WO2024013858A1 - Heat dissipation member, heat dissipation member with base material, and power module - Google Patents

Heat dissipation member, heat dissipation member with base material, and power module Download PDF

Info

Publication number
WO2024013858A1
WO2024013858A1 PCT/JP2022/027452 JP2022027452W WO2024013858A1 WO 2024013858 A1 WO2024013858 A1 WO 2024013858A1 JP 2022027452 W JP2022027452 W JP 2022027452W WO 2024013858 A1 WO2024013858 A1 WO 2024013858A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
dissipation member
filler
heat
base material
Prior art date
Application number
PCT/JP2022/027452
Other languages
French (fr)
Japanese (ja)
Inventor
元基 正木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023519041A priority Critical patent/JP7330419B1/en
Priority to PCT/JP2022/027452 priority patent/WO2024013858A1/en
Publication of WO2024013858A1 publication Critical patent/WO2024013858A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • the present disclosure relates to a heat dissipation member, a heat dissipation member with a base material, and a power module.
  • Patent Document 1 a coating agent made by mixing scholl tourmaline powder with a particle size ranging from a minimum of 3 ⁇ m to a maximum of 325 mesh and a fluid fixative is applied to a base made of copper or aluminum.
  • a heat dissipating member characterized in that it has a tourmaline layer formed by applying and solidifying shawl tourmaline powder to the surface of the material at an areal density of 0.025 to 0.05 g per square cm. ing.
  • the heat radiating member disclosed in Patent Document 1 contains a resin-based fixing agent with low thermal conductivity, the thermal resistance of the heat radiating member becomes too large. Therefore, the heat from the heat source may not be sufficiently transmitted to the surface of the heat radiating member, and the radiation performance of the surface of the heat radiating member may deteriorate.
  • the present disclosure has been made to solve the above problems, and aims to provide a heat dissipation member and a base material-attached heat dissipation member that have high thermal conductivity and excellent radiation performance. Another purpose is to provide a power module with excellent heat dissipation performance.
  • the present inventors have developed a material that combines a ceramic filler with high emissivity and a non-magnetic metal filler with high thermal conductivity. It was discovered that by making the shape of the filler flat, it is possible to efficiently obtain contact between the metal fillers that serve as a heat path, resulting in a heat dissipation member with high thermal conductivity and excellent radiation performance. . We have also discovered that by applying this ceramic filler to a heat dissipating member, the radiation performance of the heat dissipating member can be improved.
  • the present disclosure relates to the following heat radiating member, heat radiating member with a base material, and power module.
  • a heat dissipation member that includes a ceramic filler, a non-magnetic and flat metal filler, and a holding material.
  • the heat dissipation member is a heat dissipation member with a base material, which is a coating layer coated on the surface of the base material.
  • the lead frame has an external connection part, At least a part of the surface of the external connection part is covered with the heat radiating member or the heat radiating member with a base material.
  • FIG. 1 is a schematic cross-sectional view showing an example of a heat dissipation member in the first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing an example in which the heat dissipation member in Embodiment 1 is installed on a heat source.
  • FIG. 3 is a schematic cross-sectional view showing the state of contact between spherical fillers.
  • FIG. 4 is a schematic cross-sectional view showing a contact situation between flat fillers.
  • FIG. 5 is a schematic cross-sectional view showing another example of the heat dissipation member in the first embodiment.
  • FIG. 6 is a schematic cross-sectional view showing another example of the heat dissipation member in the first embodiment.
  • FIG. 1 is a schematic cross-sectional view showing an example of a heat dissipation member in the first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing an example in which the heat dissipation member in Embodiment 1 is installed on
  • FIG. 7 is a schematic cross-sectional view showing another example of the heat dissipation member in the first embodiment.
  • FIG. 8(a) is a schematic cross-sectional view of a ceramic filler
  • FIG. 8(b) is a schematic cross-sectional view of a metal filler.
  • FIG. 9 is a schematic cross-sectional view showing an example of a heat dissipating member with a base material according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view of a power module in Embodiment 3.
  • FIG. 1 is a schematic cross-sectional view showing an example of a heat dissipation member according to the first embodiment.
  • a heat dissipating member 1 according to the present embodiment will be described using FIG. 1.
  • the heat dissipation member 1 according to the present embodiment includes a ceramic filler 2, a non-magnetic flat metal filler 3, and a holding material 4.
  • the heat dissipation member 1 according to the present embodiment exhibits a heat dissipation effect by discharging heat generated from a heat source 5 such as a semiconductor element to the outside through infrared radiation from the surface of the heat dissipation member 1. do.
  • a heat source 5 such as a semiconductor element
  • the thermal conductivity of the heat dissipating member 1 is improved by containing the non-magnetic metal filler 3 having high thermal conductivity.
  • the non-magnetic metal fillers 3 can more easily come into contact with each other, so even if the content of the non-magnetic metal filler 3 is small, the heat dissipation member 1 improves thermal conductivity. Therefore, the heat dissipation member 1 of this embodiment has high thermal conductivity and excellent radiation performance.
  • the heat dissipation member 1 of this embodiment includes a ceramic filler 2.
  • a ceramic filler 2 By including the ceramic filler 2, radiation performance can be improved.
  • the ceramic filler 2 is not particularly limited, but preferably has a high emissivity, such as industrial ceramic materials such as alumina, zinc oxide, silica, zirconia, silicon carbide, aluminum nitride, silicon nitride, boron nitride, etc.
  • Mineral ceramic materials such as silicate minerals such as tourmaline, clay, and pumice, aluminosilicate minerals such as pearlite and zeolite, and magnesium silicate minerals such as talc and cordierite. Can be mentioned.
  • These ceramic fillers 2 may be used alone or in combination of two or more. When using two or more types in combination, the combination is not particularly limited.
  • alumina and tourmaline are preferred, and tourmaline, which is a type of polar crystal that has a high emissivity of infrared rays with a wavelength of 3 ⁇ m or more and 25 ⁇ m or less, which is important for heat dissipation in electronic devices, is particularly preferred.
  • nitride-based ceramic materials such as aluminum nitride, silicon nitride, and boron nitride, which have relatively high thermal conductivity as well as emissivity, are preferable.
  • a combination of a mineral ceramic material with high emissivity and a nitride ceramic material with high thermal conductivity it is possible to further improve the radiation performance and thermal conductivity of the heat dissipation member. .
  • the content of the ceramic filler 2 is preferably 30 volume% or more and 80 volume% or less, and preferably 40 volume% or more and 70 volume% or less. If the content of the ceramic filler 2 is less than 30% by volume, the radiation performance of the heat radiation member 1 will not be sufficiently improved. When the content of the ceramic filler 2 exceeds 80% by volume, the content of the metal filler 3 and the retaining material 4, which are other constituent components, decreases, so from the viewpoint of the thermal conductivity improvement effect and moldability of the heat dissipation member 1. There is a risk that it will be inferior.
  • the average particle size (d 1 ) of the ceramic filler 2 is not particularly limited, but is preferably 1.0 ⁇ m or more and 30 ⁇ m or less.
  • the average particle size of the ceramic filler 2 in this embodiment is determined by preparing a sample in which the ceramic filler 2 is embedded in an epoxy resin, polishing the cross section of the sample, and enlarging it with an SEM (scanning electron microscope). (for example, by a factor of 5000), then measuring the major axis of at least 20 particles, and averaging the measured values.
  • the major axis is the length of the line segment (longest line segment) that has the maximum length among the line segments connecting two points on the outer circumference of the ceramic filler 2 (line segments between two points) in the cross section of the ceramic filler 2. (See Figure 8(a)).
  • the shape of the ceramic filler 2 is not particularly limited, but examples thereof include spherical or substantially spherical, scale-like, columnar, etc., and spherical or substantially spherical is preferable.
  • the heat dissipation member 1 of this embodiment includes a non-magnetic and flat metal filler 3. By including the nonmagnetic and flat metal filler 3, thermal conductivity can be improved.
  • the metal filler 3 is a metal material with high thermal conductivity.
  • non-magnetic metals tend to have higher thermal conductivity than magnetic metals.
  • a non-magnetic metal material is used as the metal filler 3.
  • the thermal conductivity of the non-magnetic metal filler 3 is preferably 100 W/(m ⁇ K) or more, more preferably 150 W/(m ⁇ K) or more, and 200 W/(m ⁇ K) or more. It is even more preferable that there be.
  • the nonmagnetic metal filler 3 include metal materials with relatively high thermal conductivity, such as gold, silver, copper, copper alloy, aluminum, aluminum alloy, and tungsten. These non-magnetic metal fillers 3 may be used alone or in combination of two or more. When using two or more types in combination, the combination is not particularly limited. In particular, from the viewpoints of cost and thermal conductivity, it is preferable to use copper and copper alloys.
  • the shape of the metal filler 3 is flat.
  • the shape of the metal filler is, for example, spherical, as shown in FIG. 3, it is difficult for the spherical metal fillers to come into contact with each other in the heat dissipation member, making it difficult to form an effective heat path. Therefore, in order to improve the thermal conductivity of the heat dissipation member, it is necessary to contain a large amount of metal filler. As a result, there is a problem in that the content of the ceramic filler 2, which plays a role in radiation performance, becomes relatively small in the range of filler content that allows the production of a heat dissipating member.
  • the metal filler 3 of this embodiment has a flat shape, as shown in FIG. Even if the amount is relatively small, it is possible to form a heat path that is effective in improving the thermal conductivity of the heat dissipation member 1.
  • metal filler 3 having a flat shape includes a filler obtained by heating and compressing a metal filler used as a raw material, a raw material of a flat metal filler, and the like.
  • the aspect ratio of the non-magnetic and flat metal filler 3 is 3 or more and 30 or less, preferably 4 or more and 20 or less.
  • the aspect ratio of the nonmagnetic and flat metal filler 3 is determined by preparing a sample in which the nonmagnetic and flat metal filler 3 is embedded in epoxy resin, polishing the cross section of the sample, and using SEM (scanning). After magnifying (e.g., 5000 times) with a type electron microscope, the major axis and minor axis of the non-magnetic and flat metal filler 3 are measured for at least 20 particles, and the ratio of the major axis to the minor axis (major axis/short axis) is determined.
  • the major axis is the maximum length of the line segment connecting two points on the outer circumference of the non-magnetic and flat metal filler 3 (line segment between two points) in the cross section of the non-magnetic and flat metal filler 3.
  • the short axis is the length of the line segment with the maximum length among the line segments between two points that intersect perpendicularly to the longest line segment. (See FIG. 8(b)).
  • the aspect ratio of the non-magnetic and flat metal filler 3 is less than 3, the effect of making it easier for the metal fillers 3 to come into contact with each other due to the flat shape cannot be sufficiently obtained, and the There is a risk that a heat path will not be formed.
  • the aspect ratio of the non-magnetic and flat metal filler 3 exceeds 30, the short axis is short, that is, the thickness of the flat metal filler 3 is too thin, and the strength of the non-magnetic and flat metal filler 3 is reduced. It may become extremely weak and unable to maintain its flat shape.
  • the average major axis (d 2 ) of the nonmagnetic and flat metal filler 3 preferably satisfies the following formula (1), where t is the thickness of the heat dissipation member 1. 2.0 ⁇ d2 ⁇ t/2...(1) If the average major axis (d 2 ) is less than 2 ⁇ m, the nonmagnetic and flat metal fillers 3 are unlikely to come into contact with each other, so although this does not impede practicality, it may be difficult to form an effective heat path.
  • the average major axis (d 2 ) exceeds t/2 ⁇ m, the average major axis (d 2 ) is too long with respect to the thickness (t) of the heat dissipating member 1, so the non-magnetic and flat metal filler 3 It becomes easy to fall down in the direction perpendicular to the thickness direction. Therefore, although it does not impede practicality, there is a possibility that the thermal conductivity in the thickness direction of the heat dissipating member 1 is difficult to improve.
  • the thickness t of the heat dissipation member 1 is preferably 5 ⁇ m or more.
  • the content of the nonmagnetic and flat metal filler 3 is preferably 10 volume% or more and 60 volume% or less, and preferably 15 volume% or more and 50 volume% or less. If the content of the nonmagnetic and flat metal filler 3 is less than 10% by volume, the thermal conductivity of the heat dissipation member 1 will not be sufficiently improved. When the content of the non-magnetic and flat metal filler 3 exceeds 60% by volume, the content of the other components, the ceramic filler 2 and the holding material 4, decreases, so the effect of improving the radiation performance of the heat dissipation member 1 and There is a possibility that the moldability is inferior.
  • the holding material 4 included in the heat dissipation member 1 of this embodiment is not particularly limited, and has a function of uniformly dispersing and fixing the ceramic filler 2 and the non-magnetic and flat metal filler 3 in the heat dissipation member 1. It is sufficient if it has the following.
  • an organic binder or an inorganic binder can be appropriately selected and used.
  • indicators for selecting an organic binder or an inorganic binder include heat resistance, and depending on the temperature range in which the heat dissipation member 1 is used, an organic binder or an inorganic binder having the desired heat resistance may be selected as appropriate. Bye. Further, from the viewpoint of adhesion and ease of manufacturing the heat dissipating member 1, an organic binder is preferable.
  • organic binders include, but are not limited to, thermosetting resins such as epoxy resins, unsaturated polyester resins, phenol resins, melamine resins, silicone resins, and polyimide resins from the viewpoint of heat resistance and durability. From the viewpoint of adhesion, epoxy resin is preferred. Specific examples of epoxy resins include bisphenol A epoxy resin, bisphenol F epoxy resin, orthocresol novolac epoxy resin, phenol novolac epoxy resin, alicycloaliphatic epoxy resin, glycidyl-aminophenol epoxy resin, etc. It will be done. These organic binders may be used alone or in combination of two or more. When using two or more types in combination, the combination is not particularly limited.
  • the heat dissipation member 1 may contain a curing agent.
  • the curing agent is not particularly limited, and any known curing agent may be appropriately selected depending on the type of thermosetting resin used. Examples of the curing agent include amines, phenols, acid anhydrides, imidazoles, polymercaptan curing agents, polyamide resins, and the like.
  • an epoxy resin for example, alicyclic acid anhydrides such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hymic anhydride, dodecenylsuccinic anhydride, etc.
  • Aliphatic acid anhydrides aromatic acid anhydrides such as phthalic anhydride and trimellitic anhydride, organic dihydrazides such as dicyandiamide and adipic dihydrazide, 2-methylimidazole and its derivatives, 2-ethyl-4-methylimidazole, 2 Examples include imidazoles such as -phenylimidazole, tris(dimethylaminomethyl)phenol, dimethylbenzylamine, 1,8-diazabicyclo(5,4,0)undecene and its derivatives. These curing agents may be used alone or in combination of two or more. When using two or more types in combination, the combination is not particularly limited.
  • the content of the curing agent may be set as appropriate depending on the type of thermosetting resin and curing agent used, but generally it is 0.1 parts by mass or more per 100 parts by mass of the thermosetting resin. It is 200 parts by mass or less.
  • the heat dissipation member 1 of the present embodiment contains a coupling agent from the viewpoint of improving the adhesive force at the interface between the ceramic filler 2 and the non-magnetic and flat metal filler 3 and the cured product of the thermosetting resin. You can stay there.
  • Examples of coupling agents include ⁇ -glycidoxypropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltriethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, Examples include methoxysilane.
  • These coupling agents may be used alone or in combination of two or more. When using two or more types in combination, the combination is not particularly limited.
  • the content of the coupling agent may be set as appropriate depending on the type of thermosetting resin and coupling agent used, but in general, it is 0.01 parts by mass per 100 parts by mass of the thermosetting resin. Part or more and no more than 1 part by mass.
  • the inorganic binder is not particularly limited, but a liquid inorganic binder that is compatible with the ceramic filler 2 and the non-magnetic and flat metal filler 3 and can be uniformly dispersed is preferred. Furthermore, the curing temperature of an inorganic binder is often higher than that of an organic binder. The temperature is 250°C or lower, preferably 200°C or lower, and more preferably 180°C or lower. By using an inorganic binder having such a curing temperature, it is possible to efficiently form a coating layer without causing thermal deterioration of the base material 8. Specific examples of the inorganic binder include sol-gel glass, organic-inorganic hybrid glass, water glass, one-component inorganic adhesive, two-component inorganic adhesive, and the like. These inorganic binders may be used alone or in combination of two or more. When using two or more types in combination, the combination is not particularly limited.
