WO2024012110A1 - 手动倾角可调支架 - Google Patents

手动倾角可调支架 Download PDF

Info

Publication number
WO2024012110A1
WO2024012110A1 PCT/CN2023/099171 CN2023099171W WO2024012110A1 WO 2024012110 A1 WO2024012110 A1 WO 2024012110A1 CN 2023099171 W CN2023099171 W CN 2023099171W WO 2024012110 A1 WO2024012110 A1 WO 2024012110A1
Authority
WO
WIPO (PCT)
Prior art keywords
rod
manual
section
telescopic
strut
Prior art date
Application number
PCT/CN2023/099171
Other languages
English (en)
French (fr)
Inventor
郭家宝
刘霄
Original Assignee
上海摩昆新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海摩昆新能源科技有限公司 filed Critical 上海摩昆新能源科技有限公司
Publication of WO2024012110A1 publication Critical patent/WO2024012110A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present disclosure relates to a manual tilt-adjustable bracket for supporting photovoltaic modules.
  • the manual tilt-adjustable bracket is equipped with a manual push rod on each column, and the tilt angle is adjusted through the manual push rod, which is also called a manual adjustable bracket. After the adjustment is completed, maintaining the posture depends on the self-locking structure of the manual push rod itself.
  • the inventor's analysis believes that with this structure, the manual push rod will continue to withstand the impact of strong winds on site during its 25-year service life. This will make the manual push rod very easy to damage, causing the bracket to be unable to adjust. In severe cases, it will also cause the bracket to collapse.
  • the purpose of this disclosure is to provide a manual tilt-adjustable bracket with more stable support.
  • the present disclosure provides a manual tilt-adjustable bracket for supporting photovoltaic modules, including a plurality of support components distributed along the east-west direction. Each support component includes a column and a beam rotatably supported by the column.
  • the manual tilt angle The adjustable stand also includes a manual push rod and an adjustable stay.
  • the manual push rod includes a telescopic base, a driving member and a telescopic rod. The telescopic rod is configured to telescope and lock relative to the telescopic base by operating the driving member.
  • the free end of the telescopic rod and the telescopic rod are The first side of the telescopic base is hinged to the upright of the first support assembly of the plurality of support assemblies, and the free end of the telescopic rod and the second side of the telescopic base are hinged to the first side.
  • the adjusting strut, the hinged end of the adjusting strut is hinged to the cross beam of the second support assembly among the plurality of support assemblies, and the adjusting end of the adjusting strut is provided with a rod along the adjusting strut.
  • the adjustment strut is connected to the upright column of the second support component through a fastener passing through a selected hole position among the plurality of holes.
  • the adjustment strut is configured It can be switched between a locked state and an active state. In the locked state, the fastener is locked in the selected hole position. In the active state, the fastener is configured to be able to move between the plurality of holes. Switch between hole positions.
  • both ends of the transmission rod are respectively connected to the corresponding driving parts of the manual push rod.
  • the two outermost support assemblies in the east-west direction are both the second support assemblies.
  • the first party is the telescopic base.
  • the adjustment strut is provided with an elongation groove extending along the length direction of the adjustment strut, and multiple different locations of the elongation groove along the length direction of the rod constitute the Multiple hole locations.
  • the fasteners include a fastening bolt and a fastening nut.
  • the fastening bolt is threadedly connected to the fastening nut after passing through the upright column and the elongated slot.
  • the fastening nut is relative to the fastening nut.
  • the fixing bolt is tightened or loosened, thereby realizing the switching between the locking state and the active state of the adjusting strut.
  • the elongated groove has a plurality of wide groove sections distributed along the length direction of the rod and respectively constituting the plurality of holes, and two adjacent wide groove sections are connected by a narrow groove section,
  • the groove width of the narrow groove section is smaller than the groove width of the wide groove section.
  • the fastening bolt passes through the upright column and penetrates into a wide groove section of the adjusting strut.
  • the fastening nut has a cylindrical section and a flange section.
  • the cylindrical section has a free end and a connecting end.
  • the flange section connects the connecting end of the cylindrical section and projects laterally relative to the cylindrical section.
  • the free end of the cylindrical section of the fastening nut penetrates into the wide groove section and is threadedly connected to the fastening bolt, and the narrow groove section blocks the cylindrical section so that the The cylindrical section is retained in the one wide groove section, and the flange section is pressed against the adjusting strut.
  • the cylindrical section of the fastening nut is separated from the one wide groove section in the groove depth direction of the elongated groove, and the narrow groove section allows the fastening bolt to be positioned at the desired position.
  • the rod passes through in the length direction and switches between two adjacent wide groove sections.
  • the cross beam is an inclined beam extending in the north-south direction
  • the inclined beam supports a purlin
  • the purlin supports a photovoltaic module.
  • the rotation axis of the inclined beam relative to the column is located above the main body of the inclined beam, and the rotation axis is located at a central position in the elongation direction of the inclined beam, whereby the manual tilt angle
  • the center of gravity of the rotating part of the adjustable bracket that rotates with the inclined beam relative to the column is consistent with the rotation axis.
  • the manual push rod and the adjustment strut have different angles relative to the upright column.
  • a manual push rod and an adjustment stay are used in combination, which combines the flexible adjustment of the manual push rod with the strong wind resistance of the adjustment stay, making the manual tilt-adjustable bracket not only strong in withstanding the impact of strong winds, but also adjustable While convenient, the support is more stable, the service life is increased, and the cost is also reduced.
  • FIG. 1 is a schematic diagram showing an exemplary manual tilt-adjustable bracket supporting a photovoltaic module.
  • Figure 2 is a perspective view of an exemplary manual tilt-adjustable bracket.
  • Figure 3 is a side view of an exemplary manual tilt-adjustable bracket as viewed from the east side.
  • Figure 4 is a schematic diagram of an exemplary manual push rod.
  • Figure 5 is a schematic diagram illustrating an exemplary adjustment strut mated with a second support assembly.
  • Figure 6 is an exploded schematic view showing an exemplary adjustment strut, fasteners, etc.
  • Figure 7 is a schematic diagram of an exemplary adjustment strut.
  • Figure 8 is a schematic diagram of an exemplary fastening nut.
  • Figure 9 is a schematic diagram of an exemplary beam.
  • a first feature described later in the specification is formed above or on a second feature, which may include an embodiment in which the first feature and the second feature are directly connected, or may include an embodiment in which the first feature and the second feature are formed. Embodiments of additional features are formed between them, so that there may not be a direct connection between the first feature and the second feature.
  • this description includes embodiments in which the first element and the second element are directly connected or combined with each other, as well as embodiments in which a first element and the second element are directly connected or combined with each other.
  • One or more other intervening elements are added to indirectly connect or combine the first element and the second element with each other.
  • the manual tilt-adjustable bracket is the most commonly used photovoltaic array bracket. This bracket is based on the changing rules of the sun's altitude angle throughout the year. It adjusts the installation tilt angle of the photovoltaic modules regularly to achieve the desired light-receiving surface of the photovoltaic modules. The amount of radiation received throughout the year is maximized, thereby increasing the annual power generation of photovoltaic modules.
  • the method of adjusting the installation inclination of photovoltaic modules at regular intervals can make the annual power generation of photovoltaic modules 5%-6% more than that of using a single fixed inclination bracket.
