WO2024012118A1 - 一种方壳电池双真空四腔气密性检测机控制方法 - Google Patents

一种方壳电池双真空四腔气密性检测机控制方法 Download PDF

Info

Publication number
WO2024012118A1
WO2024012118A1 PCT/CN2023/099567 CN2023099567W WO2024012118A1 WO 2024012118 A1 WO2024012118 A1 WO 2024012118A1 CN 2023099567 W CN2023099567 W CN 2023099567W WO 2024012118 A1 WO2024012118 A1 WO 2024012118A1
Authority
WO
WIPO (PCT)
Prior art keywords
air tightness
vacuum
chamber
controlling
battery
Prior art date
Application number
PCT/CN2023/099567
Other languages
English (en)
French (fr)
Inventor
陈曦
刘阳东
刘伟
薛文博
Original Assignee
深圳市誉辰智能装备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市誉辰智能装备股份有限公司 filed Critical 深圳市誉辰智能装备股份有限公司
Publication of WO2024012118A1 publication Critical patent/WO2024012118A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of square shell battery manufacturing equipment, and in particular to a control method of a double vacuum four-chamber air tightness detector for square shell batteries.
  • the primary cell of the square-shell battery (hereinafter referred to as the battery) is a sealed container containing internal batteries and anhydrous electrolyte. Poor sealing of the battery will cause the electrolyte to leak during use, and more seriously, water vapor will penetrate. The water vapor will condense into water and enter the electrolyte, which will destroy the insulation performance of the electrochemical system inside the battery. A small amount of water will cause During the charging process, the battery generates an abnormally large current, causing abnormal heating or even explosion and combustion.
  • the sealing of the battery is related to the safety of the battery and devices using the battery, such as electric vehicles.
  • the flow rate per unit time of the tracer gas extracted from the chamber is equal to the flow rate per unit time of the battery leaking into the vacuum chamber, that is, the battery tracer gas leakage rate.
  • the air tightness detector detects the unit of the tracer gas extracted.
  • the flow rate of time is to detect the battery tracer gas leakage rate, which is referred to as the gas detection and leakage balance.
  • Post-air tightness testing In a vacuum chamber, filling the square-shell battery with a tracer gas before welding the sealing nail cover to detect leaks is called a front air tightness test; in a vacuum chamber, pre-sealing the square-shell battery after welding the sealing nail cover The use of tracer gas to detect leaks is called post-tightness testing.
  • Post-air tightness testing generally includes four operating processes: loading, vacuuming, air tightness testing, and unloading. The four processes have the same cycle time and the shorter they are, the higher the equipment productivity will be.
  • the double vacuum four-chamber air tightness testing machine uses two sets of vacuum devices, each equipped with a vacuum pump, a feeding device, four sets of cavity devices, four sets of cavity cover devices, four sets of transplanting devices, and one set of detection devices. And a set of unloading device, a set of cavity device and a set of cavity cover device can be combined into a sealed chamber, and two sets of vacuum devices are equipped with two sealed chambers each. Loading, vacuuming, air tightness testing, and unloading can be performed simultaneously. In one embodiment, the four cavities are sequentially loaded for 8 seconds, vacuumed for 10 seconds, and then air tight tested for 5 seconds for a total of 15 seconds, and unloaded for 8 seconds. The cycle time is The production cycle is shortened to 8s; the production cycle is shortened to 32s; the production efficiency of air tightness testing can be increased to 15PPM based on two cells/cavity.
  • valve vacuum baffle valve
  • servo driver the control system of the air tightness detector needs a set of control methods to control the manifold, solenoid valve, valve, and servo driver to realize the cavity.
  • the cavity cover device, transplanting device, loading device, vacuum device, detection device, and unloading device automatically operate simultaneously and sequentially.
  • the main purpose of the present invention is to provide a method for controlling a double vacuum four-chamber air tightness detector for a square-shell battery, which can control the double vacuum four-chamber air tightness detector to realize automatic simultaneous operations of loading, vacuuming, detection, and unloading. and alternate operations to shorten the cycle time of air tightness testing and improve the production efficiency of air tightness testing.
  • a control method for a double vacuum four-chamber air tightness detector for a square shell battery includes: controlling the startup, loading, and sweeping of a double vacuum four-chamber air tightness tester for a square shell battery (hereinafter referred to as the battery). coding, vacuuming, detection, unloading, and shutdown.
  • controlling the loading includes: first controlling the manipulator of the loading device to grab the battery from the raw material pull wire and put it into the cavity of the cavity device located under the loading device, and then control The transplanting device moves the cavity device under the cavity cover device, and then controls the cavity to rise and close to the cavity cover to form a sealed chamber;
  • controlling vacuuming includes: controlling the vacuum pump of the vacuum device to evacuate the sealed chamber to below a predetermined air pressure to become a vacuum chamber;
  • the control detection includes: first controlling the detection pump of the air tightness detection device to extract the tracer gas in the vacuum chamber and expelling it from the detection pump through the air tightness detector. After a certain period of time, the air tightness detector is controlled to detect the leakage rate of the battery.
  • control the vacuum break in the vacuum chamber, and compare the battery leakage rate standard value to determine the OKness of the battery airtightness; control the unloading includes: first controlling the cavity to lower and disengaging the cavity cover, and then controlling the transplanting device to move the cavity device to the bottom Under the feeding device, the manipulator that controls the unloading device will take the battery out of the cavity, put the battery with NG leakage rate into the NG area, and put the battery with OK leakage rate into the unloading cable.
  • the execution of the control method involves generating and transmitting control instructions through the switch, host computer, and programmable logic controller, receiving the operator's control instructions and displaying the control results through the touch screen; the first network port of the switch It is connected to the programmable logic controller, the second network port is connected to the touch screen, the third network port is connected to the host computer, the fourth network port and the fifth network port are reserved network ports; the host computer The first network port is a reserved network port, the second network port is connected to the manufacturing execution system, the third network port is connected to the switch, the first serial port is connected to the air tightness detector, and the second serial port is connected to the code scanning gun.
  • the first network port of the programmable logic controller is a reserved network port, the second network port is connected to the switch, and the third network port is connected to the bus.
  • control method also includes: before the air tightness test, control the code scanning gun to scan the square case battery to obtain the barcode information of the battery; during the air tightness test, use the vacuum degree obtained by vacuuming , the detected leakage rate is recorded correspondingly to the barcode information.
  • control method also includes: after vacuuming the cavity, record the medium gas leakage rate of the vacuum chamber, and determine whether the medium gas leakage rate of the vacuum chamber is normal. If it is normal, perform air tightness testing. If it is abnormal, perform a background check on the cavity and cavity cover.
  • control method includes: opening the communication port of the air tightness detector so that the air tightness detector and the host computer are successfully connected; determining whether air tightness testing is required; if air tightness testing is not required, , then delay the first predetermined time, and perform the verification and stop judgment step; if air tightness detection is required, read the air tightness detection time and delay, read the air tightness detection data and read the leak detection port pressure and save it. Compare the air tightness test data with the standard value to determine the air tightness test result; if the air tightness test data is less than the standard, it is judged as OK and recorded as the first information.
  • the air tightness test data is greater than If it is equal to the standard, it will be judged as NG and recorded as the second information; after performing the air tightness test, the air tightness test signal will be cleared after waiting for a predetermined time, and the air tightness test stop judgment step will be executed; the air tightness test will stop
  • the judgment steps include: judging whether it is necessary to exit the air tightness test; if it is necessary to exit, stop the air tightness detector; if it is not necessary to exit, re-judge whether the air tightness test is needed; after stopping the air tightness detector, close The communication port of the air tightness detector.
  • control method also includes the steps of displaying and recording data; the steps of displaying and recording data include: when performing the air tightness test, reading and displaying the air tightness test data, and reading the leak detection port. pressure and display, read and display the status of the air tightness detector, and write the status of the air tightness detector to the programmable logic controller; after recording the status of the air tightness detector, judge Whether it is necessary to exit the air tightness test. If it is necessary to exit, stop the air tightness detector. If it is not necessary to exit, re-execute the steps of data display and recording.
  • the storage method after reading the air tightness detection data and the pressure of the leak detection port during the air tightness detection at least includes log saving and report saving.
  • control instructions include: air tightness detection pressure and air tightness detection time parameter instructions, the cavity transplantation servo parameter instructions, and the manipulator servo parameter instructions.
