WO2024012022A1 - 无线充电整流电路、无线充电装置和心室辅助装置 - Google Patents

无线充电整流电路、无线充电装置和心室辅助装置 Download PDF

Info

Publication number
WO2024012022A1
WO2024012022A1 PCT/CN2023/092399 CN2023092399W WO2024012022A1 WO 2024012022 A1 WO2024012022 A1 WO 2024012022A1 CN 2023092399 W CN2023092399 W CN 2023092399W WO 2024012022 A1 WO2024012022 A1 WO 2024012022A1
Authority
WO
WIPO (PCT)
Prior art keywords
diode
wireless charging
rectifier circuit
capacitor
capacitors
Prior art date
Application number
PCT/CN2023/092399
Other languages
English (en)
French (fr)
Inventor
容争来
余顺周
Original Assignee
深圳核心医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳核心医疗科技股份有限公司 filed Critical 深圳核心医疗科技股份有限公司
Publication of WO2024012022A1 publication Critical patent/WO2024012022A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/143Arrangements for reducing ripples from dc input or output using compensating arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application belongs to the field of wireless charging technology, and in particular relates to a wireless charging rectifier circuit, a wireless charging device and a ventricular assist device.
  • a ventricular assist device is an artificial mechanical device that pumps blood from the venous system or the heart directly into the arterial system to partially or completely replace the work of the ventricle, providing sufficient blood supply power for patients with serious heart problems.
  • existing ventricular assist devices use wireless charging devices to power the blood pumps in the body and/or the driving circuits that drive the blood pumps.
  • the wireless charging devices include a transmitting unit and a receiving unit.
  • the receiving unit The transmitter unit is placed inside the human body, and the transmitting unit is placed outside the human body.
  • the transmitting unit charges the receiving unit through magnetic coupling resonance between the transmitting coil and the receiving coil.
  • the purpose of this application is to provide a wireless charging rectifier circuit, a wireless charging device and a ventricular assist device.
  • the first aspect of the embodiment of the present application proposes a wireless charging rectifier circuit, which is used to rectify and filter the AC signal of the ventricular assist device; wherein, the wireless charging rectifier circuit includes sequentially connected A first filter circuit, a bridge rectifier circuit and a second filter circuit; each of the four bridge arms of the bridge rectifier circuit is respectively connected with a first diode and at least one second diode connected in parallel. The at least one second diode is used for rectification when the parallel-connected first diode fails.
  • a second aspect of the embodiment of the present application provides a wireless charging device, including the wireless charging rectifier circuit described in the first aspect.
  • a third aspect of the embodiments of the present application provides a ventricular assist device, which includes a wireless charging rectifier circuit as in the first aspect or a wireless charging device as in the second aspect.
  • Figure 1 is a module schematic diagram of a wireless charging circuit provided by an embodiment of the present application.
  • Figure 2 is a module schematic diagram of a wireless charging rectifier circuit provided by an embodiment of the present application.
  • Figure 3 is a circuit schematic diagram of a wireless charging rectifier circuit provided by an embodiment of the present application.
  • first and second are used for descriptive purposes only and shall not be understood as indicating or implying relative importance. nature or implicitly indicates the quantity of the technical feature indicated. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of this application, “plurality” means two or more than two, unless otherwise explicitly and specifically limited.
  • FIG. 1 shows a wireless charging circuit 100 proposed in an embodiment of the present application.
  • the wireless charging circuit 100 is applied to a ventricular assist device and is used to charge the ventricular assist device.
  • the wireless charging circuit 100 includes a transmitting unit 110 and a receiving unit 120 .
  • the receiving unit 120 is disposed in the user's body and is electrically connected to the battery of the implanted ventricular assist device in the user's body, and the transmitting unit 110 is disposed outside the user's body.
  • the transmitting unit 110 includes a transmitting coil 111, and the receiving unit 120 includes a receiving coil 121.
  • the center of the transmitting coil 111 and the center of the receiving coil 121 are on the same horizontal line, and the resonant frequencies of the transmitting coil 111 and the receiving coil 121 are the same.
  • the transmitting unit 110 can charge the receiving unit 120 through magnetic coupling resonance between the transmitting coil 111 and the receiving coil 121, thereby charging the ventricular assist device. That is to say, the transmitting coil 111 is used to generate an alternating magnetic field and is coupled to the receiving coil 121.
  • the receiving coil 121 induces a high-frequency voltage signal through the alternating magnetic field generated by the transmitting coil 111, wherein a high-frequency voltage signal is induced in the receiving coil 121.
  • the voltage signal is AC, thereby enabling charging of the human implantable ventricular assist device in the user's body.
  • the transmitting unit 110 also includes an AC power supply 112, an oscillator 113 and a power amplifier 114.
  • the output end of the AC power supply 112 is electrically connected to the input end of the oscillator 113, and the output end of the oscillator 113 is electrically connected to the power amplifier 114.
  • the input terminal and the output terminal of the power amplifier 114 are electrically connected to the input terminal of the transmitting coil 111 .
  • the AC power supply 112 is used to input 220V industrial frequency AC power
  • the oscillator 113 is used to generate a high-frequency sine wave for transmitting wireless power
  • the power amplifier 114 is used to convert the power of the high-frequency sine wave transmitted by the oscillator.
  • Amplification is performed to meet the requirements for wireless power transmission of human implantable ventricular assist devices, that is, to achieve a stable supply of voltage signals to the transmitting coil 111.
  • the transmitting coil 111 can generate an alternating current signal according to the amplified power alternating signal transmitted by the power amplifier 114. Changing magnetic field.
  • the receiving unit 120 also includes a wireless charging rectifier circuit 122 and a wireless charging power supply 123.
  • the wireless charging rectifier circuit 122 is provided in the human body and is used to rectify and filter the AC signal transmitted by the ventricular assist device.