  • manual tilt-adjustable brackets are often provided with a manual push rod on each column, and the tilt angle is adjusted through the manual push rod. After the adjustment of the manual push rod is completed, the posture is maintained by the self-locking structure of the manual push rod itself. This structure is very light and flexible to adjust, but it is very easy to be damaged under the continuous shock and impact of strong winds. On the other hand, the cost of manual push rods is high, and using all manual push rods will also make the overall cost of the bracket high and lack of economy.
  • the present disclosure provides a manual tilt-adjustable bracket, which adopts a combination of a manual push rod and an adjustable stay, making full use of the flexible adjustment of the manual push rod and the strong wind resistance of the adjustable stay, so that it not only has a strong ability to withstand the impact of strong winds , stable support, safe and reliable, low cost and easy to adjust.
  • FIG. 1 An exemplary overall structure of the manual tilt-adjustable bracket 100 provided by the present disclosure is shown in FIG. 1 .
  • the manual tilt-adjustable bracket 100 is used to support the photovoltaic module 200 and includes a plurality of support components 10 distributed along the east-west direction.
  • Each support assembly 10 includes a column 1 and a crossbeam 2 rotatably supported by the column 1 .
  • the manual tilt-adjustable bracket 100 also includes a manual push rod 3 and an adjusting strut 4 .
  • the manual push rod 3 includes a telescopic base 31 , a driving part 32 and a telescopic rod 33 .
  • the telescopic rod 33 is configured to be telescopic and lockable relative to the telescopic base 31 by operating the driving member 32 .
  • the free end 311 of the telescopic rod 33 and the first of the telescopic bases 32 are hinged to the column 1 of the first supporting assembly 10 a of the plurality of supporting assemblies 10 .
  • the free end 311 of the telescopic rod 33 and the second side of the telescopic base 32 are hinged to the cross member 2 of the first support assembly 10a.
  • the hinge end 41 of the adjusting strut 4 is hinged to the cross beam 2 of the second support assembly 10b among the plurality of support assemblies 10 .
  • the adjustment end 42 of the adjustment stay 4 is provided with a plurality of holes A1 distributed along the length direction L4 of the adjustment stay 4 .
  • the adjusting strut 4 is connected to the upright column 1 of the second support assembly 10b through a fastener 6 passing through a selected hole position A1 among the aforementioned plurality of hole positions A1.
  • the adjusting strut 4 is configured to be switchable between a locked state and an active state.
  • the fastener 6 In the aforementioned locked state, the fastener 6 is locked at the selected hole position A1.
  • the crossbeam 2 is a long beam placed transversely with respect to the column 1.
  • the photovoltaic module 200 is usually supported above the beam 30 and rotates around the column 20 along with the beam 30 .
  • the beam 2 usually extends along the north-south direction.
  • terms such as “upper”, “lower”, “east”, “west”, “south”, “north”, etc. are used in the text.
  • the spatial relationship words used to describe the relationship between one element or feature and other elements or features shown in the drawings are referred to this horizontal placement state for convenience of description. However, the state may change. Therefore, these spatial relationship words are intended to include Orientations of elements or components in use or operation other than those depicted in the figures.
  • the cross beam 2 may be an inclined beam extending in the north-south direction. It can be understood that in a manual tilt-adjustable bracket supported by a main beam extending in the east-west direction, the cross beam 2 can also be a rotating rod connected to the main beam and laterally extended relative to the main beam.
  • the telescopic rod 33 is telescopic relative to the telescopic base 31, and the driving member 32 drives the telescopic rod 33 to telescope and lock, for example, it can be a hand push rod.
  • the driving operation of the manual push rod 3, that is, the driving member 32 is manually operated. It should be understood that manual operation here means that it can be operated by the operator's will, but does not limit the actual tool used.
  • the driving member 32 is an adjusting square shaft protruding laterally from the telescopic base 31.
  • the driving operation of the driving member 32 can be achieved by manually cranking the adjusting square shaft, or an electric tool can be used for auxiliary rotation. Further driving operation is performed to adjust the telescopic length of the telescopic rod 33 .
  • the hinged end 41 and the adjusting end 42 of the adjusting strut 4 are for the convenience of describing the two ends of the adjusting strut 4 separately, for example, the upper end and the lower end in FIG. 7 respectively.
  • the upper ends of the manual push rod 3 and the adjusting strut 4 are usually hinged to the south side of the column 2.
  • the free end 311 of the telescopic rod 33 that is, the telescopic rod 33 is exposed at one end of the telescopic base 31 .
  • the plurality of hole positions A1 distributed along the rod length direction L4 of the adjusting strut 4 does not require that the plurality of hole positions A1 must be separately arranged along the rod length direction L4.
  • the plurality of holes A1 can also be continuously distributed and communicate with each other.
  • an elongated groove 40 extending along the rod length direction L4 is formed.
  • the hole position A1 does not need to be a round hole shape.
  • the plurality of hole positions A1 can be formed by different sections of an elongated groove with a constant groove width along the rod length direction L4.
  • the fasteners 6 may be, for example, fastening screws or fastening ropes, passing through the upright column 1 and the adjusting strut 4 .
  • the fastener 6 In the fixed state, the fastener 6 is locked at the selected hole position A1, that is, the connection position between the upright column 1 and the adjustment stay 4 remains unchanged, and the connection state of the adjustment stay 4 is locked.
  • the fastener 6 In the aforementioned active state, the fastener 6 can be switched among the aforementioned plurality of hole positions A1, that is, the connection position between the upright column 1 and the adjustment strut 4 can be selected, and the connection state of the adjustment strut 4 can be changed.
  • the telescopic base 32 is hinged to the corresponding beam 2 and vice versa.
  • the aforementioned first party may be a telescopic base 32 . That is, the telescopic base 32 is hinged to the column 1 , in particular, the telescopic base 31 is hinged to the column 1 at the bottom 311 (shown in FIG. 4 ) opposite the telescopic rod 33 (especially the free end 331 ).
  • the first support component 10a that is, the column 1 and the crossbeam 2 are connected through the manual push rod 3 to form a triangular support support component 10
  • the second support component 10b is the column 1 and the crossbeam 2 are connected through the adjusting strut 4
  • the support assembly 10 forms a triangular support.
  • the above-mentioned manual tilt-adjustable bracket 100 utilizes the linear drive method of the manual push rod 3, which can realize the tilt angle adjustment of the manual tilt-adjustable bracket 100 without the need for complex driving devices.
  • the tilt-adjustable bracket 100 has better wind resistance performance.
  • the adjusting strut 4, the cross beam 2, and the column 1 can be connected in a rigid triangle, which can achieve the structural stability of the bracket under strong wind conditions, while reducing the impact of strong winds on the manual push rod, which can effectively improve the stability of the push rod. performance and service life.
  • the manual push rods 3 corresponding to two adjacent first support assemblies 10a can be connected to each other through the transmission rod 5.
  • the manual push rod 3, transmission rod 5, etc. can be called push rod devices.
  • the linear drive method of the manual push rod 3 cooperates with the transmission rod 5 to realize the synchronous movement of the manual push rod 3, and single-person inclination adjustment of the bracket can be realized without the need for a complicated driving device.
  • both ends of the transmission rod 5 can be connected to the driving parts 32 of the corresponding manual push rods 3 respectively.
  • the transmission rod 5 can be, for example, a square tube, which is placed outside the square shaft as the driving member 32.
  • the manual push rod 3 is connected through the transmission rod 5, so that synchronous adjustment can be achieved.
  • the two outermost support assemblies 10 in the east-west direction are both second support assemblies 10b.