  • control method also includes: after judging whether the air tightness is OK, if not, controlling the air tightness detector to flash a red light and sound an alarm.
  • the invention provides a method for controlling a square-shell battery double vacuum four-chamber air tightness detector.
  • the beneficial effect is to control the square-shell battery double vacuum four-chamber air tightness detector to realize a cavity device, a cavity cover device, and a transplanting device. Automatically work simultaneously and alternately with the loading device, vacuum device, detection device, and unloading device to improve detection efficiency.
  • Figure 1 is a schematic diagram of the air tightness detection of a square-shell battery in the prior art
  • Figure 2 is a layout diagram of a square-shell battery double vacuum four-chamber air tightness testing machine according to an embodiment of the present invention
  • Figure 3 is a flow chart of the control method of the square-shell battery double vacuum four-chamber air tightness detector according to the embodiment of the present invention.
  • Figure 4 is a schematic connection diagram of the host computer of the square-shell battery double vacuum four-chamber air tightness testing machine according to the embodiment of the present invention
  • Figure 5 is a schematic diagram of the switch connection of the square-shell battery double vacuum four-chamber air tightness detector according to the embodiment of the present invention.
  • Figure 6 is a schematic diagram of the PLC connection of the square-shell battery double vacuum four-chamber air tightness testing machine according to the embodiment of the present invention.
  • Figure 7 is a schematic diagram of the PLC Ethernet bus connection of the square-shell battery double vacuum four-chamber air tightness testing machine according to the embodiment of the present invention.
  • Figure 8 is the overall flow chart of the control method of the double vacuum four-chamber air tightness testing machine for square shell batteries
  • Figure 9 is a flow chart of the PLC communication part of the double vacuum four-chamber air tightness testing machine for square shell batteries;
  • Figure 10 is the data reading and air tightness testing flow chart of the double vacuum four-chamber air tightness testing machine for square shell batteries;
  • Figure 11 is the main operation interface of the display screen in the control method of the double vacuum four-chamber helium inspection machine for square aluminum-shell batteries according to the embodiment of the present invention
  • Figure 12 is a function selection page diagram of the display screen in the control method of the double vacuum four-chamber helium inspection machine for square aluminum-shell batteries according to the embodiment of the present invention
  • Figure 13 is a valve status monitoring interface diagram of the display screen in the control method of the dual vacuum four-chamber helium inspection machine for square aluminum-shell batteries according to the embodiment of the present invention
  • Figure 14 is an automatic operation interface diagram of the equipment of the display screen in the control method of the double vacuum four-chamber helium inspection machine for square aluminum-shell batteries according to the embodiment of the present invention
  • Figure 15 is an interface diagram for setting the cavity servo parameters of the display screen in the control method of the double vacuum four-chamber helium inspection machine for square aluminum-shell batteries according to the embodiment of the present invention
  • Figure 16 is a helium detection parameter setting interface diagram of the display screen in the control method of the double vacuum four-chamber helium detection machine for the square aluminum shell battery according to the embodiment of the present invention.
  • Embodiments of the present invention provide a control method for a double vacuum four-chamber air tightness detector for square-shell batteries.
  • the design concept is a combination of host computer software, embedded software for PLC, and human-machine interface software.
  • the schematic diagram of its air tightness detection is shown in Figure 1.
  • the square-shell battery double vacuum four-chamber air tightness testing machine includes a machine 100, a set of loading devices 200 fixed on the machine 100, four cavity devices 300, four A chamber cover device 400, four transplanting devices 500, two sets of vacuum devices 600, a set of helium detection device 700 and a set of unloading device 800.
  • the loading device 200 may be a manipulator or other device with the same function, used to perform loading and control the manipulator to load the square case battery into the cavity.
  • the cavity device 300 and the cavity device 400 constitute a cavity, and the vacuum device 600 is used to evacuate the cavity; the helium detection device 700 is used to detect the air tightness of the square shell battery in the cavity and record the air tightness.
  • the vacuum degree and leakage rate of the cavity during the detection process; the unloading device 800 is used to unload the square-shell batteries that have completed the air tightness test.
  • the control method of the double vacuum four-chamber air tightness detector for square-shell batteries includes at least:
  • control method of the square-shell battery double vacuum four-chamber air tightness detector may also include: controlling startup, controlling code scanning, controlling shutdown, etc.
  • controlling the loading includes: first controlling the manipulator of the loading device to grab the battery from the raw material pull wire and placing it into the cavity of the cavity device located under the loading device, and then controlling the transplanting device to move the cavity device Under the cavity cover device, the cavity is controlled to rise and close to the cavity cover to form a sealed chamber.
  • controlling the vacuuming includes: controlling the vacuum pump of the vacuum device to evacuate the sealed chamber to a level below a predetermined air pressure to become a vacuum chamber.
  • controlling the air tightness detection includes: first controlling the detection pump of the air tightness detection device to extract the tracer gas in the vacuum chamber and expelling it from the detection pump through the air tightness detector, and then controlling the air tightness after a certain period of time.
  • the detector detects the leakage rate of the battery, and then controls the vacuum chamber to break the vacuum, and compares the battery leakage rate standard value to determine the OKness of the battery's air sealing.
  • unloading includes: first controlling the cavity to lower and release the cavity cover, then controlling the transplanting device to move the cavity device under the unloading device, and finally controlling the manipulator of the unloading device to take out the battery from the cavity, and then remove the battery from the cavity. Put the battery with NG leakage rate into the NG area, and put the battery with OK leakage rate into the blanking wire.
  • the specific control method of the double vacuum four-chamber air tightness testing machine for square-shell batteries is as follows:
  • Table 1 The configuration is shown in Table 1 below.
  • four sets of the transplanting devices 500 and four sets of the cavity cover devices 400 can make the four sets of the cavity devices 300 in the loading, vacuuming, air tightness testing, and unloading stations respectively.
  • One set of the loading device 200, two sets of the vacuum device 600, one set of the detection device 700, and one set of the unloading device 800 are operated simultaneously.
  • the process flow is shown in Table 1 below.
  • the loading device 200 sequentially loads the batteries into the 1# warehouse, the 4# warehouse, the 3# warehouse, and the 2# warehouse;
  • the 1 series vacuum device 600 evacuates the 2# warehouse to become a vacuum warehouse, and then turns to evacuate the 4# warehouse to become a vacuum warehouse;
  • the 2-series vacuum device 600 takes over to evacuate the 3# warehouse to become a vacuum warehouse, then switches to evacuating the 1# warehouse to become a vacuum warehouse, and then switches back to vacuum the 3# warehouse;
  • the detection device 700 performs air tightness testing on the 3# warehouse, the 2# warehouse, the 1# warehouse, and the 4# warehouse in sequence;
  • the unloading device 800 unloads batteries from the 4# warehouse, the 3# warehouse, the 2# warehouse, and the 1# warehouse in sequence.
  • Table 1 Control method and process flow chart of double vacuum four-chamber air tightness testing machine for square shell batteries
  • Loading, vacuuming, testing, and unloading can be performed at the same time.
  • the four cavities are sequentially loaded for 8 seconds, vacuumed for 10 seconds, inspected for 5 seconds for a total of 15 seconds, and unloaded for 8 seconds.
  • the cycle time is shortened to 8 seconds; the production cycle
  • the detection production efficiency is shortened to 32 seconds; the detection production efficiency can be increased to 15PPM based on two batteries/cavity; it can be seen that this embodiment shortens the cycle time of the four processes of battery detection and improves the air tightness detection production efficiency.
  • a pump drags a sealed chamber to form the smallest vacuum system. After the sealed chamber is contaminated by the tracer gas leaked from the battery under inspection, only the parts involved in the sealed chamber need to be cleaned until the tracer gas environment is restored. Cleaning causes minimal downtime.
  • the control method of the square-shell battery double vacuum four-chamber air tightness inspection machine is executed by generating and transmitting control instructions through the switch, host computer, and PLC, and receiving the operator's control instructions and displaying the control results through the touch screen.
  • the first network port of the switch is connected to the PLC
  • the second network port is connected to the touch screen communication port
  • the third network port is connected to the host computer
  • the fourth and fifth network ports are reserved network ports.
  • the first network port of the host computer is a reserved network port
  • the second network port is connected to the manufacturing execution system
  • the third network port is connected to the switch
  • the first serial port is connected to the air tightness detector
  • the second network port is connected to the air tightness detector.
