11の主面11aに配置された導電層12、導電層13及び導電層14、並びに絶縁基板11の主面11aとは反対側の主面11bに配置された導電層15を有する。絶縁基板11には、アルミナ、アルミナを主成分とする複合セラミックス、窒化アルミニウム、窒化珪素等の基板が用いられる。導電層12、導電層13、導電層14及び導電層15には、銅等の導電材料が用いられる。絶縁回路基板10には、例えば、DCB(Direct Copper Bonding)基板が用いられる。絶縁回路基板10には、AMB(Active Metal Brazed)基板等の他の基板が用いられてもよい。絶縁回路基板10の、絶縁基板11の主面11a側に設けられる導電層12、導電層13及び導電層14の所定の位置に、半導体素子20及びスリーブ30がそれぞれ搭載される。
 例えば、上記のようなインバータ回路部3であれば、導電層12上には、インバータ回路部3の上アームのスイッチ素子として機能する半導体素子20が搭載され、導電層13上には、インバータ回路部3の下アームのスイッチ素子として機能する半導体素子20が搭載される。各半導体素子20には、IGBTやMOSFETといったスイッチ素子が用いられる。例えば、各半導体素子20には、FWDやSBDといったダイオード素子が集積される。
 インバータ回路部3の半導体素子20は、一方の面側にコレクタ電極、他方の面側にゲート電極及びエミッタ電極が設けられる。上アームの半導体素子20は、コレクタ電極が導電層12に半田や焼結材等の接合材料を用いて接続され、エミッタ電極が導電層13にワイヤ71を用いて接続される。ここでは詳細な図示を省略するが、上アームの半導体素子20のゲート電極に接続されるワイヤ72は、ケース50に設けられるゲート端子又はそれと接続される導電層に接続される。下アームの半導体素子20は、コレクタ電極が導電層13に半田や焼結材等の接合材料を用いて接続され、エミッタ電極が導電層14にワイヤ73を用いて接続される。ここでは詳細な図示を省略するが、下アームの半導体素子20のゲート電極に接続されるワイヤ74は、ケース50に設けられるゲート端子又はそれと接続される導電層に接続される。上下アームの半導体素子20同士が、導電層12、導電層13及び導電層14、並びにワイヤ71及びワイヤ73を用いて直列接続される。
 尚、図2には、断面視で2つの半導体素子20を図示するが、絶縁回路基板10に搭載される半導体素子20の数は、これに限定されるものではない。また、絶縁回路基板10に搭載される半導体素子20は、上記のようなインバータ回路部3に用いられるものには限定されず、上記のような回生電力放電回路部4等に用いられるものが含まれ得る。また、絶縁回路基板10には、上記のようなコンバータ回路部2に用いられるダイオードブリッジ回路2aや回生電力放電回路部4に用いられるダイオード4b等が搭載され得る。
 スリーブ30は、例えば、導電層12、導電層13及び導電層14にそれぞれ搭載される。スリーブ30には、銅等の導電材料が用いられる。各スリーブ30は、導電層12、導電層13及び導電層14の各々に垂直な方向D1に延びる孔31を有する円筒部32と、円筒部32の両開口端にそれぞれ設けられたフランジ部33とを備える。各スリーブ30は、開口端の一方に設けられたフランジ部33が、半田80を介して、導電層12、導電層13及び導電層14のうちの所定のものに接合(半田接合)される。スリーブ30は、半田80を介して、導電層12、導電層13及び導電層14のうちの所定のものと電気的に接続される。
 外部端子40には、ピン状のものが用いられる。ピン状の外部端子40の、一方の第1端部41が、絶縁回路基板10に搭載されたスリーブ30の孔31に挿入される。外部端子40の第1端部41は、圧入、嵌合等の手段でスリーブ30の孔31に挿入、固定される。外部端子40は、第1端部41がスリーブ30の孔31に挿入されることで、スリーブ30と電気的に接続される。例えば、半導体素子20が上記のようにインバータ回路部3に用いられるものである場合であれば、導電層12に搭載されたスリーブ30に挿入される外部端子40がP端子として機能し、導電層14に搭載されたスリーブ30に挿入される外部端子40がN端子として機能し、導電層13に搭載されたスリーブ30に挿入される外部端子40が出力端子(U相、V相又はW相)として機能する。
 尚、図2には、断面視で3つのスリーブ30及びそれに挿入される外部端子40を図示するが、絶縁回路基板10に搭載されるスリーブ30及び外部端子40の数は、これに限定されるものではない。
 ケース50は、絶縁回路基板10の、半導体素子20及びスリーブ30が搭載される側を覆うように、設けられる。ケース50には、例えば、PPS(Poly-Phenylene-Sulfide)樹脂等の樹脂材料を用いて形成された樹脂ケースが用いられる。ケース50は、例えば、その下端が、絶縁回路基板10の縁に、図示しない接着剤等を用いて固定される。ケース50には、絶縁回路基板10に搭載されるスリーブ30と対向する位置に、開口部51が設けられる。スリーブ30に第1端部41が挿入された外部端子40は、ケース50の開口部51に挿通され、スリーブ30に挿入された第1端部41とは反対側の他方の第2端部42が、ケース50の外部に引き出される。
 ケース50の外部に引き出された外部端子40の第2端部42は、例えば、外部端子40と対応する位置に接続孔を有する回路基板(ここでは図示せず)の、その接続孔に挿入され、接続される。これにより、当該回路基板と、半導体素子20等が搭載された絶縁回路基板10とが、外部端子40を介して電気的に接続される。外部端子40の第2端部42は、このような回路基板の接続孔に挿入、接続可能なプレスフィット形状とされていてもよい。
 ケース50の内部には、絶縁回路基板10並びにそれに搭載される半導体素子20及びスリーブ30等を封止する封止樹脂60が設けられる。封止樹脂60には、例えば、エポキシ樹脂やフェノール樹脂等の樹脂材料、シリコーン等のゲル材料が用いられる。封止樹脂60には、シリカ等の絶縁性のフィラーが含有されてもよい。封止樹脂60には、複数種の材料が用いられてもよく、例えば、下層にバッファコート材としてシリコーン等のゲル材料を設け、その上層にエポキシ樹脂等の樹脂材料を設けるような積層構造とすることもできる。
 尚、絶縁回路基板10の、半導体素子20及びスリーブ30等が搭載される側とは反対の導電層15側には、ベース板、ヒートシンク、冷却器等が接続されてもよい。例えば、ベース板、ヒートシンク、冷却器等が、TIM(Thermal Interface Material)、半田、焼結材等の熱伝導材料を介して、導電層15に接合される。
 上記のような構成を有する半導体装置1の組み立てにおいては、絶縁回路基板10へのスリーブ30の搭載後、ケース50及び封止樹脂60の配置前に、スリーブ30への外部端子40の挿入が行われる。外部端子40の挿入には、例えば、自動挿入機が用いられる。自動挿入機を用いた外部端子40の挿入時には、まず、その挿入に先立ち、絶縁回路基板10のスリーブ30側からの撮影により取得された画像に基づき、そのスリーブ30の2値化処理が行われ、スリーブ30の孔31の中心位置が検出される。そして、このようにして検出されたスリーブ30の孔31の中心位置に対し、自動挿入機によって外部端子40の第1端部41が挿入される。絶縁回路基板10に搭載されたスリーブ30への外部端子40の挿入について、図3から図6を参照して説明する。
 図3から図6は絶縁回路基板に搭載されたスリーブへの外部端子の挿入について説明する図である。
 図3(A)には、スリーブ30が搭載された絶縁回路基板10の一例の要部平面図を模式的に示している。図3(B)には、スリーブ30が搭載された絶縁回路基板10の一例の画像取得工程の要部断面図を模式的に示している。
 絶縁回路基板10には、その所定の導電層(図示せず)に半田80を介して、複数のスリーブ30が搭載される。スリーブ30は、絶縁回路基板10の様々な箇所に搭載され得る。例えば、スリーブ30は、図3(A)及び図3(B)に示すような、絶縁回路基板10の中央領域10aと、中央領域10aを囲む外周領域10bとに、半田80を介して搭載される。
 スリーブ30が搭載された絶縁回路基板10について、図3(B)に示すように、そのスリーブ30の搭載面側から、照明が当てられて撮像装置100を用いた撮影が行われ、画像が取得される。取得された画像に基づき、スリーブ30の2値化処理が行われ、スリーブ30の孔31の中心位置が検出される。
 ここで、撮像装置100を用いた画像取得の際には、絶縁回路基板10の中央領域10aに位置するスリーブ30はその真上方向から撮影される一方、絶縁回路基板10の外周領域10bに位置するスリーブ30は角度がつけられて斜め方向から撮影される。
 また、スリーブ30は、通常、孔31を有する円筒部32と、その両開口端にそれぞれ設けられたフランジ部33とを含む構成とされる。このようなスリーブ30のフランジ部33の端面には、フランジ部33と絶縁回路基板10との半田接合時に発生するフラックス等の揮発成分のガスを外部へ排出するための経路となる凹部が形成され、それにより凹凸が設けられる。スリーブ30には、その両開口端のいずれのフランジ部33の端面にも、このような凹凸が設けられる。そのため、画像取得の際には、スリーブ30の絶縁回路基板10上の位置、即ち、スリーブ30がどの方向から撮影されるかによって、フランジ部33の端面に、その凹凸に起因した影が生じ得る。
 図4(A)には、真上から撮影されたスリーブ30の画像の一例の要部平面図を模式的に示している。図4(B)には、角度をつけて撮影されたスリーブ30の画像の一例の要部平面図を模式的に示している。
 図4(A)及び図4(B)には一例として、円筒部32Zの両開口端側に設けられたフランジ部33Zの外周33Zaに沿った3箇所に凸部34Zが配置され、孔31Zの周囲からフランジ部33Zの隣接凸部34Z間の外周33Zaに至る領域に凹部35Zが配置されたスリーブ30Zを例示している。尚、このスリーブ30Zのような凹凸形状は、上記特許文献1等に記載されている。
 このような凸部34Z及び凹部35Zがフランジ部33Zに配置されたスリーブ30Zでは、真上から撮影された時には、図4(A)に示すように、上方の開口端側(撮影面側)の孔31Zの輪郭と、下方の開口端側(半田接合面側)の孔31Zの輪郭とが重なる。更に、凸部34Zによってフランジ部33Zの撮影面側の端面上に影が生じることが抑えられる。そのため、このように真上から撮影された時には、フランジ部33Zの凹凸(孔31Z、凹部35Z又は凸部34Z)による影の影響が抑えられて、2値化処理により、孔31Zの輪郭が精度良く画像認識される。そして、孔31Zの輪郭に相当する領域に円が設定され、その円の中心が孔31Zの中心37Zとして検出される。これにより、孔31Zの中心37Zの本来の位置が精度良く検出される。
