WO2024012270A1 - 用于核酸的器官特异性递送组合物 - Google Patents

用于核酸的器官特异性递送组合物 Download PDF

Info

Publication number
WO2024012270A1
WO2024012270A1 PCT/CN2023/104901 CN2023104901W WO2024012270A1 WO 2024012270 A1 WO2024012270 A1 WO 2024012270A1 CN 2023104901 W CN2023104901 W CN 2023104901W WO 2024012270 A1 WO2024012270 A1 WO 2024012270A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipid
carbon
heptane
thio
etoac
Prior art date
Application number
PCT/CN2023/104901
Other languages
English (en)
French (fr)
Inventor
张磊
陈建新
鄢璐
彭薇
马乔乔
Original Assignee
传信生物医药(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 传信生物医药(苏州)有限公司 filed Critical 传信生物医药(苏州)有限公司
Publication of WO2024012270A1 publication Critical patent/WO2024012270A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/34Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/40Succinic acid esters

Definitions

  • the content of this application generally relates to the field of molecular biology. More specifically, it relates to the use of lipid nanoparticle compositions for organ-specific delivery of substances such as nucleic acids.
  • nucleic acid drugs including therapeutic drugs and preventive drugs
  • nucleic acid drugs still face several challenges, such as the accumulation of most liposome formulations through biological processes in the liver, thereby reducing the effectiveness of delivery of the composition into the target organ.
  • other therapeutic agents such as proteins and small molecule drugs may also benefit from organ-specific delivery.
  • Many different types of compounds such as chemical drugs exhibit significant cytotoxicity. If these compounds could be better targeted for delivery to the desired organ, fewer off-target effects and side effects would be seen.
  • lipid nanoparticles composed of 1 to 2 types of lipids can achieve the purpose of targeting the spleen by adjusting the mixing ratio of nucleic acids and nanoparticles (Stephan Grabbe et al., Translating Nanoparticulate-personalized Cancer Vaccines into Clinical Applications: Case Study with RNA-Lipoplexes for the Treatment of Melanoma, 2016), however, this strategy needs to be improved in aspects such as the stability and encapsulation efficiency of the preparation.
  • the present application provides a lipid nanoparticle that can target different tissues and organs for drug delivery.
  • the lipid nanoparticles provided by the present application include the targeted lipid delivery system (GOLD) lipid of the present application.
  • the targeted lipid delivery system (GOLD) lipid is selected from ionizable negative ion steroids and/or ionizable negative ions.
  • Polymer conjugated lipids One or more combinations of one or more; further, the lipid nanoparticles provided by this application also contain auxiliary lipids; further, the lipid nanoparticles provided by this application also contain cationic lipids.
  • the auxiliary lipid is optionally one or more of phospholipids, steroids, polymer-conjugated lipids and modifiable lipids.
  • the phospholipid is selected from any one of DOPE, DSPC, DPPC, DMPC, DOPC, POPC, SM or a combination thereof.
  • the steroid is selected from one or more of cholesterol, sitosterol, stigmasterol and ergosterol.
  • the polymer is conjugated to lipids, where the polymer refers to a high molecular weight compound formed by covalent bonding of more than one small molecule repeating unit;
  • the polymer can be selected from polyethylene glycol, polylactic acid, polyamide, Cationic polymers, polysarcosine (pSar), polylactic acid-co-glycolic acid (PLGA), polyamino acids, polypeptides, polypeptides, etc.
  • the polymer-conjugated lipid is selected from polyethylene glycol conjugation Lipid; further, the polyethylene glycol-conjugated lipid is selected from one or more of PEG1000-DMG, PEG5000-DMG, PEG2000-DMG and PEG2000-DSPE.
  • the modifiable lipids include lipids modified by small molecule compounds, vitamins, carbohydrates, peptides, proteins, nucleic acids, lipopolysaccharides, inorganic molecules or particles, metal ions or particles, and combinations of the above substances.
  • the cationic lipid is selected from one or a combination of permanent cationic lipids and/or ionizable cationic lipids.
  • the permanent cationic lipid is selected from one or more combinations of DOTAP, DODMA, DSTAP, DMTAP, DDA, DOBAQ;
  • the ionizable cationic lipid is selected from SM-102, Lipid 5, A6, DC-chol, C12-200, CKK-E12, 5A2-SC8, G0-C14, OF-2, 306Oi10, OF-Deg-Lin, 92-O17S, OF-C4-Deg-Lin, A18-iso5-2DC18, TT3, FTT5, One or more combinations of BAMEA-O16B, Vc-Lipid, C14-4, Lipid 14, 4A3-Cit, ssPalmO-Phe.
  • Tissue and organ specificity is achieved by targeted lipid delivery system (GOLD) lipids in lipid nanoparticles; further achieved by the combination of targeted lipid delivery system (GOLD) lipids and auxiliary lipids; further Achieved by a combination of targeted lipid delivery system (GOLD) lipids, auxiliary lipids and cationic lipids.
  • GOLD targeted lipid delivery system
  • the lipid nanoparticles preferentially deliver therapeutic/preventive agents to the following target organs: lung, heart, brain, spleen, lymph node, bone, skeletal muscle, stomach, small intestine, large intestine/colorectum, kidney, bladder, breast, Testicles, ovaries, uterus, thymus, brainstem, cerebellum, cerebrum, spinal cord, eyes, ears, tongue, or skin.
  • the target organ is the spleen.
  • the GOLD lipid in the lipid nanoparticle is optionally one or more of ionizable anionic steroids and/or ionizable anionic polymer-conjugated lipids.
  • the ionizable anionic steroid is selected from the compounds of the following general formula I or pharmaceutically acceptable salts, prodrugs, stereoisomers or deuterated products thereof:
  • Q 1 is There is no C1-C8 linear or branched hydrocarbon group, specifically it can be a C1, C2, C3, C4, C5, C6, C7 or C8 linear or branched hydrocarbon group;
  • Q 2 is not There are C1-C8 linear or branched hydrocarbon groups, specifically C1, C2, C3, C4, C5, C6, C7 or C8 linear or branched hydrocarbon groups;
  • Q 3 is not There are C1-C8 linear or branched hydrocarbon groups, specifically C1, C2, C3, C4, C5, C6, C7 or C8 linear or branched hydrocarbon groups;
  • R a is H or deuterium or a C1-C8 linear or branched hydrocarbon group or a carboxyl-substituted C1-C8 linear or branched hydrocarbon group, specifically it can be C1, C2, C3, C4, C5, C6, C7 or C8 linear or branched hydrocarbon group; or -Q 4 -M; where Q 4 is absent or C1-C8 linear or branched hydrocarbon group, specifically it can be C1, C2, C3, C4, C5, C6 , C7 or C8 linear or branched hydrocarbon group, M is
  • x 0, 1 or 2;
  • R is X is C, O, NR b or S;
  • R b is H or deuterium or C1-C8 straight chain or branched hydrocarbon group, specifically it can be C1, C2, C3, C4, C5, C6, C7 or C8 straight chain Or branched hydrocarbon group.
  • Table 1 lists non-limitingly some ionizable anionic steroid compounds.
  • the ionizable anionic polymer-conjugated lipid is selected from compounds of the following general formula II or pharmaceutically acceptable salts, prodrugs, stereoisomers or deuterated products thereof:
  • Q is non-existent or C1-C8 linear or branched hydrocarbon group, specifically Ground can be C1, C2, C3, C4, C5, C6, C7 or C8, linear or branched hydrocarbon group;
  • R a is H or deuterium or a C1-C8 linear or branched hydrocarbon group or a carboxyl-substituted C1-C8 linear or branched hydrocarbon group, specifically it can be C1, C2, C3, C4, C5, C6, C7 or C8 linear or branched hydrocarbon group or C1, C2, C3, C4, C5, C6, C7 or C8 linear or branched hydrocarbon group substituted by carboxyl;
  • X is C or N
  • Z is C, O, NR b or S
  • G 1 and G 2 are each independently an absent or substituted C1-C12 linear or branched hydrocarbon group, specifically C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11 Or C12 linear or branched hydrocarbon group;
  • R 1 and R 2 are each independently a substituted C6-C24 linear or branched hydrocarbon group, specifically C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C22, C23 or C24 linear or branched hydrocarbon group;
  • x 0, 1 or 2.
  • Table 2 lists, without limitation, partially ionizable anionic polymer-conjugated lipid compounds.
  • the lipid nanoparticles may also include auxiliary lipids.
  • the auxiliary lipid is optionally one or more of phospholipids, steroids, polymer-conjugated lipids and modifiable lipids.
  • the phospholipid is selected from any one of DOPE, DSPC, DPPC, DMPC, DOPC, POPC, SM or a combination thereof.
  • the steroid is selected from one or more of cholesterol, sitosterol, stigmasterol and ergosterol.
  • the polymer refers to a high molecular weight compound formed by covalent bonding of more than one small molecule repeating unit; the polymer can be selected from polyethylene glycol, polylactic acid, polyamide, Cationic polymers, polysarcosine (pSar), polylactic acid-co-glycolic acid (PLGA), polyamino acids, polypeptides, polypeptides, etc.; preferably, the polymer-conjugated lipid is selected from polyethylene glycol-conjugated Conjugated lipid; further, the polyethylene glycol-conjugated lipid is selected from one or more of PEG1000-DMG, PEG5000-DMG, PEG2000-DMG and PEG2000-DSPE.
  • the modifiable lipids include lipids modified by small molecule compounds, vitamins, carbohydrates, peptides, proteins, nucleic acids, lipopolysaccharides, inorganic molecules or particles, metal ions or particles, and combinations of the above substances.
  • the lipid nanoparticles contain cationic lipids.
  • the cationic lipids in lipid nanoparticles contain ammonium groups that are positively charged at a given pH and contain at least two hydrophobic groups.
  • the cationic lipids are dendrimers or dendrons.
  • the cationic lipid contains at least two C6-C24 hydrocarbyl groups.
  • the cationic lipid may be one or a combination of permanent cationic lipids and/or ionizable cationic lipids.
  • the permanent cationic lipid can be selected from one or more of DOTAP, DODMA, DSTAP, DMTAP, DDA, and DOBAQ, and the ionizable cationic lipid can be selected from SM-102, Lipid 5, A6, DC-chol, C12- 200, CKK-E12, 5A2-SC8, G0-C14, OF-2, 306Oi10, OF-Deg-Lin, 92-O17S, OF-C4-Deg-Lin, A18-iso5-2DC18, TT3, FTT5, BAMEA- O16B, Vc-Lipid, One or a combination of C14-4, Lipid 14, 4A3-Cit, ssPalmO-Phe.
  • the molar ratio of cationic lipids and targeted delivery system lipids ranges from 1:1 to 11:1.
  • the molar ratio of cationic lipids, targeted delivery system lipids, and auxiliary lipids is 1: (0.1 ⁇ 1): (0.5 ⁇ 2).
  • compositions comprising a therapeutic or prophylactic agent and the lipid nanoparticles described above.
  • said therapeutic/prophylactic agent is a nucleic acid.
  • the nucleic acid includes any and all forms of nucleic acid molecules, including but not limited to single-stranded DNA, double-stranded DNA, single-stranded RNA, double-stranded RNA, short isomers, plasmid DNA, complementary DNA/cDNA, antisense Nucleic acid molecules/ASO, small interfering nucleic acid/siRNA, small activating nucleic acid/saRNA, asymmetric interfering nucleic acid/aiRNA, micronucleic acid/miRNA, miRNA inhibitors (agomir, antagomir), Dicer enzyme substrate nucleic acid, small hairpin nucleic acid (shRNA ), transfer RNA (tRNA), messenger RNA/mRNA, circular RNA/circRNA, self-replicating mRNA/samRNA, aptamer/aptamer and other forms of nucleic acid molecules known in the art.
  • nucleic acid molecules including but not limited to single-stranded DNA, double-stranded DNA, single-strande
  • nucleic acid molecules may include natural nucleotides, nucleotide mimics or functional analogs, and may also include chemically modified forms of nucleotides.
  • Functional nucleotide analogs include, but are not limited to, one or a combination of more than one of locked nucleic acid LNA, peptide nucleic acid PNA, or morpholino cyclic oligonucleotide nucleic acid mimics or functional analogs.
  • Nucleotide chemical modifications can be located on the backbone bonds of the nucleic acid molecule.
  • the backbone bonds may be modified by replacing one or more oxygen atoms. Modifications to the backbone bonds may include replacing at least one phosphodiester bond with a phosphorothioate bond.
  • the nucleotide chemical modification can be located on the nucleoside. Modifications on nucleosides can be located on the sugars and bases of the nucleoside.
  • the sugar on the nucleoside can be selected from one or more of the following: 2'-fluoribose, ribose, 2'-deoxyribose, arabinose, and hexose.
  • the chemically modified form of the nucleotide can be selected from one or more of the following: 5-methylcytosine, pseudouridine, 1-methylpseudouridine, pyridin-4-one ribonucleoside, 5-nitrogen Hetero-uridine, 2-thio-5-aza-uridine, 2-thiouridine, 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxyuridine, 3 -Methyluridine, 5-carboxymethyl-uridine, 1-carboxymethyl-pseudouridine, 5-propynyl-uridine, 1-propynyl-pseudouridine, 5-taurine methyl Uridine, 1-taurinemethyl-pseudouridine, 5-taurinemethyl-2-thio-uridine, 1-taurinemethyl-4-thio-uridine, 5- Methyl-uridine, 1-methyl-pseudouridine, 4-thio-1-methyl-pseudouridine,
  • the nucleic acid is mRNA, which can encode at least one antigen or a fragment thereof or an epitope thereof, or encode a certain therapeutic protein, and the antigen is selected from pathogenic antigens, such as tumor-associated antigens. or pathogenic microbial antigens.
  • the mRNA may be monocistronic mRNA or polycistronic mRNA.
  • This application also provides the use of the above composition in the preparation of medicines.
  • composition which includes the above composition and pharmaceutically acceptable excipients (also known as pharmaceutical excipients).
  • pharmaceutical excipients refer to excipients and additives used in the production of drugs and preparation of prescriptions; they are substances other than active ingredients that have been reasonably evaluated in terms of safety and are included in pharmaceutical preparations.
  • pharmaceutical excipients also have important functions such as solubilization, dissolution, and sustained and controlled release. They are important ingredients that may affect the quality, safety, and effectiveness of drugs.
  • pharmaceutical excipients can be divided into solvents, propellants, solubilizers, cosolvents, emulsifiers, colorants, binders, disintegrants, fillers, lubricants, wetting agents, osmotic pressure regulators, Stabilizers, glidants, flavoring agents, preservatives, suspending agents, coating materials, fragrances, anti-adhesive agents, integrators, penetration enhancers, pH adjusters, buffers, plasticizers, surface active agents Agent, foaming agent, defoaming agent, thickener, inclusion agent, humectant, absorbent, diluent, flocculant and deflocculant, filter aid, release retardant, etc.
  • This application provides a new lipid nanoparticle, which can deliver therapeutic/preventive agents, especially nucleic acid components, to specific organs, especially to organs other than the liver, for nucleic acid drugs, gene drugs, and vaccines.
  • therapeutic/preventive agents especially nucleic acid components
  • specific organs especially to organs other than the liver
  • nucleic acid drugs, gene drugs, and vaccines especially to nucleic acid drugs, gene drugs, and vaccines.
  • the delivery of such products provides more options, which is particularly important for the development and application of nucleic acid preventive and therapeutic agents.
  • lipid nanoparticles are mostly targeted for liver delivery.
  • GOLD targeted lipid delivery system
  • TMF1 TMF2
  • TMF7 and TMF11-TMF38 the distribution (average fluorescence intensity) ratio of nucleic acid drugs in the spleen and liver is 1.6 to 80 times (Tables 7 and 8).
  • Traditional lipid nanoparticles without the addition of GOLD lipids usually have higher delivery efficiency in the liver (Ansell, SM; Du,
  • GOLD targeted lipid delivery system
  • Figure 1 shows the NMR of compound 1-1.
  • Figure 2 shows the NMR of compound 1-2.
  • Figure 3 shows the NMR of compounds 1-3.
  • Figure 4 shows the NMR of compounds 1-4.
  • Figure 5 shows the NMR of compounds 1-5.
  • Figure 6 shows the NMR of compounds 1-6.
  • Figure 7 shows the NMR of compounds 1-7.
  • Figure 8 shows the NMR of compounds 1-8.
  • Figure 9 shows the NMR of compounds 1-9.
  • FIG 23 Intravenous injection of lipid nanoparticle TMF1 sample encapsulating luciferase mRNA After 4 hours, pictures of fluorescence signals of different organs in the mouse body. As shown in the picture, the fluorescence signal in the mouse spleen is the strongest, while the fluorescence signal in the liver is very weak. This shows that the expression of Luciferase mRNA in the spleen is higher than that in the liver.
  • Figure 24 Summary data of the fluorescence intensity ratio of spleen and liver after different lipid nanoparticles deliver Luciferase mRNA.
  • symbol Refers to a single bond where the group attached to the thick end of the wedge "goes into the paper.”
  • symbol refers to a single bond where the geometry around the double bond (e.g., E or Z) is undetermined. Therefore, both options and their combinations are expected.
  • Any undefined valence on an atom of a structure shown in this application implicitly represents a hydrogen atom bonded to that atom.
  • Bold dots on a carbon atom indicate that the hydrogen attached to that carbon faces out of the plane of the paper.
  • alkyl when used without the modifier "substituted” means a monovalent saturated aliphatic group having a carbon atom as the point of attachment, having a straight or branched acyclic structure, and without the addition of carbon and hydrogen atoms other than .
  • Group -CH 3 (Me), -CH 2 CH 3 (Et), -CH 2 CH 2 CH 3 (n-Pr or propyl), -CH(CH 3 ) 2 (i-Pr, iPr or isopropyl base), -CH 2 CH 2 CH 2 CH 3 (n-Bu), -CH(CH 3 )CH 2 CH 3 (sec-butyl), -CH 2 CH(CH 3 ) 2 (isobutyl), - C(CH 3 ) 3 (tert-butyl, t-Bu or tBu) and -CH 2 C(CH 3 ) 3 (neopentyl) are non-limiting examples of alkyl groups.
  • alkanediyl used without the modifier "substituted” means a divalent saturated aliphatic group having 1 or 2 saturated carbon atoms as the point of attachment, with a straight or branched acyclic Structure with no carbon-carbon double or triple bonds and no atoms other than carbon and hydrogen.
  • the groups -CH 2 -(methylene), -CH 2 CH 2 -, -CH 2 C(CH 3 ) 2 CH 2 - and -CH 2 CH 2 CH 2 - are non-limiting examples of alkanediyl groups.
  • Alkane means a class of compounds of formula HR, where R is alkyl, as that term is defined above.
  • one or more hydrogen Atoms have been independently replaced by -OH, -F, -Cl, -Br, -I, -NH 2 , -NO 2 , -CO 2 H, -CO 2 CH 3 , -CN, -SH, -OCH 3 , - OCH 2 CH 3 , -C(O)CH 3 , -NHCH 3 , -NHCH 2 CH 3 , -N(CH 3 ) 2 , -C(O)NH 2 , -C(O)NHCH 3 , -C( O)N(CH 3 ) 2 , -OC(O)CH 3 , -NHC(O)CH 3 , -S(O) 2 OH or -S(O) 2 NH 2 substitution.
  • haloalkyl is a subset of substituted alkyl groups in which hydrogen atom substitution is limited to halogenation (i.e.
  • the group -CH2Cl is a non-limiting example of a haloalkyl group.
  • fluoroalkyl is a subset of substituted alkyl groups in which hydrogen atom substitution is limited to fluorination such that no other atoms other than carbon, hydrogen and fluorine are present.
  • the groups -CH2F , -CF3 and -CH2CF3 are non - limiting examples of fluoroalkyl groups.
  • alkenyl when used without the modifier "substituted” means a monovalent unsaturated aliphatic group having a carbon atom as the point of attachment, having a straight or branched acyclic structure, at least one of which is non-aromatic Carbon-carbon double bonds, no carbon-carbon triple bonds, and no atoms other than carbon and hydrogen.
  • olefindiyl used without the modifier "substituted” means a divalent unsaturated aliphatic group having 2 carbon atoms as the point of attachment, straight or branched, straight or branched
  • the chain has an acyclic structure, with at least one nonaromatic carbon-carbon double bond, no carbon-carbon triple bonds, and no atoms other than carbon and hydrogen.
  • alkene and alkene are synonymous and refer to the class of compounds having the formula HR, where R is alkenyl, as that term is defined above.
  • terminal olefin and alpha-olefin are synonymous and mean an olefin having exactly one carbon-carbon double bond, where the bond is part of the vinyl group at the end of the molecule.
  • one or more hydrogen atoms have independently been replaced by -OH, -F, -Cl, -Br, -I, -NH 2 , -NO 2 , -CO 2 H , -CO 2 CH 3 , -CN, -SH, -OCH 3 , -OCH 2 CH 3 , -C(O)CH 3 , -NHCH 3 , -NHCH 2 CH 3 , -N(CH 3 ) 2 , -C(O)NH 2 , -C(O)NHCH 3 , -C(O)N(CH 3 ) 2 , -OC(O)CH 3 , -NHC(O)CH 3 , -S (O) 2 OH or -S(O) 2 NH 2 replacement.
  • alkynyl when used without the modifier "substituted” means a monovalent unsaturated aliphatic group having a carbon atom as the point of attachment, having a straight or branched acyclic structure, at least one carbon-carbon Triple bonds and no atoms other than carbon and hydrogen.
  • alkynyl as used herein does not exclude the presence of one or more non-aromatic carbon-carbon double bonds.
  • the groups -C ⁇ CH, -C ⁇ CCH 3 and -CH 2 C ⁇ CCH 3 are non-limiting examples of alkynyl groups.
  • Alkynes refers to the class of compounds of formula HR, where R is an alkynyl group.
  • one or more hydrogen atoms have independently been replaced by -OH, -F, -Cl, -Br, -I, -NH 2 , -NO 2 , -CO 2 H, -CO 2 CH 3 , -CN, -SH, -OCH 3 , -OCH 2 CH 3 , -C(O)CH 3 , -NHCH 3 , -NHCH 2 CH 3 , -N(CH 3 ) 2 , -C(O)NH 2 , -C(O)NHCH 3 , -C(O)N(CH 3 ) 2 , -OC(O)CH 3 , -NHC(O)CH 3 , -S(O) 2 OH or -S(O) 2 NH 2 replacement.
  • Prodrug refers to a compound, such as a therapeutic agent, that is converted to a biologically active compound under physiological conditions or by dissolution. Prodrugs are often rapidly converted in the body to produce the parent compound, for example by hydrolysis in the blood. Prodrug compounds often have advantages in solubility, histocompatibility, or delayed release in mammalian organisms.
  • prodrug is also intended to include any covalently bonded carrier that releases the active compound in vivo when the prodrug is administered to a mammalian subject.
  • Prodrugs include compounds in which a hydroxyl, amino, or sulfhydryl group is bound to any group that is cleaved to form a free hydroxyl, free amino, or free sulfhydryl group, respectively, when the prodrug is administered to a mammalian subject.
  • Examples of prodrugs include, but are not limited to, acetate, formate, and benzoate derivatives or amide derivatives of amine functionality, and the like.
  • “Pharmaceutically acceptable salt” refers to a salt of a compound of the present disclosure, as defined above, that is pharmaceutically acceptable and has the desired pharmacological activity.
  • Such salts include acid addition salts formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, etc.; or organic acids such as 1,2-ethanedisulfonic acid, 2-hydroxyethanesulfonic acid , 2-naphthalenesulfonic acid, 3-phenylpropionic acid, 4,4'-methylenebis(3-hydroxy-2-ene-1-carboxylic acid), 4-methylbicyclo[2.2.2]octane- 2-ene-1-carboxylic acid, acetic acid, aliphatic mono- and dicarboxylic acids, aliphatic sulfuric acid, aromatic sulfuric acid, benzenesulfonic acid, benzoic acid, camphorsulfonic acid, carbonic acid, cinnamic
  • Pharmaceutically acceptable salts also include base addition salts which may be formed when the acidic proton present is capable of reacting with an inorganic or organic base.
  • Acceptable inorganic bases include sodium hydroxide, sodium carbonate, potassium hydroxide, aluminum hydroxide and calcium hydroxide.
  • Acceptable organic bases include ethanolamine, diethanolamine, triethanolamine, tromethamine, N-methylglucamine, and the like. It will be appreciated that the specific anion or cation forming part of any salt of the present disclosure is not critical so long as the salt as a whole is pharmacologically acceptable.
  • Steps or “optical isomers” are isomers of a given compound in which the same atoms are bonded to the same other atoms, but in which the three-dimensional configuration of those atoms is different.
  • Enantiomers are stereoisomers of a given compound that, like the left and right hands, are mirror images of each other.
  • Diastereomers are stereoisomers of a given compound that are not enantiomers. Chiral molecules contain a chiral center (also called a stereocenter or stereocenter), which is any point (although not necessarily an atom) in the molecule that carries multiple groups, allowing the interchange of any 2 groups Stereoisomers are produced.
  • chiral centers are usually carbon, phosphorus, or sulfur atoms, although other atoms may also serve as stereocenters in organic and inorganic compounds.
  • a molecule can have multiple stereocenters, giving rise to its many stereoisomers.
  • compounds whose stereoisomerism is due to tetrahedral stereocenters (eg, tetrahedral carbons)
  • n is the number of tetrahedral stereocenters.
  • Molecules with symmetry often have a smaller number than the maximum possible number of stereoisomers. 50:50 mixture of enantiomers The substance is called a racemic mixture.
  • a mixture of enantiomers may be enantiomerically enriched such that one enantiomer is present in an amount greater than 50%.
  • enantiomers and/or diastereomers can be resolved or separated using techniques known in the art. It is contemplated that for any stereocenter or chiral axis whose stereochemistry has not been defined, the stereocenter or chiral axis may be in its R form, S form, or as a mixture of said R and S forms (including racemic mixtures and nonracemic mixtures) exist.
  • the phrase "substantially free of other stereoisomers" means that the composition contains ⁇ 15%, more preferably ⁇ 10%, even more preferably ⁇ 5%, or most preferably ⁇ 1% of another or multiple stereoisomers.
  • Deuterium 2H or D
  • H Deuterium
  • Prevention includes: (1) inhibiting the onset of a disease in a subject or patient who may be at risk of and/or susceptible to the disease; disease, but have not yet experienced or exhibited any or all symptoms or symptoms of the disease; and/or (2) slow the onset of symptoms or symptoms of the disease in a subject or patient who May be at risk for and/or susceptible to the disease but have not experienced or exhibited any or all symptoms or symptoms of the disease.
  • Treatment includes (1) inhibiting a disease in a subject or patient who is experiencing or exhibiting symptoms or symptoms of the disease (e.g., preventing the symptoms and/or further development of symptoms), (2) ameliorating the disease in a subject or patient who is experiencing or exhibiting symptoms or symptoms of the disease (e.g., reversing the symptoms and/or symptoms), and/or (3) Achieve any measurable reduction of the disease in a subject or patient who is experiencing or exhibiting symptoms or symptoms of the disease.
  • Protein refers to a polymer of amino acid residues, including a wide range of protein molecules such as cytokines, chemokines, interleukins, interferons, growth factors, coagulation factors, anticoagulants, blood factors, bone morphogenetic proteins, immunoglobulins, and enzymes.
  • therapeutic proteins include the following therapeutic proteins or fragments, variants or derivatives thereof: therapeutic proteins for the treatment of metabolic or endocrine disorders, including acid sphingomyelinase, Adipotide, Agalsidase- ⁇ , Alglucosidase, ⁇ -galactosidase A, ⁇ -glucosidase, ⁇ -L-iduronidase, ⁇ -N-acetylglucosidase, amphiregulin, angiopoietin (Ang1, Ang2, Ang3, Ang4, ANGPTL2, ANGPTL3, ANGPTL4, ANGPTL5, ANGPTL6, ANGPTL7), beta animal cellulose, beta-glucuronidase, bone morphogenetic proteins BMPs (BMP1, BMP2, BMP3, BMP4, BMP5, BMP6, BMP7, BMP8a , BMP8b, BMP10, BMP15), CLN6 protein, epidermal growth factor (EG)
  • Peptide is a compound formed by connecting ⁇ -amino acids with peptide bonds. It is also an intermediate product of protein hydrolysis. Generally, the number of amino acids contained in peptides ranges from two to nine. Depending on the number of amino acids in the peptide, peptides have many different names: dipeptides, tripeptides, tetrapeptides, pentapeptides, etc. Peptides composed of three or more amino acid molecules are called polypeptides. Their molecular weight is less than 10,000 Da. They can pass through semipermeable membranes and are not precipitated by trichloroacetic acid and ammonium sulfate.
  • “Small molecule compounds” include 7-methoxypterydine, 7-methylpterydine, abacavir, abafungin, abarelix, acebutolol, acenaphthene, acetaminophen, acetanilide , acetazolamide, hexamide acetate, acitretin, acrivastine, adenine, adenosine, alafloxacin, albendazole, albuterol, alclofenac, aldesleukin, alemtuzumab , alfuzosin, alitretinoin, alobarbital, allopurinol, all-trans retinoic acid (ATRA), alloprine, alprazolam, alprarolol, hexamethonium, Amifostine, amiloride, aminoglutethimide, aminopyrine, amiodarone hydrochloride, amitripty
  • Antigen refers to a substance that can cause the production of antibodies, and is any substance that can induce an immune response. Foreign molecules can be recognized by immunoglobulins on B cells or processed by antigen-presenting cells and combined with the major histocompatibility complex to form complexes that then activate T cells, triggering a continuous immune response.
  • Antigenic epitopes also known as antigenic determinants, can be composed of continuous sequences (primary structure of proteins) or discontinuous three-dimensional protein structures, and are special chemical groups that determine antigenicity. Most of the antigenic epitopes exist on the surface of the antigenic substance, and some exist inside the antigenic substance and must be treated with enzymes or other methods before being exposed. A natural antigenic substance can have multiple and multiple determinants. The larger the antigen molecule, the greater the number of epitopes.
  • Tumor-associated antigen refers to the antigen molecules present on tumor cells or normal cells, including embryonic proteins, glycoprotein antigens, squamous cell antigens, etc., which are commonly used in the diagnosis of clinical tumors. Tumor-associated antigens are not unique to tumor cells and can be synthesized in trace amounts by normal cells, but are highly expressed when tumor cells proliferate, so they are called "associated antigens.” Tumors derived from the same tissue type have the same tumor-associated antigens in different individuals.
  • Pathogenic microorganisms refer to microorganisms that can invade the human body and cause infections or even infectious diseases, or pathogens. Among pathogens, bacteria and viruses are the most harmful. Pathogenic microorganisms include prions, fungi, bacteria, spirochetes, mycoplasma, rickettsia, chlamydia, and viruses. Pathogenic microbial antigens refer to substances derived from pathogens and capable of triggering immune responses.
  • Lipid encapsulation refers to lipid nanoparticles that provide active or therapeutic agents, such as nucleic acids (e.g., mRNA), with full encapsulation, partial encapsulation, or something in between.
  • nucleic acids e.g., mRNA
  • nucleic acids are completely encapsulated within lipid nanoparticles.
  • the lipid nanoparticles have an average diameter of from about 90 nm to about 600 nm, from about 100 nm to about 550 nm, from about 150 nm to about 500 nm, from about 200 nm to about 400 nm, from about 250 nm to about 300 nm, from about 200 nm to about 200 nm to about 300 nm. About 300nm, and is essentially non-toxic.
  • the present disclosure includes one or more targeted delivery system (GOLD) lipids, which result in selective delivery of lipid nanoparticles to specific organs.
  • the targeted delivery system (GOLD) lipid may be one or more of an ionizable anionic steroid and/or an ionizable anionic polymer conjugated lipid.
  • the targeted delivery system (GOLD) lipid is present at about 5%, 10%, 15%, 20%, 22%, 24%, 26%, 28%, 30%, 32%, 34 A molar ratio of %, 36%, 38%, 40%, 45%, to about 50%, or any range deducible therein, is present in the composition.
  • the targeted delivery system (GOLD) lipid can be present at about 5% to about 50%, about 5% to about 45%, about 10% to about 40%, or about 20% to about 35% %, or a molar ratio of about 20% to about 30%.
  • the GOLD compound may be an ionizable anionic steroid.
  • the present disclosure provides one or more lipids having one or more steroids and ionizable anionic groups.
  • Ionizable anionic steroids may contain groups with a negative charge regardless of pH.
  • Ionizable anionic groups that may be used in ionizable anionic steroids are carboxylate, sulfonate, or phosphate groups.
  • the ionizable anionic group may be a carboxylate group.
  • the carboxylate group may be a compound having a negative charge at a pH below 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14.
  • the steroids and steroid derivatives may be a class of compounds having a four-ring 17-carbon ring structure, which may further comprise one or more substitutions, including alkyl, alkoxy, hydroxyl, oxo, acyl , or a double bond between two or more carbon atoms.
  • the steroid ring structure contains three fused cyclohexyl rings and a fused cyclopentyl ring.
  • the GOLD compound may be an ionizable anionic polymer conjugated lipid.
  • Lipids are small molecules with two or more C6-C24 alkyl or alkenyl or alkynyl chains.
  • the present disclosure provides one or more lipids having one or more polymer conjugation components and ionizable anionic groups.
  • Ionizable anionic groups that can be used in the ionizable anionic polymer-conjugated lipid are carboxylate groups, sulfonate groups, or phosphate groups.
  • the ionizable anionic group may be a carboxylate group.
  • the carboxylate group may be a compound having a negative charge at a pH below 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14.
  • the polymeric conjugation component may comprise a PEG chain linked to a glycerol group or one or more C6-C24 long chain alkyl or alkenyl or C6-C24 fatty acid groups linked with a PEG chain to a linker group. Group compound.
  • a composition containing one or more auxiliary lipids is mixed with a cationic lipid and a targeted delivery system lipid to create lipid nanoparticles.
  • the cationic lipids and targeted delivery system lipids are mixed with 1, 2, 3, 4, or 5 different types of auxiliary lipids. It is contemplated that cationic lipids and targeted delivery system lipids may be blended with multiple different auxiliary lipids of a single type.
  • the auxiliary lipids include, but are not limited to, one or more of phospholipids, steroids or steroid derivatives, polymer-conjugated lipids, and modified lipids.
  • Phospholipid is any lipid containing a phosphate group.
  • the phospholipid is a structure containing one or two long chain C6-C24 alkyl or alkenyl groups, glycerol or sphingosine, one or two phosphate ester groups, and optionally small organic molecules.
  • the small organic molecule is an amino acid, sugar, or amino-substituted alkoxy, such as choline or ethanolamine.
  • the phospholipid is phosphatidylcholine.
  • the phospholipid is DOPE, DSPC, DPPC, DMPC, DOPC, POPC, or SM.
  • the phospholipid is distearoylphosphatidylcholine or dioleoylphosphatidylethanolamine.
  • Steproids and steroid derivatives include any steroid or steroid derivative.
  • the term "steroid” is a class of compounds having a tetracyclic 17-carbon ring structure, which may further comprise one or more substitutions, including alkyl, alkoxy , hydroxyl, oxo, acyl, or a double bond between two or more carbon atoms.
  • the steroid ring structure contains three fused cyclohexyl rings and a fused cyclopentyl ring.
  • steroid derivatives comprise the above-described ring structures with one or more non-alkyl substitutions.
  • the steroid or steroid derivative is a sterol. In some embodiments of the present disclosure, the steroid or steroid derivative is a cholestane or cholestane derivative. As mentioned above, cholestane derivatives include one or more non-alkyl substitutions of the ring systems described above. In some embodiments, the cholestane or cholestane derivative is cholestene or a cholestene derivative or a sterol or sterol derivative. In other embodiments, the cholestane or cholestane derivative is cholestere and sterol or derivatives thereof.
  • Polymer-conjugated lipid refers to a lipid that inhibits lipid nanoparticle aggregation or improves lipid nanoparticle stability or alters the immune response or alters circulation time in the body.
  • the polymer-conjugated lipids include, but are not limited to, polyethylene glycol-conjugated lipids, polylactic acid-conjugated lipids, polyamide-conjugated lipids, cationic polymer-conjugated lipids, polysarcosine (pSar ) conjugated lipid, polylactic acid-co-glycolic acid (PLGA) conjugated lipid, polyamino acid conjugated lipid, polypeptide conjugated lipid, polypeptide conjugated lipid, or mixtures thereof.
  • polyethylene glycol-conjugated lipid refers to any lipid to which a PEG group has been attached.
  • the PEG lipid is a diglyceride that also contains a PEG chain attached to a glycerol group.
  • the PEG lipid is a compound containing one or more C6-C24 long chain alkyl or alkenyl or C6-C24 fatty acid groups linked with a PEG chain to a linker group.
  • PEG lipids include PEG-modified phosphatidylethanolamine and phosphatidic acid, PEG-conjugated ceramides, PEG-modified dialkylamines, and PEG-modified 1,2-diacyloxypropane-3- Amine, PEG modified diacylglycerol and dialkylglycerol.
  • PEG-modified distearoylphosphatidylethanolamine or PEG-modified dimyristoyl-sn-glycerol PEG modification is measured by the molecular weight of the PEG component of the lipid. In some embodiments, the molecular weight of the PEG used for modification is from about 100 to about 15,000.
  • the molecular weight is about 200 to about 500, about 400 to about 5000, about 500 to about 3000, or about 1200 to about 3000.
  • the molecular weight of PEG used for modification is about 100, 200, 400, 500, 600, 800, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, 3000, 3500, 4000, 4500, 5000, 6000, 7000 , 8000, 9000, 10000, 12500 to about 15000.
  • Modified lipids contain Lipids modified by small molecule compounds, vitamins, carbohydrates, peptides, proteins, nucleic acids, lipopolysaccharides, inorganic molecules or particles, metal ions or particles and combinations of the above substances.
  • the following reagents used for compound synthesis are all from Shanghai Titan Technology Co., Ltd., AR grade.
  • Succinic anhydride (225 mg, 2.25 mmol) was added to a 25 mL flask, dissolved in DCM (5 mL), and DMAP (27 mg, 0.225 mmol) was added. After stirring at room temperature for 30 min, 1-5-2 (500 mg, 1.13 mmol) was added to the solution, and the solution was stirred at room temperature overnight. TLC (10% MeOH/DCM, 0.1% acetic acid) was used to detect the progress of the reaction. After the reaction is complete, the solution is diluted with 10 mL DCM. Then wash with 10 mL of water and 10 mL of saturated brine, dry over anhydrous Na 2 SO 4 , filter, and concentrate the organic phase to obtain about 590 mg of crude product.
  • Adipic acid 701.6 mg, 4.8 mmol
  • DMAP 58.6 mg, 0.48 mmol
  • DCC 248 mg, 1.2 mmol
  • DCM 20 mL
  • Flash column purification 200g silica gel, use 500mL n-heptane on the column; the mobile phases are: 300mL n-heptane; 300mL 1% EtOAc+99% n-heptane; 300mL 3% EtOAc+97% n-heptane ; 300mL 5% EtOAc+95% n-heptane; 2000mL 10% EtOAc+90% n-heptane;) Isolate pure product, 1-9-2, 1g, yield 22%.
  • Flash column purification (10g silica gel, mobile phases are: 200mL n-heptane; 200mL 1% EtOAc+99% n-heptane; 200mL 5% EtOAc+95% n-heptane; 300mL 8% EtOAc+92% n-heptane) to obtain pure product, 1-25-2, 350 mg, yield 38%.
  • Extract with MTBE combine the organic phases, dry over anhydrous Na 2 SO 4 , filter, and concentrate the organic phase to obtain 300 mg of crude product.
  • Use Flash column purification (8g silica gel, mobile phases are: 200mL n-heptane; 100mL 5% EtOAc+95% n-heptane; 100mL 10% EtOAc+90% n-heptane; 100mL 20% EtOAc+80% n-heptane; 200 mL 30% EtOAc + 70% n-heptane) to isolate the pure product, compound 1-25, 100 mg, yield 32%.
  • Succinic anhydride (4.08g, 40.8mmol), DMAP (498mg, 4.08mmol), and DCM (50mL) were added to a 100mL flask. Stir at room temperature for 10 min, and add raw materials (5.0g, 5.4mmol) to the reaction solution. TLC (5% MeOH/DCM)) was used to detect the progress of the reaction. After the reaction is complete, the reaction solution is filtered to remove the solid. The filtrate is washed with 5 mL of water and 5 mL of saturated brine, dried over anhydrous Na 2 SO 4 , filtered, and the organic phase is concentrated to obtain a crude product, 1-38-1, about 8 g. Yield 100%.
  • Extract with MTBE combine the organic phases, dry over anhydrous Na 2 SO 4 , filter, and concentrate the organic phase to obtain 300 mg of crude product.
  • Use Flash column purification (8g silica gel, mobile phases are: 200mL DCM; 100mL 1% MeOH+99% DCM; 100mL 1.5% MeOH+98.5% DCM; 100ml 2% MeOH+98% DCM; 200mL 3% MeOH + 97% DCM) was isolated to obtain pure product, 1-38, 120 mg, yield 36%.
  • Flash column purification 80g silica gel, use 500mL n-heptane on the column; the mobile phases are: 200mL n-heptane; 100mL 0.5% EtOAc+99.5% n-heptane; 100mL 0.8% EtOAc+99.2% n-heptane ; 100mL 1% EtOAc+99% n-heptane; 100mL 1.5% EtOAc+98.5% n-heptane; 100mL 2% EtOAc+98% n-heptane; 100mL 3% EtOAc+97% n-heptane 600mL 10 % EtOAc + 90% n-heptane;) Isolated pure product, compound 1-39, 150 mg, yield 28%.
  • Flash column purification (10g silica gel, mobile phases are: 200mL n-heptane; 200mL 1% EtOAc+99% n-heptane; 200mL 5% EtOAc+95% n-heptane; 300mL 8% EtOAc+92% n-heptane) to obtain a pure product, 1-42-1, 300mg, with a yield of 64%.
  • Flash column purification 60g silica gel, use 500mL n-heptane on the column; the mobile phases are: 200mL n-heptane; 100mL 1% EtOAc+99% n-heptane; 100mL 1.5% EtOAc+98.5% n-heptane 100mL 2% EtOAc+98% n-heptane; 600mL 3% EtOAc+97% n-heptane;) Isolate pure product, 1-53, 500mg, yield 40%.
  • Extract with MTBE combine the organic phases, dry over anhydrous Na 2 SO 4 , filter, and concentrate the organic phase to obtain 520 mg of crude product.
  • Use Flash column purification (8g silica gel, mobile phases are: 200mL n-heptane; 100mL 1% EtOAc+99% n-heptane; 100mL 5% EtOAc+95% n-heptane; 100mL 10% EtOAc+90% n-heptane; 200mL 20% EtOAc+80% n-heptane) to isolate the pure product Product, compound 1-55, 200 mg, yield 38%.
  • Step 1 The synthesis method of compound 1-56-1 is as follows:
  • Flash column purification 50g silica gel, mobile phases are: 200mL n-heptane; 150mL 1% EtOAc+99% n-heptane; 150mL 2% EtOAc+98% n-heptane; 200mL 5% EtOAc+95% n-heptane; 500mL 8% EtOAc + 92% n-heptane;) to isolate the pure product, 1-56-4, 1.2g, yield 81%.
  • Flash column purification (8g silica gel, mobile phases are: 100mL n-heptane; 100mL 5% EtOAc+95% n-heptane; 100mL 10% EtOAc+90% n-heptane; 100mL 20% EtOAc+80% n-heptane; 200 mL 30% EtOAc + 70% n-heptane) to isolate the pure product, compound 1-56, 50 mg, yield 29%.
  • DODMA, DSPC, cholesterol, PEG2000-DMG, etc. used in the following examples are all from Avituo (Shanghai) Pharmaceutical Technology Co., Ltd., and Luc-mRNA is from Shanghai Zhaowei Technology Development Co., Ltd.
  • DODMA cationic lipid
  • DSPC auxiliary lipid
  • cholesterol auxiliary lipid
  • PEG2000-DMG auxiliary lipid
  • compound 1-1 GOLD lipid
  • Example 3 preparation of lipid nanoparticles TMF2 (containing 5% compound 1-1):
  • DODMA cationic lipid
  • DSPC auxiliary lipid
  • cholesterol auxiliary lipid
  • PEG2000-DMG auxiliary lipid
  • compound 1-1 GOLD lipid
  • DODMA cationic lipid
  • DSPC auxiliary lipid
  • cholesterol auxiliary lipid
  • PEG2000-DMG auxiliary lipid
  • compound 1-2 GOLD lipid
  • DODMA cationic lipid
  • DSPC auxiliary lipid
  • sitosterol auxiliary lipid
  • PEG2000-DMG auxiliary lipid
  • compound 1-3 GOLD lipid
  • Example 6 preparation of lipid nanoparticles TMF5 (containing 20% compound 1-5):
  • DODMA cationic lipid
  • DSPC auxiliary lipid
  • cholesterol auxiliary lipid
  • PEG2000-DMG auxiliary lipid
  • compound 1-5 GOLD lipid
  • DODMA cationic lipid
  • DOPE auxiliary lipid
  • cholesterol auxiliary lipid
  • PEG2000-DMG auxiliary lipid
  • compound 1-6 GOLD lipid
  • Example 8 preparation of lipid nanoparticles TMF7 (containing 38.5% compound 1-1):
  • DODMA cationic lipid
  • DSPC auxiliary lipid
  • compound 1-1 GOLD lipid
  • PEG2000-DMG auxiliary lipid
  • pH 4 citric acid buffer to dilute the luciferase-expressing mRNA stock solution to 0.3 mg/mL to obtain an aqueous phase.
  • DODMA cationic lipid
  • DSPC auxiliary lipid
  • compound 1-1 GOLD lipid
  • DODMA cationic lipid
  • compound 1-56 GOLD lipid
  • compound 1-1 GOLD lipid
  • PEG2000-DMG auxiliary lipid
  • Lipid nanoparticles TMF11-37 were prepared in a similar manner to lipid nanoparticles TMF7 using corresponding starting materials.
  • TMF38 is prepared in a similar manner to TMF9 using corresponding starting materials.
  • Detailed information on lipid nanoparticle components is shown in Table 3.
  • NanoBrook 90plus PLAS (Brookhaven Instruments, US) was used to measure the size and polydispersity index (PDI) of lipid nanoparticles at a side scattering angle of 90° using dynamic light scattering technology (Dynamic Light Scattering DLS).
  • the test results are shown in Table 4. , 5 and 6.
  • the Qubit RNA HS quantitative assay kit (ThermoFisher Scientific, UK) was used to determine the content and encapsulation efficiency of lipid nanoparticles.
  • 15 mg/mL D-luciferin potassium salt was intraperitoneally injected at a dose of 150 mg/kg.
  • Ten minutes after the injection of luciferase substrate the mice were placed under an in vivo imaging system (IVIS Lumina XRMS Series III, PerkinElmer) to observe the fluorescence intensity and distribution in the mice. Then the mice were sacrificed, and the organs (heart, liver, spleen, lungs, and kidneys) were isolated and imaged in vitro.
  • the organ distribution of Luc-mRNA delivered by representative lipid compounds is shown in Tables 7 and 8 and Figure 23.
  • the selectivity data summary of spleen and liver is shown in Figure 24. As long as the ratio of spleen to liver is higher than 1, it means that the spleen has better selectivity and can achieve the effect of spleen targeting. The higher the ratio, the spleen target. The better the directional effect, among which the lipid nanoparticles TMF36, TMF17, TMF32 and TMF35 have the highest selectivity for spleen and liver.
  • mice 4 hours after intravenous administration of mice, the average fluorescence intensity of TMF36, TMF17, TMF32 and TMF35 in the spleen and liver
  • the ratios (spleen/liver) were 57.1, 59.7, 61.7 and 80.3 respectively.
  • the average fluorescence intensity in different organs represents the delivery efficiency of the corresponding delivery system in different organs.
  • the lipid nanoparticles of the present application can successfully deliver nucleic acid molecules to the spleen and express them, and the delivery efficiency to the spleen is significantly higher than Delivery efficiency to liver and other tissues/organs.
  • Table 7 Expression intensity of Luc-mRNA delivered by lipid nanoparticles prepared from representative GOLD lipids.
  • the organ-specific delivery composition for nucleic acid provided by the present application can specifically deliver the preventive/therapeutic agent (especially the nucleic acid component) to the target organ, and in particular can deliver it preferentially to organs other than the liver. It is a nucleic acid drug,
  • the delivery of genetic drugs, vaccines, etc. provides more choices, which is especially important for the development and application of nucleic acid preventive and therapeutic agents.

