WO2024012012A1 - 一种回收选区激光熔化梯度粉末装置及回收方法 - Google Patents

一种回收选区激光熔化梯度粉末装置及回收方法 Download PDF

Info

Publication number
WO2024012012A1
WO2024012012A1 PCT/CN2023/091517 CN2023091517W WO2024012012A1 WO 2024012012 A1 WO2024012012 A1 WO 2024012012A1 CN 2023091517 W CN2023091517 W CN 2023091517W WO 2024012012 A1 WO2024012012 A1 WO 2024012012A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
conveying pipe
ultrasonic
suction
storage bag
Prior art date
Application number
PCT/CN2023/091517
Other languages
English (en)
French (fr)
Inventor
崔承云
孙潘杰
叶馥宇
王星宇
魏礼桢
崔熙贵
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to GB2313996.7A priority Critical patent/GB2618970B/en
Publication of WO2024012012A1 publication Critical patent/WO2024012012A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/70Recycling
    • B22F10/73Recycling of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/28Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B9/00Combinations of apparatus for screening or sifting or for separating solids from solids using gas currents; General arrangement of plant, e.g. flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/20Cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to the technical field of selective laser melting equipment, and in particular to a device for recycling selective laser melting gradient powder and a recycling method.
  • SLM Selective Laser Melting
  • SLS selective laser sintering
  • Functionally graded materials refer to materials whose composition, organization and properties vary in different parts. In actual engineering applications, the requirements for the composition, organization and performance of different parts of parts are different; traditional SLM processing with the same material is not enough to solve the problem. Faced with this problem, rapid prototyping manufacturing with a variety of materials can be used as a solution. However, rapid prototyping manufacturing of multiple materials at the same time will cause the problem of mixing different powders and making it difficult to separate and recycle them.
  • the current selective laser melting powder recycling technology has a low powder recovery rate and mainly relies on manual recycling.
  • the recycling is difficult and inefficient, and can easily cause pollution and waste.
  • For metal powders, direct contact with air can easily cause danger.
  • one of the purposes of one aspect of the present invention is to provide a device for recycling selective laser melted gradient powder, which can separate the gradient powder and screen it.
  • the vacuum operation reduces the contact with the air and reduces the manual operation to effectively improve the quality of the powder.
  • the recycling rate of powder effectively avoids the mixing and adhesion of different powders.
  • One of the purposes of one aspect of the present invention is to provide an ultrasonic powder suction device that can clean unmelted powder in a molding cylinder from all directions and angles, effectively preventing the mixing of multiple powders and increasing the powder recovery rate.
  • One of the purposes of one aspect of the present invention is to be able to automatically identify metal powder and use a cooling device to reduce the risk of metal powder explosion.
  • One of the purposes of one mode of the present invention is to provide a vacuum box.
  • the powder storage bag recovers powder and automatically seals it, all of which are completed in the vacuum box.
  • the vacuum sealing reduces the contact with the air, improves the recovery efficiency of the powder, and reduces manual direct contact. Contact with powder to avoid damage to workers' health.
  • One of the objects of one aspect of the present invention is to provide a method for recycling the selective laser melting gradient powder device. Law.
  • the technical solution of the present invention is: a device for recycling selective laser melting gradient powder, including an ultrasonic powder suction device, a vertical support frame, a screening device, a waste recycling device, a powder conveying pipe, a cooling device and a controller;
  • the ultrasonic powder suction device is installed on a vertical support frame; the vertical support frame is installed on the printing platform; the top of the screening device is connected to the ultrasonic powder suction device through a powder conveying pipe, and a spiral type is provided in the middle of the powder conveying pipe
  • the powder conveying pipe, the spiral powder conveying pipe section is equipped with a cooling device; the spiral powder conveying pipe is equipped with a metal powder sensor, the metal powder sensor is used to detect whether the powder texture in the spiral powder conveying pipe is metal, and activate the signal to the controller;
  • At least one screen mesh is provided in the screening device to divide the housing into at least two upper and lower areas, the upper area is connected to the waste recycling device, and the lowermost area is connected to the powder storage bag;
  • the controller is connected to an ultrasonic powder suction device, a screening device, a waste recycling device, a metal powder sensor and a cooling device respectively.
  • the ultrasonic powder suction device includes a first rotary motor, a first telescopic motor, at least one powder suction hood, a flat powder suction head, an ultrasonic transducer, an ultrasonic generator and a sleeve;
  • the first rotary motor is connected to the upper part of the sleeve.
  • the first rotary motor is used to drive the sleeve to rotate.
  • the flat powder suction head is connected to the lower part of the sleeve.
  • the telescopic motor is connected to the flat powder suction head for The flat powder suction head is driven to move up and down.
  • An ultrasonic transducer is installed on the flat powder suction head.
  • An ultrasonic generator is installed on the ultrasonic transducer.
  • the powder suction cover is connected to the sleeve through the powder suction tube.
  • the powder tube is connected to a second telescopic motor, and the second telescopic motor is used to drive the telescopic powder suction tube.
  • the powder suction hood includes a first powder suction hood and a second powder suction hood; the first powder suction hood and the second powder suction hood are respectively installed on both sides of the sleeve.
  • the cooling device includes a water tank and a water pipe, the spiral powder conveying pipe is located in the water tank, the two ends of the spiral powder conveying pipe are connected to the powder conveying pipe respectively, the water tank is connected to the water pipe, and the water pipe is provided with a valve; The valve is connected to the controller.
  • the screening device includes a housing and a vibration motor
  • a first screen and a second screen are arranged in the housing from top to bottom, and the housing is divided into a first area, a second area and a third area from top to bottom.
  • the aperture ratio of the first screen is the third area.
  • the aperture of the second screen mesh is large; the top of the casing is provided with a feed port, the casing is provided with a first waste port in the first area, and the casing is provided with a second waste port in the second area.
  • the waste material recovery device includes a waste material tank and a second vacuum pump
  • the waste tank is connected to the first waste port and the second waste port of the screening device, and the second vacuum pump is connected to the waste tank.
  • the above solution also includes a vacuum box
  • the vacuum box is connected to the first vacuum pump; the vacuum box is provided with a sealing device, a second rotating motor, a connector, a weight sensor and a powder storage bag;
  • the sealing device and the second rotating electrical machine are installed on the base, and the sealing device is located above the second rotating electrical machine;
  • the weight sensor is used to detect whether the weight of the powder storage bag reaches a preset value, and sends a signal to the controller, which is connected to the sealing device and the second rotating motor;
  • the powder storage bag is connected to the second rotating motor through a connecting piece.
  • the second rotating motor rotates the powder storage bag to the bottom of the sealing device.
  • the sealing device is used to seal the powder storage bag.
  • the printing platform is provided with horizontally arranged rails, and the vertical support frame is installed on the rails and can move in the horizontal direction.
  • a method for recycling a selective laser melting gradient powder device including the following steps:
  • Powder suction After the laser scanning and printing is completed, the ultrasonic powder suction device is moved to the top of the molding cylinder for powder suction. At the same time, the waste recycling device is turned on to absorb the unmelted powder into the screening device through the powder conveying pipe;
  • the metal powder sensor detects whether the powder in the spiral powder conveyor is metal and sends a signal to the controller. If it is metal powder, the cooling device is turned on. The powder in the powder conveying pipe is cooled, otherwise it enters the screening device directly;
  • the first vacuum pump performs vacuuming on the vacuum box
  • the weight sensor detects whether the weight of the powder storage bag reaches a preset value and sends a signal to the controller.
  • the controller controls the second rotating motor to rotate the powder storage bag below the sealing device, and the sealing device seals the powder storage bag.
  • the selective laser melting gradient powder recycling device can separate and screen gradient powders. Vacuum operation reduces contact with air, reduces manual operations, effectively improves the recycling rate of powder, and effectively avoids Mixing of different powders sticks together.
  • the ultrasonic powder suction device can clean unmelted powder in the molding cylinder from all directions and angles, effectively preventing the mixing of multiple powders and increasing the powder recovery rate.
  • a metal powder sensor is provided in the spiral powder conveying pipe to automatically identify metal powder.
  • use cooling devices to reduce the risk of metal powder explosions.
  • a vacuum box is provided, and the powder storage bag recovers the powder and automatically seals it, all of which are completed in the vacuum box.
  • the vacuum sealing reduces the contact with the air, improves the recovery efficiency of the powder, and does not require manual direct contact with the powder. Avoid damage to workers' health.