 一方、凸部34Z及び凹部35Zがフランジ部33Zに配置されたスリーブ30Zが、角度をつけて撮影された時には、図4(B)に示すように、上方の開口端側(撮影面側)の孔31Z内にその内壁面31Zaが映り込み、更に、フランジ部33Z上にはその凹凸(孔31Z、凹部35Z又は凸部34Z)による影110(便宜上一部のみ図示)が生じる。尚、図4(B)には、スリーブ30Zに対して図面左側から照明が当てられて撮像装置100(図3)で撮影された場合の一例を示している。
 スリーブ30Zのフランジ部33Zでは、孔31Zの全周が凹部35Zで囲まれているため、角度をつけて撮影された時には、フランジ部33Zの凹凸によって生じた影110が、凹部35Zにまでかかる場合がある。この場合、孔31Z又はその内壁面31Zaと、それを囲むフランジ部33Zの凹部35Zとの境界が、孔31Zの縁の比較的長い領域に渡って不明瞭となり、2値化処理によって孔31Zと画像認識される領域が、本来の孔31Zの領域とは異なる領域となることが起こり得る。即ち、孔31Zの領域とその外側の凹部35Z上にできた影110の領域とを、このスリーブ30Zの孔31Zと誤認識してしまうことが起こり得る。そのため、スリーブ30Zが角度をつけて撮影された時には、2値化処理によって画像認識される孔31Zの輪郭にずれが生じ得る。ずれた孔31Zの輪郭に相当する領域(孔31Zとその外側の影110を含めた領域)に円が設定され、その円の中心が孔31Zの中心37Zaとして検出されてしまうと、本来の中心37Zの位置との間にずれが生じる。このように、スリーブ30Zが角度をつけて撮影された時には、孔31Zの中心37Zの本来の位置が精度良く検出されないことが起こり得る。
 上記図2に示した半導体装置1のスリーブ30として、このようなスリーブ30Zが搭載される場合、絶縁回路基板10の中央領域10a及び外周領域10bのうち、外周領域10bに搭載されるスリーブ30Zは、図4(B)に示すように角度がつけられて撮影され易い。そのため、絶縁回路基板10の外周領域10bに搭載されるスリーブ30Zには、中央領域10aに搭載されるスリーブ30Zに比べて、孔31Zの中心37Zの本来の位置からのずれが生じ易くなる。
 上記のような画像取得及び2値化処理によって検出された孔31Zの中心37Z及び中心37Zaに対し、自動挿入機により外部端子40が挿入される。外部端子40の挿入状態の例を図5及び図6に示す。
 図5(A)には、真上から撮影されたスリーブ30Zについて検出された孔31Zの中心37Zに対して外部端子40が挿入された状態の一例の要部平面図を模式的に示している。図5(B)には、真上から撮影されたスリーブ30Zについて検出された孔31Zの中心37Zに対して外部端子40が挿入された状態の一例の要部断面図を模式的に示している。図5(B)は図5(A)のV-V断面図である。また、図6(A)には、角度をつけて撮影されたスリーブ30Zについて検出された孔31Zの中心37Zaに対して外部端子40が挿入された状態の一例の要部平面図を模式的に示している。図6(B)には、角度をつけて撮影されたスリーブ30Zについて検出された孔31Zの中心37Zaに対して外部端子40が挿入された状態の一例の要部断面図を模式的に示している。図6(B)は図6(A)のVI-VI断面図である。
 スリーブ30Zが真上から撮影された場合には、画像取得及び2値化処理によって検出される孔31Zの中心37Zが、本来の位置で精度良く検出される。本来の位置の孔31Zの中心37Zに対し、自動挿入機により外部端子40の第1端部41が挿入される。例えば、角棒状の外部端子40が、その外周部(角部)で孔31Zの内壁面31Zaを変形させるように、圧入又は嵌合される。真上から撮影され、孔31Zの中心37Zが本来の位置で精度良く検出されているスリーブ30Zには、図5(A)及び図5(B)に示すように、孔31Zに対して真っすぐな状態で外部端子40が挿入されるようになる。
 一方、スリーブ30Zが角度をつけて撮影された場合には、画像取得及び2値化処理によって検出される孔31Zの中心37Zaが、本来の中心37Zの位置からずれて検出され得る。孔31Zの中心37Zaが本来の位置からずれて検出されると、本来の位置からずれた孔31Zの中心37Zaに対し、自動挿入機により外部端子40の第1端部41が挿入されることになる。そのため、例えば、角棒状の外部端子40が、その外周部(角部)で孔31Zの内壁面31Zaを変形させるように、圧入又は嵌合される際、外部端子40の外周部が孔31Zの内壁面31Zaへの当たり方、押す力に偏りが生じ得る。その結果、角度をつけて撮影され、孔31Zの中心37Zaが本来の位置からずれて検出されているスリーブ30Zには、図6(A)及び図6(B)に示すように、孔31Zに対して傾いた状態で外部端子40が挿入されてしまうことが起こり得る。
 半導体装置1(図2)において、そのスリーブ30として、上記図4から図6に示したようなスリーブ30Zが配置される場合、外部端子40は、その第1端部41がスリーブ30Zに挿入され、第1端部41とは反対側の第2端部42がケース50の外部に引き出される。そして、ケース50の外部に引き出された第2端部42が、例えば、接続孔を有する回路基板のその接続孔に挿入され、回路基板と接続される。しかし、図6(A)及び図6(B)に示したように、外部端子40が傾いた状態でスリーブ30Zに挿入されていると、本来の位置からずれている第2端部42が回路基板に衝突して外部端子40又は回路基板の破損を招いたり、外部端子40の第2端部42が回路基板の接続孔に挿入されない挿入不良を招いたりする恐れがある。
 以上のような点に鑑み、ここでは以下に実施の形態として示すような手法を用い、スリーブのそのフランジ部の画像に基づく2値化処理によって検出される孔の中心位置のずれを抑えることができ、スリーブに一端部が挿入される外部端子の傾きを抑えることができる半導体装置を実現する。
 [第1の実施の形態]
 図7及び図8は第1の実施の形態に係るスリーブの一例について説明する図である。図7には、スリーブの一例の要部斜視図を模式的に示している。図8(A)には、スリーブの一例の要部平面図を模式的に示している。図8(B)には、スリーブの一例の要部断面図を模式的に示している。図8(B)は図8(A)のVIII-VIII断面図である。
 上記図2に示したような半導体装置1の、絶縁回路基板10に搭載されるスリーブ30として、例えば、この図7、図8(A)及び図8(B)に示すようなスリーブ30Aが搭載される。
 スリーブ30Aは、孔31を有する円筒部32と、その両開口端にそれぞれ設けられたフランジ部33とを備える。フランジ部33の各々は、複数の凸部34と、それらの間にそれぞれ設けられた複数の凹部35とを有する。ここでは一例として、3つの凸部34と、それらの間の3つの凹部35とを有するフランジ部33を図示している。円筒部32の両開口端にそれぞれ設けられるフランジ部33は、互いに同一の構成とされる。複数の凸部34は、互いに同一の形状を有し、複数の凹部35は、互いに同一の形状を有する。
 フランジ部33の凸部34群の各々は、円筒部32の一方の開口端側から見た平面視で、孔31の内面36における第1外縁部36aからフランジ部33の外周33aまで延びるように配置される。各凸部34は、第1外縁部36aにおいて内面36と連続する頂面34aを有する。スリーブ30Aにおいて、第1外縁部36aは、頂面34aと連続する屈曲部を有する。第1外縁部36aにおける内面36の終端36dは、頂面34aを含む第1平面91(図8(B))内に位置する。凸部34群は、円筒部32の一方の開口端側から見た平面視で、孔31の中心37(図8(A))を対称軸として回転対称に配置される。一例として、3つの凸部34が、孔31の中心37を対象軸として120°回転対称となるように、配置される。
 フランジ部33の凹部35群の各々は、円筒部32の一方の開口端側から見た平面視で、孔31の内面36における第2外縁部36bからフランジ部33の外周33aまで延びるように配置される。各凹部35は、第2外縁部36bにおいて内面36と連続する底面35aを有する。スリーブ30Aにおいて、第2外縁部36bは、底面35aと連続する屈曲部を有する。第2外縁部36bにおける内面36の終端36eは、底面35aを含む第2平面92内に位置する(図8(B))。凹部35群は、円筒部32の一方の開口端側から見た平面視で、孔31の中心37を対称軸として回転対称に配置される(図8(A))。一例として、3つの凹部35が、孔31の中心37を対象軸として120°回転対称となるように、配置される。各凹部35は、凸部34の頂面34aから凹部35の底面35aまでの深さが、例えば、0.055mm以下となるように、配置される。
 凸部34群及び凹部35群は、例えば、円筒部32の一方の開口端側から見た平面視で、第1外縁部36aの長さL1(図8(A))の合計が、第2外縁部36bの長さL2(図8(A))の合計以上となるように、フランジ部33に設けられる。ここで、第1外縁部36aの長さL1は、第1外縁部36aから凸部34の頂面34aに遷移する箇所の長さ、或いは、第1外縁部36aにおける内面36の終端36dの箇所の長さであるとも言える。第2外縁部36bの長さは、第2外縁部36bから凹部35の底面35aに遷移する箇所の長さ、或いは、第2外縁部36bにおける内面36の終端36eの箇所の長さであるとも言える。
 凹部35群は、例えば、円筒部32の一方の開口端側から見た平面視で、底面35aと連続する第2外縁部36bにおける両端間を直線で結んだ長さL3(図8(A))が、フランジ部33の外周33aにおける両端間を直線で結んだ長さL4(図8(A))と同一となるように、フランジ部33に設けられる。即ち、各凹部35は、孔31の内面36における第2外縁部36bからフランジ部33の外周33aまで、一定の幅で延びる。
 この図7、図8(A)及び図8(B)に示したようなフランジ部33を備えたスリーブ30Aが、上記図2に示したような半導体装置1のスリーブ30として、絶縁回路基板10の中央領域10a及び外周領域10bの双方、或いは、中央領域10a及び外周領域10bのうちの少なくとも外周領域10bに、配置される。スリーブ30Aは、両開口端側のフランジ部33のうちの一方が、上記のように、半田80を介して、絶縁回路基板10の導電層12、導電層13又は導電層14に接合される。