  • a second supporting component 10b may be arranged between two adjacent first supporting components 10a. This applies when the total number of supporting assemblies 10 is an odd number and not less than five. For example, when there are five uprights, a manual push rod 3 can be installed at the second and fourth upright columns, and an adjustment stay 4 can be installed in each of the remaining columns. The rods 3 are connected by a transmission rod 5 to realize synchronous rotation adjustment. When the total number of supporting assemblies 10 is an even number and not less than four, the two supporting assemblies 10 located in the middle in the east-west direction may both be the first supporting assemblies 10a. For example, in the illustrated embodiment, the total number of support assemblies 10 is four. Manual push rods 3 are installed between the two middle columns 1 and the cross beams 2.
  • Adjustment struts 4 are installed between the middle columns 1 and the cross beams 2.
  • a transmission rod 5 is installed between the manual push rods 3 to facilitate synchronous transmission adjustment.
  • a manual push rod 3 can be installed at the middle column position, and adjustment struts 4 can be installed on the columns on both sides.
  • only the two outermost support assemblies 10 in the east-west direction may be the second support assemblies 10b. That is to say, among the plurality of support assemblies 10 , the columns 1 and beams 2 of other support assemblies 10 do not achieve triangular support by adjusting the struts 4 , for example, the first support assembly 10 a of other support assemblies 10 .
  • the adjustment strut 4 may be provided with an elongated groove 40 extending along the length direction L4 of the rod. Multiple different locations of the elongated groove 40 along the rod length direction L4 may constitute the aforementioned multiple hole locations A1.
  • the fastener 6 may include a fastening bolt 61 and a fastening nut 62 .
  • the fastening bolt 61 can pass through the upright column 1 and the elongated slot 40 and then be threadedly connected to the fastening nut 62 .
  • the fastening nut 62 can be tightened or loosened relative to the fastening bolt 61, thereby realizing the switching of the adjusting strut 4 between the aforementioned locked state and the aforementioned active state. That is, tightening the fastening nut 62 relative to the fastening bolt 61 can make the adjusting strut 4 in a locked state, and loosening the fastening nut 62 relative to the fastening bolt 61 can put the adjusting strut 4 in an active state.
  • the elongated slot 40 may have holes distributed along the rod length direction L4 and respectively forming the aforementioned plurality of holes.
  • Two adjacent wide groove sections 401 can be connected by narrow groove sections 402 .
  • the groove width of the narrow groove section 402 may be smaller than the groove width of the wide groove section 401 .
  • the fastening bolt 61 can pass through the upright column 1 and penetrate into a wide groove section 401 of the adjusting strut 4 .
  • the fastening nut 62 may have a cylindrical section 621 and a flange section 622.
  • the cylindrical section 621 has a free end 6211 and a connecting end 6212.
  • the flange section 622 may connect the connecting end 6212 of the cylindrical section 621 and protrude laterally relative to the cylindrical section 621 . That is, the flange section 34 has a larger lateral dimension than the column section 32 . In the figure, the flange section 34 is also a cylinder, and its outer diameter is larger than the outer diameter of the cylinder section 32 .
  • the free end 6211 of the cylindrical section 621 of the fastening nut 62 can penetrate into the aforementioned wide groove section 401 and be threadedly connected with the fastening bolt 61 .
  • the narrow groove section 402 can stop the cylindrical section 621 so that the cylindrical section 621 remains within the aforementioned wide groove section 401 , and the flange section 622 is pressed against the adjusting strut 4 .
  • the flange section 622 limits the movement of the fastening nut 62 in the groove depth direction of the elongated groove 40
  • the narrow groove section 402 limits the fastening nut 62 in the groove length direction of the elongated groove 40 by limiting the cylindrical section 621 Therefore, the fastening nut 62 together with the fastening bolt 61 allows the entire fastener 6 to be locked in this wide groove section 401.
  • the cylindrical section 621 of the fastening nut 62 is separated from the aforementioned wide groove section 401 in the groove depth direction of the elongated groove 40 .
  • the narrow groove section 402 allows the fastening bolt 61 to pass through in the rod length direction L4 and switch between two adjacent wide groove sections 401 .
  • the narrow groove section 402 is sized to allow the fastening bolt 61 to pass along the rod length direction L4 without allowing the cylindrical section 621 of the fastening nut 62 to pass.
  • the groove width of the narrow groove section 402 is between the cylindrical section 621 of the larger diameter fastening nut 62 and the smaller diameter fastening bolt 61 .
  • the wide groove section 401 and the narrow groove section 402 are two sections with relatively wider and narrower groove widths respectively, and the specific length of each groove section is not limited.
  • the narrow groove section 402 can be along the elongated groove 40
  • the groove length direction is also a point in the rod length direction L4.
  • the groove widths of each groove section are also not required to be the same.
  • the groove width of each wide groove segment 401 along the rod length direction L4 may vary.
  • the two groove side surfaces forming the same wide groove section 401 can respectively be arc cylindrical surfaces, and they can be extended to form the same cylindrical surface in the form of a grape hole.
  • the connecting plate has a round hole, which is connected to the supporting connecting plate hole of the cross beam 2 with a shaft or bolt.
  • the width of the elongated slot 40 can be slightly larger than the diameter of the fastening bolt 61 so that the locking bolt 61 can slide freely in the elongated slot 41.
  • continuous grape holes at regular intervals are provided in the length direction of the elongated slot 40.
  • the diameter of the grape hole can be slightly larger to the width of the elongated slot.
  • the length of the extension slot can meet the adjustment angle range of the bracket.
  • the base of the column 1 used to connect the adjusting strut 4 can be welded with an inner hexagonal plate 7 as shown in Figure 6 on the back of the connection point of the adjusting strut 4.
  • the inner hexagonal plate 7 has an inner hexagonal hole 71 for installation. Tighten the bolt 61 without adding a wrench to the head of the fastening bolt 61 when the fastening nut 62 is rotated.
  • One end of the fastening nut 62 can be a short cylindrical cylindrical section 621, the middle is a flange section 622, which is a flange type gasket, the other end can be a hexagonal nut 623, the inside can be a transparent thread 624, and the cylindrical section
  • the diameter of 621 can be slightly smaller than the diameter of the grape hole on the adjusting strut and larger than the width of the extension slot. It is used to connect the adjusting strut 4 and the column 1.
  • the nut on the fastening nut 62 can cooperate with the corresponding bolt to tighten the adjusting strut 4. Screw and press the upright column 1 firmly.
  • the cylindrical section 621 can be inserted into the grape hole in the adjusting strut 4 to limit the relative sliding of the adjusting strut 4 and fix the position of the adjusting strut 4 to achieve a firm connection. At the same time, the operation is more convenient and only It is necessary to tighten or loosen the fastening nut 62 to realize the fixing and loosening of the adjusting stay 4. Therefore, the fastener 6 can also be called a locking piece.
  • the above-mentioned adjusting struts 4, fasteners 6, etc. can be called support rod devices.
  • the above-mentioned manual tilt-adjustable bracket 100 needs to be adjusted, first loosen the fastening nuts 62 at the base of the upright columns 1 on both sides so that the adjusting strut 4 can slide up and down along the direction of the elongation slot 40, and then rotate the two middle ones.
  • a linked manual push rod 3 is adjusted to the required angle, and then the fastening nuts 62 at the base of the column 1 on both sides are tightened to re-lock the adjusting support rod 4 and the column 1 to complete the angle adjustment.
  • the above-mentioned manual tilt-adjustable bracket 100 can adjust the installation tilt angle between the surface of the photovoltaic module 200 and the horizontal plane in the range of 0°-70° according to the changing rules of the solar altitude angle. It can realize single-person operation and is convenient for continuous adjustment. Improve the overall wind resistance of the bracket.
  • the angles of the manual push rod 3 and the adjusting strut 4 relative to the column 1 can be different. This will also increase support stability.
  • the locking method of the above-mentioned adjusting strut is as follows: tighten the tightening nut so that the cylindrical section of the fastening nut is embedded in the grape hole of the adjusting strut to prevent the fastening bolt from sliding in the elongation groove of the adjusting strut, thereby locking the adjusting strut.
