WO2024011997A1 - 开关阀 - Google Patents

开关阀 Download PDF

Info

Publication number
WO2024011997A1
WO2024011997A1 PCT/CN2023/089950 CN2023089950W WO2024011997A1 WO 2024011997 A1 WO2024011997 A1 WO 2024011997A1 CN 2023089950 W CN2023089950 W CN 2023089950W WO 2024011997 A1 WO2024011997 A1 WO 2024011997A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
valve core
driven
valve
active component
Prior art date
Application number
PCT/CN2023/089950
Other languages
English (en)
French (fr)
Inventor
刘果
刘小菡
Original Assignee
南京菡束环保设备有限公司
刘果
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京菡束环保设备有限公司, 刘果 filed Critical 南京菡束环保设备有限公司
Publication of WO2024011997A1 publication Critical patent/WO2024011997A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0672One-way valve the valve member being a diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/126Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a diaphragm, bellows, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • F16K7/14Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
    • F16K7/17Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat the diaphragm being actuated by fluid pressure

Definitions

  • the present invention relates to a diaphragm valve, and in particular to a switch valve.
  • the solenoid valve can be used to control the on and off of the liquid in the pipeline, but the solenoid valve requires power supply. Therefore, it cannot satisfy the on-off control of the liquid in the pipeline in a non-electrical environment.
  • embodiments of the present invention provide a switching valve.
  • a switching valve including:
  • the valve body has a water inlet, a water outlet and a liquid control port.
  • the valve body is formed with a water inlet cavity connected to the water inlet and a water outlet cavity connected to the water outlet.
  • the water inlet cavity is connected to the water outlet.
  • the water outlet cavity is separated by dividing parts;
  • a first diaphragm is disposed above the water inlet chamber and the water outlet chamber and can cover the water inlet chamber and the water outlet chamber; the area corresponding to the first diaphragm and the water inlet chamber It has a balance hole, and the area corresponding to the first diaphragm and the water outlet chamber has a controlled hole formed by the inner hole of the pipe body;
  • a valve core mechanism is located between the liquid control port and the first diaphragm and is opposite to the controlled hole.
  • the valve core mechanism causes the first diaphragm to collapse by blocking the compression controlled hole.
  • the dividing member is then pressed to separate and close the water inlet chamber from the water outlet chamber or to allow the water from the water inlet to enter the water inlet chamber by removing the pressure on the controlled hole of the first diaphragm.
  • the liquid pushes upward against the first diaphragm to connect the water inlet chamber and the water outlet chamber;
  • the liquid control port is used to introduce pressure liquid, and the valve core mechanism, after being driven by the pressure liquid introduced by the liquid control port, compresses the first diaphragm by pressing the controlled hole or cancels the control of all pressure liquids. Describe the compression of the first diaphragm.
  • the valve core mechanism compresses the first diaphragm after being driven by the pressure liquid, and cancels the pressure on the first diaphragm after the valve core mechanism is de-driven.
  • the valve core mechanism includes a direct-acting valve core, which compresses the first diaphragm after being driven by the pressure liquid, and cancels control after the direct-acting valve core is deactivated. The compression of the first diaphragm.
  • the spool mechanism includes an active component and a driven spool, and the driven spool responds to the action of the active component so that the active component drives the driven component after being driven by the pressure liquid.
  • the valve core presses the first diaphragm, and drives the driven valve core to cancel the pressure on the first diaphragm after the active component is released from being driven.
  • the valve core mechanism cancels the compression of the first diaphragm after being driven by the pressure liquid, and compresses the first diaphragm after the valve core mechanism is released from being driven.
  • the spool mechanism includes an active component and a driven spool, and the driven spool responds to the action of the active component so that the active component forces the driven component after being driven by the pressure liquid.
  • the valve core cancels the compression of the first diaphragm, and forces the driven valve core to compress the first diaphragm after the active component is released from being driven.
  • an actuating component is provided between the direct-acting valve core and the valve body, and the actuating component is used to reset the direct-acting valve core to reset the direct-acting valve core after the direct-acting valve core is deactivated. Release the pressure on the first diaphragm.
  • the actuating component includes a magnetic component respectively disposed on the valve body and the direct-acting valve core.