  • the content of the holding material 4 is 10 volume% or more and 60 volume% or less, and preferably 15 volume% or more and 50 volume% or less.
  • the content of the holding material 4 is less than 10% by volume, the force for holding the ceramic filler 2 and the non-magnetic and flat metal filler 3 may be insufficient, leading to poor moldability.
  • the content of the holding material 4 exceeds 60% by volume, the content of the other components, the ceramic filler 2 and the non-magnetic and flat metal filler 3, decreases, so the radiation performance and heat conduction of the heat dissipation member 1 are reduced. There is a risk that it will be inferior in terms of rate improvement effect.
  • the ceramic filler 2 and the nonmagnetic flat metal filler 3 may be uniformly dispersed throughout the heat dissipation member 1.
  • the heat from the heat source 5 is easily transmitted evenly throughout the heat dissipation member 1, and the heat dissipation performance is further improved.
  • the ceramic filler 2 and the non-magnetic flat metal filler 3 may have a concentration gradient in their content in the thickness direction of the heat dissipation member 1.
  • the content of the ceramic filler 2 may have a concentration gradient that decreases as it goes in the thickness direction of the heat dissipation member
  • the content of the ceramic filler 2 may have a concentration gradient that decreases as it goes in the thickness direction of the heat dissipation member.
  • the content may have a concentration gradient that increases in the thickness direction of the heat dissipation member. That is, in the thickness direction of the heat dissipation member 1, the area close to the surface in contact with the heat source 5 (lower side in FIG.
  • the senor 6) preferably contains a large amount of non-magnetic and flat metal filler 3, and the area is close to the surface in contact with the heat source 5. It is preferable that the region opposite to the contacting surface (the upper side in FIG. 6) contains a large amount of the ceramic filler 2. This is because the ceramic filler 2 has a function of improving radiation performance, and the non-magnetic and flat metal filler 3 has a function of improving thermal conductivity.
  • the heat dissipation member 1 has a two-layer structure including a first layer 6 containing a large amount of ceramic filler 2 and a second layer 7 containing a large amount of non-magnetic and flat metal filler 3. It may have. In such a case as well, it is preferable that the second layer 7 near the surface in contact with the heat source 5 in the thickness direction of the heat dissipating member 1 contains a large amount of non-magnetic and flat metal filler 3, so that the second layer 7 is close to the surface in contact with the heat source 5. It is preferable that the first layer 6 on the opposite side to the contacting surface contains a large amount of the ceramic filler 2.
  • the distributed structure of the heat dissipation member 1 can be confirmed by cutting the heat dissipation member 1 and observing its cross section with an SEM magnification (for example, 5000 times).
  • the orientation state of the nonmagnetic and flat metal filler 3 in the heat dissipation member 1 of this embodiment is preferably isotropically distributed, as shown in FIG.
  • distributed isotropically means that the nonmagnetic and flat metal filler 3 has no orientation (or has little orientation) in its distribution. That is, in the heat dissipation member 1, the non-magnetic and flat metal fillers 3 are oriented in random directions. For example, as shown in FIG. 5, if the long axis direction of the nonmagnetic and flat metal filler 3 is oriented in the longitudinal direction of the heat dissipation member 1 (horizontal direction in FIG.
  • the heat in the thickness direction of the heat dissipation member 1 is Conductivity may be difficult to improve.
  • the nonmagnetic and flat metal filler 3 is isotropically dispersed, a thermal path is easily formed in the thickness direction of the heat dissipating member 1, and the thermal conductivity is further improved.
  • the non-magnetic and flat-shaped metal filler 3 is such that due to the presence of the ceramic filler 2 in the heat-radiating member 1, the long axis direction of the non-magnetic and flat-shaped metal filler 3 is oriented in the longitudinal direction of the heat-radiating member 1. is prevented and tends to disperse isotropically. Therefore, in order to isotropically disperse the nonmagnetic and flat metal filler 3 in the heat dissipation member 1, the average particle diameter (d 1 ) of the ceramic filler 2 and the nonmagnetic and flat metal filler 3 must be adjusted. The ratio to the average major axis (d 2 ) may be adjusted.
  • the ratio (d 1 /d 2 ) of the average particle diameter (d 1 ) of the ceramic filler 2 to the average major axis (d 2 ) of the nonmagnetic and flat metal filler 3 preferably satisfies the following formula (2) . 0.5 ⁇ d1 / d2 ⁇ 5.0...(2)
  • d 1 /d 2 is within the above range, the nonmagnetic and flat metal filler 3 is more likely to be isotropically dispersed. Note that the orientation state of the nonmagnetic and flat metal filler 3 in the heat dissipation member 1 can be confirmed by the same method as the dispersion structure of the heat dissipation member 1 described above.
  • the average emissivity of the heat dissipation member 1 of this embodiment is 70% or more.
  • the emissivity of the heat dissipation member 1 changes depending on the temperature, but in the temperature range of 200°C or less, preferably 150°C or less, which is usually used as the heat dissipation member 1 of electrical and electronic equipment, the emissivity of 70% or more When it has an average emissivity, sufficient cooling performance can be obtained as the heat dissipation member 1.
  • the average emissivity of the heat dissipating member 1 is preferably 75% or more, more preferably 80% or more.
  • the average emissivity is determined by measuring each emissivity in the wavelength range of 3 ⁇ m or more and 25 ⁇ m or less using an emissivity measurement device, and calculating the average value of the emissivity in the entire wavelength range.
  • the thermal conductivity of the heat dissipation member 1 of this embodiment is 3 W/(m ⁇ K) or more.
  • the thermal conductivity of the heat dissipating member 1 is preferably 5 W/(m ⁇ K) or more, more preferably 10 W/(m ⁇ K) or more. Note that the thermal conductivity of the heat dissipating member 1 in this embodiment means the thermal conductivity of the heat dissipating member 1 in the thickness direction.
  • Thermal conductivity is measured using the laser flash method.
  • the shape of the heat dissipating member 1 of this embodiment is appropriately set depending on the application.
  • the shape of the heat dissipating member 1 is not particularly limited, and examples thereof include a sheet, a film, a thin film, a molded body, and the like.
  • the thickness t of the heat dissipation member 1 is adjusted as appropriate depending on the shape of the heat dissipation member 1, the ceramic filler 2 used, and the non-magnetic and flat metal filler 3. However, in consideration of the average major axis (d 2 ) of the nonmagnetic and flat metal filler 3, the thickness t of the heat dissipation member 1 is preferably 5 ⁇ m or more.
  • the heat dissipation member 1 of this embodiment may contain a solvent to the extent that the effects of the present disclosure are not impaired.
  • the solvent is not particularly limited, and any known solvent may be appropriately selected depending on the type of ceramic filler 2 and non-magnetic and flat metal filler 3 to be used.
  • solvent examples include water, methanol, ethanol, propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethylpropionamide, dimethylsulfoxide, N -Methyl-2-pyrrolidone, ethyl acetate, butyl acetate, propylene carbonate, diethylene carbonate, toluene, xylene, pyridine, tetrahydrofuran, dichloromethane, chloroform, 1,1,1,3,3,3-hexafluoroisopropanol, formic acid, acetic acid etc.
  • solvents may be used alone or in combination of two or more. When using two or more types in combination, the combination is not particularly limited.
  • FIG. 9 is a schematic cross-sectional view showing an example of a heat dissipating member with a base material according to the second embodiment.
  • the heat dissipation member with a base material of this embodiment includes a base material 8 and a heat dissipation member 1, and the heat dissipation member 1 is a coating layer coated on the surface of the base material 8.
  • the base material 8 is not particularly limited, but from the viewpoint of efficiently transmitting heat from the heat source 5, it is preferably made of metal or ceramic with high thermal conductivity.
  • the metal include aluminum, copper, stainless steel, iron, and other alloys.
  • the ceramic include alumina, magnesia, zirconia, aluminum nitride, and silicon carbide. These may be used alone or in combination of two or more. When using two or more types in combination, the combination is not particularly limited.
  • the thickness of the coating layer is determined by the shape of the heat dissipating member 1, the average particle diameter (d 1 ) of the ceramic filler 2 used, the average major axis (d 1 ) of the non-magnetic and flat metal filler 3, as well as the thickness of the heat dissipating member 1. d2 ) is adjusted as appropriate. However, from the viewpoint of adhesion to the base material 8 and peeling resistance in long-term reliability tests such as heat cycles, the thickness is preferably 10 ⁇ m or more and 200 ⁇ m or less.
  • the power module of this embodiment includes a power semiconductor element and the heat radiation member described in Embodiment 1 that can radiate heat generated by the power semiconductor element to the outside, or the heat radiation member with base material described in Embodiment 2. and a lead frame that is electrically connected to the outside.
  • the lead frame has external connections. At least a portion of the surface of the external connection portion is covered with the heat radiating member described in Embodiment 1 or the heat radiating member with a base material described in Embodiment 2.
  • FIG. 10 is a schematic cross-sectional view of the power module of this embodiment.
  • the power module 9 includes a lead frame 10, a heat sink 11 which is a heat dissipation member, an insulating sheet 12 disposed between the lead frame 10 and the heat sink 11, and a power semiconductor element mounted on the lead frame 10. 13 and a control semiconductor element 14. Wire bonding is performed between the power semiconductor element 13 and the control semiconductor element 14 and between the power semiconductor element 13 and the lead frame 10 using metal wires 15.
  • the lead frame 10 has an external connection part, and the parts other than the external connection part of the lead frame 10 and the external heat dissipation part of the heat sink 11 are sealed with a sealing resin 16.
  • the heat radiating member 1 or the heat radiating member with a base material is covered with the heat radiating member 1 or the heat radiating member with a base material.
  • the heat dissipation member 1 with a base material is preferable from the viewpoint of ease of construction.
  • the heat dissipation member 1 or the heat dissipation member with a base material so that the heat dissipation performance is improved by infrared radiation from the surface of the lead frame 10. improves.
  • the more portions of the surface of the external connection portion of the lead frame 10 that are covered by the heat radiating member 1 or the heat radiating member with a base material the more the heat radiating performance of the power module 9 improves.
  • members other than the heat radiating member 1 are not particularly limited, and members known in the technical field can be used.
  • the power semiconductor element 13 one formed of silicon can be used, but it is preferable to use one formed of a wide band gap semiconductor having a larger band gap than silicon.
  • wide bandgap semiconductors include silicon carbide, gallium nitride materials, and diamond.
  • the power semiconductor element 13 formed of a wide bandgap semiconductor has high voltage resistance and high allowable current density, the power semiconductor element 13 can be miniaturized. By using the power semiconductor element 13 miniaturized in this way, it is also possible to miniaturize the power module 9 incorporating the power semiconductor element 13.
  • the power semiconductor element 13 formed of a wide bandgap semiconductor has high heat resistance, it also leads to the miniaturization of heat dissipation members such as the lead frame 10 and the heat sink 11, making it possible to further miniaturize the power module 9. become.
  • the power semiconductor element 13 formed of a wide bandgap semiconductor has low power loss, it is possible to improve the efficiency of the element.
  • Example 1 As a holding material, 100 parts by mass of a liquid bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., Epicoat 828), which is a thermosetting resin, and 1-cyanoethyl-2-methylimidazole (Shikoku Kasei Kogyo Co., Ltd.), which is a curing agent, were used as a retaining material. After mixing with 1 part by mass of Curesol 2PN-CN (manufactured by Nippon Express Co., Ltd.), 166 parts by mass of methyl ethyl ketone as a solvent was added and mixed and stirred. Next, 563 parts by mass of alumina filler (No.
  • A) (shape: spherical, average particle size (d 1 ): 1.2 ⁇ m) as a ceramic filler and copper filler as a nonmagnetic and flat metal filler were added to this mixture.
  • No. c (average major axis (d 2 ): 5.0 ⁇ m) and 505 parts by mass were added and premixed. Next, this premix was kneaded using a three-roll mill so that the ceramic filler and the non-magnetic and flat metal filler were uniformly dispersed.
  • the prepared composition was applied onto a 2 mm thick base material (aluminum plate) using a coater, and then heated and dried at 110° C. for 15 minutes. Thereafter, the solvent was completely removed by heating at 120° C. for 1 hour and then at 160° C. for 3 hours, and the holding material was completely cured, thereby obtaining a heat dissipating member.
  • Example 2 A heat dissipation member was prepared in the same manner as in Example 1, except that alumina filler (No. B) (shape: spherical, average particle size (d 1 ): 2.5 ⁇ m) was used instead of alumina filler (No. A). I got it.
  • alumina filler No. B
  • shape shape: spherical, average particle size (d 1 ): 2.5 ⁇ m
  • Example 3 A heat dissipation member was obtained in the same manner as in Example 1, except that alumina filler (No. C) (shape: spherical, average particle size (d 1 ): 10 ⁇ m) was used instead of alumina filler (No. A). Ta.
  • alumina filler No. C
  • shape shape: spherical, average particle size (d 1 ): 10 ⁇ m
  • Example 4 A heat dissipation member was obtained in the same manner as in Example 1, except that alumina filler (No. E) (shape: spherical, average particle size (d 1 ): 24 ⁇ m) was used instead of alumina filler (No. A). Ta.
  • alumina filler No. E
  • shape shape: spherical, average particle size (d 1 ): 24 ⁇ m
  • Example 5 Alumina filler (No.D) (shape: spherical, average particle size (d 1 ): 15 ⁇ m) was used instead of alumina filler (No.A), and copper was used instead of copper filler (No.c).
  • a heat radiating member was obtained in the same manner as in Example 1, except that filler (No. b) (average major axis (d 2 ): 2.1 ⁇ m) was used.
  • Example 6 Example except that alumina filler (No.E) was used instead of alumina filler (No.A) and copper filler (No.b) was used instead of copper filler (No.c). A heat dissipating member was obtained in the same manner as in Example 1.
  • Example 7 Alumina filler (No.B) was used instead of alumina filler (No.A), and copper filler (No.a) was used instead of copper filler (No.c) (average major axis (d 2 ): 0 A heat dissipating member was obtained in the same manner as in Example 1, except that .8 ⁇ m) was used.
  • Example 8 Same method as Example 1 except that 436 parts by mass of tourmaline (No. F) (shape: spherical, average particle size (d 1 ): 3.0 ⁇ m) was used instead of alumina filler (No. A). A heat dissipating member was obtained.
  • No. F tourmaline
  • d 1 average particle size
  • No. A alumina filler
  • a heat dissipation member was prepared in the same manner as in Example 1, except that alumina filler (No. C) 610 mass was used instead of alumina filler (No. A), and non-magnetic and flat metal fillers were not used. Obtained.
  • the copper filler No. used in Examples 1 to 8 As a result of calculating the aspect ratios of a to c using the method described above, it was confirmed that all of them were 3 or more and 30 or less. In addition, as a result of observing the cross sections of the heat dissipating members of Examples 1 to 8 using the method described above, it was confirmed that the ceramic filler and the nonmagnetic and flat metal fillers were uniformly dispersed, as in the case of kneading. Ta.
  • Thermal conductivity The thermal conductivity in the thickness direction of the heat dissipating members obtained in Examples 1 to 8 and Comparative Examples 1 to 2 was measured by a laser flash method. The test pieces used were those cut out from each heat dissipation member to a diameter of 10 mm and a thickness of 1 mm. The thermal conductivity results are based on the thermal conductivity obtained with the heat dissipating member of Example 1, and the relative value of the thermal conductivity obtained with the heat dissipating member of each example or each comparative example ([each example Or the value of [thermal conductivity obtained with the heat dissipating member of each comparative example]/[thermal conductivity obtained with the heat dissipating member of Example 1]] is shown in Table 1.
  • Cooling performance heat dissipation performance
  • a ceramic heater was attached to one surface of the heat dissipating member obtained in Examples 1 to 8 and Comparative Examples 1 to 2, which had a length of 100 mm, a width of 100 mm, and a thickness of 7 mm, and a power of 20 W was applied to the temperature of the heat dissipating member and the ceramic heater. It was left for several hours until it reached saturation temperature. Thereafter, the surface temperature of the ceramic heater was measured using a thermocouple. The results are shown in Table 1. The saturation temperature of the ceramic heater when a power of 20 W is applied is the cooling performance as a heat radiating member, and the lower the saturation temperature, the higher the cooling performance as the heat radiating member.
  • the heat dissipating members of Examples 1 to 8 had excellent thermal conductivity and cooling performance.
  • Examples 2 to 4 satisfying 0.5 ⁇ d 1 /d 2 ⁇ 5.0 had better thermal conductivity and cooling performance.
  • Comparative Example 1 had poor thermal conductivity and cooling performance because it did not contain nonmagnetic and flat metal fillers.
  • Comparative Example 2 was a non-magnetic metal filler, it used a spherical metal filler, so its thermal conductivity and cooling performance were poor.
  • Heat dissipation member 2 Ceramic filler, 3 Metal filler, 4 Holding material, 5 Heat source, 6 First layer, 7 Second layer, 8 Base material, 9 Power module, 10 Lead frame, 11 Heat sink, 12 Insulating sheet, 13 Electric power Semiconductor element, 14. Control semiconductor element, 15. Metal wire, 16. Sealing resin.