  • the rod is locked onto the upright.
  • the adjusting support rod can slide up and down. After adjusting the position, re-lock the fastening nut.
  • the adjustable pole locking support has strong wind resistance, but the adjustment is not as convenient as the manual push rod.
  • Combining the manual push rod with the adjusting strut is not only convenient for adjustment, but also protects the manual push rod from the impact of strong winds. It can greatly improve the stability and service life of the manual push rod, thereby improving the overall wind resistance of the bracket.
  • the inclined beam as the cross beam 2 can support the purlin 5 , and the photovoltaic module 200 is supported on the purlin 5 .
  • the rotation axis O1 of the inclined beam relative to the column 1 is located above the main body 21 of the inclined beam, and the rotation axis O1 is located at the center position in the elongation direction L2 of the inclined beam. Accordingly, the manual inclination-adjustable bracket 100 follows the tilt The center of gravity of the rotating part of the beam that rotates together with respect to the column 2 is consistent with the axis of rotation O1. It can be understood that the rotating part includes the inclined beam itself as the cross beam 2, the purlin 5, the photovoltaic module 200, various connectors, etc.
  • the center of gravity is consistent with the rotation axis O1, that is, the center of gravity is located on the rotation axis O1 of the rotating part, and a certain range of error is allowed.
  • the distance between the center of gravity and the rotation axis O1 can be less than 5 mm.
  • the two directions "perpendicular”, “consistent”, “parallel”, etc. mentioned in the article do not need to meet strict angle requirements in the mathematical sense, but allow a certain tolerance range.
  • the required angles are within 20°
  • "along" a certain direction means that the angle with that direction is within 45°, and more preferably, the angle is within 20° or even 5°.
  • the purlins 5 may include transverse purlins 51 extending in the east-west direction and longitudinal purlins 52 extending in the north-south direction. As shown in FIG. 3 , the transverse purlin 51 can be connected to the inclined beam 2 on the side, the upper part can be connected to the longitudinal purlin 52 , and the upper part of the longitudinal purlin 52 can be connected to the photovoltaic module 200 .
  • the transverse purlins 51 are, for example, C-shaped or square tubes
  • the longitudinal purlins are, for example, C-shaped or with a triangular cross-section
  • the upright columns 1 are, for example, H-shaped, C-shaped or rectangular in cross-section
  • the inclined beams are, for example, square tubes, round tubes, C-shaped steel or polygonal tubes.
  • the adjusting strut 4 is, for example, C-shaped, U-shaped or square tube cross-section. It adopts a main beam-less structure and installs photovoltaic modules through a frame-type purlin structure. The module surface is flatter and will not cause unevenness or distortion due to distortion of the main beam. After the installation is completed, it will be more beautiful and cost-effective. At the same time, there is no obstruction on the back, so it can be used for double-sided components.
  • the main body 21 of the inclined beam is also the main part of the inclined beam extending along the elongation direction L2.
  • the rotation axis O1 can be considered to be located above 90% of the inclined beam.
  • the inclined beam as the cross beam 2 can have a connecting plate at the middle position P1, and there is a bushing above the connecting plate, which can penetrate the rotating shaft and connect to the top of the column 1.
  • the two ends of the inclined beam can have C-shaped or flat-type connecting plates.
  • the connecting plates can have mounting holes for connecting to the transverse purlins.
  • connection plate at the front and lower part of the inclined beam.
  • connection plate There are installation holes in the connection plate, which can be connected to the installation holes above the manual push rod 3 or the adjustment support rod 4.
  • the position of this connection plate can be determined according to the push rod or support rod. The position and length of the rod are different.
  • the lower part of the column 1 can have a base connected to the manual push rod 3 or the adjusting stay 4 , and the side wall of the column 1 used to connect the manual push rod 3 can also be provided with a hole for passing the transmission rod 5 .
  • each row of manual tilt-adjustable brackets uses several columns arranged at intervals in the east-west direction.
  • the upper parts of the columns can be hingedly connected to the inclined beam through a single support bearing, and the two transverse purlins are fixedly installed on the inclined beam. both ends.
  • the longitudinal purlins are installed orthogonally between the two transverse purlins, and the photovoltaic modules are installed on the longitudinal purlins.
  • the manual push rod or support rod is installed between the inclined beam and the column on the south side, so that the inclined beam, the column and the manual push rod or support rod form a stable triangular support.
  • the angle between the surface of the photovoltaic module and the horizontal plane can be tracked and rotated from 0° to the south.
  • the effective range of the inclination angle is between 0° and 65°.
  • the cross-section of the rotating part of the bracket is symmetrically arranged in structure, and the center of gravity of the rotating part of the bracket is located between the photovoltaic module and the inclined beam on the center line of the cross-section.
  • the center of rotation of the supporting rotating shaft at the upper part of the column is arranged to coincide with the center of gravity of the rotating part of the bracket.
  • the center of gravity of the rotating part of the bracket and the center of the rotating shaft may not completely coincide.
  • the distance between the two should be as small as possible so that the rotating part of the bracket is in a balanced support state or a quasi-balanced support state (that is, the additional bending moment generated by the rotating part of the bracket does not affect the adjustment drive).
  • the manual push rod on the column is used to drive the rotating part of the bracket to rotate so that the angle of the photovoltaic module surface can reach the predetermined position.
  • the adjusting strut is used to increase the anti-shock ability of the bracket when it encounters gusts of wind. When the bracket reaches a predetermined angle, insert the bolt into the lower hole of the adjusting strut and the hole of the column base, and use the fastening nut to lock it to adjust the strut.
  • the surface of the photovoltaic module is set at the minimum angle or smaller than the minimum angle.
  • the surface of the photovoltaic module rotates toward the south.
  • the adjusting push rod reaches the shortest (that is, the stroke reaches the minimum)
  • the angle between the photovoltaic module surface and the horizontal plane reaches the designed limit inclination angle.
  • This limit tracking angle can Based on the layout spacing of photovoltaic arrays, local longitude and latitude and other conditions, the selection should be comprehensively considered, for example, not greater than 65°.
  • the effective stroke of the adjustment push rod such as an electric push rod
  • the adjustment push rod can be fully utilized, and it can also play a tracking and limiting role.
  • Several adjusting push rods are connected through transmission rods to achieve synchronous movement, ensuring that when the bracket is adjusted, the photovoltaic module surfaces are all on the same plane.
  • Installing adjustment struts on the columns in addition to the manual push rods can prevent the rotation of the bracket from occurring during strong winds.
  • one end of the adjusting strut is connected to the inclined beam, and the other end is connected to the base of the column.
  • a stroke margin can be left in both the up and down stroke positions of the grape holes of the adjusting struts. That is, when the surface of the photovoltaic module is exactly at the minimum angle, the fastening bolts of the adjusting struts and columns should be at a position close to the lower end of the grape holes. , the adjusting support rod moves downward as the manual push rod contracts.
  • the adjusting support rod and the column fastening bolt are positioned close to the uppermost position of the grape hole. Before adjustment, loosen the tightening nut and after adjustment, tighten the tightening nut.
  • the above-mentioned manual tilt-adjustable bracket is easy to operate, has fast adjustment speed, and has a stable bracket structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种手动倾角可调支架,用于支撑光伏组件,包括沿东西向分布的多个支承组件,每个支承组件包括立柱和横梁,手动倾角可调支架还包括手动推杆和调节撑杆。手动推杆中,伸缩杆设置成可通过操作驱动件而相对于伸缩基座伸缩且锁定,伸缩杆的自由端和伸缩基座中的第一方铰接至第一支承组件的立柱,伸缩杆的自由端和伸缩基座中的第二方铰接至第一支承组件的横梁。调节撑杆的铰接端铰接于第二支承组件的横梁,调节撑杆的调节端设置有沿着杆长方向分布的多个孔位,调节撑杆通过紧固件穿过多个孔位中的选定孔位而连接到第二支承组件的立柱,调节撑杆设置成可在锁定状态和活动状态下切换。上述手动倾角可调支架支撑更加稳定。