  • Figure 1 is a schematic structural diagram of a device for recovering selective laser melted gradient powder according to an embodiment of the present invention.
  • Figure 2 is a three-dimensional model diagram of a device for recovering selective laser melted gradient powder according to an embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of an ultrasonic powder suction device according to an embodiment of the present invention.
  • Figure 4 is a schematic structural diagram of a vibrating screen according to an embodiment of the present invention.
  • Ultrasonic powder suction device 101. First rotating motor; 102. First telescopic motor; 103. First powder suction cover; 104. Flat powder suction head; 105. Ultrasonic transducer; 106. Ultrasonic wave Generator; 107. Second powder suction hood, 108. Sleeve; 109. Second telescopic motor; 2. Vertical support frame; 3. Printing platform; 4. Forming cylinder; 5. First vacuum pump; 6. Sealing device ; 7. Second rotating motor; 8. Connector; 9. Vacuum box; 10. Vibrating screen; 1001. Feed port; 1002. First waste port; 1003. Discharge port; 1004. Vibration motor; 1005. No. One screen; 1006. The second screen; 1007. Housing; 1108. The second waste port; 11. Waste tank; 12. The second vacuum pump; 13. Powder conveying pipe; 14. Cooling device; 15. Water tank; 16 .Spiral powder conveying pipe.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of the technical features referred to. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more than two, unless otherwise clearly specified.
  • connection In the present invention, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or connected integrally; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection connection
  • fixing and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or connected integrally; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • Figure 1 shows a preferred embodiment of the selective laser melting gradient powder recovery device, which includes an ultrasonic powder suction device 1, a vertical support frame 2, a screening device 10, a powder conveying pipe 13, a cooling device 14 and a control unit. device.
  • the ultrasonic powder suction device 1 is installed on a vertical support frame 2; the vertical support frame 2 is installed on the printing platform 3; the top of the screening device 10 communicates with the ultrasonic powder suction device through a powder feeding pipe 13 Device 1 is connected, a spiral powder conveying pipe 16 is provided in the middle of the powder conveying pipe 13, and a cooling device 14 is provided in 16 sections of the spiral powder conveying pipe; a metal powder sensor is provided in the spiral powder conveying pipe 16, and the metal powder sensor is To detect whether the powder texture in the spiral powder conveying pipe 16 is metal, and send a signal to the controller.
  • At least one screen mesh is provided in the screening device 10 to divide the housing 1007 into at least two upper and lower areas.
  • the upper area is connected to the waste recycling device, and the lowermost area is connected to the powder storage bag.
  • the controller is connected to the ultrasonic powder suction device 1, the screening device 10, the waste recycling device, the metal powder sensor and the cooling device 14 respectively.
  • the forming cylinder 4 is made of high temperature resistant material.
  • the ultrasonic powder suction device 1 includes a first rotating motor 101, a first telescopic motor 102, at least one powder suction hood, a flat powder suction head 104, an ultrasonic transducer 105, an ultrasonic generator 106 and sleeve 108;
  • the first rotary motor 101 is connected to the upper part of the sleeve 108.
  • the first rotary motor 101 is used to drive the sleeve 108 to rotate.
  • the flat powder suction head 104 is connected to the lower part of the sleeve 108.
  • the telescopic motor 102 is connected to the flat powder suction head 104.
  • the powder suction head 104 is connected and used to drive the flat powder suction head 104 to move up and down.
  • the ultrasonic transducer 105 is arranged on the flat powder suction head 104.
  • An ultrasonic generator 106 is installed on the ultrasonic transducer 105.
  • the powder suction hood is connected to the sleeve 108 through a powder suction pipe.
  • the powder suction pipe is connected to a second telescopic motor 109.
  • the second telescopic motor 109 is used to drive the expansion and contraction of the powder suction pipe.
  • the powder suction hood includes a first powder suction hood 103 and a second powder suction hood 107; the first powder suction hood 103 and the second powder suction hood 107 are respectively installed on both sides of the sleeve 108.
  • the ultrasonic generator 106 adopts the ultrasonic generator 106 of model JCC-2 or other ultrasonic generators 106 of different models; preferably, the ultrasonic transducer 105 adopts the ultrasonic transducer of model SL-HF. Device 105.
  • the cooling device 14 includes a water tank 15 and a water pipe.
  • the spiral powder conveying pipe 16 is located in the water tank 15. Both ends of the spiral powder conveying pipe 16 are connected to the powder conveying pipe 13 respectively.
  • the water tank 15 is connected to the water pipe. There is a valve on the water pipe; the valve is connected to the controller.
  • the spiral powder conveying pipe 16 and the water tank 15 are made of high-temperature resistant materials; the high-temperature resistant materials are rubber powder polystyrene materials, which have good flame retardancy.
  • a metal powder sensor is installed in the middle of the spiral powder conveying pipe 16 for real-time detection. Measure the texture of the powder in the spiral powder conveying pipe 16. When the powder enters the powder conveying pipe 13, the metal sensor will determine the powder texture. If it is metal powder, the cooling device 14 will be turned on. Otherwise, it will enter the vibrating screen 10 directly.
  • the metal powder sensor is installed at the front end of the spiral powder conveying pipe 16; preferably, the spiral design of the spiral powder conveying pipe 16 is to extend the flow time of the powder in the pipe and improve the cooling effect;
  • the shape of the water tank 15 is a rectangular parallelepiped; preferably, the cooling device 14 is located above the printing platform 3 .
  • the screening device 10 includes a housing 1007 and a vibration motor 1004;
  • a first screen 1105 and a second screen 1106 are arranged in the housing 1007 from top to bottom, and the housing 1007 is divided into a first area, a second area and a second area from top to bottom.
  • the aperture of the first screen 1005 is larger than the aperture of the second screen 1006;
  • the top of the housing 1007 is provided with a feed port 1101, and the housing 1007 is provided with a first waste port 1002 in the first area.
  • the housing 1007 is provided with a second waste port 1108 in the second area, and the bottom of the housing 1007 is provided with a discharge port 1003.
  • the discharge port 1003 is connected to the powder storage bag; the vibration motor 1104 is installed on the housing 1007.
  • the first screen 1005 and the second screen 1006 are respectively located at one-third and two-thirds of the housing 1007.
  • the first screen 1005 is located above the second screen 1006, and the shell is
  • the body 1007 is divided into three parts: a screening area (i.e., the first area), a transition area (i.e., the second area), and a qualified area (i.e., the third area); preferably, the first screen mesh 1005 and the second screen mesh
  • the shape of 1006 is circular; preferably, the feed port 1001 is located in the screening area, the waste port 1002 is located in the screening area and the transition zone, and the outlet 1003 is located in the qualified area; preferably, the feed port 1001, the waste port 1002 and The shape of the discharge port 1003 is all cylindrical, and the connection mode of the feed port 1001, the waste port 1002 and the discharge port 1003 with the powder conveying pipe 13 is a threaded connection; preferably, the inside of the housing 1007 is a cylindrical space; Preferably, the mesh diameter
  • the first screen 1005 and the second screen 1005 can be changed according to the particle size requirements of different powders.
  • the diameter of the mesh of the screen 1006 is large, and the detachable connection is a threaded connection; preferably, the vibration motor 1004 is installed at the bottom of the housing 1007 through a threaded connection; preferably, the shape of the housing 1007 of the vibrating screen 10 is a cylinder; preferably, the housing 1007 is made of metal material; preferably, an exhaust hole is provided on one side of the waste tank 11 for connection with the second vacuum pump 12, and the connection method is a threaded connection.
  • the waste recycling device includes a waste tank 11 and a second vacuum pump 12;
  • the waste tank 11 is connected to the first waste port 1002 and the second waste port 1008 of the screening device 10 , and the second vacuum pump 12 is connected to the waste tank 11 .
  • it also includes a vacuum box 9;
  • the vacuum box 9 is connected to the first vacuum pump 5; the vacuum box 9 is provided with a sealing device 6, a second rotating motor 7, a connector 8, a weight sensor and a powder storage bag;
  • the sealing device 6 and the second rotating electrical machine 7 are installed on the base 17, and the sealing device 6 is located above the second rotating electrical machine 7;
  • the connector 8 includes a powder feeding pipe and two mutually matching fixing rings.
  • the two fixing rings are installed at the lower end of the powder feeding pipe for fixing the powder storage bag.
  • the upper end of the powder feeding pipe is connected to the screening device 10 ;
  • the weight sensor is used to detect whether the weight of the powder storage bag reaches a preset value, and sends a signal to the controller, which is connected to the sealing device 6 and the second rotating motor 7;
  • the powder storage bag is connected to the second rotating motor 7 through the connecting piece 8.
  • the second rotating motor 7 rotates the powder storage bag to the bottom of the sealing device 6.
  • the sealing device 6 is used to seal the powder storage bag.
  • the printing platform 3 is provided with horizontally arranged rails, and the vertical support frame 2 is installed on the rails and can move in the horizontal direction.
  • the selective laser melting gradient powder recycling device of the present invention can separate gradient powders and screen them. Vacuum operation reduces contact with air, reduces manual operations, effectively improves the recycling rate of powders, and effectively avoids mixing and adhesion of different powders. , so that the molding material in the SLM process is no longer single, and gradient functional parts with different material compositions can be manufactured, effectively improving the performance of the parts.