Abstract

Provided is a heat dissipation member including a ceramic filler, a non-magnetic and flat metal filler, and a retention material.

Description

放熱部材、基材付き放熱部材およびパワーモジュールHeat dissipation components, heat dissipation components with base materials, and power modules
 本開示は、放熱部材、基材付き放熱部材およびパワーモジュールに関する。 The present disclosure relates to a heat dissipation member, a heat dissipation member with a base material, and a power module.
 LED素子やIC等の発熱部品を搭載した電気電子機器において、高出力化による発熱量の増大により、放熱技術の重要性が増している。特に、防塵防水のため密閉筐体で使用される車載電装品や真空中で使用される宇宙機器等は、空気対流による放熱が困難という問題がある。そのため、従来の放熱技術であるアルミヒートシンクによる自然空冷や電動ファンによる強制空冷等では、十分な放熱効果が得られない。また、CPUの高性能化によって発熱量が増大傾向にあるノート型パソコンを含む情報機器では、小型化や高密度実装化が進んでおり、体積の大きいアルミヒートシンクを搭載するスペースがないという問題もある。さらに、従来のアルミヒートシンクは金属製であるため、電磁ノイズを発生し、電気電子機器の誤動作を招くという問題もある。そのため、近年、従来の放熱技術では放熱対策が困難な電気電子機器を対象に、赤外線の熱放射を利用したセラミックヒートシンクが注目されている。 In electrical and electronic equipment equipped with heat generating components such as LED elements and ICs, the importance of heat dissipation technology is increasing due to the increase in heat generation due to higher output. Particularly, in-vehicle electrical components used in sealed casings for dust-proofing and waterproofing, space equipment used in vacuum, and the like have a problem in that heat dissipation through air convection is difficult. Therefore, conventional heat dissipation techniques such as natural air cooling using an aluminum heat sink and forced air cooling using an electric fan cannot provide a sufficient heat dissipation effect. In addition, information devices, including notebook computers, whose heat output tends to increase due to higher performance CPUs, are becoming smaller and more densely packaged, and there is a problem that there is no space to install large aluminum heat sinks. be. Furthermore, since conventional aluminum heat sinks are made of metal, there is a problem in that they generate electromagnetic noise, leading to malfunctions of electrical and electronic equipment. Therefore, in recent years, ceramic heat sinks that utilize infrared heat radiation have been attracting attention for electrical and electronic devices that are difficult to dissipate using conventional heat dissipation techniques.
 特許第4404855号公報(特許文献1)では、粒径が最低3μmから最大325メッシュの範囲であるショールトルマリン粉末と流動状の固定剤とを混和してなる塗布剤を、銅またはアルミニウムからなる基材の表面に、ショールトルマリン粉末が1平方cmあたり0.025から0.05gの面密度となるように塗着して固化してなるトルマリン層を有したことを特徴とする放熱部材が開示されている。 In Japanese Patent No. 4404855 (Patent Document 1), a coating agent made by mixing scholl tourmaline powder with a particle size ranging from a minimum of 3 μm to a maximum of 325 mesh and a fluid fixative is applied to a base made of copper or aluminum. Disclosed is a heat dissipating member characterized in that it has a tourmaline layer formed by applying and solidifying shawl tourmaline powder to the surface of the material at an areal density of 0.025 to 0.05 g per square cm. ing.
特許第4404855号公報Patent No. 4404855
 しかしながら、特許文献1で開示されている放熱部材では、熱伝導率の低い樹脂系の固定剤を含有していることから、放熱部材の熱抵抗が大きくなりすぎる。そのため、熱源の熱が放熱部材の表面に十分に伝わらず、放熱部材表面の放射性能が低下するおそれがある。 However, since the heat radiating member disclosed in Patent Document 1 contains a resin-based fixing agent with low thermal conductivity, the thermal resistance of the heat radiating member becomes too large. Therefore, the heat from the heat source may not be sufficiently transmitted to the surface of the heat radiating member, and the radiation performance of the surface of the heat radiating member may deteriorate.
 本開示は、上記のような課題を解決するためになされたものであり、熱伝導率が高く、かつ、放射性能に優れる放熱部材および基材付き放熱部材を提供することを目的とする。
 また、放熱性能に優れるパワーモジュールを提供することを目的とする。
The present disclosure has been made to solve the above problems, and aims to provide a heat dissipation member and a base material-attached heat dissipation member that have high thermal conductivity and excellent radiation performance.
Another purpose is to provide a power module with excellent heat dissipation performance.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、放射率の高いセラミックフィラーと、熱伝導率の高い非磁性の金属フィラーとを複合化させた材料において、非磁性の金属フィラーの形状を扁平状にすることで、熱パスとなる金属フィラー同士の接触を効率的に得ることができ、熱伝導率が高く、かつ、放射性能に優れる放熱部材が得られることを見出した。また、本セラミックフィラーを放熱部材に適用することで、放熱部材の放射性能が向上することも見出した。
 本開示は、以下の放熱部材、基材付き放熱部材およびパワーモジュールに関する。
As a result of extensive studies to solve the above problems, the present inventors have developed a material that combines a ceramic filler with high emissivity and a non-magnetic metal filler with high thermal conductivity. It was discovered that by making the shape of the filler flat, it is possible to efficiently obtain contact between the metal fillers that serve as a heat path, resulting in a heat dissipation member with high thermal conductivity and excellent radiation performance. . We have also discovered that by applying this ceramic filler to a heat dissipating member, the radiation performance of the heat dissipating member can be improved.
The present disclosure relates to the following heat radiating member, heat radiating member with a base material, and power module.
 セラミックフィラーと、非磁性および扁平状の金属フィラーと、保持材と、を含む、放熱部材。 A heat dissipation member that includes a ceramic filler, a non-magnetic and flat metal filler, and a holding material.
 基材と、放熱部材と、を備え、
 前記放熱部材は、前記基材の表面にコーティングされるコーティング層である、基材付き放熱部材。
Comprising a base material and a heat dissipation member,
The heat dissipation member is a heat dissipation member with a base material, which is a coating layer coated on the surface of the base material.
 電力半導体素子と、前記電力半導体素子で発生する熱を外部に放熱することのできる放熱部材または基材付き放熱部材と、外部と電気的に接続されるリードフレームと、を備え、
 前記リードフレームは、外部接続部を有し、
 前記外部接続部の表面の少なくとも一部は、前記放熱部材または前記基材付き放熱部材により覆われている、パワーモジュール。
A power semiconductor element, a heat radiation member or a heat radiation member with a base material capable of radiating heat generated by the power semiconductor element to the outside, and a lead frame electrically connected to the outside,
The lead frame has an external connection part,
At least a part of the surface of the external connection part is covered with the heat radiating member or the heat radiating member with a base material.
 本開示によれば、熱伝導率が高く、かつ、放射性能に優れる放熱部材および基材付き放熱部材を提供することができる。また、放熱性能に優れるパワーモジュールを提供することができる。 According to the present disclosure, it is possible to provide a heat dissipation member and a base material-attached heat dissipation member that have high thermal conductivity and excellent radiation performance. Furthermore, a power module with excellent heat dissipation performance can be provided.
図1は、実施の形態1における放熱部材の一例を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing an example of a heat dissipation member in the first embodiment. 図2は、実施の形態1における放熱部材を熱源に設置した一例を示す断面模式図である。FIG. 2 is a schematic cross-sectional view showing an example in which the heat dissipation member in Embodiment 1 is installed on a heat source. 図3は、球形状のフィラー同士の接触状況を示す断面模式図である。FIG. 3 is a schematic cross-sectional view showing the state of contact between spherical fillers. 図4は、扁平状のフィラー同士の接触状況を示す断面模式図である。FIG. 4 is a schematic cross-sectional view showing a contact situation between flat fillers. 図5は、実施の形態1における放熱部材の他の一例を示す断面模式図である。FIG. 5 is a schematic cross-sectional view showing another example of the heat dissipation member in the first embodiment. 図6は、実施の形態1における放熱部材の他の一例を示す断面模式図である。FIG. 6 is a schematic cross-sectional view showing another example of the heat dissipation member in the first embodiment. 図7は、実施の形態1における放熱部材の他の一例を示す断面模式図である。FIG. 7 is a schematic cross-sectional view showing another example of the heat dissipation member in the first embodiment. 図8(a)は、セラミックフィラーの断面模式図であり、図8(b)は、金属フィラーの断面模式図である。FIG. 8(a) is a schematic cross-sectional view of a ceramic filler, and FIG. 8(b) is a schematic cross-sectional view of a metal filler. 図9は、実施の形態2における基材付き放熱部材の一例を示す断面模式図である。FIG. 9 is a schematic cross-sectional view showing an example of a heat dissipating member with a base material according to the second embodiment. 図10は、実施の形態3におけるパワーモジュールの断面模式図である。FIG. 10 is a schematic cross-sectional view of a power module in Embodiment 3.
 以下、本開示の実施の形態について説明する。 Hereinafter, embodiments of the present disclosure will be described.
 実施の形態1.
 <放熱部材>
 図1は、実施の形態1に係る放熱部材の一例を示す断面模式図である。以下、図1を用いて、本実施の形態に係る放熱部材1について説明する。本実施の形態に係る放熱部材1は、セラミックフィラー2と、非磁性および扁平状の金属フィラー3と、保持材4と、を含む。本実施の形態に係る放熱部材1は、図2に示すように、半導体素子等の熱源5から発生した熱を放熱部材1の表面から赤外線の放射によって外部に放出することで、放熱効果を発現する。また、放熱部材1の表面温度が高いほど、表面(図2において、熱源と接している面とは反対の面)から赤外線が多量に放射され、放熱効果が向上する。そのため、放熱部材1の放熱効果を高めるには、表面に熱源の熱を効率的に伝達し、表面温度を可能な限り高めることが必要である。
Embodiment 1.
<Heat dissipation member>
FIG. 1 is a schematic cross-sectional view showing an example of a heat dissipation member according to the first embodiment. Hereinafter, a heat dissipating member 1 according to the present embodiment will be described using FIG. 1. The heat dissipation member 1 according to the present embodiment includes a ceramic filler 2, a non-magnetic flat metal filler 3, and a holding material 4. As shown in FIG. 2, the heat dissipation member 1 according to the present embodiment exhibits a heat dissipation effect by discharging heat generated from a heat source 5 such as a semiconductor element to the outside through infrared radiation from the surface of the heat dissipation member 1. do. Moreover, the higher the surface temperature of the heat dissipation member 1, the more infrared rays are radiated from the surface (the surface opposite to the surface in contact with the heat source in FIG. 2), and the heat dissipation effect improves. Therefore, in order to enhance the heat dissipation effect of the heat dissipation member 1, it is necessary to efficiently transfer the heat from the heat source to the surface and raise the surface temperature as much as possible.
 しかしながら、一般的に、セラミックフィラーおよび保持材は、熱伝導率が金属フィラーと比較して高くないため、熱抵抗が高くなり易く、効率的に熱を伝達することが困難である。そこで、本実施の形態の放熱部材1では、熱伝導率の高い非磁性の金属フィラー3を含有することで、放熱部材1の熱伝導率を向上させている。その際、非磁性の金属フィラー3の形状を扁平形状にすることで、非磁性の金属フィラー3同士がより接触し易くなるため、非磁性の金属フィラー3の含有量が少なくても放熱部材1の熱伝導率が向上する。そのため、本実施の形態の放熱部材1は、熱伝導率が高く、かつ、放射性能に優れたものとなる。 However, in general, ceramic fillers and holding materials do not have high thermal conductivity compared to metal fillers, so they tend to have high thermal resistance, making it difficult to efficiently transfer heat. Therefore, in the heat dissipating member 1 of the present embodiment, the thermal conductivity of the heat dissipating member 1 is improved by containing the non-magnetic metal filler 3 having high thermal conductivity. At this time, by making the shape of the non-magnetic metal filler 3 flat, the non-magnetic metal fillers 3 can more easily come into contact with each other, so even if the content of the non-magnetic metal filler 3 is small, the heat dissipation member 1 improves thermal conductivity. Therefore, the heat dissipation member 1 of this embodiment has high thermal conductivity and excellent radiation performance.
 (セラミックフィラー)
 本実施の形態の放熱部材1は、セラミックフィラー2を含む。セラミックフィラー2を含むことにより、放射性能を向上させることができる。
(ceramic filler)
The heat dissipation member 1 of this embodiment includes a ceramic filler 2. By including the ceramic filler 2, radiation performance can be improved.
 セラミックフィラー2としては、特に制限はないが、放射率が高いことが好ましく、例えば、アルミナ、酸化亜鉛、シリカ、ジルコニア、炭化ケイ素、窒化アルミ、窒化ケイ素、窒化ホウ素等の工業的なセラミック材料、電気石、白土、軽石等のケイ酸塩系の鉱物、パーライト、ゼオライト等のアルミノケイ酸塩系の鉱物、タルク、菫青石等のマグネシウムケイ酸塩系の鉱物、等の鉱物系のセラミック材料等が挙げられる。これらのセラミックフィラー2は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて使用する場合には、その組み合わせは特に限定されない。 The ceramic filler 2 is not particularly limited, but preferably has a high emissivity, such as industrial ceramic materials such as alumina, zinc oxide, silica, zirconia, silicon carbide, aluminum nitride, silicon nitride, boron nitride, etc. Mineral ceramic materials such as silicate minerals such as tourmaline, clay, and pumice, aluminosilicate minerals such as pearlite and zeolite, and magnesium silicate minerals such as talc and cordierite. Can be mentioned. These ceramic fillers 2 may be used alone or in combination of two or more. When using two or more types in combination, the combination is not particularly limited.
 これらのセラミックフィラー2の中でも、アルミナ、電気石が好ましく、特に、電子機器の放熱で重要となる波長3μm以上25μm以下の赤外線の放射率が高い極性結晶体の一種である電気石がより好ましい。また、放熱部材の熱伝導率を高める観点からは、放射率だけでなく、熱伝導率が比較的高い窒化物系のセラミック材料である窒化アルミ、窒化ケイ素、窒化ホウ素等が好ましい。さらに、放射率の高い鉱物系のセラミック材料と、熱伝導率の高い窒化物系のセラミック材料とを組合わせて用いることで、放熱部材の放射性能および熱伝導率をより向上させる効果が得られる。 Among these ceramic fillers 2, alumina and tourmaline are preferred, and tourmaline, which is a type of polar crystal that has a high emissivity of infrared rays with a wavelength of 3 μm or more and 25 μm or less, which is important for heat dissipation in electronic devices, is particularly preferred. In addition, from the viewpoint of increasing the thermal conductivity of the heat dissipation member, nitride-based ceramic materials such as aluminum nitride, silicon nitride, and boron nitride, which have relatively high thermal conductivity as well as emissivity, are preferable. Furthermore, by using a combination of a mineral ceramic material with high emissivity and a nitride ceramic material with high thermal conductivity, it is possible to further improve the radiation performance and thermal conductivity of the heat dissipation member. .
 セラミックフィラー2の含有率は、十分な放射性能を得る観点から、30体積%以上80体積%以下であり、40体積%以上70体積%以下であることが好ましい。セラミックフィラー2の含有率が30体積%未満の場合、放熱部材1の放射性能が十分に向上しない。セラミックフィラー2の含有率が80体積%を超える場合、他の構成成分である金属フィラー3および保持材4の含有量が少なくなるため、放熱部材1の熱伝導率向上効果や成型性の観点で劣るおそれがある。 From the viewpoint of obtaining sufficient radiation performance, the content of the ceramic filler 2 is preferably 30 volume% or more and 80 volume% or less, and preferably 40 volume% or more and 70 volume% or less. If the content of the ceramic filler 2 is less than 30% by volume, the radiation performance of the heat radiation member 1 will not be sufficiently improved. When the content of the ceramic filler 2 exceeds 80% by volume, the content of the metal filler 3 and the retaining material 4, which are other constituent components, decreases, so from the viewpoint of the thermal conductivity improvement effect and moldability of the heat dissipation member 1. There is a risk that it will be inferior.
 セラミックフィラー2の平均粒径(d)は、特に制限はないが、1.0μm以上30μm以下であることが好ましい。ここで、本実施の形態におけるセラミックフィラー2の平均粒径は、セラミックフィラー2をエポキシ樹脂に埋封したサンプルを作製し、そのサンプルの断面を研磨して、SEM(走査型電子顕微鏡)で拡大(例えば、5000倍)した後、少なくとも20個の粒子について長径を測定し、その測定値を平均化することによって得ることができる。なお、長径とは、セラミックフィラー2の断面における該セラミックフィラー2の外周上の2点を結ぶ線分(2点間線分)のうち最大の長さを有する線分(最長線分)の長さを意味する(図8(a)参照)。 The average particle size (d 1 ) of the ceramic filler 2 is not particularly limited, but is preferably 1.0 μm or more and 30 μm or less. Here, the average particle size of the ceramic filler 2 in this embodiment is determined by preparing a sample in which the ceramic filler 2 is embedded in an epoxy resin, polishing the cross section of the sample, and enlarging it with an SEM (scanning electron microscope). (for example, by a factor of 5000), then measuring the major axis of at least 20 particles, and averaging the measured values. The major axis is the length of the line segment (longest line segment) that has the maximum length among the line segments connecting two points on the outer circumference of the ceramic filler 2 (line segments between two points) in the cross section of the ceramic filler 2. (See Figure 8(a)).