  • Connect serial port and code scanner is executed by generating and transmitting control instructions through the switch, host computer, and PLC, and receiving the operator's control instructions and displaying the control results through the touch screen.
  • the first network port of the PLC of the square-shell battery double vacuum four-chamber air tightness testing machine is a reserved network port, the second network port is connected to the switch, and the third network port is connected to the bus.
  • the bus and PLC of the double vacuum four-chamber air tightness testing machine for square-shell batteries the manipulator grabbing cylinder solenoid valve, the cavity lifting cylinder solenoid valve, the detection valve, the retest cache position cylinder solenoid valve, and pairing Cylinder solenoid valve, loading and unloading servo
  • the driver, cavity transplanting servo driver, cavity material sensor, vacuum gauge, etc. are connected.
  • the selection of the host computer's central processing unit (CPU), human-machine interface, touch screen, air tightness detector, and host computer operating system and software development platform have been clarified.
  • the PLC and the host computer jointly control the operation of the equipment according to the established communication protocol (see Table 2 at the end of the text).
  • the communication protocol between the PLC and the host computer is shown in Table 2, in which the PLC control equipment
  • the host computer records and tracks product information and reads air tightness testing data.
  • the host computer reads the data in the data matrix code (English abbreviation DM) area of the PLC through the network port and parses the PLC data.
  • DM data matrix code
  • the PLC interacts with the host computer through the DM data area.
  • the PLC writes the target task information into the specified DM area.
  • the host computer reads the DM area data in the PLC through the network port and analyzes the data to obtain For a specific task, the data processing is completed and the results are written into the specified DM area.
  • the PLC receives the results of the current task, it takes the next action.
  • the PLC extracts the cavity gas through the control valve, and reads the cavity pressure during the air tightness test through the vacuum gauge; the host computer controls the scanner gun through the serial port, records the product barcode information, and reads the air tightness test through the RS232 serial port. instrument data and notify the host computer of the results for saving reports.
  • control method of the double vacuum four-chamber air tightness detector for square case batteries also includes: before the air tightness test, control the scanning gun to scan the square case battery to obtain the barcode information of the square case battery; During air tightness testing, the vacuum degree obtained by vacuuming, the leakage rate obtained by detection, and the barcode information are recorded accordingly.
  • the medium gas leakage rate of the vacuum chamber is recorded, and it is judged whether the medium gas leakage rate of the vacuum chamber is normal. If it is normal, the air tightness test is performed. If it is abnormal, Then conduct a background check on the cavity and cavity cover.
  • the air tightness testing data includes the total results of battery air tightness, the results of vacuuming before air tightness testing, whether the pressure is normal during air tightness testing, air tightness testing leakage rate, barcode, etc. Whether the data is normal, etc.
  • the control method includes: opening the communication port of the air tightness detector so that the air tightness detector and the host computer are successfully connected; determining whether air tightness testing is required; if air tightness testing is not required, delay after the first predetermined time, and execute the verification and stop judgment step; if air tightness testing is required, read the air tightness testing time, and read the air tightness testing data and air tightness testing during the air tightness testing Check the pressure of the leak port and save it to get the leakage rate and judge whether the air tightness test is completed; if the air tightness test is completed, it is recorded as the first information; if the air tightness test is not completed, it is recorded as the second information ; After performing the air tightness test, wait for a predetermined time and then clear the air tightness detection signal, and perform the air tightness test stop judgment step; the air tightness test stop judgment step includes: judging whether it is necessary to exit the air tightness test; if necessary Exit, then Stop the air tightness detector. If there is no need to exit,
  • the air tightness detector After judging whether to perform the air tightness test, if the air tightness test is not performed, then after a first predetermined time delay, it is judged whether it is necessary to exit the air tightness test; if it is necessary to exit, the air tightness detector is stopped. If If there is no need to exit, then re-judge whether air tightness detection is required.
  • the first predetermined time can be 200ms. In other embodiments, it can also be 100ms, 300ms, etc. The operator can set the first predetermined time according to needs. The length of time.
  • the air tightness test time is read and delayed; the air tightness test data is read and saved, the leak detection port pressure is read, and Save; then determine whether the air tightness test is OK, that is, whether it is completed. If OK, write the first information to the PLC.
  • the first information can be that the air tightness test is OK; if not OK, write the second information to the PLC.
  • the second information can be PLC air tightness detection NG; then wait for the air tightness detection signal to be cleared, and after clearing the air tightness detection signal, determine whether it is necessary to exit the air tightness detection; if it is necessary to exit, stop the air tightness detection , if there is no need to exit, re-judge whether air tightness testing is required.
  • the communication port of the air tightness detector is also closed.
  • control method of the square-shell battery double vacuum four-chamber air tightness testing machine also includes the steps of data display and recording;
  • the data display and recording steps include: when performing the air tightness test, reading the air tightness The air tightness test data during the test, the pressure of the leak detection port during the air tightness test, and the status of the air tightness detector for the air tightness test are displayed on the display screen, and the status of the air tightness detector is recorded; After recording the status of the air tightness detector, determine whether you need to exit the air tightness test. If you need to exit, stop the air tightness detector. If you do not need to exit, re-execute the steps of data display and recording.
  • the steps of data display and recording are the steps of writing the air tightness detector status to the PLC (programmable logic controller) in the above embodiment.
  • the specific logic diagram is also shown in Figure 10. After opening the communication interface of the air tightness detector, read the air tightness detection data and display it; read the pressure of the leak detection port and display it; read the status of the air tightness detector and display it; write to the air tightness detector Status to PLC; determine whether it is necessary to exit. If necessary, stop the air tightness detector. If there is no need to exit, re-execute the steps of data display and recording.
  • the air tightness detection data during the air tightness detection process can be displayed, so that the operator can obtain the air tightness detection data in a timely manner, and perform the air tightness detection data in a timely manner.
  • adjustments can be made in time to ensure that the battery air tightness detection can proceed normally.
  • the storage method after reading the air tightness detection data during the air tightness detection and the pressure of the leak detection port during the air tightness detection at least includes log saving and report saving.
  • the traceability of data can be increased.
  • the data of one party is damaged, the data of the other party can be traced and used.
  • control instructions include: air tightness detection pressure and air tightness detection time parameter instructions, cavity transplantation servo parameter instructions, and manipulator servo parameter instructions.
  • helium is used as the tracer gas
  • the air tightness detector is a helium detector
  • the air tightness detector is a helium detector.
  • the human-machine interface of the control method of the square-shell battery double vacuum four-chamber helium inspection machine can be displayed on the display screen.
  • Figure 11 is the main interface. This page is the main page of the equipment.
  • I/O monitoring operation instructions, IP address, administrator rights, logout, trouble-free, and return operations.
  • valve status monitoring interface which can display the actual status of each valve.
  • the initialization steps include: 1. Refreshing the interface elements; 2. Reading the configuration parameters. ; 3. Display parameters, etc.; after initialization, perform interface button event processing, interface status light refresh, station data refresh, log information display, PLC communication data processing, battery scan code scanning, helium detector test, and read helium detector Real-time data, login function, after the function is completed, the program ends.
  • parameters for the helium detection machine are respectively the setting interface of the cavity transplantation servo parameters and parameters such as helium detection pressure and time. settings interface.
  • control method of the double vacuum four-chamber air tightness testing machine for square-shell batteries also includes: automatically judging whether the air tightness is OK based on the results of the air tightness testing.
  • control method also includes: after judging whether the air tightness is OK, if not, controlling the air tightness detector to flash a red light and sound an alarm.
  • the air tightness detector By controlling the air tightness detector to flash a red light and sound an alarm, the operator can be better reminded to pay attention, so that the operator can deal with batteries with poor air tightness in a timely manner.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