  • the ultrasonic powder suction device can clean the unmelted powder in the molding cylinder from all directions and angles, effectively preventing the mixing of multiple powders and increasing the powder recovery rate.
  • the metal powder sensor provided in the spiral powder conveying pipe 16 can automatically identify the metal powder, and the cooling device is used to reduce the risk of metal powder explosion.
  • the powder storage bag recovers powder and automatically seals it, all of which are completed in the vacuum box. Vacuum sealing reduces contact with air, improves the recovery efficiency of powder, and does not require manual direct contact with the powder to avoid damage to the health of workers. .
  • a method for recycling a selective laser melting gradient powder device including the following steps:
  • Powder suction After the laser scanning and printing is completed, move the ultrasonic powder suction device 1 to the top of the molding cylinder 4 for powder suction. At the same time, open the waste recycling device to absorb the unmelted powder to the screening device 10 through the powder conveying pipe 13. inside;
  • the metal powder sensor detects whether the powder in the spiral powder conveying pipe 16 is metal, and sends a signal to the controller. If it is metal powder, the cooling device 14 is turned on. , the powder in the spiral powder conveying pipe 16 is cooled, otherwise, it directly enters the screening device 10;
  • the ultrasonic powder suction device 1 is moved away from the forming cylinder 4 and the printing work of another type of powder is continued. After the printing work is completed, the above steps of powder suction, cooling and recovery are repeated until the part printing is completed.
  • the first vacuum pump 5 performs vacuuming on the vacuum box 9;
  • the weight sensor detects whether the weight of the powder storage bag reaches a preset value, and sends a signal to the controller, and the controller controls
  • the second rotating motor 7 is used to rotate the powder storage bag to the bottom of the sealing device 6, and the sealing device 6 seals the powder storage bag.
  • the ultrasonic powder suction device 1 is moved to the top of the molding cylinder 4 to start the powder recovery work.
  • the first powder suction hood 103 and the second powder suction hood 107 first absorb the molding
  • the unmelted powder in the cylinder 4 is then adjusted by the micro-motion telescopic motor 102 to adjust the height position of the flat powder suction head 104 so that it can absorb the remaining powder in the molding cylinder.
  • the ultrasonic transducer 105 converts the input electrical power into mechanical power.
  • the ultrasonic generator 106 is emitted into the molding cylinder 4 so that the powder cannot adhere to the molding cylinder 4 or parts.
  • the metal powder sensor in the spiral powder conveying pipe 16 will automatically determine the texture of the powder. , if it is metal powder, the cooling device 14 is turned on, otherwise, it enters the vibrating screen 10 directly; the vibrating screen 10 allows the powder adsorbed by the ultrasonic powder suction device 1 to enter the screening area through the feed port 1001, and at the same time turns on the vibration motor at the bottom of the housing 1007 1004. Use vibration to make the powder pass through the first screen 1005 and enter the transition zone. Turn on the vibration motor 1004 again to allow the powder to pass through the second screen 1006 and enter the qualified zone. After two vibration screenings, the unqualified powder or residue will remain in the screening.
  • unqualified powder is recovered into the waste tank 11 by turning on the second vacuum pump 12, while qualified powder enters the qualified area, and at the same time, the first vacuum pump 5 is turned on to allow the powder in the qualified area to enter the lower through the discharge port 1003.
  • the first vacuum pump 5 is turned on to make the vacuum box 9 in a vacuum state.
  • the powder storage bag begins to receive qualified powder in the qualified area of the vibrating screen 10.
  • the powder storage bag is suspended. , turn on the second rotating motor 7 and place the powder storage bag under the sealing device 6. Use the sealing device 6 to seal the powder storage bag. After the sealing is completed, replace the powder storage bag with a new one to receive new powder. Repeat the above operations thereafter. .
  • the present invention comprehensively cleans the unmelted powder in the molding cylinder 4, including the powder remaining in the gaps of the molding cylinder 4 and some powders that are difficult to remove, effectively reducing the mixing of gradient powder and improving the recovery rate of gradient powder.
  • the fabrication of gradient materials with different compositions is achieved.
  • the present invention effectively reduces the risk of metal powder explosion through cooling by the cooling device.
  • the invention screens out the optimal gradient powder through multiple vibration screenings, which effectively improves the recycling rate of the gradient powder.
  • the invention has simple operation, strong controllability, high degree of automation, easy realization of operating conditions, effectively avoids the mixing and adhesion of different powders, the vacuum seal reduces the contact with the air, and does not require manual direct contact with the powder, thus avoiding harmful effects on the health of workers. cause damage.
  • the shape of SLM printing is a cube of 10 ⁇ 10 ⁇ 10mm, the upper 5mm layer is composed of Nb powder, and the lower 5mm layer is composed of Fe powder.
  • the laser beam for each layer of printing is rotated 67°, the incubation distance is 0.08mm, the scanning speed is 800mm/s, the laser power is 300w, the spot diameter is 0.1mm, and the protective gas is argon. , The water and oxygen content during printing should not exceed 30ppm; enter the cube model data printed by SLM.
  • the metal powder sensor in the spiral powder conveying pipe 16 will automatically determine the texture of the powder. If it is metal powder, the cooling device 14 will be turned on. Otherwise, it will enter the vibrating screen 10 directly.
  • the residue collection device will clean the waste materials with larger particles in the vibrating screen 10, and the recyclable powder will enter the powder storage bag.
  • the metal powder sensor in the spiral powder conveying pipe 16 will automatically determine the texture of the powder. If it is metal powder, the cooling device 14 will be turned on. Otherwise, it will enter the vibrating screen 10 directly.
  • the residue collection device will clean the waste materials with larger particles in the vibrating screen 10, and the recyclable powder will enter the powder storage bag.
  • the shape of SLM printing is a cube of 10 ⁇ 10 ⁇ 10mm, the upper 5mm layer is composed of Nb powder, and the lower 5mm layer is composed of Tai alloy powder.
  • the laser beam for each layer of printing is rotated 67°, the incubation distance is 0.08mm, the scanning speed is 1000mm/s, the laser power is 200w, the spot diameter is 0.1mm, and the protective gas is argon. , The water and oxygen content during printing should not exceed 30ppm; enter the cube model data printed by SLM.
  • Tai alloy powder is highly adhesive. While sucking the powder, turn on the ultrasonic emitter to emit ultrasonic waves to cause adhesion in the molding process.
  • the Tai alloy powder on the cylinder automatically falls off and can be adsorbed by the powder suction head, and the unmelted powder is recovered to the vibrating screen 10 through the powder conveying pipe 13.
  • the metal powder sensor in the spiral powder conveying pipe 16 will automatically determine the texture of the powder. If it is metal powder, the cooling device 14 will be turned on. Otherwise, it will enter the vibrating screen 10 directly.
  • the residue collection device will clean the waste materials with larger particles in the vibrating screen 10, and the recyclable powder will enter the powder storage bag.
  • the metal powder sensor in the spiral powder conveying pipe 16 will automatically determine the texture of the powder. If it is metal powder, the cooling device 14 will be turned on. Otherwise, it will enter the vibrating screen 10 directly.
  • the residue collection device will clean the waste materials with larger particles in the vibrating screen 10, and the recyclable powder will enter the powder storage bag.
  • the shape of SLM printing is a cube of 10 ⁇ 10 ⁇ 10mm, the upper 5mm layer is composed of C powder, and the lower 5mm layer is composed of Tai alloy powder.
  • the laser beam for each layer of printing is rotated 67°, the incubation distance is 0.08mm, the scanning speed is 1250mm/s, the laser power is 120w, the spot diameter is 0.1mm, and the protective gas is argon. , the water and oxygen content during printing does not exceed 30ppm; input the cube model data printed by SLM.
  • Tai alloy powder is highly adhesive. While sucking the powder, turn on the ultrasonic emitter to emit ultrasonic waves to cause adhesion in the molding process.
  • the Tai alloy powder on the cylinder automatically falls off and can be adsorbed by the powder suction head, and the unmelted powder is recovered to the vibrating screen 10 through the powder conveying pipe 13.
  • the metal powder sensor in the spiral powder conveying pipe 16 will automatically determine the texture of the powder. If it is metal powder, the cooling device 14 will be turned on. Otherwise, it will enter the vibrating screen 10 directly.
  • the residue collection device will clean the waste materials with larger particles in the vibrating screen 10, and the recyclable powder will enter the powder storage bag.
  • the metal powder sensor in the spiral powder conveying pipe 16 will automatically determine the texture of the powder. If it is metal powder, the cooling device 14 will be turned on. Otherwise, it will enter the vibrating screen 10 directly.
  • the residue collection device will clean the waste materials with larger particles in the vibrating screen 10, and the recyclable powder will enter the powder storage bag.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种回收选区激光熔化梯度粉末装置及回收方法,其装置包括超声波吸粉装置(1)、立式支撑架(2)、第一真空泵(5)、密封装置(6)、第二旋转电机(7)、储粉袋、真空箱(9)、振动筛(10)、废料罐(11)、第二真空泵(12)、输粉管(13)、冷却装置(14)、水箱(15)和螺旋式输粉管(16)。本发明通过冷却装置(14)的冷却有效的减少了金属粉末爆炸的风险,通过多次振动筛选,筛选出最优的梯度粉末。该装置结构简单,可控性强,操作条件易实现,有效的避免了不同粉末的混合粘连,提高了梯度粉末的回收率,实现了成分不同的梯度材料的制造,真空操作减少与空气的接触,且无需人工直接接触粉末,避免对工人的健康造成损害。