 セラミックフィラー2の形状は、特に制限はないが、例えば、球状または略球状、鱗片状、柱状等が挙げられ、球状または略球状であることが好ましい。 The shape of the ceramic filler 2 is not particularly limited, but examples thereof include spherical or substantially spherical, scale-like, columnar, etc., and spherical or substantially spherical is preferable.
 (金属フィラー)
 本実施の形態の放熱部材1は、非磁性および扁平状の金属フィラー3を含む。非磁性および扁平状の金属フィラー3を含むことにより、熱伝導率を向上させることができる。
(metal filler)
The heat dissipation member 1 of this embodiment includes a non-magnetic and flat metal filler 3. By including the nonmagnetic and flat metal filler 3, thermal conductivity can be improved.
 金属フィラー3は、熱伝導率が高い金属材料である。一般的に、金属材料の熱伝導率は、磁性金属よりも、非磁性の金属の方が高い傾向がある。また、磁性金属を含む放熱部材1を電子機器に用いた場合、電磁気的に回路に悪影響を及ぼすおそれがある。そのため、本実施の形態の放熱部材1では、非磁性の金属材料を金属フィラー3として用いる。 The metal filler 3 is a metal material with high thermal conductivity. In general, non-magnetic metals tend to have higher thermal conductivity than magnetic metals. Moreover, when the heat dissipation member 1 containing magnetic metal is used in an electronic device, there is a possibility that it may have an adverse effect on the circuit electromagnetically. Therefore, in the heat dissipation member 1 of this embodiment, a non-magnetic metal material is used as the metal filler 3.
 非磁性の金属フィラー3の熱伝導率は、100W/(m・K)以上であることが好ましく、150W/(m・K)以上であることがより好ましく、200W/(m・K)以上であることがさらに好ましい。非磁性の金属フィラー3としては、例えば、金、銀、銅、銅合金、アルミニウム、アルミニウム合金、タングステン等の比較的熱伝導率の高い金属材料が挙げられる。これらの非磁性の金属フィラー3は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて使用する場合には、その組み合わせは特に限定されない。特に、コストと熱伝導率との観点から、銅および銅合金を用いることが好ましい。 The thermal conductivity of the non-magnetic metal filler 3 is preferably 100 W/(m・K) or more, more preferably 150 W/(m・K) or more, and 200 W/(m・K) or more. It is even more preferable that there be. Examples of the nonmagnetic metal filler 3 include metal materials with relatively high thermal conductivity, such as gold, silver, copper, copper alloy, aluminum, aluminum alloy, and tungsten. These non-magnetic metal fillers 3 may be used alone or in combination of two or more. When using two or more types in combination, the combination is not particularly limited. In particular, from the viewpoints of cost and thermal conductivity, it is preferable to use copper and copper alloys.
 金属フィラー3の形状は、扁平状である。金属フィラーの形状が、例えば球状である場合には、図3に示すように、放熱部材の中で球状の金属フィラー同士が接触しにくいため、有効な熱パスを形成しにくい。そのため、放熱部材の熱伝導率を向上させるためには、金属フィラーを多量に含有する必要がある。その結果、放熱部材を作製可能なフィラー含有量の範囲において、放射性能を担うセラミックフィラー2の含有量が相対的に少なくなるという問題がある。一方、本実施の形態の金属フィラー3は扁平状であるため、図4に示すように、放熱部材の中で金属フィラー3同士の接触が得られ易いため、放熱部材1における金属フィラー3の含有量が比較的少ない場合であっても、放熱部材1の熱伝導率向上に有効な熱パスを形成することが可能となる。 The shape of the metal filler 3 is flat. When the shape of the metal filler is, for example, spherical, as shown in FIG. 3, it is difficult for the spherical metal fillers to come into contact with each other in the heat dissipation member, making it difficult to form an effective heat path. Therefore, in order to improve the thermal conductivity of the heat dissipation member, it is necessary to contain a large amount of metal filler. As a result, there is a problem in that the content of the ceramic filler 2, which plays a role in radiation performance, becomes relatively small in the range of filler content that allows the production of a heat dissipating member. On the other hand, since the metal filler 3 of this embodiment has a flat shape, as shown in FIG. Even if the amount is relatively small, it is possible to form a heat path that is effective in improving the thermal conductivity of the heat dissipation member 1.
 また、金属フィラー3の形状が扁平状であるとは、原料として用いる金属フィラーを加熱圧縮したフィラー、扁平状である金属フィラーの原料等を含むものである。 Furthermore, the term "metal filler 3 having a flat shape" includes a filler obtained by heating and compressing a metal filler used as a raw material, a raw material of a flat metal filler, and the like.
 非磁性および扁平状の金属フィラー3のアスペクト比は、3以上30以下であり、4以上20以下であることが好ましい。ここで、非磁性および扁平状の金属フィラー3のアスペクト比は、非磁性および扁平状の金属フィラー3をエポキシ樹脂に埋封したサンプルを作製し、そのサンプルの断面を研磨して、SEM(走査型電子顕微鏡)で拡大(例えば、5000倍)した後、少なくとも20個の粒子について非磁性および扁平状の金属フィラー3の長径および短径を測定して長径と短径との比(長径/短径)を算出し、その平均値を求めることによって得られる値を意味する。なお、長径とは、非磁性および扁平状の金属フィラー3の断面における該非磁性および扁平状の金属フィラー3の外周上の2点を結ぶ線分(2点間線分)のうち最大の長さを有する線分(最長線分)の長さを意味し、短径とは、最長線分と垂直に交わる2点間線分のうち、最大長さを有する2点間線分の長さを意味する(図8(b)参照)。 The aspect ratio of the non-magnetic and flat metal filler 3 is 3 or more and 30 or less, preferably 4 or more and 20 or less. Here, the aspect ratio of the nonmagnetic and flat metal filler 3 is determined by preparing a sample in which the nonmagnetic and flat metal filler 3 is embedded in epoxy resin, polishing the cross section of the sample, and using SEM (scanning). After magnifying (e.g., 5000 times) with a type electron microscope, the major axis and minor axis of the non-magnetic and flat metal filler 3 are measured for at least 20 particles, and the ratio of the major axis to the minor axis (major axis/short axis) is determined. It means the value obtained by calculating the diameter) and finding the average value. The major axis is the maximum length of the line segment connecting two points on the outer circumference of the non-magnetic and flat metal filler 3 (line segment between two points) in the cross section of the non-magnetic and flat metal filler 3. The short axis is the length of the line segment with the maximum length among the line segments between two points that intersect perpendicularly to the longest line segment. (See FIG. 8(b)).
 非磁性および扁平状の金属フィラー3のアスペクト比が3未満の場合、扁平状による金属フィラー3同士の接触し易さの効果が十分に得られず、放熱部材1の熱伝導率向上に有効な熱パスが形成されないおそれがある。非磁性および扁平状の金属フィラー3のアスペクト比が30を超える場合、短径が短い、すなわち、扁平状の金属フィラー3の厚みが薄すぎるため、非磁性および扁平状の金属フィラー3の強度が極端に弱くなり、扁平状を保てないおそれがある。 If the aspect ratio of the non-magnetic and flat metal filler 3 is less than 3, the effect of making it easier for the metal fillers 3 to come into contact with each other due to the flat shape cannot be sufficiently obtained, and the There is a risk that a heat path will not be formed. When the aspect ratio of the non-magnetic and flat metal filler 3 exceeds 30, the short axis is short, that is, the thickness of the flat metal filler 3 is too thin, and the strength of the non-magnetic and flat metal filler 3 is reduced. It may become extremely weak and unable to maintain its flat shape.
 非磁性および扁平状の金属フィラー3の平均長径(d)は、放熱部材1の厚みをtとしたとき、下記式(1)を満たすことが好ましい。
 2.0≦d≦t/2・・・(1)
 平均長径(d)が2μm未満の場合、非磁性および扁平状の金属フィラー3同士が接触しにくいため、実用性を阻害するほどではないものの、有効な熱パスを形成しにくいおそれがある。平均長径(d)がt/2μmを超える場合、放熱部材1の厚み(t)に対して平均長径(d)が長すぎるため、非磁性および扁平状の金属フィラー3が放熱部材1の厚み方向に対して垂直方向に倒れ易くなる。そのため、実用性を阻害するほどではないものの、放熱部材1の厚み方向への熱伝導率が向上しにくいおそれがある。なお、後述するように、放熱部材1の厚みであるtは、5μm以上であることが好ましい。
The average major axis (d 2 ) of the nonmagnetic and flat metal filler 3 preferably satisfies the following formula (1), where t is the thickness of the heat dissipation member 1.
2.0≦ d2 ≦t/2...(1)
If the average major axis (d 2 ) is less than 2 μm, the nonmagnetic and flat metal fillers 3 are unlikely to come into contact with each other, so although this does not impede practicality, it may be difficult to form an effective heat path. When the average major axis (d 2 ) exceeds t/2 μm, the average major axis (d 2 ) is too long with respect to the thickness (t) of the heat dissipating member 1, so the non-magnetic and flat metal filler 3 It becomes easy to fall down in the direction perpendicular to the thickness direction. Therefore, although it does not impede practicality, there is a possibility that the thermal conductivity in the thickness direction of the heat dissipating member 1 is difficult to improve. Note that, as described later, the thickness t of the heat dissipation member 1 is preferably 5 μm or more.
 非磁性および扁平状の金属フィラー3の含有率は、十分な熱伝導率を得る観点から、10体積%以上60体積%以下であり、15体積%以上50体積%以下であることが好ましい。非磁性および扁平状の金属フィラー3の含有率が10体積%未満の場合、放熱部材1の熱伝導率が十分に向上しない。非磁性および扁平状の金属フィラー3の含有率が60体積%を超える場合、他の構成成分であるセラミックフィラー2および保持材4の含有量が少なくなるため、放熱部材1の放射性能向上効果や成型性の観点で劣るおそれがある。 From the viewpoint of obtaining sufficient thermal conductivity, the content of the nonmagnetic and flat metal filler 3 is preferably 10 volume% or more and 60 volume% or less, and preferably 15 volume% or more and 50 volume% or less. If the content of the nonmagnetic and flat metal filler 3 is less than 10% by volume, the thermal conductivity of the heat dissipation member 1 will not be sufficiently improved. When the content of the non-magnetic and flat metal filler 3 exceeds 60% by volume, the content of the other components, the ceramic filler 2 and the holding material 4, decreases, so the effect of improving the radiation performance of the heat dissipation member 1 and There is a possibility that the moldability is inferior.
 (保持材)
 本実施の形態の放熱部材1に含まれる保持材4としては、特に制限はなく、セラミックフィラー2および非磁性および扁平状の金属フィラー3を放熱部材1中に均一に分散し、固定化する機能を有していればよい。保持材4としては、例えば、有機系バインダーまたは無機系バインダーを適宜選択して使用することができる。有機系バインダーまたは無機系バインダーを選定する際の指標としては、例えば耐熱性が挙げられ、放熱部材1を使用する温度領域によって、所望の耐熱性を有する有機系バインダーまたは無機系バインダーを適宜選択すればよい。また、密着性や放熱部材1の製造容易性の観点からは、有機系バインダーが好ましい。
(Holding material)
The holding material 4 included in the heat dissipation member 1 of this embodiment is not particularly limited, and has a function of uniformly dispersing and fixing the ceramic filler 2 and the non-magnetic and flat metal filler 3 in the heat dissipation member 1. It is sufficient if it has the following. As the holding material 4, for example, an organic binder or an inorganic binder can be appropriately selected and used. Examples of indicators for selecting an organic binder or an inorganic binder include heat resistance, and depending on the temperature range in which the heat dissipation member 1 is used, an organic binder or an inorganic binder having the desired heat resistance may be selected as appropriate. Bye. Further, from the viewpoint of adhesion and ease of manufacturing the heat dissipating member 1, an organic binder is preferable.
 有機系バインダーとしては、特に限定されないが、耐熱性や耐久性の観点から、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、ポリイミド樹脂等の熱硬化性樹脂が挙げられ、接着性の観点から、エポキシ樹脂が好ましい。エポキシ樹脂の具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、脂環脂肪族エポキシ樹脂、グリシジル-アミノフェノール系エポキシ樹脂等が挙げられる。これらの有機系バインダーは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて使用する場合には、その組み合わせは特に限定されない。 Examples of organic binders include, but are not limited to, thermosetting resins such as epoxy resins, unsaturated polyester resins, phenol resins, melamine resins, silicone resins, and polyimide resins from the viewpoint of heat resistance and durability. From the viewpoint of adhesion, epoxy resin is preferred. Specific examples of epoxy resins include bisphenol A epoxy resin, bisphenol F epoxy resin, orthocresol novolac epoxy resin, phenol novolac epoxy resin, alicycloaliphatic epoxy resin, glycidyl-aminophenol epoxy resin, etc. It will be done. These organic binders may be used alone or in combination of two or more. When using two or more types in combination, the combination is not particularly limited.
 有機系バインダーとして上述の熱硬化性樹脂を用いる場合、放熱部材1は、硬化剤を含んでいてもよい。硬化剤は、特に制限はなく、使用する熱硬化性樹脂の種類に応じて公知のものを適宜選択すればよい。硬化剤としては、例えば、アミン類、フェノール類、酸無水物類、イミダゾール類、ポリメルカプタン硬化剤、ポリアミド樹脂等が挙げられる。 When using the above-mentioned thermosetting resin as the organic binder, the heat dissipation member 1 may contain a curing agent. The curing agent is not particularly limited, and any known curing agent may be appropriately selected depending on the type of thermosetting resin used. Examples of the curing agent include amines, phenols, acid anhydrides, imidazoles, polymercaptan curing agents, polyamide resins, and the like.
 また、有機系バインダーとしてエポキシ樹脂を用いる場合の硬化剤としては、例えば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水ハイミック酸等の脂環式酸無水物、ドデセニル無水コハク酸等の脂肪族酸無水物、無水フタル酸、無水トリメリット酸等の芳香族酸無水物、ジシアンジアミド、アジピン酸ジヒドラジド等の有機ジヒドラジド、2-メチルイミダゾールおよびその誘導体、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール等のイミダゾール類、トリス(ジメチルアミノメチル)フェノール、ジメチルベンジルアミン、1,8-ジアザビシクロ(5,4,0)ウンデセンおよびその誘導体等が挙げられる。これらの硬化剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて使用する場合には、その組み合わせは特に限定されない。 In addition, as a curing agent when using an epoxy resin as an organic binder, for example, alicyclic acid anhydrides such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hymic anhydride, dodecenylsuccinic anhydride, etc. Aliphatic acid anhydrides, aromatic acid anhydrides such as phthalic anhydride and trimellitic anhydride, organic dihydrazides such as dicyandiamide and adipic dihydrazide, 2-methylimidazole and its derivatives, 2-ethyl-4-methylimidazole, 2 Examples include imidazoles such as -phenylimidazole, tris(dimethylaminomethyl)phenol, dimethylbenzylamine, 1,8-diazabicyclo(5,4,0)undecene and its derivatives. These curing agents may be used alone or in combination of two or more. When using two or more types in combination, the combination is not particularly limited.
 硬化剤の含有量は、使用する熱硬化性樹脂や硬化剤の種類等に応じて適宜設定すればよいが、一般的に、100質量部の熱硬化性樹脂に対して0.1質量部以上200質量部以下である。 The content of the curing agent may be set as appropriate depending on the type of thermosetting resin and curing agent used, but generally it is 0.1 parts by mass or more per 100 parts by mass of the thermosetting resin. It is 200 parts by mass or less.
 本実施の形態の放熱部材1は、セラミックフィラー2ならびに非磁性および扁平状の金属フィラー3と、熱硬化性樹脂の硬化物との界面の接着力を向上させる観点から、カップリング剤を含んでいてもよい。カップリング剤の例としては、γ-グリシドキシプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン等が挙げられる。これらのカップリング剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて使用する場合には、その組み合わせは特に限定されない。 The heat dissipation member 1 of the present embodiment contains a coupling agent from the viewpoint of improving the adhesive force at the interface between the ceramic filler 2 and the non-magnetic and flat metal filler 3 and the cured product of the thermosetting resin. You can stay there. Examples of coupling agents include γ-glycidoxypropyltrimethoxysilane, N-β(aminoethyl)γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, Examples include methoxysilane. These coupling agents may be used alone or in combination of two or more. When using two or more types in combination, the combination is not particularly limited.
 カップリング剤の含有量は、使用する熱硬化性樹脂やカップリング剤の種類等に応じて適宜設定すればよいが、一般的に、100質量部の熱硬化性樹脂に対して0.01質量部以上1質量部以下である。 The content of the coupling agent may be set as appropriate depending on the type of thermosetting resin and coupling agent used, but in general, it is 0.01 parts by mass per 100 parts by mass of the thermosetting resin. Part or more and no more than 1 part by mass.