  • the direct-acting valve core is caused to move by magnetic repulsion or magnetic attraction between the magnetic components. Reset after releasing the drive.
  • the actuating component is a return spring disposed between the linear-acting valve core and the valve body.
  • a first actuating component is disposed between the active component and the driven valve core, and a second actuating component is disposed between the active component and the valve body;
  • the first actuating component is used to move the driven valve core and the active component in the same direction, so as to drive the driven valve core to press the driven component by driving the active component towards the first diaphragm.
  • first diaphragm first diaphragm
  • the second actuating component is used to reset the active component after being released from being driven.
  • the first actuating component is used to drive the driven valve core to cancel the action on the first Diaphragm compression.
  • the first actuating component includes magnetic components respectively provided on the active component and the driven valve core, and the magnetic attraction is provided between the magnetic components so that the active component drives the slave valve core. moving parts;
  • the second actuating component includes a spring disposed between the active component and the valve body or the second actuating component includes a magnetic component respectively disposed on the active component and the valve body, both of which The active component is reset by providing magnetic repulsion between the two magnetic components.
  • a first actuating component and a second actuating component are provided between the driven valve core and the active component; the active component is a sleeve, and the driven valve core is disposed on a closed top limiter. in the cylinder; where:
  • the first actuating component includes a first magnet provided in the driven valve core and a second magnet provided in the sleeve; the same magnetic poles of the first magnet and the second magnet are oriented in the same direction.
  • the first magnet is lower than the second magnet so that the sleeve exerts a magnetic repulsion force on the driven valve core to force the driven valve core to press the third A diaphragm, and when the sleeve is driven by the pressure liquid to move, the sleeve drives the second magnet to move and restricts the driven valve core through the limiting sleeve, so that the third
  • the two magnets are lower than the first magnet so that the sleeve exerts a reverse magnetic repulsion force on the driven valve core, and the driven valve core is driven by the reverse magnetic repulsion force to cancel the first diaphragm. oppression;
  • the second actuating component includes a spring disposed between the sleeve and the valve body for returning the sleeve.
  • the partition member is a cylindrical body, the partition member surrounds an inner annular cavity as a water outlet chamber, an outer annular cavity is formed outside the inner annular cavity as a water inlet cavity, and the top of the inner annular cavity is formed valve hole.
  • a sealing component is provided between the liquid control port and the valve core mechanism to limit communication between the liquid control port and the cavity of the valve core mechanism.
  • the sealing component is a second diaphragm
  • the second diaphragm isolates the liquid control port from the valve core mechanism
  • the pressure liquid drives the valve core mechanism by pressing the second diaphragm.
  • the first diaphragm is an eardrum.
  • the second diaphragm is a tympanic membrane or a reed
  • the reed has an arc-shaped portion that is protruding in the initial state.
  • the reed is stacked with a limiting ring.
  • the arc-shaped portion of the reed is driven by the pressure liquid to deform in the opposite direction.
  • the limiting ring is used for The degree of deformation of the reed is limited so that the reed can be reset after being released from being driven.
  • a limiting plate is provided on the first diaphragm to limit the opening of the first diaphragm to open the valve hole.
  • a gas discharge channel is opened in the valve body for discharging the gas under the second diaphragm into the area facing the first diaphragm when the direct-acting valve core is driven.
  • the liquid in the pipeline where the switch valve is located can be controlled by relying on the pressure of the liquid in other pipelines.
  • the switch valve has a locking function to prevent the switch valve from leaking when the liquid pressure fluctuates.
  • the reed is used as the second diaphragm, so that when the liquid pressure meets the preset pressure threshold, the switch valve is opened or closed, thereby avoiding malfunction of the internal valve core mechanism of the switch valve.
  • the magnet is selected as the actuating component, so that the force on the valve core mechanism will not fail due to long-term use, thereby increasing the service life of the switch valve.
  • Figure 1 is a view of the on-off valve in use according to Embodiment 1 of the present invention (the actuating component is a magnet, and the valve hole is open).
  • Figure 2 is a view of the on-off valve in use according to Embodiment 1 of the present invention (the actuating component is a magnet and the valve hole is closed).