Description

一种回收选区激光熔化梯度粉末装置及回收方法 技术领域
本发明涉及激光选区熔化装备技术领域,尤其是涉及一种回收选区激光熔化梯度粉末装置及回收方法。
技术背景
激光选区熔化技术(Selective Laser Melting,SLM),是金属增材制造技术的一种;于1885年由德国Frauhofer研究所提出,其是在金属粉末选择性激光烧结(SLS)的基础上发展起来的。该技术通过激光作为能量源,按照三维模型中规划好的路径在金属粉层上进行逐层扫描,扫描过的金属粉末熔化-凝固后,形成金属的冶金结合,最终获得模型所设计的金属零件。与其他增材技术相比,SLM技术具有较高的熔化和凝固速度,能够制造复杂度高、精度高的零件,已经在航空航天、医疗、模具等领域成功应用。
梯度功能材料(FGM)是指材料的成分、组织和性能在不同部位上各不相同。在实际工程应用中,对零件不同部位的成分、组织和性能的要求各不相同;传统的SLM用同种材料进行加工,不足以解决问题。面对这种问题可以用多种材料快速成型制造作为解决方案。但多种材料同时进行快速成型制造,会造成不同粉末混合,分离回收困难的问题。
目前的选区激光熔化粉末回收技术,粉末回收率较低,主要依靠人工进行回收利用,回收难度大且效率低下,容易造成污染和浪费;对于金属粉末,与空气直接接触极易造成危险。
发明内容
针对上述问题,本发明的一个方式的目的之一是提供一种回收选区激光熔化梯度粉末装置,是能够分离梯度粉末,并对其进行筛选,真空操作减少与空气的接触,减少人工操作有效提高粉末的回收利用率,有效避免了不同粉末的混合粘连。
本发明的一个方式的目的之一提供一种超声波吸粉装置,能够全方位多角度清理成型缸内的未熔粉末,有效的防止了多种粉末的混合,增加了粉末回收率。
本发明的一个方式的目的之一是能够自动识别金属粉末,利用冷却装置减少金属粉末爆炸的风险。
本发明的一个方式的目的之一是设有真空箱,储粉袋回收粉末、自动密封,均在真空箱内完成,真空密封减少与空气的接触,提高了粉末的回收效率,且减少人工直接接触粉末,避免对工人的健康造成损害。
本发明的一个方式的目的之一是提供一种所述回收选区激光熔化梯度粉末装置的回收方 法。
注意,这些目的的记载并不妨碍其他目的的存在。本发明的一个方式并不需要实现所有上述目的。可以从说明书、附图、权利要求书的记载中抽取上述目的以外的目的。
本发明的技术方案是:一种回收选区激光熔化梯度粉末装置,包括超声波吸粉装置、立式支撑架、筛分装置、废料回收装置、输粉管、冷却装置和控制器;
所述超声波吸粉装置安装在立式支撑架上;立式支撑架安装在打印平台上;所述筛分装置的顶部通过输粉管与超声波吸粉装置连接,输粉管中间设有螺旋式输粉管,螺旋式输粉管段设有冷却装置;所述螺旋式输粉管中设有金属粉末传感器,金属粉末传感器用于检测螺旋式输粉管内的粉末质地是否为金属,并将信号发动给控制器;
所述筛分装置内设置至少一张筛网将壳体分成至少上下两个区域,上区域与废料回收装置连接,最下的区域与储粉袋连接;
所述控制器分别与超声波吸粉装置、筛分装置、废料回收装置、金属粉末传感器和冷却装置连接。
上述方案中,所述超声波吸粉装置包括第一旋转电机、第一伸缩电机、至少一个吸粉罩、扁平状吸粉头、超声波换能器、超声波发生器和套筒;
所述第一旋转电机与套筒的上部连接,第一旋转电机用于驱动套筒旋转,所述扁平状吸粉头与套筒的下部连接,伸缩电机与扁平状吸粉头连接,用于驱动扁平状吸粉头上下移动,超声波换能器设置在扁平状吸粉头上,所述超声波换能器上安装有超声波发生器,所述吸粉罩通过吸粉管与套筒连通,吸粉管与第二伸缩电机连接,第二伸缩电机用于驱动吸粉管的伸缩。
进一步的,所述吸粉罩包括第一吸粉罩和第二吸粉罩;所述第一吸粉罩与第二吸粉罩分别安装在套筒的两侧。
上述方案中,所述冷却装置包括水箱和水管,所述螺旋式输粉管位于水箱内,螺旋式输粉管的两端分别与输粉管连通,水箱与水管连接,水管上设有阀门;阀门与控制器连接。
上述方案中,所述筛分装置包括壳体和振动电机;
所述壳体内从上至下依次设置第一筛网和第二筛网,将壳体内从上至下依次分为第一区域、第二区域和第三区域,第一筛网的孔径比第二筛网的孔径大;壳体的顶部设有进料口,壳体上位于第一区域的位置设有第一废料口,壳体上位于第二区域设有第二废料口,壳体的底部设有出料口,出料口与储粉袋连接;振动电机安装在壳体上。
上述方案中,所述废料回收装置包括废料罐和第二真空泵;
所述废料罐与筛分装置的第一废料口和第二废料口连通,所述第二真空泵与废料罐连接。
上述方案中,还包括真空箱;
所述真空箱与第一真空泵与连接;所述真空箱内设有密封装置、第二旋转电机、连接件、重量传感器和储粉袋;
所述密封装置和第二旋转电机安装在基座上,密封装置位于第二旋转电机的上方;
所述重量传感器用于检测储粉袋的重量是否达到预设值,并将信号发送给控制器,控制器与密封装置和第二旋转电机连接;
所述储粉袋通过连接件与第二旋转电机连接,第二旋转电机将储粉袋旋转至密封装置的下方,密封装置用于将储粉袋密封。
上述方案中,所述打印平台上设有水平布置的轨道,立式支撑架安装在轨道上能够沿水平方向移动。
一种回收选区激光熔化梯度粉末装置的回收方法,包括如下步骤:
吸粉:当激光器扫描打印结束后,将超声波吸粉装置移动到成型缸的上方进行吸粉工作,同时开启废料回收装置,将未熔化的粉末通过输粉管吸收到筛分装置里;
冷却:未熔化的粉末经过螺旋式输粉管时,金属粉末传感器检测螺旋式输粉管内的粉末质地是否为金属,并将信号发动给控制器,如果为金属粉末则开启冷却装置,对螺旋式输粉管内的粉末进行冷却,反之,则直接进入筛分装置;
回收:当粉末经过筛分装置处理过后,筛分装置里最下的区域粉末进入储粉袋,其余区域的粉末回收至废料回收装置;
粉末完成回收工作后,将超声波吸粉装置远离成型缸,继续另一种粉末的打印工作,打印工作结束后则重复执行上述吸粉、冷却和回收的步骤直到零件打印完成。
一种回收选区激光熔化梯度粉末装置的回收方法,还包括真空密封的步骤:
所述第一真空泵对真空箱进行抽真空处理;
所述重量传感器检测储粉袋的重量是否达到预设值,并将信号发送给控制器,控制器控制第二旋转电机将储粉袋旋转至密封装置的下方,密封装置将储粉袋密封。
与现有技术相比,本发明的有益效果是:
根据本发明的一个方式,所述回收选区激光熔化梯度粉末装置,能够分离梯度粉末,并对其进行筛选,真空操作减少与空气的接触,减少人工操作有效提高粉末的回收利用率,有效避免了不同粉末的混合粘连。
根据本发明的一个方式,通过超声波吸粉装置能够全方位多角度清理成型缸内的未熔粉末,有效的防止了多种粉末的混合,增加了粉末回收率。
根据本发明的一个方式,通过螺旋式输粉管中设有金属粉末传感器能够自动识别金属粉 末,利用冷却装置减少金属粉末爆炸的风险。
根据本发明的一个方式,设有真空箱,储粉袋回收粉末、自动密封,均在真空箱内完成,真空密封减少与空气的接触,提高了粉末的回收效率,且无需人工直接接触粉末,避免对工人的健康造成损害。
注意,这些效果的记载不妨碍其他效果的存在。本发明的一个方式并不一定必须具有所有上述效果。可以从说明书、附图、权利要求书等的记载显而易见地看出并抽出上述以外的效果。
附图说明
图1为本发明一实施方式的回收选区激光熔化梯度粉末的装置的结构示意图。
图2为本发明一实施方式的回收选区激光熔化梯度粉末的装置的三维模型图。
图3为本发明一实施方式的超声波吸粉装置结构示意图。
图4为本发明一实施方式的振动筛结构示意图。
图中,1.超声波吸粉装置;101.第一旋转电机;102.第一伸缩电机;103.第一吸粉罩;104.扁平状吸粉头;105.超声波换能器;106.超声波发生器;107.第二吸粉罩,108.套筒;109.第二伸缩电机;2.立式支撑架;3.打印平台;4.成型缸;5.第一真空泵;6.密封装置;7.第二旋转电机;8.连接件;9.真空箱;10.振动筛;1001.进料口;1002.第一废料口;1003.出料口;1004.振动电机;1005.第一筛网;1006.第二筛网;1007.壳体;1108.第二废料口;11.废料罐;12.第二真空泵;13.输粉管;14.冷却装置;15.水箱;16.螺旋式输粉管。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中从始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“轴向”、“径向”、“水平”、“竖直”、“内”、“外”等指示的方向或位置关系为基于附图所示的方向或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确看具体的规定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接; 可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