 スリーブ30Aの接合に用いられる半田80には、フラックス等の揮発成分が含有される。スリーブ30Aの接合時には、半田80の溶融に伴い、半田80中のフラックス等が揮発してガスが発生し得る。ここで、半田80を用いて接合されるスリーブ30Aのフランジ部33には、孔31(その内面36における第2外縁部36b)から外周33aまで連通する凹部35群が配置されている。そのため、接合時に半田80から発生するフラックス等のガスは、スリーブ30Aの孔31のほか、凹部35群を通じてフランジ部33の外部へと排出される。仮に、フラックス等のガスの排出経路が孔31のみであると、ガス圧が過剰に上昇し、溶融した半田80がガスの排出と同時に飛散して孔31の内面36に付着し、後に孔31内に挿入される外部端子40の、その挿入を阻害する事態を招く恐れがある。これに対し、スリーブ30Aでは、フランジ部33に設けられた凹部35群を通じてフラックス等のガスがフランジ部33の外部へと排出されるため、ガス圧の過剰な上昇、それによる半田80の飛散が効果的に抑えられるようになる。
 更に、スリーブ30Aのフランジ部33には、凹部35群を挟んで設けられる凸部34群が、孔31(その内面36における第1外縁部36a)から外周33aまで配置されると共に、孔31の中心37を対称軸として回転対称に配置される。そのため、半田80を用いてフランジ部33を接合した時のスリーブ30Aの姿勢が安定し、スリーブ30Aが傾いた状態で絶縁回路基板10に接続されてしまうことが抑えられるようになる。
 上記図2に示したような半導体装置1のスリーブ30として、この図7、図8(A)及び図8(B)に示したようなスリーブ30Aが配置される場合、絶縁回路基板10に接続されたスリーブ30Aには、上記図2に示したように、外部端子40が接続される。即ち、スリーブ30Aの孔31に、外部端子40の第1端部41が挿入される。
 外部端子40の接続時には、その第1端部41の挿入に先立ち、上記のように半田80で絶縁回路基板10に接合されたフランジ部33側とは反対のフランジ部33側から撮影された画像が取得され、その画像に基づき2値化処理が行われ、スリーブ30Aの孔31の中心37が検出される。
 ここで、スリーブ30Aのフランジ部33には、孔31の内面36における第1外縁部36aから当該フランジ部33の外周33aまで延びる凸部34群が配置される。更に、孔31の内面36における第2外縁部36bから当該フランジ部33の外周33aまで延びる凹部35群が配置される。換言すれば、孔31の第1外縁部36aまで凸部34群の頂面34aが延びており、孔31の第2外縁部36bまで凹部35群の底面35aが延びている。これにより、スリーブ30Aのフランジ部33の画像を撮影する際のフランジ部33上に生じる影の影響が抑えられる。そして、2値化処理により、スリーブ30Aの孔31の第1外縁部36a(屈曲部)及び第2外縁部36b(屈曲部)のうち、影の影響を受け難い凸部34の頂面34aと連続する第1外縁部36aを、精度良く画像認識することが可能になる。この点について、図9を参照して説明する。
 図9は第1の実施の形態に係るスリーブの撮影時の状態の一例について説明する図である。図9には、角度をつけて撮影されたスリーブの画像の一例の要部平面図を模式的に示している。
 スリーブ30Aのフランジ部33では、角度をつけて撮影された時には、図9に示すように、フランジ部33の凹凸(孔31、凹部35又は凸部34)によって影110が生じる。尚、図9には、スリーブ30に対して図面左側から照明が当てられて撮像装置100(図3)で撮影された場合の一例を示している。
 スリーブ30Aでは、角度をつけて撮影された際、図9に示すように、凹部35群の底面35aには影110が生じ得るものの、凸部34群の頂面34aには影110が生じ難い。スリーブ30Aでは、このような影110が生じ難い凸部34群の頂面34aが、孔31の第1外縁部36aまで延びている。2値化処理では、孔31が黒領域として画像認識され、影110の生じ難い凸部34群の頂面34aが白領域として画像認識される。そのため、孔31の第1外縁部36aの、凸部34群の頂面34aとの境界が、影110の影響で不明瞭となること、或いは、影110の影響で孔31の縁の比較的長い領域に渡って不明瞭となることが抑えられる。
 これにより、孔31の第1外縁部36aの位置を、精度良く画像認識することが可能になり、その第1外縁部36aの位置の情報に基づき、孔31の輪郭を精度良く画像認識することが可能になる。第1外縁部36aの長さL1の合計を、第2外縁部36bの長さL2の合計以上としておくと、第1外縁部36aの画像認識精度、それによる孔31の輪郭の画像認識精度が高まる。孔31の輪郭が精度良く画像認識されることで、孔31の中心37の位置を、本来の位置からのずれを抑えて、精度良く検出することが可能になる。
 孔31の中心37の本来の位置からのずれは、これまで、絶縁回路基板10の中央領域10a及び外周領域10bに接続されるスリーブ30のうち、画像撮影時の影の影響を受け易い外周領域10bのスリーブ30で生じる傾向があった。従って、絶縁回路基板10の少なくとも外周領域10bに、上記のような凸部34群及び凹部35群を有するフランジ部33を備えたスリーブ30Aを配置することで、孔31の中心37の位置を、ずれを抑えて精度良く検出することが可能になる。
 上記のようにして検出された孔31の中心37の位置に対し、自動挿入機により、上記図2に示したように外部端子40が挿入される。精度良く中心37が検出された孔31に外部端子40の第1端部41が挿入されるため、スリーブ30Aに対する外部端子40の傾きが効果的に抑えられるようになる。外部端子40の傾きが抑えられるため、第2端部42を回路基板等に挿入しようとする際の、第2端部42の衝突による破損や挿入不良等が抑えられるようになる。
 [第2の実施の形態]
 図10は第2の実施の形態に係るスリーブの一例について説明する図である。図10(A)には、スリーブの一例の要部平面図を模式的に示している。図10(B)には、スリーブの一例の要部断面図を模式的に示している。図10(B)は図10(A)のX-X断面図である。
 上記図2に示したような半導体装置1の、絶縁回路基板10に搭載されるスリーブ30として、例えば、この図10(A)及び図10(B)に示すようなスリーブ30Bが搭載される。
 スリーブ30Bは、円筒部32の両開口端にそれぞれ、複数(一例として3つ)の凸部34と複数(一例として3つ)の凹部35とを有するフランジ部33が設けられた構成を有する。両開口端のフランジ部33は、互いに同一の構成とされる。複数の凸部34は、互いに同一の形状を有し、複数の凹部35は、互いに同一の形状を有する。
 フランジ部33の凸部34群の各々は、円筒部32の一方の開口端側から見た平面視で、孔31の内面36における第1外縁部36aからフランジ部33の外周33aまで延びるように配置される。各凸部34は、第1外縁部36aにおいて内面36と連続する頂面34aを有する。スリーブ30Bにおいて、第1外縁部36aは、頂面34aと連続する曲面部を有する。第1外縁部36aにおける内面36の終端36dは、頂面34aを含む第1平面91(図10(B))内に位置する。凸部34群は、円筒部32の一方の開口端側から見た平面視で、孔31の中心37(図10(A))を対称軸として回転対称に配置される。一例として、3つの凸部34が、孔31の中心37を対象軸として120°回転対称となるように、配置される。
 フランジ部33の凹部35群の各々は、円筒部32の一方の開口端側から見た平面視で、孔31の内面36における第2外縁部36bからフランジ部33の外周33aまで延びるように配置される。各凹部35は、第2外縁部36bにおいて内面36と連続する底面35aを有する。スリーブ30Bにおいて、第2外縁部36bは、底面35aと連続する屈曲部を有する。第2外縁部36bにおける内面36の終端36eは、底面35aを含む第2平面92(図10(B))内に位置する。凹部35群は、円筒部32の一方の開口端側から見た平面視で、孔31の中心37(図10(A))を対称軸として回転対称に配置される。一例として、3つの凹部35が、孔31の中心37を対象軸として120°回転対称となるように、配置される。各凹部35は、凸部34の頂面34aから凹部35の底面35aまでの深さが、例えば、0.055mm以下となるように、配置される。
 また、スリーブ30Bにおいて、凸部34群及び凹部35群は、例えば、円筒部32の一方の開口端側から見た平面視で、第1外縁部36aの長さL1(図10(A))の合計が、第2外縁部36bの長さL2(図10(A))の合計以上となるように、フランジ部33に設けられる。
 スリーブ30Bにおいて、凹部35群は、例えば、円筒部32の一方の開口端側から見た平面視で、底面35aと連続する第2外縁部36bにおける両端間を直線で結んだ長さL3(図10(A))が、フランジ部33の外周33aにおける両端間を直線で結んだ長さL4(図10(A))と同一となるように、フランジ部33に設けられる。即ち、各凹部35は、孔31の内面36における第2外縁部36bからフランジ部33の外周33aまで、一定の幅で延びる。
 スリーブ30Bでは、孔31の内面36における第1外縁部36aが曲面部を有する構成とされる。スリーブ30Bは、このような構成を有する点で、上記第1の実施の形態で述べたスリーブ30Aと相違する。曲面部を有する第1外縁部36aの終端36dから連続して、凸部34の平坦な頂面34aが外周33aまで延びる。第1外縁部36aの曲面部は、スリーブ30Bの製造上不可避的に形成されるものであってもよく、屈曲部(上記図8(B))を研削したりプレスしたりすることで形成されるものであってもよい。一方、孔31の内面36における第2外縁部36bは、上記第1の実施の形態で述べたスリーブ30Aと同様に、屈曲部を有する構成とされる。屈曲部を有する第2外縁部36bの終端36eから連続して、凹部35の平坦な底面35aが外周33aまで延びる。
 このような構成を有するスリーブ30Bによっても、上記第1の実施の形態で述べたスリーブ30Aと同様の効果が得られる。即ち、フランジ部33に、孔31から外周33aまで連通する凹部35群が配置されていることで、スリーブ30Bの半田接合時に発生するガスが凹部35群を通じてフランジ部33の外部へと排出され、ガス圧の上昇による半田80の飛散が効果的に抑えられる。凸部34群が、孔31から外周33aまで配置されると共に、孔31の中心37を対称軸として回転対称に配置されるため、半田接合時のスリーブ30Bの姿勢が安定し、その傾きが抑えられる。