Description

手动倾角可调支架 技术领域
本公开涉及一种手动倾角可调支架,用于支撑光伏组件。
背景技术
通常情况下,手动倾角可调支架在每个立柱上设置一个手动推杆,通过手动推杆来调节倾角,也称手动可调支架。调节完成后保持姿态依靠手动推杆自身的自锁结构实现。
发明人分析认为,采用这种结构形式,手动推杆在二十五年使用寿命周期内将持续承受现场大风的冲击。这会使得手动推杆非常容易损坏,进而造成支架无法调节,严重时,还会导致支架倒塌。
因此,需要提供一种支撑稳定的手动倾角可调支架。
实用新型内容
本公开的目的是提供一种手动倾角可调支架,支撑更加稳定。
本公开提供一种手动倾角可调支架,用于支撑光伏组件,包括沿东西向分布的多个支承组件,每个支承组件包括立柱和由所述立柱可转动地支承的横梁,所述手动倾角可调支架还包括手动推杆和调节撑杆。所述手动推杆包括伸缩基座、驱动件和伸缩杆,所述伸缩杆设置成可通过操作所述驱动件而相对于所述伸缩基座伸缩且锁定,所述伸缩杆的自由端和所述伸缩基座中的第一方铰接至所述多个支承组件中的第一支承组件的立柱,所述伸缩杆的自由端和所述伸缩基座中的第二方铰接至所述第一支承组件的横梁。所述调节撑杆,所述调节撑杆的铰接端铰接于所述多个支承组件中的第二支承组件的横梁,所述调节撑杆的调节端设置有沿着所述调节撑杆的杆长方向分布的多个孔位,所述调节撑杆通过紧固件穿过所述多个孔位中的选定孔位而连接到所述第二支承组件的立柱,所述调节撑杆设置成可在锁定状态和活动状态下切换,在所述锁定状态,所述紧固件锁定在所述选定孔位,在所述活动状态,所述紧固件设置成可在所述多个孔位中切换。
在一个实施方式中,所述多个支承组件中,存在至少两个第一支承组件。所 述至少两个第一支承组件中,与相邻两个所述第一支承组件对应的所述手动推杆通过传动杆彼此连接。
在一个实施方式中,所述传动杆的两端分别连接至对应的所述手动推杆的驱动件。
在一个实施方式中,所述多个支承组件中,在东西向上位于最外侧的两个支承组件均为所述第二支承组件。在一个实施方式中,所述第一方为所述伸缩基座。
在一个实施方式中,所述调节撑杆设置有沿着所述调节撑杆的杆长方向延伸的伸长槽,所述伸长槽沿着所述杆长方向的多个不同部位构成所述多个孔位。所述紧固件包括紧固螺栓和紧固螺母,所述紧固螺栓穿过所述立柱和所述伸长槽后与所述紧固螺母螺纹连接,所述紧固螺母相对于所述紧固螺栓旋紧或旋松,借此,实现所述调节撑杆在所述锁定状态和所述活动状态之间的切换。
在一个实施方式中,所述伸长槽具有沿着所述杆长方向分布且分别构成所述多个孔位的多个宽槽段,相邻的两个宽槽段通过窄槽段连接,所述窄槽段的槽宽比所述宽槽段的槽宽小。所述紧固螺栓穿过所述立柱而穿入所述调节撑杆的一个宽槽段,所述紧固螺母具有圆柱段和凸缘段,所述圆柱段具有自由端和连接端,所述凸缘段连接所述圆柱段的连接端并且相对于所述圆柱段侧向凸出。在所述锁定状态,所述紧固螺母的所述圆柱段的自由端穿入所述一个宽槽段与所述紧固螺栓螺纹连接,所述窄槽段止挡所述圆柱段使得所述圆柱段保持在所述一个宽槽段内,并且,所述凸缘段抵紧所述调节撑杆。并且,在所述活动状态,所述紧固螺母的所述圆柱段在所述伸长槽的槽深方向上脱离所述一个宽槽段,所述窄槽段允许所述紧固螺栓在所述杆长方向上穿过而在相邻的两个宽槽段之间切换。
在一个实施方式中,所述横梁为沿南北向延伸的斜梁,所述斜梁支承有檩条件,所述檩条件上支承有光伏组件。所述斜梁相对于所述立柱转动的转动轴线位于所述斜梁的主体的上方,并且,所述转动轴线在所述斜梁的伸长方向上位于中心位置,借此,所述手动倾角可调支架中随所述斜梁一起相对于所述立柱转动的转动部分的重心与所述转动轴线一致。
在一个实施方式中,所述手动推杆和所述调节撑杆相对于所述立柱的角度不同。
上述手动倾角可调支架中,结合使用了手动推杆和调节撑杆,将手动推杆调节灵活和调节撑杆抗风能力强结合起来,使得手动倾角可调支架不仅承受大风冲击能力强,调节方便的同时,支撑更加稳定,而且使用寿命还增加,成本也得以降低。
附图说明
本公开的上述的以及其他的特征、性质和优势将通过下面结合附图和实施例的描述而变得更加明显,其中:
图1是示出示例性手动倾角可调支架支撑光伏组件的示意图。
图2是示例性手动倾角可调支架的立体图。
图3是从东侧看时示例性手动倾角可调支架的侧视图。
图4是示例性手动推杆的示意图。
图5是示出示例性调节撑杆与第二支承组件配合的示意图。
图6是示出示例性调节撑杆与紧固件等的分解示意图。
图7是示例性调节撑杆的示意图。
图8是示例性紧固螺母的示意图。
图9是示例性横梁的示意图。
具体实施方式
下面结合具体实施方式和附图对本公开作进一步说明,在以下的描述中阐述了更多的细节以便于充分理解本公开,但是本公开显然能够以多种不同于此描述的其它方式来实施,本领域技术人员可以在不违背本公开内涵的情况下根据实际应用情况作类似推广、演绎,因此不应以此具体实施方式的内容限制本公开的保护范围。
例如,在说明书中随后记载的第一特征在第二特征上方或者上面形成,可以包括第一特征和第二特征通过直接联系的方式形成的实施方式,也可包括在第一特征和第二特征之间形成附加特征的实施方式,从而第一特征和第二特征之间可以不直接联系。进一步地,当第一元件是用与第二元件相连或结合的方式描述的,该说明包括第一元件和第二元件直接相连或彼此结合的实施方式,也包括采用一 个或多个其他介入元件加入使第一元件和第二元件间接地相连或彼此结合。
在光伏发电应用中,手动倾角可调支架是一种最常用的光伏阵列支架,该支架是基于一年四季太阳高度角的变化规律,通过定期人工调节光伏组件的安装倾角来实现光伏组件受光面全年接受到的辐射量最大化,进而提高光伏组件全年的发电量。通常采用每隔一段时间调节一次光伏组件安装倾角的方法可以使光伏组件的全年发电量比采用单一固定倾角支架的全年发电量多5%-6%。
如背景技术中描述的,手动倾角可调支架常常在每个立柱上设置一个手动推杆,通过手动推杆来调节倾角。而手动推杆在完成调节后,保持姿态依靠手动推杆自身的自锁结构实现,这种结构调节非常轻便灵活,但在大风持续的震荡冲击下非常容易损坏。另一方面,手动推杆成本较高,全部采用手动推杆也会使支架总体成本偏高,缺乏经济性。
因此,本公开提供一种手动倾角可调支架,采用手动推杆和调节撑杆结合的方式,充分利用手动推杆调节灵活和调节撑杆抗风能力强的特点,使得不仅承受大风冲击能力强,支撑稳定,安全可靠,而且,成本低,调节方便。
本公开提供的手动倾角可调支架100的示例性整体构造如图1所示。手动倾角可调支架100用于支撑光伏组件200,包括沿东西向分布的多个支承组件10。每个支承组件10包括立柱1和由立柱1可转动地支承的横梁2。
手动倾角可调支架100还包括手动推杆3和调节撑杆4。
手动推杆3包括伸缩基座31、驱动件32和伸缩杆33。伸缩杆33设置成可通过操作驱动件32而相对于伸缩基座31伸缩且锁定。伸缩杆33的自由端311和伸缩基座32中的第一方铰接至多个支承组件10中的第一支承组件10a的立柱1。伸缩杆33的自由端311和伸缩基座32中的第二方铰接至第一支承组件10a的横梁2。
调节撑杆4的铰接端41铰接于多个支承组件10中的第二支承组件10b的横梁2。调节撑杆4的调节端42设置有沿着调节撑杆4的杆长方向L4分布的多个孔位A1。调节撑杆4通过紧固件6穿过前述多个孔位A1中的选定孔位A1而连接到第二支承组件10b的立柱1。
调节撑杆4设置成可在锁定状态和活动状态下切换。在前述锁定状态,紧固件6锁定在选定孔位A1。在前述活动状态,紧固件6设置成可在前述多个孔位A1中切 换。
横梁2是相对于立柱1横置的长梁。光伏组件200通常支承在横梁30上方,随横梁30一起绕着立柱20转动。在光伏组件200处于水平放置状态时,横梁2通常沿南北向伸长,可以理解,文中使用诸如“上”、“下”、“东”、“西”、“南”、“北”等等的空间关系词语来描述附图中示出的一个元件或特征与其他元件或特征的关系,是参考这种水平放置状态以方便描述的,然而状态可能发生变化,因此,这些空间关系词语意图包含使用中或操作中的元件或组件的、除了附图中描绘的方向之外的其他方向。
