WO2024012311A1 - 声表面波谐振装置的形成方法 - Google Patents

声表面波谐振装置的形成方法 Download PDF

Info

Publication number
WO2024012311A1
WO2024012311A1 PCT/CN2023/105658 CN2023105658W WO2024012311A1 WO 2024012311 A1 WO2024012311 A1 WO 2024012311A1 CN 2023105658 W CN2023105658 W CN 2023105658W WO 2024012311 A1 WO2024012311 A1 WO 2024012311A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
temperature compensation
load
area
forming
Prior art date
Application number
PCT/CN2023/105658
Other languages
English (en)
French (fr)
Inventor
韩兴
周建
邹雅丽
王斌
Original Assignee
常州承芯半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州承芯半导体有限公司 filed Critical 常州承芯半导体有限公司
Publication of WO2024012311A1 publication Critical patent/WO2024012311A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • H03H3/10Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to the field of semiconductor technology, and in particular to a method for forming a surface acoustic wave resonance device.
  • Radio frequency (RF) front-end chips for wireless communication equipment include: power amplifier (PowerAmplifier, PA), antenna switch, RF filter, multiplexer (multiplexer) including duplexer (duplexer), and low noise amplifier (Low Noise Amplifier, LNA) etc.
  • RF filters include piezoelectric surface acoustic wave (SAW) filters, piezoelectric bulk acoustic wave (BAW) filters, microelectromechanical system (MicroElectroMechanical System, MEMS) filters, integrated passive Device (Integrated Passive Devices, IPD) filters, etc.
  • SAW filters SAW filters
  • the Q value is the quality factor value of the resonator, which is defined as the center frequency divided by the 3dB bandwidth of the resonator.
  • the frequency of use of the SAW filter is generally 0.4GHz ⁇ 2.7GHz.
  • the technical problem solved by the present invention is to provide a method for forming a surface acoustic wave resonance device to optimize the process steps of forming a surface acoustic wave resonance device and to improve temperature compensation.
  • the quality of the layer can be achieved through simple process steps to form an acoustic surface that is effective in suppressing lateral parasitic resonance in high-order modes, weakening split modes, and reducing split parasitics introduced by the load layer into the passband of the filter device.
  • Wave resonance device is a method for forming a surface acoustic wave resonance device to optimize the process steps of forming a surface acoustic wave resonance device and to improve temperature compensation.
  • the technical solution of the present invention provides a method for forming a surface acoustic wave resonance device, which includes: providing a piezoelectric substrate, the piezoelectric substrate including a first spacing area and a third spacer arranged sequentially along a first direction. A first area, a second area, a third area and a second spacer area; an electrode layer is formed on the surface of the piezoelectric substrate, and the electrode layer includes: a first bus line, a second bus line, and several bus lines connected to the first bus line. A first electrode strip, and a plurality of second electrode strips connected to the second bus line.
  • the first electrode strips and the second electrode strips are alternately arranged in a second direction, and the second direction is perpendicular to the In the first direction, the first electrode strip is located on the surface of the first separation area, the first area, the second area and the third area, and the second electrode strip is located on the second separation area.
  • a first temperature compensation layer is formed on the surface of the piezoelectric substrate and the electrode layer, and the first temperature compensation layer covers the electrode layer, the first temperature compensation layer includes a first compensation area and a second compensation area arranged along the first direction, the junction between the first compensation area and the second compensation area is located at on the second area, and the surface of the first temperature compensation layer in the first compensation area is higher than the surface in the second compensation area; formed on the surface of the first temperature compensation layer: located on the a first load layer on the first region, and a second load layer on the third region.
  • the method of forming the first temperature compensation layer includes: depositing an initial first temperature compensation layer on the surface of the piezoelectric substrate and the electrode layer, and the initial first temperature compensation layer covers the electrode layer; A first mask layer is formed on the surface of the first compensation area, and the first mask layer exposes the initial first temperature compensation layer of the second compensation area; the first mask layer is used as a mask to engrave The exposed initial first temperature compensation layer is etched to form the first temperature compensation layer.
  • the first load layer has a single-layer structure
  • the second load layer has a single-layer structure
  • the first load layer includes two or more first sub-load layers, and, The materials of each of the first sub-load layers are different; the second load layer includes two or more second sub-load layers, and the materials of each of the second sub-load layers are different.
  • the method for forming the first load layer and the second load layer includes: forming a first load layer film on the surface of the first temperature compensation layer; A second mask layer is formed on the surface of the first load layer film on the region; the first load layer film is etched using the second mask layer as a mask until the surface of the first temperature compensation layer is exposed.
  • a peeling process is used to form the first load layer and the second load layer on the surface of the first temperature compensation layer.
  • the method further includes: forming a frequency modulation layer on the surface of the first temperature compensation layer, the surface of the first load layer and the surface of the second load layer.
  • the method further includes: forming a second temperature compensation layer on the surface of the first temperature compensation layer, the surface of the first load layer and the surface of the second load layer, and the second temperature compensation layer covers the first temperature compensation layer. a load layer and the second load layer.
  • the method further includes: forming a frequency modulation layer on the surface of the second temperature compensation layer.
  • the surface of the second temperature compensation layer on the first compensation area is lower or higher than the surface on the second compensation area.
  • the formation method of the second temperature compensation layer includes: depositing an initial second temperature compensation layer on the surface of the first temperature compensation layer, the surface of the first load layer and the surface of the second load layer, so The initial second temperature compensation layer covers the first load layer and the second load layer; a third mask layer is formed on the surface of the initial second temperature compensation layer, and the third mask layer exposes the An initial second temperature compensation layer on the first compensation area; using the third mask layer as a mask to etch the exposed initial second temperature compensation layer to form the second temperature compensation layer.
  • the method further includes: forming a third load layer located on the first load layer and a fourth load layer located on the second load layer on the surface of the second temperature compensation layer.
  • the method further includes: depositing a third temperature compensation layer on the surface of the second temperature compensation layer, the surface of the third load layer and the surface of the fourth load layer, and the third temperature compensation layer covers the third temperature compensation layer. three load layers and the fourth load layer.
  • the method further includes: forming a frequency modulation layer on the surface of the third temperature compensation layer.
  • the first temperature compensation layer since a first temperature compensation layer covering the electrode layer is formed on the surface of the piezoelectric substrate and the electrode layer, the first temperature compensation layer It includes a first compensation area and a second compensation area arranged along the first direction, the junction between the first compensation area and the second compensation area is located on the second area, and, The surface of the first temperature compensation layer in the first compensation area is higher than the surface in the second compensation area. Therefore, front layers with different heights are provided for forming the first load layer and the second load layer. surface, so that the first load layer and the second load layer with different height positions can be formed in the same step to form the first load layer of an asymmetric structure, thereby optimizing the process steps.
  • the single-layer first temperature compensation layer is directly formed on the surface of the piezoelectric substrate and the electrode layer as a front layer support for forming the first load layer and the second load layer, Therefore, the thickness of the first temperature compensation layer is larger and the lattice quality is better. Therefore, when other temperature compensation layers are formed on the surface of the first temperature compensation layer and the first load layer, the mutual interference between them is The risk of lattice mismatch is small and the temperature compensation effect is good.
  • the method for forming a surface acoustic wave resonant device optimizes the process steps for forming a surface acoustic wave resonator device, and improves the quality of the temperature compensation layer, achieving the goal of suppressing lateral distortion in high-order modes through simple process steps. It is a surface acoustic wave resonant device that is effective in parasitic resonance, weakening split mode, and reducing split parasitics introduced from the load layer into the passband of the filter device.
  • Figures 1 to 6 are structural schematic diagrams of each step in the formation process of a SAW resonator
  • Figures 7 to 13 illustrate a method for forming a surface acoustic wave resonance device according to an embodiment of the present invention. Structural diagram of each step;
  • 14 to 15 are structural schematic diagrams of each step of a method for forming a surface acoustic wave resonance device according to another embodiment of the present invention.
  • 16 to 19 are structural schematic diagrams of each step of a method for forming a surface acoustic wave resonance device according to another embodiment of the present invention.
  • Figures 1 to 6 are structural schematic diagrams of each step in the formation process of a SAW resonator.
  • Figure 1 is a top structural schematic diagram of Figure 2.
  • Figure 2 is a cross-sectional structural schematic diagram along the direction A1-A2 in Figure 1.
  • a piezoelectric substrate 100 is provided, and the piezoelectric substrate 100 has a Electrode layer 110.
  • the piezoelectric substrate 100 includes a first isolation area A, a first area I, a second area II, a third area III and a second isolation area B sequentially arranged in the first direction X.
  • the electrode layer 110 includes: a first bus line 111, a second bus line 112, a plurality of first electrode strips 113 connected to the first bus line 111, and a plurality of second electrode strips 114 connected to the second bus line 112,
  • the first electrode strips 113 and the second electrode strips 114 are alternately arranged in the second direction Y, which is perpendicular to the first direction X, and the first electrode strips 113 are located in the On the surface of the first spacer area A, the first area I, the second area II and the third area III, the second electrode strip 114 is located in the second spacer area B, the first area I , the second area II and the third area III surface.
  • FIG. 3 Please refer to FIG. 3 .
  • the view direction of FIG. 3 is consistent with that of FIG. 2 .
  • a first temperature compensation layer 121 is formed on the surface of the piezoelectric substrate 100 and the surface of the electrode layer 110 .
  • a first load layer 131 is formed on the surface of the first temperature compensation layer 121 in the first region I.
  • a second temperature compensation layer 122 is formed on the surface of the first temperature compensation layer 121 and the first load layer 131 .
  • Figure 4 is a top structural schematic diagram of Figure 5.
  • Figure 5 is a cross-sectional structural schematic diagram along the direction A1-A2 in Figure 4. The surface of the second temperature compensation layer 122 on the third region III A second load layer 132 is formed.
  • first temperature compensation layer 121 and the second temperature compensation layer are not shown in FIG. 4 122.
  • FIG. 6 Please refer to FIG. 6 .
  • the view direction of FIG. 6 is consistent with that of FIG. 5 .
  • a third temperature compensation layer 123 is formed on the surface of the second load layer 132 and the second temperature compensation layer 122 .
  • the first temperature compensation layer 121, the second temperature compensation layer 122 and the third temperature compensation layer 123 have opposite temperature frequency shift characteristics to the piezoelectric substrate 100, and the frequency temperature coefficient (Temperature Coefficient of Frequency, TCF) can be adjusted to The adjustment frequency temperature coefficient tends to 0 ppm/°C, thereby improving the drift characteristics of the operating frequency of the SAW resonator with the operating temperature, so that the SAW resonator has higher frequency and temperature stability.
  • a SAW resonator including a temperature compensation layer is called a temperature-compensated SAW resonator, that is, a TCSAW resonator.
  • the first temperature compensation layer 121 , the second temperature compensation layer 122 and the third temperature compensation layer 123 constitute the temperature compensation layer 120 .
  • a frequency modulation layer 140 is formed on the third temperature compensation layer 123 .