 無機系バインダーとしては、特に限定されないが、セラミックフィラー2ならびに非磁性および扁平状の金属フィラー3との馴染みがよく、均一な分散が可能である液状の無機系バインダーが好ましい。また、無機系バインダーの硬化温度は、有機系バインダーの硬化温度と比較して高温である場合が多いが、作業性や後述する基材8の熱処理による変質防止の観点から、無機系バインダーの硬化温度は、250℃以下であり、200℃以下であることが好ましく、180℃以下であることがより好ましい。このような硬化温度を有する無機系バインダーを用いることで、基材8の熱劣化を発生させずに効率的にコーティング層を形成することが可能となる。無機系バインダーの具体例としては、ゾルゲルガラス、有機無機ハイブリッドガラス、水ガラス、一液性の無機接着剤、二液性の無機接着剤等が挙げられる。これらの無機系バインダーは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて使用する場合には、その組み合わせは特に限定されない。 The inorganic binder is not particularly limited, but a liquid inorganic binder that is compatible with the ceramic filler 2 and the non-magnetic and flat metal filler 3 and can be uniformly dispersed is preferred. Furthermore, the curing temperature of an inorganic binder is often higher than that of an organic binder. The temperature is 250°C or lower, preferably 200°C or lower, and more preferably 180°C or lower. By using an inorganic binder having such a curing temperature, it is possible to efficiently form a coating layer without causing thermal deterioration of the base material 8. Specific examples of the inorganic binder include sol-gel glass, organic-inorganic hybrid glass, water glass, one-component inorganic adhesive, two-component inorganic adhesive, and the like. These inorganic binders may be used alone or in combination of two or more. When using two or more types in combination, the combination is not particularly limited.
 保持材4の含有率は、10体積%以上60体積%以下であり、15体積%以上50体積%以下であることが好ましい。保持材4の含有率が10体積%未満の場合、セラミックフィラー2と非磁性および扁平状の金属フィラー3とを保持する力が不足し、成型性の観点で劣るおそれがある。保持材4の含有率が60体積%を超える場合、他の構成成分であるセラミックフィラー2および非磁性および扁平状の金属フィラー3の含有量が少なくなるため、放熱部材1の放射性能および熱伝導率向上効果の観点で劣るおそれがある。 The content of the holding material 4 is 10 volume% or more and 60 volume% or less, and preferably 15 volume% or more and 50 volume% or less. When the content of the holding material 4 is less than 10% by volume, the force for holding the ceramic filler 2 and the non-magnetic and flat metal filler 3 may be insufficient, leading to poor moldability. When the content of the holding material 4 exceeds 60% by volume, the content of the other components, the ceramic filler 2 and the non-magnetic and flat metal filler 3, decreases, so the radiation performance and heat conduction of the heat dissipation member 1 are reduced. There is a risk that it will be inferior in terms of rate improvement effect.
 (分散構造)
 本実施の形態の放熱部材1においては、図1に示すように、放熱部材1全体に、セラミックフィラー2と非磁性および扁平状の金属フィラー3とが均一に分散していてもよい。セラミックフィラー2と、非磁性および扁平状の金属フィラー3とが均一に分散することにより、放熱部材1全体に均一に熱源5の熱が伝わり易くなり、放熱性能がより向上する。
(distributed structure)
In the heat dissipation member 1 of this embodiment, as shown in FIG. 1, the ceramic filler 2 and the nonmagnetic flat metal filler 3 may be uniformly dispersed throughout the heat dissipation member 1. By uniformly dispersing the ceramic filler 2 and the non-magnetic flat metal filler 3, the heat from the heat source 5 is easily transmitted evenly throughout the heat dissipation member 1, and the heat dissipation performance is further improved.
 また、セラミックフィラー2と、非磁性および扁平状の金属フィラー3とは、放熱部材1の厚み方向において、各含有量に濃度勾配を有していてもよい。具体的には、図6に示すように、セラミックフィラー2の含有量は、放熱部材の厚み方向に向かうに従い減少する濃度勾配を有していてもよく、非磁性および扁平状の金属フィラー3の含有量は、放熱部材の厚み方向に向かうに従い増加する濃度勾配を有していてもよい。すなわち、放熱部材1の厚み方向で、熱源5と接している面に近い領域(図6の下側)は、非磁性および扁平状の金属フィラー3を多く含んでいることが好ましく、熱源5と接している面とは反対側の領域(図6の上側)は、セラミックフィラー2を多く含んでいることが好ましい。これは、セラミックフィラー2が放射性能を向上させる機能を有し、非磁性および扁平状の金属フィラー3が熱伝導率を向上させる機能を有するためである。 Furthermore, the ceramic filler 2 and the non-magnetic flat metal filler 3 may have a concentration gradient in their content in the thickness direction of the heat dissipation member 1. Specifically, as shown in FIG. 6, the content of the ceramic filler 2 may have a concentration gradient that decreases as it goes in the thickness direction of the heat dissipation member, and the content of the ceramic filler 2 may have a concentration gradient that decreases as it goes in the thickness direction of the heat dissipation member. The content may have a concentration gradient that increases in the thickness direction of the heat dissipation member. That is, in the thickness direction of the heat dissipation member 1, the area close to the surface in contact with the heat source 5 (lower side in FIG. 6) preferably contains a large amount of non-magnetic and flat metal filler 3, and the area is close to the surface in contact with the heat source 5. It is preferable that the region opposite to the contacting surface (the upper side in FIG. 6) contains a large amount of the ceramic filler 2. This is because the ceramic filler 2 has a function of improving radiation performance, and the non-magnetic and flat metal filler 3 has a function of improving thermal conductivity.
 さらに、図7に示すように、放熱部材1は、セラミックフィラー2を多く含有する第1層6と、非磁性および扁平状の金属フィラー3を多く含有する第2層7と、の2層構造を有していてもよい。このような場合も、放熱部材1の厚み方向で、熱源5と接している面に近い第2層7は、非磁性および扁平状の金属フィラー3を多く含んでいることが好ましく、熱源5と接している面とは反対側の第1層6は、セラミックフィラー2を多く含んでいることが好ましい。 Furthermore, as shown in FIG. 7, the heat dissipation member 1 has a two-layer structure including a first layer 6 containing a large amount of ceramic filler 2 and a second layer 7 containing a large amount of non-magnetic and flat metal filler 3. It may have. In such a case as well, it is preferable that the second layer 7 near the surface in contact with the heat source 5 in the thickness direction of the heat dissipating member 1 contains a large amount of non-magnetic and flat metal filler 3, so that the second layer 7 is close to the surface in contact with the heat source 5. It is preferable that the first layer 6 on the opposite side to the contacting surface contains a large amount of the ceramic filler 2.
 放熱部材1の分散構造は、放熱部材1を切断し、その断面をSEMで拡大(例えば、5000倍)して観察することによって確認することができる。 The distributed structure of the heat dissipation member 1 can be confirmed by cutting the heat dissipation member 1 and observing its cross section with an SEM magnification (for example, 5000 times).
 (配向状態)
 本実施の形態の放熱部材1における非磁性および扁平状の金属フィラー3の配向状態は、図1に示すように、等方的に分散していることが好ましい。ここで、「等方的に分散している」とは、非磁性および扁平状の金属フィラー3の分布に配向性がないこと(または配向性が小さいこと)を意味する。すなわち、放熱部材1中において、非磁性および扁平状の金属フィラー3がランダムな方向に向いている。例えば、図5に示すように、非磁性および扁平状の金属フィラー3の長軸方向が放熱部材1の長手方向(図5の横方向)に向いている場合、放熱部材1の厚み方向の熱伝導率が向上しにくいおそれがある。一方、非磁性および扁平状の金属フィラー3が等方的に分散している場合、放熱部材1の厚み方向に熱パスが形成され易くなり、熱伝導率がより向上する。
(Orientation state)
The orientation state of the nonmagnetic and flat metal filler 3 in the heat dissipation member 1 of this embodiment is preferably isotropically distributed, as shown in FIG. Here, "distributed isotropically" means that the nonmagnetic and flat metal filler 3 has no orientation (or has little orientation) in its distribution. That is, in the heat dissipation member 1, the non-magnetic and flat metal fillers 3 are oriented in random directions. For example, as shown in FIG. 5, if the long axis direction of the nonmagnetic and flat metal filler 3 is oriented in the longitudinal direction of the heat dissipation member 1 (horizontal direction in FIG. 5), the heat in the thickness direction of the heat dissipation member 1 is Conductivity may be difficult to improve. On the other hand, when the nonmagnetic and flat metal filler 3 is isotropically dispersed, a thermal path is easily formed in the thickness direction of the heat dissipating member 1, and the thermal conductivity is further improved.
 非磁性および扁平状の金属フィラー3は、放熱部材1中にセラミックフィラー2が存在することで、非磁性および扁平状の金属フィラー3の長軸方向が放熱部材1の長手方向に向くことが物理的に防止され、等方的に分散する傾向がある。そのため、非磁性および扁平状の金属フィラー3を放熱部材1中で等方的に分散させるためには、セラミックフィラー2の平均粒径(d)と、非磁性および扁平状の金属フィラー3の平均長径(d)との比を調整すればよい。セラミックフィラー2の平均粒径(d)と非磁性および扁平状の金属フィラー3の平均長径(d)との比(d/d)は、下記式(2)を満たすことが好ましい。
 0.5≦d/d≦5.0・・・(2)
 d/dが上記範囲にある場合、非磁性および扁平状の金属フィラー3が等方的に分散され易くなる。なお、放熱部材1における非磁性および扁平状の金属フィラー3の配向状態は、上述の放熱部材1の分散構造と同じ方法で確認することができる。
Physically, the non-magnetic and flat-shaped metal filler 3 is such that due to the presence of the ceramic filler 2 in the heat-radiating member 1, the long axis direction of the non-magnetic and flat-shaped metal filler 3 is oriented in the longitudinal direction of the heat-radiating member 1. is prevented and tends to disperse isotropically. Therefore, in order to isotropically disperse the nonmagnetic and flat metal filler 3 in the heat dissipation member 1, the average particle diameter (d 1 ) of the ceramic filler 2 and the nonmagnetic and flat metal filler 3 must be adjusted. The ratio to the average major axis (d 2 ) may be adjusted. The ratio (d 1 /d 2 ) of the average particle diameter (d 1 ) of the ceramic filler 2 to the average major axis (d 2 ) of the nonmagnetic and flat metal filler 3 preferably satisfies the following formula (2) .
0.5≦ d1 / d2 ≦5.0...(2)
When d 1 /d 2 is within the above range, the nonmagnetic and flat metal filler 3 is more likely to be isotropically dispersed. Note that the orientation state of the nonmagnetic and flat metal filler 3 in the heat dissipation member 1 can be confirmed by the same method as the dispersion structure of the heat dissipation member 1 described above.
 (平均放射率)
 本実施の形態の放熱部材1の平均放射率は、70%以上である。一般的に、放熱部材1の放射率は温度によって変化するが、電気電子機器の放熱部材1として通常使用される200℃以下の温度領域、好ましくは150℃以下の温度領域において、70%以上の平均放射率を有している場合、放熱部材1として十分な冷却性能が得られる。放熱部材1の平均放射率は、75%以上であることが好ましく、80%以上であることがより好ましい。
(average emissivity)
The average emissivity of the heat dissipation member 1 of this embodiment is 70% or more. In general, the emissivity of the heat dissipation member 1 changes depending on the temperature, but in the temperature range of 200°C or less, preferably 150°C or less, which is usually used as the heat dissipation member 1 of electrical and electronic equipment, the emissivity of 70% or more When it has an average emissivity, sufficient cooling performance can be obtained as the heat dissipation member 1. The average emissivity of the heat dissipating member 1 is preferably 75% or more, more preferably 80% or more.
 平均放射率は、放射率測定装置を用いて、3μm以上25μm以下の波長領域における各放射率を測定し、全波長領域での放射率の平均値を算出することによって求められる。 The average emissivity is determined by measuring each emissivity in the wavelength range of 3 μm or more and 25 μm or less using an emissivity measurement device, and calculating the average value of the emissivity in the entire wavelength range.
 (熱伝導率)
 本実施の形態の放熱部材1の熱伝導率は、3W/(m・K)以上である。放熱部材1の熱伝導率が3W/(m・K)以上である場合、熱源から発生した熱が放熱部材1に効率的に伝達されるため、さらに高い放熱性能が期待できる。放熱部材1の熱伝導率は、5W/(m・K)以上であることが好ましく、10W/(m・K)以上であることがより好ましい。なお、本実施の形態における放熱部材1の熱伝導率は、放熱部材1の厚み方向の熱伝導率を意味する。
(Thermal conductivity)
The thermal conductivity of the heat dissipation member 1 of this embodiment is 3 W/(m·K) or more. When the thermal conductivity of the heat dissipation member 1 is 3 W/(m·K) or more, the heat generated from the heat source is efficiently transferred to the heat dissipation member 1, so that even higher heat dissipation performance can be expected. The thermal conductivity of the heat dissipating member 1 is preferably 5 W/(m·K) or more, more preferably 10 W/(m·K) or more. Note that the thermal conductivity of the heat dissipating member 1 in this embodiment means the thermal conductivity of the heat dissipating member 1 in the thickness direction.
 熱伝導率は、レーザーフラッシュ法を用いて測定される。 Thermal conductivity is measured using the laser flash method.
 (形状)
 本実施の形態の放熱部材1の形状は、用途に応じて適宜設定される。放熱部材1の形状は、特に制限はないが、例えば、シート、フィルム、薄膜、成形体等が挙げられる。
(shape)
The shape of the heat dissipating member 1 of this embodiment is appropriately set depending on the application. The shape of the heat dissipating member 1 is not particularly limited, and examples thereof include a sheet, a film, a thin film, a molded body, and the like.
 (厚み)
 放熱部材1の厚みtは、放熱部材1の形状や使用するセラミックフィラー2、非磁性および扁平状の金属フィラー3に応じて適宜調整される。ただし、非磁性および扁平状の金属フィラー3の平均長径(d)を考慮して、放熱部材1の厚みtは、5μm以上であることが好ましい。
(thickness)
The thickness t of the heat dissipation member 1 is adjusted as appropriate depending on the shape of the heat dissipation member 1, the ceramic filler 2 used, and the non-magnetic and flat metal filler 3. However, in consideration of the average major axis (d 2 ) of the nonmagnetic and flat metal filler 3, the thickness t of the heat dissipation member 1 is preferably 5 μm or more.
 (その他)
 本実施の形態の放熱部材1は、本開示の効果を損なわない範囲で、溶剤を含んでいてもよい。溶剤としては、特に限定されることはなく、使用するセラミックフィラー2や非磁性および扁平状の金属フィラー3の種類等に応じて公知のものを適宜選択すればよい。溶剤としては、例えば、水、メタノール、エタノール、プロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルプロピオンアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、酢酸エチル、酢酸ブチル、プロピレンカーボネート、ジエチレンカーボネート、トルエン、キシレン、ピリジン、テトラヒドロフラン、ジクロロメタン、クロロホルム、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、ギ酸、酢酸等が挙げられる。これらの溶剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて使用する場合には、その組み合わせは特に限定されない。
(others)
The heat dissipation member 1 of this embodiment may contain a solvent to the extent that the effects of the present disclosure are not impaired. The solvent is not particularly limited, and any known solvent may be appropriately selected depending on the type of ceramic filler 2 and non-magnetic and flat metal filler 3 to be used. Examples of the solvent include water, methanol, ethanol, propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethylpropionamide, dimethylsulfoxide, N -Methyl-2-pyrrolidone, ethyl acetate, butyl acetate, propylene carbonate, diethylene carbonate, toluene, xylene, pyridine, tetrahydrofuran, dichloromethane, chloroform, 1,1,1,3,3,3-hexafluoroisopropanol, formic acid, acetic acid etc. These solvents may be used alone or in combination of two or more. When using two or more types in combination, the combination is not particularly limited.
 実施の形態2.
 図9は、実施の形態2に係る基材付き放熱部材の一例を示す断面模式図である。以下、図9を用いて、本実施の形態に係る基材付き放熱部材について説明する。本実施の形態の基材付き放熱部材は、基材8と、放熱部材1と、を備え、放熱部材1は、基材8の表面にコーティングされるコーティング層である。
Embodiment 2.
FIG. 9 is a schematic cross-sectional view showing an example of a heat dissipating member with a base material according to the second embodiment. Hereinafter, the heat dissipating member with a base material according to the present embodiment will be described using FIG. 9. The heat dissipation member with a base material of this embodiment includes a base material 8 and a heat dissipation member 1, and the heat dissipation member 1 is a coating layer coated on the surface of the base material 8.
 基材8は、特に制限はないが、熱源5の熱を効率的に伝達する観点から、熱伝導率の高い金属およびセラミックであることが好ましい。金属としては、例えば、アルミニウム、銅、ステンレス、鉄、その他合金等が挙げられる。セラミックとしては、例えば、アルミナ、マグネシア、ジルコニア、窒化アルミ、炭化ケイ素等が挙げられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて使用する場合には、その組み合わせは特に限定されない。 The base material 8 is not particularly limited, but from the viewpoint of efficiently transmitting heat from the heat source 5, it is preferably made of metal or ceramic with high thermal conductivity. Examples of the metal include aluminum, copper, stainless steel, iron, and other alloys. Examples of the ceramic include alumina, magnesia, zirconia, aluminum nitride, and silicon carbide. These may be used alone or in combination of two or more. When using two or more types in combination, the combination is not particularly limited.
 また、コーティング層の厚みは、放熱部材1の厚みと同様に、放熱部材1の形状や使用するセラミックフィラー2の平均粒径(d)、非磁性および扁平状の金属フィラー3の平均長径(d)に応じて適宜調整される。ただし、基材8との密着性やヒートサイクル等の長期信頼性試験での耐剥離性の観点から、10μm以上200μm以下であることが好ましい。 In addition, the thickness of the coating layer is determined by the shape of the heat dissipating member 1, the average particle diameter (d 1 ) of the ceramic filler 2 used, the average major axis (d 1 ) of the non-magnetic and flat metal filler 3, as well as the thickness of the heat dissipating member 1. d2 ) is adjusted as appropriate. However, from the viewpoint of adhesion to the base material 8 and peeling resistance in long-term reliability tests such as heat cycles, the thickness is preferably 10 μm or more and 200 μm or less.
 実施の形態3.