  • the receiving unit 120 may also include a charging circuit 124, in which the output end of the receiving coil 121 is electrically connected to the input end of the wireless charging rectifier circuit 122, and the output end of the wireless charging rectifier circuit 122 is electrically connected to the input end of the charging circuit 124.
  • the output terminal of the charging circuit 124 is electrically connected to the input terminal of the wireless charging power supply 123 to charge the wireless charging power supply 123, wherein the wireless charging power supply 123 is a battery of the implantable ventricular assist device.
  • the wireless charging rectifier circuit 122 is used to convert the AC signal transmitted by the receiving coil 121 into a DC signal, and perform smoothing processing to stabilize the DC signal until the output signal is a stable DC signal.
  • the charging circuit 124 It is used to provide a dynamically changing current for the wireless charging power supply 123.
  • the ventricular assist device also includes a monitoring device installed outside the human body.
  • the monitoring device includes electrodes, signal processing circuits and communication circuits connected in sequence.
  • the electrodes are attached to the human body's skin to sense the beating of the human heart and generate corresponding electrical signals.
  • the signal processing The circuit is used for signal processing and judgment on electrical signals, and the judgment results are fed back to the terminal equipment through the communication circuit.
  • the safety of the wireless rectifier circuit in wireless charging is low.
  • the wireless rectifier circuit has short circuit or overload problems, resulting in rectification failure, reduced reliability and safety, and cannot provide support for ventricular assist devices and/or
  • the drive circuit supplies power, causing the ventricular assist device to work abnormally, affecting the patient's life safety.
  • FIG 2 is a schematic structural diagram of a wireless charging rectifier circuit 122 provided by an embodiment of the present application.
  • the wireless charging rectifier circuit 122 is disposed in the human body and is used to process the AC signal of the ventricular assist device. Rectification and filtering.
  • the wireless charging rectifier circuit 122 includes a first filter circuit 10, a bridge rectifier circuit 20 and a second filter circuit 30 connected in sequence.
  • the first filter circuit 10 is used to filter the input AC signal
  • the second filter circuit 30 is used to filter the input AC signal.
  • the DC power output from the bridge rectifier circuit 20 is output filtered.
  • the bridge rectifier circuit 20 is used to rectify the input AC signal and output the corresponding DC power to reduce the interference of the interference signal to the subsequent circuit of the wireless charging rectifier circuit 122. Improving the reliability and safety of ventricular assist devices.
  • the bridge rectifier circuit 20 includes four symmetrical bridge arms.
  • the diagonal bridge arms form a half-wave rectifier to realize rectification of one of the half-wave AC power sources of the wireless AC power supply.
  • the two diagonal bridge arms arms constitute a full-bridge rectifier, four
  • Each of the bridge arms is connected to a parallel first diode D1 and at least one second diode D2.
  • the at least one second diode D2 is used in case of a failure of the parallel first diode D1.
  • Rectification is performed when When the first diode D1 fails, such as open circuit, burnout, etc., the second diode D2 connected to the failed first diode D1 is put into rectification work and communicates with the remaining first diodes D1 and/or The second diode D2 forms a new wireless charging rectifier circuit 122 to rectify the AC signal to achieve redundant rectification conversion and improve the rectification reliability and safety of the wireless charging rectifier circuit 122 and the ventricular assist device.
  • the first diode D1 and the second diode D2 can use different types of diodes to achieve redundant settings, or the parallel first diode D1 and the second diode D2 can be connected in parallel for corresponding detection.
  • circuit when detecting a failure of the first diode D1, controls the second diode D2 to form a corresponding bridge arm in the wireless charging rectifier circuit 122 to realize the rectification work of the wireless charging rectifier circuit 122, wherein the first and second diodes D1
  • the specific type and structure of the diode D1 and the second diode D2 are not limited.
  • a diode with a first conduction voltage drop and a second diode D2 with a second conduction voltage drop are selected, and the conduction voltage drop of the first diode D1 is smaller than that of the second diode. D2 conduction voltage drop.
  • At least one second diode D2 connected in parallel with the failed first diode D1 performs filtering and rectification. That is to say, when the target first diode D1 fails, the target second diode D2 conducts with the remaining first diodes D1 and/or the second diodes D2 to form a rectifier circuit for rectification, thereby achieving AC
  • the signal is rectified to achieve redundant rectification conversion and improve the rectification reliability and safety of the wireless charging rectifier circuit 122 and the ventricular assist device.
  • the target first diode D1 is the first diode D1 on any bridge arm
  • the target second diode D2 is at least one second diode D2 connected in parallel with the target first diode D1. Any one of them, that is, the target first diode D1 can be one or more of the four first diodes D1, and the target second diode D2 is redundantly connected to the failed first diode D1.
  • the second diode D2 acts as a backup rectifier diode for rectification work.
  • the first diode D1 is an ideal diode
  • the second diode D2 is Schottky diode.
  • the conduction voltage drop of the ideal diode is small, and the conduction voltage drop of the Schottky diode is large. Because the ideal diode and the Schottky diode are connected in parallel to form the main and backup diodes, a dual rectification design is achieved. , improve the reliability and safety of the wireless charging rectifier circuit. At the same time, at least one Schottky diode is also used for redundant design, which not only further improves the reliability and safety of the wireless charging rectifier circuit, but also increases the life of the wireless charging rectifier circuit, thereby extending the life of the ventricular assist device.
  • the wireless charging rectifier circuit 122 works normally, the ideal diode with a small conduction voltage drop performs rectification work, which can reduce the power consumption and heat generation of the wireless charging rectifier circuit 122 without generating a large amount of heat in the body, which can reduce The heat dissipation problem of the wireless charging rectifier circuit 122 is reduced, thereby improving the safety of the wireless charging rectifier circuit 122, ensuring the normal operation of the ventricular assist device, and ensuring the safety of the patient.