图1所示为所述回收选区激光熔化梯度粉末装置的一种较佳实施方式,包括超声波吸粉装置1、立式支撑架2、筛分装置10、输粉管13、冷却装置14和控制器。
如图2所示所述超声波吸粉装置1安装在立式支撑架2上;立式支撑架2安装在打印平台3上;所述筛分装置10的顶部通过输粉管13与超声波吸粉装置1连接,输粉管13中间设有螺旋式输粉管16,螺旋式输粉管16段设有冷却装置14;所述螺旋式输粉管16中设有金属粉末传感器,金属粉末传感器用于检测螺旋式输粉管16内的粉末质地是否为金属,并将信号发动给控制器。
所述筛分装置10内设置至少一张筛网将壳体1007分成至少上下两个区域,上区域与废料回收装置连接,最下的区域与储粉袋连接。
所述控制器分别与超声波吸粉装置1、筛分装置10、废料回收装置、金属粉末传感器和冷却装置14连接。
优选的,所述成型缸4由耐高温材料制成。
如图3所示,所述超声波吸粉装置1包括第一旋转电机101、第一伸缩电机102、至少一个吸粉罩、扁平状吸粉头104、超声波换能器105、超声波发生器106和套筒108;
所述第一旋转电机101与套筒108的上部连接,第一旋转电机101用于驱动套筒108旋转,所述扁平状吸粉头104与套筒108的下部连接,伸缩电机102与扁平状吸粉头104连接,用于驱动扁平状吸粉头104上下移动,超声波换能器105设置在扁平状吸粉头104上,所述超声波换能器105上安装有超声波发生器106,所述吸粉罩通过吸粉管与套筒108连通,吸粉管与第二伸缩电机109连接,第二伸缩电机109用于驱动吸粉管的伸缩。
优选的,所述吸粉罩包括第一吸粉罩103和第二吸粉罩107;所述第一吸粉罩103与第二吸粉罩107分别安装在套筒108的两侧。
优选的,所述超声波发生器106采用型号为JCC-2的超声波发生器106或其他不同型号的超声波发生器106;优选的,所述超声波换能器105采用型号为SL-HF的超声波换能器105。
优选的,所述冷却装置14包括水箱15和水管,所述螺旋式输粉管16位于水箱15内,螺旋式输粉管16的两端分别与输粉管13连通,水箱15与水管连接,水管上设有阀门;阀门与控制器连接。
优选的,所述螺旋式输粉管16与水箱15为耐高温的材料;所述耐高温材料为胶粉聚苯材料,该材料阻燃性性能好。所述螺旋式输粉管16中间安装有金属粉末传感器,用于实时检 测螺旋式输粉管16内的粉末质地,粉末进入输粉管13时的金属传感器会判别粉末质地,如果为金属粉末则开启冷却装置14,反之,则直接进入振动筛10。
优选的,所述金属粉末传感器安装在螺旋式输粉管16的最前端;优选的,所述螺旋式输粉管16的螺旋式设计是为了延长粉末在管道内的流动时间,提高冷却效果;优选的,所述水箱15的形状为长方体;优选的,所述冷却装置14位于打印平台3上方。
优选的,所述筛分装置10包括壳体1007和振动电机1004;
如图4所示,所述壳体1007内从上至下依次设置第一筛网1105和第二筛网1106,将壳体1007内从上至下依次分为第一区域、第二区域和第三区域,第一筛网1005的孔径比第二筛网1006的孔径大;壳体1007的顶部设有进料口1101,壳体1007上位于第一区域的位置设有第一废料口1002,壳体1007上位于第二区域设有第二废料口1108,壳体1007的底部设有出料口1003,出料口1003与储粉袋连接;振动电机1104安装在壳体1007上。
优选的,所述第一筛网1005、第二筛网1006分别位于壳体1007的三分之一处和三分之二处,第一筛网1005位于第二筛网1006的上方,将壳体1007内部分为筛选区(即第一区域)、过渡区(即第二区域)和合格区(即第三区域)三个部分;优选的,所述第一筛网1005和第二筛网1006的形状为圆形;优选的,进料口1001位于筛选区,废料口1002位于筛选区和过渡区,出料口1003位于合格区;优选的,所述进料口1001、废料口1002和出料口1003的形状皆为圆柱状,所述进料口1001、废料口1002和出料口1003与输粉管13的连接方式为螺纹连接;优选的,壳体1007内部为圆柱形空间;优选的,所述第一筛网1005的网孔直径为10~100μm,第二筛网1006的网孔直径为10~100μm,可以根据不同粉末的粒径需求更改第一筛网1005和第二筛网1006的网孔直径大小,可拆卸式连接为螺纹连接;优选的,所述振动电机1004通过螺纹连接安装在壳体1007的底部;优选的,所诉振动筛10的壳体1007的形状为圆柱体;优选的,所述壳体1007由金属材料制成;优选的,所述废料罐11一侧设置有排气孔,用于和第二真空泵12连接,连接方式为螺纹连接。
优选的,所述废料回收装置包括废料罐11和第二真空泵12;
所述废料罐11与筛分装置10的第一废料口1002和第二废料口1008连通,所述第二真空泵12与废料罐11连接。
优选的,还包括真空箱9;
所述真空箱9与第一真空泵5与连接;所述真空箱9内设有密封装置6、第二旋转电机7、连接件8、重量传感器和储粉袋;
所述密封装置6和第二旋转电机7安装在基座17上,密封装置6位于第二旋转电机7的上方;
所述连接件8包括送粉管和2个相互配合的固定圈,所述2个固定圈安装在送粉管下端,用于固定储粉袋,所述送粉管上端与筛分装置10连接;
所述重量传感器用于检测储粉袋的重量是否达到预设值,并将信号发送给控制器,控制器与密封装置6和第二旋转电机7连接;
所述储粉袋通过连接件8与第二旋转电机7连接,第二旋转电机7将储粉袋旋转至密封装置6的下方,密封装置6用于将储粉袋密封。
优选的,所述打印平台3上设有水平布置的轨道,立式支撑架2安装在轨道上能够沿水平方向移动。
本发明所述回收选区激光熔化梯度粉末装置,能够分离梯度粉末,并对其进行筛选,真空操作减少与空气的接触,减少人工操作有效提高粉末的回收利用率,有效避免了不同粉末的混合粘连,使SLM过程中的成型材料不在单一,能够制造材料成分不同的梯度功能零件,有效提高了零件的性能。
通过超声波吸粉装置能够全方位多角度清理成型缸内的未熔粉末,有效的防止了多种粉末的混合,增加了粉末回收率。
通过螺旋式输粉管16中设有金属粉末传感器能够自动识别金属粉末,利用冷却装置减少金属粉末爆炸的风险。
设有真空箱,储粉袋回收粉末、自动密封,均在真空箱内完成,真空密封减少与空气的接触,提高了粉末的回收效率,且无需人工直接接触粉末,避免对工人的健康造成损害。
一种回收选区激光熔化梯度粉末装置的回收方法,包括如下步骤:
吸粉:当激光器扫描打印结束后,将超声波吸粉装置1移动到成型缸4的上方进行吸粉工作,同时开启废料回收装置,将未熔化的粉末通过输粉管13吸收到筛分装置10里;
冷却:未熔化的粉末经过螺旋式输粉管16时,金属粉末传感器检测螺旋式输粉管16内的粉末质地是否为金属,并将信号发动给控制器,如果为金属粉末则开启冷却装置14,对螺旋式输粉管16内的粉末进行冷却,反之,则直接进入筛分装置10;
回收:当粉末经过筛分装置10处理过后,筛分装置10里最下的区域粉末进入储粉袋,其余区域的粉末回收至废料回收装置;
粉末完成回收工作后,将超声波吸粉装置1远离成型缸4,继续另一种粉末的打印工作,打印工作结束后则重复执行上述吸粉、冷却和回收的步骤直到零件打印完成。
一种回收选区激光熔化梯度粉末装置的回收方法,还包括真空密封的步骤:
所述第一真空泵5对真空箱9进行抽真空处理;
所述重量传感器检测储粉袋的重量是否达到预设值,并将信号发送给控制器,控制器控 制第二旋转电机7将储粉袋旋转至密封装置6的下方,密封装置6将储粉袋密封。
工作原理:
当激光器扫描打印结束后,将超声波吸粉装置1移动到成型缸4的上方,开始粉末回收工作,超声波吸粉装置1运作时先由第一吸粉罩103和第二吸粉罩107吸附成型缸4内未熔粉末,然后通过微动伸缩电机102调整扁平状吸粉头104的高度位置,使其可以吸附成型缸中的其余粉末,最后超声波换能器105将输入的电功率转换为机械功率由超声波发生器106发射到成型缸4内,使粉末无法粘连在成型缸4或零件上,粉末进入螺旋式输粉管16后,螺旋式输粉管16里的金属粉末传感器会自动判别粉末质地,如果为金属粉末则开启冷却装置14,反之,则直接进入振动筛10;振动筛10将超声波吸粉装置1吸附的粉末通过进料口1001进入筛选区,同时开启壳体1007底部的振动电机1004,通过振动使粉末通过第一筛网1005进入过渡区,再次开启振动电机1004,使粉末通过第二筛网1006进入合格区,经过两次振动筛选,使不合格的粉末或者残渣留在筛选区和过渡区,不合格的粉末通过开启第二真空泵12回收到废料罐11中,而合格的粉末则进入合格区,同时开启第一真空泵5使合格区内的粉末通过出料口1003进入下一阶段,开启第一真空泵5,使真空箱9内处于真空状态,此时储粉袋开始接收振动筛10合格区内的合格粉末,当储粉袋内装有一定量的合格粉末时,暂停接收粉末,开启第二旋转电机7将储粉袋置于密封装置6下,使用密封装置6对储粉袋进行密封操作,密封完成后更换新的储粉袋用于接收新的粉末,此后重复上述操作。