 本実施の形態のパワーモジュールは、電力半導体素子と、電力半導体素子で発生する熱を外部に放熱することのできる実施の形態1に記載の放熱部材または実施の形態2に記載の基材付き放熱部材と、外部と電気的に接続されるリードフレームと、を備える。リードフレームは、外部接続部を有する。外部接続部の表面の少なくとも一部は、実施の形態1に記載の放熱部材または実施の形態2に記載の基材付き放熱部材により覆われている。
Embodiment 3.
The power module of this embodiment includes a power semiconductor element and the heat radiation member described in Embodiment 1 that can radiate heat generated by the power semiconductor element to the outside, or the heat radiation member with base material described in Embodiment 2. and a lead frame that is electrically connected to the outside. The lead frame has external connections. At least a portion of the surface of the external connection portion is covered with the heat radiating member described in Embodiment 1 or the heat radiating member with a base material described in Embodiment 2.
 以下、本実施の形態のパワーモジュールについて図面を用いて説明する。
 図10は、本実施の形態のパワーモジュールの断面模式図である。図10において、パワーモジュール9は、リードフレーム10と、放熱部材であるヒートシンク11と、リードフレーム10とヒートシンク11との間に配置された絶縁シート12と、リードフレーム10に搭載された電力半導体素子13および制御用半導体素子14とを備えている。そして、電力半導体素子13と制御用半導体素子14との間、および、電力半導体素子13とリードフレーム10との間は、金属線15によってワイヤボンディングされている。また、リードフレーム10は外部接続部を有し、リードフレーム10の外部接続部以外、および、ヒートシンク11の外部放熱部以外は、封止樹脂16で封止されている。さらに、リードフレーム10の外部接続部の表面の少なくとも一部は、放熱部材1または基材付き放熱部材により覆われている。施工の容易性から基材付き放熱部材1であることが好ましい。パワーモジュール9は、リードフレーム10の外部接続部の表面の少なくとも一部が放熱部材1または基材付き放熱部材により覆われていることで、リードフレーム10の表面からの赤外線放射により、放熱性能が向上する。また、リードフレーム10の外部接続部の表面の放熱部材1または基材付き放熱部材により覆われている部分が多い程、パワーモジュール9の放熱性能はより向上する。
The power module of this embodiment will be described below with reference to the drawings.
FIG. 10 is a schematic cross-sectional view of the power module of this embodiment. In FIG. 10, the power module 9 includes a lead frame 10, a heat sink 11 which is a heat dissipation member, an insulating sheet 12 disposed between the lead frame 10 and the heat sink 11, and a power semiconductor element mounted on the lead frame 10. 13 and a control semiconductor element 14. Wire bonding is performed between the power semiconductor element 13 and the control semiconductor element 14 and between the power semiconductor element 13 and the lead frame 10 using metal wires 15. Further, the lead frame 10 has an external connection part, and the parts other than the external connection part of the lead frame 10 and the external heat dissipation part of the heat sink 11 are sealed with a sealing resin 16. Furthermore, at least a portion of the surface of the external connection portion of the lead frame 10 is covered with the heat radiating member 1 or the heat radiating member with a base material. The heat dissipation member 1 with a base material is preferable from the viewpoint of ease of construction. In the power module 9, at least a part of the surface of the external connection part of the lead frame 10 is covered with the heat dissipation member 1 or the heat dissipation member with a base material, so that the heat dissipation performance is improved by infrared radiation from the surface of the lead frame 10. improves. Furthermore, the more portions of the surface of the external connection portion of the lead frame 10 that are covered by the heat radiating member 1 or the heat radiating member with a base material, the more the heat radiating performance of the power module 9 improves.
 本実施の形態のパワーモジュールにおいて、放熱部材1以外の部材は特に限定されず、当該技術分野において公知のものを用いることができる。例えば、電力半導体素子13としては、ケイ素によって形成されたものを用いることができるが、ケイ素に比べてバンドギャップが大きいワイドバンドギャップ半導体によって形成されたものを用いることが好ましい。ワイドバンドギャップ半導体としては、例えば、炭化ケイ素、窒化ガリウム系材料、ダイヤモンド等が挙げられる。 In the power module of this embodiment, members other than the heat radiating member 1 are not particularly limited, and members known in the technical field can be used. For example, as the power semiconductor element 13, one formed of silicon can be used, but it is preferable to use one formed of a wide band gap semiconductor having a larger band gap than silicon. Examples of wide bandgap semiconductors include silicon carbide, gallium nitride materials, and diamond.
 ワイドバンドギャップ半導体によって形成された電力半導体素子13は、耐電圧性が高く、許容電流密度も高いため、電力半導体素子13の小型化が可能となる。そして、このように小型化された電力半導体素子13を用いることにより、電力半導体素子13を組み込んだパワーモジュール9の小型化も可能になる。 Since the power semiconductor element 13 formed of a wide bandgap semiconductor has high voltage resistance and high allowable current density, the power semiconductor element 13 can be miniaturized. By using the power semiconductor element 13 miniaturized in this way, it is also possible to miniaturize the power module 9 incorporating the power semiconductor element 13.
 また、ワイドバンドギャップ半導体により形成された電力半導体素子13は、耐熱性も高いため、リードフレーム10やヒートシンク11等の放熱部材等の小型化にもつながり、パワーモジュール9の一層の小型化が可能になる。 Furthermore, since the power semiconductor element 13 formed of a wide bandgap semiconductor has high heat resistance, it also leads to the miniaturization of heat dissipation members such as the lead frame 10 and the heat sink 11, making it possible to further miniaturize the power module 9. become.
 さらに、ワイドバンドギャップ半導体により形成された電力半導体素子13は、電力損失も低いため、素子としての高効率化も可能となる。 Further, since the power semiconductor element 13 formed of a wide bandgap semiconductor has low power loss, it is possible to improve the efficiency of the element.
 以下、実施例を挙げて本開示を詳細に説明するが、本開示はこれらに限定されるものではない。 Hereinafter, the present disclosure will be described in detail with reference to Examples, but the present disclosure is not limited thereto.
 <実施例1>
 保持材として、熱硬化性樹脂である液状のビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン株式会社製、エピコート828)100質量部と、硬化剤である1-シアノエチル-2-メチルイミダゾール(四国化成工業株式会社製、キュアゾール2PN-CN)1質量部とを混合した後、溶剤であるメチルエチルケトン166質量部を加えて混合攪拌した。次に、この混合物に、セラミックフィラーとしてアルミナフィラー(No.A)(形状:球形、平均粒径(d):1.2μm)563質量部と、非磁性および扁平状の金属フィラーとして銅フィラー(No.c)(平均長径(d):5.0μm)505質量部とを添加して予備混合した。次に、この予備混合物を三本ロールにて混練し、セラミックフィラーと非磁性および扁平状の金属フィラーとが均一に分散されるように調製した。
<Example 1>
As a holding material, 100 parts by mass of a liquid bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., Epicoat 828), which is a thermosetting resin, and 1-cyanoethyl-2-methylimidazole (Shikoku Kasei Kogyo Co., Ltd.), which is a curing agent, were used as a retaining material. After mixing with 1 part by mass of Curesol 2PN-CN (manufactured by Nippon Express Co., Ltd.), 166 parts by mass of methyl ethyl ketone as a solvent was added and mixed and stirred. Next, 563 parts by mass of alumina filler (No. A) (shape: spherical, average particle size (d 1 ): 1.2 μm) as a ceramic filler and copper filler as a nonmagnetic and flat metal filler were added to this mixture. (No. c) (average major axis (d 2 ): 5.0 μm) and 505 parts by mass were added and premixed. Next, this premix was kneaded using a three-roll mill so that the ceramic filler and the non-magnetic and flat metal filler were uniformly dispersed.
 次に、調製した組成物を厚さ2mmの基材(アルミニウム板)上にコーターを用いて塗布した後、110℃で15分間加熱乾燥させた。その後、120℃で1時間加熱し、さらに160℃で3時間加熱することで、溶剤を完全に除去し、保持材を完全に硬化させることで、放熱部材を得た。 Next, the prepared composition was applied onto a 2 mm thick base material (aluminum plate) using a coater, and then heated and dried at 110° C. for 15 minutes. Thereafter, the solvent was completely removed by heating at 120° C. for 1 hour and then at 160° C. for 3 hours, and the holding material was completely cured, thereby obtaining a heat dissipating member.
 <実施例2>
 アルミナフィラー(No.A)の代わりにアルミナフィラー(No.B)(形状:球形、平均粒径(d):2.5μm)を用いたこと以外は、実施例1と同じ方法で放熱部材を得た。
<Example 2>
A heat dissipation member was prepared in the same manner as in Example 1, except that alumina filler (No. B) (shape: spherical, average particle size (d 1 ): 2.5 μm) was used instead of alumina filler (No. A). I got it.
 <実施例3>
 アルミナフィラー(No.A)の代わりにアルミナフィラー(No.C)(形状:球形、平均粒径(d):10μm)を用いたこと以外は、実施例1と同じ方法で放熱部材を得た。
<Example 3>
A heat dissipation member was obtained in the same manner as in Example 1, except that alumina filler (No. C) (shape: spherical, average particle size (d 1 ): 10 μm) was used instead of alumina filler (No. A). Ta.
 <実施例4>
 アルミナフィラー(No.A)の代わりにアルミナフィラー(No.E)(形状:球形、平均粒径(d):24μm)を用いたこと以外は、実施例1と同じ方法で放熱部材を得た。
<Example 4>
A heat dissipation member was obtained in the same manner as in Example 1, except that alumina filler (No. E) (shape: spherical, average particle size (d 1 ): 24 μm) was used instead of alumina filler (No. A). Ta.
 <実施例5>
 アルミナフィラー(No.A)の代わりにアルミナフィラー(No.D)(形状:球形、平均粒径(d):15μm)を用いたこと、および、銅フィラー(No.c)の代わりに銅フィラー(No.b)(平均長径(d):2.1μm)を用いたこと以外は、実施例1と同じ方法で放熱部材を得た。
<Example 5>
Alumina filler (No.D) (shape: spherical, average particle size (d 1 ): 15 μm) was used instead of alumina filler (No.A), and copper was used instead of copper filler (No.c). A heat radiating member was obtained in the same manner as in Example 1, except that filler (No. b) (average major axis (d 2 ): 2.1 μm) was used.
 <実施例6>
 アルミナフィラー(No.A)の代わりにアルミナフィラー(No.E)を用いたこと、および、銅フィラー(No.c)の代わりに銅フィラー(No.b)を用いたこと以外は、実施例1と同じ方法で放熱部材を得た。
<Example 6>
Example except that alumina filler (No.E) was used instead of alumina filler (No.A) and copper filler (No.b) was used instead of copper filler (No.c). A heat dissipating member was obtained in the same manner as in Example 1.
 <実施例7>
 アルミナフィラー(No.A)の代わりにアルミナフィラー(No.B)を用いたこと、および、銅フィラー(No.c)の代わりに銅フィラー(No.a)(平均長径(d):0.8μm)を用いたこと以外は、実施例1と同じ方法で放熱部材を得た。
<Example 7>
Alumina filler (No.B) was used instead of alumina filler (No.A), and copper filler (No.a) was used instead of copper filler (No.c) (average major axis (d 2 ): 0 A heat dissipating member was obtained in the same manner as in Example 1, except that .8 μm) was used.
 <実施例8>
 アルミナフィラー(No.A)の代わりに電気石(No.F)(形状:球形、平均粒径(d):3.0μm)436質量部を用いたこと以外は、実施例1と同じ方法で放熱部材を得た。
<Example 8>
Same method as Example 1 except that 436 parts by mass of tourmaline (No. F) (shape: spherical, average particle size (d 1 ): 3.0 μm) was used instead of alumina filler (No. A). A heat dissipating member was obtained.
 <比較例1>
 アルミナフィラー(No.A)の代わりにアルミナフィラー(No.C)610質量を用いたこと、非磁性および扁平状の金属フィラーを用いなかったこと以外は、実施例1と同じ方法で放熱部材を得た。
<Comparative example 1>
A heat dissipation member was prepared in the same manner as in Example 1, except that alumina filler (No. C) 610 mass was used instead of alumina filler (No. A), and non-magnetic and flat metal fillers were not used. Obtained.
 <比較例2>
 アルミナフィラー(No.A)の代わりにアルミナフィラー(No.C)を用いたこと、および、銅フィラー(No.c)の代わりに非磁性および球形状の銅フィラー(平均粒径:2.5μm)を用いたこと以外は、実施例1と同じ方法で放熱部材を得た。
<Comparative example 2>
Alumina filler (No.C) was used instead of alumina filler (No.A), and non-magnetic and spherical copper filler (average particle size: 2.5 μm) was used instead of copper filler (No.c). ) A heat dissipating member was obtained in the same manner as in Example 1, except that the material was used.
 なお、実施例1~8で使用した銅フィラーNo.a~cに関して、上述の方法でアスペクト比を算出した結果、全て3以上30以下であることが確認された。また、実施例1~8の放熱部材の断面を、上述の方法で観察した結果、混練時と同様に、セラミックフィラーおよび非磁性および扁平状の金属フィラーが均一に分散していることが確認された。 Note that the copper filler No. used in Examples 1 to 8 As a result of calculating the aspect ratios of a to c using the method described above, it was confirmed that all of them were 3 or more and 30 or less. In addition, as a result of observing the cross sections of the heat dissipating members of Examples 1 to 8 using the method described above, it was confirmed that the ceramic filler and the nonmagnetic and flat metal fillers were uniformly dispersed, as in the case of kneading. Ta.
 <評価方法>
 評価は下記の方法により行った。
<Evaluation method>
Evaluation was performed by the following method.
 (1)熱伝導率
 実施例1~8および比較例1~2で得られた放熱部材について、厚み方向の熱伝導率をレーザーフラッシュ法にて測定した。試験片は、各放熱部材から、直径10mm、厚み1mmに切り出されたものが使用された。この熱伝導率の結果は、実施例1の放熱部材で得られた熱伝導率を基準とし、各実施例または各比較例の放熱部材で得られた熱伝導率の相対値([各実施例または各比較例の放熱部材で得られた熱伝導率]/[実施例1の放熱部材で得られた熱伝導率]の値)として表1に示した。
(1) Thermal conductivity The thermal conductivity in the thickness direction of the heat dissipating members obtained in Examples 1 to 8 and Comparative Examples 1 to 2 was measured by a laser flash method. The test pieces used were those cut out from each heat dissipation member to a diameter of 10 mm and a thickness of 1 mm. The thermal conductivity results are based on the thermal conductivity obtained with the heat dissipating member of Example 1, and the relative value of the thermal conductivity obtained with the heat dissipating member of each example or each comparative example ([each example Or the value of [thermal conductivity obtained with the heat dissipating member of each comparative example]/[thermal conductivity obtained with the heat dissipating member of Example 1]] is shown in Table 1.
 (2)冷却性能(放熱性能)
 縦100mm、横100mmおよび厚み7mmの実施例1~8および比較例1~2で得られた放熱部材の片側表面に、セラミックヒーターを取り付け、20Wの電力を印加し、放熱部材およびセラミックヒーターの温度が飽和温度に達するまで、数時間放置した。その後、熱電対を用いて、セラミックヒーターの表面温度を計測した。その結果を表1に示す。20Wの電力を印加した際のセラミックヒーターの飽和温度が放熱部材としての冷却性能であり、飽和温度が低い程、放熱部材としての冷却性能が高いことを示す。
(2) Cooling performance (heat dissipation performance)
A ceramic heater was attached to one surface of the heat dissipating member obtained in Examples 1 to 8 and Comparative Examples 1 to 2, which had a length of 100 mm, a width of 100 mm, and a thickness of 7 mm, and a power of 20 W was applied to the temperature of the heat dissipating member and the ceramic heater. It was left for several hours until it reached saturation temperature. Thereafter, the surface temperature of the ceramic heater was measured using a thermocouple. The results are shown in Table 1. The saturation temperature of the ceramic heater when a power of 20 W is applied is the cooling performance as a heat radiating member, and the lower the saturation temperature, the higher the cooling performance as the heat radiating member.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~8の放熱部材は、熱伝導率および冷却性能に優れていた。特に、0.5≦d/d≦5.0を満たす実施例2~4は、より熱伝導率および冷却性能に優れていた。さらに、放射性能に優れる電気石をセラミックフィラーとして用いた実施例8は、最も冷却性能に優れていた。 The heat dissipating members of Examples 1 to 8 had excellent thermal conductivity and cooling performance. In particular, Examples 2 to 4 satisfying 0.5≦d 1 /d 2 ≦5.0 had better thermal conductivity and cooling performance. Furthermore, Example 8, in which tourmaline with excellent radiation performance was used as the ceramic filler, had the best cooling performance.
 一方、比較例1は、非磁性および扁平状の金属フィラーを含まないため、熱伝導率および冷却性能が劣っていた。比較例2は、非磁性の金属フィラーではあるが、形状が球形状の金属フィラーを用いたため、熱伝導率および冷却性能が劣っていた。 On the other hand, Comparative Example 1 had poor thermal conductivity and cooling performance because it did not contain nonmagnetic and flat metal fillers. Although Comparative Example 2 was a non-magnetic metal filler, it used a spherical metal filler, so its thermal conductivity and cooling performance were poor.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed this time should be considered to be illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the claims rather than the above description, and it is intended that equivalent meanings and all changes within the scope of the claims are included.
 1 放熱部材、2 セラミックフィラー、3 金属フィラー、4 保持材、5 熱源、6 第1層、7 第2層、8 基材、9 パワーモジュール、10 リードフレーム、11 ヒートシンク、12 絶縁シート、13 電力半導体素子、14 制御用半導体素子、15 金属線、16 封止樹脂。 1 Heat dissipation member, 2 Ceramic filler, 3 Metal filler, 4 Holding material, 5 Heat source, 6 First layer, 7 Second layer, 8 Base material, 9 Power module, 10 Lead frame, 11 Heat sink, 12 Insulating sheet, 13 Electric power Semiconductor element, 14. Control semiconductor element, 15. Metal wire, 16. Sealing resin.