  • the first load layer 131 is located in the temperature compensation layer 120 on the first region I
  • the second load layer 132 is located in the temperature compensation layer 120 on the third region III
  • the splitting modes of one load layer 131 and the splitting modes of the second load layer 132 can cancel each other, thereby reducing the splitting spuriousness introduced by the load layer into the passband of the filter device.
  • the first load layer 131 is formed on the surface of the first temperature compensation layer 121 on the first region I, then, the first load layer 131 is formed on the surface of the first temperature compensation layer 121 and the first load layer.
  • the second temperature compensation layer 122 is formed on the surface of the third region III, and then the second load layer 132 is formed on the surface of the second temperature compensation layer 122 on the third region III to achieve the formation of the first load layer 131 and 131 with a height difference.
  • the second load layer 132 therefore, not only the first load layer 131 and the second load layer 132 need to be formed separately, resulting in complicated process steps, increased production costs, reduced production efficiency, and at the same time, are subject to the height Due to the limitation of the difference size, the thickness of the second temperature compensation layer 122 is relatively thin, resulting in poor lattice quality of the second temperature compensation layer 122.
  • the second temperature compensation layer 122 is different from the first temperature compensation layer 122.
  • the layer 121 and the third temperature compensation layer 123 produce lattice mismatch, resulting in poor temperature compensation effect.
  • the technical solution of the present invention provides a method for forming a surface acoustic wave resonance device, which includes: providing a piezoelectric substrate, the piezoelectric substrate including a first spacing area and a third spacer arranged sequentially along a first direction. A first area, a second area, a third area and a second spacer area; an electrode layer is formed on the surface of the piezoelectric substrate, and the electrode layer includes: a first bus line, a second bus line, and several bus lines connected to the first bus line. A first electrode strip, and a plurality of second electrode strips connected to the second bus line.
  • the first electrode strips and the second electrode strips are alternately arranged in a second direction, and the second direction is perpendicular to the In the first direction, the first electrode strip is located on the surface of the first separation area, the first area, the second area and the third area, and the second electrode strip is located on the second separation area.
  • a first temperature compensation layer is formed on the surface of the piezoelectric substrate and the electrode layer, and the first temperature compensation layer covers the electrode layer, the first temperature compensation layer includes a first compensation area and a second compensation area arranged along the first direction, the junction between the first compensation area and the second compensation area is located at on the second area, and the surface of the first temperature compensation layer in the first compensation area is higher than the surface in the second compensation area; formed on the surface of the first temperature compensation layer: located on the a first load layer on the first region, and a second load layer on the third region.
  • the method optimizes the process steps for forming a surface acoustic wave resonance device, improves the quality of the temperature compensation layer, and realizes the formation of a method for suppressing lateral parasitic resonance in high-order modes and weakening split modes through simple process steps.
  • split mode a surface acoustic wave resonator device that is effective in reducing split parasitics introduced by the load layer into the passband of the filter device.
  • FIG. 7 to 13 are structural schematic diagrams of each step of a method for forming a surface acoustic wave resonance device according to an embodiment of the present invention.
  • Figure 7 is a schematic top view of the structure of Figure 8.
  • Figure 8 is a schematic cross-sectional structure along the direction T1-T2 in Figure 7.
  • a piezoelectric substrate 200 is provided.
  • the piezoelectric substrate 200 includes a structure along the first The first spacer area A, the first area I, the second area II, the third area III and the second spacer area B are arranged in sequence in the direction X.
  • the material of the piezoelectric substrate 200 includes but is not limited to one of the following: lithium tantalate, lithium niobate, lead zirconate titanate, lead magnesium niobate-lead titanate, aluminum nitride, nitride Aluminum alloy, gallium nitride, zinc oxide.
  • an electrode layer 210 is formed on the surface of the piezoelectric substrate 200 .
  • the electrode layer 210 includes: a first bus line 211, a second bus line 212, a plurality of first electrode strips 213 connected to the first bus line 211, and a plurality of second electrode strips 214 connected to the second bus line 212.
  • a plurality of the first electrode strips 213 and a plurality of the second electrode strips 214 are located between the first bus line 211 and the second bus line 212 .
  • the first electrode strips 213 and the second electrode strips 214 are alternately arranged in the second direction Y, which is perpendicular to the first direction X, and the first electrode strips 213 are located in the On the surface of the first spacer area A, the first area I, the second area II and the third area III, the second electrode strip 214 is located in the second spacer area B, the first area I , the second area II and the third area III surface.
  • the material of the electrode layer 210 includes but is not limited to one of the following: molybdenum, ruthenium, tungsten, platinum, Iridium, aluminum, beryllium, gold, titanium, copper, chromium, magnesium, scandium, and alloys of any two or more of the above materials.
  • the electrode layer 210 may have a single-layer structure, a two-layer structure, or a multi-layer structure.
  • the electrode layer 210 may include two electrode layer sub-layers (2-layer structure), and the materials of the two electrode layer sub-layers are aluminum and magnesium respectively.
  • a first temperature compensation layer is formed on the surface of the piezoelectric substrate 200 and the electrode layer 210 , the first temperature compensation layer covers the electrode layer 210 , and the first temperature compensation layer includes components along the first The first compensation area and the second compensation area are arranged in the direction X, the junction between the first compensation area and the second compensation area is located on the second area II, and the first temperature compensation The surface of the layer in the first compensation zone is higher than the surface in the second compensation zone.
  • Figure 9 The view direction of Figure 9 is consistent with that of Figure 8.
  • An initial first temperature compensation layer 220 is deposited on the surface of the piezoelectric substrate 200 and the electrode layer 210.
  • the initial first temperature compensation layer 220 covers the Electrode layer 210.
  • the surface of the initial first temperature compensation layer 220 is higher than the surface of the electrode layer 210 .
  • the initial first temperature compensation layer 220 provides materials for forming the first temperature compensation layer.
  • the material of the initial first temperature compensation layer 220 includes but is not limited to one of the following: silicon dioxide, silicon oxyfluoride, and silicon oxycarbide.
  • the initial first temperature compensation layer 220 includes a first compensation area K1 and a second compensation area K2 arranged along the first direction X, with a gap between the first compensation area K1 and the second compensation area K2 The junction is located on said second zone II.
  • the process of depositing the initial first temperature compensation layer 220 includes but is not limited to one of the following: chemical vapor deposition process, physical vapor deposition process, atomic layer deposition process. art.
  • a first mask layer 221 is formed on the surface of the first compensation area K1 , and the first mask layer 221 exposes the initial first temperature compensation layer 220 of the second compensation area K2 .
  • the first mask layer 221 is formed by transferring a pattern through a photolithography process.
  • FIG. 10 Please refer to FIG. 10.
  • the view direction of FIG. 10 is consistent with that of FIG. 9.
  • the first mask layer 221 (shown in FIG. 9) is used as a mask to etch the exposed initial first temperature compensation layer 220.
  • a first temperature compensation layer 222 is formed on the surface of the piezoelectric substrate 200 and the electrode layer 210 .
  • the first temperature compensation layer 222 covers the electrode layer 210, and the first temperature compensation layer 222 includes the first compensation area K1 and the second compensation area K2, where the first temperature compensation layer 222 is located.
  • the surface of the first compensation area K1 is higher than the surface of the second compensation area K2.
  • the load layer provides front layer support so that the first load layer and the second load layer are located on surfaces at different heights.
  • the height difference d1 is determined according to actual device requirements. For example, it can be determined according to the requirements for the resonant frequency of the area corresponding to the first load layer and the resonant frequency of the area corresponding to the second load layer.
  • the etching step may be stopped according to the preset height difference d1.
  • the initial first temperature compensation layer 220 is formed by deposition, and then the initial first temperature compensation layer 220 of the second compensation region K2 is etched to form The first temperature compensation layer 222 is formed. Therefore, the thickness of the first temperature compensation layer 222 is larger and the lattice quality is better.
  • the material of the first temperature compensation layer 222 includes but is not limited to one of the following: silicon dioxide, silicon oxyfluoride, and silicon oxycarbide.
  • the process of etching the exposed initial first temperature compensation layer 220 includes: at least one of a wet etching process and a dry etching process.
  • the first mask layer 221 is removed.
  • Figure 11 is a schematic top view of the structure of Figure 12.
  • Figure 12 is a schematic cross-sectional structure along the direction T1-T2 in Figure 11.
  • the first temperature compensation layer 222 is formed on the surface of the first temperature compensation layer 222.
  • the first temperature compensation layer 222 is not shown in FIG. 11 .
  • first load layer 231 located on the first region I and the second load layer 232 located on the third region III are formed on the surface of the first temperature compensation layer 222, through the A load layer 231 and the second load layer 232 can reduce the speed of sound in the area corresponding to the first load layer 231 and the area corresponding to the second load layer 232 in the formed surface acoustic wave resonance device, so as to cause the surface acoustic wave to resonate.
  • the device is excited to form a piston mode, which suppresses transverse parasitic resonance in high-order modes.
  • the resonance of the corresponding area of the first load layer 231 The frequency is greatly different from the resonant frequency of the corresponding area of the second load layer 232. Therefore, the splitting mode of the first load layer 231 and the splitting mode of the second load layer 232 can cancel each other, reducing the load layer Introduces splitting parasitics within the passband of the resonant device.
  • the first temperature compensation layer 222 since the first temperature compensation layer 222 covering the electrode layer 210 is formed on the surface of the piezoelectric substrate 200 and the electrode layer 210 , the first temperature compensation layer 222 includes components along the first direction.
  • the first compensation area K1 and the second compensation area K2 are arranged in X, and the junction between the first compensation area K1 and the second compensation area K2 is located in the on the second area II, and the surface of the first temperature compensation layer 222 in the first compensation area K1 is higher than the surface in the second compensation area K2 (the first temperature compensation layer 222 is in the second compensation area K2 There is a height difference d1) between the surface of a compensation area K1 and the surface of the second compensation area K2.
  • the first temperature compensation layer 222 forms the first load layer 231 and the second load.
  • the layer 232 provides front layer surfaces with different heights, so that the first load layer 231 and the second load layer 232 with different height positions can be formed through the same step to form the first load layer 231 and the second load layer of an asymmetric structure. layer 232, thereby optimizing the process step.
  • the single-layer first temperature compensation layer 222 is directly formed on the surface of the piezoelectric substrate 200 and the electrode layer 210 as the first load layer 231 and the second load layer. 232 is supported by the front layer, therefore, a first temperature compensation layer 222 with a larger thickness and better lattice quality can be formed. Therefore, when the first temperature compensation layer 222, the surface of the first load layer 231 and all When other temperature compensation layers are formed on the surface of the second load layer 232, the risk of lattice mismatch between them is small and the temperature compensation effect is good.