  • Figure 3 is a schematic diagram of using a reed as the second diaphragm in Embodiment 1.
  • Figure 4 is a view of the on-off valve in use according to Embodiment 1 of the present invention (the actuating component is a spring, and the valve hole is open).
  • Figure 5 is a view of the on-off valve in use according to Embodiment 1 of the present invention (the actuating component is a spring, and the valve hole is closed).
  • Figure 6 shows that the actuating component uses magnetic attraction to drive the direct-acting valve core.
  • FIG. 7 is a view of the on-off valve provided in Embodiment 2 of the present invention (valve hole is open).
  • FIG. 8 is a view of the on-off valve in use (the valve hole is closed) according to Embodiment 2 of the present invention.
  • Figure 9 is a schematic diagram of using the eardrum as the second diaphragm in Embodiment 2.
  • FIG. 10 is a view of the on-off valve provided in Embodiment 2 of the present invention (valve hole closed).
  • FIG. 11 is a view of the on-off valve provided in Embodiment 2 of the present invention (the valve hole is open).
  • valve 100-switch valve; 10-valve body; 11-lower valve body; 12-upper valve body; 13-water inlet; 14-water outlet; 15-liquid control port; 16-inner ring cavity; 161-separating parts; 17 -Valve hole; 18-outer ring cavity; 19-pressure chamber; 20-first diaphragm; 21-balance hole; 22-controlled hole; 23-pipe body; 24-limiting plate; 40-second diaphragm ; 30-valve core mechanism; 31-direct-acting valve core; 311-top; 312-sealing ring; 313-elastic plug; 321-magnet; 322-magnet; 33-gas discharge channel; 34-spring; 41-limit Ring; 30'-valve core mechanism; 31'-driven valve core; 321'-first magnet; 322'-second magnet; 33'-exhaust hole; 34'-sleeve; 341'-top; 35 '-Limiting cylinder; 36'-Spring. 30’’-spool mechanism. 30
  • the switch valve 100 disclosed in this embodiment includes: a valve body 10 , a first diaphragm 20 , a second diaphragm 40 and a valve core mechanism 30 .
  • the valve body 10 includes a lower valve body 11 and an upper valve body 12 docked above the lower valve body 11 .
  • a pressure chamber 19 is formed inside the docking area of the upper valve body 12 and the lower valve body 11 .
  • a water inlet 13 and a water outlet 14 are formed on both sides of the lower valve body 11.
  • An inner annular cavity 16 formed by a partition member 161 of a cylindrical structure is formed in the middle of the lower valve body 11. The bottom of the inner annular cavity 16 is in contact with the water outlet.
  • the inner ends of the inner ring cavity 14 are connected, and the upper end of the inner ring cavity 16 is formed into a valve hole 17 .
  • An outer ring cavity 18 is formed on the periphery of the inner ring cavity 16 , and the inner end of the water inlet 13 passes through the outer ring cavity 18 . In this way, as shown in FIG. 1 , the liquid can flow into the outer annular cavity 18 through the water inlet 13 , enter the inner annular cavity 16 from the top of the valve hole 17 , and then flow out from the water outlet 14 .
  • the first diaphragm 20 is disposed above the valve hole 17 and radially covers the outer annular cavity 18.
  • the edge of the first diaphragm 20 can be clamped between the upper valve body 12 and the lower valve body 11.
  • the first diaphragm 20 is installed at the docking point, and the pressure chamber 19 is located above the first diaphragm 20 .
  • the first diaphragm 20 has a deformable feature. Specifically, as shown in FIG. 2 , the first diaphragm 20 can be pressed downward to cause the first diaphragm 20 to be sealed by deformation near the edge area or the entire area.
  • the deformation of the area or the deformation of the entire area pushes up to open the valve hole 17 .
  • An eardrum with certain elasticity and flexibility can be selected as the first diaphragm 20 .
  • the first diaphragm 20 is provided with a balance hole 21 in an area corresponding to the outer annular cavity 18.
  • the balance hole 21 is provided in an inner end area close to the water inlet 13; the first diaphragm 20 is provided in an area corresponding to the valve hole 17.
  • the top of the upper valve body 12 has a liquid control port 15 .