  • rectification is performed by the corresponding Schottky diode connected in parallel to ensure that the rectification circuit continues to perform rectification work and provides working power to the corresponding module in the ventricular assist device located in the human body.
  • the number of Schottky diodes can be set according to needs.
  • One or more Schottky diodes can be set, and the specific number is not limited.
  • the first filter circuit 10 and the second filter circuit 30 can select corresponding filter capacitors, filter inductors and other structures according to the frequency band of the input and output power signals, and the specific structures are not limited.
  • the first filter circuit 10 includes a plurality of first capacitors C1 connected in parallel and a plurality of first capacitors C1 connected in parallel. Two capacitors C2. One end of the multiple parallel-connected first capacitors C1 is respectively connected to the first input end of the first filter circuit 10 and one end of the multiple parallel-connected second capacitors C2 , and the other end of the multiple parallel-connected first capacitors C1 is connected to the first filter circuit 10 respectively.
  • the second input terminal of the circuit 10 and the second output terminal of the first filter circuit 10 , and the other terminals of the plurality of parallel second capacitors C2 are connected to the first output terminal of the first filter circuit 10 .
  • the first capacitor C1 is connected in parallel between the input terminals of the first filter circuit 10.
  • the input terminal of the first filter circuit 10 is connected to the receiving coil 121.
  • the first capacitor C1 is used as a filter capacitor for outputting to the receiving coil 121.
  • the AC signal is filtered to eliminate peak overshoot signals.
  • the first capacitor C1 is also equipped with a redundant filter capacitor structure. When one of the first capacitors C1 is damaged, the remaining first capacitor C1 can also perform filtering work, thereby improving Reliability and safety of wireless charging rectifier circuit 100.
  • the plurality of second capacitors C2 and the receiving coil 121 form an LC resonant circuit, which is used to induce the high-frequency alternating magnetic field generated by the transmitting coil 111 and resonate to generate a high-frequency voltage signal.
  • the wireless charging rectifier circuit 122 is used to convert the high-frequency The voltage signal is rectified and converted into a DC signal, and is filtered and output to the subsequent module through the second filter circuit 30 .
  • the capacitance of the first capacitor C1 is smaller than the capacitance of the second capacitor C2.
  • the first capacitor C1 completes filtering of higher-frequency interference signals and avoids interference with the signal.
  • the high-frequency voltage signal is filtered to achieve filter compensation and improve the filtering capability.
  • the capacitances of the plurality of first capacitors C1 can be equal or unequal.
  • the capacitances of the plurality of first capacitors C1 are unequal, high-frequency interference signals in different frequency bands can be filtered and the filtering range can be improved.
  • the second filter circuit 30 includes a third capacitor C3, a plurality of parallel-connected fourth capacitors C4, a third diode D3, and a plurality of parallel-connected fifth capacitors C5.
  • One end of the third capacitor C3 is respectively connected to the first input end of the second filter circuit 30, one end of a plurality of parallel-connected fourth capacitors C4, the anode of the third diode D3, and a plurality of parallel-connected fifth capacitors C5.
  • One end and the first output end of the second filter circuit 30 and the other end of the third capacitor C3 are respectively connected to the second input end of the second filter circuit 30, the other end of a plurality of parallel fourth capacitors C4, and the third diode.
  • the third capacitor C3, the fourth capacitor C4 and the fifth capacitor C5 complete the filtering work, and the fourth capacitor C4 and the fifth capacitor C5 constitute a redundant filter capacitor.
  • the fourth capacitor C4 and the fifth capacitor C5 continue to perform filtering work to ensure the normal filtering work of the second filter circuit 30.
  • the capacitance of the fourth capacitor C4 is smaller than the capacitance of the third capacitor C3 and the capacitance of the fifth capacitor C5.
  • the fourth capacitor C4 can complete the filtering of higher frequency signals. Filter the interference signal to achieve filter compensation and improve filtering capabilities.
  • the third diode D3 can be a voltage stabilizing diode to realize the output voltage stabilizing function.
  • the first diode D1, the second diode D2, the third diode D3, the first capacitor C1, the second The capacitor C2, the third capacitor C3, the fourth capacitor C4 and the fifth capacitor C5 are all SMD components. They use SMD components to effectively reduce the size of the wireless charging rectifier circuit 122 and the ventricular assist device, and reduce the wireless charging rectification. The area of the circuit 122 is reduced, and the design cost is reduced, making the redundant design more reliable.
  • each bridge arm of the above-mentioned wireless charging rectifier circuit 122 is composed of a first diode D1 and at least one second diode D2 connected in parallel.
  • Diode D1 serves as the main diode.
  • the first diode D1 rectifies the AC signal.
  • the second diode D2 serves as a backup diode.
  • the AC signal is rectified to achieve Redundant rectification conversion improves the rectification reliability and safety of the wireless charging rectifier circuit 122 and the ventricular assist device.
  • the input power and output power of the wireless charging rectifier circuit 122 are controlled by the first filter circuit 10 and the second filter circuit 30 Filtering reduces the interference of interference signals to the downstream circuit of the wireless charging rectifier circuit 122, further improving the reliability and safety of the ventricular assist device.
  • the wireless charging device includes a wireless charging rectifier circuit 122.
  • the specific structure of the wireless charging rectifier circuit 122 refers to the above-mentioned embodiments. Since this wireless charging device adopts all the technical solutions of all the above-mentioned embodiments, , therefore at least having all the beneficial effects brought by the technical solutions of the above embodiments, here I won’t go into details one by one.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Rectifiers (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种无线充电整流电路(122)、无线充电装置和心室辅助装置,无线充电整流电路(122)包括依次连接的第一滤波电路(10)、桥式整流电路(20)和第二滤波电路(30);桥式整流电路(20)的四个桥臂中的每一桥臂上分别接有并联的第一二极管(D1)和至少一个第二二极管(D2),至少一个第二二极管(D2)用于在并联的第一二极管(D1)故障时进行整流。