可以理解,文中的“多个”意指两个以上,包括两个、三个、四个、五个等。
在图示实施方式中,横梁2可以为沿南北向延伸的斜梁。可以理解,在通过一根沿东西向延伸的主梁来支撑的手动倾角可调支架中,横梁2也可以是与主梁连接且相对于主梁侧向伸长的转动杆。
如前所述,手动推杆3中,伸缩杆33相对于伸缩基座31可伸缩,驱动件32驱动伸缩杆33伸缩且锁定,例如,可以为一手摇推杆。手动推杆3也即驱动件32的驱动操作是手动操作的。需要理解,此处的手动操作意指可以依靠操作者的意志来操作,而非限定实际使用的工具。例如,图4中,驱动件32为一从伸缩基座31侧向凸伸的调节方轴,可以通过手摇该调节方轴来实现驱动件32的驱动操作,也可以利用电动工具进行辅助转动进而驱动操作,从而调节伸缩杆33的伸缩长度。
调节撑杆4的铰接端41和调节端42是为了方便将调节撑杆4的两端区分描述,例如分别是图7中的上端和下端。手动推杆3和调节撑杆4通常上端铰接于立柱2的南侧。
伸缩杆33的自由端311也即伸缩杆33露出于伸缩基座31的一端。
沿着调节撑杆4的杆长方向L4分布的多个孔位A1,并不要求这多个孔位A1必须是沿着杆长方向L4分离设置的。例如,这多个孔位A1也可以是连续分布的,彼此之间相通,此时,构成一沿着杆长方向L4延伸的伸长槽40。另外,孔位A1也不要求必须为圆孔形状,例如,可以是一槽宽不变的伸长槽沿着杆长方向L4的不同部段即可构成前述多个孔位A1。
紧固件6例如可以是紧固螺钉或者紧固绳,穿连立柱1和调节撑杆4。在前述锁 定状态,紧固件6锁定在选定孔位A1,也即,立柱1和调节撑杆4之间的连接位不变,调节撑杆4的连接状态锁定。而在前述活动状态,紧固件6可在前述多个孔位A1中切换,也即,立柱1和调节撑杆4之间的连接位可以选择,调节撑杆4的连接状态可以变化。
前述关于伸缩杆33的自由端311和伸缩基座32中的第一方和第二方的描述,也即,伸缩杆33的自由端311铰接于第一支承组件10a的立柱1时,则伸缩基座32铰接于对应的横梁2,反之亦然。参见图3,前述第一方可以是伸缩基座32。也即伸缩基座32铰接至立柱1,特别地,伸缩基座31在与伸缩杆33(特别是自由端331)相反的底部311(图4中示出)与立柱1铰接。
如前所述,第一支承组件10a也即立柱1和横梁2通过手动推杆3连接形成三角支撑的支承组件10,而第二支承组件10b则是立柱1和横梁2通过调节撑杆4连接形成三角支撑的支承组件10。
上述手动倾角可调支架100利用手动推杆3这种直线驱动方式,无需复杂的驱动装置,即可实现手动倾角可调支架100的倾角调节,而同时与调节撑杆4结合使用,使得整个手动倾角可调支架100具有更好的抗风性能。在非调节时间,调节撑杆4与横梁2、立柱1可以为刚性三角连接,可以实现支架在大风工况下的结构稳定,同时减轻大风对手动推杆的冲击,可以有效提高推杆的稳定性和使用寿命。
图示实施方式中,多个支承组件10中,存在至少两个第一支承组件10a。这至少两个第一支承组件10a中,与相邻两个第一支承组件10a对应的手动推杆3可以通过传动杆5彼此连接。用传动杆5将各个手动推杆3连接起来,可以实现同步调节。手动推杆3、传动杆5等可以称之为推杆装置。手动推杆3这种直线驱动方式配合传动杆5实现手动推杆3的同步运动,无需复杂的驱动装置,即可实现支架的单人倾角调节。
在一个实施方式中,传动杆5的两端可以分别连接至对应的手动推杆3的驱动件32。传动杆5例如可以为方管,套在作为驱动件32的方轴外,同一组支架中,手动推杆3通过传动杆5进行连接,可以实现同步调节。
可以理解,文中使用特定词语来描述本公开的实施方式,如“一个实施方式”、“另一实施方式”和/或“一些实施方式”意指与本公开至少一个实施方式 相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一个实施方式”或“另一实施方式”并不一定是指同一实施方式。此外,本公开的一个或多个实施方式中的某些特征、结构或特点可以进行适当的组合。
图示实施方式中,多个支承组件10中,在东西向上位于最外侧的两个支承组件10均为第二支承组件10b。
相邻两个第一支承组件10a之间可以布置有第二支承组件10b。这适用于支承组件10的总数为奇数且不小于五个时。例如,当有五根立柱时,可以在第二和第四根立柱位置装设一个手动推杆3,在其余立柱中各装设一个调节撑杆4,第二和第四根立柱的手动推杆3之间用传动杆5连接,实现同步转动调节。支承组件10的总数为偶数且不小于四时,在东西向上位于最中间的两个支承组件10可以均为第一支承组件10a。例如,图示实施方式中,支承组件10的总数为四个,中间两根立柱1与横梁2之间安装手动推杆3,两端的立柱1和横梁2之间安装调节撑杆4,中间两根手动推杆3之间安装传动杆5,便于同步传动调节。又例如,当每排采用三根立柱时,可以在中部立柱位置装设一个手动推杆3,两侧立柱安装调节撑杆4。
进一步,多个支承组件10中,可以仅在东西向上位于最外侧的两个支承组件10为第二支承组件10b。也即,多个支承组件10中,其他支承组件10的立柱1和横梁2都不是通过调节撑杆4来实现三角支撑,例如,其他支承组件10的第一支承组件10a。
参见图7,调节撑杆4可以设置有沿着杆长方向L4延伸的伸长槽40。伸长槽40沿着杆长方向L4的多个不同部位可以构成前述多个孔位A1。
参见图6,紧固件6可以包括紧固螺栓61和紧固螺母62。紧固螺栓61可以穿过立柱1和伸长槽40后与紧固螺母62螺纹连接。
紧固螺母62可以相对于紧固螺栓61旋紧或旋松,借此,实现调节撑杆4在前述锁定状态和前述活动状态之间的切换。也即,紧固螺母62相对于紧固螺栓61旋紧,可以使得调节撑杆4处于锁定状态,而紧固螺母62相对于紧固螺栓61旋松,可以使得调节撑杆4处于活动状态。
参见图7,伸长槽40可以具有沿着杆长方向L4分布且分别构成前述多个孔位 A1的多个宽槽段401。相邻的两个宽槽段401可以通过窄槽段402连接。窄槽段402的槽宽可以比宽槽段401的槽宽小。
紧固螺栓61可以穿过立柱1而穿入调节撑杆4的一个宽槽段401。紧固螺母62可以具有圆柱段621和凸缘段622。圆柱段621具有自由端6211和连接端6212。
凸缘段622可以连接圆柱段621的连接端6212并且相对于圆柱段621侧向凸出。也即,凸缘段34的侧向尺寸大于柱体段32。图中,凸缘段34也为一圆柱体,其外径大于柱体段32的外径。
在前述锁定状态,紧固螺母62的圆柱段621的自由端6211可以穿入前述一个宽槽段401与紧固螺栓61螺纹连接。窄槽段402可以止挡圆柱段621使得圆柱段621保持在前述一个宽槽段401内,并且,凸缘段622抵紧调节撑杆4。也即,凸缘段622限制紧固螺母62在伸长槽40的槽深方向上的活动,而窄槽段402通过限制圆柱段621而限制紧固螺母62在伸长槽40的槽长方向上的活动,因此,紧固螺母62连带紧固螺栓61一起使得整个紧固件6可以锁定在这个宽槽段401内。
在前述活动状态,紧固螺母62的圆柱段621在伸长槽40的槽深方向上脱离前述一个宽槽段401。窄槽段402允许紧固螺栓61在杆长方向L4上穿过而在相邻的两个宽槽段401之间切换。
也即,窄槽段402的尺寸设置成允许紧固螺栓61沿杆长方向L4穿过而不允许紧固螺母62的圆柱段621穿过。换言之,窄槽段402的槽宽介于直径较大的紧固螺母62的圆柱段621和直径较小的紧固螺栓61之间。
宽槽段401和窄槽段402分别是相对而言槽宽较宽和较窄的两段,并不限制每个槽段的具体长度,例如,窄槽段402可以是沿着伸长槽40的槽长方向也即杆长方向L4的一个点位。每个槽段的各处槽宽也不要求相同。例如,每个宽槽段401沿着杆长方向L4的槽宽可以变化。如图6所示,构成同一宽槽段401的两个槽侧面可以分别为圆弧柱面,且二者可以延伸形成同一圆柱面,为葡萄孔形式。