  • the liquid control port 15 can be formed by a joint installed on the top of the upper valve body 12 .
  • the second diaphragm 40 is disposed below the liquid control port 15 .
  • the valve core mechanism 30 is disposed in the upper valve body 12 and is between the first diaphragm 20 and the second diaphragm 40 .
  • the valve core mechanism 30 includes a direct-acting valve core 31 and an actuating component.
  • a guide cavity is provided inside the upper valve body 12. The guide cavity penetrates downward to the pressure chamber 19 and upward to the chamber below the second diaphragm 40.
  • the direct-acting valve core 31 is disposed in the guide chamber.
  • An elastic plug is provided at the lower end of the core 31 to oppose the controlled hole 22 formed by the tube body 23 in the middle of the first diaphragm 20.
  • the linear valve core 31 By moving downward, the linear valve core 31 can cause the elastic plug to block the controlled hole 22 and The first diaphragm 20 is pressed to subsequently drive the first diaphragm 20 to block the valve hole 17, and the direct-acting valve core 31 moves upward to cancel the blocking of the controlled hole 22 and cancel the pressure on the first diaphragm 20.
  • the liquid from the water inlet 13 enters the outer annular cavity 18 and pushes the first diaphragm 20 upward, thereby causing the first diaphragm 20 to deform upward to open the valve hole 17 .
  • a limiting plate 24 is provided on the first diaphragm 20 . When the first diaphragm 20 deforms upward, the limiting plate 24 limits the movement of the first diaphragm 20 to the valve hole 17 by blocking with the top of the pressure chamber 19 . The amount of opening (or opening).
  • the liquid control port 15 is used to introduce liquid and pressurize the upper end of the direct-acting valve core 31 through the second diaphragm 40, so that the direct-acting valve core 31 moves downward to block the controlled hole 22 and subsequently seal the third A compression of the diaphragm 20.
  • the actuating component is used to provide a reset force for the direct-acting valve core 31, so that the direct-acting valve core 31 moves upward to the reset state after being released from being driven by the liquid in the hydraulic control port 15, thereby canceling the blocking of the controlled hole 22. and pressure on the first diaphragm 20 .
  • the actuating components can be magnets 322, 321 respectively provided in the upper valve body 12 and the direct-acting valve core 31. The two magnets 322, 321 can provide reset for the direct-acting valve core 31 through magnetic repulsion or magnetic attraction.
  • the lower end of the magnet 321 located in the direct-acting valve core 31 and the upper end of the magnet 322 located in the upper valve body 12 face each other with the same pole, which causes a magnetic repulsion force to be formed between the two magnets 322, 321.
  • the direct-acting valve core 31 uses magnetic repulsion to reset.
  • the magnet 322 located in the direct-acting valve core 31 and the magnet 321 located in the upper valve body 12 have opposite magnetic poles facing the same direction (or one of them is a magnet and the other is a magnetic steel sheet), and The magnet 321 located in the direct-acting valve core 31 and the magnet 322 located in the upper valve body 12 are maintained at a height relative to each other. In this way, a gap between the magnet 322 in the upper valve body 12 and the magnet 321 of the direct-acting valve core 31 is formed.
  • the magnetic attraction force drives the direct-acting valve core 31 to move upward and reset.
  • the actuating component can also be a spring 34.
  • the spring 34 is provided between the top step of the direct-acting valve core 31 and the step of the upper valve body 12. The liquid in the liquid control port 15 cancels the response. After the direct-acting valve core 31 is driven, the spring 34 returns to drive the direct-acting valve core 31 to move upward and reset.
  • the gas discharge channel 33 is always open to discharge the gas in the chamber of the second diaphragm 40 into the pressure chamber 19 of the lower valve body 11 to avoid leakage in the chamber.
  • the gas generates resistance, and when the direct-acting valve core 31 moves to the lowest position, the controlled hole 22 is first blocked, and then the first diaphragm 20 is pressed to block the valve hole 17, and the sealing ring 312 of the direct-acting valve core 31 will The gas discharge channel 33 is isolated from the pressure chamber 19 to prevent the liquid in the pressure chamber 19 from flowing up through the gas discharge channel 33 .