Abstract

本申请提供了一种用于核酸的器官特异性递送组合物,包含靶向脂质递送系统脂质;进一步地组合物可以包含辅助性脂质;更进一步地组合物可以包含阳离子脂质。其中的靶向脂质递送系统脂质可选自可离子化负离子类固醇和/或可离子化负离子聚合物缀合脂质中的一种或多种;辅助性脂质任选为磷脂、类固醇、聚合物缀合脂质和可修饰的脂质中的一种或多种;阳离子脂质可选自永久性阳离子脂质和/或可离子化阳离子脂质中的一种或多种。该递送组合物能够将预防剂/治疗剂,尤其是核酸组分特异性递送到靶器官。

Description

用于核酸的器官特异性递送组合物
交叉引用
本申请要求于2022年07月11日提交的、申请号为202210809436.X、发明名称为“用于核酸的器官特异性递送组合物”的中国专利申请的优先权,其全部内容通过引用并入本文。
技术领域
本申请内容总体上涉及分子生物学领域。更具体地,它涉及脂质纳米颗粒组合物在诸如核酸等物质的器官特异性递送方面的应用。
背景技术
治疗或预防性核酸具有彻底改变疫苗接种、基因疗法、蛋白质替代疗法和其他遗传疾病疗法的潜力。自2000年代开始对治疗性核酸的首次临床研究以来,核酸分子的设计及其递送方法的研究已经取得了重大进展。然而,核酸药物(包含治疗性药物和预防性药物)仍面临若干挑战,例如大多数脂质体制剂通过肝脏中的生物学过程积累,从而降低了组合物递送进靶器官中的效力。类似地,其它治疗剂诸如蛋白和小分子药物也可以受益于器官特异性递送。许多不同类型的化合物诸如化学药物表现出显著的细胞毒性。如果这些化合物可以更好地定向递送至期望的器官,那么将看到更少的脱靶效应和副作用。
目前,大部分脂质纳米颗粒递送系统被动靶向肝脏。为了改变脂质纳米颗粒的靶向器官,通常的策略是通过对脂质纳米颗粒的组分调整。根据一些报道,由1~2种脂质组成的脂质纳米颗粒通过调整核酸及纳米颗粒的混合比例可以达到靶向脾脏的目的(Stephan Grabbe等,Translating Nanoparticulate-personalized Cancer Vaccines into Clinical Applications:Case Study with RNA-Lipoplexes for the Treatment of Melanoma,2016),然而该策略在制剂的稳定性、包封率等方面有待提高。另外,根据一些报道(Cheng Qiang等,Selective organ targeting(SORT)nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing,2020),在由可阳离子化脂质、类固醇、磷脂和PEG脂质四种组分组成的LNP中加入永久性的阴离子脂质也能够特异性地靶向脾脏,但是代价是组分和制剂工艺复杂度的上升。因此,高递送载量、高稳定性、低复杂度的脂质纳米颗粒递送系统仍然有待开发。
发明内容
本申请提供了一种脂质纳米颗粒,其能够靶向不同组织器官进行药物递送。本申请提供的脂质纳米颗粒,包含本申请的靶向脂质递送系统(GOLD)脂质,靶向脂质递送系统(GOLD)脂质选自可离子化负离子类固醇和/或可离子化负离子聚合物缀合脂质中 的一种或一种以上的组合;进一步的,本申请提供的脂质纳米颗粒还包含辅助性脂质;更进一步的,本申请提供的脂质纳米颗粒还包含阳离子脂质。
其中的辅助性脂质任选为磷脂、类固醇、聚合物缀合脂质和可修饰的脂质中的一种或多种。
优选地,所述磷脂选自DOPE、DSPC、DPPC、DMPC、DOPC、POPC、SM中的任一种或其组合。
优选地,所述类固醇选自胆固醇、谷甾醇、豆甾醇和麦角固醇中的一种或多种。
优选地,所述聚合物缀合脂质,其中聚合物是指一个以上小分子重复单元通过共价键结合形成的高分子量化合物;聚合物可以选自聚乙二醇、聚乳酸、聚酰胺、阳离子聚合物、聚肌氨酸(pSar)、聚乳酸-羟基乙酸共聚物(PLGA)、聚氨基酸、多肽、聚类肽等;优选情况下聚合物缀合脂质选自聚乙二醇缀合脂质;进一步地,聚乙二醇缀合脂质选自PEG1000-DMG、PEG5000-DMG、PEG2000-DMG和PEG2000-DSPE中的一种或多种。
优选地,所述可修饰的脂质包含被小分子化合物、维生素、碳水化合物、肽、蛋白质、核酸、脂多糖、无机物分子或颗粒、金属离子或颗粒及上述物质的组合修饰的脂质。
其中的阳离子脂质选自永久性阳离子脂质和/或可离子化阳离子脂质中的一种或一种以上的组合。永久性阳离子脂质选自DOTAP、DODMA、DSTAP、DMTAP、DDA、DOBAQ中的一种或一种以上的组合;可离子化阳离子脂质选自SM-102、Lipid 5、A6、DC-chol、C12-200、CKK-E12、5A2-SC8、G0-C14、OF-2、306Oi10、OF-Deg-Lin、92-O17S、OF-C4-Deg-Lin、A18-iso5-2DC18、TT3、FTT5、BAMEA-O16B、Vc-Lipid、C14-4、Lipid 14、4A3-Cit、ssPalmO-Phe中的一种或一种以上的组合。
组织器官的特异性由脂质纳米颗粒中靶向脂质递送系统(GOLD)脂质实现;进一步地由靶向脂质递送系统(GOLD)脂质与辅助性脂质的组合实现;更进一步地由靶向脂质递送系统(GOLD)脂质、辅助性脂质和阳离子脂质的组合实现。
所述脂质纳米颗粒优先将治疗剂/预防剂递送至以下的靶器官:肺、心脏、脑、脾、淋巴结、骨、骨骼肌、胃、小肠、大肠/结直肠、肾、膀胱、乳房、睾丸、卵巢、子宫、胸腺、脑干、小脑、大脑、脊髓、眼、耳、舌或皮肤。优选地,所述靶器官是脾。
脂质纳米颗粒中所述GOLD脂质任选为可离子化负离子类固醇和/或可离子化负离子聚合物缀合脂质中的一种或多种。
优选地,所述可离子化负离子类固醇选自下述通式Ⅰ的化合物或其药学上可接受的盐、前药、立体异构体或氘代物:
其中L1为不存在、碳-碳单键、碳-碳双键、碳-碳三键或-O(C=O)-、-(C=O)O-、-C(=O)-、-O(C=O)O-、-O-、-S(O)x-、-S-S-、-C(=O)S-、-SC(=O)-、-NRaC(=O)-、-C(=O)NRa-、-NRaC(=O)NRa-、-OC(=O)NRa-或-NRaC(=O)O-;Q1为不存在或C1-C8直链或支链的烃基,具体地可以为C1、C2、C3、C4、C5、C6、C7或C8直链或支链的烃基;
L2为不存在、碳-碳单键、碳-碳双键、碳-碳三键或-O(C=O)-、-(C=O)O-、-C(=O)-、-O(C=O)O-、-O-、-S(O)x-、-S-S-、-C(=O)S-、-SC(=O)-、-NRaC(=O)-、-C(=O)NRa-、-NRaC(=O)NRa-、-OC(=O)NRa-或-NRaC(=O)O-;Q2为不存在或C1-C8直链或支链的烃基,具体地可以为C1、C2、C3、C4、C5、C6、C7或C8直链或支链的烃基;
L3为不存在、碳-碳单键、碳-碳双键、碳-碳三键或-O(C=O)-、-(C=O)O-、-C(=O)-、-O(C=O)O-、-O-、-S(O)x-、-S-S-、-C(=O)S-、-SC(=O)-、-NRaC(=O)-、-C(=O)NRa-、-NRaC(=O)NRa-、-OC(=O)NRa-或-NRaC(=O)O-;Q3为不存在或C1-C8直链或支链的烃基,具体地可以为C1、C2、C3、C4、C5、C6、C7或C8直链或支链的烃基;
Ra为H或氘或C1-C8直链或支链的烃基或羧基取代的C1-C8直链或支链的烃基,具体地可以为C1、C2、C3、C4、C5、C6、C7或C8直链或支链的烃基;或-Q4-M;其中,Q4为不存在或C1-C8直链或支链的烃基,具体地可以为C1、C2、C3、C4、C5、C6、C7或C8直链或支链的烃基,M为
x为0、1或2;
R为 X为C、O、NRb或S;Rb为H或氘或C1-C8直链或支链的烃基,具体地可以为C1、C2、C3、C4、C5、C6、C7或C8直链或支链的烃基。
根据上述通式,表1非限制性地列举了部分可离子化负离子类固醇化合物。
表1、可离子化负离子类固醇代表性化合物








优选地,所述可离子化负离子聚合物缀合脂质选自下述通式Ⅱ的化合物或其药学上可接受的盐、前药、立体异构体或氘代物:
L1为不存在、碳-碳单键、碳-碳双键、碳-碳三键或-O(C=O)-、-(C=O)O-、-C(=O)-、-O(C=O)O-、-O-、-S(O)x-、-S-S-、-C(=O)S-、-SC(=O)-、-NRaC(=O)-、-C(=O)NRa-、 -NRaC(=O)NRa-、-OC(=O)NRa-或-NRaC(=O)O-;Q为不存在或C1-C8直链或支链的烃基,具体地可以为C1、C2、C3、C4、C5、C6、C7或C8、直链或支链的烃基;
Ra为H或氘或C1-C8直链或支链的烃基或羧基取代的C1-C8直链或支链的烃基,具体地可以为C1、C2、C3、C4、C5、C6、C7或C8直链或支链的烃基或羧基取代的C1、C2、C3、C4、C5、C6、C7或C8直链或支链的烃基;
X为C或N;
R为
Z为C、O、NRb或S;
Y1或Y2中的一个为不存在、碳-碳单键、碳-碳双键、碳-碳三键或-O(C=O)-、-C(OH)-、-(C=O)O-、-C(=O)-、-O(C=O)O-、-O-、-S(O)x-、-S-S-、-C(=O)S-、-SC(=O)-、-NRaC(=O)-、-C(=O)NRa-、-NRaC(=O)NRa-、-OC(=O)NRa-或-NRaC(=O)O-,并且Y1或Y2中的另一个为不存在、碳-碳单键、碳-碳双键、碳-碳三键或-O(C=O)-、-C(OH)-、-(C=O)O-、-C(=O)-、-O(C=O)O-、-O-、-S(O)x-、-S-S-、-C(=O)S-、-SC(=O)-、-NRaC(=O)-、-C(=O)NRa-、-NRaC(=O)NRa-、-OC(=O)NRa-或-NRaC(=O)O-;Ra为H或氘或C1-C8直链或支链的烃基或羧基取代的C1-C8直链或支链的烃基,具体地可以为C1、C2、C3、C4、C5、C6、C7或C8直链或支链的烃基或羧基取代的C1、C2、C3、C4、C5、C6、C7或C8直链或支链的烃基;
G1和G2各自独立地为不存在或取代的C1-C12直链或支链的烃基,具体地可以为C1、C2、C3、C4、C5、C6、C7、C8、C9、C10、C11或C12直链或支链的烃基;
R1和R2各自独立地为取代的C6-C24直链或支链的烃基,具体地可以为C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19、C20、C21、C22、C23或C24直链或支链的烃基;
x为0、1或2。
根据上述通式,表2非限制性地列举了部分可离子化负离子聚合物缀合脂质化合物。
表2、可离子化负离子聚合物缀合脂质代表性化合物