本发明全方位的清理了成型缸4内的未熔粉末,包括残余在成型缸4缝隙内的粉末以及一些难以清除的粉末,有效的减少了梯度粉末的混合,提高了梯度粉末的回收率,实现了成分不同的梯度材料的制造。本发明通过冷却装置的冷却有效的减少了金属粉末爆炸的风险。本发明通过多次振动筛选,筛选出最优的梯度粉末,有效的提高了梯度粉末的回收利用率。本发明的操作简便,可控性强,自动化程度高,操作条件易实现,有效的避免了不同粉末的混合粘连,真空密封减少与空气的接触,且无需人工直接接触粉末,避免对工人的健康造成损害。
具体实例1:
对纯元素Fe粉和Nb粉进行烘干4小时。
使用强力吸尘器对打印平台3和成型缸4进行清理。
确定SLM打印的形状为10×10×10mm的正方体,上层5mm为Nb粉组成,下层5mm为Fe粉组成。
在计算机相关软件上设置激光束的行走路径,每层打印激光束旋转67°,孵化间距为0.08mm,扫描速度为800mm/s,激光功率为300w,光斑直径为0.1mm,保护气体为氩气, 打印时的水氧含量不超过30ppm;输入SLM打印的正方体模型数据。
选区激光熔化之前判别粉末的粘连性,纯元素Fe粉和Nb粉的都是粘连性较小的粉末。
向SLM设备中的储粉仓加入Fe粉。
开始抽真空,等待SLM设备中的水氧含量降至30ppm则开始进行打印工作。
当激光器扫描打印结束后,将超声波吸粉装置1移动到成型缸4的上方,开始粉末回收工作,Fe粉粘连性较小,使用正常吸附即可完成清理,将未熔化的粉末通过输粉管13回收到振动筛10里。
与此同时,螺旋式输粉管16里的金属粉末传感器会自动判别粉末质地,如果为金属粉末则开启冷却装置14,反之,则直接进入振动筛10。
当粉末经过振动筛10处理过后,残渣收集装置会清理振动筛10里颗粒较大的废料,而可回收利用的粉末则进入储粉袋。
当Fe粉回收工作完成后,将超声波吸粉装置1远离成型缸。
打开SLM设备使用强力吸尘器清理储粉仓。
清理工作完成后继续向SLM设备中的储粉仓加Nb粉。
开始抽真空,等待SLM设备中的水氧含量降至30ppm则开始进行打印工作。
当激光器扫描打印结束后,将超声波吸粉装置1移动到成型缸4的上方,开始粉末回收工作,Nb粉粘连性较小,使用正常吸附即可完成清理,将未熔化的粉末通过输粉管13回收到振动筛10里。
与此同时,螺旋式输粉管16里的金属粉末传感器会自动判别粉末质地,如果为金属粉末则开启冷却装置14,反之,则直接进入振动筛10。
当粉末经过振动筛10处理过后,残渣收集装置会清理振动筛10里颗粒较大的废料,而可回收利用的粉末则进入储粉袋。
打印及粉末回收工作完成后,关闭SLM设备,静置一个晚上使基板冷却,第二天取出基板于打印模型以及回收的粉末,完成回收选区激光熔化梯度粉末的工作。
具体实例2:
对Tai合金粉末和纯元素Nb粉进行烘干4小时。
使用强力吸尘器对打印平台3和成型缸4进行清理。
确定SLM打印的形状为10×10×10mm的正方体,上层5mm为Nb粉组成,下层5mm为Tai合金粉末组成。
在计算机相关软件上设置激光束的行走路径,每层打印激光束旋转67°,孵化间距为0.08mm,扫描速度为1000mm/s,激光功率为200w,光斑直径为0.1mm,保护气体为氩气, 打印时的水氧含量不超过30ppm;输入SLM打印的正方体模型数据。
选区激光熔化之前判别粉末的粘连性,Tai合金粉末的粘连性较大,纯元素Nb粉粘连性较小。
向SLM设备中的储粉仓加入Tai合金粉末。
开始抽真空,等待SLM设备中的水氧含量降至30ppm则可以开始进行打印工作。
当激光器扫描打印结束后,将超声波吸粉装置1移动到成型缸4的上方,开始粉末回收工作,Tai合金粉末粘连性较大,在吸粉的同时打开超声波发射器,发射超声波使粘连在成型缸上的Tai合金粉末自动脱落下来,能够被吸粉头吸附,将未熔化的粉末通过输粉管13回收到振动筛10里。
与此同时,螺旋式输粉管16里的金属粉末传感器会自动判别粉末质地,如果为金属粉末则开启冷却装置14,反之,则直接进入振动筛10。
当粉末经过振动筛10处理过后,残渣收集装置会清理振动筛10里颗粒较大的废料,而可回收利用的粉末则进入储粉袋。
当Tai合金粉末回收工作完成后,将超声波吸粉装置1远离成型缸。
打开SLM设备使用强力吸尘器清理储粉仓。
清理工作完成后继续向SLM设备中的储粉仓加Nb粉。
开始抽真空,等待SLM设备中的水氧含量降至30ppm则可以开始进行打印工作。
当激光器扫描打印结束后,将超声波吸粉装置1移动到成型缸4的上方,开始粉末回收工作,Nb粉粘连性较小,使用正常吸附即可完成清理,将未熔化的粉末通过输粉管13回收到振动筛10里。
与此同时,螺旋式输粉管16里的金属粉末传感器会自动判别粉末质地,如果为金属粉末则开启冷却装置14,反之,则直接进入振动筛10。
当粉末经过振动筛10处理过后,残渣收集装置会清理振动筛10里颗粒较大的废料,而可回收利用的粉末则进入储粉袋。
打印及粉末回收工作完成后,关闭SLM设备,静置一个晚上使基板冷却,第二天取出基板于打印模型以及回收的粉末,完成回收选区激光熔化梯度粉末的工作。
具体实例3:
对Tai合金粉末和纯元素C粉进行烘干4小时。
使用强力吸尘器对打印平台3和成型缸4进行清理。
确定SLM打印的形状为10×10×10mm的正方体,上层5mm为C粉组成,下层5mm为Tai合金粉末组成。
在计算机相关软件上设置激光束的行走路径,每层打印激光束旋转67°,孵化间距为0.08mm,扫描速度为1250mm/s,激光功率为120w,光斑直径为0.1mm,保护气体为氩气,打印时的水氧含量不超过30ppm;输入SLM打印的正方体模型数据。
选区激光熔化之前判别粉末的粘连性,Tai合金粉末的粘连性较大,纯元素Nb粉粘连性较小。
向SLM设备中的储粉仓加入Tai合金粉末。
开始抽真空,等待SLM设备中的水氧含量降至30ppm则可以开始进行打印工作。
当激光器扫描打印结束后,将超声波吸粉装置1移动到成型缸4的上方,开始粉末回收工作,Tai合金粉末粘连性较大,在吸粉的同时打开超声波发射器,发射超声波使粘连在成型缸上的Tai合金粉末自动脱落下来,能够被吸粉头吸附,将未熔化的粉末通过输粉管13回收到振动筛10里。
与此同时,螺旋式输粉管16里的金属粉末传感器会自动判别粉末质地,如果为金属粉末则开启冷却装置14,反之,则直接进入振动筛10。
当粉末经过振动筛10处理过后,残渣收集装置会清理振动筛10里颗粒较大的废料,而可回收利用的粉末则进入储粉袋。
当Tai合金粉末回收工作完成后,将超声波吸粉装置1远离成型缸。
打开SLM设备使用强力吸尘器清理储粉仓。
清理工作完成后继续向SLM设备中的储粉仓加C粉。
开始抽真空,等待SLM设备中的水氧含量降至30ppm则可以开始进行打印工作。
当激光器扫描打印结束后,将超声波吸粉装置1移动到成型缸4的上方,开始粉末回收工作,C粉的粘连性较大,在吸粉的同时打开超声波发射器,发射超声波使粘连在成型缸上的C粉自动脱落下来,能够被吸粉头吸附,,将未熔化的粉末通过输粉管13回收到振动筛10里。
与此同时,螺旋式输粉管16里的金属粉末传感器会自动判别粉末质地,如果为金属粉末则开启冷却装置14,反之,则直接进入振动筛10。
当粉末经过振动筛10处理过后,残渣收集装置会清理振动筛10里颗粒较大的废料,而可回收利用的粉末则进入储粉袋。
打印及粉末回收工作完成后,关闭SLM设备,静置一个晚上使基板冷却,第二天取出基板于打印模型以及回收的粉末,完成回收选区激光熔化梯度粉末的工作。
上述实施例1-3中的粉末均能够有效的进行回收工作。
应当理解,虽然本说明书是按照各个实施例描述的,但并非每个实施例仅包含一个独立 的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施例的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施例或变更均应包含在本发明的包含范围之内。