本发明公开了一种方壳电池双真空四腔气密性检测机控制方法,包括:用于控制方壳电池双真空四腔气密性检测机开机、上料、扫码、抽真空、气密性检测、下料、停机;上料包括:将电池从来料拉线抓取放入位于上料装置下的腔体装置的腔体内,控制移栽装置移动到腔盖装置下,控制腔体上升合向腔盖形成密封仓;抽真空包括:将密封仓抽真空至预定气压以下成为真空仓;气密性检测包括:抽取真空仓里的示踪气体经气密性检测仪由检测泵排出,控制气密性检测仪检测电池的漏率,控制对真空仓破真空,判断电池气密封性的合格性;下料包括:控制腔体下降脱开腔盖,控制移栽装置移动到下料装置下,控制下料装置的机械手将电池从腔体内取出。

Description

一种方壳电池双真空四腔气密性检测机控制方法 技术领域
本发明涉及方壳电池制造装备技术领域,尤其涉及一种方壳电池双真空四腔气密性检测机控制方法。
背景技术
方壳电池的原电池(下称电池)是内装电芯和无水电解液的密封容器。电池的密封性不好会使电池在使用中泄漏电解液,更严重的是会渗入水汽,水汽会凝结成水进入电解液,会破坏电池内部电化学系统的绝缘性能,少量的水就会导致电池在充电过程中产生异常的大电流引起异常发热甚至爆炸和燃烧,电池的密封性事关电池及采用电池的装置如电动车的安全。
在电池行业,通过气密性定量检测并按一个气密性漏率标准判定不合格品,剔出泄漏相对较大的电池,确保进入使用的电池的密封性能合格,从而确保进入使用的电池的安全性能。
方形铝壳锂电池在顶盖焊接后和密封钉盖焊接后均需检测密封性。见图1,业界采用示踪气体充入到电池内,将充有示踪气体的电池置于密封仓内用真空泵对密封仓抽真空使密封仓成为真空仓,电池内外气压差使示踪气体从可能的漏焊、裂缝、气孔、夹渣等处由电池内往外渗漏到真空仓内,用检测泵通过气密性检测仪连通真空仓抽走示踪气体,经过一定时间后,真空泵从真空仓内抽走的示踪气体的单位时间的流量与电池泄漏到真空仓内的单位时间的流量即电池示踪气体漏率相等,此时气密性检测仪检测抽走的示踪气体的单位时间的流量即检测到电池示踪气体漏率,简称检气与漏气平衡。
在真空仓内,对密封钉盖焊接前的方壳电池充入示踪气体来检漏被称为前气密性检测;在真空仓内,用密封钉盖焊接后的方壳电池内预先封存的示踪气体来检漏被称为后气密性检测。后气密性检测一般包括四个作业工序:上料、抽真空、气密性检测、下料,四个工序节拍时间一致且越短,则设备产能越高。
双真空四腔气密性检测机,采用两套真空装置,各配置一个真空泵,还有一套上料装置、四套腔体装置、四套腔盖装置、四套移栽装置、一套检测装置以及一套下料装置,一套腔体装置和一套腔盖装置可组合成为一个密封仓,对两套真空装置各配置两个密封仓。上料、抽真空、气密性检测、下料可同时作业,在一个实施例中,四个腔体依次上料8s、抽真空10s再气密性检测5s共计15s、下料8s,节拍时间缩短到8s;生产周期缩短到32s;气密性检测生产效率按两个电池/腔可提高到15PPM。
基于气密性检测机控制系统采用汇流板、电磁阀、真空挡板阀(简称阀门)、伺服驱动器现有成熟技术,需要一套控制方法控制汇流板、电磁阀、阀门、伺服驱动器实现腔体装置、 腔盖装置、移栽装置与上料装置、真空装置、检测装置、下料装置自动同时作业与依次连续作业。
发明内容
本发明的主要目的在于提供一种方壳电池双真空四腔气密性检测机控制方法,其可以控制双真空四腔气密性检测机实现上料、抽真空、检测、下料自动同时作业与交替作业,缩短气密性检测节拍时间,提高气密性检测生产效率。
本发明是这样实现的,方壳电池双真空四腔气密性检测机控制方法,包括:用于控制方壳电池(以下简称电池)双真空四腔气密性检测机开机、上料、扫码、抽真空、检测、下料、停机,其中:控制上料包括:先控制上料装置的机械手将电池从来料拉线抓取放入位于上料装置下的腔体装置的腔体内,再控制移栽装置将腔体装置移动到腔盖装置下,后控制腔体上升合向腔盖形成密封仓;控制抽真空包括:控制真空装置的真空泵将密封仓抽真空至预定气压以下成为真空仓;控制检测包括:先控制气密性检测装置的检测泵抽取真空仓里的示踪气体经气密性检测仪由检测泵排出,一定时间后再控制气密性检测仪检测电池的漏率,后控制对真空仓破真空,并比对电池漏率标准值判断电池气密性的OK性;控制下料包括:先控制腔体下降脱开腔盖,再控制移栽装置将腔体装置移动到下料装置下,后控制下料装置的机械手将电池从腔体内取出,将漏率NG电池放入NG区域,将漏率OK电池放入下料拉线。
进一步的,所述控制方法的执行,通过交换机、上位机、可编程逻辑控制器进行控制指令的生成和传输,通过触摸屏接收操作人员的控制指令和显示控制结果;所述交换机的第一网口和所述可编程逻辑控制器连接,第二网口和所述触摸屏连接,第三网口和所述上位机连接,第四网口和第五网口为预留网口;所述上位机的第一网口为预留网口,第二网口和制造执行系统连接,第三网口和所述交换机连接,第一串口和气密性检测仪连接,第二串口和扫码枪连接。
所述可编程逻辑控制器的第一网口为预留网口,第二网口和所述交换机连接,第三网口和总线连接。
进一步的,所述控制方法还包括:在气密性检测前,控制所述扫码枪对方壳电池进行扫码,得到电池的条码信息;在气密性检测时,将抽真空得到的真空度、检测得到的漏率与所述条码信息对应记录。
进一步的,所述控制方法还包括:对腔体进行抽真空处理后,记录真空仓的介质气体泄露率,并判断真空仓的介质气体泄露率是否正常,若正常,则进行气密性检测,若不正常,则对腔体、腔盖进行背景检查。
进一步的,所述控制方法包括:打开气密性检测仪的通讯口,使得所述气密性检测仪和所述上位机连接成功;判断是否需要气密性检测;若不需要气密性检测,则延时第一预定时间后,并执行核检停止判断步骤;若需要气密性检测,则读取气密性检测时间并延时,读取气密性检测数据以及读取检漏口的压力并保存,以气密性检测数据比对标准值,判断气密性检测结果;若气密性检测数据小于标准,则判为OK并记录为第一信息,若气密性检测数据大于等于标准,则判为NG并记录为第二信息;在进行气密性检测后,等待预定时间后清除气密性检测信号,并执行气密性检测停止判断步骤;所述气密性检测停止判断步骤包括:判断是否需要退出气密性检测;若需要退出,则停止气密性检测仪,若不需要退出,则重新判断是否需要气密性检测;在停止气密性检测仪后,关闭气密性检测仪的通讯口。
进一步的,所述控制方法还包括数据显示和记录的步骤;所述数据显示和记录的步骤包括:在进行气密性检测时,读取气密性检测数据并显示、读取检漏口的压力并显示、读取气密性检测仪的状态并显示,且写所述气密性检测仪的状态到所述可编程逻辑控制器;在记录所述气密性检测仪的状态后,判断是否需要退出气密性检测,若需要退出,则停止气密性检测仪,若不需要退出,则重新执行所述数据显示和记录的步骤。
进一步的,所述读取气密性检测时的气密性检测数据以及检漏口的压力后的保存方式至少包括日志保存以及报表保存。
进一步的,所述控制指令包括:气密性检测压力和气密性检测时间参数指令、所述腔体移栽伺服参数指令、所述机械手伺服参数指令。
进一步的,所述控制方法还包括:在判断气密性是否OK的结论后,若不OK,则控制所述气密性检测仪闪烁红灯,并发出报警声。