进一步地,所述脂质纳米颗粒还可以包括辅助性脂质。所述辅助性脂质任选为磷脂、类固醇、聚合物缀合脂质和可修饰的脂质中的一种或多种。
优选地,所述磷脂选自DOPE、DSPC、DPPC、DMPC、DOPC、POPC、SM中的任一种或其组合。
优选地,所述类固醇选自胆固醇、谷甾醇、豆甾醇和麦角固醇中的一种或多种。
优选地,所述聚合物缀合脂质中,聚合物是指一个以上小分子重复单元通过共价键结合形成的高分子量化合物;聚合物可以选自聚乙二醇、聚乳酸、聚酰胺、阳离子聚合物、聚肌氨酸(pSar)、聚乳酸-羟基乙酸共聚物(PLGA)、聚氨基酸、多肽、聚类肽等;优选情况下,聚合物缀合脂质选自聚乙二醇缀合脂质;进一步地,聚乙二醇缀合脂质选自PEG1000-DMG、PEG5000-DMG、PEG2000-DMG和PEG2000-DSPE中的一种或多种。
优选地,所述可修饰的脂质包含被小分子化合物、维生素、碳水化合物、肽、蛋白质、核酸、脂多糖、无机物分子或颗粒、金属离子或颗粒及上述物质的组合修饰的脂质。
更进一步地,脂质纳米颗粒中包含阳离子脂质。
脂质纳米颗粒中所述阳离子脂质包含在给定pH下带正电荷的铵基团且含有至少两个疏水基团。所述阳离子脂质是树枝状聚合物或树枝块(dendron)。所述阳离子脂质包含至少两个C6-C24烃基。阳离子脂质可以是永久性阳离子脂质和/或可离子化阳离子脂质中的一种或一种以上的组合。永久性阳离子脂质可选自DOTAP、DODMA、DSTAP、DMTAP、DDA、DOBAQ的一种或多种,可离子化阳离子脂质可选自SM-102、Lipid 5、A6、DC-chol、C12-200、CKK-E12、5A2-SC8、G0-C14、OF-2、306Oi10、OF-Deg-Lin、92-O17S、OF-C4-Deg-Lin、A18-iso5-2DC18、TT3、FTT5、BAMEA-O16B、Vc-Lipid、 C14-4、Lipid 14、4A3-Cit、ssPalmO-Phe中的一种或一种以上的组合。
在脂质纳米颗粒中,阳离子脂质和靶向递送系统脂质的摩尔比为1:1至11:1。
在脂质纳米颗粒中,阳离子脂质、靶向递送系统脂质、辅助脂质的摩尔比为1:(0.1~1):(0.5~2)。
在其它方面,本申请提供了组合物,其包含治疗剂或预防剂以及上述脂质纳米颗粒。
在一种优选情况下,其中所述治疗剂/预防剂是核酸。
优选地,所述核酸包括任何和所有形式的核酸分子,包括但不限于单链DNA、双链DNA、单链RNA、双链RNA、短异构体、质粒DNA、互补DNA/cDNA、反义核酸分子/ASO、小干扰核酸/siRNA、小激活核酸/saRNA、不对称干扰核酸/aiRNA、微小核酸/miRNA、miRNA抑制剂(agomir、antagomir)、Dicer酶底物核酸、小发夹核酸(shRNA)、转运RNA(tRNA)、信使RNA/mRNA、环状RNA/circRNA、自复制mRNA/samRNA、适配体/aptamer和本领域已知的其他形式的核酸分子。
上述核酸分子可以包括天然的核苷酸,也可以包括核苷酸模拟物或功能类似物,还可以包括核苷酸的化学修饰形式。
功能性核苷酸类似物包括但不限于锁核酸LNA、肽核酸PNA或吗啉环寡聚核苷酸核酸模拟物或功能类似物中的一种或一种以上的组合。
核苷酸化学修饰可以位于所述核酸分子的骨架键上。所述骨架键可以通过置换一个或多个氧原子而加以修饰。对所述骨架键的修饰可以包括用硫代磷酸酯键置换至少一个磷酸二酯键。
所述核苷酸化学修饰可以位于核苷上。核苷上的修饰可以位于所述核苷的糖及碱基上。所述核苷上的糖可以选自以下一种或多种:2’-氟代核糖、核糖、2’-脱氧核糖、阿拉伯糖、己糖。
所述核苷酸的化学修饰形式可以选自以下一种或多种:5-甲基胞嘧啶、假尿苷、1-甲基假尿苷、吡啶-4-酮核糖核苷、5-氮杂-尿苷、2-硫代-5-氮杂-尿苷、2-硫代尿苷、4-硫代-假尿苷、2-硫代-假尿苷、5-羟基尿苷、3-甲基尿苷、5-羧基甲基-尿苷、1-羧基甲基-假尿苷、5-丙炔基-尿苷、1-丙炔基-假尿苷、5-牛磺酸甲基尿苷、1-牛磺酸甲基-假尿苷、5-牛磺酸甲基-2-硫代-尿苷、1-牛磺酸甲基-4-硫代-尿苷、5-甲基-尿苷、1-甲基-假尿苷、4-硫代-1-甲基-假尿苷、2-硫代-1-甲基-假尿苷、1-甲基-1-脱氮-假尿苷、2-硫代-1-甲基-1-脱氮-假尿苷、二氢尿苷、二氢假尿苷、2-硫代-二氢尿苷、2-硫代-二氢假尿苷、2-甲氧基尿苷、2-甲氧基-4-硫代-尿苷、4-甲氧基-假尿苷、4-甲氧基-2-硫代-假尿苷、5-氮杂-胞苷、假异胞苷、3-甲基-胞苷、N4-乙酰基胞苷、5-甲酰基胞苷、N4-甲基胞苷、5-羟基甲基胞苷、1-甲基-假异胞苷、吡咯并-胞苷、吡咯并-假异胞苷、2-硫代-胞苷、2-硫代-5-甲基-胞苷、4-硫代-假异胞苷、4-硫代-1-甲基-假异胞苷、4-硫代-1-甲基-1-脱氮-假异胞 苷、1-甲基-1-脱氮-假异胞苷、扎布拉林(zebularine)、5-氮杂-扎布拉林、5-甲基-扎布拉林、5-氮杂-2-硫代-扎布拉林、2-硫代-扎布拉林、2-甲氧基-胞苷、2-甲氧基-5-甲基-胞苷、4-甲氧基-假异胞苷、4-甲氧基-1-甲基-假异胞苷、2-氨基嘌呤、2,6-二氨基嘌呤、7-脱氮-腺嘌呤、7-脱氮-8-氮杂-腺嘌呤、7-脱氮-2-氨基嘌呤、7-脱氮-8-氮杂-2-氨基嘌呤、7-脱氮-2,6-二氨基嘌呤、7-脱氮-8-氮杂-2,6-二氨基嘌呤、1-甲基腺苷、N6-甲基腺苷、N6-异戊烯基腺苷、N6-(顺-羟基异戊烯基)腺苷、2-甲基硫代-N6-(顺-羟基异戊烯基)腺苷、N6-甘氨酰氨基甲酰腺苷、N6-苏氨酰氨基甲酰腺苷、2-甲基硫代-N6-苏氨酰氨基甲酰腺苷、N6,N6-二甲基腺苷、7-甲基腺嘌呤、2-甲基硫代-腺嘌呤、2-甲氧基-腺嘌呤、肌苷、1-甲基-肌苷、怀俄苷、怀丁苷、7-脱氮-鸟苷、7-脱氮-8-氮杂-鸟苷、6-硫代-鸟苷、6-硫代-7-脱氮-鸟苷、6-硫代-7-脱氮-8-氮杂-鸟苷、7-甲基-鸟苷、6-硫代-7-甲基-鸟苷、7-甲基肌苷、6-甲氧基-鸟苷、1-甲基鸟苷、N2-甲基鸟苷、N2,N2-二甲基鸟苷、8-氧代-鸟苷、7-甲基-8-氧代-鸟苷、1-甲基-6-硫代-鸟苷、N2-甲基-6-硫代-鸟苷和N2,N2-二甲基-6-硫代-鸟苷。
在一种优选情况下,所述核酸是mRNA,其能够编码至少一种抗原或其片段或其表位,或编码某种治疗性蛋白,所述抗原选自致病性抗原,例如肿瘤相关抗原或病原微生物抗原。所述mRNA可以是单顺反子mRNA,也可以是多顺反子mRNA。
本申请还提供了上述组合物在制备药物中的应用。
本申请还提供了一种药物,所述药物包括上述组合物以及药学上可接受的辅料(也称为药用辅料)。药用辅料是指生产药品和调配处方时使用的赋形剂和附加剂;是除活性成分以外,在安全性方面已进行了合理的评估,且包含在药物制剂中的物质。药用辅料除了赋形、充当载体、提高稳定性外,还具有增溶、助溶、缓控释等重要功能,是可能会影响到药品的质量、安全性和有效性的重要成分。按照作用和用途,药用辅料可分为溶剂、抛射剂、增溶剂、助溶剂、乳化剂、着色剂、黏合剂、崩解剂、填充剂、润滑剂、润湿剂、渗透压调节剂、稳定剂、助流剂、矫味剂、防腐剂、助悬剂、包衣材料、芳香剂、抗黏合剂、整合剂、渗透促进剂、pH值调节剂、缓冲剂、增塑剂、表面活性剂、发泡剂、消泡剂、增稠剂、包合剂、保湿剂、吸收剂、稀释剂、絮凝剂与反絮凝剂、助滤剂、释放阻滞剂等。
本申请的有益效果:
本申请提供了一种新的脂质纳米颗粒,其能够将治疗剂/预防剂尤其是核酸组分递送至特定器官,特别是可向肝以外的器官优先递送,为核酸药物、基因药物、疫苗等的递送提供更多的选择,尤其对核酸预防剂及治疗剂的发展和应用具有重要的意义。
传统的脂质纳米颗粒大部分靶向肝脏递送。通过在脂质纳米颗粒中加入靶向脂质递送系统(GOLD)脂质,极大地改变了器官靶向性。在加入了GOLD脂质的TMF1、TMF2、 TMF7和TMF11-TMF38等脂质纳米颗粒中,核酸药物在脾脏与肝脏中的分布(平均荧光强度)比值为1.6~80倍(表7和8)。而在没有加入GOLD脂质的传统脂质纳米颗粒中,通常在肝脏中具有较高的递送效率(Ansell,S.M.;Du,X.Novel Lipids and Lipid Nanoparticle Formulations for Delivery of Nucleic Acids.WO2017075531 A1)。
因此,靶向脂质递送系统(GOLD)脂质对于脂质纳米颗粒的器官靶向性起到了重要作用。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定。在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
附图1化合物1-1的核磁。
附图2化合物1-2的核磁。
附图3化合物1-3的核磁。
附图4化合物1-4的核磁。
附图5化合物1-5的核磁。
附图6化合物1-6的核磁。
附图7化合物1-7的核磁。
附图8化合物1-8的核磁。
附图9化合物1-9的核磁。
附图10化合物1-25的核磁。
附图11化合物1-39的核磁。
附图12化合物1-42的核磁。
附图13化合物1-44的核磁。
附图14化合物1-45的核磁。
附图15化合物1-47的核磁。
附图16化合物1-48的核磁。
附图17化合物1-49的核磁。
附图18化合物1-50的核磁。
附图19化合物1-51的核磁。
附图20化合物1-52的核磁。
附图21化合物1-55的核磁。
附图22化合物1-56的核磁。
附图23包载荧光素酶Luciferase mRNA的脂质纳米颗粒TMF1样品静脉注射给药 4h后,小鼠体内不同器官的荧光信号图片。图片所示,在小鼠脾脏中的荧光信号最强,而在肝脏中的荧光信号很弱。说明荧光素酶Luciferase mRNA在脾脏中的表达高于肝脏中的表达。
附图24不同脂质纳米颗粒递送荧光素酶Luciferase mRNA之后脾与肝的荧光强度比值汇总数据。
具体实施方式
A.化学和制剂定义
当在化学基团的上下文中使用时:“氢”是指-H;“氘”是指2H或D;“羟基”是指-OH;“氧代”是指=O;“羰基”是指-C(=O)-;“羧基”是指-C(=O)OH(也写作-COOH或-CO2H);“卤代”独立地指-F、-Cl、-Br或-I;“氨基”是指-NH2;“羟基氨基”是指-NHOH;“硝基”是指-NO2;亚氨基是指=NH;“氰基”是指-CN;“异氰酸酯”是指-N=C=O;“叠氮基”是指-N3;在单价基团上下文中,“磷酸酯”是指-OP(O)(OH)2或其去质子化形式;在二价基团上下文中,“磷酸酯”是指-OP(O)(OH)O-或其去质子化形式;“巯基”是指-SH;且“硫代”是指=S;“磺酰基”是指-S(O)2-;“羟基磺酰基”是指-S(O)2OH;“磺酰胺”是指-S(O)2NH2;且“亚磺酰基”是指-S(O)-。在化学式的上下文中,符号“-”是指单键,“=”是指双键,且“≡”是指三键。符号“----”代表任选的键,其如果存在的话是单键或双键。当垂直穿过键绘制时,符号指示该基团的连接点。应当指出,通常仅以这种方式为较大的基团标识连接点,以帮助读者明确标识连接点。符号是指单键,其中连接至楔的粗端的基团“从纸面出来”。符号是指单键,其中连接至楔的粗端的基团“进入纸面”。符号是指单键,其中在双键周围的几何形状(例如,E或Z)未确定。因此,两种选择以及它们的组合都是预期的。在本申请中显示的结构的原子上的任何未定义化合价暗含地表示与该原子键合的氢原子。在碳原子上的粗体点指示,与该碳相连的氢朝向纸平面之外。
在没有“取代的”修饰词的情况下使用的术语“烷基”表示单价饱和脂族基团,其具有碳原子作为连接点,具有直链或支链无环结构,且没有除碳和氢以外的原子。基团-CH3(Me)、-CH2CH3(Et)、-CH2CH2CH3(n-Pr或丙基)、-CH(CH3)2(i-Pr、iPr或异丙基)、-CH2CH2CH2CH3(n-Bu)、-CH(CH3)CH2CH3(仲丁基)、-CH2CH(CH3)2(异丁基)、-C(CH3)3(叔丁基、t-Bu或tBu)和-CH2C(CH3)3(新戊基)是烷基的非限制性例子。在没有“取代的”修饰词的情况下使用的术语“烷二基”表示二价饱和脂族基团,其具有1个或2个饱和碳原子作为连接点,具有直链或支链无环结构,没有碳-碳双键或三键,且没有除碳和氢以外的原子。基团-CH2-(亚甲基)、-CH2CH2-、-CH2C(CH3)2CH2-和-CH2CH2CH2-是烷二基的非限制性例子。“烷烃”表示具有式H-R的化合物类别,其中R是烷基,该术语如上面所定义。当这些术语中的任一个与“取代的”修饰词一起使用时,一个或多个氢 原子已经独立地被-OH、-F、-Cl、-Br、-I、-NH2、-NO2、-CO2H、-CO2CH3、-CN、-SH、-OCH3、-OCH2CH3、-C(O)CH3、-NHCH3、-NHCH2CH3、-N(CH3)2、-C(O)NH2、-C(O)NHCH3、-C(O)N(CH3)2、-OC(O)CH3、-NHC(O)CH3、-S(O)2OH或-S(O)2NH2替换。下述基团是被取代的烷基的非限制性例子:-CH2OH、-CH2Cl、-CF3、-CH2CN、-CH2C(O)OH、-CH2C(O)OCH3、-CH2C(O)NH2、-CH2C(O)CH3、-CH2OCH3、-CH2OC(O)CH3、-CH2NH2、-CH2N(CH3)2和-CH2CH2Cl。术语“卤代烷基”是被取代的烷基的子集,其中氢原子替换限于卤代(即-F、-Cl、-Br或-I),使得不存在除碳、氢和卤素外的其它原子。基团-CH2Cl是卤代烷基的一个非限制性例子。术语“氟代烷基”是被取代的烷基的子集,其中氢原子替换限于氟代,使得不存在除碳、氢和氟外的其它原子。基团-CH2F、-CF3和-CH2CF3是氟代烷基的非限制性例子。
在没有“取代的”修饰词的情况下使用的术语“烯基”表示单价不饱和脂族基团,其具有碳原子作为连接点,具有直链或支链无环结构,至少一个非芳族碳-碳双键,没有碳-碳三键,且没有除碳和氢以外的原子。非限制性例子包括:-CH=CH2(乙烯基)、-CH=CHCH3、-CH=CHCH2CH3、-CH2CH=CH2(烯丙基)、-CH2CH=CHCH3和-CH=CHCH=CH2。在没有“取代的”修饰词的情况下使用的术语“烯烃二基”表示二价不饱和脂族基团,其具有2个碳原子作为连接点,具有直链或支链、直链或支链无环结构,至少一个非芳族碳-碳双键,没有碳-碳三键,且没有除碳和氢以外的原子。基团-CH=CH-、-CH=C(CH3)CH2-、-CH=CHCH2-和-CH2CH=CHCH2-是烯烃二基基团的非限制性例子。应当指出,尽管烯烃二基基团是脂族的,但一旦在两端连接,就不排除该基团形成芳族结构的一部分。术语“烯烃”和“链烯烃”是同义的,并且表示具有式H-R的化合物类别,其中R是烯基,该术语如上面所定义。类似地,术语“末端烯烃”和“α-烯烃”是同义的且表示具有刚好一个碳-碳双键的烯烃,其中该键是在分子的末端处的乙烯基的部分。当这些术语中的任一个与“取代的”修饰词一起使用时,一个或多个氢原子已经独立地被-OH、-F、-Cl、-Br、-I、-NH2、-NO2、-CO2H、-CO2CH3、-CN、-SH、-OCH3、-OCH2CH3、-C(O)CH3、-NHCH3、-NHCH2CH3、-N(CH3)2、-C(O)NH2、-C(O)NHCH3、-C(O)N(CH3)2、-OC(O)CH3、-NHC(O)CH3、-S(O)2OH或-S(O)2NH2替换。基团-CH=CHF、-CH=CHCl和-CH=CHBr是被取代的烯基的非限制性例子。
在没有“取代的”修饰词的情况下使用的术语“炔基”表示单价不饱和脂族基团,其具有碳原子作为连接点,具有直链或支链无环结构,至少一个碳-碳三键,且没有除碳和氢以外的原子。本文中使用的术语炔基不排除一个或多个非芳族碳-碳双键的存在。基团-C≡CH、-C≡CCH3和-CH2C≡CCH3是炔基的非限制性例子。“炔烃”表示具有式H-R的化合物类别,其中R是炔基。当这些术语中的任一个与“取代的”修饰词一起使用时,一个或多个氢原子已经独立地被-OH、-F、-Cl、-Br、-I、-NH2、-NO2、-CO2H、-CO2CH3、 -CN、-SH、-OCH3、-OCH2CH3、-C(O)CH3、-NHCH3、-NHCH2CH3、-N(CH3)2、-C(O)NH2、-C(O)NHCH3、-C(O)N(CH3)2、-OC(O)CH3、-NHC(O)CH3、-S(O)2OH或-S(O)2NH2替换。
“前药”是指一种化合物,如治疗剂,可在生理条件下或通过溶解转化为生物活性化合物。前药通常在体内快速转化以产生母体化合物,例如通过在血液中水解。前药化合物通常在哺乳动物有机体中具有溶解性、组织相容性或延迟释放的优势。术语“前药”还意指包括任何共价键合载体,当将该前药施用于哺乳动物受试者时,其在体内释放活性化合物。前药包括羟基、氨基或巯基与任何基团结合的化合物,当前药给哺乳动物受试者服用时,这些基团分别裂解形成游离羟基、游离氨基或游离巯基。前药的示例包括但不限于:醋酸盐、甲酸盐和苯甲酸盐衍生物或胺官能团的酰胺衍生物等。
“药学上可接受的盐”是指如上文所定义的药学上可接受的并且具有期望的药理学活性的本公开内容的化合物的盐。这样的盐包括与以下酸形成的酸加成盐:无机酸诸如盐酸、氢溴酸、硫酸、硝酸、磷酸等;或有机酸诸如1,2-乙烷二磺酸、2-羟基乙磺酸、2-萘磺酸、3-苯基丙酸、4,4’-亚甲基双(3-羟基-2-烯-1-甲酸)、4-甲基二环[2.2.2]辛-2-烯-1-甲酸、乙酸、脂族单和二羧酸、脂族硫酸、芳族硫酸、苯磺酸、苯甲酸、樟脑磺酸、碳酸、肉桂酸、柠檬酸、环戊烷丙酸、乙磺酸、富马酸、葡萄庚糖酸、葡糖酸、谷氨酸、羟乙酸、庚酸、己酸、羟基萘甲酸、乳酸、月桂基硫酸、马来酸、苹果酸、丙二酸、扁桃酸、甲磺酸、粘康酸、邻-(4-羟基苯甲酰基)苯甲酸、草酸、对氯苯磺酸、苯基-取代的链烷酸、丙酸、对甲苯磺酸、丙酮酸、水杨酸、硬脂酸、琥珀酸、酒石酸、叔丁基乙酸、三甲基乙酸等。药学上可接受的盐还包括在存在的酸性质子能够与无机碱或有机碱反应时可以形成的碱加成盐。可接受的无机碱包括氢氧化钠、碳酸钠、氢氧化钾、氢氧化铝和氢氧化钙。可接受的有机碱包括乙醇胺、二乙醇胺、三乙醇胺、氨丁三醇、N-甲基葡糖胺等。应当认识到,形成本公开内容的任何盐的一部分的特定阴离子或阳离子不是至关重要的,只要所述盐作为整体是药理学上可接受的即可。
“立体异构体”或“光学异构体”是这样的给定化合物的异构体:其中,相同的原子键合到相同的其它原子,但其中那些原子的三维构型不同。“对映异构体”是给定化合物的立体异构体,其像左手和右手一样是彼此的镜像。“非对映异构体”是给定化合物的并非对映异构体的立体异构体。手性分子含有手性中心(也被称作立构中心或立体中心),它是携带多个基团的分子中的任意点(尽管不一定是原子),使得任意2个基团的互换产生立体异构体。在有机化合物中,手性中心通常是碳、磷或硫原子,尽管其它原子也可能成为有机和无机化合物中的立构中心。分子可以具有多个立构中心,从而产生它的许多立体异构体。在其立体异构现象归因于四面体立体中心(例如,四面体碳)的化合物中,假定可能的立体异构体的总数不会超过2n,其中n是四面体立构中心的数目。具有对称性的分子经常具有比立体异构体的最大可能数目更小的数目。对映异构体的50:50混合 物被称作外消旋混合物。可替换地,可以对映异构地富集对映异构体的混合物,使得一种对映异构体以大于50%的量存在。通常,使用本领域已知的技术,可以拆分或分离对映异构体和/或非对映异构体。预期对于尚未定义其立体化学的任何立构中心或手性轴,该立构中心或手性轴可以以它的R形式、S形式或作为所述R形式和S形式的混合物(包括外消旋混合物和非外消旋混合物)存在。本文中使用的短语“基本上不含有其它立体异构体”是指所述组合物含有≤15%、更优选≤10%、甚至更优选≤5%、或最优选≤1%的另外一种或多种立体异构体。
氘(2H或D)是氢的稳定的和非放射性同位素,它具有氢(H)质量的大约两倍,是氢的最常见同位素。
“预防(prevention)”或“预防(preventing)”包括:(1)抑制受试者或患者的疾病发作,所述受试者或患者可能有患所述疾病的风险和/或易患所述疾病,但尚未经历或表现出所述疾病的任何或所有病状或征状;和/或(2)减慢受试者或患者中的疾病的病状或征状发作,所述受试者或患者可能有患所述疾病的风险和/或易患所述疾病,但尚未经历或表现出所述疾病的任何或所有病状或征状。
“治疗(treatment)”或“治疗(treating)”包括(1)抑制正经历或表现出疾病的病状或征状的受试者或患者中的所述疾病(例如,阻止所述病状和/或征状的进一步发展),(2)改善正经历或表现出疾病的病状或征状的受试者或患者中的所述疾病(例如,逆转所述病状和/或征状),和/或(3)实现正经历或表现出疾病的病状或征状的受试者或患者中的所述疾病的任何可测量的减轻。
“蛋白质”、“多肽”或“肽”是指氨基酸残基的聚合物,包括宽范围的蛋白分子诸如细胞因子、趋化因子、白介素、干扰素、生长因子、凝固因子、抗凝剂、血液因子、骨形态形成蛋白、免疫球蛋白和酶。治疗性蛋白的一些非限制性例子包含下述的治疗性蛋白或其片段、变体或衍生物:用于治疗代谢或内分泌紊乱的治疗性蛋白,其包括酸性鞘磷脂酶,Adipotide,Agalsidase-β,Alglucosidase,α-半乳糖苷酶A,α-葡糖苷酶,α-L-艾杜糖苷酸酶,α-N-乙酰葡糖苷酶,双调蛋白,血管生成素(Ang1,Ang2,Ang3,Ang4,ANGPTL2,ANGPTL3,ANGPTL4,ANGPTL5,ANGPTL6,ANGPTL7),β动物纤维素,β-葡糖醛酸糖苷酶,骨形态发生蛋白BMPs(BMP1,BMP2,BMP3,BMP4,BMP5,BMP6,BMP7,BMP8a,BMP8b,BMP10,BMP15),CLN6蛋白,表皮生长因子(EGF),Epigen,表皮调节素,成纤维细胞生长因子(FGF,FGF-1,FGF-2,FGF-3,FGF-4,FGF-5,FGF-6,FGF-7,FGF-8,FGF-9,FGF-10,FGF-11,FGF-12,FGF-13,FGF-14,FGF-15,FGF-16,FGF-17,FGF-18,FGF-19,FGF-20,FGF-21,FGF-22,FGF-23),Galsulphase,葛瑞林,葡糖脑苷脂酶,GM-CSF,肝素-结合EGF-样生长因子(HB-EGF),肝细胞生长因子HGF,Hepcidin,人白蛋白,增加的白蛋白损失,艾度硫酸酯酶(艾杜糖醛酸-2-硫 酸酯酶),整联蛋白αVβ3,αVβ5和α5β1,艾杜糖醛酸硫酸酯酶,拉罗尼酶,N-乙酰半乳糖胺-4-硫酸酯酶(rhASB;galsulfase,芳基硫酸酯酶A(ARSA),芳基硫酸酯酶B(ARSB)),N-乙酰葡糖胺-6-硫酸酯酶,神经生长因子(NGF,脑源性神经营养因子(BDNF),神经营养因子-3(NT-3),和神经营养因子4/5(NT-4/5),神经调节蛋白(NRG1,NRG2,NRG3,NRG4),神经毡蛋白(NRP-1,NRP-2),肥胖抑制素,血小板衍生生长因子(PDGF(PDFF-A,PDGF-B,PDGF-C,PDGF-D),TGFβ受体(内皮因子,TGF-β1受体,TGF-β2受体,TGF-β3受体),血小板生成素(THPO)(巨核细胞生长和发育因子(MGDF)),转化生长因子(TGF(TGF-a,TGF-β(TGFβ1,TGFβ2,和TGFβ3))),VEGF(VEGF-A,VEGF-B,VEGF-C,VEGF-D,VEGF-E,VEGF-F和PIGF),奈西立肽,胰蛋白酶,促肾上腺皮质激素(ACTH),心房钠尿肽(ANP),胆囊收缩素,胃泌素,瘦蛋白,催产素,生长抑素,加压素(抗利尿激素),降钙素,Exenatide,生长激素(GH),生长素,胰岛素,胰岛素样生长因子1IGF-1,Mecasermin rinfabate,IGF-1类似物,美卡舍明,IGF-1类似物,培维索孟,普兰林肽,特立帕肽(人甲状旁腺素残基1-34),贝卡普勒明,Dibotermin-α(骨形态发生蛋白2),醋酸组氨瑞林(促性腺素释放激素;GnRH),奥曲肽,和帕利夫明(角质形成细胞生长因子;KGF);用于治疗血液病症、循环系统疾病、呼吸系统疾病、癌症或肿瘤疾病、传染病或免疫缺陷的治疗性蛋白,其包括阿替普酶(组织型纤溶酶原激活物;tPA),阿尼普酶,抗凝血酶III(AT-III),比伐卢定,达贝泊汀α,屈曲克凝α(活化的蛋白C,促红细胞生成素,依泊汀α,促血红细胞生长素,红细胞生成素,因子IX,因子VIIa,因子VIII,来匹卢定,蛋白质C浓缩剂,瑞替普酶(tPA的缺失突变蛋白),链激酶,替奈普酶,尿激酶,血管抑素,抗-CD22免疫毒素,地尼白介素-毒素连接物,Immunocyanin,MPS(Metallopanstimulin),Aflibercept,内皮抑素,胶原酶,人脱氧核糖核酸酶I,链道酶,透明质酸酶,木瓜蛋白酶,L-天冬酰胺酶,Peg-天冬酰胺酶,拉布立酶,人慢性促性腺素(HCG),人促卵泡激素(FSH),促黄体素-α,催乳素,α-1-蛋白酶抑制剂,乳糖酶,胰酶(脂肪酶,淀粉酶,蛋白酶),腺苷脱氨酶(牛培加酶,PEG-ADA),阿巴他塞,阿来法塞,阿那白滞素,依那西普,白细胞介素-1(IL-1)受体拮抗剂,胸腺素,TNF-α拮抗剂,恩夫韦肽,和胸腺素α1;选自佐剂或免疫刺激性蛋白的治疗性蛋白,其包括:人佐剂蛋白,特别是模式识别受体TLR1,TLR2,TLR3,TLR4,TLR5,TLR6,TLR7,TLR8,TLR9,TLR10,TLR11;NOD1,NOD2,NOD3,NOD4,NOD5,NALP1,NALP2,NALP3,NALP4,NALP5,NALP6,NALP7,NALP8,NALP9,NALP10,NALP11,NALP12,NALP13,NALP14,1IPAF,NAIP,CIITA,RIG-I,MDA5和LGP2,TLR信号传导的信号转导剂,包括衔接子蛋白,包括例如,Trif和Cardif;小-GTP酶信号传导的组分(RhoA,Ras,Rac1,Cdc42,Rab等),PIP信号传导的组分(PI3K,Src-激酶等),MyD88-依赖性信号传导的组分(MyD88,IRAK1,IRAK2,IRAK4,TIRAP,TRAF6等), MyD88-非依赖性信号传导的组分(TICAM1,TICAM2,TRAF6,TBK1,IRF3,TAK1,IRAK1等);活化的激酶,包括,例如,Akt,MEKK1,MKK1,MKK3,MKK4,MKK6,MKK7,ERK1,ERK2,GSK3,PKC激酶,PKD激酶,GSK3激酶,JNK,p38MAPK,TAK1,IKK和TAK1;活化的转录因子,包括,例如,NF-κB,c-Fos,c-Jun,c-Myc,CREB,AP-1,Elk-1,ATF2,IRF-3,IRF-7,热休克蛋白,诸如HSP10,HSP60,HSP65,HSP70,HSP75和HSP90,gp96,纤维蛋白原,纤连蛋白的TypIII重复额外结构域A;或补体系统的成分,包括C1q,MBL,C1r,C1s,C2b,Bb,D,MASP-1,MASP-2,C4b,C3b,C5a,C3a,C4a,C5b,C6,C7,C8,C9,CR1,CR2,CR3,CR4,C1qR,C1INH,C4bp,MCP,DAF,H,I,P和CD59,或诱导的靶基因,包括,例如,β-防卫素,细胞表面蛋白;或人佐剂蛋白,包括trif,flt-3配体,Gp96或纤连蛋白,诱导或增强先天性免疫应答的细胞因子,包括IL-1α,IL1β,IL-2,IL-6,IL-7,IL-8,IL-9,IL-12,IL-13,IL-15,IL-16,IL-17,IL-18,IL-21,IL-23,TNFα,IFNα,IFNβ,IFNγ,GM-CSF,G-CSF,M-CSF;趋化因子,包括IL-8,IP-10,MCP-1,MIP-1α,RANTES,嗜酸性粒细胞趋化因子,CCL21;由巨噬细胞释放的细胞因子,包括IL-1,IL-6,IL-8,IL-12和TNF-α;以及IL-1R1和IL-1α;细菌(佐剂)蛋白,特别是细菌热休克蛋白或伴侣蛋白,包括Hsp60,Hsp70,Hsp90,Hsp100;来自革兰氏阴性细菌的OmpA(外膜蛋白);细菌孔蛋白,包括OmpF;细菌毒素,包括来自百日咳博德特氏菌(Bordetella pertussis)的百日咳毒素(PT),来自百日咳博德特氏菌的百日咳腺苷酸环化酶毒素CyaA和CyaC,来自百日咳毒素的PT-9K/129G突变体,破伤风毒素,霍乱毒素(CT),霍乱毒素B-亚基,来自霍乱毒素的CTK63突变体,来自CT的CTE112K突变体,大肠杆菌(Escherichia coli)热不稳定性肠毒素(LT),来自热不稳定性肠毒素的B亚基(LTB),具有减少的毒性的大肠杆菌热不稳定性肠毒素突变体,包括LTK63,LTR72;苯酚可溶性调控蛋白;来自幽门螺杆菌(Helicobacter pylori)的嗜中性粒细胞活化蛋白(HP-NAP);表面活性蛋白D;来自布氏疏螺旋体(Borrelia burgdorferi)的外表面蛋白A脂蛋白,来自结核分枝杆菌(Mycobacterium tuberculosis)的Ag38(38kDa抗原);来自细菌菌毛的蛋白;霍乱弧菌(Vibrio cholerae)的肠毒素CT,来自革兰氏阴性细菌的菌毛的菌毛蛋白,和表面活性蛋白A和细菌鞭毛蛋白,原生动物(佐剂)蛋白,特别是来自克鲁斯锥虫(Trypanosoma cruzi)的Tc52,来自Trypanosoma gondii的PFTG,原生动物热休克蛋白,来自利什曼原虫属物种(Leishmania spp.)