 更に、スリーブ30Bでは、凸部34群と連続する第1外縁部36aを曲面部とすることで、屈曲部とする場合に比べて、フランジ部33と絶縁回路基板10の導電層(導電層12、導電層13又は導電層14)との間に存在する空間が広がり、フランジ部33と絶縁回路基板10の導電層との間に介在される半田80の量が増加し、接合強度が高められる。或いは、スリーブ30Bのフランジ部33の当該曲面部と絶縁回路基板10の導電層との間に半田80が溜まる空間が確保されて半田80が当該空間にとどまり、孔31内に入り込む半田80の量、内面36を這い上がる半田80の量が減少される。
 また、スリーブ30Bでは、孔31からフランジ部33の外周33aまで凸部34群及び凹部35群が延びている。換言すれば、孔31の第1外縁部36aまで凸部34群の頂面34aが延びており、孔31の第2外縁部36bまで凹部35群の底面35aが延びている。そのため、外部端子40の挿入に先立つ、孔31の中心37の位置の検出において、フランジ部33の画像に基づく2値化処理により、孔31の第1外縁部36a(曲面部)及び第2外縁部36b(屈曲部)のうち、影の影響を受け難い凸部34の頂面34aと連続する第1外縁部36aが、精度良く画像認識される。即ち、孔31の第1外縁部36aの、凸部34群の頂面34aとの境界が、影の影響で不明瞭となることが抑えられる。これにより、孔31の第1外縁部36aの位置が、精度良く画像認識され、その第1外縁部36aの位置の情報に基づき、孔31の輪郭が精度良く画像認識される。第1外縁部36aの長さL1の合計を、第2外縁部36bの長さL2の合計以上としておくと、第1外縁部36aの画像認識精度、それによる孔31の輪郭の画像認識精度が高まる。
 孔31の輪郭が精度良く画像認識されることで、孔31の中心37の位置を、本来の位置からのずれを抑えて、精度良く検出することが可能になり、検出された中心37の位置に対して自動挿入機により第1端部41が挿入される外部端子40に傾きが生じることが抑えられる。その結果、外部端子40の第2端部42を回路基板等に挿入しようとする際の、第2端部42の衝突による破損や挿入不良等が抑えられるようになる。
 [第3の実施の形態]
 図11は第3の実施の形態に係るスリーブの一例について説明する図である。図11(A)には、スリーブの一例の要部平面図を模式的に示している。図11(B)には、スリーブの一例の要部断面図を模式的に示している。図11(B)は図11(A)のXI-XI断面図である。
 上記図2に示したような半導体装置1の、絶縁回路基板10に搭載されるスリーブ30として、例えば、この図11(A)及び図11(B)に示すようなスリーブ30Cが搭載される。
 スリーブ30Bは、円筒部32の両開口端にそれぞれ、複数(一例として3つ)の凸部34と複数(一例として3つ)の凹部35とを有するフランジ部33が設けられた構成を有する。両開口端のフランジ部33は、互いに同一の構成とされる。複数の凸部34は、互いに同一の形状を有し、複数の凹部35は、互いに同一の形状を有する。
 フランジ部33の凸部34群の各々は、円筒部32の一方の開口端側から見た平面視で、孔31の内面36における第1外縁部36aからフランジ部33の外周33aまで延びるように配置される。各凸部34は、第1外縁部36aにおいて内面36と連続する頂面34aを有する。スリーブ30Cにおいて、第1外縁部36aは、頂面34aと連続する屈曲部を有する。第1外縁部36aにおける内面36の終端36dは、頂面34aを含む第1平面91(図11(B))内に位置する。凸部34群は、円筒部32の一方の開口端側から見た平面視で、孔31の中心37(図11(A))を対称軸として回転対称に配置される。一例として、3つの凸部34が、孔31の中心37を対象軸として120°回転対称となるように、配置される。
 フランジ部33の凹部35群の各々は、円筒部32の一方の開口端側から見た平面視で、孔31の内面36における第2外縁部36bからフランジ部33の外周33aまで延びるように配置される。各凹部35は、第2外縁部36bにおいて内面36と連続する底面35aを有する。スリーブ30Cにおいて、第2外縁部36bは、底面35aと連続する曲面部を有する。第2外縁部36bにおける内面36の終端36eは、底面35aを含む第2平面92(図11(B))内に位置する。凹部35群は、円筒部32の一方の開口端側から見た平面視で、孔31の中心37(図11(A))を対称軸として回転対称に配置される。一例として、3つの凹部35が、孔31の中心37を対象軸として120°回転対称となるように、配置される。各凹部35は、凸部34の頂面34aから凹部35の底面35aまでの深さが、例えば、0.055mm以下となるように、配置される。
 また、スリーブ30Cにおいて、凸部34群及び凹部35群は、例えば、円筒部32の一方の開口端側から見た平面視で、第1外縁部36aの長さL1(図11(A))の合計が、第2外縁部36bの長さL2(図11(A))の合計以上となるように、フランジ部33に設けられる。
 スリーブ30Cにおいて、凹部35群は、例えば、円筒部32の一方の開口端側から見た平面視で、底面35aと連続する第2外縁部36bにおける両端間を直線で結んだ長さL3(図11(A))が、フランジ部33の外周33aにおける両端間を直線で結んだ長さL4(図11(A))と同一となるように、フランジ部33に設けられる。即ち、各凹部35は、孔31の内面36における第2外縁部36bからフランジ部33の外周33aまで、一定の幅で延びる。
 スリーブ30Cでは、孔31の内面36における第2外縁部36bが曲面部を有する構成とされる。スリーブ30Cは、このような構成を有する点で、上記第1の実施の形態で述べたスリーブ30Aと相違する。曲面部を有する第2外縁部36bの終端36eから連続して、凹部35の平坦な底面35aが外周33aまで延びる。第2外縁部36bの曲面部は、スリーブ30Cの製造上不可避的に形成されるものであってもよく、屈曲部(上記図8(B))を研削したりプレスしたりすることで形成されるものであってもよい。一方、孔31の内面36における第1外縁部36aは、上記第1の実施の形態で述べたスリーブ30Aと同様に、屈曲部を有する構成とされる。屈曲部を有する第1外縁部36aの終端36dから連続して、凸部34の平坦な頂面34aが外周33aまで延びる。
 このような構成を有するスリーブ30Cによっても、上記第1の実施の形態で述べたスリーブ30Aと同様の効果が得られる。即ち、フランジ部33に、孔31から外周33aまで連通する凹部35群が配置されていることで、スリーブ30Cの半田接合時に発生するガスが凹部35群を通じてフランジ部33の外部へと排出され、ガス圧の上昇による半田80の飛散が効果的に抑えられる。凸部34群が、孔31から外周33aまで配置されると共に、孔31の中心37を対称軸として回転対称に配置されるため、半田接合時のスリーブ30Cの姿勢が安定し、その傾きが抑えられる。
 更に、スリーブ30Cでは、凹部35群と連続する第2外縁部36bを曲面部とすることで、屈曲部とする場合に比べて、フランジ部33と絶縁回路基板10の導電層(導電層12、導電層13又は導電層14)との間に存在する空間が広がり、フランジ部33と絶縁回路基板10の導電層との間に介在される半田80の量が増加し、接合強度が高められる。或いは、スリーブ30Cのフランジ部33の当該曲面部と絶縁回路基板10の導電層との間に半田80が溜まる空間が確保されて半田80が当該空間にとどまり、孔31内に入り込む半田80の量、内面36を這い上がる半田80の量が減少される。
 また、スリーブ30Cでは、孔31からフランジ部33の外周33aまで凸部34群及び凹部35群が延びている。換言すれば、孔31の第1外縁部36aまで凸部34群の頂面34aが延びており、孔31の第2外縁部36bまで凹部35群の底面35aが延びている。そのため、外部端子40の挿入に先立つ、孔31の中心37の位置の検出において、フランジ部33の画像に基づく2値化処理により、孔31の第1外縁部36a(屈曲部)及び第2外縁部36b(曲面部)のうち、影の影響を受け難い凸部34の頂面34aと連続する第1外縁部36aが、精度良く画像認識される。即ち、孔31の第1外縁部36aの、凸部34群の頂面34aとの境界が、影の影響で不明瞭となることが抑えられる。これにより、孔31の第1外縁部36aの位置が、精度良く画像認識され、その第1外縁部36aの位置の情報に基づき、孔31の輪郭が精度良く画像認識される。第1外縁部36aの長さL1の合計を、第2外縁部36bの長さL2の合計以上としておくと、第1外縁部36aの画像認識精度、それによる孔31の輪郭の画像認識精度が高まる。
 孔31の輪郭が精度良く画像認識されることで、孔31の中心37の位置を、本来の位置からのずれを抑えて、精度良く検出することが可能になり、検出された中心37の位置に対して自動挿入機により第1端部41が挿入される外部端子40に傾きが生じることが抑えられる。その結果、外部端子40の第2端部42を回路基板等に挿入しようとする際の、第2端部42の衝突による破損や挿入不良等が抑えられるようになる。
 尚、上記第2の実施の形態では、凸部34群と連続する孔31の内面36の第1外縁部36aが曲面部を有し、凹部35群と連続する孔31の内面36の第2外縁部36bが屈曲部を有する構成を例示した(図10(A)及び図10(B))。また、上記第3の実施の形態では、凸部34群と連続する孔31の内面36の第1外縁部36aが屈曲部を有し、凹部35群と連続する孔31の内面36の第2外縁部36bが曲面部を有する構成を例示した(図11(A)及び図11(B))。このほか、凸部34群と連続する孔31の内面36の第1外縁部36aと、凹部35群と連続する孔31の内面36の第2外縁部36bとが、いずれも曲面部を有する構成とすることも可能である。これにより、上記第2及び第3の双方の実施の形態で述べたような効果を得ることができる。
 [第4の実施の形態]
 図12及び図13は第4の実施の形態に係るスリーブの一例について説明する図である。図12には、スリーブの一例の要部斜視図を模式的に示している。図13(A)には、スリーブの一例の要部平面図を模式的に示している。図13(B)には、スリーブの一例の要部断面図を模式的に示している。図13(B)は図13(A)のXIII-XIII断面図である。
 上記図2に示したような半導体装置1の、絶縁回路基板10に搭載されるスリーブ30として、例えば、この図12、図13(A)及び図13(B)に示すようなスリーブ30Dが搭載される。