Claims (10)

  1. 一种回收选区激光熔化梯度粉末装置,其特征在于,包括超声波吸粉装置(1)、立式支撑架(2)、筛分装置(10)、废料回收装置、输粉管(13)、冷却装置(14)和控制器;
    所述超声波吸粉装置(1)安装在立式支撑架(2)上;立式支撑架(2)安装在打印平台(3)上;所述筛分装置(10)的顶部通过输粉管(13)与超声波吸粉装置(1)连接,输粉管(13)中间设有螺旋式输粉管(16),螺旋式输粉管(16)段设有冷却装置(14);所述螺旋式输粉管(16)中设有金属粉末传感器,金属粉末传感器用于检测螺旋式输粉管(16)内的粉末质地是否为金属,并将信号发动给控制器;
    所述筛分装置(10)内设置至少一张筛网将壳体(1007)分成至少上下两个区域,上区域与废料回收装置连接,最下的区域与储粉袋连接;
    所述控制器分别与超声波吸粉装置(1)、筛分装置(10)、废料回收装置、金属粉末传感器和冷却装置(14)连接。
  2. 根据权利要求1所述的回收选区激光熔化梯度粉末装置,其特征在于,所述超声波吸粉装置(1)包括第一旋转电机(101)、第一伸缩电机(102)、至少一个吸粉罩、扁平状吸粉头(104)、超声波换能器(105)、超声波发生器(106)和套筒(108);
    所述第一旋转电机(101)与套筒(108)的上部连接,第一旋转电机(101)用于驱动套筒(108)旋转,所述扁平状吸粉头(104)与套筒(108)的下部连接,伸缩电机(102)与扁平状吸粉头(104)连接,用于驱动扁平状吸粉头(104)上下移动,超声波换能器(105)设置在扁平状吸粉头(104)上,所述超声波换能器(105)上安装有超声波发生器(106),所述吸粉罩通过吸粉管与套筒(108)连通,吸粉管与第二伸缩电机(109)连接,第二伸缩电机(109)用于驱动吸粉管的伸缩。
  3. 根据权利要求2所述的回收选区激光熔化梯度粉末装置,其特征在于,所述吸粉罩包括第一吸粉罩(103)和第二吸粉罩(107);所述第一吸粉罩(103)与第二吸粉罩(107)分别安装在套筒(108)的两侧。
  4. 根据权利要求1所述的回收选区激光熔化梯度粉末装置,其特征在于,所述冷却装置(14)包括水箱(15)和水管,所述螺旋式输粉管(16)位于水箱(15)内,螺旋式输粉管(16)的两端分别与输粉管(13)连通,水箱(15)与水管连接,水管上设有阀门;阀门与控制器连接。
  5. 根据权利要求1所述的回收选区激光熔化梯度粉末装置,其特征在于,所述筛分装置(10)包括壳体(1007)和振动电机(1004);
    所述壳体(1007)内从上至下依次设置第一筛网(1105)和第二筛网(1106),将壳体(1007)内从上至下依次分为第一区域、第二区域和第三区域,第一筛网(1005)的孔径比第二筛网 (1006)的孔径大;壳体(1007)的顶部设有进料口(1101),壳体(1007)上位于第一区域的位置设有第一废料口(1002),壳体(1007)上位于第二区域设有第二废料口(1108),壳体(1007)的底部设有出料口(1003),出料口(1003)与储粉袋连接;振动电机(1104)安装在壳体(1007)上。
  6. 根据权利要求1所述的回收选区激光熔化梯度粉末装置,其特征在于,所述废料回收装置包括废料罐(11)和第二真空泵(12);
    所述废料罐(11)与筛分装置(10)的第一废料口(1002)和第二废料口(1008)连通,所述第二真空泵(12)与废料罐(11)连接。
  7. 根据权利要求1所述的回收选区激光熔化梯度粉末装置,其特征在于,还包括真空箱(9);
    所述真空箱(9)与第一真空泵(5)与连接;所述真空箱(9)内设有密封装置(6)、第二旋转电机(7)、连接件(8)、重量传感器和储粉袋;
    所述密封装置(6)和第二旋转电机(7)安装在基座(17)上,密封装置(6)位于第二旋转电机(7)的上方;
    所述重量传感器用于检测储粉袋的重量是否达到预设值,并将信号发送给控制器,控制器与密封装置(6)和第二旋转电机(7)连接;
    所述储粉袋通过连接件(8)与第二旋转电机(7)连接,第二旋转电机(7)将储粉袋旋转至密封装置(6)的下方,密封装置(6)用于将储粉袋密封。
  8. 根据权利要求1所述的回收选区激光熔化梯度粉末装置,其特征在于,所述打印平台(3)上设有水平布置的轨道,立式支撑架(2)安装在轨道上能够沿水平方向移动。
  9. 一种根据权利要求1-8任意一项所述回收选区激光熔化梯度粉末装置的回收方法,其特征在于,包括如下步骤:
    吸粉:当激光器扫描打印结束后,将超声波吸粉装置(1)移动到成型缸(4)的上方进行吸粉工作,同时开启废料回收装置,将未熔化的粉末通过输粉管(13)吸收到筛分装置(10)里;
    冷却:未熔化的粉末经过螺旋式输粉管(16)时,金属粉末传感器检测螺旋式输粉管(16)内的粉末质地是否为金属,并将信号发动给控制器,如果为金属粉末则开启冷却装置(14),对螺旋式输粉管(16)内的粉末进行冷却,反之,则直接进入筛分装置(10);
    回收:当粉末经过筛分装置(10)处理过后,筛分装置(10)里最下的区域粉末进入储粉袋,其余区域的粉末回收至废料回收装置;
    粉末完成回收工作后,将超声波吸粉装置(1)远离成型缸(4),继续另一种粉末的打印 工作,打印工作结束后则重复执行上述吸粉、冷却和回收的步骤直到零件打印完成。
  10. 一种根据权利要求9所述回收选区激光熔化梯度粉末装置的回收方法,其特征在于,还包括真空密封的步骤:
    所述第一真空泵(5)对真空箱(9)进行抽真空处理;
    所述重量传感器检测储粉袋的重量是否达到预设值,并将信号发送给控制器,控制器控制第二旋转电机(7)将储粉袋旋转至密封装置(6)的下方,密封装置(6)将储粉袋密封。
PCT/CN2023/091517 2022-07-13 2023-04-28 一种回收选区激光熔化梯度粉末装置及回收方法 WO2024012012A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2313996.7A GB2618970B (en) 2022-07-13 2023-04-28 Device and method for recyling selective laser melting gradient powders