的LeIF,来自刚地弓形虫(Toxoplasma gondii)的肌动蛋白抑制蛋白样蛋白,病毒(佐剂)蛋白,特别是呼吸道合胞病毒融合糖蛋白(F-蛋白),来自MMT病毒的包膜蛋白,小鼠白血病病毒蛋白,野生型麻疹病毒的血凝素蛋白,真菌(佐剂)蛋白,特别是真菌免疫调节性蛋白(FIP;LZ-8);以及钥孔血蓝蛋白(KLH),OspA;用于激素替代疗法的治疗性蛋白,特别是雌激素,孕酮或黄体酮,和睾酮;用于将体细胞重新编程为多 能或全能干细胞的治疗性蛋白,特别是Oct-3/4,Sox基因家族(Sox1,Sox2,Sox3和Sox15),Klf家族(Klf1,Klf2,Klf4和Klf5),Myc家族(c-myc,L-myc和N-myc),Nanog和LIN28;和选自用于治疗癌症或肿瘤疾病的抗体的治疗性抗体,特别是131T-托西莫单抗,3F8,8H9,阿巴扶单抗,阿德木单抗,Afutuzumab,Alacizumab pegol,阿仑珠单抗,Amatuximab,AME-133v,AMG102,麻安莫单抗(马安那莫单抗),阿泊珠单抗,巴土昔单抗,贝妥莫单抗,贝利木单抗,贝伐珠单抗,比伐单抗-DM1,Blinatumomab,Brentuximab vedotin,Cantuzumab,美坎珠单抗,Cantuzumab ravtansine,卡罗单抗喷地肽,Carlumab,卡妥索单抗,西妥昔单抗,Citatuzumab bogatox,Cixutumumab,Clivatuzumab tetraxetan,CNTO328,CNTO 95,Conatumumab,Dacetuzumab,Dalotuzumab,地舒单抗,地莫单抗,Drozitumab,Ecromeximab,依决洛单抗,Elotuzumab,Elsilimomab,Enavatuzumab,Ensituximab,依帕珠单抗,Ertumaxomab,Etaracizumab,Farletuzumab,FBTA05,Ficlatuzumab,Figitumumab,Flanvotumab,Galiximab,Galiximab,Ganitumab,GC1008,吉妥珠单抗,吉妥珠单抗奥佐米星,Girentuximab,Glemnbatumumab vedotin,GS6624,HuC242-DM4,HuHMFG1,HuN901-DM1,替伊莫单抗,Icrucumab,ID09C3,Indatuximab ravtansine,伊珠单抗奥佐米星,Intetumumab,Ipilimumab,Iratumumab,Labetuzumab,雷克萨单抗,林妥珠单抗,Lorvotuzumab mertansine,Lucatumumab,鲁昔单抗,Mapatumumab,Matuzumab,MDX-060,MEDI 522,米妥莫单抗,Mogamulizumab,MORab-003,MORab-009,Moxetumomab pasudotox,MT103,他那可单抗,Naptumomab estafenatox,Narnatumab,Necitumumab,尼妥珠单抗,Olaratumab,Onartuzumab,Oportuzumab monatox,Oregovomab,PAM4,帕尼单抗,Patritumab,Pemtumomab,帕妥珠单抗,普立昔单抗,Racotumomab,Radretumab,雷莫芦单抗,Rilotumumab,利妥昔单抗,Robatumumab,Samalizumab,SGN-30,SGN-40,西罗珠单抗,Siltuximab,Tabalumab,Tacatuzumab tetraxetan,帕他普莫单抗,Tenatumomab,Teprotumumab,TGN1412,Ticilimumab(=tremelimumab),Tigatuzumab,TNX-650,托西莫单抗,曲妥珠单抗,TRBS07,Tremelimumab,Tucotuzumab celmoleukin,Ublituximab,Urelumab,维妥珠单抗(IMMU-106),Volociximab,伏妥莫单抗,WX-G250,zalutumumab和他珠单抗;用于治疗免疫病症的抗体,特别是依法利珠单抗,依帕珠单抗,Etrolizumab,Fontolizumab,Ixekizumab,美泊利单抗,Milatuzumab,汇集的免疫球蛋白,普立昔单抗,利妥昔单抗,Rontalizumab,卢利珠单抗,Sarilumab,维多珠单抗,Visilizumab,Reslizumab,阿达木单抗,Aselizumab,Atinumab,Atlizumab,贝利木单抗,Besilesomab,BMS-945429,Briakinumab,Brodalumab,卡那单抗,培舍珠单抗,厄利珠单抗,Fezakinumab,戈利木单抗,Gomiliximab,英夫利昔单抗,Mavrilimumab,那他珠单抗,Ocrelizumab,奥度莫单抗,奥法木单抗,Ozoralizumab,Pexelizumab,罗维珠单抗,SBI-087, Secukinumab,Sirukumab,他利珠单抗,托珠单抗,Toralizumab,TRU-015,TRU-016,优特克单抗,维帕莫单抗,阿佐莫单抗,Sifalimumab,鲁昔单抗,和Rho(D)免疫球蛋白;用于治疗传染病的抗体,特别是阿非莫单抗,CR6261,埃巴单抗,Efungumab,艾韦单抗,非维珠单抗,Foravirumab,Ibalizumab,Libivirumab,Motavizumab,奈巴库单抗,Tuvirumab,乌珠单抗,巴土昔单抗,Pagibaximab,帕利珠单抗,Panobacumab,PRO140,瑞非韦鲁,Raxibacumab,瑞加韦单抗,司韦单抗,Suvizumab,和替拉珠单抗;用于治疗血液病症的抗体,特别是阿昔单抗,阿达木单抗,依库珠单抗,美泊利单抗和Milatuzumab;用于免疫调节的抗体,特别是抗胸腺细胞球蛋白,巴利昔单抗,西利珠单抗,达利珠单抗,Gavilimomab,伊诺莫单抗,莫罗莫那-CD3,奥度莫单抗和Siplizumab;用于治疗糖尿病的抗体,特别是Gevokizumab,Otelixizumab和Teplizumab;用于治疗阿尔茨海默病的抗体,特别是Bapineuzumab,Crenezumab,Gantenerumab,Ponezumab,R1450和Solanezumab;用于治疗哮喘的抗体,特别是Benralizumab,Enokizumab,Keliximab,Lebrikizumab,奥马珠单抗,Oxelumab,Pascolizumab和Tralokinumab;用于治疗多种病症的抗体,特别是Blosozumab,CaroRx,Fresolimumab,Fulranumab,Romosozumab,司他莫单抗,Tanezumab和雷珠单抗;用于治疗多种病症的促红细胞生成素(EPO)、粒细胞集落刺激因子(G-CSF)、α-半乳糖苷酶A、α-L-艾杜糖醛酸酶、促甲状腺素α、N-乙酰基半乳糖胺-4-硫酸酯酶(rhASB)、阿法链道酶、组织型纤溶酶原激活物(TPA)Activase、葡糖脑苷脂酶、干扰素(IF)β-1α、干扰素β-1b、干扰素γ、干扰素α、TNF-α、IL-1至IL-36、人生长激素(rHGH)、人胰岛素(BHI)、人绒毛膜促性腺激素α、达依泊汀α、促卵泡激素(FSH)和因子VIII、抗体及抗体衍生物如双特异性抗体、多特异性抗体、ADC等。肽(peptide)是α-氨基酸以肽键连接在一起而形成的化合物,它也是蛋白质水解的中间产物。一般肽中含有的氨基酸的数目为二到九,根据肽中氨基酸的数量的不同,肽有多种不同的称呼:分别叫二肽、三肽、四肽、五肽等。由三个或三个以上氨基酸分子组成的肽叫多肽,它们的分子量低于10,000Da,能透过半透膜,不被三氯乙酸及硫酸铵所沉淀。也有文献把由2~10个氨基酸组成的肽称为寡肽(小分子肽);10~50个氨基酸组成的肽称为多肽;由50个以上的氨基酸组成的肽就称为蛋白质,换言之,蛋白质有时也被称为多肽。
“小分子化合物”包括7-甲氧基喋啶、7-甲基喋啶、阿巴卡韦、阿巴芬净、阿巴瑞克、醋丁洛尔、苊、对乙酰氨基酚、乙酰苯胺、乙酰唑胺、醋酸己脲、阿维A酯、阿伐斯汀、腺嘌呤、腺苷、阿拉沙星、阿苯达唑、沙丁胺醇、阿氯芬酸、阿地白介素、阿仑珠单抗、阿夫唑嗪、阿利维A酸、阿洛巴比妥、别嘌呤醇、全反式视黄酸(ATRA)、阿洛普令、阿普唑仑、阿普洛尔、六甲蜜胺、氨磷汀、阿米洛利、氨鲁米特、氨基比林、盐酸胺碘酮、阿米替林、氨氯地平、异戊巴比妥、阿莫地喹、阿莫沙平、苯丙胺、两性霉素、两 性霉素B、氨苄西林、氨普那韦、安吖啶、硝酸戊酯、异戊巴比妥、阿那曲唑、氨力农(anrinone)、蒽、蒽环类抗生素、阿普比妥、三氧化二砷、天门冬酰胺酶、阿司匹林、阿司咪唑、阿替洛尔、阿托伐他汀、阿托伐醌、阿特拉嗪、阿托品、阿托品硫唑嘌呤、金诺芬、阿扎胞苷、阿扎丙宗、硫唑嘌呤、阿嗪米特、阿奇霉素、氨曲南、巴氯芬、巴比妥、活卡介苗、贝克拉胺、倍氯米松、苄氟噻嗪、贝那普利(benezepril)、贝尼地平、贝诺酯、苯哌利多、苯他西泮、苯甲酰胺、苯并蒽、苄星青霉素、盐酸苯海索、苄硝唑、苯并二氮杂环庚三烯类、苯甲酸、羟萘苄芬宁、倍他米松、贝伐珠单抗(阿伐他汀)、贝沙罗汀、苯扎贝特、比卡鲁胺、联苯苄唑、比哌立登、比沙可啶、比生群、博来霉素、博来霉素、硼替佐米、布林佐胺、溴西泮、甲磺酸溴隐亭、溴哌利多、溴替唑仑、布地奈德、布美他尼、安非他酮、白消安、布他比妥、氨苯丁酯、盐酸布替萘芬、丁巴比妥、丁巴比妥(正丁巴比妥)、布康唑、硝酸布康唑、对羟基苯甲酸丁酯、咖啡因、骨化二醇、卡泊三烯(calciprotriene)、骨化三醇、卡普睾酮、坎苯达唑、樟脑、喜树碱、喜树碱类似物、坎地沙坦、卡培他滨、辣椒辣素、卡托普利、卡马西平、卡比马唑、虫螨威、卡铂、卡溴脲、卡比马唑(carimazole)、卡莫司汀、头孢孟多、头孢唑林、头孢克肟、头孢他啶、头孢呋辛酯、塞来考昔、头孢拉定、西立伐他汀、塞替利嗪、西妥昔单抗、苯丁酸氮芥、氯霉素、氯氮卓、氯美噻唑、氯喹、氯噻嗪、氯苯那敏、盐酸氯丙胍、氯丙嗪、氯磺丙脲、氯普噻吨、毒死蜱、金霉素、氯噻酮、氯唑沙宗、胆骨化醇、西洛他唑、西咪替丁、桂利嗪、西诺沙星、环丙贝特、盐酸环丙沙星、西沙必利、顺铂、西酞普兰、克拉屈滨、克拉霉素、富马酸氯马斯汀、氯碘羟喹、氯巴占、氯法拉滨、氯法齐明、氯贝丁酯、柠檬酸氯米芬、氯米帕明、氯硝西泮、氯吡格雷、氯噻西泮、克霉唑、克霉唑、氯唑西林、氯氮平、可卡因、可待因、秋水仙碱、粘菌素、缀合的雌激素、皮质酮、可的松、醋酸可的松、赛克力嗪、环己巴比妥、环苯扎林、环丁烷-螺巴比妥酸酯、环乙烷-螺巴比妥酸酯、环庚烷-螺巴比妥酸酯、环己烷-螺巴比妥酸酯、环戊烷-螺巴比妥酸酯、环磷酰胺、环丙烷-螺巴比妥酸酯、环丝氨酸、环孢素、赛庚啶、盐酸赛庚啶、阿糖胞苷、胞嘧啶、达卡巴嗪、更生霉素、达那唑、丹蒽醌、丹曲林钠、氨苯砜、达促红素α、达罗地平、柔红霉素、地考喹酯、脱氢表雄酮、地拉韦啶、脱甲氯环素、地尼白介素、脱氧皮质酮、去氧米松、地塞米松、右苯丙胺、右氯苯那敏、右芬氟拉明、右丙亚胺、右丙氧芬、海洛因、泛影酸、地西泮、二氮嗪、双氯酚、2,4-滴丙酸、双氯芬酸、双香豆素、去羟肌苷、二氟尼柳、洋地黄毒苷、地高辛、二氢可待因、二氢马烯雌酮、甲磺酸双氢麦角胺、双碘羟基喹啉、盐酸地尔硫卓、糠酸二氯尼特、茶苯海明、地莫拉明、二硝托胺、薯蓣皂甙元、盐酸地芬诺酯、联苯、双嘧达莫、地红霉素、丙吡胺、双硫仑、敌草隆、多西他赛、多潘立酮、多奈哌齐、多沙唑嗪、盐酸多沙唑嗪、多柔比星(中性)、盐酸多柔比星、多西环素、丙酸屈他雄酮、氟哌利多、二羟丙茶碱、棘球白素、益康唑、 硝酸益康唑、依法韦仑、艾力替新、依那普利、恩莫单抗、依诺昔酮、肾上腺素、表鬼臼毒素衍生物、表柔比星、阿法依泊汀、伊普沙坦(eposartan)、去氢马烯雌酮、马烯雌酮、麦角钙化醇、酒石酸麦角胺、厄洛替尼、红霉素、雌二醇、雌莫司汀、雌三醇、雌酮、依他尼酸、乙胺丁醇、炔己蚁胺、乙硫异烟胺、盐酸普罗吩胺、4-氨基苯甲酸乙酯(苯佐卡因)、对羟基苯甲酸乙酯、炔雌醇、依托度酸、依托咪酯、依托泊苷、阿维A酯、依西美坦、非尔氨酯、非洛地平、芬苯达唑、腈苯唑(fenbuconazole)、芬布芬、皮蝇磷、芬氯酸、芬氟拉明、非诺贝特、非诺多巴(fenoldepam)、非诺洛芬钙、苯氧威、拌种咯、芬太尼、芬替康唑、非索非那定、非格司亭、非那雄胺、醋酸氟卡胺、氟尿苷、氟达拉滨、氟康唑、氟康唑、氟胞嘧啶、咯菌腈、氟氢可的松、醋酸氟氢可的松、氟芬那酸、氟阿尼酮(flunanisone)、盐酸氟桂利嗪、氟尼缩松、氟硝西泮、氟可龙、伏草隆、芴、氟尿嘧啶、盐酸氟西汀、氟甲睾酮、癸酸氟哌噻吨、三氟哌噻吨癸酸酯(fluphenthixol decanoate)、氟西泮、氟比洛芬、丙酸氟替卡松、氟伐他汀、叶酸、福森普利、磷苯妥英钠、夫罗曲坦、呋塞米、氟维司群、呋喃唑酮、加巴喷丁、G-BHC(林旦)、吉非替尼、吉西他滨、吉非贝齐、吉妥珠单抗、格拉非宁、格列本脲、格列齐特、格列美脲、格列吡嗪、格鲁米特、格列本脲、三硝酸甘油酯(硝酸甘油)、醋酸戈舍瑞林、格帕沙星、灰黄霉素、愈创甘油醚、醋酸胍那苄、鸟嘌呤、盐酸卤泛群、氟哌啶醇、氢氯噻嗪、庚巴比妥、海洛因、橙皮素、六氯苯、己巴比妥、醋酸组氨瑞林、氢化可的松、氢氟噻嗪、羟基脲、莨菪碱、次黄嘌呤、替伊莫单抗、布洛芬、伊达比星、烯丙丁巴比妥、异环磷酰胺、ihydroequilenin、甲磺酸伊马替尼、亚胺培南、吲达帕胺、茚地那韦、吲哚美辛、吲哚洛芬、干扰素α-2a、干扰素α-2b、碘达胺、碘番酸、异菌脲、厄贝沙坦、伊立替康、艾沙康唑、异卡波肼、异康唑、异鸟嘌呤、异烟肼、异丙基巴比妥酸盐、异丙隆、二硝酸异山梨酯、单硝酸异山梨酯、伊拉地平、伊曲康唑、伊曲康唑、伊曲康唑(Itra)、伊维菌素、酮康唑、酮洛芬、酮咯酸、凯林、拉贝洛尔、拉米夫定、拉莫三嗪、毛花苷C、兰索拉唑(lanosprazole)、L-DOPA、来氟米特、来那度胺、来曲唑、亚叶酸、醋酸亮丙瑞林、左旋咪唑、左氧氟沙星、利多卡因、利谷隆、赖诺普利、洛美沙星、洛莫司汀、洛哌丁胺、氯雷他定、劳拉西泮、洛美沙星(lorefloxacin)、氯甲西泮、甲磺酸氯沙坦、洛伐他汀、马来酸麦角乙脲、盐酸马普替林、马吲哚、甲苯达唑、盐酸美克洛嗪、甲氯芬那酸、美达西泮、甲地高辛、醋酸甲羟孕酮、甲芬那酸、盐酸甲氟喹、乙酸甲地孕酮、美法仑、溴美喷酯、甲丙氨酯、美普他酚、巯基嘌呤、美沙拉秦、美司钠、美索达嗪、美雌醇、美沙酮、甲喹酮、美索巴莫、美芬妥英、甲氨蝶呤、甲氧沙林、甲琥胺、甲氯噻嗪、哌甲酯、甲基苯巴比妥、对羟基苯甲酸甲酯、甲泼尼龙、甲睾酮、甲乙哌酮、马来酸美西麦角、甲氧氯普胺、美托拉宗、美托洛尔、甲硝唑、盐酸米安色林、咪康唑、咪达唑仑、米非司酮、米格列醇、米诺环素、米诺地尔、 丝裂霉素C、米托坦、米托蒽醌、吗替麦考酚酯、吗茚酮、孟鲁司特、吗啡、盐酸莫西沙星、萘丁美酮、纳多洛尔、纳布啡、萘啶酸、诺龙、并四苯、萘、萘普生、盐酸那拉曲坦、那他霉素、奈拉滨、奈非那韦、奈韦拉平、盐酸尼卡地平、烟酰胺、烟酸、醋硝香豆素、硝苯地平、尼鲁米特、尼莫地平、尼莫唑、尼索地平、硝西泮、呋喃妥因、呋喃西林、尼扎替丁、若莫单抗、炔诺酮、诺氟沙星、炔诺孕酮、盐酸去甲替林、制霉菌素、雌二醇、氧氟沙星、奥氮平、奥美拉唑、奥莫康唑、盐酸昂丹司琼、奥普瑞白介素、奥硝唑、奥沙利铂、奥沙尼喹、双羟萘酸奥克太尔、奥沙普秦、奥沙米特、奥沙西泮、奥卡西平、奥芬达唑、奥昔康唑、氧烯洛尔、羟布宗、盐酸羟苄利明、紫杉醇、帕利夫明、帕米膦酸盐、对氨基水杨酸、泮托拉唑、甲乙双酮、盐酸帕罗西汀、培加酶、培门冬酶、培非司亭、培美曲塞二钠、青霉胺、季戊四醇四硝酸酯、喷他佐辛(pentazocin)、喷他佐辛、戊巴比妥(pentobarbital)、戊巴比妥(pentobarbitone)、喷司他丁、己酮可可碱、奋乃静、奋乃静匹莫齐特、苝、苯乙酰脲、非那西丁、菲、苯茚二酮、苯巴比妥、苯酚巴比妥、酚酞、酚苄明、盐酸酚苄明、苯氧基甲基青霉素、苯琥胺、保泰松、苯妥英、吲哚洛尔、吡格列酮、哌泊溴烷、吡罗昔康、马来酸苯噻啶、铂化合物、普卡霉素、多烯、多粘菌素B、卟菲尔钠钠、泊沙康唑(Posa)、普拉克索、普拉睾酮、普伐他汀、吡喹酮、哌唑嗪、盐酸哌唑嗪、泼尼松龙、泼尼松、扑米酮、丙巴比妥、丙磺舒、普罗布考、丙卡巴肼、丙氯拉嗪、黄体酮、盐酸氯胍、异丙嗪、丙泊酚、残杀威、普萘洛尔、对羟基苯甲酸丙酯、丙硫氧嘧啶、前列腺素、伪麻黄碱、喋啶-2-甲基-硫醇、喋啶-2-硫醇、喋啶-4-甲基-硫醇、喋啶-4-硫醇、喋啶-7-甲基-硫醇、喋啶-7-硫醇、双羟萘酸噻嘧啶、吡嗪酰胺、芘、吡斯的明、乙胺嘧啶、喹硫平、米帕林、喹那普利、奎尼丁、硫酸奎尼丁、奎宁、硫酸奎宁、雷贝拉唑钠、盐酸雷尼替丁、拉布立酶、雷夫康唑、瑞格列奈、双环辛巴比妥、利血平、维A酸类、利福布汀、利福平、利福喷汀、利美索龙、利培酮、利托那韦、利妥昔单抗、苯甲酸利扎曲普坦、罗非昔布、盐酸罗匹尼罗、罗格列酮、糖精、沙丁胺醇、水杨酰胺、水杨酸、沙奎那韦、沙格司亭、仲丁巴比妥、司可巴比妥、舍他康唑、舍吲哚、盐酸舍曲林、辛伐他汀、西罗莫司、索拉非尼、司帕沙星、螺旋霉素、螺内酯、二氢睾酮、司坦唑醇、司他夫定、己烯雌酚、链佐星、士的宁、硫康唑、硝酸硫康唑、磺胺醋酰、磺胺嘧啶、磺胺甲嘧啶、磺胺二甲嘧啶、磺胺甲噁唑、磺胺、磺胺噻唑、舒林酸、磺胺苯酰(sulphabenzamide)、磺胺醋酰(sulphacetamide)、磺胺嘧啶(sulphadiazine)、磺胺多辛(sulphadoxine)、磺胺异噁唑、磺胺甲嘧啶(sulphamerazine)、磺胺甲基异噁唑(sulpha-methoxazole)、磺胺吡啶(sulphapyridine)、柳氮磺吡啶、苯磺唑酮、舒必利、硫噻嗪、琥珀酸舒马普坦、马来酸舒尼替尼、他克林、他克莫司、他布比妥、柠檬酸他莫昔芬、坦索罗辛(tamulosin)、橘皮素(targretin)、紫杉烷、他扎罗汀、替米沙坦、替马西泮、替莫唑胺、替尼泊苷、替诺 昔康、特拉唑嗪、盐酸特拉唑嗪、盐酸特比萘芬、硫酸特布他林、特康唑、特非那定、睾内酪、睾酮、四环素、四氢大麻酚、四氧普林、沙利度胺、蒂巴因、可可碱、茶碱、噻苯唑、甲砜霉素、硫鸟嘌呤、硫利达嗪、塞替派、乙苯妥英(thotoin)、胸腺嘧啶、盐酸噻加宾、替勃龙、噻氯匹定、替硝唑、噻康唑、替罗非班、盐酸替扎尼定、妥拉磺脲、甲苯磺丁脲、托卡朋、托吡酯、托泊替康、托瑞米芬、托西莫单抗、曲马多、曲妥珠单抗、盐酸曲唑酮、维A酸、曲安西龙、氨苯蝶啶、三唑仑、三唑类、三氟丙嗪、甲氧苄啶、马来酸曲米帕明、苯并菲、曲格列酮、氨丁三醇、托吡卡胺、曲伐沙星、泰巴氨酯、泛癸利酮(辅酶Q10)、十一碳烯酸、尿嘧啶、尿嘧啶氮芥、尿酸、丙戊酸、戊柔比星、缬沙坦、万古霉素、盐酸文拉法辛、氨己烯酸、戊烯比妥、长春碱、长春新碱、长春瑞滨、伏立康唑、黄嘌呤、扎鲁司特、齐多夫定、齐留通、唑来膦酸盐、唑来膦酸、佐米曲普坦、唑吡坦和佐匹克隆。
抗原(antigen,缩写Ag)是指能引起抗体生成的物质,是任何可诱发免疫反应的物质。外来分子可经过B细胞上免疫球蛋白的辨识或经抗原呈现细胞的处理并与主要组织相容性复合体结合成复合物再活化T细胞,引发连续的免疫反应。
抗原表位又称抗原决定簇,它可以是由连续序列(蛋白质一级结构)组成或由不连续的蛋白质三维结构组成,决定抗原性的特殊化学基团。抗原表位大多存在于抗原物质的表面,有些存在于抗原物质的内部,须经酶或其他方式处理后才暴露出来。一个天然抗原物质可有多种和多个决定簇。抗原分子越大,表位的数目越多。
肿瘤相关抗原(tumor-associated antigen,TAA),是指在肿瘤细胞或正常细胞上存在的抗原分子,包括:胚胎性蛋白、糖蛋白抗原、鳞状细胞抗原等,常用于临床肿瘤的诊断。肿瘤相关抗原并非肿瘤细胞所特有,正常细胞可微量合成,而在肿瘤细胞增殖时高度表达,因此称为“相关抗原”。来源于同一组织类型的肿瘤,在不同个体中具有相同的肿瘤相关抗原。
病原微生物是指可以侵犯人体,引起感染甚至传染病的微生物,或称病原体。病原体中,以细菌和病毒的危害性最大。病原微生物包括朊毒体、真菌、细菌、螺旋体、支原体、立克次体、衣原体、病毒。病原微生物抗原是指来源于病原体,并具有引发免疫反应功能的物质。
“脂质包裹”系指提供活性剂或治疗剂(例如核酸(例如,mRNA))的脂质纳米粒子,其具有全包裹、部分包裹或两者中间。在一些实施例中,核酸(例如mRNA)被完全封装在脂质纳米粒子中。
在各种实施方案中,脂质纳米颗粒具有以下的平均直径:约90nm至约600nm、约100nm至约550nm、约150nm至约500nm、约200nm至约400nm、约250nm至约300nm、约200nm至约300nm,并且是基本无毒的。
B.靶向脂质递送系统(GOLD)脂质
在一些方面,本公开内容包含一种或多种靶向递送系统(GOLD)脂质,其导致脂质纳米颗粒向特定器官的选择性递送。所述靶向递送系统(GOLD)脂质可以是可离子化负离子类固醇和/或可离子化负离子聚合物缀合脂质中的一种或多种。在一些实施方案中,所述靶向递送系统(GOLD)脂质以约5%、10%、15%、20%、22%、24%、26%、28%、30%、32%、34%、36%、38%、40%、45%、至约50%或其中可导出的任何范围的摩尔比存在于所述组合物中。在一些实施方案中,所述靶向递送系统(GOLD)脂质可以以约5%至约50%、约5%至约45%、约10%至约40%、或约20%至约35%、或约20%至约30%的摩尔比存在。
在一些实施例中,所述GOLD化合物可以是可离子化负离子类固醇。在一些实施例中,本公开内容提供了具有一种或多种类固醇和可离子化阴离子基团的一种或多种脂质。可离子化负离子类固醇可以含有具有负电荷(不论pH)的基团。可以用在可离子化负离子类固醇中的可离子化阴离子基团是羧酸根基团、磺酸根基团或磷酸根基团。可离子化阴离子基团可以是羧酸根基团。所述羧酸根基团可以是在低于5、6、7、8、9、10、11、12、13或14的pH具有负电荷的化合物。所述类固醇和类固醇衍生物可以是一类具有四环17碳环状结构的化合物,其可以进一步包含一个或多个取代,所述取代包括烷基、烷氧基、羟基、氧代基、酰基,或在两个或更多个碳原子之间的双键。在一些方面,类固醇的环结构包含三个稠合的环己基环和稠合的环戊基环。
在一些实施例中,所述GOLD化合物可以是可离子化负离子聚合物缀合脂质。脂质是具有两个或更多个C6-C24的烷基或烯基或炔基链的小分子。在一些方面,本公开内容提供了具有一种或多种聚合物缀合组分和可离子化阴离子基团的一种或多种脂质。可以用在可离子化负离子聚合物缀合脂质中的可离子化阴离子基团是羧酸根基团、磺酸根基团或磷酸根基团。可离子化阴离子基团可以是羧酸根基团。所述羧酸根基团可以是在低于5、6、7、8、9、10、11、12、13或14的pH具有负电荷的化合物。所述聚合物缀合组分可以是包含与甘油基团连接的PEG链或含有用PEG链与接头基团连接的一个或多个C6-C24长链烷基或烯基或C6-C24脂肪酸基团的化合物。
C.辅助性脂质
在本公开内容的一些方面,将含有一种或多种辅助性脂质的组合物与阳离子脂质以及靶向递送系统脂质混合以产生脂质纳米颗粒。在一些实施方案中,将所述阳离子脂质和靶向递送系统脂质与1、2、3、4或5种不同类型的辅助性脂质混合。考虑可以将阳离子脂质和靶向递送系统脂质与单一类型的多种不同辅助性脂质混合。在一些实施方案中,所述辅助性脂质包含但不限于磷脂、类固醇或类固醇衍生物、聚合物缀合脂质和修饰的脂质中的一种或多种。
“磷脂”包含磷酸酯基团的任何脂质。在一些实施方案中,所述磷脂是含有一个或两个长链C6-C24烷基或烯基、甘油或鞘氨醇、一个或两个磷酸酯基团和任选的小有机分子的结构。在一些实施方案中,所述小有机分子是氨基酸、糖或氨基取代的烷氧基,诸如胆碱或乙醇胺。在一些实施方案中,所述磷脂是磷脂酰胆碱。在一些实施方案中,所述磷脂是DOPE、DSPC、DPPC、DMPC、DOPC、POPC或SM。在一些实施方案中,所述磷脂是二硬脂酰基磷脂酰胆碱或二油酰基磷脂酰乙醇胺。
“类固醇和类固醇衍生物”包含任何类固醇或类固醇衍生物。如本文中使用的,在一些实施方案中,术语“类固醇”是一类具有四环17碳环状结构的化合物,其可以进一步包含一个或多个取代,所述取代包括烷基、烷氧基、羟基、氧代基、酰基,或在两个或更多个碳原子之间的双键。在一个方面,类固醇的环结构包含三个稠合的环己基环和稠合的环戊基环。在一些实施方案中,类固醇衍生物包含具有一个或多个非烷基取代的上述环结构。在一些实施方案中,类固醇或类固醇衍生物是甾醇。在本公开内容的一些实施方案中,所述类固醇或类固醇衍生物是胆甾烷或胆甾烷衍生物。如上所述,胆甾烷衍生物包括一个或多个上述环系统的非烷基取代。在一些实施方案中,所述胆甾烷或胆甾烷衍生物是胆甾烯或胆甾烯衍生物或者甾醇或甾醇衍生物。在其它实施方案中,所述胆甾烷或胆甾烷衍生物是胆甾烯(cholestere)和甾醇或其衍生物。
“聚合物缀合脂质”是指抑制脂质纳米颗粒聚集或提高脂质纳米颗粒稳定性或改变免疫反应或改变在体内的循环时间的脂质。所述聚合物缀合脂质包含,但不限于聚乙二醇缀合脂质、聚乳酸缀合脂质、聚酰胺缀合脂质、阳离子聚合物缀合脂质、聚肌氨酸(pSar)缀合脂质、聚乳酸-羟基乙酸共聚物(PLGA)缀合脂质、聚氨基酸缀合脂质、多肽缀合脂质、聚类肽缀合脂质或其混合物。在一些实施方案中,所述“聚乙二醇缀合脂质”,是指已连接有PEG基团的任何脂质。在一些实施方案中,所述PEG脂质是是甘油二酯,其也包含与甘油基团连接的PEG链。在其它实施方案中,所述PEG脂质是含有用PEG链与接头基团连接的一个或多个C6-C24长链烷基或烯基或C6-C24脂肪酸基团的化合物。PEG脂质的一些非限制性例子包括PEG修饰的磷脂酰乙醇胺和磷脂酸、PEG缀合的神经酰胺、PEG修饰的二烷基胺和PEG修饰的1,2-二酰氧基丙烷-3-胺、PEG修饰的二酰基甘油和二烷基甘油。在一些实施方案中,PEG修饰的二硬脂酰基磷脂酰乙醇胺或PEG修饰的二肉豆蔻酰基-sn-甘油。在一些实施方案中,通过脂质的PEG组分的分子量来测量PEG修饰。在一些实施方案中,所述用于修饰的PEG的分子量是约100至约15,000。在一些实施方案中,所述分子量是约200至约500、约400至约5000、约500至约3000、或约1200至约3000。用于修饰的PEG的分子量是约100、200、400、500、600、800、1000、1250、1500、1750、2000、2250、2500、2750、3000、3500、4000、4500、5000、6000、7000、8000、9000、10000、12500至约15000。“修饰的脂质”包含 小分子化合物,维生素,碳水化合物,肽,蛋白质,核酸,脂多糖,无机物分子或颗粒,金属离子或颗粒及上述物质的组合修饰的脂质。
英文缩略词列表