 スリーブ30Dは、円筒部32の両開口端にそれぞれ、複数(一例として3つ)の凸部34と複数(一例として3つ)の凹部35とを有するフランジ部33が設けられた構成を有する。両開口端のフランジ部33は、互いに同一の構成とされる。複数の凸部34は、互いに同一の形状を有し、複数の凹部35は、互いに同一の形状を有する。
 フランジ部33の凸部34群の各々は、円筒部32の一方の開口端側から見た平面視で、孔31の内面36における第1外縁部36aからフランジ部33の外周33aまで延びるように配置される。各凸部34は、第1外縁部36aにおいて内面36と連続する頂面34aを有する。スリーブ30Dにおいて、第1外縁部36aは、頂面34aと連続する曲面部を有する。第1外縁部36aにおける内面36の終端36dは、頂面34aを含む第1平面91(図13(B))内に位置する。凸部34群は、円筒部32の一方の開口端側から見た平面視で、孔31の中心37(図13(A))を対称軸として回転対称に配置される。一例として、3つの凸部34が、孔31の中心37を対象軸として120°回転対称となるように、配置される。
 フランジ部33の凹部35群の各々は、円筒部32の一方の開口端側から見た平面視で、孔31の内面36における第2外縁部36bからフランジ部33の外周33aまで延びるように配置される。各凹部35は、第2外縁部36bにおいて内面36と連続する底面35aを有する。スリーブ30Dにおいて、第2外縁部36bは、底面35aと連続する曲面部を有する。第2外縁部36bにおける内面36の終端36eは、底面35aを含む第2平面92(図13(B))内に位置する。凹部35群は、円筒部32の一方の開口端側から見た平面視で、孔31の中心37(図13(A))を対称軸として回転対称に配置される。一例として、3つの凹部35が、孔31の中心37を対象軸として120°回転対称となるように、配置される。各凹部35は、凸部34の頂面34aから凹部35の底面35aまでの深さが、例えば、0.055mm以下となるように、配置される。
 ここで、スリーブ30Dにおいて、第1外縁部36aの曲面部は、孔31の内面36における方向D1に向かって直線状に延びる内壁36cの終端から湾曲し始め当該終端から凸部34群の頂面34aへと延びる湾曲面により形成される。凹部35群は、底面35aの孔31側の縁、即ち、第2外縁部36bの終端36eが、当該湾曲面内に位置するような深さで形成される。第1外縁部36aの曲面部及び第2外縁部36bの曲面部はいずれも、孔31の内壁36cの終端から頂面34a及び底面35aに延びる当該湾曲面の一部である。
 また、スリーブ30Dにおいて、凸部34群及び凹部35群は、例えば、円筒部32の一方の開口端側から見た平面視で、第1外縁部36aの長さL1(図13(A))の合計が、第2外縁部36bの長さL2(図13(A))の合計以上となるように、フランジ部33に設けられる。
 スリーブ30Dにおいて、凹部35群は、例えば、円筒部32の一方の開口端側から見た平面視で、底面35aと連続する第2外縁部36bにおける両端間を直線で結んだ長さL3(図13(A))が、フランジ部33の外周33aにおける両端間を直線で結んだ長さL4(図13(A))と同一となるように、フランジ部33に設けられる。即ち、各凹部35は、孔31の内面36における第2外縁部36bからフランジ部33の外周33aまで、一定の幅で延びる。
 スリーブ30Dでは、孔31の内面36における第1外縁部36a及び第2外縁部36bが曲面部を有する構成とされる。スリーブ30Dは、このような構成を有する点で、上記第1の実施の形態で述べたスリーブ30Aと相違する。曲面部を有する第1外縁部36aの終端36dから連続して、凸部34の平坦な頂面34aが外周33aまで延び、曲面部を有する第2外縁部36bの終端36eから連続して、凹部35の平坦な底面35aが外周33aまで延びる。第1外縁部36a及び第2外縁部36bの曲面部は、スリーブ30Dの製造上不可避的に形成されるものであってもよく、屈曲部(上記図8(B))を研削したりプレスしたりすることで形成されるものであってもよい。
 このような構成を有するスリーブ30Dによっても、上記第1の実施の形態で述べたスリーブ30Aと同様の効果が得られる。即ち、フランジ部33に、孔31から外周33aまで連通する凹部35群が配置されていることで、スリーブ30Dの半田接合時に発生するガスが凹部35群を通じてフランジ部33の外部へと排出され、ガス圧の上昇による半田80の飛散が効果的に抑えられる。凸部34群が、孔31から外周33aまで配置されると共に、孔31の中心37を対称軸として回転対称に配置されるため、半田接合時のスリーブ30Dの姿勢が安定し、その傾きが抑えられる。
 更に、スリーブ30Dでは、凸部34群と連続する第1外縁部36a及び凹部35群と連続する第2外縁部36bを共に曲面部とすることで、屈曲部とする場合に比べて、フランジ部33と絶縁回路基板10の導電層(導電層12、導電層13又は導電層14)との間に存在する空間が広がり、フランジ部33と絶縁回路基板10の導電層との間に介在される半田80の量が増加し、接合強度が高められる。或いは、スリーブ30Dのフランジ部33の当該曲面部と絶縁回路基板10の導電層との間に半田80が溜まる空間が確保されて半田80が当該空間にとどまり、孔31内に入り込む半田80の量、内面36を這い上がる半田80の量が減少される。
 また、スリーブ30Dでは、孔31からフランジ部33の外周33aまで凸部34群及び凹部35群が延びている。換言すれば、孔31の第1外縁部36aまで凸部34群の頂面34aが延びており、孔31の第2外縁部36bまで凹部35群の底面35aが延びている。そのため、外部端子40の挿入に先立つ、孔31の中心37の位置の検出において、フランジ部33の画像に基づく2値化処理により、孔31の第1外縁部36a(曲面部)及び第2外縁部36b(曲面部)のうち、影の影響を受け難い凸部34の頂面34aと連続する第1外縁部36aが、精度良く画像認識される。即ち、孔31の第1外縁部36aの、凸部34群の頂面34aとの境界が、影の影響で不明瞭となることが抑えられる。これにより、孔31の第1外縁部36aの位置が、精度良く画像認識され、その第1外縁部36aの位置の情報に基づき、孔31の輪郭が精度良く画像認識される。第1外縁部36aの長さL1の合計を、第2外縁部36bの長さL2の合計以上としておくと、第1外縁部36aの画像認識精度、それによる孔31の輪郭の画像認識精度が高まる。
 孔31の輪郭が精度良く画像認識されることで、孔31の中心37の位置を、本来の位置からのずれを抑えて、精度良く検出することが可能になり、検出された中心37の位置に対して自動挿入機によって第1端部41が挿入される外部端子40に傾きが生じることが抑えられる。その結果、外部端子40の第2端部42を回路基板等に挿入しようとする際の、第2端部42の衝突による破損や挿入不良等が抑えられるようになる。
 [第5の実施の形態]
 図14は第5の実施の形態に係るスリーブの一例について説明する図である。図14(A)には、スリーブの一例の要部平面図を模式的に示している。図14(B)には、スリーブの一例の要部断面図を模式的に示している。図14(B)は図14(A)のXIV-XIV断面図である。
 上記図2に示したような半導体装置1の、絶縁回路基板10に搭載されるスリーブ30として、例えば、この図14(A)及び図14(B)に示すようなスリーブ30Eが搭載される。
 スリーブ30Eは、円筒部32の両開口端にそれぞれ、複数(一例として6つ)の凸部34と複数(一例として6つ)の凹部35とを有するフランジ部33が設けられた構成を有する。両開口端のフランジ部33は、互いに同一の構成とされる。複数の凸部34は、互いに同一の形状を有し、複数の凹部35は、互いに同一の形状を有する。
 フランジ部33の凸部34群の各々は、円筒部32の一方の開口端側から見た平面視で、孔31の内面36における第1外縁部36aからフランジ部33の外周33aまで延びるように配置される。各凸部34は、第1外縁部36aにおいて内面36と連続する頂面34aを有する。スリーブ30Eにおいて、第1外縁部36aは、頂面34aと連続する屈曲部を有する。第1外縁部36aにおける内面36の終端36dは、頂面34aを含む第1平面91(図14(B))内に位置する。凸部34群は、円筒部32の一方の開口端側から見た平面視で、孔31の中心37(図14(A))からフランジ部33の外周33aに向かう方向に放射状に延びるように、配置される。凸部34群は、円筒部32の一方の開口端側から見た平面視で、孔31の中心37を対称軸として回転対称に配置される。一例として、6つの凸部34が、孔31の中心37を対象軸として60°回転対称となるように、配置される。
 フランジ部33の凹部35群の各々は、円筒部32の一方の開口端側から見た平面視で、孔31の内面36における第2外縁部36bからフランジ部33の外周33aまで延びるように配置される。各凹部35は、第2外縁部36bにおいて内面36と連続する底面35aを有する。スリーブ30Eにおいて、第2外縁部36bは、底面35aと連続する屈曲部を有する。第2外縁部36bにおける内面36の終端36eは、底面35aを含む第2平面92(図14(B))内に位置する。凹部35群は、円筒部32の一方の開口端側から見た平面視で、孔31の中心37(図14(A))からフランジ部33の外周33aに向かう方向に放射状に延びるように、配置される。凹部35群は、円筒部32の一方の開口端側から見た平面視で、孔31の中心37を対称軸として回転対称に配置される。一例として、6つの凹部35が、孔31の中心37を対象軸として60°回転対称となるように、配置される。各凹部35は、凸部34の頂面34aから凹部35の底面35aまでの深さが、例えば、0.055mm以下となるように、配置される。
 また、スリーブ30Eにおいて、凸部34群及び凹部35群は、例えば、円筒部32の一方の開口端側から見た平面視で、第1外縁部36aの長さL1(図14(A))の合計が、第2外縁部36bの長さL2(図14(A))の合計以上となるように、フランジ部33に設けられる。
 スリーブ30Eにおいて、凹部35群は、例えば、円筒部32の一方の開口端側から見た平面視で、底面35aと連続する第2外縁部36bにおける両端間を直線で結んだ長さL3(図14(A))が、フランジ部33の外周33aにおける両端間を直線で結んだ長さL4(図14(A))と同一となるように、フランジ部33に設けられる。即ち、各凹部35は、孔31の内面36における第2外縁部36bからフランジ部33の外周33aまで、一定の幅で延びる。