本发明提供一种方壳电池双真空四腔气密性检测机控制方法,有益效果在于:控制方壳电池双真空四腔气密性检测机,实现腔体装置、腔盖装置、移栽装置与上料装置、真空装置、检测装置、下料装置自动同时作业与交替作业,提高检测效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术方壳电池气密性检测原理图;
图2为本发明实施例方壳电池双真空四腔气密性检测机布局图;
图3为本发明实施例方壳电池双真空四腔气密性检测机控制方法的流程图;
图4为本发明实施例方壳电池双真空四腔气密性检测机的上位机连线示意图;
图5为本发明实施例方壳电池双真空四腔气密性检测机的交换机连线示意图;
图6为本发明实施例方壳电池双真空四腔气密性检测机的PLC连线示意图;
图7为本发明实施例方壳电池双真空四腔气密性检测机的PLC以太网总线连线示意图;
图8为方壳电池双真空四腔气密性检测机控制方法总体流程图;
图9为方壳电池双真空四腔气密性检测机PLC通讯部分流程图;
图10为方壳电池双真空四腔气密性检测机读取数据及气密性检测流程图;
图11为本发明实施例方形铝壳电池双真空四腔氦检机控制方法中显示屏的主操作界面;
图12为本发明实施例方形铝壳电池双真空四腔氦检机控制方法中显示屏的功能选择页面图;
图13为本发明实施例方形铝壳电池双真空四腔氦检机控制方法中显示屏的阀门状态监视界面图;
图14为本发明实施例方形铝壳电池双真空四腔氦检机控制方法中显示屏的设备自动运行界面图;
图15为本发明实施例方形铝壳电池双真空四腔氦检机控制方法中显示屏的腔体伺服参数的设置界面图;
图16为本发明实施例方形铝壳电池双真空四腔氦检机控制方法中显示屏的氦检参数设置界面图。
具体实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种方壳电池双真空四腔气密性检测机控制方法,其设计思想是一种上位机软件、PLC用嵌入式软件、人机界面软件的组合。其气密性检测原理图如图1所示。
在本实施例中,请参阅图2,方壳电池双真空四腔气密性检测机包括机台100、固定在机台100上的一套上料装置200、四个腔体装置300、四个腔盖装置400、四个移栽装置500、两套真空装置600、一套氦检装置700以及一套下料装置800。其中,上料装置200可以是机械手,也可以是其他具有相同功能的装置,用于执行上料,控制机械手将方壳电池上料至腔 体;腔体装置300和腔体装置400构成腔体,真空装置600用于对腔体抽真空;氦检装置700用于对腔体内的方壳电池进行气密性检测,并记录气密性检测过程中腔体的真空度、漏率;下料装置800用于将完成气密性检测的方壳电池进行下料。
请参阅图3,方壳电池双真空四腔气密性检测机控制方法至少包括:
S101、控制上料;S102、控制抽真空;S103、控制检测;S104、控制下料。
在其他实施例中,方壳电池双真空四腔气密性检测机控制方法还可以包括:控制开机、控制扫码、控制停机等。
在一个实施例中,控制上料包括:先控制上料装置的机械手将电池从来料拉线抓取放入位于上料装置下的腔体装置的腔体内,再控制移栽装置将腔体装置移动到腔盖装置下,后控制腔体上升合向腔盖形成密封仓。
在一个实施例中,控制抽真空包括:控制真空装置的真空泵将密封仓抽真空至预定气压以下成为真空仓。
在一个实施例中,控制气密性检测包括:先控制气密性检测装置的检测泵抽取真空仓里的示踪气体经气密性检测仪由检测泵排出,一定时间后再控制气密性检测仪检测电池的漏率,后控制对真空仓破真空,并比对电池漏率标准值判断电池气密封性的OK性。
在一个实施例中,下料包括:先控制腔体下降脱开腔盖,再控制移栽装置将腔体装置移动到下料装置下,后控制下料装置的机械手将电池从腔体内取出,将漏率不NG电池放入NG区域,将漏率OK电池放入下料拉线。
请参阅图2,在一个实施例中,方壳电池双真空四腔气密性检测机具体控制方法如下:
将四个密封仓按顺序编号为1#仓、2#仓、3#仓、4#仓,将两套真空装置600分别编号为1系和2系,通过真空管道阀门设定1系真空装置600只对1#仓和3#仓开启,2系真空装置600只对2#仓和4#仓开启,配置见下表1。
进一步的,四套所述移栽装置500和四套所述腔盖装置400可使四套所述腔体装置300依次分别处于上料、抽真空、气密性检测、下料工位,一套所述上料装置200、两套所述真空装置600、一套所述检测装置700、一套所述下料装置800同时进行作业,工艺流程见下表1。
所述上料装置200依次将电池上料1#仓、4#仓、3#仓、2#仓内;
同时,1系真空装置600对2#仓抽真空使成为真空仓,再转对4#仓抽真空使成为真空仓;
同时,2系真空装置600对3#仓接替抽真空使成为真空仓,转对1#仓抽真空使成为真空仓,再转回对3#仓抽真空;
同时,所述检测装置700依次对3#仓、2#仓、1#仓、4#仓进行气密性检测;
同时,所述下料装置800依次将电池从4#仓、3#仓、2#仓、1#仓内下料。
表1:方壳电池双真空四腔气密性检测机控制法与工艺流程表
上料、抽真空、检测、下料可同时作业,在一个实施例中,四个腔体依次上料8s、抽真空10s再检测5s共计15s、下料8s,节拍时间缩短到8s;生产周期缩短到32s;检测生产效率按两个电池/腔可提高到15PPM;可见本实施例缩短了电池检测的四个工序的节拍时间,提高了气密性检测生产效率。
本实施例一泵拖一密封仓构成最小的真空系统,在密封仓被所检电池泄漏的示踪气体污染后,只需清洗该密封仓所涉及的部分,直到恢复示踪气体环境,可使清洗造成的停机损失最小。
在一个实施例中,方壳电池双真空四腔气密性检测机控制方法的执行,通过交换机、上位机、PLC进行控制指令的生成和传输,通过触摸屏接收操作人员的控制指令和显示控制结果;如图4所示,交换机的第一网口和PLC连接,第二网口和触摸屏通讯口连接,第三网口和上位机连接,第四网口和第五网口为预留网口;如图5所示,上位机的第一网口为预留网口,第二网口和制造执行系统连接,第三网口和交换机连接,第一串口和气密性检测仪连接,第二串口和扫码枪连接。
如图6所示,方壳电池双真空四腔气密性检测机的PLC的第一网口为预留网口,第二网口和交换机连接,第三网口和总线连接。
如图7所示,方壳电池双真空四腔气密性检测机的总线和PLC、机械手抓取气缸电磁阀、腔体顶升气缸电磁阀、检测阀门、复测缓存位气缸电磁阀、配对位气缸电磁阀、上下料伺服 驱动器、腔体移栽伺服驱动器、腔体料感、真空计等连接。
在本实施例中,上位机中央处理器(CPU)、人机接口、触摸屏、气密性检测仪选型及上位机操作系统、软件开发平台选型已明确。
在控制设备进行气密性检测时,PLC和上位机按照既定的通信协议(见文后表2)共同控制设备的运行,PLC和上位机的通信协议如表2所示,其中PLC控制设备的具体动作和流程,上位机记录、追踪产品信息、读取气密性检测数据。如图9所示,在上位机连接PLC后,上位机通过网口读取PLC中数据矩阵码(英文名缩写为DM)区数据,并解析PLC数据,这里会得到一个具体任务,上位机将任务进行工位数据推送,最后判断是否需要退出,如果需要,则断开和PLC的连接,如果不需要,则重新通过网口读取PLC中DM区数据。