实施例
为了更加清楚地描述本申请的目的、特征以及优势,以下将结合附图和具体实施方式对本申请进行详细描述,但下文详细描述的本申请的实施方式,仅仅是为了对本申请的内容进行举例说明,并不对本申请构成任何限定。
实施例1、化合物合成
以下用于化合物合成的试剂均来源于上海泰坦科技股份有限公司,AR级。
化合物1-1合成方法如下:
步骤:25mL烧瓶中加入丁二酸酐(259mg,2.59mmol)溶解在DCM(5mL)中,加入DMAP(32mg,0.259mmol)。室温搅拌30min后,溶液中加入胆固醇(500mg,1.29mmol),室温搅拌过夜。TLC(10%MeOH/DCM)检测反应进行程度。反应完全后,溶液用10mL DCM稀释。然后用10mL水及10mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约610mg。使用Flash柱纯化(10g硅胶,用5mL DCM上柱;流动相分别为:50mL的DCM;50mL 1%甲醇+99%的DCM;50mL 2%甲醇+98%的DCM;50mL 5%甲醇+95%的DCM)分离得到纯的产品(化合物1-1)360mg,收率52%。
化合物1-1的核磁结果如附图1所示。1H NMR(400MHz,CDCl3):δ5.37(m,1H),4.50(m,1H),2.65(t,J=6.0Hz,2H),2.60(t,J=6.0Hz,2H),2.35(d,J=7.0Hz,2H),0.5-2.1(m,41H)。
化合物1-2合成方法如下:
步骤:50mL烧瓶中加入丙二酸(1.1g,10.4mmol)溶解在DCM(20mL)中,加入DMAP(127mg,1.04mmol),DCC(536mg,2.6mmol)。室温搅拌30min后,溶液中加入胆固醇(1g,2.6mmol),室温搅拌过夜。TLC(10%MeOH/DCM)检测反应进行程度。反应完全后,溶液用20mL DCM稀释。然后用20mL水及20mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约1.1g。使用Flash柱纯化(15g硅胶,用10mL DCM上柱;流动相分别为:50mL的DCM;50mL 1%甲醇+99%的DCM;50mL 2%甲醇+98%的DCM;50mL 5%甲醇+95%的DCM)分离得到纯的产品(化合物1-2)840mg,收率68%。
化合物1-2的核磁结果如附图2所示。1H NMR(400MHz,CDCl3):δ5.42(m,1H),4.71-4.79(m,1H),3.44(s,2H),2.39(d,J=8.0Hz,2H),0.5-2.1(m,41H)。
化合物1-3合成方法如下:
100mL烧瓶中加入己二酸(4.38g,30mmol),DMAP(1.22g,10mmol),DCC(6.2g,30mmol),DCM(40mL)。室温搅拌30min,向反应液中加入胆固醇(3.86g,10mmol)。TLC(10%MeOH/DCM)检测反应进行程度。反应完全后,过滤反应液除去固体,滤液加入15mL水及15mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约4.5g。使用Flash柱纯化(120g硅胶,流动相分别为:500mL的正庚烷;300mL 1%EtOAc+99%的正庚烷;300mL 2%EtOAc+98%的正庚烷;200mL 5%EtOAc+95%的正庚烷;1000mL 8%EtOAc+92%的正庚烷)分离得到纯的产品,化合物1-3,2.2g,收率43%。
化合物1-3的核磁结果如附图3所示。1H NMR(400MHz,CDCl3):δ5.37-5.36(m,1H),4.65-4.58(m,1H),2.39-2.29(m,6H),2.03-1.78(m,6H),1.69-0.85(m,40H),0.67(s,3H)。
化合物1-4合成方法如下:
50mL烧瓶中加入戊二酸酐(2.0g,20mmol),DMAP(245mg,2mmol),胆固醇(4.0g,10mmol),DCM(40mL)。室温搅拌过夜,TLC(30%EtOAc/正庚烷)检测反应进行程度。反应完全后,加入15mL水及15mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约4.5g。使用Flash柱纯化(20g硅胶,流动相分别为:500mL的正庚烷;300mL 1%EtOAc+99%的正庚烷;300mL 2%EtOAc+98%的正庚烷;200mL 5%EtOAc+95%的正庚烷;1000mL 8%EtOAc+92%的正庚烷)分离得到纯的产品,化合物1-4,1.6g,收率32%。
化合物1-4的核磁结果如附图4所示。1H NMR(400MHz,CDCl3):δ5.38-5.36(m,1H),4.66-4.58(m,1H),2.45-2.30(m,6H),2.03-1.80(m,8H),1.64-0.83(m,38H),0.67(s,3H).
化合物1-5合成方法如下:
步骤1:化合物1-5-1的合成
250mL烧瓶中加入反应产物胆固醇(5g,12.9mmol),Boc-甘氨酸(2.26g,12.9mmol溶解在DCM(50mL)中,加入DMAP(157mg,1.29mmol),DCC(4g,19.4mmol)。室温搅拌过夜。TLC(20%EtOAc/正庚烷)检测反应进行程度。反应完全后,过滤反应液除去固体,滤液加入25mL水及25mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约7.1g。使用Flash柱纯化(60g硅胶,用50mL正庚烷上柱;流动相分别为:300mL的正庚烷;300mL 1%EtOAc+99%的正庚烷;300mL 2%EtOAc+98%的正庚烷)分离得到纯的产品(1-5-1)5.3g,收率76%。
步骤2:化合物1-5-2的合成
100mL烧瓶中加入1-5-1(5.3g,9.7mmol)溶解在DCM(30mL)中,加入TFA(6mL)。室温搅拌2h后,TLC(20%EtOAc/正庚烷)检测反应进行程度。反应完全后,浓缩反应液,然后加入正庚烷(50mL)打浆,过滤得到固体。然后用DCM(25mL)溶解固体,然后用25mL10%Na2CO3溶液、25mL水及25mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到纯的产品(1-5-2)3.3g,收率77%。
步骤3:化合物1-5的合成
25mL烧瓶中加入丁二酸酐(225mg,2.25mmol)溶解在DCM(5mL)中,加入DMAP(27mg,0.225mmol)。室温搅拌30min后,溶液中加入1-5-2(500mg,1.13mmol),室温搅拌过夜。TLC(10%MeOH/DCM,0.1%乙酸)检测反应进行程度。反应完全后,溶液用10mL DCM稀释。然后用10mL水及10mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约590mg。使用Flash柱纯化(10g硅胶,用5mL DCM上柱;流动相分别为:50mL 1%甲醇+99%的DCM;50mL 2%甲醇+98%的DCM;50mL 5%甲醇+95%的DCM;50mL 10%甲醇+90%的DCM)分离得到纯的产品(化合物1-5)320mg,收率52%。
化合物1-5的核磁结果如附图5所示。1H NMR(400MHz,CDCl3):δ5.38(m,1H),4.65-4.71(m,1H),4.02(d,J=4.0Hz,2H),2.70-2.74(m,2H),2.57-2.60(m,2H),2.32-2.35(m,2H),0.5-2.1(m,44H)。
化合物1-6的合成方法如下:
50mL烧瓶中加入丙二酸(500mg,4.8mmol),DMAP(58.6mg,0.48mmol),DCC(248mg,1.2mmol),DCM(10mL)。室温搅拌30min,向反应液中加入1-5-2(700mg,1.2mmol)。TLC(30%EtOAc/正庚烷)检测反应进行程度。反应完全后,过滤反应液除去固体,滤液加入5mL水及5mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约1.1g。使用Flash柱纯化(20g硅胶,流动相分别为:200mL的正庚烷;150mL 1%EtOAc+99%的正庚烷;150mL 2%EtOAc+98%的正庚烷;200mL 5%EtOAc+95%的正庚烷;500mL 8%EtOAc+92%的正庚烷;)分离得到纯的产品,化合物1-6,290mg,收率77%。
化合物1-6的核磁结果如附图6所示。1H NMR(400MHz,CDCl3):δ5.96(s,1H),5.39-5.38(m,1H),4.70-4.64(m,1H),4.01(d,J=4Hz,2H),2.39-2.33(m,2H),2.08-1.78(m,5H),1.68-0.85(m,43H),0.68(s,3H).
化合物1-7合成方法如下:
100mL烧瓶中加入己二酸(701.6mg,4.8mmol),DMAP(58.6mg,0.48mmol),DCC(248mg,1.2mmol),DCM(20mL)。室温搅拌30min,向反应液中加入1-5-2(700mg,1.2mmol)。TLC(30%EtOAc/正庚烷)检测反应进行程度。反应完全后,过滤反应液除去固体,滤液加入5mL水及5mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约1.3g。使用Flash柱纯化(20g硅胶,流动相分别为:200mL的正庚烷;150mL 1%EtOAc+99%的正庚烷;150mL 2%EtOAc+98%的正庚烷;200mL 5%EtOAc+95%的正庚烷;500mL 8%EtOAc+92%的正庚烷;)分离得到纯的产品,化合物1-7,360mg,收率44%。
化合物1-7的核磁结果如附图7所示。1H NMR(400MHz,d6-DMSO):δ11.99(s,1H),8.22(t,J=8Hz,1H),5.35-5.33(m,1H),4.51-4.43(m,1H),3.77(d,J=4Hz,2H),3.33(s,2H),2.27-2.10(m,6H),1.98-1.75(m,5H),1.59-0.83(m,38H),0.65(s,3H).
化合物1-8合成方法如下:
50mL烧瓶中加入戊二酸酐(194mg,1.7mmol),DMAP(21mg,0.17mmol),DCM(5mL)。室温搅拌30min,向反应液中加入1-5-2(500mg,0.85mmol)。TLC(30%EtOAc/正庚烷)检测反应进行程度。反应完全后,过滤反应液除去固体,滤液加入5mL水及5mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约720mg。使用Flash柱纯化(20g硅胶,流动相分别为:200mL的正庚烷;150mL 1%EtOAc+99%的正庚烷;150mL 2%EtOAc+98%的正庚烷;200mL 5%EtOAc+95%的正庚烷;500mL 8%EtOAc+92%的正庚烷;)分离得到纯的产品,化合物1-8,320mg,收率67%。
化合物1-8的核磁结果如附图8所示。1H NMR(400MHz,CDCl3):δ6.42-6.39(m,1H),5.38-5.36(m,1H),4.71-4.63(m,1H),4.02-4.01(m,2H),2.45-2.32(m,6H),2.09-1.78(m,8H),1.63-0.85(m,36H),0.67(s,3H).
化合物1-9合成方法如下:
步骤1:化合物1-9-1的合成
100mL烧瓶中加入胆固醇(5.0g,12.9mmol),三乙胺(2.6g,25.8mmol),DCM(50mL)。冰浴0-5℃,向溶液中加入滴加甲烷磺酸酐(3.4g,19.4mmol),滴加完,0-5℃反应2h,缓慢升温至室温搅拌过夜。TLC(20%EtOAc/正庚烷)检测反应进行程度。反应完全后,加入5mL水及5mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约7g。使用Flash柱纯化(200g硅胶,用500mL正庚烷上柱;流动相分别为:500mL的正庚烷;500mL 0.3%EtOAc+99.7%的正庚烷;500mL 1%EtOAc+99%的正庚烷;2000mL 2%EtOAc+98%的正庚烷;)分离得到纯的产品1-9-1,3.6g,收率60%。
步骤2:化合物1-9-2的合成
100mL烧瓶中加入1-9-1(4.0g,8.6mmol),邻苯二甲酰亚胺钾盐(1.75g,9.5mmol),DMF(40mL)。加热90℃搅拌16h。TLC(30%EtOAc/正庚烷)检测反应进行程度。反应 完全后,加入15mL水分层,水层用乙酸乙酯20mL×2萃取,合并有机相,用15mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约3g。使用Flash柱纯化(200g硅胶,用500mL正庚烷上柱;流动相分别为:300mL的正庚烷;300mL 1%EtOAc+99%的正庚烷;300mL 3%EtOAc+97%的正庚烷;300mL 5%EtOAc+95%的正庚烷;2000mL 10%EtOAc+90%的正庚烷;)分离得到纯的产品,1-9-2,1g,收率22%。
步骤3:化合物1-9-3的合成
100mL烧瓶中加入1-9-2(200mg,38mmol),水合肼(133mg,0.95mmol),无水乙醇(2mL)。加热80-85℃搅拌3h。TLC(30%EtOAc/正庚烷)检测反应进行程度。反应完全后,过滤,滤液浓缩干,加入2mL DCM,无水Na2SO4干燥,过滤,得到滤液直接投下一步。
步骤4:化合物1-9的合成
50mL烧瓶中加入丁二酸酐(76.1mg,0.76mmol),DMAP(9.3mg,0.076mmol),DCM(1mL)。室温搅拌30min,向反应液中加入上步得到的1-9-3的溶液。TLC(30%EtOAc/正庚烷)检测反应进行程度。反应完全后,加入10mL DCM稀释,加入5mL水及5mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约180mg。使用Flash柱纯化(20g硅胶,流动相分别为:100mL的正庚烷;100mL 1%EtOAc+99%的正庚烷;100mL 2%EtOAc+98%的正庚烷;100mL 5%EtOAc+95%的正庚烷;300mL 8%EtOAc+92%的正庚烷;)分离得到纯的产品,化合物1-9,80mg,收率43%。
化合物1-9的核磁结果如附图9所示。1H NMR(400MHz,CDCl3):δ6.03-6.02(m,1H),3.47-3.43(m,1H),2,71-2.68(m,2H),2.55-2.52(m,2H),2.07-1.98(m,2H),1.87-1.71(m,4H),1.59-0.82(m,48H),0.71(s,3H).
化合物1-25合成方法如下:
步骤1:化合物1-25-1的合成
在250mL三口瓶中加入胆固醇(11.6g,30mmol),三乙胺(9.2g,90mmol),DSC(11.5g,45mmol),乙腈(110mL)。加热45℃搅拌过夜。TLC(20%EtOAc/正庚烷)检测反应进行程度。反应完全后,浓缩有机相,得到粗产品约10g。使用Flash柱纯化(100g硅胶,流动相分别为:300mL的正庚烷;200mL 1%EtOAc+99%的正庚烷;200mL 5%EtOAc+95%的正庚烷;300mL 8%EtOAc+92%的正庚烷;1000mL 15%EtOAc+85%的正庚烷)分离得到纯的产品,1-25-1,6.1g,收率38%。
步骤2:化合物1-25-2的合成
25mL三口瓶中加入1-25-1(541.8mg,1.03mmol),三乙胺(114.3mg,1.13mmol),甘氨酸叔丁酯(131.2mg,1.1mmol),DCM(5mL)。室温搅拌过夜。TLC(20%EtOAc/正庚烷)检测反应进行程度。反应完全后,加入10mL DCM,碳酸氢钠水溶液5mL洗涤,氯化钠水溶液5mL洗涤,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约800mg。使用Flash柱纯化(10g硅胶,流动相分别为:200mL的正庚烷;200mL 1%EtOAc+99%的正庚烷;200mL 5%EtOAc+95%的正庚烷;300mL 8%EtOAc+92%的正庚烷)分离得到纯的产品,1-25-2,350mg,收率38%。
步骤3:化合物1-25的合成
50mL烧瓶中加入1-25-2(350mg,0.64mmol)溶解在DCM(9mL)中,加入TFA(3mL)。室温搅拌2h后,TLC(20%EtOAc/正庚烷)检测反应进行程度。反应完全后,浓缩反应液,然后加入MTBE(20mL)溶解,然后用10%NaHCO3溶液调pH=8-9、1M稀盐酸调pH=1~2,搅拌20min,分层,水相用20mL MTBE萃取,有机相合并,无水Na2SO4干燥,过滤,浓缩有机相,得到粗品300mg。使用Flash柱纯化(8g硅胶,流动相分别为:200mL的正庚烷;100mL 5%EtOAc+95%的正庚烷;100mL 10%EtOAc+90%的正庚烷;100mL 20%EtOAc+80%的正庚烷;200mL 30%EtOAc+70%的正庚烷)分离得到纯的产品,化合物1-25,100mg,收率32%。
化合物1-25的核磁结果如附图10所示。1H NMR(400MHz,d6-DMSO):δ7.33(t,J=8Hz,1H),5.35-5.32(m,1H),4.36-4.29(m,1H),3.63-3.61(m,2H),2.32-2.20(m,2H),2.03-1.75(m,6H),1.56-0.84(m,41H),0.66(s,3H).
化合物1-32合成方法如下:
50mL烧瓶中加入1-5-2(500mg,0.9mmol),EDTA酸酐(236mg,0.9mmol),甲苯(5mL)。加热90℃搅拌16h。TLC(10%MeOH/DCM)检测反应进行程度。反应完全后, 加入5mL水及15mL THF搅拌过夜,分成,水层用10mL THF萃取,有机相无水Na2SO4干燥,过滤,浓缩有机相,得到产品,1-32,40mg,收率6.2%。
化合物1-36合成方法如下:
步骤1:化合物1-36-1的合成
500mL烧瓶中加入溴乙酰氯(13.03g,82.8mmol)溶解在DCM(50mL)中,冰盐浴冷却至0-5℃,向溶液中缓慢滴加胆固醇(16g,41.4mmol)的DCM(110mL)溶液,滴加完室温搅拌过夜。TLC(20%EtOAc/正庚烷)检测反应进行程度。反应完全后,加水50mL淬灭反应,分液,水相用DCM(50mL×2)萃取,合并有机相,用50mL饱和食盐水洗,有机相用无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约22g。使用Flash柱纯化(200g硅胶,用500mL正庚烷上柱;流动相分别为:500mL的正庚烷;500mL 0.1%EtOAc+99.9%的正庚烷;500mL 0.3%EtOAc+99.7%的正庚烷;500mL 0.5%EtOAc+99.5%的正庚烷;2000mL 1%EtOAc+99%的正庚烷)分离得到纯的产品,1-36-1,16g,收率76%。
步骤2:化合物1-36-2的合成
50mL烧瓶中加入1-36-1(8.0g,15.8mmol),DIPEA(4.1g,31.6mmol)溶解在DCM(40mL)中,加入甘氨酸叔丁酯(4.1g,31.6mmol)。室温搅拌过夜。TLC(20%EtOAc/正庚烷)检测反应进行程度。反应完全后,用10mL水及10mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约12.1g。使用Flash柱纯化(100g硅胶,用300mL正庚烷上柱;流动相分别为:500mL的正庚烷;500mL 0.1%EtOAc+99.9%的正庚烷;500mL 0.3%EtOAc+99.7%的正庚烷;2000mL 0.5%EtOAc+99.5%的正庚烷)分离得到纯的产品1-36-2,7.5g,收率85%。
步骤3:化合物1-36-3的合成
50mL烧瓶中加入丁二酸酐(174.9mg,1.75mmol),DMAP(106.8mg,0.87mmol),DCM(10mL)。室温搅拌30min,向反应液中加入1-36-2(1.0g,1.75mmol)。TLC(5%MeOH/DCM)检测反应进行程度。反应完全后,加入5mL水及5mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约1.8g。使用Flash柱纯化(40g硅胶, 流动相分别为:200mL的DCM;200mL 1%MeOH+99%的DCM;500mL 1.5%MeOH+98.5%的DCM)分离得到纯的产品,1-36-3,1.1g,收率92%。
步骤4:化合物1-36的合成
50mL烧瓶中加入1-36-3(300mg,0.46mmol)溶解在DCM(5mL)中,加入TFA(2mL)。室温搅拌2h后,TLC(5%MeOH/DCM)检测反应进行程度。反应完全后,浓缩反应液,然后加入MTBE(20mL)溶解,然后用10%NaHCO3溶液调pH=8~9、1M稀盐酸调pH=1~2,搅拌20min,分层,水相用20mL MTBE萃取,有机相合并,无水Na2SO4干燥,过滤,浓缩有机相,得到粗品300mg。使用Flash柱纯化(8g硅胶,流动相分别为:100mL的DCM;100mL 1%MeOH+99%的DCM;100mL 1.5%MeOH+98.5%的DCM;100mL 2%MeOH+98%的DCM;100mL 3%MeOH+97%的DCM;300mL 8%MeOH+92%的DCM)分离得到纯的产品,1-36,140mg,收率52%。
化合物1-38合成方法如下:
步骤1:化合物1-38-1的合成
100mL烧瓶中加入丁二酸酐(4.08g,40.8mmol),DMAP(498mg,4.08mmol),DCM(50mL)。室温搅拌10min,向反应液中加入原料(5.0g,5.4mmol)。TLC(5%MeOH/DCM))检测反应进行程度。反应完全后,过滤反应液除去固体,滤液加入5mL水及5mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品,1-38-1,约8g。收率100%。
步骤2:化合物1-38-2的合成
50mL烧瓶中加入1-38-1(1.0g,2.9mmol)溶解在DCM(10mL)中,加入DMAP(176.9mg,1.45mmol),DCC(597.4mg,2.9mmol)。室温搅拌30min后,溶液中加入胆固醇(1.12g,2.9mmol),室温搅拌过夜。TLC(20%EtOAc/正庚烷)检测反应进行程度。反应完全后,过滤反应液除去固体,滤液加入5mL水及5mL饱和食盐水洗,无水Na2SO4干燥, 过滤,浓缩有机相,得到粗产品约1.9g。使用Flash柱纯化(20g硅胶,流动相分别为:300mL的正庚烷;200mL 1%EtOAc+99%的正庚烷;200mL 5%EtOAc+95%的正庚烷;300mL 8%EtOAc+92%的正庚烷;)分离得到纯的产品,1-38-2,1.1g,收率53%。
步骤3:化合物1-38的合成
50mL烧瓶中加入1-38-2(400mg,0.56mmol)溶解在DCM(2mL)中,加入盐酸乙酸乙酯溶液(4mL)。室温搅拌2h后,TLC(20%EtOAc/正庚烷)检测反应进行程度。反应完全后,浓缩反应液,然后加入MTBE(20mL)溶解,然后用10%NaHCO3溶液调pH=8~9、1M稀盐酸调pH=1~2,搅拌20min,分层,水相用20mL MTBE萃取,有机相合并,无水Na2SO4干燥,过滤,浓缩有机相,得到粗品300mg。使用Flash柱纯化(8g硅胶,流动相分别为:200mL的DCM;100mL 1%MeOH+99%的DCM;100mL 1.5%MeOH+98.5%的DCM;100ml 2%MeOH+98%的DCM;200mL 3%MeOH+97%的DCM)分离得到纯的产品,1-38,120mg,收率36%。
化合物1-39合成方法如下:
100mL烧瓶中加入胆固醇(1.16g,3mmol,1.0eq),乙酸乙酯6mL。冰盐浴冷却至-5℃,缓慢滴加氯磺酸(384.5mg,3.3mmol,1.1eq),保温搅拌3h。TLC(20%EtOAc/正庚烷)检测反应进行程度。反应完全后,过滤,滤液5mL水洗,5mL饱和食盐水洗,有机相用无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约3g。使用Flash柱纯化(80g硅胶,用500mL正庚烷上柱;流动相分别为:200mL的正庚烷;100mL 0.5%EtOAc+99.5%的正庚烷;100mL 0.8%EtOAc+99.2%的正庚烷;100mL 1%EtOAc+99%的正庚烷;100mL 1.5%EtOAc+98.5%的正庚烷;100mL 2%EtOAc+98%的正庚烷;100mL 3%EtOAc+97%的正庚烷600mL 10%EtOAc+90%的正庚烷;)分离得到纯的产品,化合物1-39,150mg,收率28%。
化合物1-39的核磁结果如附图11所示。1H NMR(400MHz,CDCl3):δ5.38-5.36(m,1H),4.64-4.58(m,1H),2.33-2.30(m,2H),2.02-1.83(m,6H),1.61-0.86(m,36H),0.68(s,3H).
化合物1-41合成方法如下:
50mL烧瓶中加入1-5-2(543.8mg,1.0mmol),吡啶(237.3mg,3.0mmol),THF(10mL)。干冰降温至-40℃,快速滴加三氯氧磷(536.6mg,3.5mmol),-10℃搅拌3h。TLC(10%MeOH/DCM)检测反应进行程度。反应完全后,加入2mL稀盐酸搅拌1h,分层,水相用THF(5mL×2)萃取,合并有机相,用5mL氯化钠水溶液洗涤,用无水Na2SO4干燥,过滤,浓缩有机相,得到纯产品,1-41,约260mg,收率50%。
化合物1-42合成方法如下:
步骤1:化合物1-42-1的合成
25mL三口瓶中加入1-25-1(500mg,0.95mmol),乙醇胺(58mg,0.95mmol),三乙胺(105mg,1.04mmol),DCM(5mL)。室温搅拌3h。TLC(30%EtOAc/正庚烷)检测反应进行程度。反应完全后,加入DCM(10mL),碳酸氢钠水溶液5mL洗涤,氯化钠水溶液5mL洗涤,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约800mg。使用Flash柱纯化(10g硅胶,流动相分别为:200mL的正庚烷;200mL 1%EtOAc+99%的正庚烷;200mL 5%EtOAc+95%的正庚烷;300mL 8%EtOAc+92%的正庚烷)分离得到纯的产品,1-42-1,300mg,收率64%。
步骤2:化合物1-42的合成
50mL烧瓶中加入丁二酸酐(122.6mg,1.23mmol),DMAP(14.97mg,0.12mmol),DCM(3mL)。室温搅拌30min,向反应液中加入1-42-1(300mg,0.61mmol)。TLC(30%EtOAc/正庚烷)检测反应进行程度。反应完全后,过滤反应液除去固体,滤液加入5mL水及5mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约300mg。使用Flash柱纯化(20g硅胶,流动相分别为:500mL的正庚烷;300mL 1%EtOAc+99%的正庚烷;300mL 2%EtOAc+98%的正庚烷;200mL 5%EtOAc+95%的正庚烷;300mL 8%EtOAc+92%的正庚烷)分离得到纯的产品,化合物1-42,100mg,收率28%。
化合物1-42的核磁结果如附图12所示。1H NMR(400MHz,d6-DMSO):δ7.18(t,J=8Hz,1H),5.35-5.33(m,1H),4.35-4.29(m,1H),4.00(t,J=8Hz,2H),3.21-3.17(m,2H),2.32-2.18(m,2H),2.01-1.77(m,6H),1.56-0.84(m,37H),0.66(s,3H).
化合物1-44合成方法如下:
步骤1:化合物1-44-1的合成
50mL烧瓶中加入戊二酸酐(286.3mg,2.5mmol),DMAP(30.7mg,0.25mmol),DCM(7mL)。室温搅拌30min,向反应液中加入1-36-2(700mg,1.25mmol)。TLC(30%EtOAc/正庚烷)检测反应进行程度。反应完全后,过滤反应液除去固体,滤液加入5mL水及5mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约1.5g。使用Flash柱纯化(20g硅胶,流动相分别为:200mL的正庚烷;150mL 1%EtOAc+99%的正庚烷;150mL 2%EtOAc+98%的正庚烷;200mL 5%EtOAc+95%的正庚烷;500mL 8%EtOAc+92%的正庚烷;)分离得到纯的产品,1-44-1,700mg,收率83%。1H NMR(400MHz,CDCl3):δ5.38-5.36(m,1H),4.70-4.63(m,1H),4.16-4.05(m,4H),2.72-2.64(m,4H),2.35-2.31(m,2H),2.02-0.85(m,49H),0.67(s,3H).
步骤2:化合物1-44-2的合成
50mL烧瓶中加入1-44-1(500mg,0.74mmol)溶解在DCM(5mL)中,加入DMAP(18.2mg,0.15mmol),DCC(230.3mg,1.12mmol)。室温搅拌30min后,溶液中加入胆固醇(287.7mg,0.74mmol),室温搅拌过夜。TLC(10%MeOH/DCM)检测反应进行程度。反应完全后,过滤反应液除去固体,滤液加入5mL水及5mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约700mg。使用Flash柱纯化(12g硅胶,流动相分别为:300mL的正庚烷;200mL 1%EtOAc+99%的正庚烷;200mL 5%EtOAc+95%的正庚烷;300mL 8%EtOAc+92%的正庚烷;)分离得到纯的产品,1-44-2,400mg,收率52%。1H NMR(400MHz,CDCl3):δ5.36(m,2H),4.60(m,2H),4.09-4.07(m, 4H),2.36-2.29(m,9H),2.03-1.83(m,14H),1.62-0.86(m,72H),0.68(s,6H).
步骤3:化合物1-44的合成
50mL烧瓶中加入1-44-2(400mg,0.38mmol)溶解在DCM(12mL)中,加入TFA(4mL)。室温搅拌2h后,TLC(20%EtOAc/正庚烷)检测反应进行程度。反应完全后,浓缩反应液,然后加入MTBE(20mL)溶解,然后用10%NaHCO3溶液调pH=8~9、1M稀盐酸调pH=1~2,搅拌20min,分层,水相用MTBE(20mL)萃取,有机相合并,无水Na2SO4干燥,过滤,浓缩有机相,得到粗品520mg。使用Flash柱纯化(8g硅胶,流动相分别为:200mL的正庚烷;100mL 1%EtOAc+99%的正庚烷;100mL 5%EtOAc+95%的正庚烷;100mL 10%EtOAc+90%的正庚烷;200mL 20%EtOAc+80%的正庚烷)分离得到纯的产品,化合物1-44,250mg,收率67%。