Description

无线充电整流电路、无线充电装置和心室辅助装置
本申请要求于2022年07月12日在中国专利局提交的、申请号为202210813918.2的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于无线充电技术领域,尤其涉及一种无线充电整流电路、无线充电装置和心室辅助装置。
背景技术
心室辅助装置是一种将血液由静脉系统或心脏引出直接泵入动脉系统部分或全部代替心室做功的人工机械装置,为患有严重心脏问题的病人提供足够的供血动力。
为了减少皮下钻导线孔带来的感染风险,现有心室辅助装置采用无线充电装置为体内的血泵和/或驱动血泵工作的驱动电路供电,无线充电装置包括发射单元和接收单元,接收单元设置于人体内,发射单元设置于人体外,发射单元通过发射线圈和接收线圈之间的磁耦合谐振对接收单元进行充电。
发明内容
本申请的目的在于提供一种无线充电整流电路、无线充电装置和心室辅助装置。
本申请实施例的第一方面提出了一种无线充电整流电路,所述无线充电整流电路用于对所述心室辅助装置的交流信号进行整流滤波;其中,所述无线充电整流电路包括依次连接的第一滤波电路、桥式整流电路和第二滤波电路;所述桥式整流电路的四个桥臂上的每一桥臂上分别接有并联的第一二极管和至少一个第二二极管,所述至少一个第二二极管用于在并联的所述第一二极管故障时进行整流。
本申请实施例的第二方面提出了一种无线充电装置,包括如上第一方面所述的无线充电整流电路。
本申请实施例的第三方面的提供了一种心室辅助装置,所述心室辅助装置包括如第一方面的无线充电整流电路或者包括如第二方面的无线充电装置。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的无线充电电路的模块示意图;
图2为本申请实施例提供的无线充电整流电路的模块示意图;
图3为本申请实施例提供的无线充电整流电路的电路示意图。
具体实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要 性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
请参阅图1,图1为本申请实施例提出的一种无线充电电路100。该无线充电电路100应用于心室辅助装置,用于对心室辅助装置进行充电。如图1所示,无线充电电路100包括发射单元110和接收单元120。接收单元120设置在用户的体内,并与用户体内的植入式心室辅助装置的电池电性连接,发射单元110设置在用户的体外。
发射单元110中包括有发射线圈111,接收单元120中包括有接收线圈121,其中发射线圈111的中心和接收线圈121的中心处于同一水平线上,且发射线圈111和接收线圈121的谐振频率相同。发射单元110可以通过发射线圈111和接收线圈121之间的磁耦合谐振,对接收单元120进行充电,从而为心室辅助装置充电。也就是说,发射线圈111用于产生交变磁场,并耦合到接收线圈121上,接收线圈121通过发射线圈111产生的交变磁场感应出高频电压信号,其中接收线圈121中感应出高频电压信号为AC,从而实现对用户体内的人体植入式心室辅助装置的充电。
示例的,发射单元110还包括有交流电源112、振荡器113和功率放大器114,交流电源112的输出端电性连接振荡器113的输入端,振荡器113的输出端电性连接功率放大器114的输入端,功率放大器114的输出端电性连接发射线圈111的输入端。在本实施例中,交流电源112用于输入220V的工频交流电,振荡器113用于产生传输无线电能的高频正弦波,而功率放大器114用于将振荡器传输的高频正弦波的功率进行放大,以满足人体植入式心室辅助装置无线电能传输的要求,即实现对发射线圈111的电压信号的稳定供给,之后发射线圈111可以根据功率放大器114传输的放大功率的交变信号产生交变磁场。
示例的,接收单元120还包括有无线充电整流电路122和无线充电电源123,该无线充电整流电路122设置于人体内,用于对心室辅助装置传输的交流信号进行整流滤波。
进一步地,该接收单元120还可包括充电电路124,其中接收线圈121的输出端电性连接无线充电整流电路122的输入端,无线充电整流电路122的输出端电性连接充电电路124的输入端,充电电路124的输出端电性连接无线充电电源123的输入端,为无线充电电源123进行充电,其中无线充电电源123为植入式心室辅助装置的电池。在本实施例中,无线充电整流电路122用于将接收线圈121传输的交流信号转换为直流信号,并进行平滑处理,将直流信号进行稳定,直至输出的信号为稳定的直流信号,充电电路124用于为无线充电电源123提供一个动态变化的电流。
示例的,心室辅助装置还包括设置于人体外的监控装置,监控装置包括依次连接的电极、信号处理电路和通讯电路,电极贴设于人体表皮感应人体心脏跳动,并产生对应电信号,信号处理电路用于对电信号进行信号处理判断,并通过通讯电路将判断结果反馈至终端设备。
目前,无线充电中的无线整流电路安全性低,当其中一个二极管发生故障时,无线整流电路存在短路或者过载的问题,导致整流失效,可靠性和安全性降低,无法为心室辅助装置和/或驱动电路供电,导致心室辅助装置工作异常,影响病患的生命安全。
基于此,请参阅图2,图2为本申请实施例提供的无线充电整流电路122的结构示意图,其中,无线充电整流电路122设置于人体内,用于对所述心室辅助装置的交流信号进行整流滤波。无线充电整流电路122包括依次连接的第一滤波电路10、桥式整流电路20和第二滤波电路30,第一滤波电路10用于对输入的交流信号进行输入滤波,第二滤波电路30用于桥式整流电路20输出的直流电源进行输出滤波,桥式整流电路20用于对输入的交流信号进行整流,并输出对应直流电源,减少干扰信号对无线充电整流电路122的后级电路的干扰,提高心室辅助装置的可靠性和安全性。