  • the method for forming a surface acoustic wave resonant device optimizes the process steps for forming a surface acoustic wave resonator device, and improves the quality of the temperature compensation layer, achieving the goal of suppressing lateral distortion in high-order modes through simple process steps. It is a surface acoustic wave resonant device that is effective in parasitic resonance, weakening split mode, and reducing split parasitics introduced from the load layer into the passband of the filter device.
  • the material of the first load layer 231 includes, but is not limited to, at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, beryllium, gold, titanium, copper, chromium, magnesium, and scandium.
  • the material of the second load layer 232 includes, but is not limited to, at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, beryllium, gold, titanium, copper, chromium, magnesium, and scandium.
  • the first load layer 231 has a single-layer structure.
  • the first load layer includes two or more first sub-load layers, and the materials of each first sub-load layer may be different.
  • the material of one first sub-load layer is molybdenum
  • the material of the other first sub-load layer is titanium.
  • the second load layer 232 has a single-layer structure.
  • the second load layer includes two or more second sub-load layers, and the materials of each second sub-load layer may be different.
  • one second sub-load layer is made of molybdenum, and the other second sub-load layer is made of titanium.
  • the formation method of the first load layer 231 and the second load layer 232 includes: forming a first load layer film (not shown) on the surface of the first temperature compensation layer 222; A second mask layer (not shown) is formed on the surface of the first load layer film on the first region I and the third region III; the first load layer is etched using the second mask layer as a mask. film until the surface of the first temperature compensation layer 222 is exposed.
  • the second mask layer is removed.
  • a lift-off process is used to form the first load layer and the second load layer on the surface of the first temperature compensation layer.
  • a frequency modulation layer 240 is formed on the surface of the first temperature compensation layer 222 , the surface of the first load layer 231 and the surface of the second load layer 232 .
  • the material of the frequency modulation layer 240 includes but is not limited to one of the following: silicon nitride, aluminum nitride, silicon oxynitride, aluminum oxide, and silicon carbide.
  • the formation process of the frequency modulation layer 240 is a deposition process.
  • the deposition process includes: at least one of a chemical vapor deposition process, a physical vapor deposition process, and an atomic layer deposition process.
  • 14 to 15 are structural schematic diagrams of each step of a method for forming a surface acoustic wave resonance device according to another embodiment of the present invention.
  • Fig. 16 On the surface of the first temperature compensation layer 222, the surface of the first load layer 231 and the second The second temperature compensation layer 300 is formed on the surface of the load layer 232. The second temperature compensation layer 300 covers the first load layer 231 and the second load layer 232 .
  • the first temperature compensation layer 222 has a large thickness and good lattice quality, the risk of lattice mismatch with the second temperature compensation layer 300 is small and the temperature compensation effect is good.
  • the material of the second temperature compensation layer 300 includes but is not limited to one of the following: silicon dioxide, silicon oxyfluoride, and silicon oxycarbide.
  • the formation process of the second temperature compensation layer 300 includes a deposition process.
  • the deposition process includes at least one of a chemical vapor deposition process, a physical vapor deposition process, and an atomic layer deposition process.
  • FIG. 15 Please refer to FIG. 15 .
  • the view direction of FIG. 15 is consistent with that of FIG. 14 .
  • a frequency modulation layer 310 is formed on the surface of the second temperature compensation layer 300 .
  • the material of the frequency modulation layer 310 includes but is not limited to one of the following: silicon nitride, aluminum nitride, silicon oxynitride, aluminum oxide, and silicon carbide.
  • the formation process of the frequency modulation layer 310 is a deposition process.
  • the deposition process includes: at least one of a chemical vapor deposition process, a physical vapor deposition process, and an atomic layer deposition process.
  • 16 to 19 are structural schematic diagrams of each step of a method for forming a surface acoustic wave resonance device according to another embodiment of the present invention.
  • a second temperature compensation layer is formed on the surface of the first temperature compensation layer 222, the surface of the first load layer 231 and the surface of the second load layer 232. layer, the second temperature compensation layer covers the first load layer 231 and the second load layer 232, and the surface of the second temperature compensation layer on the first compensation area K1 is lower than the surface on the first compensation area K1.
  • the surface of the second temperature compensation layer on the first compensation area K1 is higher than the surface on the second compensation area K2.
  • Fig. 16 for detailed steps of forming the second temperature compensation layer, please refer to Fig. 16 to Fig. 17.
  • Fig. 16 On the surface of the first temperature compensation layer 222, the surface of the first load layer 231 and the second An initial second temperature compensation layer 400 is deposited on the surface of the load layer 232 , and the initial second temperature compensation layer 400 covers the first load layer 231 and the second load layer 232 .
  • the surface of the initial second temperature compensation layer 400 is higher than the surface of the first load layer 231 and the surface of the second load layer 232 .
  • the initial second temperature compensation layer 400 provides materials for forming the second temperature compensation layer.
  • the material of the initial second temperature compensation layer 400 includes but is not limited to one of the following: silicon dioxide, silicon oxyfluoride, and silicon oxycarbide.
  • the process of depositing the initial second temperature compensation layer 400 includes but is not limited to one of the following: chemical vapor deposition process, physical vapor deposition process, and atomic layer deposition process.
  • a third mask layer 410 is formed on the surface of the initial second temperature compensation layer 400.
  • the third mask layer 410 exposes the initial second temperature compensation layer on the first compensation area K1. 400.
  • the third mask layer 410 is formed by transferring a pattern through a photolithography process.
  • the third mask layer 410 (shown in FIG. 16 ) is used as a mask to etch the exposed initial second temperature compensation layer 400 to form a second temperature compensation layer 401 .
  • the surface of the compensation layer 401 on the first compensation area K1 is lower than the surface on the second compensation area K2.
  • the surface of the second temperature compensation layer 401 in the first compensation area K1 is lower than the surface in the second compensation area K2 (the surface of the second temperature compensation layer 401 in the first compensation area K1 There is a height difference between the surface and the surface in the second compensation zone K2 d2), therefore, by forming the second temperature compensation layer 401, front-layer support can be provided for the third load layer and the fourth load layer that subsequently form an asymmetric structure through the same step, so that the third load layer and the fourth load layer can The four load layers are located on the surface at different heights.
  • the height difference d2 is determined according to actual device requirements. For example, it can be determined according to the requirements for the resonant frequency of the area corresponding to the first load layer and the resonant frequency of the area corresponding to the second load layer.
  • the etching step may be stopped according to the preset height difference d2.
  • the formed first load layer 231 is in a relatively higher position than the second load layer 232.
  • the second The temperature compensation layer 401 can cause the third load layer subsequently formed on the first load layer 231 to be in a relatively lower position than the fourth load layer formed on the second load layer 232 .
  • the initial second temperature compensation layer 400 is formed by deposition, and then the initial second temperature compensation layer 400 of the first compensation region K1 is etched. , to form the second temperature compensation layer 401. Therefore, the thickness of the second temperature compensation layer 401 is larger and the lattice quality is better.
  • the material of the second temperature compensation layer 401 includes but is not limited to one of the following: silicon dioxide, silicon oxyfluoride, and silicon oxycarbide.
  • the process of etching the exposed initial second temperature compensation layer 400 includes: at least one of a wet etching process and a dry etching process.
  • the third mask layer 410 is removed.
  • FIG. 18 The view direction of FIG. 18 is consistent with that of FIG. 17.
  • a third load layer 421 located on the first load layer 231 and a third load layer 421 located on the second load layer 401 are formed.
  • the surface of the second temperature compensation layer 401 in the first compensation area K1 is lower than the surface in the second compensation area K2, and, in the second temperature compensation layer 401
  • the surface is formed: a third load layer 421 located on the first load layer 231 and a fourth load layer 422 located on the second load layer 232.
  • the third load layer 421 and the fourth load layer 422 of the asymmetric structure The load layer 422 can further adjust the sound speed of the corresponding area (ie, the area corresponding to the first load layer 231 and the area corresponding to the second load layer 232) and the splitting mode of the surface acoustic wave resonant device to better achieve better results. Suppress transverse parasitic resonance in high-order modes and better meet the requirements of weakening split modes.
  • the surface of the second temperature compensation layer 401 in the first compensation area K1 is lower than that in the first compensation area K1.
  • the surface on the second compensation area K2 therefore, provides front layer surfaces with different heights for forming the third load layer 421 and the fourth load layer 422 through the second temperature compensation layer 401, so that the same
  • the single-layer second temperature compensation layer 401 is directly formed on the surface of the first temperature compensation layer 222, the first load layer 231 and the second load layer 232, as a result of forming the The third load layer 421 and the fourth load layer 422 are supported by the front layer. Therefore, the second temperature compensation layer 401 with a larger thickness and better lattice quality can be formed. Therefore, the second temperature compensation layer 401 and The risk of lattice mismatch between the first temperature compensation layer 222 and the subsequently formed third temperature compensation layer is small, thereby further improving the temperature compensation effect.
  • the material of the third load layer 421 includes, but is not limited to, at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, beryllium, gold, titanium, copper, chromium, magnesium, and scandium.
  • the material of the fourth load layer 422 includes, but is not limited to, at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, beryllium, gold, titanium, copper, chromium, magnesium, and scandium.
  • the third load layer 421 has a single-layer structure.
  • the third load layer includes two or more third sub-load layers, and the materials of each third sub-load layer may be different.
  • the material of one third sub-load layer is molybdenum, and the material of the other third sub-load layer is titanium.
  • the fourth load layer 422 has a single-layer structure.
  • the fourth load layer includes two or more layers of fourth sub-load layers, and the materials of each fourth sub-load layer may be different.
  • one fourth sub-load layer is made of molybdenum, and the other fourth sub-load layer is made of titanium.
  • the process steps for forming the third load layer 421 and the fourth load layer 422 may refer to the aforementioned process steps for forming the first load layer 231 and the second load layer 232, and will not be described again here.
  • a lift-off process is used to form the third load layer and the fourth load layer.
  • Figure 19 The view direction of Figure 19 is consistent with that of Figure 18.
  • a third temperature compensation layer is deposited on the surface of the second temperature compensation layer 401, the surface of the third load layer 421 and the surface of the fourth load layer 422.
  • Layer 430 , the third temperature compensation layer 430 covers the third load layer 421 and the fourth load layer 422 .
  • the material of the third temperature compensation layer 430 includes but is not limited to one of the following: silicon dioxide, silicon oxyfluoride, and silicon oxycarbide.
  • the process of depositing the third temperature compensation layer 430 includes at least one of a chemical vapor deposition process, a physical vapor deposition process, and an atomic layer deposition process.
  • a frequency modulation layer 440 is formed on the surface of the third temperature compensation layer 430 .
  • the material of the frequency modulation layer 440 includes but is not limited to one of the following: silicon nitride, aluminum nitride, silicon oxynitride, aluminum oxide, and silicon carbide.
  • the formation process of the frequency modulation layer 440 is a deposition process.
  • the deposition process includes: at least one of a chemical vapor deposition process, a physical vapor deposition process, and an atomic layer deposition process.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