 このような構成を有するスリーブ30Eによっても、上記第1の実施の形態で述べたスリーブ30Aと同様の効果が得られる。即ち、フランジ部33に、孔31から外周33aまで連通する凹部35群が配置されていることで、スリーブ30Eの半田接合時に発生するガスが凹部35群を通じてフランジ部33の外部へと排出され、ガス圧の上昇による半田80の飛散が効果的に抑えられる。凸部34群が、孔31から外周33aまで配置されると共に、孔31の中心37を対称軸として回転対称に配置されるため、半田接合時のスリーブ30Eの姿勢が安定し、その傾きが抑えられる。
 また、スリーブ30Eでは、孔31からフランジ部33の外周33aまで凸部34群及び凹部35群が延びている。換言すれば、孔31の第1外縁部36aまで凸部34群の頂面34aが延びており、孔31の第2外縁部36bまで凹部35群の底面35aが延びている。そのため、外部端子40の挿入に先立つ、孔31の中心37の位置の検出において、フランジ部33の画像に基づく2値化処理により、孔31の第1外縁部36a(屈曲部)及び第2外縁部36b(屈曲部)のうち、影の影響を受け難い凸部34の頂面34aと連続する第1外縁部36aが、精度良く画像認識される。即ち、孔31の第1外縁部36aの、凸部34群の頂面34aとの境界が、影の影響で不明瞭となることが抑えられる。これにより、孔31の第1外縁部36aの位置が、精度良く画像認識され、その第1外縁部36aの位置の情報に基づき、孔31の輪郭が精度良く画像認識される。第1外縁部36aの長さL1の合計を、第2外縁部36bの長さL2の合計以上としておくと、第1外縁部36aの画像認識精度、それによる孔31の輪郭の画像認識精度が高まる。フランジ部33の凸部34群及び凹部35群を、それらの数を増やし、放射状に配置することで、様々な方向からの照明光に対しても、それによって生じる影の影響を抑えて、孔31の輪郭を精度良く画像認識することが可能になる。
 孔31の輪郭が精度良く画像認識されることで、孔31の中心37の位置を、本来の位置からのずれを抑えて、精度良く検出することが可能になり、検出された中心37の位置に対して自動挿入機により第1端部41が挿入される外部端子40に傾きが生じることが抑えられる。その結果、外部端子40の第2端部42を回路基板等に挿入しようとする際の、第2端部42の衝突による破損や挿入不良等が抑えられるようになる。
 尚、この第5の実施の形態で述べたスリーブ30Eにおいて、フランジ部33の凸部34群が連続する孔31の内面36の第1外縁部36aは、屈曲部を有する構成に代えて、上記第2の実施の形態で述べたスリーブ30Bの例に従い、曲面部を有する構成とされてもよい。
 また、この第5の実施の形態で述べたスリーブ30Eにおいて、フランジ部33の凹部35群が連続する孔31の内面36の第2外縁部36bは、屈曲部を有する構成に代えて、上記第3の実施の形態で述べたスリーブ30Cの例に従い、曲面部を有する構成とされてもよい。
 また、この第5の実施の形態で述べたスリーブ30Eにおいて、フランジ部33の凸部34群及び凹部35群がそれぞれ連続する孔31の内面36の第1外縁部36a及び第2外縁部36bは、共に屈曲部を有する構成に代えて、上記第4の実施の形態で述べたスリーブ30Dの例に従い、共に曲面部を有する構成とされてもよい。
 [第6の実施の形態]
 図15は第6の実施の形態に係るスリーブの一例について説明する図である。図15(A)には、スリーブの一例の要部平面図を模式的に示している。図15(B)には、スリーブの一例の要部断面図を模式的に示している。図15(B)は図15(A)のXV-XV断面図である。
 上記図2に示したような半導体装置1の、絶縁回路基板10に搭載されるスリーブ30として、例えば、この図15(A)及び図15(B)に示すようなスリーブ30Fが搭載される。
 スリーブ30Fは、円筒部32の両開口端にそれぞれ、複数(一例として3つ)の凸部34と複数(一例として3つ)の凹部35とを有するフランジ部33が設けられた構成を有する。両開口端のフランジ部33は、互いに同一の構成とされる。複数の凸部34は、互いに同一の形状を有し、複数の凹部35は、互いに同一の形状を有する。
 フランジ部33の凸部34群の各々は、円筒部32の一方の開口端側から見た平面視で、孔31の内面36における第1外縁部36aからフランジ部33の外周33aまで延びるように配置される。各凸部34は、第1外縁部36aにおいて内面36と連続する頂面34aを有する。スリーブ30Fにおいて、第1外縁部36aは、頂面34aと連続する屈曲部を有する。第1外縁部36aにおける内面36の終端36dは、頂面34aを含む第1平面91(図15(B))内に位置する。凸部34群は、円筒部32の一方の開口端側から見た平面視で、孔31の中心37(図15(A))を対称軸として回転対称に配置される。一例として、3つの凸部34が、孔31の中心37を対象軸として120°回転対称となるように、配置される。
 フランジ部33の凹部35群の各々は、円筒部32の一方の開口端側から見た平面視で、孔31の内面36における第2外縁部36bからフランジ部33の外周33aまで延びるように配置される。各凹部35は、第2外縁部36bにおいて内面36と連続する底面35aを有する。スリーブ30Fにおいて、第2外縁部36bは、底面35aと連続する屈曲部を有する。第2外縁部36bにおける内面36の終端36eは、底面35aを含む第2平面92(図15(B))内に位置する。凹部35群は、円筒部32の一方の開口端側から見た平面視で、孔31の中心37(図15(A))を対称軸として回転対称に配置される。一例として、3つの凹部35が、孔31の中心37を対象軸として120°回転対称となるように、配置される。各凹部35は、凸部34の頂面34aから凹部35の底面35aまでの深さが、例えば、0.055mm以下となるように、配置される。
 また、スリーブ30Fにおいて、凸部34群及び凹部35群は、例えば、円筒部32の一方の開口端側から見た平面視で、第1外縁部36aの長さL1(図15(A))の合計が、第2外縁部36bの長さL2(図15(A))の合計以上となるように、フランジ部33に設けられる。
 スリーブ30Fにおいて、凹部35群の各々は、例えば、円筒部32の一方の開口端側から見た平面視で、孔31の中心37からフランジ部33の外周33aに向かう方向に、第2外縁部36bから途中までは一定の第1幅で延び、途中から外周33aまでは当該第1幅よりも大きい第2幅で延びるような平面形状とされる。スリーブ30Fにおいて、凹部35群はそれぞれ、円筒部32の一方の開口端側から見た平面視で、略T字形状となるように配置されるとも言える。このような平面形状とされる凹部35群では、円筒部32の一方の開口端側から見た平面視で、底面35aと連続する第2外縁部36bにおける両端間を直線で結んだ長さL3(図15(A))が、フランジ部33の外周33aにおける両端間を直線で結んだ長さL4(図15(A))以下となる。
 スリーブ30Fのフランジ部33には、このような平面形状とされる凹部35群を挟むように(或いは凹部35群に挟まれるように)、凹部35群に応じた平面形状で、凸部34群が配置される。
 このような構成を有するスリーブ30Fによっても、上記第1の実施の形態で述べたスリーブ30Aと同様の効果が得られる。即ち、フランジ部33に、孔31から外周33aまで連通する凹部35群が配置されていることで、スリーブ30Fの半田接合時に発生するガスが凹部35群を通じてフランジ部33の外部へと排出され、ガス圧の上昇による半田80の飛散が効果的に抑えられる。凸部34群が、孔31から外周33aまで配置されると共に、孔31の中心37を対称軸として回転対称に配置されるため、半田接合時のスリーブ30Fの姿勢が安定し、その傾きが抑えられる。
 更に、スリーブ30Fでは、円筒部32の一方の開口端側から見た平面視で、孔31の中心37からフランジ部33の外周33aに向かう方向に、途中から拡幅するような平面形状、即ち、第2外縁部36bにおける両端間を直線で結んだ長さL3が外周33aにおける両端間を直線で結んだ長さL4以下となるような平面形状で、凹部35群が配置される。これにより、フランジ部33と絶縁回路基板10の導電層(導電層12、導電層13又は導電層14)との間に存在する空間が広がり、フランジ部33と絶縁回路基板10の導電層との間に介在される半田80の量が増加し、接合強度が高められる。
 また、スリーブ30Fでは、孔31からフランジ部33の外周33aまで凸部34群及び凹部35群が延びている。換言すれば、孔31の第1外縁部36aまで凸部34群の頂面34aが延びており、孔31の第2外縁部36bまで凹部35群の底面35aが延びている。そのため、外部端子40の挿入に先立つ、孔31の中心37の位置の検出において、フランジ部33の画像に基づく2値化処理により、孔31の第1外縁部36a(屈曲部)及び第2外縁部36b(屈曲部)のうち、影の影響を受け難い凸部34の頂面34aと連続する第1外縁部36aが、精度良く画像認識される。即ち、孔31の第1外縁部36aの、凸部34群の頂面34aとの境界が、影の影響で不明瞭となることが抑えられる。これにより、孔31の第1外縁部36aの位置が、精度良く画像認識され、その第1外縁部36aの位置の情報に基づき、孔31の輪郭が精度良く画像認識される。第1外縁部36aの長さL1の合計を、第2外縁部36bの長さL2の合計以上としておくと、第1外縁部36aの画像認識精度、それによる孔31の輪郭の画像認識精度が高まる。
 孔31の輪郭が精度良く画像認識されることで、孔31の中心37の位置を、本来の位置からのずれを抑えて、精度良く検出することが可能になり、検出された中心37の位置に対して自動挿入機により第1端部41が挿入される外部端子40に傾きが生じることが抑えられる。その結果、外部端子40の第2端部42を回路基板等に挿入しようとする際の、第2端部42の衝突による破損や挿入不良等が抑えられるようになる。
 ここでは一例として、円筒部32の一方の開口端側から見た平面視で、孔31の中心37からフランジ部33の外周33aに向かう方向に、途中から拡幅する略T字形状のような平面形状を有する凹部35群を示したが、凹部35群の平面形状はこれに限定されるものではない。凹部35群は、円筒部32の一方の開口端側から見た平面視で、底面35aと連続する第2外縁部36bにおける両端間を直線で結んだ長さL3(図15(A))が、フランジ部33の外周33aにおける両端間を直線で結んだ長さL4(図15(A))以下となるものであれば、各種平面形状が採用されてもよい。例えば、凹部35群には、平面視で略等脚台形のような平面形状や、孔31の中心37からフランジ部33の外周33aに向かう方向に複数段階で拡幅していくような平面形状等が採用されてもよい。