其中,如图3所示,桥式整流电路20包括对称的四个桥臂,对角桥臂构成半波整流,实现对无线交流电源的其中一个半波交流电源进行整流,两个对角桥臂构成全桥整流,四 个桥臂的每一桥臂上分别接有并联的第一二极管D1和至少一个第二二极管D2,至少一个第二二极管D2用于在并联的第一二极管D1故障时进行整流,第一二极管D1作为主二极管,正常工作时由四个桥臂的第一二极管D1对交流信号进行整流,至少一个第二二极管D2作为备用二极管,当其中一个第一二极管D1发生故障,例如断路、烧毁等问题时,与故障的第一二极管D1连接的第二二极管D2投入整流工作,并与其余第一二极管D1和/或第二二极管D2组成新的无线充电整流电路122对交流信号进行整流,实现冗余整流转换,提高无线充电整流电路122以及心室辅助装置的整流可靠性和安全性。
其中,第一二极管D1和第二二极管D2可采用不同类型的二极管类型,实现冗余设置,或者在并联的第一二极管D1和第二二极管D2之间并联对应检测电路,在检测到第一二极管D1发生故障时,控制第二二极管D2在无线充电整流电路122中组成对应桥臂,以实现无线充电整流电路122的整流工作,其中,第一二极管D1和第二二极管D2的具体类型和结构不限。
在一实施例中,选择具有第一导通压降的二极管和具有第二导通压降的第二二极管D2,且第一二极管D1的导通压降小于第二二极管D2的导通压降。在无线充电整流电路122正常工作时,即各第一二极管D1未出现故障时,由于第一二极管D1的导通压降大于至少一个第二二极管D2的导通压降,因此无线充电整流电路122中每一桥臂上的第一二极管D1优先导通,从而组成整流电路,输入的交流信号通过第一导通压降的第一二极管D1进行整流,第二二极管D2由于导通压降大,与第一二极管D1并联时不工作。
进一步地,当第一二极管D1出故障时,则由与故障的第一二极管D1并联的至少一个第二二极管D2进行滤波整流。也就是说,当目标第一二极管D1故障时,目标第二二极管D2与其余第一二极管D1和/或第二二极管D2导通组成整流电路进行整流,实现对交流信号进行整流,实现冗余整流转换,提高无线充电整流电路122以及心室辅助装置的整流可靠性和安全性。
其中,目标第一二极管D1为任一桥臂上的第一二极管D1,目标第二二极管D2为与目标第一二极管D1并联的至少一个第二二极管D2中的任意一个,即目标第一二极管D1可为四个第一二极管D1中的一个或者多个,目标第二二极管D2则为与故障的第一二极管D1冗余连接的第二二极管D2,并作为备用整流二极管进行整流工作。
其中,根据第一二极管D1和第二二极管D2的导通压降的需求可对应选择不同类型的二极管,可选地,第一二极管D1为理想二极管,第二二极管D2为肖特基二极管。
在本申请实施例中,理想二极管的导通压降小,肖特基二极管的导通降压大,因采用将理想二极管和肖特基二极管并联的方式连接构成主备二极管,实现双整流设计,提高无线充电整流电路的可靠性和安全性。同时也使用至少一个肖特基二极管进行冗余设计,在进一步提高无线充电整流电路的可靠性和安全性的同时也提高无线充电整流电路的寿命,进而延长心室辅助装置的寿命。
进一步地,无线充电整流电路122正常工作时,通过导通压降小的理想二极管进行整流工作,可以减小无线充电整流电路122的功耗和发热,不会在体内产生大量的热量,可以减小无线充电整流电路122的热耗散问题,从而提高无线充电整流电路122的安全性,保证心室辅助装置正常工作,确保病患的安全。
以及当其中一个或者多个理想二极管出现故障时,通过由对应并联的肖特基二极管进行整流,保证整流电路继续进行整流工作,提供工作电源至心室辅助装置中位于人体内的对应模块。
其中,肖特基二极管的数量可根据需求进行设置,可设置一个或者多个,具体数量不限。
其中,第一滤波电路10和第二滤波电路30可根据输入输出的电源信号的频段进行选择对应的滤波电容、滤波电感等结构,具体结构不限。
可选地,如图3所示,第一滤波电路10包括多个并联的第一电容C1和多个并联的第 二电容C2。多个并联的第一电容C1的一端分别连接第一滤波电路10的第一输入端和多个并联的第二电容C2的一端,多个并联的第一电容C1的另一端分别连接第一滤波电路10的第二输入端和第一滤波电路10的第二输出端,多个并联的第二电容C2的另一端连接第一滤波电路10的第一输出端。
本实施例中,第一电容C1并联在第一滤波电路10的输入端之间,第一滤波电路10的输入端连接接收线圈121,第一电容C1作为滤波电容,用于对接收线圈121输出的交流信号进行滤波、消除尖峰过冲信号,其中,第一电容C1同样设置了冗余滤波电容结构,在其中一个第一电容C1损坏时,剩余第一电容C1同样可实现滤波工作,从而提高无线充电整流电路100的可靠性和安全性。
具体地,多个第二电容C2与接收线圈121构成LC谐振电路,用于感应发射线圈111产生的高频交变磁场,并谐振生成高频电压信号,无线充电整流电路122用于将高频电压信号整流转换为直流信号,并经由第二滤波电路30滤波输出至后级模块。
其中,为了实现对高频电压信号的滤波,可选地,第一电容C1的电容量小于第二电容C2的电容量,第一电容C1完成对更高频的干扰信号进行滤波,以及避免对高频电压信号进行滤波,实现滤波补偿,提高滤波能力。
同时,多个第一电容C1的电容量可相等或者不等,当多个第一电容C1的电容量不等时,可对不同频段的高频干扰信号进行滤波,提高滤波范围。
可选地,如图3所示,第二滤波电路30包括第三电容C3、多个并联的第四电容C4、第三二极管D3和多个并联的第五电容C5。
其中,第三电容C3的一端分别连接第二滤波电路30的第一输入端、多个并联的第四电容C4的一端、第三二极管D3的阳极、多个并联的第五电容C5的一端和第二滤波电路30的第一输出端,第三电容C3的另一端分别连接第二滤波电路30的第二输入端、多个并联的第四电容C4的另一端、第三二极管D3的阴极、多个并联的第五电容C5的另一端和第二滤波电路30的第二输出端。