一种声表面波谐振装置的形成方法,涉及半导体技术领域,包括:提供压电基底,所述压电基底包括沿第一方向依次排布的第一间隔区、第一区、第二区、第三区和第二间隔区;在所述压电基底表面形成电极层,所述电极层包括:第一总线、第二总线、与所述第一总线连接的若干第一电极条、以及与所述第二总线连接的若干第二电极条;在所述压电基底和所述电极层表面形成第一温度补偿层,所述第一温度补偿层包括第一补偿区和第二补偿区,所述第一温度补偿层在所述第一补偿区的表面高于在所述第二补偿区的表面;在所述第一温度补偿层表面形成:位于所述第一区上的第一负载层、以及位于所述第三区上的第二负载层。从而,改善了现有的形成工艺。

Description

声表面波谐振装置的形成方法
本申请要求2022年7月11日提交中国专利局、申请号为202210807812.1、发明名称为“声表面波谐振装置的形成方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及半导体技术领域,尤其涉及一种声表面波谐振装置的形成方法。
背景技术
无线通信设备的射频(Radio Frequency,RF)前端芯片包括:功率放大器(PowerAmplifier,PA)、天线开关、RF滤波器、包括双工器(duplexer)在内的多工器(multiplexer)和低噪声放大器(Low Noise Amplifier,LNA)等。其中,RF滤波器包括压电声表面波(Surface Acoustic Wave,SAW)滤波器、压电体声波(Bulk Acoustic Wave,BAW)滤波器、微机电系统(MicroElectroMechanical System,MEMS)滤波器、集成无源装置(Integrated Passive Devices,IPD)滤波器等。
SAW谐振器的Q值较高,因此,基于SAW谐振器制作的RF滤波器(即SAW滤波器)插入损耗(insertionloss)低、带外抑制(outofband rejection)高,是目前手机、基站等无线通信设备使用的主流RF滤波器。其中,所述Q值是谐振器的品质因数值,定义为中心频率除以谐振器3dB带宽,SAW滤波器的使用频率一般为0.4GHz~2.7GHz。
然而,现有的谐振器的形成工艺仍然有待改善。
发明内容
本发明解决的技术问题是提供一种声表面波谐振装置的形成方法,以优化形成声表面波谐振装置的工艺步骤,并且,提升温度补偿 层的质量,实现通过简便的工艺步骤,形成对于抑制高阶模态下的横向寄生谐振、减弱分裂模态(split mode)、降低由负载层引入滤波装置通带内的分裂寄生的效果好的声表面波谐振装置。
为解决上述技术问题,本发明的技术方案提供一种声表面波谐振装置的形成方法,包括:提供压电基底,所述压电基底包括沿第一方向依次排布的第一间隔区、第一区、第二区、第三区和第二间隔区;在所述压电基底表面形成电极层,所述电极层包括:第一总线、第二总线、与所述第一总线连接的若干第一电极条、以及与所述第二总线连接的若干第二电极条,所述第一电极条和所述第二电极条在第二方向上交替排布,所述第二方向垂直于所述第一方向,所述第一电极条位于所述第一间隔区、所述第一区、所述第二区和所述第三区表面,所述第二电极条位于所述第二间隔区、所述第一区、所述第二区和所述第三区表面;在所述压电基底和所述电极层表面形成第一温度补偿层,所述第一温度补偿层覆盖所述电极层,所述第一温度补偿层包括沿所述第一方向排布的第一补偿区和第二补偿区,所述第一补偿区和所述第二补偿区之间的交界处位于所述第二区上,并且,所述第一温度补偿层在所述第一补偿区的表面高于在所述第二补偿区的表面;在所述第一温度补偿层表面形成:位于所述第一区上的第一负载层、以及位于所述第三区上的第二负载层。
可选的,所述第一温度补偿层的形成方法包括:在所述压电基底和所述电极层表面沉积初始第一温度补偿层,所述初始第一温度补偿层覆盖所述电极层;在所述第一补偿区表面形成第一掩膜层,所述第一掩膜层暴露出所述第二补偿区的初始第一温度补偿层;以所述第一掩膜层为掩膜刻蚀暴露的初始第一温度补偿层,以形成所述第一温度补偿层。
可选的,所述第一负载层为单层结构,所述第二负载层为单层结构。
可选的,所述第一负载层包括2层或多层第一子负载层,并且, 各所述第一子负载层的材料不同;所述第二负载层包括2层或多层第二子负载层,并且,各所述第二子负载层的材料不同。
可选的,所述第一负载层和所述第二负载层的形成方法包括:在所述第一温度补偿层表面形成第一负载层薄膜;在所述第一区上和所述第三区上的第一负载层薄膜表面形成第二掩膜层;以所述第二掩膜层为掩膜刻蚀第一负载层薄膜,直至暴露出所述第一温度补偿层表面。
可选的,采用剥离工艺在所述第一温度补偿层表面形成所述第一负载层和第二负载层。
可选的,还包括:在所述第一温度补偿层表面、所述第一负载层表面和第二负载层表面形成调频层。
可选的,还包括:在所述第一温度补偿层表面、所述第一负载层表面和所述第二负载层表面形成第二温度补偿层,所述第二温度补偿层覆盖所述第一负载层和所述第二负载层。
可选的,还包括:在所述第二温度补偿层表面形成调频层。
可选的,所述第二温度补偿层在所述第一补偿区上的表面低于或高于在所述第二补偿区上的表面。
可选的,所述第二温度补偿层的形成方法包括:在所述第一温度补偿层表面、所述第一负载层表面和所述第二负载层表面沉积初始第二温度补偿层,所述初始第二温度补偿层覆盖所述第一负载层和所述第二负载层;在所述初始第二温度补偿层表面形成第三掩膜层,所述第三掩膜层暴露出所述第一补偿区上的初始第二温度补偿层;以所述第三掩膜层为掩膜刻蚀暴露的初始第二温度补偿层,以形成所述第二温度补偿层。
可选的,还包括:在所述第二温度补偿层表面形成位于所述第一负载层上的第三负载层、以及位于所述第二负载层上的第四负载层。
可选的,还包括:在所述第二温度补偿层表面、所述第三负载层表面和所述第四负载层表面沉积第三温度补偿层,所述第三温度补偿层覆盖所述第三负载层和所述第四负载层。
可选的,还包括:在所述第三温度补偿层表面形成调频层。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
本发明的技术方案中的声表面波谐振装置的形成方法中,由于在所述压电基底和所述电极层表面形成覆盖所述电极层的第一温度补偿层,所述第一温度补偿层包括沿所述第一方向排布的第一补偿区和第二补偿区,所述第一补偿区和所述第二补偿区之间的交界处位于所述第二区上,并且,所述第一温度补偿层在所述第一补偿区的表面高于在所述第二补偿区的表面,因此,为形成所述第一负载层和所述第二负载层提供具有不同高度的前层表面,使得可通过同一步骤形成高度上位置不同的第一负载层和第二负载层,以构成非对称结构的第一负载层,从而,优化了工艺步骤。不仅如此,由于直接在所述压电基底和所述电极层表面形成单层的所述第一温度补偿层,以作为形成所述第一负载层和所述第二负载层的前层支撑,因此,所述第一温度补偿层的厚度较大、晶格质量较好,从而,当在所述第一温度补偿层和所述第一负载层表面形成其他温度补偿层时,相互之间的晶格失配风险小,温度补偿效果好。综上,所述声表面波谐振装置的形成方法优化了形成声表面波谐振装置的工艺步骤,并且,提升了温度补偿层的质量,实现通过简便的工艺步骤,形成对于抑制高阶模态下的横向寄生谐振、减弱分裂模态(split mode)、降低由负载层引入滤波装置通带内的分裂寄生的效果好的声表面波谐振装置。
附图说明
图1至图6是一种SAW谐振器的形成过程中各步骤的结构示意图;
图7至图13是本发明一实施例的声表面波谐振装置的形成方法 各步骤的结构示意图;
图14至图15是本发明另一实施例的声表面波谐振装置的形成方法各步骤的结构示意图;
图16至图19是本发明又一实施例的声表面波谐振装置的形成方法各步骤的结构示意图。
具体实施方式
如背景技术所述,现有的谐振器的形成工艺仍然有待改善,以下结合附图进行具体说明。
图1至图6是一种SAW谐振器的形成过程中各步骤的结构示意图。
请参考图1和图2,图1是图2的俯视结构示意图,图2是图1中沿方向A1-A2的剖面结构示意图,提供压电基底100,并且,所述压电基底100上具有电极层110。
所述压电基底100包括在第一方向X上依次排布的第一隔离区A、第一区I、第二区II、第三区III和第二隔离区B。
所述电极层110包括:第一总线111、第二总线112、与所述第一总线111连接的若干第一电极条113、以及与所述第二总线112连接的若干第二电极条114,所述第一电极条113和所述第二电极条114在第二方向Y上交替排布,所述第二方向Y垂直于所述第一方向X,所述第一电极条113位于所述第一间隔区A、所述第一区I、所述第二区II和所述第三区III表面,所述第二电极条114位于所述第二间隔区B、所述第一区I、所述第二区II和所述第三区III表面。
请参考图3,图3与图2的视图方向一致,在所述压电基底100表面和所述电极层110表面形成第一温度补偿层121。
请继续参考图3,图3与图2的视图方向一致,在所述第一区I上的第一温度补偿层121表面形成第一负载层131。
请继续参考图3,在所述第一温度补偿层121表面和所述第一负载层131表面形成第二温度补偿层122。
请参考图4和图5,图4是图5的俯视结构示意图,图5是图4中沿方向A1-A2的剖面结构示意图,在所述第三区III上的第二温度补偿层122表面形成第二负载层132。
需要说明的是,为了便于理解所述第一负载层131和所述第二负载层132的位置,因此,图4中未表示出所述第一温度补偿层121和所述第二温度补偿层122。
请参考图6,图6与图5的视图方向一致,在所述第二负载层132和所述第二温度补偿层122表面形成第三温度补偿层123。
所述第一温度补偿层121、第二温度补偿层122和第三温度补偿层123与所述压电基底100具有相反的温度频移特性,可调整频率温度系数(Temperature CoefficientofFrequency,TCF),以使调整频率温度系数趋向于0ppm/℃,从而,改善了所述SAW谐振器工作频率随工作温度漂移的特性,使所述SAW谐振器具备了更高的频率温度稳定性。现有技术中,将包括温度补偿层的SAW谐振器称为温度补偿SAW谐振器,即:TCSAW谐振器。
具体的,所述第一温度补偿层121、第二温度补偿层122和第三温度补偿层123构成温度补偿层120。
请继续参考图6,在所述第三温度补偿层123上形成调频层140。