化合物1-44的核磁结果如附图13所示。1H NMR(400MHz,CDCl3):δ5.39-5.35(m,2H),4.71-4.68(m,1H),4.61-4.56(m,1H),4.19-4,14(m,4H),2.40-2.20(m,8H),2.03-1.83(m,6H),1.65-0.85(m,72H),0.68(s,6H).
化合物1-45合成方法如下:
步骤1:化合物1-45-1的合成
100mL烧瓶中加入乙醇胺(341.6mg,5.59mmol)溶解在DCM(30mL)中,加入DMAP(136.6mg,1.12mmol),DCC(1.15g,5.59mmol)。室温搅拌30min后,溶液中加入1-4(2.8g,5.59mmol),室温搅拌过夜。TLC(10%MeOH/EtOAc)检测反应进行程度。反应完全后,过滤反应液除去固体,滤液加入5mL水及5mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约3.4g。使用Flash柱纯化(120g硅胶,流动相分别为:300mL的DCM;200mL 1%MeOH+99%的DCM;200ml 2%MeOH+98%的DCM;300mL 3%MeOH+97%的DCM;800mL 5%MeOH+95%的DCM)分离得到纯的产品,1-45-1,2.2g,收率73%。1H NMR(400MHz,CDCl3):δ6.18(s,1H),5.37-5.36(m,1H),4.62-4.58(m,1H),3.73-3.70(m,2H),3.48(s,1H),3.43-3.39(m,2H),3.06(s,1H), 2.37-2.25(m,6H),2.11-1.79(m,13H),1.61-0.85(m,43H),0.68-0.68(m,3H).
步骤2:化合物1-45的合成
100mL烧瓶中加入戊二酸酐(209.81mg,1.84mmol),DMAP(44.5mg,0.37mmol),DCM(10mL)。室温搅拌30min,向反应液中加入1-46-1(1.0g,1.84mmol)。TLC(5%MeOH/DCM)检测反应进行程度。反应完全后,过滤反应液除去固体,滤液加入5mL水及5mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约1.7g。使用Flash柱纯化(120g硅胶,流动相分别为:300mL的DCM;200mL 1%MeOH+99%的DCM;200ml 2%MeOH+98%的DCM;300mL 3%MeOH+97%的DCM;300mL 5%MeOH+95%的DCM)分离得到纯的产品,化合物1-45,180mg,收率15%。
化合物1-45的核磁结果如附图14所示。1H NMR(400MHz,CDCl3):δ6.31(s,1H),5.37-5.36(m,1H),4.65-4.61(m,1H),4.20-4.18(m,2H),3.56-3.52(m,2H),2.46-2.24(m,12H),2.04-1.82(m,13H),1.61-0.85(m,43H),0.68(m,3H).
化合物1-47合成方法如下:
100mL烧瓶中加入DCC(1.52g,7.37mmol,1.5eq),DMAP(300.16mg,2.46mmol,0.5eq),癸二酸(1.49g,7.37mmol,1.5eq)溶解在DCM(40mL)中,搅拌30min,向溶液中加入胆固醇(1.9g,4.91mmol,1.0eq),滴加完室温搅拌过夜。TLC(35%EtOAc/正庚烷)检测反应进行程度。反应完全后,过滤,滤液5mL水洗,5mL饱和食盐水洗,有机相用无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约3g。使用Flash柱纯化(80g硅胶,用500mL正庚烷上柱;流动相分别为:200mL的正庚烷;100mL 0.5%EtOAc+99.5%的正庚烷;100mL 0.8%EtOAc+99.2%的正庚烷;100mL 1%EtOAc+99%的正庚烷;100mL 1.5%EtOAc+98.5%的正庚烷;100mL 2%EtOAc+98%的正庚烷;100mL 3%EtOAc+97%的正庚烷1000mL 10%EtOAc+90%的正庚烷;)分离得到纯的产品,化合物1-47,1g,收率36%。
化合物1-47的核磁结果如附图15所示。1H NMR(400MHz,CDCl3):δ5.38-5.36(m,1H),4.65-4.57(m,1H),2.36-2.24(m,6H),2.03-1.95(m,2H),1.87-1.78(m,3H),1.65-0.85(m,48H),0.68(s,3H).
化合物1-48的合成方法如下:
100mL烧瓶中加入DCC(1.04g,5.04mmol,1.3eq),DMAP(236.9mg,1.94mmol,0.5eq),16-二酸(1.45g,5.04mmol,1.3eq)溶解在DCM(30mL)中,搅拌30min,向溶液中加入胆固醇(1.5g,3.88mmol,1.0eq),滴加完室温搅拌过夜。TLC(20%EtOAc/正庚烷)检测反应进行程度。反应完全后,过滤,滤液5mL水洗,5mL饱和食盐水洗,有机相用无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约3g。使用Flash柱纯化(80g硅胶,用500mL正庚烷上柱;流动相分别为:200mL的正庚烷;100mL 0.5%EtOAc+99.5%的正庚烷;100mL 0.8%EtOAc+99.2%的正庚烷;100mL 1%EtOAc+99%的正庚烷;100mL 1.5%EtOAc+98.5%的正庚烷;100mL 2%EtOAc+98%的正庚烷;100mL 3%EtOAc+97%的正庚烷600mL 10%EtOAc+90%的正庚烷;)分离得到纯的产品,化合物1-48,700mg,收率28%。
化合物1-48的核磁结果如附图16所示。1H NMR(400MHz,CDCl3):δ5.38-5.36(m,1H),4.65-4.57(m,1H),2.36-2.24(m,6H),2.03-1.93(m,2H),1.87-1.80(m,3H),1.65-0.85(m,60H),0.67(s,3H).
化合物1-49合成方法如下:
100mL烧瓶中加入DCC(1.04g,5.04mmol,1.3eq),DMAP(236.9mg,1.94mmol,0.5eq),18-二酸(1.59g,5.04mmol,1.3eq)溶解在DCM(30mL)中,搅拌30min,向溶液中加入胆固醇(1.5g,3.88mmol,1.0eq),滴加完室温搅拌过夜。TLC(20%EtOAc/正庚烷)检测反应进行程度。反应完全后,过滤,滤液5mL水洗,5mL饱和食盐水洗,有机相用无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约3g。使用Flash柱纯化(80g硅胶,用500mL正庚烷上柱;流动相分别为:200mL的正庚烷;100mL 0.5%EtOAc+99.5%的正庚烷;100mL 0.8%EtOAc+99.2%的正庚烷;100mL 1%EtOAc+99%的正庚烷;100mL 1.5%EtOAc+98.5%的正庚烷100mL 2%EtOAc+98%的正庚烷;600mL 3%EtOAc+97%的正庚烷;)分离得到纯的产品,化合物1-49,500mg,收率19%。
化合物1-49的核磁结果如附图17所示。1H NMR(400MHz,CDCl3):δ5.38-5.36(m,1H),4.62-4.58(m,1H),2.37-2.21(m,6H),2.02-1.95(m,2H),1.87-1.82(m,3H),1.67-0.85(m,63H),0.68(s,3H).
化合物1-50合成方法如下:
50mL烧瓶中加入丁二酸酐(699.6mg,7.0mmol),DMAP(328.5mg,2.7mmol),DCM(30mL)。室温搅拌30min,向反应液中加入1-36-2(3.0g,5.4mmol)。TLC(30%EtOAc/正庚烷)检测反应进行程度。反应完全后,过滤反应液除去固体,滤液加入5mL水及5mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约4.5g。使用Flash柱纯化(20g硅胶,流动相分别为:500mL的正庚烷;300mL 1%EtOAc+99%的正庚烷;300mL 2%EtOAc+98%的正庚烷;200mL 5%EtOAc+95%的正庚烷;1000mL 8%EtOAc+92%的正庚烷)分离得到纯的产品,化合物1-50,2.5g,收率70%。
化合物1-50的核磁结果如附图18所示。1H NMR(400MHz,CDCl3):δ5.39-5.36(m,1H),4.70-4.63(m,1H),4.15-4.05(m,4H),2.74-2.63(m,4H),2.33(t,J=8Hz,2H),2.03-1.80(m,5H),1.64-0.85(m,41H),0.68-0.67(m,3H).
化合物1-51合成方法如下:
步骤1:化合物1-51-1的合成
50mL烧瓶中加入1-36-1(4.0g,7.9mmol),DIPEA(2.3g,15.8mmol)溶解在DCM(40mL)中,加入3-氨基丙酸叔丁酯(4.1g,31.6mmol)。室温搅拌过夜。TLC(30%EtOAc/正庚烷)检测反应进行程度。反应完全后,用10mL水及10mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约12.1g。使用Flash柱纯化(100g硅胶,用300mL正庚烷上柱;流动相分别为:300mL的正庚烷;300mL 0.1%EtOAc+99.9%的正庚烷;300mL 0.3%EtOAc+99.7%的正庚烷;1000mL 0.5%EtOAc+99.5%的正庚烷)分离得到纯的产品,1-51-1,2.3g,收率51%。
步骤2:化合物1-51的合成
50mL烧瓶中加入丁二酸酐(546mg,5.5mmol),DMAP(256.4mg,2.1mmol),DCM(30mL)。室温搅拌30min,向反应液中加入1-51-1(2.4g,4.2mmol)。TLC(30% EtOAc/正庚烷)检测反应进行程度。反应完全后,过滤反应液除去固体,滤液加入5mL水及5mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约2.0g。使用Flash柱纯化(20g硅胶,流动相分别为:300mL 1%EtOAc+99%的正庚烷;300mL 2%EtOAc+98%的正庚烷;200mL 5%EtOAc+95%的正庚烷;300mL 8%EtOAc+92%的正庚烷;500mL 20%EtOAc+80%的正庚烷;)分离得到纯的产品,化合物1-51,1.3g,收率46%。
化合物1-51的核磁结果如附图19所示。1H NMR(400MHz,CDCl3):δ5.38-5.35(m,1H),4.70-4.59(m,1H),4.16-4.07(m,4H),3.67(t,J=8Hz,1H),3.61(t,J=8Hz,1H),2.80-2.67(m,3H),2.57-2.51(m,3H),2.34-2.31(m,2H),2.04-1.78(m,5H),1.61-0.84(m,41H),0.67(m,3H).
化合物1-52合成方法如下:
50mL烧瓶中加入戊二酸酐(204.53mg,1.79mmol),DMAP(109.5mg,0.89mmol),DCM(10mL)。室温搅拌30min,向反应液中加入1-36-2(1.0g,1.79mmol)。TLC(5%MeOH/DCM)检测反应进行程度。反应完全后,过滤反应液除去固体,滤液加入5mL水及5mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约4.5g。使用Flash柱纯化(20g硅胶,流动相分别为:500mL的正庚烷;300mL 1%MeOH+99%的DCM;300mL 1.5%MeOH+98.5%的DCM;600ml 2%MeOH+98%的DCM)分离得到纯的产品,化合物1-52,1.1g,收率92%。
化合物1-52的核磁结果如附图20所示。1H NMR(400MHz,CDCl3):δ5.37(m,1H),4.69-4.65(m,1H),4.14-4.02(m,4H),2.47-2.32(m,6H),2.09-1.85(m,8H),1.58-0.85(m,46H),0.67(t,J=4Hz,3H).
化合物1-53合成方法如下:
100mL烧瓶中加入胆固醇(1.0g,2.59mmol,1.0eq),DMAP(315.9mg,2.59mmol, 1.0eq),二甘醇酐(360.23mg,3.1mmol,1.2eq)溶解在DCM(10mL)中,完室温搅拌过夜。TLC(20%EtOAc/正庚烷)检测反应进行程度。反应完全后,加水5mL水洗,5mL饱和食盐水洗,有机相用无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约2g。使用Flash柱纯化(60g硅胶,用500mL正庚烷上柱;流动相分别为:200mL的正庚烷;100mL 1%EtOAc+99%的正庚烷;100mL 1.5%EtOAc+98.5%的正庚烷100mL 2%EtOAc+98%的正庚烷;600mL 3%EtOAc+97%的正庚烷;)分离得到纯的产品,1-53,500mg,收率40%。1H NMR(400MHz,CDCl3):δ5.39-5.37(m,1H),4.73-4.69(m,1H),4.20(s,2H),2.35-2.33(m,2H),2.03-1.94(m,2H),1.90-1.80(m,3H),1.63-0.85(m,36H),0.67(s,3H).
化合物1-55合成方法如下:
步骤1:化合物1-55-1的合成
50mL烧瓶中加入1-52(473.1mg,0.7mmol)溶解在DCM(5mL)中,加入DMAP(18.2mg,0.15mmol),DCC(230.3mg,1.12mmol)。室温搅拌30min后,溶液中加入SM-102(500mg,0.7mmol),室温搅拌过夜。TLC(10%MeOH/DCM)检测反应进行程度。反应完全后,过滤反应液除去固体,滤液加入5mL水及5mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约700mg。使用Flash柱纯化(12g硅胶,流动相分别为:300mL的正庚烷;200mL 1%EtOAc+99%的正庚烷;200mL 5%EtOAc+95%的正庚烷;300mL 8%EtOAc+92%的正庚烷;)分离得到纯的产品,1-55-1,550mg,收率57%。
步骤2:化合物1-55的合成
50mL烧瓶中加入1-55-1(550mg,0.4mmol)溶解在DCM(6mL)中,加入TFA(3mL)。室温搅拌2h后,TLC(20%EtOAc/正庚烷)检测反应进行程度。反应完全后,浓缩反应液,然后加入MTBE(20mL)溶解,然后用10%NaHCO3溶液调pH=8-9、1M稀盐酸调pH=1-2,搅拌20min,分层,水相用20mL MTBE萃取,有机相合并,无水Na2SO4干燥,过滤,浓缩有机相,得到粗品520mg。使用Flash柱纯化(8g硅胶,流动相分别为:200mL的正庚烷;100mL 1%EtOAc+99%的正庚烷;100mL 5%EtOAc+95%的正庚烷;100mL 10%EtOAc+90%的正庚烷;200mL 20%EtOAc+80%的正庚烷)分离得到纯的产 品,化合物1-55,200mg,收率38%。
化合物1-55的核磁结果如附图21所示。1H NMR(400MHz,CDCl3):δ5.37-5.30(m,1H),4.88-4.82(m,1H),4.69-4.61(m,1H),4.42-4.39(m,2H),4.18-4.04(m,6H),3.40-3.38(m,2H),3.25-3.16(m,4H),2.46-2.38(m,4H),2.34-2.27(m,6H),2.04-1.94(m,4H),1.88-1.79(m,3H),1.73-0.85(m,105H),0.67(s,3H).
化合物1-56的合成方法如下:
步骤1:化合物1-56-1合成方法如下:
500mL烧瓶中加入N-甲基乙醇胺(3.4g,45.3mmol),DCM(50mL)中,冰盐浴冷却至0-5℃,向溶液中缓慢滴加TBDPSCl(12.44g,45.3mmol)的DCM(50mL)溶液,滴加完室温搅拌2h。TLC(10%MeOH/DCM)检测反应进行程度。反应完全后,加水30mL淬灭反应,分液,水相用DCM(50mL×2)萃取,合并有机相,用50mL饱和食盐水洗,有机相用无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约12g。使用Flash柱纯化(200g硅胶,用300mL正庚烷上柱;流动相分别为:300mL的正庚烷;300mL 0.1%EtOAc+99.9%的正庚烷;300mL 0.3%EtOAc+99.7%的正庚烷;300mL 1%EtOAc+99%的正庚烷;300mL 1%EtOAc+99%的正庚烷;300mL 0.2%MeOH+99.8%DCM;500mL 0.3%MeOH+99.7%DCM)分离得到纯的产品1-56-1,9g,收率63%。
步骤2:化合物1-56-2的合成
100mL烧瓶中加入1-56-1(5.0g,16mmol),碳酸钾(5.5g,39.9mmol)3-氯-1,2-丙二醇(2.12g,19.1mmol)溶解在异丙醇(15mL)中,加热至80℃搅拌过夜。TLC(10% MeOH/DCM)检测反应进行程度。反应完全后过滤,浓缩有机相,得到粗产品约10.1g。使用Flash柱纯化(100g硅胶,200mL 0.1%MeOH+99.9%DCM;200mL 0.2%MeOH+99.8%DCM,200mL 0.3%MeOH+99.7%DCM;200mL 0.5%MeOH+99.5%DCM;300mL 1%MeOH+99%DCM)分离得到纯的产品,1-56-2,3.6g,收率58%。
步骤3:化合物1-56-4的合成
50mL烧瓶中加入1-56-3(1.0g,2.7mmol),DCC(556.8mg,2.7mmol),DMAP(82.4mg,0.67mmol),DCM(3mL)。室温搅拌30min,向反应液中加入1-56-2(523mg,1.35mmol)。TLC(30%EtOAc/正庚烷)检测反应进行程度。反应完全后,过滤反应液除去固体,滤液加入5mL水及5mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约1.5g。使用Flash柱纯化(50g硅胶,流动相分别为:200mL的正庚烷;150mL 1%EtOAc+99%的正庚烷;150mL 2%EtOAc+98%的正庚烷;200mL 5%EtOAc+95%的正庚烷;500mL 8%EtOAc+92%的正庚烷;)分离得到纯的产品,1-56-4,1.2g,收率81%。
步骤4:化合物1-56-5的合成
50mL烧瓶中加入1-56-4(1.0g,0.92mmol)溶解在THF(5mL)中,冰盐浴降温至-5℃,加入TBAF(717.9mg,2.75mmol),室温搅拌过夜。TLC(10%MeOH/DCM)检测反应进行程度。反应完全后,加入5mL氯化铵水溶液淬灭反应,分液,水相用EtOAc(10mL×2)萃取,合并有机相,用5mL饱和食盐水洗,有机相用无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约700mg。使用Flash柱纯化(12g硅胶,流动相分别为:300mL的正庚烷;200mL 1%EtOAc+99%的正庚烷;200mL 5%EtOAc+95%的正庚烷;200mL 8%EtOAc+92%的正庚烷;200mL 15%EtOAc+85%的正庚烷;400mL 30%EtOAc+70%的正庚烷)分离得到纯的产品,1-56-5,350mg,收率45%。
步骤5:化合物1-56-7的合成
50mL烧瓶中加入1-56-6(113.9mg,0.17mmol),DCC(35mg,0.17mmol),DMAP(10.4mg,0.08mmol),DCM(5mL)。室温搅拌30min,向反应液中加入1-56-5(140mg,0.17mmol)。TLC(10%MeOH/DCM)检测反应进行程度。反应完全后,过滤反应液除去固体,滤液加入5mL水及5mL饱和食盐水洗,无水Na2SO4干燥,过滤,浓缩有机相,得到粗产品约350mg。使用Flash柱纯化(20g硅胶,流动相分别为:100mL的正庚烷;100mL 1%EtOAc+99%的正庚烷;100mL 2%EtOAc+98%的正庚烷;100mL 5%EtOAc+95%的正庚烷;100mL 8%EtOAc+92%的正庚烷;200mL 20%EtOAc+80%的正庚烷)分离得到纯的产品,1-56-7,350mg,收率60%。
步骤6:化合物1-56的合成
50mL烧瓶中加入1-56-7(180mg,0.12mmol)溶解在EtOAc(1mL)中,加入4M盐酸乙酸乙酯溶液(1mL)。室温搅拌2h后,TLC(20%MeOH/DCM)检测反应进行程度。 浓缩有机相,得到粗品210mg。使用Flash柱纯化(8g硅胶,流动相分别为:100mL的正庚烷;100mL 5%EtOAc+95%的正庚烷;100mL 10%EtOAc+90%的正庚烷;100mL 20%EtOAc+80%的正庚烷;200mL 30%EtOAc+70%的正庚烷)分离得到纯的产品,化合物1-56,50mg,收率29%。
化合物1-56的核磁结果如附图22所示。1H NMR(400MHz,CDCl3):δ5.39-5.34(m,1H),5.15(m,1H),4.69-4.62(m,1H),4.38-4.34(m,1H),4.25-4.04(m,15H),2.67-2.55(m,5H),2.42-2.26(m,17H),2.05-1.92(m,5H),1.89-1.84(m,3H),1.69-0.80(m,150H),0.67(m,3H).
以下实施例中用到的DODMA、DSPC、胆固醇、PEG2000-DMG等均来源于艾伟拓(上海)医药科技有限公司,Luc-mRNA来源于上海兆维科技发展有限公司。
实施例2、脂质纳米颗粒TMF1制备(含20%化合物1-1)
1.用乙醇溶解DODMA(阳离子脂质)、DSPC(辅助性脂质)、胆固醇(辅助性脂质)、PEG2000-DMG(辅助性脂质)及化合物1-1(GOLD脂质)得到摩尔比分别为37.0%、7.5%、34.2%、1.3%和20.0%的油相(乙醇相)储备液。
2.用pH4柠檬酸缓冲液将表达luciferase的mRNA原液稀释成0.09mg/mL,得到水相。
3.将含有五种脂质混合物的油相(乙醇相)和含mRNA水相以1:3的体积比快速混合,制得总脂质与mRNA重量比为22.5:1的TMF1,然后用截留分子量为100kd的超滤管浓缩样品,接着用pH7.4PBS缓冲液洗滤,最后用120mg/mL的蔗糖PBS缓冲液置换,得到最终样品。
实施例3、脂质纳米颗粒TMF2制备(含5%化合物1-1):
1.用乙醇溶解DODMA(阳离子脂质)、DSPC(辅助性脂质)、胆固醇(辅助性脂质)、PEG2000-DMG(辅助性脂质)及化合物1-1(GOLD脂质)得到摩尔比分别为44.0%、8.9%、40.6%、1.5%和5.0%的油相(乙醇相)储备液。
2.用pH4柠檬酸缓冲液将表达luciferase的mRNA原液稀释成0.09mg/mL,得到水相。
3.将含有五种脂质混合物的油相(乙醇相)和含mRNA水相以1:3的体积比快速混合,制得总脂质与mRNA重量比为22.6:1的TMF2,然后用截留分子量为100kd的超滤管浓缩样品,接着用pH7.4PBS缓冲液洗滤,最后用120mg/mL的蔗糖PBS缓冲液置换,得到最终样品。
实施例4、脂质纳米颗粒TMF3制备(含20%化合物1-2):
1.用乙醇溶解DODMA(阳离子脂质)、DSPC(辅助性脂质)、胆固醇(辅助性脂质)、PEG2000-DMG(辅助性脂质)及化合物1-2(GOLD脂质)得到摩尔比分别为 37.0%、7.5%、34.2%、1.3%和20.0%的油相(乙醇相)储备液。
2.用pH4柠檬酸缓冲液将表达luciferase的mRNA原液稀释成0.09mg/mL,得到水相。
3.将含有五种脂质混合物的油相(乙醇相)和含mRNA水相以1:3的体积比快速混合,制得总脂质与mRNA重量比为24.2:1的TMF3,然后用截留分子量为100kd的超滤管浓缩样品,接着用pH7.4PBS缓冲液洗滤,最后用120mg/mL的蔗糖PBS缓冲液置换,得到最终样品。
实施例5、脂质纳米颗粒TMF4制备(含20%化合物1-3):
1.用乙醇溶解DODMA(阳离子脂质)、DSPC(辅助性脂质)、谷甾醇(辅助性脂质)、PEG2000-DMG(辅助性脂质)及化合物1-3(GOLD脂质)得到摩尔比分别为37.0%、7.5%、34.2%、1.3%和20.0%的油相(乙醇相)储备液。
2.用pH4柠檬酸缓冲液将表达luciferase的mRNA原液稀释成0.09mg/mL,得到水相。
3.将含有五种脂质混合物的油相(乙醇相)和含mRNA水相以1:3的体积比快速混合,制得总脂质与mRNA重量比为24.5:1的TMF4,然后用截留分子量为100kd的超滤管浓缩样品,接着用pH7.4PBS缓冲液洗滤,最后用120mg/mL的蔗糖PBS缓冲液置换,得到最终样品。
实施例6、脂质纳米颗粒TMF5制备(含20%化合物1-5):
1.用乙醇溶解DODMA(阳离子脂质)、DSPC(辅助性脂质)、胆固醇(辅助性脂质)、PEG2000-DMG(辅助性脂质)及化合物1-5(GOLD脂质)得到摩尔比分别为37.0%、7.5%、34.2%、1.3%和20.0%的油相(乙醇相)储备液。
2.用pH4柠檬酸缓冲液将表达luciferase的mRNA原液稀释成0.09mg/mL,得到水相。
3.将含有五种脂质混合物的油相(乙醇相)和含mRNA水相以1:3的体积比快速混合,制得总脂质与mRNA重量比为24.8:1的TMF5,然后用截留分子量为100kd的超滤管浓缩样品,接着用pH7.4PBS缓冲液洗滤,最后用120mg/mL的蔗糖PBS缓冲液置换,得到最终样品。
实施例7、脂质纳米颗粒TMF6制备(含20%化合物1-6):
1.用乙醇溶解DODMA(阳离子脂质)、DOPE(辅助性脂质)、胆固醇(辅助性脂质)、PEG2000-DMG(辅助性脂质)及化合物1-6(GOLD脂质)得到摩尔比分别为37.0%、7.5%、34.2%、1.3%和20.0%的油相(乙醇相)储备液。。
2.用pH4柠檬酸缓冲液将表达luciferase的mRNA原液稀释成0.09mg/mL,得到水相。
3.将含有五种脂质混合物的油相(乙醇相)和含mRNA水相以1:3的体积比快速混合,制得总脂质与mRNA重量比为24.7:1的TMF6,然后用截留分子量为100kd的超滤管浓缩样品,接着用pH7.4PBS缓冲液洗滤,最后用120mg/mL的蔗糖PBS缓冲液置换,得到最终样品。
实施例8、脂质纳米颗粒TMF7制备(含38.5%化合物1-1):
1.用乙醇溶解DODMA(阳离子脂质)、DSPC(辅助性脂质)、化合物1-1(GOLD脂质)及PEG2000-DMG(辅助性脂质)得到摩尔比为50%、10%、38.5%、1.5%的油相(乙醇相)储备液
2.用pH4柠檬酸缓冲液将表达luciferase的mRNA原液稀释成0.3mg/mL,得到水相。
3.将含有四种脂质混合物的油相(乙醇相)和含mRNA水相以1:3的体积比快速混合,制得总脂质与mRNA重量比为24.9:1的TMF7,然后用截留分子量为100kd的超滤管浓缩样品,接着用pH7.4PBS缓冲液洗滤,最后用120mg/mL的蔗糖PBS缓冲液置换,得到最终样品。
实施例9、脂质纳米颗粒TMF8制备(含25%化合物1-1):
1.用乙醇溶解DODMA(阳离子脂质)、DSPC(辅助性脂质)、化合物1-1(GOLD脂质)得到摩尔比为50%、25%、25%的油相(乙醇相)储备液。
2.用pH4柠檬酸缓冲液将表达luciferase的mRNA原液稀释成0.09mg/mL,得到水相。
3.将含有三种脂质混合物的油相(乙醇相)和含mRNA的水相分别以1:3的体积比快速混合,制得总脂质与mRNA重量比为30.7:1的TMF8,然后用截留分子量为100kd的超滤管浓缩样品,接着用pH7.4PBS缓冲液洗滤,最后用120mg/mL的蔗糖PBS缓冲液置换,得到最终样品。
实施例10、脂质纳米颗粒TMF9制备(含40%化合物1-1):
1.用乙醇溶解DODMA(阳离子脂质)、化合物1-1(GOLD脂质)得到摩尔比为60%、40%的油相(乙醇相)储备液。
2.用pH4柠檬酸缓冲液将表达luciferase的mRNA原液稀释成0.09mg/mL,得到水相。
3.将含有两种脂质混合物的油相(乙醇相)和含mRNA的水相分别以1:3的体积比例快速混合,制得总脂质与mRNA重量比为31.4:1的TMF9然后用截留分子量为100kd的超滤管浓缩样品,接着用pH7.4PBS缓冲液洗滤,最后用120mg/mL的蔗糖PBS缓冲液置换,得到最终样品。
实施例11、脂质纳米颗粒TMF10的制备(含38.5%化合物1-1和10%化合物1-56):
1.用乙醇溶解DODMA(阳离子脂质)、化合物1-56(GOLD脂质)、化合物1-1(GOLD脂质)及PEG2000-DMG(辅助性脂质)得到摩尔比为50%、10%、38.5%、1.5%的油相(乙醇相)储备液。
2.用pH4柠檬酸缓冲液将表达luciferase的mRNA原液稀释成0.09mg/mL,得到水相。
3.将含有四种脂质混合物的油相(乙醇相)和含mRNA的水相分别以1:3的体积比快速混合,制得总脂质与mRNA重量比为26.2:1的TMF10,然后用截留分子量为100kd的超滤管浓缩样品,接着用pH7.4PBS缓冲液洗滤,最后用120mg/mL的蔗糖PBS缓冲液置换,得到最终样品。
实施例12、脂质纳米颗粒TMF38的制备(含100%化合物1-56):
1.用乙醇溶解化合物1-56(GOLD脂质)为100%的油相(乙醇相)储备液。
2.用pH4柠檬酸缓冲液将表达luciferase的mRNA原液稀释成0.09mg/mL,得到水相。
3.将含有脂质混合物的油相(乙醇相)和含mRNA的水相分别以1:3的体积比快速混合,制得总脂质与mRNA重量比为24.8:1的TMF38,然后用截留分子量为100kd的超滤管浓缩样品,接着用pH7.4PBS缓冲液洗滤,最后用120mg/mL的蔗糖PBS缓冲液置换,得到最终样品。
脂质纳米颗粒TMF11-37是以与脂质纳米颗粒TMF7类似的方式,使用相应起始原料制备。TMF38是与TMF9类似的方式,使用相应起始原料制备。脂质纳米粒组分的详细信息见表3。
表3、代表性GOLD脂质化合物制备的脂质纳米粒组分列表