本实施例中,第三电容C3、第四电容C4和第五电容C5完成滤波工作,第四电容C4和第五电容C5构成冗余滤波电容,当第三电容C3和/或第三二极管D3损坏时,第四电容C4和第五电容C5继续进行滤波工作,保证第二滤波电路30的正常滤波工作。
同时,为了实现对不同频段的信号进行滤波,可选地,第四电容C4的电容量小于第三电容C3的电容量和第五电容C5的电容量,第四电容C4可完成对更高频的干扰信号进行滤波,实现滤波补偿,提高滤波能力。
其中,第三二极管D3可为稳压二极管,实现输出稳压功能。
进一步地,为了简化无线充电整流电路122和心室辅助装置的整体结构,可选地,第一二极管D1、第二二极管D2、第三二极管D3、第一电容C1、第二电容C2、第三电容C3、第四电容C4和第五电容C5均为贴片元器件,采用贴片式元器件,有效减小无线充电整流电路122和心室辅助装置的体积,减少无线充电整流电路122的面积,以及降低设计成本,在冗余设计上更加可靠。
本申请实施例与现有技术相比存在的有益效果是:上述的无线充电整流电路122的每个桥臂由并联的第一二极管D1和至少一个第二二极管D2,第一二极管D1作为主二极管,正常工作时由第一二极管D1对交流信号进行整流,第二二极管D2作为备用二极管,当第一二极管D1发生故障时对交流信号进行整流,实现冗余整流转换,提高无线充电整流电路122以及心室辅助装置的整流可靠性和安全性,同时,由第一滤波电路10和第二滤波电路30对无线充电整流电路122的输入电源和输出电源进行滤波,减少干扰信号对无线充电整流电路122的后级电路的干扰,进一步提高心室辅助装置的可靠性和安全性。
本申请还提出一种无线充电装置,该无线充电装置包括无线充电整流电路122,该无线充电整流电路122的具体结构参照上述实施例,由于本无线充电装置采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此 不再一一赘述。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种无线充电整流电路,所述无线充电整流电路包括依次连接的第一滤波电路、桥式整流电路和第二滤波电路;
    所述桥式整流电路的四个桥臂中的每一桥臂上分别接有并联的第一二极管和至少一个第二二极管,所述至少一个第二二极管用于在并联的所述第一二极管故障时进行整流。
  2. 根据权利要求1所述的无线充电整流电路,其中,所述第一二极管的导通压降小于所述第二二极管的导通压降;
    在所述无线充电整流电路正常工作时,所述桥式整流电路中每一桥臂上的所述第一二极管导通组成整流电路进行整流;在目标第一二极管故障时,目标第二二极管导通组成所述整流电路进行整流,所述目标第一二极管为任一桥臂上的所述第一二极管,所述目标第二二极管为与所述目标第一二极管并联的所述至少一个第二二极管中的任意一个第二二极管。
  3. 根据权利要求2所述的无线充电整流电路,其中,所述第一滤波电路包括多个并联的第一电容和多个并联的第二电容;
    所述多个并联的第一电容的一端分别连接所述第一滤波电路的第一输入端和所述多个并联的第二电容的一端,所述多个并联的第一电容的另一端分别连接所述第一滤波电路的第二输入端和所述第一滤波电路的第二输出端,所述多个并联的第二电容的另一端连接所述第一滤波电路的第一输出端。
  4. 根据权利要求3所述的无线充电整流电路,其中,所述第一电容为滤波电容。
  5. 根据权利要求3所述的无线充电整流电路,其中,所述第一电容的电容量小于所述第二电容的电容量。
  6. 根据权利要求3所述的无线充电整流电路,其中,所述多个第一电容的电容量不相等。
  7. 根据权利要求3所述的无线充电整流电路,其中,在任一所述第一电容损坏时,剩余的所述第一电容用于所述第一滤波电路的滤波。
  8. 根据权利要求3-7任一项所述的无线充电整流电路,其中,所述第二滤波电路包括第三电容、多个并联的第四电容、第三二极管和多个并联的第五电容;
    所述第三电容的一端分别连接所述第二滤波电路的第一输入端、所述多个并联的第四电容的一端、所述第三二极管的阳极、所述多个并联的第五电容的一端和所述第二滤波电路的第一输出端,所述第三电容的另一端分别连接所述第二滤波电路的第二输入端、所述多个并联的第四电容的另一端、所述第三二极管的阴极、所述多个并联的第五电容的另一端和所述第二滤波电路的第二输出端。
  9. 根据权利要求8所述的无线充电整流电路,其中,所述第四电容的电容量小于所述第三电容的电容量和所述第五电容的电容量。
  10. 根据权利要求8所述的无线充电整流电路,其中,在所述第三电容和所述第三二极管中的至少一个故障时,所述第四电容和所述第五电容用于进行所述第二滤波电路的滤波。
  11. 根据权利要求8所述的无线充电整流电路,其中,所述第三二极管为稳压二极管。
  12. 根据权利要求9所述的无线充电整流电路,其中,所述第一二极管、所述第二二极管、所述第三二极管、所述第一电容、所述第二电容、所述第三电容、所述第四电容和所述第五电容均为贴片元器件。
  13. 根据权利要求2所述的无线充电整流电路,其中,所述第一二极管为理想二极管。
  14. 根据权利要求2或13所述的无线充电整流电路,其中,所述第二二极管为肖特基二极管。
  15. 一种无线充电装置,所述无线充电装置包括如权利要求1-14任一项所述的无线充电整流电路。
  16. 一种心室辅助装置,所述心室辅助装置包括如权利要求1-14任一项所述的无线充电整流电路或者包括如权利要求15所述的无线充电装置。
PCT/CN2023/092399 2022-07-12 2023-05-06 无线充电整流电路、无线充电装置和心室辅助装置 WO2024012022A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210813918.2A CN114900055B (zh) 2022-07-12 2022-07-12 无线充电整流电路和无线充电装置
CN202210813918.2 2022-07-12