在上述方法形成的SAW谐振器中,第一负载层131位于第一区I上的温度补偿层120内,第二负载层132位于第三区III上的温度补偿层120内,并且,第一负载层131和第二负载层132之间具有高度差,因此,可使所述声表面波谐振装置激励形成活塞模态(piston mode),抑制高阶模态下的横向寄生谐振,并且,所述第一负载层131的分裂模态与所述第二负载层132的分裂模态可以互相抵消,减弱由负载层引入滤波装置通带内的分裂寄生。
然而,上述形成方法中,由于在所述第一区I上的第一温度补偿层121表面形成第一负载层131,然后,在所述第一温度补偿层121表面和所述第一负载层131表面形成第二温度补偿层122,接着,在所述第三区III上的第二温度补偿层122表面形成第二负载层132,以实现形成具有高度差的所述第一负载层131和所述第二负载层132,因此,不仅所述第一负载层131和所述第二负载层132需要分开形成,导致工艺步骤复杂,增加了生产成本,降低生产效率,同时,受到所述高度差大小的限制,所述第二温度补偿层122的厚度相对较薄,导致所述第二温度补偿层122的晶格质量较差,所述第二温度补偿层122与所述第一温度补偿层121和所述第三温度补偿层123产生晶格失配,造成温度补偿效果较差。
为解决上述技术问题,本发明的技术方案提供一种声表面波谐振装置的形成方法,包括:提供压电基底,所述压电基底包括沿第一方向依次排布的第一间隔区、第一区、第二区、第三区和第二间隔区;在所述压电基底表面形成电极层,所述电极层包括:第一总线、第二总线、与所述第一总线连接的若干第一电极条、以及与所述第二总线连接的若干第二电极条,所述第一电极条和所述第二电极条在第二方向上交替排布,所述第二方向垂直于所述第一方向,所述第一电极条位于所述第一间隔区、所述第一区、所述第二区和所述第三区表面,所述第二电极条位于所述第二间隔区、所述第一区、所述第二区和所述第三区表面;在所述压电基底和所述电极层表面形成第一温度补偿层,所述第一温度补偿层覆盖所述电极层,所述第一温度补偿层包括沿所述第一方向排布的第一补偿区和第二补偿区,所述第一补偿区和所述第二补偿区之间的交界处位于所述第二区上,并且,所述第一温度补偿层在所述第一补偿区的表面高于在所述第二补偿区的表面;在所述第一温度补偿层表面形成:位于所述第一区上的第一负载层、以及位于所述第三区上的第二负载层。所述方法优化了形成声表面波谐振装置的工艺步骤,并且,提升温度补偿层的质量,实现通过简便的工艺步骤,形成对于抑制高阶模态下的横向寄生谐振、减弱分裂模态 (split mode)、降低由负载层引入滤波装置通带内的分裂寄生的效果好的声表面波谐振装置。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图7至图13是本发明一实施例的声表面波谐振装置的形成方法各步骤的结构示意图。
请参考图7和图8,图7是图8的俯视结构示意图,图8是图7中沿方向T1-T2的剖面结构示意图,提供压电基底200,所述压电基底200包括沿第一方向X依次排布的第一间隔区A、第一区I、第二区II、第三区III和第二间隔区B。
在本实施例中,所述压电基底200的材料包括但不限于以下之一:钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅、氮化铝、氮化铝合金、氮化镓、氧化锌。
请继续参考图7和图8,在所述压电基底200表面形成电极层210。
所述电极层210包括:第一总线211、第二总线212、与所述第一总线211连接的若干第一电极条213、以及与所述第二总线212连接的若干第二电极条214。
在所述第一方向X上,若干所述第一电极条213和若干所述第二电极条214位于所述第一总线211和所述第二总线212之间。
所述第一电极条213和所述第二电极条214在第二方向Y上交替排布,所述第二方向Y垂直于所述第一方向X,所述第一电极条213位于所述第一间隔区A、所述第一区I、所述第二区II和所述第三区III表面,所述第二电极条214位于所述第二间隔区B、所述第一区I、所述第二区II和所述第三区III表面。
所述电极层210的材料包括但不限于以下之一:钼、钌、钨、铂、 铱、铝、铍、金、钛、铜、铬、镁、钪、及以上任意两种或两种以上材料的合金。
需要说明的是,根据实际设计需求,所述电极层210可以是单层结构、2层结构或多层结构。例如,所述电极层210可以包括2个电极层子层(2层结构),所述2个电极层子层的材料分别为铝和镁。
接着,在所述压电基底200和所述电极层210表面形成第一温度补偿层,所述第一温度补偿层覆盖所述电极层210,所述第一温度补偿层包括沿所述第一方向X排布的第一补偿区和第二补偿区,所述第一补偿区和所述第二补偿区之间的交界处位于所述第二区II上,并且,所述第一温度补偿层在所述第一补偿区的表面高于在所述第二补偿区的表面。
具体的,形成所述第一温度补偿层的详细步骤请参考图9和图10。
请参考图9,图9与图8的视图方向一致,在所述压电基底200和所述电极层210表面沉积初始第一温度补偿层220,所述初始第一温度补偿层220覆盖所述电极层210。
具体而言,所述初始第一温度补偿层220的表面高于所述电极层210的表面。
所述初始第一温度补偿层220为形成第一温度补偿层提供材料。
在本实施例中,所述初始第一温度补偿层220的材料包括但不限于以下之一:二氧化硅、氟氧化硅、碳氧化硅。
所述初始第一温度补偿层220包括沿所述第一方向X排布的第一补偿区K1和第二补偿区K2,所述第一补偿区K1和所述第二补偿区K2之间的交界处位于所述第二区II上。
在本实施例中,沉积初始第一温度补偿层220的工艺包括但不限于以下之一:化学气相沉积工艺、物理气相沉积工艺、原子层沉积工 艺。
请继续参考图9,在所述第一补偿区K1表面形成第一掩膜层221,所述第一掩膜层221暴露出所述第二补偿区K2的初始第一温度补偿层220。
在本实施例中,通过光刻工艺传递图案(pattern),以形成所述第一掩膜层221。
请参考图10,图10与图9的视图方向一致,以所述第一掩膜层221(如图9中所示)为掩膜刻蚀暴露的初始第一温度补偿层220,在所述压电基底200和所述电极层210表面形成第一温度补偿层222。
所述第一温度补偿层222覆盖所述电极层210,所述第一温度补偿层222包括所述第一补偿区K1和所述第二补偿区K2,所述第一温度补偿层222在所述第一补偿区K1的表面高于在所述第二补偿区K2的表面。
由于所述第一温度补偿层222在所述第一补偿区K1的表面高于在所述第二补偿区K2的表面(所述第一温度补偿层222在所述第一补偿区K1的表面与在所述第二补偿区K2的表面之间具有高度差d1),因此,通过形成所述第一温度补偿层222,可为后续通过同一步骤形成非对称结构的第一负载层和第二负载层提供前层支撑,使所述第一负载层和第二负载层分别位于不同高度的表面。
需要说明的是,所述高度差d1根据实际器件需求确定,例如,可根据对第一负载层对应区域的谐振频率、以及对第二负载层对应区域的谐振频率的需求进行确定。相应的,刻蚀暴露的初始第一温度补偿层220时,所述刻蚀步骤可根据预设的高度差d1停止。
此外,由于在形成所述第一负载层和第二负载层之前,通过沉积形成初始第一温度补偿层220,接着,刻蚀所述第二补偿区K2的初始第一温度补偿层220,以形成所述第一温度补偿层222,因此,所述第一温度补偿层222的厚度较大、晶格质量较好。在本实施例中, 所述第一温度补偿层222的材料包括但不限于以下之一:二氧化硅、氟氧化硅、碳氧化硅。
在本实施例中,刻蚀暴露的初始第一温度补偿层220的工艺包括:湿法刻蚀工艺和干法刻蚀工艺中的至少一种。
在本实施例中,形成所述第一温度补偿层222之后,去除所述第一掩膜层221。
请参考图11和图12,图11是图12的俯视结构示意图,图12是图11中沿方向T1-T2的剖面结构示意图,在所述第一温度补偿层222表面形成位于所述第一区I上的第一负载层231、以及位于所述第三区III上的第二负载层232。
需要说明的是,为了便于理解第一负载层231和第二负载层232的位置,图11中未示出所述第一温度补偿层222。
由于在所述第一温度补偿层222表面形成:位于所述第一区I上的第一负载层231、以及位于所述第三区III上的第二负载层232,因此,通过所述第一负载层231和所述第二负载层232,可在形成的声表面波谐振装置中,降低第一负载层231对应区域和第二负载层232对应区域的声速,使所述声表面波谐振装置激励形成活塞模态(piston mode),抑制高阶模态下的横向寄生谐振。不仅如此,由于第一负载层231和第二负载层232之间具有高度差(构成非对称结构的第一负载层231和第二负载层232),因此,第一负载层231对应区域的谐振频率和第二负载层232对应区域的谐振频率相差较大,从而,所述第一负载层231的分裂模态和所述第二负载层232的分裂模态可以互相抵消,减小了负载层引入谐振装置通带内的分裂寄生。
在此基础上,由于在所述压电基底200和所述电极层210表面形成覆盖所述电极层210的第一温度补偿层222,所述第一温度补偿层222包括沿所述第一方向X排布的第一补偿区K1和第二补偿区K2,所述第一补偿区K1和所述第二补偿区K2之间的交界处位于所述第 二区II上,并且,所述第一温度补偿层222在所述第一补偿区K1的表面高于在所述第二补偿区K2的表面(所述第一温度补偿层222在所述第一补偿区K1的表面与在所述第二补偿区K2的表面之间具有高度差d1),因此,所述第一温度补偿层222为形成所述第一负载层231和所述第二负载层232提供了具有不同高度的前层表面,使得可通过同一步骤形成高度上位置不同的第一负载层231和第二负载层232,以构成非对称结构的第一负载层231和第二负载层232,从而,优化了工艺步骤。
不仅如此,由于直接在所述压电基底200和所述电极层210表面直接形成单层的所述第一温度补偿层222,以作为形成所述第一负载层231和所述第二负载层232的前层支撑,因此,可形成厚度较大且晶格质量较好的第一温度补偿层222,从而,当在所述第一温度补偿层222、所述第一负载层231表面和所述第二负载层232表面形成其他温度补偿层时,相互之间的晶格失配风险小,温度补偿效果好。
综上,所述声表面波谐振装置的形成方法优化了形成声表面波谐振装置的工艺步骤,并且,提升了温度补偿层的质量,实现通过简便的工艺步骤,形成对于抑制高阶模态下的横向寄生谐振、减弱分裂模态(split mode)、降低由负载层引入滤波装置通带内的分裂寄生的效果好的声表面波谐振装置。
所述第一负载层231的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍、金、钛、铜、铬、镁、钪。