  • the second diaphragm 40 may be an eardrum with certain elasticity and flexibility, or may be a reed with certain elasticity and rigidity.
  • the second diaphragm 40 is an eardrum
  • the bottom of the joint above the second diaphragm 40 is set to a spherical surface
  • the top 311 of the direct-acting valve core 31 is also set to a spherical surface.
  • the reed is configured to be an upwardly protruding arch in a free state, and the top 311 of the direct-acting valve core 31 is configured in a conical structure and is in the center position. Form a thimble or sphere structure. Furthermore, the arched area of the reed is driven by the pressure liquid to deform in the opposite direction (deforms downward), and the limiting ring 41 is used to limit the degree of deformation of the reed so that the reed can return to its original position after being released from being driven.
  • the liquid pressure at the liquid control port 15 reaches enough to deform the arched area of the reed downward and overcome the actuating component, the liquid presses the reed to deform downward, and when the reed deforms downward, it pushes against the direct-acting valve core. 31 moves downward so that the direct-acting valve core 31 blocks the controlled hole 22 and presses the first diaphragm 20 .
  • the reed is limited by the limiting ring 41 and automatically resets, and the actuating component causes the direct-acting valve core 31 to reset.
  • the liquid pressure first needs to be able to drive the reed to deform before driving the valve core mechanism 30.
  • the liquid pressure required for the downward deformation of the reed can be obtained through calculation and multiple experiments. Therefore, using a reed as the second diaphragm 40 requires the liquid pressure to meet a preset pressure threshold in order to drive the valve core mechanism 30 to operate, thereby preventing the valve core mechanism 30 from malfunctioning.
  • the switching valve 100 is connected in the pipeline through the water inlet 13 and the water outlet 14, and a hydraulic control pipeline is led from other pipelines and connected to the liquid control port 15 of the switching valve.
  • the liquid in the pipeline where the switching valve is located will pass through the switching valve.
  • the water inlet 13 of 100 flows into the outer ring cavity 18 of the switching valve 100, and pushes up the first diaphragm 20, leaving the valve hole 17 in an open state.
  • the liquid then enters the valve hole 17 and flows out from the water outlet 14, partially
  • the liquid flows into the pressure chamber 19 through the balance hole 21 and flows out from the controlled hole 22 and then also flows out from the water outlet 14.
  • the switching valve 100 is in an open state.
  • a notch 241 is provided on the side wall of the limiting plate 24 close to the balance hole 23 so that liquid can also enter the internal cavity enclosed by the limiting plate 24 .
  • the liquid at the hydraulic control port 15 of the switch valve 100 drives the valve core mechanism 30 to seal the valve core mechanism 30 .
  • Blocking the controlled hole 22 and then compressing the first diaphragm 20 causes the first diaphragm 20 to close the valve hole 17.
  • the liquid flowing into the outer ring cavity 18 from the water inlet 13 of the switching valve 100 cannot pass through the valve hole 17, and It can only enter the pressure chamber 19 through the balance hole 21. Since the controlled hole 22 is blocked, the liquid entering the pressure chamber 19 builds pressure in the pressure chamber 19 to jointly press the first diaphragm 20 downward with the valve core mechanism 30.
  • the switching valve 100 is closed. Since the liquid in the pressure chamber 19 also presses the first diaphragm 20, the liquid pressure at the liquid control port 15 and the pressure of the liquid in the pipeline where the switch valve 100 is located will not cause a certain decrease or fluctuation. Valve hole 17 is open. Therefore, the switching valve 100 provided in this embodiment also has a locking function for the valve hole 17 .
  • the advantages of the switch valve 100 provided in this embodiment are:
  • the liquid in the pipeline where the switch valve is located can be controlled by relying on the pressure of the liquid in other pipelines.
  • the switch valve has a locking function to prevent the switch valve from leaking when the liquid pressure fluctuates.
  • the reed is used as the second diaphragm, so that when the liquid pressure meets the preset pressure threshold, the switch valve is opened or closed, thereby avoiding malfunction of the internal valve core mechanism of the switch valve.
  • the magnet is selected as the actuating component, so that the force on the valve core mechanism will not fail due to long-term use, thereby increasing the service life of the switch valve.