Claims (9)

  1.  セラミックフィラーと、非磁性および扁平状の金属フィラーと、保持材と、を含む、放熱部材。 A heat dissipation member that includes a ceramic filler, a non-magnetic and flat metal filler, and a holding material.
  2.  下記式(1):
     0.5≦d/d≦5.0・・・(1)
     の関係を満たし、上記式(1)中、
     dは、前記セラミックフィラーの平均粒径を示し、
     dは、前記金属フィラーの平均長径を示す、請求項1に記載の放熱部材。
    The following formula (1):
    0.5≦ d1 / d2 ≦5.0...(1)
    satisfies the relationship, and in the above formula (1),
    d1 indicates the average particle size of the ceramic filler,
    The heat dissipation member according to claim 1, wherein d2 represents an average major axis of the metal filler.
  3.  前記セラミックフィラーが、アルミナおよび電気石からなる群から選択される少なくとも1種を含む、請求項1または2に記載の放熱部材。 The heat dissipation member according to claim 1 or 2, wherein the ceramic filler contains at least one selected from the group consisting of alumina and tourmaline.
  4.  前記セラミックフィラーおよび前記金属フィラーが、均一に分散している、請求項1から3のいずれか1項に記載の放熱部材。 The heat dissipation member according to any one of claims 1 to 3, wherein the ceramic filler and the metal filler are uniformly dispersed.
  5.  前記セラミックフィラーおよび前記金属フィラーが、放熱部材の厚み方向において、含有量に濃度勾配を有する、請求項1から3のいずれか1項に記載の放熱部材。 The heat dissipation member according to any one of claims 1 to 3, wherein the ceramic filler and the metal filler have a concentration gradient in content in the thickness direction of the heat dissipation member.
  6.  基材と、請求項1から5のいずれか1項に記載の放熱部材と、を備え、
     前記放熱部材は、前記基材の表面にコーティングされるコーティング層である、基材付き放熱部材。
    comprising a base material and the heat dissipation member according to any one of claims 1 to 5,
    The heat dissipation member is a heat dissipation member with a base material, which is a coating layer coated on the surface of the base material.
  7.  電力半導体素子と、前記電力半導体素子で発生する熱を外部に放熱することのできる請求項1から5のいずれか1項に記載の放熱部材または請求項6に記載の基材付き放熱部材と、外部と電気的に接続されるリードフレームと、を備え、
     前記リードフレームは、外部接続部を有し、
     前記外部接続部の表面の少なくとも一部は、前記放熱部材または前記基材付き放熱部材により覆われている、パワーモジュール。
    A power semiconductor element, a heat radiating member according to any one of claims 1 to 5, or a heat radiating member with a base material according to claim 6, which is capable of radiating heat generated by the power semiconductor element to the outside; A lead frame that is electrically connected to the outside,
    The lead frame has an external connection part,
    At least a part of the surface of the external connection part is covered with the heat radiating member or the heat radiating member with a base material.
  8.  前記電力半導体素子は、ワイドバンドギャップ半導体によって構成されている、請求項7に記載のパワーモジュール。 The power module according to claim 7, wherein the power semiconductor element is made of a wide bandgap semiconductor.
  9.  前記ワイドバンドギャップ半導体は、炭化ケイ素、窒化ガリウム系材料またはダイヤモンドである、請求項8に記載のパワーモジュール。 The power module according to claim 8, wherein the wide bandgap semiconductor is silicon carbide, gallium nitride-based material, or diamond.
PCT/JP2022/027452 2022-07-12 2022-07-12 Heat dissipation member, heat dissipation member with base material, and power module WO2024013858A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023519041A JP7330419B1 (en) 2022-07-12 2022-07-12 Heat-dissipating member, heat-dissipating member with base material, and power module
PCT/JP2022/027452 WO2024013858A1 (en) 2022-07-12 2022-07-12 Heat dissipation member, heat dissipation member with base material, and power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027452 WO2024013858A1 (en) 2022-07-12 2022-07-12 Heat dissipation member, heat dissipation member with base material, and power module