实施例13:脂质纳米颗粒的检测
使用NanoBrook 90plus PLAS(Brookhaven Instruments,US),采用动态光散射技术(Dynamic Light Scattering DLS),在90°侧向散射角测定脂质纳米粒的大小及多分散指数(PDI),测试结果见表4、5和6。根据制造商的说明,使用Qubit RNA HS定量测定试剂盒(ThermoFisher Scientific,UK)测定脂质纳米粒的含量和包封率,测试结果见表4、5和6。
表4、代表性GOLD脂质化合物制备的脂质纳米粒的表征数据
表5、代表性GOLD脂质化合物制备的脂质纳米粒的表征数据

表6、GOLD脂质1-56制备的不同脂质纳米粒的表征数据
实施例14:递送系统器官分布检测
按0.5mg/kg的给药剂量,对6-8周龄雌性ICR小鼠,通过眼底内眦静脉丛,注射实施例1、2、3、4、5、6、7、8、10、12制备的脂质体。给药4小时后,按150mg/kg的剂量,腹腔注射15mg/mL的D-萤光素钾盐。荧光素酶底物注射10分钟后,将小鼠置于活体成像系统(IVIS Lumina XRMS Series III,PerkinElmer)下,观察小鼠体内荧光强度及分布。接着处死小鼠,分离脏器(心脏、肝脏、脾脏、肺和肾脏),进行离体成像, 观察不同脏器中的荧光强度及分布。代表性脂质化合物递送的Luc-mRNA的脏器分布见表7、8和附图23。脾与肝的选择性数据汇总如附图24所示,脾与肝的比值只要是高于1的,都说明脾的选择性更好,都能实现脾靶向的效果,比值越高脾靶向效果越好,其中脂质纳米颗粒TMF36、TMF17、TMF32和TMF35脾与肝的选择性最高,在小鼠静脉给药后4小时,TMF36、TMF17、TMF32和TMF35在脾脏与肝脏中平均荧光强度的比值(脾/肝)分别为57.1、59.7、61.7和80.3。不同脏器中的平均荧光强度代表相应递送系统在不同脏器中的递送效率,本申请的脂质纳米颗粒能够将核酸分子成功递送至脾脏中并进行表达,且针对脾脏的递送效率显著高于针对肝脏和其他组织/器官的递送效率。
表7、代表性GOLD脂质制备的脂质纳米粒递送的Luc-mRNA的表达强度。