Publications (1)

Publication Number Publication Date
WO2024012022A1 true WO2024012022A1 (zh) 2024-01-18

Family

ID=82730050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092399 WO2024012022A1 (zh) 2022-07-12 2023-05-06 无线充电整流电路、无线充电装置和心室辅助装置

Country Status (2)

Country Link
CN (1) CN114900055B (zh)
WO (1) WO2024012022A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114900055B (zh) * 2022-07-12 2022-10-11 深圳核心医疗科技有限公司 无线充电整流电路和无线充电装置
CN116111551B (zh) * 2023-04-10 2023-07-11 深圳核心医疗科技股份有限公司 防静电干扰的参数确定方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572488A (zh) * 2009-06-09 2009-11-04 华中科技大学 复用桥臂的双输出直流-直流变换器
US20120155134A1 (en) * 2010-12-20 2012-06-21 Dong Zo Kim High efficiency rectifier, wireless power receiver including the rectifier
CN107776429A (zh) * 2017-10-25 2018-03-09 华南理工大学 一种半桥型mers电动汽车无线充电电路及其控制方法
CN109450268A (zh) * 2018-11-27 2019-03-08 浙江大学 一种单相零电压开关背靠背变流器电路及其调制方法
CN112187070A (zh) * 2020-09-07 2021-01-05 上海军陶电源设备有限公司 一种晶闸管并联交替导通整流电路可控硅整流器/晶闸管
CN212627699U (zh) * 2020-08-12 2021-02-26 陕西科技大学 一种移相全桥dc-dc变换器
CN212627329U (zh) * 2020-06-19 2021-02-26 青岛鲁渝能源科技有限公司 一种无线充电系统的发射端、接收端及无线充电系统
CN114900055A (zh) * 2022-07-12 2022-08-12 深圳核心医疗科技有限公司 无线充电整流电路和无线充电装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1794566A (zh) * 2005-11-29 2006-06-28 王有元 倍频调速逆变器及低压直流供电网
WO2009127079A1 (zh) * 2008-04-16 2009-10-22 海立尔股份有限公司 并联桥式及高压并联桥式电路结构
CN204481681U (zh) * 2015-02-11 2015-07-15 深圳市高斯宝电气技术有限公司 一种交错并联pfc开关电源电路
CN105529938A (zh) * 2016-01-15 2016-04-27 上海控源电子科技有限公司 一种用于大功率直流电源的高压整流电路
CN205725460U (zh) * 2016-03-22 2016-11-23 国家电网公司 一种输入并联输出并联的半桥变换器及其均流控制系统
US9681511B1 (en) * 2016-03-25 2017-06-13 New Energies & Alternative Technologies, Inc. LED driver circuits
CN205811851U (zh) * 2016-06-30 2016-12-14 中国航空无线电电子研究所 一种直流电源输入电路模块
CN206209828U (zh) * 2016-10-08 2017-05-31 武汉万集信息技术有限公司 一种具有正反接可充电功能的复合通行卡
JP6519574B2 (ja) * 2016-12-07 2019-05-29 Tdk株式会社 ワイヤレス受電装置及びこれを用いたワイヤレス電力伝送装置並びに整流器
CN208112510U (zh) * 2018-04-23 2018-11-16 顺德职业技术学院 一种双级输入逆变电源的恒压输出电路
CN208608910U (zh) * 2018-08-14 2019-03-15 广州视源电子科技股份有限公司 一种整流滤波电路、电路板及led显示设备
CN209200949U (zh) * 2018-12-28 2019-08-02 上海午阳电子科技有限公司 一种新能源汽车充电机整流桥实用并联电路
CN210745047U (zh) * 2019-10-11 2020-06-12 新乡航空工业(集团)有限公司 一种基于航空三相pfc的电机控制装置
CN110829478B (zh) * 2019-10-30 2022-01-14 浙江大学 一种海上风电场低频交流不控整流输电系统
CN113497613A (zh) * 2020-04-03 2021-10-12 台达电子企业管理(上海)有限公司 复合开关电路结构
CN112003483B (zh) * 2020-08-25 2024-05-10 浙江绿力智能科技有限公司 一种自适应电压调节电路