具体的,在本实施例中,PLC通过DM数据区和上位机进行数据交互,PLC将目标任务的信息写入规定的DM区,上位机通过网口读取PLC中DM区数据,解析数据得到具体任务,数据处理完成并将结果写入规定的DM区,PLC接收到当前任务结果后,进行下一动作。本设备中PLC通过控制阀门抽取腔体气体,通过真空计读取气密性检测时的腔体压力;上位机通过串口控制扫码枪,记录产品条码信息,通过RS232串口读取气密性检测仪的数据,并将结果通知上位机,用于保存报表。
在一个实施例中,方壳电池双真空四腔气密性检测机控制方法还包括:在气密性检测前,控制扫码枪对方壳电池进行扫码,得到方壳电池的条码信息;在气密性检测时,将抽真空得到的真空度、检测得到的漏率与条码信息对应记录。
在本实施例中,对腔体进行抽真空处理后,记录真空仓的介质气体泄露率,并判断真空仓的介质气体泄露率是否正常,若正常,则进行气密性检测,若不正常,则对腔体、腔盖进行背景检查。
在进行气密性检测时,气密性检测数据包括电池气密性的总结果,气密性检测前抽真空的结果,气密性检测时压力是否正常、气密性检测泄漏率、条码等是否正常的数据等。
在一个实施例中,控制方法包括:打开气密性检测仪的通讯口,使得气密性检测仪和上位机连接成功;判断是否需要气密性检测;若不需要气密性检测,则延时第一预定时间后,并执行核检停止判断步骤;若需要气密性检测,则读取气密性检测时间,并读取气密性检测时的气密性检测数据以及气密性检测时检漏口的压力,并保存,得到泄漏率,判断是否气密性检测完成;若气密性检测完成,则记录为第一信息,若气密性检测未完成,则记录为第二信息;在进行气密性检测后,等待预定时间后清除气密性检测信号,并执行气密性检测停止判断步骤;气密性检测停止判断步骤包括:判断是否需要退出气密性检测;若需要退出,则 停止气密性检测仪,若不需要退出,则重新判断是否需要气密性检测;在停止气密性检测仪后,关闭气密性检测仪的通讯口。
在本实施例中,在气密性检测开始前,判断一下是否需要气密性检测,整体的运行逻辑如图10所示,在打开气密性检测仪的通讯口后,有两个步骤,一个步骤是判断是否进行气密性检测,另一个是将气密性检测仪状态写入至PLC。
其中在判断是否进行气密性检测后,若不进行气密性检测,则延时第一预定时间后,判断是否需要退出气密性检测;若需要退出,则停止气密性检测仪,若不需要退出,则重新判断是否需要气密性检测,本实施例中,第一预定时间可以是200ms,在其他实施例中,也可以是100ms,300ms等,操作人员可以根据需求设置第一预定时间的长短。
其中在判断是否进行气密性检测后,若进行气密性检测,则读取气密性检测时间,并延时;读取气密性检测数据,并保存,读取检漏口压力,并保存;随后判断气密性检测是否OK,即是否完成,若OK,则向PLC写入第一信息,第一信息可以是气密性检测OK;若不OK,则向PLC写入第二信息,第二信息可以是PLC气密性检测NG;随后等待清除气密性检测信号,在清除气密性检测信号后,判断是否需要退出气密性检测;若需要退出,则停止气密性检测,若不需要退出,则重新判断是否需要气密性检测。在本实施例中,在停止气密性检测仪后,还关闭气密性检测仪通讯口。
在一个实施例中,方壳电池双真空四腔气密性检测机控制方法还包括数据显示和记录的步骤;数据显示和记录的步骤包括:在进行气密性检测时,读取气密性检测时的气密性检测数据、气密性检测时检漏口的压力、进行气密性检测的气密性检测仪的状态,并显示至显示屏,且记录气密性检测仪的状态;在记录气密性检测仪的状态后,判断是否需要退出气密性检测,若需要退出,则停止气密性检测仪,若不需要退出,则重新执行数据显示和记录的步骤。
在本实施例种,数据显示和记录的步骤即为上述实施例中的将气密性检测仪状态写入至PLC(可编程逻辑控制器)的步骤,具体逻辑图还如图10所示,在打开气密性检测仪通讯接口后,读取气密性检测数据,并显示;读取检漏口压力,并显示;读取气密性检测仪状态,并显示;写气密性检测仪状态到PLC;判断是否需要退出,若需要,则停止气密性检测仪,若不需要退出,则重新执行数据显示和记录的步骤。
在本实施例中,通过实现数据显示和记录的步骤,能够将气密性检测过程中的气密性检测数据显示出来,从而使得操作人员能够及时获取气密性检测数据,并且在气密性检测数据出现异常时,能够及时进行调整,保证电池的气密性检测能够正常进行。
在一个实施例中,读取气密性检测时的气密性检测数据以及气密性检测时检漏口的压力后保存方式至少包括日志保存以及报表保存。
在本实施例中,通过使用日志保存和报表保存的双重保存方式,能够增加数据的可追溯性,在其中一方的数据受到损坏时,可以追溯另一方的数据来使用。
在一个实施例中,控制指令包括:气密性检测压力和气密性检测时间参数指令、腔体移栽伺服参数指令、机械手伺服参数指令。
如图11-14所示,在氦检的实施例中,以氦气作示踪气体,气密性检测仪是氦检仪,气密性检测机是氦检机。在显示屏上能够显示方壳电池双真空四腔氦检机控制方法的人机界面,其中图11是主界面,此页面为设备主页面,可以进入一级菜单,进行功能选择、手动操作、参数设定、自动监视等;一级菜单具体包括手动、自动、清料、清除NG料标志、安全门、设备维修、用户管理、功能选择、手动操作、自动监控、参数设置、报警信息、数据统计、I/O监控、操作说明、IP地址、管理员权限、注销、无故障、返回的操作。
其中,如图12所示,为功能设置/功能选择页面,可以按需求定制需要的功能,不需要的功能可以屏蔽。
如图13所示,为阀门状态监视界面,能够显示各个阀门的实际状态。
如图14所示,为设备自动运行界面,在进行全自动氦检的过程中,能够显示自动运行时物料和外设的工作状态。
如图8所示,在本实施例提供的对方壳电池氦检机的控制方法作为程序开始运行时,首先进行初始化的步骤,初始化的步骤包括:1.界面元素刷新;2.读取配置参数;3.显示参数等;在初始化后,进行界面按钮事件处理、界面状态灯刷新、工位数据刷新、日志信息显示、PLC通讯数据处理、扫描电池扫码、氦检仪测试、读取氦检实时数据、登录功能,在功能运行完成后,程序结束。
在本实施例中,还可以对氦检机设置参数,按照设置的参数进行氦检,如图15、16所示,分别为腔体移栽伺服参数的设置界面和氦检压力和时间等参数的设置界面。
进一步的,方壳电池双真空四腔气密性检测机控制方法还包括:根据气密性检测的结果,自动判断气密性是否OK的结论。
通过自动判断气密性是否OK,相较于人工判断,能够更加快速准确,从而进一步节省方壳电池气密性检测的时间。
进一步的,控制方法还包括:在判断气密性是否OK的结论后,若不OK,则控制气密性检测仪闪烁红灯,并发出报警声。
通过控制气密性检测仪闪烁红灯,并发出报警声,能够更好的提醒操作人员的注意,从而使得操作人员及时对气密性不OK的电池进行处理。
需要说明的是,对于前述的各方法实施例,为了简便描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定都是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
以上为对本发明所提供的一种方壳电池双真空四腔气密性检测机控制方法的描述,对于本领域的技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。
表2:PC和PLC的通讯协议表