表8、GOLD脂质1-56制备的不同脂质纳米粒递送的Luc-mRNA表达强度
以上对本申请做了详尽的描述,其目的在于让熟悉此领域技术的人士能够了解本申请的机理、内容并加以实施,并不能以此限制本申请的保护范围,凡根据本申请的精神实质所作的等效变化或修饰,都应涵盖在本申请的保护范围内。
工业实用性
本申请提供的用于核酸的器官特异性递送组合物能够将预防剂/治疗剂(尤其是核酸组分)特异性递送到靶器官,特别是可向肝以外的器官优先递送,为核酸药物、基因药物、疫苗等的递送提供更多的选择,尤其对核酸预防剂及治疗剂的发展和应用具有重要的意义。

Claims (35)

  1. 一种用于器官靶向递送的脂质纳米颗粒,其包含靶向脂质递送系统脂质,所述靶向脂质递送系统脂质选自可离子化负离子类固醇和/或可离子化负离子聚合物缀合脂质中的一种或一种以上的组合。
  2. 根据权利要求1所述的脂质纳米颗粒,所述可离子化负离子类固醇选自下述通式Ⅰ的化合物或其药学上可接受的盐、前药、立体异构体或氘代物:
    其中L1为不存在、碳-碳单键、碳-碳双键、碳-碳三键或-O(C=O)-、-(C=O)O-、-C(=O)-、-O(C=O)O-、-O-、-S(O)x-、-S-S-、-C(=O)S-、-SC(=O)-、-NRaC(=O)-、-C(=O)NRa-、-NRaC(=O)NRa-、-OC(=O)NRa-或-NRaC(=O)O-;Q1为不存在或C1-C8直链或支链的烃基;
    L2为不存在、碳-碳单键、碳-碳双键、碳-碳三键或-O(C=O)-、-(C=O)O-、-C(=O)-、-O(C=O)O-、-O-、-S(O)x-、-S-S-、-C(=O)S-、-SC(=O)-、-NRaC(=O)-、-C(=O)NRa-、-NRaC(=O)NRa-、-OC(=O)NRa-或-NRaC(=O)O-;Q2为不存在或C1-C8直链或支链的烃基;
    L3为不存在、碳-碳单键、碳-碳双键、碳-碳三键或-O(C=O)-、-(C=O)O-、-C(=O)-、-O(C=O)O-、-O-、-S(O)x-、-S-S-、-C(=O)S-、-SC(=O)-、-NRaC(=O)-、-C(=O)NRa-、-NRaC(=O)NRa-、-OC(=O)NRa-或-NRaC(=O)O-;Q3为不存在或C1-C8直链或支链的烃基;
    Ra为H或氘或C1-C8直链或支链的烃基或羧基取代的C1-C8直链或支链的烃基;或-Q4-M;其中,Q4为不存在或C1-C8直链或支链的烃基,M为
    x为0、1或2;
    R为 X为C、O、NRb或S;Rb为H或氘或C1-C8直链或支链的烃基。
  3. 根据权利要求2所述的脂质纳米颗粒,所述可离子化负离子类固醇选自表1中的化合物或其药学上可接受的盐、前药或立体异构体或氘代物。
  4. 根据权利要求1所述的脂质纳米颗粒,所述可离子化负离子聚合物缀合脂质选自下述通式Ⅱ的化合物或其药学上可接受的盐、前药、立体异构体或氘代物:
    L1为不存在、碳-碳单键、碳-碳双键、碳-碳三键或-O(C=O)-、-(C=O)O-、-C(=O)-、-O(C=O)O-、-O-、-S(O)x-、-S-S-、-C(=O)S-、-SC(=O)-、-NRaC(=O)-、-C(=O)NRa-、-NRaC(=O)NRa-、-OC(=O)NRa-或-NRaC(=O)O-;Q为不存在或C1-C8直链或支链的烃基;
    Ra为H或氘或C1-C8直链或支链的烃基或羧基取代的C1-C8直链或支链的烃基;
    X为C或N;
    R为 Z为C、O、NRb或S;
    Y1或Y2中的一个为不存在、碳-碳单键、碳-碳双键、碳-碳三键或-O(C=O)-、-C(OH)-、-(C=O)O-、-C(=O)-、-O(C=O)O-、-O-、-S(O)x-、-S-S-、-C(=O)S-、-SC(=O)-、-NRaC(=O)-、-C(=O)NRa-、-NRaC(=O)NRa-、-OC(=O)NRa-或-NRaC(=O)O-,并且Y1或Y2 中的另一个为不存在、碳-碳单键、碳-碳双键、碳-碳三键或-O(C=O)-、-C(OH)-、-(C=O)O-、-C(=O)-、-O(C=O)O-、-O-、-S(O)x-、-S-S-、-C(=O)S-、-SC(=O)-、-NRaC(=O)-、-C(=O)NRa-、-NRaC(=O)NRa-、-OC(=O)NRa-或-NRaC(=O)O-;Ra为H或氘或C1-C8直链或支链的烃基或羧基取代的C1-C8直链或支链的烃基;
    G1和G2各自独立地为不存在或取代的C1-C12直链或支链的烃基;
    R1和R2各自独立地为取代的C6-C24直链或支链的烃基;
    x为0、1或2。
  5. 根据权利要求4所述的脂质纳米颗粒,其特征在于所述可离子化负离子聚合物缀合脂质选自表2中的化合物或其药学上可接受的盐、前药或立体异构体或氘代物。
  6. 根据权利要求1所述的脂质纳米颗粒,其特征在于所述脂质纳米颗粒进一步包括辅助性脂质,辅助性脂质选自磷脂和/或类固醇和/或聚合物缀合脂质和/或修饰的脂质中的一种或一种以上的组合。
  7. 根据权利要求6所述的脂质纳米颗粒,其特征在于所述磷脂选自DOPE、DSPC、DPPC、DMPC、DOPC、POPC、SM中的一种或一种以上的组合。
  8. 根据权利要求6所述的脂质纳米颗粒,其特征在于所述类固醇选自胆固醇、谷甾醇、豆甾醇和麦角固醇中的任一种或一种以上的组合。
  9. 根据权利要求6所述的脂质纳米颗粒,其特征在于所述聚合物缀合脂质选自聚乙二醇缀合脂质、聚乳酸缀合脂质、聚酰胺缀合脂质、阳离子聚合物缀合脂质、聚肌氨酸pSar缀合脂质、聚乳酸-羟基乙酸共聚物PLGA缀合脂质、聚氨基酸缀合脂质、多肽缀合脂质、聚类肽缀合脂质中的一种或多种。
  10. 根据权利要求9所述的脂质纳米颗粒,其特征在于聚乙二醇缀合脂质选自PEG1000-DMG、PEG5000-DMG、PEG2000-DMG和PEG2000-DSPE中的任一种或一种以上的组合。
  11. 根据权利要求6所述的脂质纳米颗粒,其特征在于所述修饰的脂质选自被小分子化合物、维生素、碳水化合物、肽、蛋白质、核酸脂多糖、无机分子或颗粒、金属离子或颗粒中的任一种或组合修饰的脂质。
  12. 根据权利要求6所述的脂质纳米颗粒,其特征在于所述脂质纳米颗粒进一步包括阳离子脂质,所述阳离子脂质选自永久性阳离子脂质和/或可离子化阳离子脂质中的一种或一种以上的组合。
  13. 根据权利要求12所述的脂质纳米颗粒,其特征在于永久性阳离子脂质选自DOTAP、DODMA、DSTAP、DMTAP、DDA、DOBAQ中的一种或一种以上的组合。
  14. 根据权利要求12所述的脂质纳米颗粒,其特征在于可离子化阳离子脂质选自SM-102、Lipid 5、A6、DC-chol、C12-200、CKK-E12、5A2-SC8、G0-C14、OF-2、306Oi10、 OF-Deg-Lin、92-O17S、OF-C4-Deg-Lin、A18-iso5-2DC18、TT3、FTT5、BAMEA-O16B、Vc-Lipid、C14-4、Lipid 14、4A3-Cit、ssPalmO-Phe中的一种或一种以上的组合。
  15. 根据权利要求12所述的脂质纳米颗粒,其特征在于靶向递送系统脂质、辅助性脂质和阳离子脂质的摩尔比为(0.1-1):(0.5-2):1。
  16. 根据权利要求1至权利要求15任一项所述的脂质纳米颗粒,其特征在于所述脂质纳米颗粒靶向以下器官:肺、心脏、脑、脾、淋巴结、骨、骨骼肌、胃、小肠、大肠/结直肠、肾、膀胱、乳房、睾丸、卵巢、子宫、胸腺、脑干、小脑、大脑、脊髓、眼、耳、舌或皮肤,优选地靶向脾。
  17. 组合物,包括治疗剂或预防剂和权利要求1至16任一项所述的脂质纳米颗粒。
  18. 根据权利要求17所述的组合物,其特征在于预防剂或治疗剂选自核酸、蛋白质、多肽、小分子化合物、细胞中的任一种或一种以上的组合。
  19. 根据权利要求17所述的组合物,其特征在于脂质纳米颗粒与预防剂或治疗剂的质量比为10:1至100:1。
  20. 根据权利要求17所述的组合物,其特征在于组合物的平均粒径为20nm至600nm。
  21. 根据权利要求17所述的组合物,其特征在于组合物的多分散指数PDI为0.001至0.5。
  22. 根据权利要求18所述的组合物,其特征在于所述核酸选自单链DNA、双链DNA、单链RNA、双链RNA、短异构体、质粒DNA、互补DNA/cDNA、反义核酸分子/ASO、小干扰核酸/siRNA、小激活核酸/saRNA、不对称干扰核酸/aiRNA、微小核酸/miRNA、微小核酸激动剂/miRNA agomir、微小核酸抑制剂/miRNA antagomir、Dicer酶底物核酸/dsRNA、小发夹核酸/shRNA、转运RNA/tRNA、信使RNA/mRNA、环状RNA/circRNA、自复制mRNA/samRNA、适配体/aptamer。
  23. 根据权利要求22所述的组合物,其中所述治疗剂或预防剂包含至少一种编码抗原或其片段或其表位的mRNA或编码某种治疗性蛋白的mRNA。
  24. 根据权利要求23所述的组合物,其中所述mRNA选自单顺反子mRNA或多顺反子mRNA。
  25. 根据权利要求23所述的组合物,其中所述mRNA包含一种或多种功能性核苷酸类似物或核苷酸化学修饰。
  26. 根据权利要求25所述的组合物,其中所述功能性核苷酸类似物选自锁核酸LNA、肽核酸PNA或吗啉环寡聚核苷酸核酸模拟物或功能类似物中的一种或一种以上的组合。
  27. 根据权利要求25所述的组合物,其中所述核苷酸化学修饰选自如下修饰中的一种或多种:
    (1)对所述核酸分子的核苷酸序列中连接核苷酸的骨架的修饰;
    (2)对所述核酸分子的核苷酸序列中的核糖的修饰;
    (3)对所述核酸分子的核苷酸序列中的碱基的修饰。
  28. 根据权利要求27所述的组合物,其中所述骨架的修饰为硫代磷酸酯键。
  29. 根据权利要求27所述的组合物,其中所述核糖的修饰选自2’-氟代核糖、核糖、2’-脱氧核糖、阿拉伯糖、己糖中的一种或一种以上的组合。
  30. 根据权利要求25所述的组合物,其中所述核苷酸化学修饰选自5-甲基胞嘧啶、假尿苷、1-甲基假尿苷、吡啶-4-酮核糖核苷、5-氮杂-尿苷、2-硫代-5-氮杂-尿苷、2-硫代尿苷、4-硫代-假尿苷、2-硫代-假尿苷、5-羟基尿苷、3-甲基尿苷、5-羧基甲基-尿苷、1-羧基甲基-假尿苷、5-丙炔基-尿苷、1-丙炔基-假尿苷、5-牛磺酸甲基尿苷、1-牛磺酸甲基-假尿苷、5-牛磺酸甲基-2-硫代-尿苷、1-牛磺酸甲基-4-硫代-尿苷、5-甲基-尿苷、1-甲基-假尿苷、4-硫代-1-甲基-假尿苷、2-硫代-1-甲基-假尿苷、1-甲基-1-脱氮-假尿苷、2-硫代-1-甲基-1-脱氮-假尿苷、二氢尿苷、二氢假尿苷、2-硫代-二氢尿苷、2-硫代-二氢假尿苷、2-甲氧基尿苷、2-甲氧基-4-硫代-尿苷、4-甲氧基-假尿苷、4-甲氧基-2-硫代-假尿苷、5-氮杂-胞苷、假异胞苷、3-甲基-胞苷、N4-乙酰基胞苷、5-甲酰基胞苷、N4-甲基胞苷、5-羟基甲基胞苷、1-甲基-假异胞苷、吡咯并-胞苷、吡咯并-假异胞苷、2-硫代-胞苷、2-硫代-5-甲基-胞苷、4-硫代-假异胞苷、4-硫代-1-甲基-假异胞苷、4-硫代-1-甲基-1-脱氮-假异胞苷、1-甲基-1-脱氮-假异胞苷、扎布拉林(zebularine)、5-氮杂-扎布拉林、5-甲基-扎布拉林、5-氮杂-2-硫代-扎布拉林、2-硫代-扎布拉林、2-甲氧基-胞苷、2-甲氧基-5-甲基-胞苷、4-甲氧基-假异胞苷、4-甲氧基-1-甲基-假异胞苷、2-氨基嘌呤、2,6-二氨基嘌呤、7-脱氮-腺嘌呤、7-脱氮-8-氮杂-腺嘌呤、7-脱氮-2-氨基嘌呤、7-脱氮-8-氮杂-2-氨基嘌呤、7-脱氮-2,6-二氨基嘌呤、7-脱氮-8-氮杂-2,6-二氨基嘌呤、1-甲基腺苷、N6-甲基腺苷、N6-异戊烯基腺苷、N6-(顺-羟基异戊烯基)腺苷、2-甲基硫代-N6-(顺-羟基异戊烯基)腺苷、N6-甘氨酰氨基甲酰腺苷、N6-苏氨酰氨基甲酰腺苷、2-甲基硫代-N6-苏氨酰氨基甲酰腺苷、N6,N6-二甲基腺苷、7-甲基腺嘌呤、2-甲基硫代-腺嘌呤、2-甲氧基-腺嘌呤、肌苷、1-甲基-肌苷、怀俄苷、怀丁苷、7-脱氮-鸟苷、7-脱氮-8-氮杂-鸟苷、6-硫代-鸟苷、6-硫代-7-脱氮-鸟苷、6-硫代-7-脱氮-8-氮杂-鸟苷、7-甲基-鸟苷、6-硫代-7-甲基-鸟苷、7-甲基肌苷、6-甲氧基-鸟苷、1-甲基鸟苷、N2-甲基鸟苷、N2,N2-二甲基鸟苷、8-氧代-鸟苷、7-甲基-8-氧代-鸟苷、1-甲基-6-硫代-鸟苷、N2-甲基-6-硫代-鸟苷、N2,N2-二甲基-6-硫代-鸟苷中的一种或一种以上的组合。
  31. 根据权利要求23所述的组合物,其中所述抗原是致病性抗原。
  32. 根据权利要求31所述的组合物,其中所述致病性抗原选自肿瘤相关抗原或病原微生物抗原中的任一种或一种以上的组合。
  33. 根据权利要求17-32任一项所述的组合物,其特征在于所述组合物靶向以下器 官:肺、心脏、脑、脾、淋巴结、骨、骨骼肌、胃、小肠、大肠/结直肠、肾、膀胱、乳房、睾丸、卵巢、子宫、胸腺、脑干、小脑、大脑、脊髓、眼、耳、舌或皮肤;优选地靶向脾。
  34. 权利要求17-33任一项所述组合物在制备药物中的应用。
  35. 一种药物,其特征在于包含权利要求17-33任一项所述的组合物和药学上可接受的辅料。
PCT/CN2023/104901 2022-07-11 2023-06-30 用于核酸的器官特异性递送组合物 WO2024012270A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210809436.X 2022-07-11
CN202210809436 2022-07-11

Publications (1)

Publication Number Publication Date
WO2024012270A1 true WO2024012270A1 (zh) 2024-01-18

Family

ID=89535467

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2023/104925 WO2024012272A1 (zh) 2022-07-11 2023-06-30 脂质化合物及其应用
PCT/CN2023/104901 WO2024012270A1 (zh) 2022-07-11 2023-06-30 用于核酸的器官特异性递送组合物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104925 WO2024012272A1 (zh) 2022-07-11 2023-06-30 脂质化合物及其应用

Country Status (1)

Country Link
WO (2) WO2024012272A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017075531A1 (en) 2015-10-28 2017-05-04 Acuitas Therapeutics, Inc. Novel lipids and lipid nanoparticle formulations for delivery of nucleic acids
WO2021026358A1 (en) * 2019-08-07 2021-02-11 Moderna TX, Inc. Compositions and methods for enhanced delivery of agents
CN113645960A (zh) * 2019-01-17 2021-11-12 佐治亚技术研究公司 含有氧化的胆固醇的药物递送系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4548955A (en) * 1985-02-25 1985-10-22 Sogo Pharmaceutical Company Limited Nylon capsule responding to pH
WO2016210190A1 (en) * 2015-06-24 2016-12-29 Nitto Denko Corporation Ionizable compounds and compositions and uses thereof
CA3081758A1 (en) * 2017-11-06 2019-05-09 Nitto Denko Corporation Fusogenic compounds for delivery of biologically active molecules
JP7463006B2 (ja) * 2018-05-30 2024-04-08 トランスレイト バイオ, インコーポレイテッド ステロイド性部分を含むカチオン性脂質
AU2019335055A1 (en) * 2018-09-04 2021-03-25 The Board Of Regents Of The University Of Texas System Compositions and methods for organ specific delivery of nucleic acids
WO2020219876A1 (en) * 2019-04-25 2020-10-29 Intellia Therapeutics, Inc. Ionizable amine lipids and lipid nanoparticles
EP4213882A1 (en) * 2020-09-15 2023-07-26 Verve Therapeutics, Inc. Lipid formulations for gene editing
WO2022140404A1 (en) * 2020-12-22 2022-06-30 Cornell University Zwitterionic lipid nanoparticle compositions, and methods of use
CN113264842B (zh) * 2021-07-21 2022-03-01 苏州科锐迈德生物医药科技有限公司 一种脂质化合物及包含其的脂质载体、核酸脂质纳米粒组合物和药物制剂

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017075531A1 (en) 2015-10-28 2017-05-04 Acuitas Therapeutics, Inc. Novel lipids and lipid nanoparticle formulations for delivery of nucleic acids
CN113645960A (zh) * 2019-01-17 2021-11-12 佐治亚技术研究公司 含有氧化的胆固醇的药物递送系统
WO2021026358A1 (en) * 2019-08-07 2021-02-11 Moderna TX, Inc. Compositions and methods for enhanced delivery of agents

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
STEPHAN GRABBE ET AL.: "Translating Nanoparticulate-personalized Cancer Vaccines into Clinical Applications: Case Study with RNA-Lipoplexes", TREATMENT OF MELANOMA, 2016

Also Published As

Publication number Publication date
WO2024012272A1 (zh) 2024-01-18

Similar Documents

Publication Publication Date Title
JP7256831B2 (ja) mRNAによってコードされる抗体を送達するための方法及び組成物
RU2733424C2 (ru) Способ повышения экспрессии кодируемых рнк белков
KR102072013B1 (ko) 암호화된 치료 단백질의 발현을 증가시키기 위한 히스톤 스템-루프 및 폴리(a) 서열 또는 폴리아데닐화 신호를 포함하거나 암호화하는 핵산
EP3160959B1 (en) Stereochemically enriched compositions for delivery of nucleic acids
KR102369898B1 (ko) 다량체 코딩 핵산 및 그 용도
EA028304B1 (ru) Способы конструирования библиотеки белкового каркаса на основе домена фибронектина типа iii (fn3)
JPH11507332A (ja) 結合組織成長因子
KR20230054672A (ko) 지질 화합물 및 지질 나노입자 조성물
TW202229227A (zh) 脂質化合物及脂質奈米顆粒組合物
JP2022516356A (ja) 原発性線毛機能不全症の治療のための組成物および方法
WO2024012270A1 (zh) 用于核酸的器官特异性递送组合物
JP2024502526A (ja) 脂質化合物及び脂質ナノ粒子組成物
JP2024517529A (ja) 脂質化合物及び脂質ナノ粒子組成物
JP4651276B2 (ja) リポソームを体内より排泄する抗体およびリポソームの血中クリアランス促進剤
WO2024083171A1 (zh) 脂质化合物和脂质纳米颗粒组合物
KR20240024041A (ko) 세포로의 표적화 전신 전달을 위한 조성물 및 방법
CA3132191A1 (en) Compositions and methods for the prevention and/or treatment of covid-19
CA3146411A1 (en) Compositions and methods for prevention and/or treatment of covid-19
TW202410883A (zh) 用於體內遞送包含經修飾的核苷酸的mRNA的組合物
CA3154578A1 (en) Compositions and methods for the prevention and/or treatment of covid-19
KR20220070206A (ko) 혈소판 감소증 치료용 핵산 분자 및 그의 이용
CN117750948A (zh) 用于靶向全身性递送至细胞的组合物和方法
EP4162950A1 (en) Nucleic acid vaccines for coronavirus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838762

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023838762

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023838762

Country of ref document: EP

Effective date: 20240329