  • the on-off valve 100' proposed in this embodiment has the internal structures of the upper valve body 12 and the lower valve body 11 , the structural types and functions of the first diaphragm 20 and the second diaphragm 40 and The arrangement methods are consistent with Embodiment 1.
  • the main difference between this embodiment and Embodiment 1 lies in the structure of the valve core mechanism.
  • the valve core mechanism 30' includes an active component, a driven valve core 31', a first actuating component and a second actuating component, and a limiting cylinder 35'.
  • the radial position of the driven valve core 31' is the same as the position of the direct-acting valve core 31 of Embodiment 1, that is, it is located above the first diaphragm 20 and the lower end faces the controlled hole 22 of the first diaphragm 20.
  • the limiting cylinder 35' is fixedly arranged outside the driven valve core 31'. The top of the limiting cylinder 35' is closed to limit the highest position of the driven valve core 31' when it moves upward.
  • the active component is configured
  • the sleeve 34' is formed into a sleeve 34', the top of the sleeve 34' is closed and is configured to be driven by the second diaphragm 40, that is, the top 341' is configured to be consistent with the top 311 of the direct-acting valve core 31 in Embodiment 1. structure.
  • the sleeve 34' is set outside the limiting sleeve 35', and the first actuating component is arranged between the sleeve 34' and the driven valve core 31'.
  • the sleeve 34' is driven by the liquid at the liquid control port 15.
  • the sleeve 34' drives the driven valve core 31' to move in the same direction through the first actuating component.
  • the first actuating component includes a first magnet 321' and a second magnet 322' respectively disposed in the driven valve core 31' and the sleeve 34', and makes the two magnets have the same magnet orientation, so that the sleeve When 34' is driven by the liquid from the hydraulic control port 15, it can drive the driven valve core 31' to move in the same direction, so that when the sleeve 34' is driven, the sleeve 34' drives the driven valve core 31' through the first actuating component. Move downward to block the controlled hole 22 and subsequently compress the first diaphragm 20 .
  • the second actuating component is disposed between the sleeve 34' and the upper valve body 12.
  • the second actuating component is used to provide an upward restoring force for the sleeve 34', so that when the sleeve 34' is released from the liquid control port 15
  • the second actuating component drives the sleeve 34' to move upward and reset.
  • the sleeve 34' drives the driven valve core 31' upward through the first actuating component. The movement cancels the blocking of the controlled hole 22 and the pressure of the first diaphragm 20 .
  • the second actuating component may be a magnet respectively provided in the sleeve 34' and the upper valve body 12, which drives the sleeve 34' to move upward and reset through magnetic repulsion or magnetic attraction, or it may be provided in the sleeve 34' as shown in Figures 7 and 8.
  • Spring 36' between sleeve 34' and upper valve body 12.
  • the upper valve body 12 is also provided with an exhaust hole 33' penetrating from the internal chamber of the upper valve body 12 to the outside of the upper valve body 12.
  • the exhaust hole 33' is used to discharge the second diaphragm 40 when it deforms downward. gas to prevent the gas in the internal chamber from producing resistance to the deformation of the second diaphragm 40 .
  • the overall function of the on-off valve 100' provided in this embodiment is the same as that in Embodiment 1.
  • the difference mainly lies in the internal components and action relationships of the valve core mechanism 30'.
  • the following is a brief introduction to the on-off valve 100' provided in this embodiment. working process:
  • the liquid drives the sleeve 34' with the help of the second diaphragm 40 (the second diaphragm 40 can be a tympanic membrane or a reed, and its function is the same as in Embodiment 1) , the sleeve 34' moves downward, and the sleeve 34' drives the driven valve core 31' to move downward with the help of the magnetic attraction generated by the first actuating component (the magnetic attraction shown in Figures 7 and 8). As shown in Figure 8, the driven valve core 31' finally blocks the controlled hole 22 and then presses the first diaphragm 20. Then, through the balance hole 21, the pressure chamber 19 is filled with liquid and presses against the first diaphragm. 20 also carried out oppression.