所述第二负载层232的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍、金、钛、铜、铬、镁、钪。
在本实施例中,所述第一负载层231为单层结构。
在一些其他实施例中,第一负载层包括2层或多层的第一子负载层,各第一子负载层的材料可以不同。例如,2层第一子负载层中,1层第一子负载层的材料为钼,另一层第一子负载层的材料为钛。在 本实施例中,所述第二负载层232为单层结构。
在一些其他实施例中,第二负载层包括2层或多层的第二子负载层,各第二子负载层的材料可以不同。例如,2层第二子负载层中,1层第二子负载层的材料为钼,另一层第二子负载层的材料为钛。
在本实施例中,所述第一负载层231和所述第二负载层232的形成方法包括:在所述第一温度补偿层222表面形成第一负载层薄膜(未图示);在所述第一区I上和所述第三区III上的第一负载层薄膜表面形成第二掩膜层(未图示);以所述第二掩膜层为掩膜刻蚀第一负载层薄膜,直至暴露出所述第一温度补偿层222表面。
在本实施例中,形成所述第一负载层231和第二负载层232之后,去除所述第二掩膜层。
在其他实施例中,采用剥离工艺在所述第一温度补偿层表面形成所述第一负载层和第二负载层。
接着,请参考图13,图13与图12的视图方向一致,在所述第一温度补偿层222表面、所述第一负载层231表面和第二负载层232表面形成调频层240。
在本实施例中,所述调频层240的材料包括但不限于以下之一:氮化硅、氮化铝、氮氧化硅、氧化铝、碳化硅。
在本实施例中,所述调频层240的形成工艺为沉积工艺。具体的,所述沉积工艺包括:化学气相沉积工艺、物理气相沉积工艺和原子层沉积工艺中的至少一种。
图14至图15是本发明另一实施例的声表面波谐振装置的形成方法各步骤的结构示意图。
请在图11和图12的基础上,继续参考图16,图16与图14的视图方向一致,在所述第一温度补偿层222表面、所述第一负载层231表面和所述第二负载层232表面形成第二温度补偿层300,所述 第二温度补偿层300覆盖所述第一负载层231和所述第二负载层232。
由于所述第一温度补偿层222的厚度较大、晶格质量较好,因此,与所述第二温度补偿层300之间的晶格失配风险小,温度补偿效果好。
在本实施例中,所述第二温度补偿层300的材料包括但不限于以下之一:二氧化硅、氟氧化硅、碳氧化硅。
在本实施例中,所述第二温度补偿层300的形成工艺包括沉积工艺。具体的,所述沉积工艺包括化学气相沉积工艺、物理气相沉积工艺和原子层沉积工艺中的至少一种。
请参考图15,图15与图14的视图方向一致,在所述第二温度补偿层300表面形成调频层310。
在本实施例中,所述调频层310的材料包括但不限于以下之一:氮化硅、氮化铝、氮氧化硅、氧化铝、碳化硅。
在本实施例中,所述调频层310的形成工艺为沉积工艺。具体的,所述沉积工艺包括:化学气相沉积工艺、物理气相沉积工艺和原子层沉积工艺中的至少一种。
图16至图19是本发明又一实施例的声表面波谐振装置的形成方法各步骤的结构示意图。
本实施例中,首先,在图11和图12的基础上,在所述第一温度补偿层222表面、所述第一负载层231表面和所述第二负载层232表面形成第二温度补偿层,所述第二温度补偿层覆盖所述第一负载层231和所述第二负载层232,并且,所述第二温度补偿层在所述第一补偿区K1上的表面低于在所述第二补偿区K2上的表面。在其它实施例中,所述第二温度补偿层在所述第一补偿区K1上的表面高于在所述第二补偿区K2上的表面。
具体的,形成所述第二温度补偿层的详细步骤请参考图16至图 17。
请在图11和图12的基础上,继续参考图16,图16与图12的视图方向一致,在所述第一温度补偿层222表面、所述第一负载层231表面和所述第二负载层232表面沉积初始第二温度补偿层400,所述初始第二温度补偿层400覆盖所述第一负载层231和所述第二负载层232。
具体的,所述初始第二温度补偿层400的表面高于所述第一负载层231的表面和所述第二负载层232的表面。
所述初始第二温度补偿层400为形成第二温度补偿层提供材料。
在本实施例中,所述初始第二温度补偿层400的材料包括但不限于以下之一:二氧化硅、氟氧化硅、碳氧化硅。
在本实施例中,沉积初始第二温度补偿层400的工艺包括但不限于以下之一:化学气相沉积工艺、物理气相沉积工艺、原子层沉积工艺。
请继续参考图16,在所述初始第二温度补偿层400表面形成第三掩膜层410,所述第三掩膜层410暴露出所述第一补偿区K1上的初始第二温度补偿层400。
在本实施例中,通过光刻工艺传递图案(pattern),以形成所述第三掩膜层410。
请参考图17,以所述第三掩膜层410(如图16中所示)为掩膜刻蚀暴露的初始第二温度补偿层400,形成第二温度补偿层401,所述第二温度补偿层401在所述第一补偿区K1上的表面低于在所述第二补偿区K2上的表面。
所述第二温度补偿层401在所述第一补偿区K1上的表面低于在所述第二补偿区K2上的表面(所述第二温度补偿层401在所述第一补偿区K1的表面与在所述第二补偿区K2的表面之间具有高度差 d2),因此,通过形成所述第二温度补偿层401,可为后续通过同一步骤形成非对称结构的第三负载层和第四负载层提供前层支撑,使所述第三负载层和第四负载层分别位于不同高度的表面。
需要说明的是,所述高度差d2根据实际器件需求确定,例如,可根据对第一负载层对应区域的谐振频率、以及对第二负载层对应区域的谐振频率的需求进行确定。相应的,刻蚀暴露的初始第二温度补偿层400时,所述刻蚀步骤可根据预设的高度差d2停止。
具体的,本实施例中,通过所述第一温度补偿层222,使得形成的第一负载层231相比第二负载层232处于相对较高的位置,与此同时,通过形成所述第二温度补偿层401,可使后续在第一负载层231上形成的第三负载层,相比在第二负载层232上形成的第四负载层处于相对较低的位置。
此外,由于在形成所述第三负载层和所述第四负载层之前,通过沉积形成初始第二温度补偿层400,接着,刻蚀所述第一补偿区K1的初始第二温度补偿层400,以形成所述第二温度补偿层401,因此,所述第二温度补偿层401的厚度较大、晶格质量较好。
在本实施例中,所述第二温度补偿层401的材料包括但不限于以下之一:二氧化硅、氟氧化硅、碳氧化硅。
在本实施例中,刻蚀暴露的初始第二温度补偿层400的工艺包括:湿法刻蚀工艺和干法刻蚀工艺中的至少一种。
在本实施例中,形成所述第二温度补偿层401之后,去除所述第三掩膜层410。
请参考图18,图18与图17的视图方向一致,在所述第二温度补偿层401表面形成:位于所述第一负载层231上的第三负载层421、以及位于所述第二负载层232上的第四负载层422。
由于所述第二温度补偿层401在所述第一补偿区K1上的表面低于在所述第二补偿区K2上的表面,并且,在所述第二温度补偿层401 表面形成:位于所述第一负载层231上的第三负载层421、以及位于所述第二负载层232上的第四负载层422,所述非对称结构的第三负载层421和第四负载层422可实现对相应区域(即第一负载层231对应区域和第二负载层232对应区域)的声速、以及对所述声表面波谐振装置的分裂模态作出进一步调整,以更好地抑制高阶模态下的横向寄生谐振,并更好地达到减弱分裂模态的要求。
在此基础上,由于在形成所述第三负载层421和所述第四负载层422之前,所述第二温度补偿层401在所述第一补偿区K1上的表面低于在所述第二补偿区K2上的表面,因此,通过所述第二温度补偿层401为形成所述第三负载层421和所述第四负载层422提供了具有不同高度的前层表面,使得可通过同一步骤形成高度上位置不同的第三负载层421和所述第四负载层422,以构成非对称结构的第三负载层421和第四负载层422,从而,优化了工艺步骤。
不仅如此,由于直接在所述第一温度补偿层222、所述第一负载层231表面和所述第二负载层232表面直接形成单层的所述第二温度补偿层401,以作为形成所述第三负载层421和所述第四负载层422前层支撑,因此,可形成厚度较大且晶格质量较好的第二温度补偿层401,从而,所述第二温度补偿层401与所述第一温度补偿层222、以及后续形成的第三温度补偿层之间,均晶格失配风险小,从而,进一步提升了温度补偿效果。
所述第三负载层421的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍、金、钛、铜、铬、镁、钪。
所述第四负载层422的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍、金、钛、铜、铬、镁、钪。
在本实施例中,所述第三负载层421为单层结构。
在一些其他实施例中,第三负载层包括2层或多层的第三子负载层,各第三子负载层的材料可以不同。例如,2层第三子负载层中, 1层第三子负载层的材料为钼,另一层第三子负载层的材料为钛。
在本实施例中,所述第四负载层422为单层结构。
在一些其他实施例中,第四负载层包括2层或多层的第四子负载层,各第四子负载层的材料可以不同。例如,2层第四子负载层中,1层第四子负载层的材料为钼,另一层第四子负载层的材料为钛。
具体的,形成所述第三负载层421和所述第四负载层422的工艺步骤可参考前述形成第一负载层231和第二负载层232的工艺步骤,在此不在赘述。
在其他实施例中,采用剥离工艺形成第三负载层和第四负载层。
接着,请参考图19,图19与图18的视图方向一致,在所述第二温度补偿层401表面、所述第三负载层421表面和所述第四负载层422表面沉积第三温度补偿层430,所述第三温度补偿层430覆盖所述第三负载层421和所述第四负载层422。
在本实施例中,所述第三温度补偿层430的材料包括但不限于以下之一:二氧化硅、氟氧化硅、碳氧化硅。
在本实施例中,沉积所述第三温度补偿层430的工艺包括化学气相沉积工艺、物理气相沉积工艺和原子层沉积工艺中的至少一种。
请继续参考图19,在所述第三温度补偿层430表面形成调频层440。
在本实施例中,所述调频层440的材料包括但不限于以下之一:氮化硅、氮化铝、氮氧化硅、氧化铝、碳化硅。
在本实施例中,所述调频层440的形成工艺为沉积工艺。具体的,所述沉积工艺包括:化学气相沉积工艺、物理气相沉积工艺和原子层沉积工艺中的至少一种。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术 人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (14)