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210819499.3A CN115041703B (zh) 2022-07-13 2022-07-13 一种回收选区激光熔化梯度粉末装置及回收方法
CN202210819499.3 2022-07-13

Publications (1)

Publication Number Publication Date
WO2024012012A1 true WO2024012012A1 (zh) 2024-01-18

Family

ID=83164789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091517 WO2024012012A1 (zh) 2022-07-13 2023-04-28 一种回收选区激光熔化梯度粉末装置及回收方法

Country Status (2)

Country Link
CN (1) CN115041703B (zh)
WO (1) WO2024012012A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115041703B (zh) * 2022-07-13 2024-06-07 江苏大学 一种回收选区激光熔化梯度粉末装置及回收方法
CN115383134A (zh) * 2022-10-31 2022-11-25 四川工程职业技术学院 一种用于3d打印设备的粉末回收装置
CN115635101B (zh) * 2022-12-01 2023-04-04 北京清研智束科技有限公司 增材制造装置及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107639231A (zh) * 2016-07-21 2018-01-30 上海珂懋奇光电科技有限公司 一种选区激光熔化成型设备的粉末回收装置及回收方法
CN208825555U (zh) * 2018-09-26 2019-05-07 中北大学 金属粉末slm成形过程动态回收修复系统
US20190151954A1 (en) * 2017-11-17 2019-05-23 National Chung-Shan Institute Of Science And Technology Powder recycling system and continuous loss in weight module applied thereto
CN109848416A (zh) * 2019-04-12 2019-06-07 上海应用技术大学 一种金属选区激光熔化用的烟尘过滤及粉末回收装置
CN214027259U (zh) * 2020-12-14 2021-08-24 上海毅速激光科技有限公司 一种3d打印过程中同步过量粉末回收的装置
CN115041703A (zh) * 2022-07-13 2022-09-13 江苏大学 一种回收选区激光熔化梯度粉末装置及回收方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060214335A1 (en) * 2005-03-09 2006-09-28 3D Systems, Inc. Laser sintering powder recycle system
KR20150124553A (ko) * 2014-04-28 2015-11-06 현대중공업 주식회사 선박 건조 설비 및 이를 이용한 입체물품 제조방법 및 레이저 프린터
CN103978211B (zh) * 2014-05-23 2016-01-20 北京理工大学 异质材料选区激光熔化的铺粉及粉末回收装置
CN109014203A (zh) * 2018-09-26 2018-12-18 中北大学 金属粉末slm成形过程动态回收修复系统
CN109576496B (zh) * 2018-12-29 2020-07-31 中北大学 废铝回收制备激光选区熔化用粉末的方法、产物以及设备
CN213350829U (zh) * 2020-09-29 2021-06-04 湖北华程三维科技有限公司 一种金属三维打印机的金属粉末分类回收装置
CN114054778A (zh) * 2021-11-25 2022-02-18 广东粤港澳大湾区硬科技创新研究院 粉末回收装置及3d打印设备
CN114433880B (zh) * 2022-02-10 2023-04-11 安徽艾密克电联科技有限责任公司 一种多粉末复合使用的选区激光熔融送粉铺粉设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107639231A (zh) * 2016-07-21 2018-01-30 上海珂懋奇光电科技有限公司 一种选区激光熔化成型设备的粉末回收装置及回收方法
US20190151954A1 (en) * 2017-11-17 2019-05-23 National Chung-Shan Institute Of Science And Technology Powder recycling system and continuous loss in weight module applied thereto
CN208825555U (zh) * 2018-09-26 2019-05-07 中北大学 金属粉末slm成形过程动态回收修复系统
CN109848416A (zh) * 2019-04-12 2019-06-07 上海应用技术大学 一种金属选区激光熔化用的烟尘过滤及粉末回收装置
CN214027259U (zh) * 2020-12-14 2021-08-24 上海毅速激光科技有限公司 一种3d打印过程中同步过量粉末回收的装置
CN115041703A (zh) * 2022-07-13 2022-09-13 江苏大学 一种回收选区激光熔化梯度粉末装置及回收方法

Also Published As

Publication number Publication date
CN115041703A (zh) 2022-09-13
CN115041703B (zh) 2024-06-07

Similar Documents

Publication Publication Date Title
WO2024012012A1 (zh) 一种回收选区激光熔化梯度粉末装置及回收方法
CN109158599B (zh) 金属零部件损伤的3d打印原位修复系统及其修复方法
CN105170988B (zh) 一种回收金属增材制造基板上残留粉末的方法及装置
CN108296635A (zh) 一种适用于寒冷环境的节能型激光焊接设备
CN105820416A (zh) 3d塑烧抗静电阻燃气液过滤板
CN111283191B (zh) 一种选区激光熔化复杂零件的超声后处理装置及方法
CN206549734U (zh) 一种具有自动送料和自动除尘的碎石机
CN111961889B (zh) 一种熔炼合金过程中粉状料的加入设备及方法
JPH0899318A (ja) 廃棄プラスチック製品の処理装置
GB2618970A (en) Device and method for recyling selective laser melting gradient powders
CN217615054U (zh) 一种基于除尘的矿粉研磨一体化设备
CN110921328A (zh) 一种均匀给料器
CN211840141U (zh) 一种金属3d打印机粉末回收装置
CN219561418U (zh) 一种用于3d打印金属粉末制备设备的气流循环辅助装置
CN203862038U (zh) 一种布袋除尘器
KR101521245B1 (ko) 방향성 전기강판 코팅용 세라믹 분말 분리 장치
CN219274473U (zh) 适用于3d打印机的自动筛粉收粉系统
CN214877857U (zh) 一种用于粉体的冷却螺旋上料装置
CN206553998U (zh) 一种工业落地粉料的回收装置
CN218013205U (zh) 一种具有震荡结构的流化床气流粉碎机
CN218925264U (zh) 一种用于水泥熟料的震动过滤机
WO2019020865A1 (en) ELIMINATION AND RECYCLING OF POWDER
CN116571764B (zh) 金属零件生产用激光增材制作设备
CN219384105U (zh) 高效环保粉末下料装置
CN213197121U (zh) 一种喷砂设备中砂砾循环输送装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202313996

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20230428

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838511

Country of ref document: EP

Kind code of ref document: A1