Claims (9)

  1. 一种方壳电池双真空四腔气密性检测机控制方法,其特征在于,包括:用于控制方壳电池双真空四腔气密性检测机开机、上料、扫码、抽真空、检测、下料、停机,其中:
    控制上料包括:先控制上料装置的机械手将电池从来料拉线抓取放入位于上料装置下的腔体装置的腔体内,再控制移栽装置将腔体装置移动到腔盖装置下,后控制腔体上升合向腔盖形成密封仓;
    控制抽真空包括:控制真空装置的真空泵将密封仓抽真空至预定气压以下成为真空仓;
    控制检测包括:先控制气密性检测装置的检测泵抽取真空仓里的示踪气体经气密性检测仪由检测泵排出,一定时间后再控制气密性检测仪检测电池的漏率,后控制对真空仓破真空,并比对电池漏率标准值判断电池气密性的OK性;
    控制下料包括:先控制腔体下降脱开腔盖,再控制移栽装置将腔体装置移动到下料装置下,后控制下料装置的机械手将电池从腔体内取出,将漏率NG电池放入NG区域,将漏率OK电池放入下料拉线。
  2. 根据权利要求1所述的方壳电池双真空四腔气密性检测机控制方法,其特征在于,所述控制方法的执行,通过交换机、上位机、可编程逻辑控制器进行控制指令的生成和传输,通过触摸屏接收操作人员的控制指令和显示控制结果;
    所述交换机的第一网口和所述可编程逻辑控制器连接,第二网口和所述触摸屏连接,第三网口和所述上位机连接,第四网口和第五网口为预留网口;
    所述上位机的第一网口为预留网口,第二网口和制造执行系统连接,第三网口和所述交换机连接,第一串口和气密性检测仪连接,第二串口和扫码枪连接;
    所述可编程逻辑控制器的第一网口为预留网口,第二网口和所述交换机连接,第三网口和总线连接。
  3. 根据权利要求2所述的方壳电池双真空四腔气密性检测机控制方法,其特征在于,所述控制方法还包括:
    在气密性检测前,控制所述扫码枪对电池进行扫码,得到电池的条码信息;
    在气密性检测时,将抽真空得到的真空度、检测得到的漏率与所述条码信息对应记录。
  4. 根据权利要求2所述的方壳电池双真空四腔气密性检测机控制方法,其特征在于,所述气密性检测还包括:
    对腔体进行抽真空处理后,记录真空仓的介质气体泄露率,并判断真空仓的介质气体泄露率是否正常,若正常,则进行气密性检测,若不正常,则对腔体、腔盖进行背景检查。
  5. 根据权利要求4所述的方壳电池双真空四腔气密性检测机控制方法,其特征在于,气密性检测的步骤包括:
    打开气密性检测仪的通讯口,使得所述气密性检测仪和所述上位机连接成功;
    判断是否需要气密性检测;
    若不需要气密性检测,则延时第一预定时间后,并执行气密性检测停止判断步骤;
    若需要气密性检测,则读取气密性检测时间并延时,读取气密性检测数据并保存以及读取检漏口的压力并保存,以气密性检测数据比对标准值,判断气密性检测结果;若气密性检测数据小于标准,则判为OK并记录为第一信息,若气密性检测数据大于等于标准,则判为NG并记录为第二信息;
    在进行气密性检测后,等待预定时间后清除气密性检测信号,并执行气密性检测停止判断步骤;
    所述气密性检测停止判断步骤包括:判断是否需要退出气密性检测;若需要退出,则停止气密性检测仪,若不需要退出,则重新判断是否需要气密性检测;
    在停止气密性检测仪后,关闭气密性检测仪的通讯口。
  6. 根据权利要求5所述的方壳电池双真空四腔气密性检测机控制方法,其特征在于,所述控制方法还包括数据显示和记录的步骤;
    所述数据显示和记录的步骤包括:在进行气密性检测时,读取气密性检测数据并显示、读取检漏口的压力并显示、读取气密性检测仪的状态并显示,且写所述气密性检测仪的状态到所述可编程逻辑控制器;
    在记录所述气密性检测仪的状态后,判断是否需要退出气密性检测,若需要退出,则停止气密性检测仪,若不需要退出,则重新执行所述数据显示和记录的步骤。
  7. 根据权利要求5所述的方壳电池双真空四腔气密性检测机控制方法,其特征在于,
    所述读取气密性检测数据以及检漏口的压力后的保存方式至少包括日志保存以及报表保存。
  8. 根据权利要求2所述的方壳电池双真空四腔气密性检测机控制方法,其特征在于,所述控制指令包括:
    气密性检测压力和气密性检测时间参数指令、所述腔体移栽伺服参数指令、所述机械手伺服参数指令。
  9. 根据权利要求8所述的方壳电池双真空四腔气密性检测机控制方法,其特征在于,所述控制方法还包括:
    在判断气密性是否OK的结论后,若NG,则控制所述气密性检测仪闪烁红灯,并发出报警声。
PCT/CN2023/099567 2022-07-13 2023-06-11 一种方壳电池双真空四腔气密性检测机控制方法 WO2024012118A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210828578.0 2022-07-13
CN202210828578.0A CN115371901A (zh) 2022-07-13 2022-07-13 一种方壳电池双真空四腔气密性检测机控制方法