 尚、この第6の実施の形態で述べたスリーブ30Fにおいて、フランジ部33の凸部34群が連続する孔31の内面36の第1外縁部36aは、屈曲部を有する構成に代えて、上記第2の実施の形態で述べたスリーブ30Bの例に従い、曲面部を有する構成とされてもよい。
 また、この第6の実施の形態で述べたスリーブ30Fにおいて、フランジ部33の凹部35群が連続する孔31の内面36の第2外縁部36bは、屈曲部を有する構成に代えて、上記第3の実施の形態で述べたスリーブ30Cの例に従い、曲面部を有する構成とされてもよい。
 また、この第6の実施の形態で述べたスリーブ30Fにおいて、フランジ部33の凸部34群及び凹部35群がそれぞれ連続する孔31の内面36の第1外縁部36a及び第2外縁部36bは、共に屈曲部を有する構成に代えて、上記第4の実施の形態で述べたスリーブ30Dの例に従い、共に曲面部を有する構成とされてもよい。
 また、この第6の実施の形態で述べたスリーブ30Fにおいて、フランジ部33の凸部34群及び凹部35群は、上記第5の実施の形態で述べたスリーブ30Eの例に従い、円筒部32の一方の開口端側から見た平面視で、孔31の中心37からフランジ部33の外周33aに向かう方向に、放射状に配置される構成とされてもよい。
 [第7の実施の形態]
 図16は第7の実施の形態に係る半導体装置の一例について説明する図である。図16には、半導体装置の一例の要部断面図を模式的に示している。
 図16に示す半導体装置1Aは、上記図2に示したような半導体装置1(ここでは便宜上「半導体モジュール1」と言う)と、半導体モジュール1と接続された回路基板200とを含む。
 半導体モジュール1は、上記図2について述べたように、絶縁回路基板10、半導体素子20、スリーブ30、外部端子40、ケース50及び封止樹脂60を含む。絶縁回路基板10は、絶縁基板11、絶縁基板11の一方の主面11aに配置された導電層12、導電層13及び導電層14、並びに絶縁基板11の他方の主面11bに配置された導電層15を有する。導電層12、導電層13及び導電層14の所定の位置に、例えば、インバータ回路を構成する半導体素子20群が、半田等の接合材料及びワイヤ71-74等を用いて搭載される。更に、導電層12、導電層13及び導電層14の所定の位置に、半田80を用いてスリーブ30が搭載される。
 この半導体モジュール1のスリーブ30として、例えば、上記第1から第6の実施の形態で述べたようなスリーブ30A、30B、30C、30D、30E又は30Fが搭載される。スリーブ30には、外部端子40の第1端部41が挿入される。そして、絶縁回路基板10の、半導体素子20及びスリーブ30が搭載される側を覆うように、ケース50が設けられる。外部端子40の、スリーブ30に挿入された第1端部41と反対側の第2端部42が、ケース50の開口部51から外部に引き出される。ケース50の内部には、絶縁回路基板10並びにそれに搭載される半導体素子20及びスリーブ30等を封止する封止樹脂60が設けられる。
 上記のような構成を有する半導体モジュール1の、ケース50の外部に引き出された外部端子40の第2端部42が、回路基板200と接続される。回路基板200は、絶縁基板201、絶縁基板201を貫通するように設けられた接続孔202、及び絶縁基板201の表面及び接続孔202の内壁に設けられた回路パターン203を含む。回路基板200の接続孔202は、半導体モジュール1の外部端子40と対応する位置に設けられる。半導体モジュール1の外部端子40の第2端部42が、回路基板200の接続孔202に挿入されることで、第2端部42が接続孔202の内壁に設けられた回路パターン203と接続される。尚、外部端子40の第2端部42は、接続孔202に挿入、接続可能なプレスフィット形状とされていてもよく、また、接続孔202への挿入後に半田等で接続されてもよい。これにより、半導体モジュール1が、外部端子40を介して、回路基板200と電気的に接続される。
 半導体モジュール1では、スリーブ30として、例えば、上記第1から第6の実施の形態で述べたようなスリーブ30A、30B、30C、30D、30E又は30Fが搭載される。このようなスリーブ30によれば、フランジ部33側から撮影された画像に基づく2値化処理により、孔31の中心位置を精度良く検出することができる。スリーブ30には、検出された孔31の中心位置に対して、自動挿入機により、外部端子40の第1端部41が挿入される。孔31の中心位置が精度良く検出されているため、その孔31に第1端部41が挿入される外部端子40の傾きが抑えられる。その結果、外部端子40の、ケース50の外部に引き出された第2端部42と、回路基板200の接続孔202との間の位置ずれが抑えられる。従って、外部端子40の第2端部42を回路基板200の接続孔202に挿入する際の、第2端部42の回路基板200との衝突、それによる外部端子40又は回路基板200の破損、第2端部42が対応する接続孔202に挿入されない挿入不良等が抑えられる。これにより、高品質の半導体装置1Aが実現される。
 上記スリーブ30は、その両開口端のフランジ部33が、絶縁回路基板10に近い側と回路基板200に近い側の各々が同じ形になっている。そのため、製造時に、両開口端のどちらのフランジ部33を絶縁回路基板10に近い側とするか回路基板200に近い側とするかを管理する必要がなくなり、製造コストを抑えることが可能になる。上記スリーブ30は、両開口端のフランジ部33共に、フラックスで半田80と接続することが可能になっており、更に、外部端子40が挿入可能なように同じ形且つ適切な形状となっている。
 上記については単に本発明の原理を示すものである。更に、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成及び応用例に限定されるものではなく、対応する全ての変形例及び均等物は、添付の請求項及びその均等物による本発明の範囲とみなされる。
 1、1A 半導体装置
 2 コンバータ回路部
 2a ダイオードブリッジ回路
 3 インバータ回路部
 3a、3b、4a、20 半導体素子
 3aa、3ba IGBT
 3ab、3bb FWD
 4 回生電力放電回路部
 4b ダイオード
 5 サーミスタ
 10 絶縁回路基板
 10a 中央領域
 10b 外周領域
 11 絶縁基板
 11a、11b 主面
 12、13、14、15 導電層
 30、30A、30B、30C、30D、30E、30F、30Z スリーブ
 31、31Z 孔
 31Za 内壁面
 32、32Z 円筒部
 33、33Z フランジ部
 33a、33Za 外周
 34、34Z 凸部
 34a 頂面
 35、35Z 凹部
 35a 底面
 36 内面
 36a 第1外縁部
 36b 第2外縁部
 36c 内壁
 36d、36e 終端
 37、37Z、37Za 中心
 40 外部端子
 41 第1端部
 42 第2端部
 50 ケース
 51 開口部
 60 封止樹脂
 71、72、73、74 ワイヤ
 80 半田
 91 第1平面
 92 第2平面
 100 撮像装置
 110 影
 200 回路基板
 201 絶縁基板
 202 接続孔
 203 回路パターン
 D1 方向

Claims (31)

  1.  絶縁基板と前記絶縁基板の主面に配置された導電層とを有する絶縁回路基板と、
     前記導電層に接続されたスリーブと、
     を含み、
     前記スリーブは、
     前記導電層に垂直な方向に延びる孔を有する円筒部と、
     前記円筒部の開口端に設けられたフランジ部と、
     を備え、
     前記フランジ部は、
     前記開口端側から見た平面視で、前記孔の内面における第1外縁部から前記フランジ部の外周まで延びる複数の凸部と、
     前記開口端側から見た平面視で、前記複数の凸部間にそれぞれ設けられ、前記内面における第2外縁部から前記外周まで延びる複数の凹部と、
     を含み、
     前記複数の凸部の各々は、前記第1外縁部において前記内面と連続する頂面を有し、
     前記複数の凹部の各々は、前記第2外縁部において前記内面と連続する底面を有する、半導体装置。
  2.  前記フランジ部は、前記円筒部の両開口端の各々に設けられる、請求項1に記載の半導体装置。
  3.  前記第1外縁部における前記内面の終端は、前記頂面を含む第1平面内に位置し、
     前記第2外縁部における前記内面の終端は、前記底面を含む第2平面内に位置する、請求項2に記載の半導体装置。
  4.  前記複数の凸部は、前記開口端側から見た平面視で、前記孔の中心を対称軸として回転対称に配置され、
     前記複数の凹部は、前記開口端側から見た平面視で、前記孔の前記中心を対称軸として回転対称に配置される、請求項2に記載の半導体装置。
  5.  前記複数の凸部は、前記開口端側から見た平面視で、前記孔の中心から前記外周に向かう方向に放射状に延び、
     前記複数の凹部は、前記開口端側から見た平面視で、前記孔の中心から前記外周に向かう方向に放射状に延びる、請求項2に記載の半導体装置。
  6.  前記孔の前記内面は、前記第1外縁部に、前記頂面と連続する第1屈曲部を有し、前記第2外縁部に、前記底面と連続する第2屈曲部を有する、請求項2に記載の半導体装置。
  7.  前記孔の前記内面は、前記第1外縁部に、前記頂面と連続する第1曲面部を有し、前記第2外縁部に、前記底面と連続する第2屈曲部を有する、請求項2に記載の半導体装置。
  8.  前記孔の前記内面は、前記第1外縁部に、前記頂面と連続する第1屈曲部を有し、前記第2外縁部に、前記底面と連続する第2曲面部を有する、請求項2に記載の半導体装置。
  9.  前記孔の前記内面は、前記第1外縁部に、前記頂面と連続する第1曲面部を有し、前記第2外縁部に、前記底面と連続する第2曲面部を有する、請求項2に記載の半導体装置。
  10.  前記開口端側から見た平面視で、前記第1外縁部の長さの合計は、前記第2外縁部の長さの合計以上である、請求項2に記載の半導体装置。
  11.  前記開口端側から見た平面視で、前記底面は、前記第2外縁部における両端間を直線で結んだ長さが、前記外周における両端間を直線で結んだ長さ以下である、請求項2に記載の半導体装置。