  1. 一种声表面波谐振装置的形成方法,其特征在于,包括:
    提供压电基底,所述压电基底包括沿第一方向依次排布的第一间隔区、第一区、第二区、第三区和第二间隔区;
    在所述压电基底表面形成电极层,所述电极层包括:第一总线、第二总线、与所述第一总线连接的若干第一电极条、以及与所述第二总线连接的若干第二电极条,所述第一电极条和所述第二电极条在第二方向上交替排布,所述第二方向垂直于所述第一方向,所述第一电极条位于所述第一间隔区、所述第一区、所述第二区和所述第三区表面,所述第二电极条位于所述第二间隔区、所述第一区、所述第二区和所述第三区表面;
    在所述压电基底和所述电极层表面形成第一温度补偿层,所述第一温度补偿层覆盖所述电极层,所述第一温度补偿层包括沿所述第一方向排布的第一补偿区和第二补偿区,所述第一补偿区和所述第二补偿区之间的交界处位于所述第二区上,并且,所述第一温度补偿层在所述第一补偿区的表面高于在所述第二补偿区的表面;
    在所述第一温度补偿层表面形成:位于所述第一区上的第一负载层、以及位于所述第三区上的第二负载层。
  2. 如权利要求1所述的声表面波谐振装置的形成方法,其特征在于,所述第一温度补偿层的形成方法包括:在所述压电基底和所述电极层表面沉积初始第一温度补偿层,所述初始第一温度补偿层覆盖所述电极层;在所述第一补偿区表面形成第一掩膜层,所述第一掩膜层暴露出所述第二补偿区的初始第一温度补偿层;以所述第一掩膜层为掩膜刻蚀暴露的初始第一温度补偿层,以形成所述第一温度补偿层。
  3. 如权利要求1所述的声表面波谐振装置的形成方法,其特征在于, 所述第一负载层为单层结构,所述第二负载层为单层结构。
  4. 如权利要求1所述的声表面波谐振装置的形成方法,其特征在于,所述第一负载层包括2层或多层第一子负载层,并且,各所述第一子负载层的材料不同;所述第二负载层包括2层或多层第二子负载层,并且,各所述第二子负载层的材料不同。
  5. 如权利要求1所述的声表面波谐振装置的形成方法,其特征在于,所述第一负载层和所述第二负载层的形成方法包括:在所述第一温度补偿层表面形成第一负载层薄膜;在所述第一区上和所述第三区上的第一负载层薄膜表面形成第二掩膜层;以所述第二掩膜层为掩膜刻蚀第一负载层薄膜,直至暴露出所述第一温度补偿层表面。
  6. 如权利要求1所述的声表面波谐振装置的形成方法,其特征在于,采用剥离工艺在所述第一温度补偿层表面形成所述第一负载层和第二负载层。
  7. 如权利要求1所述的声表面波谐振装置的形成方法,其特征在于,还包括:在所述第一温度补偿层表面、所述第一负载层表面和第二负载层表面形成调频层。
  8. 如权利要求1所述的声表面波谐振装置的形成方法,其特征在于,还包括:在所述第一温度补偿层表面、所述第一负载层表面和所述第二负载层表面形成第二温度补偿层,所述第二温度补偿层覆盖所述第一负载层和所述第二负载层。
  9. 如权利要求8所述的声表面波谐振装置的形成方法,其特征在于,还包括:在所述第二温度补偿层表面形成调频层。
  10. 如权利要求8所述的声表面波谐振装置的形成方法,其特征在于,所述第二温度补偿层在所述第一补偿区上的表面低于或高于在所述第二补偿区上的表面。
  11. 如权利要求10所述的声表面波谐振装置的形成方法,其特征在于, 所述第二温度补偿层的形成方法包括:在所述第一温度补偿层表面、所述第一负载层表面和所述第二负载层表面沉积初始第二温度补偿层,所述初始第二温度补偿层覆盖所述第一负载层和所述第二负载层;在所述初始第二温度补偿层表面形成第三掩膜层,所述第三掩膜层暴露出所述第一补偿区上的初始第二温度补偿层;以所述第三掩膜层为掩膜刻蚀暴露的初始第二温度补偿层,以形成所述第二温度补偿层。
  12. 如权利要求10所述的声表面波谐振装置的形成方法,其特征在于,还包括:在所述第二温度补偿层表面形成位于所述第一负载层上的第三负载层、以及位于所述第二负载层上的第四负载层。
  13. 如权利要求12所述的声表面波谐振装置的形成方法,其特征在于,还包括:在所述第二温度补偿层表面、所述第三负载层表面和所述第四负载层表面沉积第三温度补偿层,所述第三温度补偿层覆盖所述第三负载层和所述第四负载层。
  14. 如权利要求13所述的声表面波谐振装置的形成方法,其特征在于,还包括:在所述第三温度补偿层表面形成调频层。
PCT/CN2023/105658 2022-07-11 2023-07-04 声表面波谐振装置的形成方法 WO2024012311A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210807812.1A CN114884480B (zh) 2022-07-11 2022-07-11 声表面波谐振装置的形成方法
CN202210807812.1 2022-07-11