Publications (1)

Publication Number Publication Date
WO2024012118A1 true WO2024012118A1 (zh) 2024-01-18

Family

ID=84062627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099567 WO2024012118A1 (zh) 2022-07-13 2023-06-11 一种方壳电池双真空四腔气密性检测机控制方法

Country Status (2)

Country Link
CN (1) CN115371901A (zh)
WO (1) WO2024012118A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115371901A (zh) * 2022-07-13 2022-11-22 深圳市誉辰智能装备股份有限公司 一种方壳电池双真空四腔气密性检测机控制方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956923A (en) * 1975-01-17 1976-05-18 The Procter & Gamble Company Method of detecting small gas leaks in filled aerosol containers
CN103187592A (zh) * 2011-12-29 2013-07-03 陆文周 动力锂电池自动化成、检测生产线
CN104568343A (zh) * 2014-12-31 2015-04-29 广州市型腔模具制造有限公司 一种真空压铸模具真空度检测方法
CN105327863A (zh) * 2015-11-17 2016-02-17 深圳市誉辰自动化设备有限公司 方形动力电池自动气密性氦检机
CN106885656A (zh) * 2017-03-04 2017-06-23 广州灵帕机电科技有限公司 一种动力电池盖板氦检漏系统
CN108237089A (zh) * 2017-12-27 2018-07-03 深圳市誉辰自动化设备有限公司 用于检测电池铝壳气密性的测试系统
CN108584359A (zh) * 2017-12-27 2018-09-28 深圳市誉辰自动化设备有限公司 用于检测电池注液孔密封性的测试系统
CN109269734A (zh) * 2018-07-26 2019-01-25 合肥瑞智电力电子有限公司 一种真空泄漏判断控制系统
CN214173681U (zh) * 2020-11-23 2021-09-10 湖北三江航天机电设备有限责任公司 一种气密在线检测系统
CN113884801A (zh) * 2021-09-01 2022-01-04 国网河北省电力有限公司营销服务中心 一种通信模块检测系统
CN115371901A (zh) * 2022-07-13 2022-11-22 深圳市誉辰智能装备股份有限公司 一种方壳电池双真空四腔气密性检测机控制方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956923A (en) * 1975-01-17 1976-05-18 The Procter & Gamble Company Method of detecting small gas leaks in filled aerosol containers
CN103187592A (zh) * 2011-12-29 2013-07-03 陆文周 动力锂电池自动化成、检测生产线
CN104568343A (zh) * 2014-12-31 2015-04-29 广州市型腔模具制造有限公司 一种真空压铸模具真空度检测方法
CN105327863A (zh) * 2015-11-17 2016-02-17 深圳市誉辰自动化设备有限公司 方形动力电池自动气密性氦检机
CN106885656A (zh) * 2017-03-04 2017-06-23 广州灵帕机电科技有限公司 一种动力电池盖板氦检漏系统
CN108237089A (zh) * 2017-12-27 2018-07-03 深圳市誉辰自动化设备有限公司 用于检测电池铝壳气密性的测试系统
CN108584359A (zh) * 2017-12-27 2018-09-28 深圳市誉辰自动化设备有限公司 用于检测电池注液孔密封性的测试系统
CN109269734A (zh) * 2018-07-26 2019-01-25 合肥瑞智电力电子有限公司 一种真空泄漏判断控制系统
CN214173681U (zh) * 2020-11-23 2021-09-10 湖北三江航天机电设备有限责任公司 一种气密在线检测系统
CN113884801A (zh) * 2021-09-01 2022-01-04 国网河北省电力有限公司营销服务中心 一种通信模块检测系统
CN115371901A (zh) * 2022-07-13 2022-11-22 深圳市誉辰智能装备股份有限公司 一种方壳电池双真空四腔气密性检测机控制方法

Also Published As

Publication number Publication date
CN115371901A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2024012118A1 (zh) 一种方壳电池双真空四腔气密性检测机控制方法
CN202693229U (zh) 蓄电池全自动密封检测装置
CN108692888B (zh) 一种电池注液口封口结构的密封性检测方法
WO2024007732A1 (zh) 一种方壳电池双真空四腔气密性检测法及检测机
CN109946634A (zh) 一种锂离子电池热失控环境模拟设备及方法
CN102297752A (zh) 一种电池壳体测漏设备及测漏方法
CN207045834U (zh) 真空包装机真空系统
CN105466641A (zh) 电池漏液快速检测装置及其检测方法
CN206638397U (zh) 一种电动汽车电池包气密性检测装置
CN103776601A (zh) 一种电池极柱密封性检测设备及其检测方法
CN202735023U (zh) 一种真空绝热板内部压力检测设备
CN109211562B (zh) 一种用于检测铅蓄电池安全阀老化性能的方法及装置
CN115406594A (zh) 气密性检测控制方法、控制器、检测系统以及存储介质
CN105424299A (zh) 一种密封性检测装置
CN208637504U (zh) 一种包装桶自动抽真空置换装置
CN209570309U (zh) 一种燃料电池堆自动化气密性检测设备
CN220437685U (zh) 一种电芯氦检测复检装置
CN104165739B (zh) 采用集热器流道立式自动试压机进行试压的方法
KR100537603B1 (ko) 이차전지의 리크 검사장치 및 그를 이용한 이차전지의 제조방법
KR20210150877A (ko) 각형 이차전지 케이스의 누설감지장치
CN207366180U (zh) 一种蓄电池阀门测试装置
CN216349384U (zh) 气密性检测系统
CN212252073U (zh) 一种sf6气体加注的gis抽真空设备系统
CN113670511B (zh) 一种真空校准系统及其检测方法
CN109085793A (zh) 一种氦气检漏充注回收装置的plc控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838612

Country of ref document: EP

Kind code of ref document: A1