结合图4至图7,调节撑杆4上部可以有连接板,连接板有一个圆孔,与横梁2的支撑连接板孔用轴或螺栓连接,下部中间为一定长度的伸长槽40,伸长槽40的宽度可以略大紧固螺栓61的直径,使锁紧螺栓61能够在伸长槽内41自由滑动,同时,在伸长槽40的长度方向设有定间距的连续葡萄孔,该葡萄孔的直径可以略大 于伸长槽的宽度。伸长槽的长度可以满足支架调节角度范围。用于连接调节撑杆4的立柱1的基座可以与调节撑杆4连接处的背面焊有一块如图6中示出的内六角板7,内六角板7具有内六角孔71,以安装紧固螺栓61,使紧固螺母62旋转时无需在紧固螺栓61头部加扳手。
紧固螺母62的一个端头可以为短圆柱形式的圆柱段621,中间为凸缘段622也即法兰型垫片,另一端头为六角螺母623,内部可以为通透螺纹624,圆柱段621的直径可以略小于调节撑杆上的葡萄孔直径且大于伸长槽的宽度,用来连接调节撑杆4和立柱1,紧固螺母62上的螺母配合对应的螺栓可以将调节撑杆4和立柱1旋紧压牢,圆柱段621可以嵌调节撑杆4中的葡萄孔,限制调节撑杆4相对滑动,并将调节撑杆4的位置固定,实现牢固连接,同时操作比较方便,只需旋紧或旋松紧固螺母62即可实现调节撑杆4的固定和放松。因此,紧固件6也可以称之为锁定件。
上述调节撑杆4、紧固件6等可以称之为支撑杆装置。当上述手动倾角可调支架100需要调节时,先旋松两侧立柱1基座处的紧固螺母62,使调节撑杆4能沿着伸长槽40的方向做上下滑动,然后旋转中间两个联动的手动推杆3,调整至需要角度,然后再旋紧两侧立柱1基座处的紧固螺母62使调节撑杆4与立柱1重新锁紧即完成角度调节。上述手动倾角可调支架100可以按照太阳高度角变化规律,使光伏组件200的表面与水平面的安装倾角在0°-70°范围内进行调节,可以实现单人操作,方便连续可调,同时大大提高支架整体的抗风性能。
参见图3,手动推杆3和调节撑杆4相对于立柱1的角度可以不同。这样也会增加支承稳定性。
上述调节撑杆的锁定方式如下,旋紧紧固螺母,使紧固螺母的圆柱段同时嵌入调节撑杆的葡萄孔,阻止紧固螺栓在调节撑杆的伸长槽内滑动,从而将调节撑杆锁紧在立柱上。当需要切换时,将紧固螺母旋松的同时圆柱段从在葡萄孔拔出,调节撑杆可以上下滑动,调整位置后重新将紧固螺母锁紧。紧固螺母上圆柱段的嵌入或拔出和紧固螺母本身锁紧或旋松一次完成,大大提高切换效率。调节撑杆锁定支撑,抗风能力极强,但调节没有手动推杆方便。而将手动推杆与调节撑杆结合使用,既方便调节,又能使手动推杆免受大风冲击,可大大提高手动推杆的稳定性和使用寿命,进而提高支架整体抗风能力。
作为横梁2的斜梁可以支承有檩条件5,檩条件5上支承有光伏组件200。斜梁相对于立柱1转动的转动轴线O1位于斜梁的主体21的上方,并且,转动轴线O1在斜梁的伸长方向L2上位于中心位置,借此,手动倾角可调支架100中随斜梁一起相对于立柱2转动的转动部分的重心与转动轴线O1一致。可以理解,转动部分包括作为横梁2的斜梁本身、檩条件5、光伏组件200以及各种连接件等。还可以理解,重心与转动轴线O1一致也即重心位于转动部分的转动轴线O1上,还允许一定范围的误差,例如,重心与转动轴线O1之间的距离可以小于5mm。除非特别声明,否则文中提及的两个方向“垂直”、“一致”、“平行”等也并不需要满足数学意义上严格的角度要求,而是容许一定的容差范围,例如,相比于数学意义上要求的角度相差20°以内,而“沿”某一方向意指与该方向的夹角在45°以内,更优选地,夹角在20°甚至5°以内。
这可以采用平衡支撑方式,从根本上消除支架转动部分附加弯矩带来的负面影响,使调节过程跟踪更加轻便灵活。
图1中,檩条件5可以包括沿东西向延伸的横向檩条51和沿南北向延伸的纵向檩条52。如图3所示,横向檩条51可以侧面与斜梁2连接,上部可以与纵向檩条52连接,而纵向檩条52上部可以与光伏组件200连接。横向檩条51例如为C型或方管,纵向檩条例如为C形或几字形断面,立柱1例如为H型、C型或矩形断面,斜梁例如为方管、圆管、C型钢或多边形管,调节撑杆4例如为C型,U型或方管截面。采用无主梁结构,通过框架型的檩条结构安装光伏组件,组件面更加平直,不会因主梁有扭曲而造成组件面不平或扭曲,安装完成后更加美观,成本更低。同时背面无遮挡,可以适用于双面组件。
如图9所示,斜梁的主体21也即斜梁沿着伸长方向L2延伸的主要部分,例如,可以认为转动轴线O1位于斜梁的90%的部分的上方。例如,图9中,作为横梁2的斜梁在中部位置P1处可以有连接板,连接板上方有轴套,可以穿入转轴与立柱1上方相连,例如,立柱1上方也有轴套,从而使斜梁及其上部搭载的部件可以绕转轴旋转,斜梁两个端部可以有C型或平板型连接板,连接板上可以有安装孔,用来与横向檩条连接。斜梁前方下部可以有支撑连接板,连接板中有安装孔,可以与手动推杆3或调节撑杆4上方的安装孔连接,此连接板的位置可以根据推杆或撑 杆的位置及长度不同进行确定。
立柱1下部可以有与手动推杆3或调节撑杆4连接的基座,用于连接手动推杆3的立柱1的侧壁还可以设置有孔,用于穿过传动杆5。
图示实施方式中,每排手动倾角可调支架采用若干根立柱呈东西向间隔布置,立柱上部可以通过单支撑轴承与斜梁铰接连接,两根横向檩条以固接方式分别安装在斜梁的两端。纵向檩条则正交安装在两根横向檩条之间,光伏组件安装在纵向檩条上面。手动推杆或支撑杆安装在南侧的斜梁和立柱之间,使斜梁、立柱和手动推杆或支撑杆形成稳定的三角支撑。
光伏组件表面与水平面夹角可以由0°起向南跟踪旋转,例如,倾角有效范围在0°-65°之间。支架转动部分的横断面在结构上为对称布置,支架转动部分的重心位于在横断面中心线上的光伏组件和斜梁之间。立柱上部支撑转轴的旋转中心布置成与支架转动部分重心重合,但是,在推杆驱动力足够大,且支架结构整体性较强时,支架转动部分的重心与转轴中心也可以不完全重合,但这两者的间距应尽可能小,以使支架转动部分呈平衡支撑状态或准平衡支撑状态(即支架转动部分产生的附加弯矩不影响调节驱动)。立柱上的手动推杆用于驱动支架转动部分转动,使光伏组件面的角度可以到达预定位置。而调节撑杆用于增加支架遇到阵风时抗震荡能力,当支架到达预定角度时,调节撑杆的下部孔与立柱基座的孔穿入螺栓,并利用紧固螺母锁紧,调节撑杆与立柱及斜梁形成一个三角型整体,支架位置锁死。当大风来临时,支架变为固定支架,通过调节撑杆的刚性支撑及推杆的锁止力共同作用,确保支撑上部结构不被大风破坏。
实际,通过调节推杆连接斜梁和立柱时,在设计时,在调节推杆达到最长(即行程达到最大)时,使光伏组件表面设置在最小角度或比最小角度更小的状态,当调节推杆收缩时,光伏组件表面朝南旋转,并在调节推杆达到最短(即行程达到最小)时,使光伏组件表面与水平面的夹角达到设计设定的极限倾角,该极限跟踪角度可根据光伏阵列的布置间距、当地的经纬度等条件,综合考虑选定,例如,不大于65°。这样既能使调节推杆例如电动推杆的有效行程得到充分利用,又能起到跟踪限位作用。若干个调节推杆通过传动杆相连,实现同步运动,保证支架在调节时,光伏组件面均处于同一平面。
在除安装手动推杆的立柱上装设调节撑杆可以阻止大风时支架转动部分产生 震荡,调节撑杆一段连接在斜梁上,另一端连接在立柱的基座上。在设计时,可以在调节撑杆葡萄孔的上下行程位置均留有行程裕量,即当光伏组件表面正好处在最小角度状态,调节撑杆与立柱紧固螺栓在葡萄孔接近最下端的位置,调节撑杆随手动推杆收缩而向下移动,在光伏组件表面与水平面的夹角达到设计设定的极限跟踪角度时,调节撑杆与立柱紧固螺栓在葡萄孔接近最上端的位置。调节之前,将紧固螺母旋松,调节后,将紧固螺母旋紧。总体上,上述手动倾角可调支架操作便利,调节速度快,支架结构稳定。
本公开虽然以较佳实施例公开如上,但其并不是用来限定本公开,任何本领域技术人员在不脱离本公开的精神和范围内,都可以做出可能的变动和修改。因此,凡是未脱离本公开技术方案的内容,依据本公开的技术实质对以上实施例所作的任何修改、等同变化及修饰,均落入本公开权利要求所界定的保护范围之内。