CN113991887A (zh) * 2021-10-14 2022-01-28 柏壹新能源科技(深圳)有限公司 无线充电发射装置和无线充电系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572488A (zh) * 2009-06-09 2009-11-04 华中科技大学 复用桥臂的双输出直流-直流变换器
US20120155134A1 (en) * 2010-12-20 2012-06-21 Dong Zo Kim High efficiency rectifier, wireless power receiver including the rectifier
CN107776429A (zh) * 2017-10-25 2018-03-09 华南理工大学 一种半桥型mers电动汽车无线充电电路及其控制方法
CN109450268A (zh) * 2018-11-27 2019-03-08 浙江大学 一种单相零电压开关背靠背变流器电路及其调制方法
CN212627329U (zh) * 2020-06-19 2021-02-26 青岛鲁渝能源科技有限公司 一种无线充电系统的发射端、接收端及无线充电系统
CN212627699U (zh) * 2020-08-12 2021-02-26 陕西科技大学 一种移相全桥dc-dc变换器
CN112187070A (zh) * 2020-09-07 2021-01-05 上海军陶电源设备有限公司 一种晶闸管并联交替导通整流电路可控硅整流器/晶闸管
CN114900055A (zh) * 2022-07-12 2022-08-12 深圳核心医疗科技有限公司 无线充电整流电路和无线充电装置

Also Published As

Publication number Publication date
CN114900055A (zh) 2022-08-12
CN114900055B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2024012022A1 (zh) 无线充电整流电路、无线充电装置和心室辅助装置
US10080902B2 (en) Implantable medical devices and systems having inductive telemetry and recharge on a single coil
JP6104981B2 (ja) 埋め込み医療デバイスのためのtetシステム
US8909351B2 (en) Implantable medical devices and systems having dual frequency inductive telemetry and recharge
CN103560572B (zh) 一种植入式心脏起博器磁耦合谐振无线充电装置
US9042995B2 (en) Implantable medical devices and systems having power management for recharge sessions
US20230006547A1 (en) Step-Down Rectifier Circuit, Wireless Charging Receiver Chip, and Wireless Charging Receiver
TW200917015A (en) Hold-up time extension control apparatus for power supply
CN103595144A (zh) 一种无线电能传输的可植入式左心室辅助系统
WO2023185180A1 (zh) 电容耦合传能的神经电刺激系统及其体内神经电刺激器和体外能控器
US20210283391A1 (en) Systems and methods for wireless energy transfer for ventricular assist devices
CN104578336B (zh) 自动感测的无线充电系统
CN111641273A (zh) 一种带冗余接收线圈的无线电能传输系统
CN108653842B (zh) 一种带中继线圈的多接收端无线电能传输辅助供血装置
CN203617791U (zh) 一种无线电能传输的可植入式左心室辅助系统
CN209627039U (zh) 一种用于植入式心脏起搏器的无线充电与体温监测系统
Aditya et al. Design and development of wireless power transfer system for implantable cardioverter defibrillator
CN208028771U (zh) 弱电控制强电的电源开关电路
CN110339479B (zh) 一种用于植入式心脏起搏器的无线充电与远程监控装置
CN114225218A (zh) 一种植入式心脏起搏器的无线能量传输控制系统
CN209692434U (zh) 一种具有调压功能的低成本无线电能传输装置
CN210041442U (zh) 一种心脏起搏器的无线充电系统
CN117582605B (zh) 一种电场耦合式神经刺激系统
CN112701943A (zh) 一种基于Zeta变换器的光伏逆变器
CN220010117U (zh) 一种无人机无线充电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838519

Country of ref document: EP

Kind code of ref document: A1