  12.  前記絶縁回路基板は、平面視で、中央領域と、前記中央領域を囲む外周領域とを有し、
     前記スリーブは、前記中央領域及び前記外周領域のうち、少なくとも前記外周領域に配置される、請求項2に記載の半導体装置。
  13.  前記スリーブは、一方の前記開口端側の前記フランジ部が、半田を介して、前記導電層に接合される、請求項2から12のいずれか一項に記載の半導体装置。
  14.  前記スリーブの他方の前記開口端側から前記孔内に挿入された第1端部を有する外部端子を含む、請求項13に記載の半導体装置。
  15.  前記絶縁回路基板及び前記スリーブを覆うケースを含み、
     前記外部端子は、前記第1端部とは反対側の第2端部が前記ケースの外側に配置される、請求項14に記載の半導体装置。
  16.  前記絶縁回路基板と対向して配置され、接続孔を有し、前記接続孔に前記外部端子の前記第2端部が挿入された回路基板を含む、請求項15に記載の半導体装置。
  17.  絶縁基板と前記絶縁基板の主面に配置された導電層とを有する絶縁回路基板と、
     前記導電層に接続されたスリーブと、
     を含み、
     前記スリーブは、
     前記導電層に垂直な方向に延びる孔を有する円筒部と、
     前記円筒部の開口端に設けられたフランジ部と、
     を備え、
     前記フランジ部は、
     前記開口端側から見た平面視で、前記孔の内面における第1外縁部から前記フランジ部の外周まで延びる複数の凸部と、
     前記開口端側から見た平面視で、前記複数の凸部間にそれぞれ設けられ、前記内面における第2外縁部から前記外周まで延びる複数の凹部と、
     を含み、
     前記開口端側から見た平面視で、前記第1外縁部の長さの合計は、前記第2外縁部の長さの合計以上である、半導体装置。
  18.  前記フランジ部は前記円筒部の両開口端の各々に設けられ、
     前記複数の凸部の各々は、前記第1外縁部において前記内面と連続する頂面を有し、
     前記複数の凹部の各々は、前記第2外縁部において前記内面と連続する底面を有する、請求項17に記載の半導体装置。
  19.  前記第1外縁部における前記内面の終端は、前記頂面を含む第1平面内に位置し、
     前記第2外縁部における前記内面の終端は、前記底面を含む第2平面内に位置する、請求項18に記載の半導体装置。
  20.  前記複数の凸部は、前記開口端側から見た平面視で、前記孔の中心を対称軸として回転対称に配置され、
     前記複数の凹部は、前記開口端側から見た平面視で、前記孔の前記中心を対称軸として回転対称に配置される、請求項17に記載の半導体装置。
  21.  前記複数の凸部は、前記開口端側から見た平面視で、前記孔の中心から前記外周に向かう方向に放射状に延び、
     前記複数の凹部は、前記開口端側から見た平面視で、前記孔の中心から前記外周に向かう方向に放射状に延びる、請求項17に記載の半導体装置。
  22.  前記孔の前記内面は、前記第1外縁部に、前記頂面と連続する第1屈曲部を有し、前記第2外縁部に、前記底面と連続する第2屈曲部を有する、請求項18に記載の半導体装置。
  23.  前記孔の前記内面は、前記第1外縁部に、前記頂面と連続する第1曲面部を有し、前記第2外縁部に、前記底面と連続する第2屈曲部を有する、請求項18に記載の半導体装置。
  24.  前記孔の前記内面は、前記第1外縁部に、前記頂面と連続する第1屈曲部を有し、前記第2外縁部に、前記底面と連続する第2曲面部を有する、請求項18に記載の半導体装置。
  25.  前記孔の前記内面は、前記第1外縁部に、前記頂面と連続する第1曲面部を有し、前記第2外縁部に、前記底面と連続する第2曲面部を有する、請求項18に記載の半導体装置。
  26.  前記開口端側から見た平面視で、前記底面は、前記第2外縁部における両端間を直線で結んだ長さが、前記外周における両端間を直線で結んだ長さ以下である、請求項18に記載の半導体装置。
  27.  前記絶縁回路基板は、平面視で、中央領域と、前記中央領域を囲む外周領域とを有し、
     前記スリーブは、前記中央領域及び前記外周領域のうち、少なくとも前記外周領域に配置される、請求項17に記載の半導体装置。
  28.  前記スリーブは、一方の前記開口端側の前記フランジ部が、半田を介して、前記導電層に接合される、請求項18に記載の半導体装置。
  29.  前記スリーブの他方の前記開口端側から前記孔内に挿入された第1端部を有する外部端子を含む、請求項28に記載の半導体装置。
  30.  前記絶縁回路基板及び前記スリーブを覆うケースを含み、
     前記外部端子は、前記第1端部とは反対側の第2端部が前記ケースの外側に配置される、請求項29に記載の半導体装置。
  31.  前記絶縁回路基板と対向して配置され、接続孔を有し、前記接続孔に前記外部端子の前記第2端部が挿入された回路基板を含む、請求項30に記載の半導体装置。
PCT/JP2023/020488 2022-07-13 2023-06-01 半導体装置 WO2024014165A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380015435.0A CN118382929A (zh) 2022-07-13 2023-06-01 半导体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022112216 2022-07-13
JP2022-112216 2022-07-13

Publications (1)

Publication Number Publication Date
WO2024014165A1 true WO2024014165A1 (ja) 2024-01-18

Family

ID=89536612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020488 WO2024014165A1 (ja) 2022-07-13 2023-06-01 半導体装置

Country Status (2)

Country Link
CN (1) CN118382929A (ja)
WO (1) WO2024014165A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187179A (ja) * 2013-03-22 2014-10-02 Fuji Electric Co Ltd 半導体装置の製造方法及び取り付け治具
JP2016096253A (ja) * 2014-11-14 2016-05-26 日産自動車株式会社 基板及び電子回路装置
JP2021019064A (ja) * 2019-07-19 2021-02-15 富士電機株式会社 半導体装置及び半導体装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187179A (ja) * 2013-03-22 2014-10-02 Fuji Electric Co Ltd 半導体装置の製造方法及び取り付け治具
JP2016096253A (ja) * 2014-11-14 2016-05-26 日産自動車株式会社 基板及び電子回路装置
JP2021019064A (ja) * 2019-07-19 2021-02-15 富士電機株式会社 半導体装置及び半導体装置の製造方法

Also Published As

Publication number Publication date
CN118382929A (zh) 2024-07-23

Similar Documents

Publication Publication Date Title
EP1193761A2 (en) Semiconductor device including intermediate wiring element
US11908778B2 (en) Semiconductor module
EP3267477B1 (en) Semiconductor module
US10959333B2 (en) Semiconductor device
US10398036B2 (en) Semiconductor device
US20220199578A1 (en) Semiconductor device
CN112786556A (zh) 半导体装置及半导体装置的制造方法
JP2017199849A (ja) 発光装置の製造方法、レーザモジュールの製造方法及び発光装置
CN116259594A (zh) 半导体装置及半导体装置的制造方法
CN112185910A (zh) 半导体模块、半导体装置以及半导体模块的制造方法
WO2024014165A1 (ja) 半導体装置
US11742251B2 (en) Power semiconductor device including press-fit connection terminal
CN108336057B (zh) 半导体装置及其制造方法
JP2021114893A (ja) 電子回路ユニット
US10861713B2 (en) Semiconductor device
CN112670262A (zh) 半导体模块
JP2005150596A (ja) 半導体装置及びその製造方法
WO2017179264A1 (ja) 半導体装置の放熱構造
US11302670B2 (en) Semiconductor device including conductive post with offset
CN111386603A (zh) 半导体装置的制造方法和半导体装置
US11682596B2 (en) Power semiconductor module
US20240203929A1 (en) Semiconductor module
US20240203928A1 (en) Metal wiring board
US11189534B2 (en) Semiconductor assembly and deterioration detection method
JP6493751B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839342

Country of ref document: EP

Kind code of ref document: A1