Claims (9)

  1. 一种手动倾角可调支架,用于支撑光伏组件,包括沿东西向分布的多个支承组件,每个支承组件包括立柱和由所述立柱可转动地支承的横梁,其特征在于,
    所述手动倾角可调支架还包括:
    手动推杆,包括伸缩基座、驱动件和伸缩杆,所述伸缩杆设置成可通过操作所述驱动件而相对于所述伸缩基座伸缩且锁定,所述伸缩杆的自由端和所述伸缩基座中的第一方铰接至所述多个支承组件中的第一支承组件的立柱,所述伸缩杆的自由端和所述伸缩基座中的第二方铰接至所述第一支承组件的横梁;和
    调节撑杆,所述调节撑杆的铰接端铰接于所述多个支承组件中的第二支承组件的横梁,所述调节撑杆的调节端设置有沿着所述调节撑杆的杆长方向分布的多个孔位,所述调节撑杆通过紧固件穿过所述多个孔位中的选定孔位而连接到所述第二支承组件的立柱,所述调节撑杆设置成可在锁定状态和活动状态下切换,在所述锁定状态,所述紧固件锁定在所述选定孔位,在所述活动状态,所述紧固件设置成可在所述多个孔位中切换。
  2. 如权利要求1所述的手动倾角可调支架,其特征在于,所述多个支承组件中,存在至少两个第一支承组件;
    所述至少两个第一支承组件中,与相邻两个所述第一支承组件对应的所述手动推杆通过传动杆彼此连接。
  3. 如权利要求2所述的手动倾角可调支架,其特征在于,
    所述传动杆的两端分别连接至对应的所述手动推杆的驱动件。
  4. 如权利要求1所述的手动倾角可调支架,其特征在于,
    所述多个支承组件中,在东西向上位于最外侧的两个支承组件均为所述第二支承组件。
  5. 如权利要求1所述的手动倾角可调支架,其特征在于,
    所述第一方为所述伸缩基座。
  6. 如权利要求1所述的手动倾角可调支架,其特征在于,
    所述调节撑杆设置有沿着所述调节撑杆的杆长方向延伸的伸长槽,所述伸长槽沿着所述杆长方向的多个不同部位构成所述多个孔位;
    所述紧固件包括紧固螺栓和紧固螺母,所述紧固螺栓穿过所述立柱和所述伸长槽后与所述紧固螺母螺纹连接,所述紧固螺母相对于所述紧固螺栓旋紧或旋松,借此,实现所述调节撑杆在所述锁定状态和所述活动状态之间的切换。
  7. 如权利要求6所述的手动倾角可调支架,其特征在于,所述伸长槽具有沿着所述杆长方向分布且分别构成所述多个孔位的多个宽槽段,相邻的两个宽槽段通过窄槽段连接,所述窄槽段的槽宽比所述宽槽段的槽宽小;
    所述紧固螺栓穿过所述立柱而穿入所述调节撑杆的一个宽槽段,所述紧固螺母具有圆柱段和凸缘段,所述圆柱段具有自由端和连接端,所述凸缘段连接所述圆柱段的连接端并且相对于所述圆柱段侧向凸出;
    在所述锁定状态,所述紧固螺母的所述圆柱段的自由端穿入所述一个宽槽段与所述紧固螺栓螺纹连接,所述窄槽段止挡所述圆柱段使得所述圆柱段保持在所述一个宽槽段内,并且,所述凸缘段抵紧所述调节撑杆;并且
    在所述活动状态,所述紧固螺母的所述圆柱段在所述伸长槽的槽深方向上脱离所述一个宽槽段,所述窄槽段允许所述紧固螺栓在所述杆长方向上穿过而在相邻的两个宽槽段之间切换。
  8. 如权利要求1所述的手动倾角可调支架,其特征在于,所述横梁为沿南北向延伸的斜梁,所述斜梁支承有檩条件,所述檩条件上支承有光伏组件;
    所述斜梁相对于所述立柱转动的转动轴线位于所述斜梁的主体的上方,并且,所述转动轴线在所述斜梁的伸长方向上位于中心位置,借此,所述手动倾角可调支架中随所述斜梁一起相对于所述立柱转动的转动部分的重心与所述转动轴线一致。
  9. 如权利要求1所述的手动倾角可调支架,其特征在于,所述手动推杆和所述调节撑杆相对于所述立柱的角度不同。
PCT/CN2023/099171 2022-07-14 2023-06-08 手动倾角可调支架 WO2024012110A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221875220.5U CN217693202U (zh) 2022-07-14 2022-07-14 手动倾角可调支架
CN202221875220.5 2022-07-14

Publications (1)

Publication Number Publication Date
WO2024012110A1 true WO2024012110A1 (zh) 2024-01-18

Family

ID=83717690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099171 WO2024012110A1 (zh) 2022-07-14 2023-06-08 手动倾角可调支架

Country Status (2)

Country Link
CN (1) CN217693202U (zh)
WO (1) WO2024012110A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114871206A (zh) * 2022-06-15 2022-08-09 中国华能集团清洁能源技术研究院有限公司 一种光伏组件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217693202U (zh) * 2022-07-14 2022-10-28 上海摩昆新能源科技有限公司 手动倾角可调支架

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206041910U (zh) * 2016-09-05 2017-03-22 特变电工新疆新能源股份有限公司 一种推杆式倾角可调光伏支撑系统
CN206259888U (zh) * 2016-12-09 2017-06-16 陕西理工大学 光伏支架和光伏支架组
CN213717895U (zh) * 2020-10-27 2021-07-16 金海新源电气江苏有限公司 一种手动可调支架
CN214480410U (zh) * 2021-04-27 2021-10-22 江苏中信博新能源科技股份有限公司 一种同步可调式光伏支架
CN217693202U (zh) * 2022-07-14 2022-10-28 上海摩昆新能源科技有限公司 手动倾角可调支架

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206041910U (zh) * 2016-09-05 2017-03-22 特变电工新疆新能源股份有限公司 一种推杆式倾角可调光伏支撑系统
CN206259888U (zh) * 2016-12-09 2017-06-16 陕西理工大学 光伏支架和光伏支架组
CN213717895U (zh) * 2020-10-27 2021-07-16 金海新源电气江苏有限公司 一种手动可调支架
CN214480410U (zh) * 2021-04-27 2021-10-22 江苏中信博新能源科技股份有限公司 一种同步可调式光伏支架
CN217693202U (zh) * 2022-07-14 2022-10-28 上海摩昆新能源科技有限公司 手动倾角可调支架

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114871206A (zh) * 2022-06-15 2022-08-09 中国华能集团清洁能源技术研究院有限公司 一种光伏组件

Also Published As

Publication number Publication date
CN217693202U (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
WO2024012110A1 (zh) 手动倾角可调支架
US7884279B2 (en) Solar tracker
KR101700678B1 (ko) 태양광 어레이의 경사각 및 설치폭 조절형 지지장치
KR20100008105U (ko) 태양 전지판의 경사조절장치
JP6535728B2 (ja) 接合構造
KR101176719B1 (ko) 각도 조절형 태양광 발전장치
JP3234915U (ja) 固定及び調整可能な太陽光発電ブラケット
CN101939904A (zh) 通过缆索及压缩元件加以稳定的太阳能收集器
KR102325368B1 (ko) 기울기 가변형 태양광 발전장치
US20120222727A1 (en) Module Arrangement Consisting of Solar Modules
KR102112502B1 (ko) 체결볼트로 결합되는 조립형 태양광 구조물
JP3153925U (ja) 太陽電池パネルの架台構造
KR102279828B1 (ko) 태양전지모듈 틸팅각 조절장치
JP2015208175A (ja) 太陽光発電パネル架台
CN109617511A (zh) 一种便于安装维护的光伏发电支架及其安装施工方法
CN209748466U (zh) 一种固定六方管可调节光伏支架
DE4020032C2 (de) Vorrichtung zur Umwandlung von Sonnenenergie in Strom, insbesondere zum Nachladen der Batterien elektrisch angetriebener Fahrzeuge
CN203896259U (zh) 单立柱光伏支架
CN207835397U (zh) 一种可调角度的光伏支架
CN217984943U (zh) 一种光伏板支架
JP2016127716A (ja) ソーラーパネルのフレームの支持架台及び太陽光発電システム
KR102279827B1 (ko) 태양광모듈 경사변환수단
KR102461177B1 (ko) 태양광 패널 거치대
CN217037105U (zh) 一种带反光板的曳引式可调光伏支架
CN215378822U (zh) 角度可调式光伏支架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838604

Country of ref document: EP

Kind code of ref document: A1