Publications (1)

Publication Number Publication Date
WO2024012311A1 true WO2024012311A1 (zh) 2024-01-18

Family

ID=82682876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105658 WO2024012311A1 (zh) 2022-07-11 2023-07-04 声表面波谐振装置的形成方法

Country Status (2)

Country Link
CN (1) CN114884480B (zh)
WO (1) WO2024012311A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839648B (zh) * 2021-09-14 2023-08-29 常州承芯半导体有限公司 声表面波谐振装置及形成方法、滤波装置及射频前端装置
CN114884480B (zh) * 2022-07-11 2022-10-25 常州承芯半导体有限公司 声表面波谐振装置的形成方法
CN116208119B (zh) * 2023-04-19 2023-07-14 深圳新声半导体有限公司 声表面波装置及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004023593A (ja) * 2002-06-19 2004-01-22 Mitsubishi Electric Corp 弾性表面波装置及びその製造方法
CN112653415A (zh) * 2020-12-25 2021-04-13 广东广纳芯科技有限公司 一种多层膜声表面波谐振器及制造方法
CN113162580A (zh) * 2021-04-30 2021-07-23 江苏卓胜微电子股份有限公司 一种声表面波谐振器的制作方法
CN113839648A (zh) * 2021-09-14 2021-12-24 常州承芯半导体有限公司 声表面波谐振装置及形成方法、滤波装置及射频前端装置
CN114884480A (zh) * 2022-07-11 2022-08-09 常州承芯半导体有限公司 声表面波谐振装置的形成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733395A (zh) * 2017-11-14 2018-02-23 安徽云塔电子科技有限公司 一种压电谐振器和压电谐振器的制备方法
CN112886938B (zh) * 2020-12-23 2022-04-26 杭州左蓝微电子技术有限公司 可抑制横向模式的声表面波谐振器及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004023593A (ja) * 2002-06-19 2004-01-22 Mitsubishi Electric Corp 弾性表面波装置及びその製造方法
CN112653415A (zh) * 2020-12-25 2021-04-13 广东广纳芯科技有限公司 一种多层膜声表面波谐振器及制造方法
CN113162580A (zh) * 2021-04-30 2021-07-23 江苏卓胜微电子股份有限公司 一种声表面波谐振器的制作方法
CN113839648A (zh) * 2021-09-14 2021-12-24 常州承芯半导体有限公司 声表面波谐振装置及形成方法、滤波装置及射频前端装置
CN114884480A (zh) * 2022-07-11 2022-08-09 常州承芯半导体有限公司 声表面波谐振装置的形成方法

Also Published As

Publication number Publication date
CN114884480B (zh) 2022-10-25
CN114884480A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
WO2024012311A1 (zh) 声表面波谐振装置的形成方法
US10038422B2 (en) Single-chip multi-frequency film bulk acoustic-wave resonators
CN107317560B (zh) 一种温度补偿表面声波器件及其制备方法
US7128941B2 (en) Method for fabricating film bulk acoustic resonator (FBAR) device
JP4426748B2 (ja) 単一の基板上で異なった中心周波数を有するバルク音響波フィルタ、およびそれを提供する方法
CN109217841B (zh) 一种基于声表面波和空腔型薄膜体声波组合谐振器
WO2022116396A1 (zh) 一种无源空腔型单晶薄膜体声波谐振器结构及制备方法
JP5766457B2 (ja) 弾性波デバイス及びその製造方法
US20130049545A1 (en) Resonator device including electrodes with buried temperature compensating layers
CN102301590A (zh) 薄膜压电谐振器以及使用它的薄膜压电滤波器
JP2008211394A (ja) 共振装置
US20220376672A1 (en) Bulk acoustic wave filter and method of manufacturing bulk acoustic wave filter
JP2013034130A (ja) 圧電薄膜共振器およびその製造方法
US8925163B2 (en) Method of manufacturing laterally coupled BAW thin films
WO2024032440A1 (zh) 声表面波谐振装置及其形成方法
US20060202769A1 (en) Piezoelectric thin film device and method of producing the same
CN112671367A (zh) 一种新型fbar滤波器及其制备方法
CN114614792A (zh) 一种声波谐振器及滤波器
CN113193846A (zh) 一种带混合横向结构特征的薄膜体声波谐振器
CN115694412A (zh) 一种集成电容体声波谐振器、滤波器及制造方法
CN114006600A (zh) 一种薄膜体声波谐振器、制备方法及薄膜体声波滤波器
JP2001177365A (ja) 平衡フィルターの中心周波数の調整方法及び複数の平衡フィルター
JP5040172B2 (ja) 薄膜圧電共振器と薄膜圧電フィルタ
WO2024061071A1 (zh) 体声波谐振装置及其形成方法
CN111224637A (zh) 一种带有新型释放结构的谐振器及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838803

Country of ref document: EP

Kind code of ref document: A1