Publications (1)

Publication Number Publication Date
WO2024013858A1 true WO2024013858A1 (en) 2024-01-18

Family

ID=87577134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027452 WO2024013858A1 (en) 2022-07-12 2022-07-12 Heat dissipation member, heat dissipation member with base material, and power module

Country Status (2)

Country Link
JP (1) JP7330419B1 (en)
WO (1) WO2024013858A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211060A (en) * 2002-12-16 2004-07-29 Ceramission Kk Emulsion composition, coating film formed therefrom and cooling structure using the coating film
WO2014046088A1 (en) * 2012-09-24 2014-03-27 デクセリアルズ株式会社 Anisotropic conductive adhesive and connection structure
WO2015072487A1 (en) * 2013-11-14 2015-05-21 Jnc株式会社 Electromagnetic-wave-absorbing heat dissipation sheet
JP2017208505A (en) * 2016-05-20 2017-11-24 パナソニックIpマネジメント株式会社 Structure, and electronic component and electronic apparatus including the structure
WO2021060348A1 (en) * 2019-09-26 2021-04-01 富士フイルム株式会社 Heat-conducting layer production method, laminate production method, and semiconductor device production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211060A (en) * 2002-12-16 2004-07-29 Ceramission Kk Emulsion composition, coating film formed therefrom and cooling structure using the coating film
WO2014046088A1 (en) * 2012-09-24 2014-03-27 デクセリアルズ株式会社 Anisotropic conductive adhesive and connection structure
WO2015072487A1 (en) * 2013-11-14 2015-05-21 Jnc株式会社 Electromagnetic-wave-absorbing heat dissipation sheet
JP2017208505A (en) * 2016-05-20 2017-11-24 パナソニックIpマネジメント株式会社 Structure, and electronic component and electronic apparatus including the structure
WO2021060348A1 (en) * 2019-09-26 2021-04-01 富士フイルム株式会社 Heat-conducting layer production method, laminate production method, and semiconductor device production method

Also Published As

Publication number Publication date
JP7330419B1 (en) 2023-08-21

Similar Documents

Publication Publication Date Title
JP4089636B2 (en) Method for manufacturing thermally conductive resin sheet and method for manufacturing power module
JP5184543B2 (en) Thermally conductive sheet and power module
JP5036696B2 (en) Thermally conductive sheet and power module
JP2008153430A (en) Heatsink substrate and heat conductive sheet, and power module using these
JP2008255186A (en) Heat-conductive resin sheet and power module
JP2011178894A (en) Thermosetting resin composition, thermally conductive sheet, and power module
JP5063710B2 (en) Power module
JP5791488B2 (en) Resin composition for heat conductive sheet, heat conductive sheet and power module
JP2011178961A (en) Resin composition, heat-conductive sheet, method for producing the sheet, and power module
WO2018235919A1 (en) Heat dissipation sheet, method for producing heat dissipation sheet, and laminate
JP2008199720A (en) Power supply module
JP2014152299A (en) Thermosetting resin composition, conductive resin sheet, method for producing the same, and power module comprising the same
JP5274007B2 (en) Thermally conductive resin sheet and power module using the same
JP5391530B2 (en) Method for manufacturing thermally conductive resin sheet and method for manufacturing power module
JP2000191987A (en) Thermally conductive adhesive film and semiconductive device
JP7208720B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP5653280B2 (en) Resin composition for heat conductive sheet, heat conductive sheet and power module
JP6508384B2 (en) Thermal conductive sheet and semiconductor device
WO2024013858A1 (en) Heat dissipation member, heat dissipation member with base material, and power module
JP2001002830A (en) Highly thermally conductive composition
JP7265321B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP2007084704A (en) Resin composition and circuit board and package using the same
JP2779573B2 (en) High heat dissipation integrated circuit package
JP2004064050A (en) Module structure and circuit board suitable for it
JP2015026780A (en) Insulating heat dissipating substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951072

Country of ref document: EP

Kind code of ref document: A1