  • the second diaphragm 40 can be a tympanic membrane or a reed, and its function is the same as in Embodiment 1
  • the sleeve 34' moves downward
  • the sleeve 34' drives
  • the second actuating component When the liquid at the liquid control port 15 releases the drive to the sleeve 34', the second actuating component provides reset for the sleeve 34'. During the reset process of the sleeve 34', the sleeve 34' passes through the first actuating component.
  • the driven valve core 31' is driven to move upward, as shown in Figure 7, thereby canceling the pressure on the first diaphragm 20, thereby allowing the liquid flowing into the valve body from the water inlet 13 to open the first diaphragm 20.
  • the switching valve 100' provided in this embodiment has the same function as the switching valve 100 provided in Embodiment 1 and can be applied to the same scenario.
  • the on-off valve 100'' provided in this embodiment is the same as the on-off valve 100' provided in Embodiment 2 in terms of the structural form of the valve body, the first diaphragm 20, the second diaphragm 40 and the valve core mechanism. It is the first actuating component that changes the relative motion relationship between the sleeve 34' and the driven valve core 31'. This change makes the switch valve 100'' provided in this embodiment different from Embodiment 1 and Embodiment 1. 2 makes a difference in the functionality of the on/off valves provided.
  • the same magnetic poles of the first magnet 321' and the second magnet 322' of the first actuating component are oriented in the same direction.
  • the first The magnet 321' is lower than the second magnet 322' so that the sleeve 34' exerts a magnetic repulsion force on the driven valve core 31' to force the driven valve core 31' to press the first diaphragm 20, while the sleeve 34' is driven by
  • the sleeve 34' drives the second magnet 322' to move and restricts the driven valve core 31' through the limiting cylinder 35' so that the second magnet 322' is lower than the first magnet 321'.
  • the sleeve 34' exerts a reverse magnetic repulsion force on the driven valve core 31', and the driven valve core 31' is driven by the reverse magnetic repulsion force to cancel the pressure on the first diaphragm 20; the second actuating component is also used for
  • the spring 36' that resets the sleeve body is used to reset the sleeve 34'.
  • the sleeve 34' and the driven valve core 31' are driven by the cooperation of the first actuating component and the second actuating component to produce an opposite positional relationship. . That is, as shown in Figure 10, when the sleeve 34' is not driven and is in a high position, the sleeve 34' forces the driven valve core 31' to block the controlled hole 22 through the first actuating component and then presses the second A low position of the diaphragm 20 is shown in Figure 11.
  • the characteristic of the switching valve 100'' provided in this embodiment is that when the liquid pressure at the liquid control port 15 rises to a level that can drive the valve core mechanism 30'', the valve core mechanism 30'' will switch the valve 100''.
  • the hole 17 opens, thereby opening the switch valve 100''.
  • the switch valve 100'' keeps pressing the first diaphragm 20.
  • the switching valve 100'' remains in the cut-off state. Therefore, the switch valve 100'' provided in this embodiment has the ability to close the pipeline when the liquid pressure in the pipeline is low.
  • the on-off valve 100'' provided in this embodiment uses liquid to control related on-off events, which also has the same advantages as those in Embodiments 1 and 2. That is, no electricity is required, and linkage management of on-off can be achieved.
  • the switch valve closes, thereby blocking the flow of liquid, thereby protecting the normal operation of the components in the pipeline system.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

一种开关阀,包括阀体(10),其具有进水口(13)、出水口(14)以及液控口(15),阀体内形成有进水腔(18)以及出水腔(16),进水腔(18)与出水腔(16)由分隔部件(161)分隔;第一膜片(20),其设置于进水腔(18)与出水腔(16)的上方并能够覆盖进水腔(18)与出水腔(16);第一膜片(20)具有平衡孔(21)及受控孔(22);阀芯机构(30),其通过封堵压迫受控孔(22)而使第一膜片(20)随后压迫分隔部件(161)以将进水腔(18)与出水腔(16)分隔关闭或者通过撤销对第一膜片(20)的受控孔(22)的压迫而使来自进水口(13)而进入到进水腔(18)的液体向上推抵第一膜片(20)而将进水腔(18)与出水腔(16)连通;其中:液控口(15)用于引入压力液体,阀芯机构(30)在受驱于液控口(15)所引入的压力液体后通过压迫受控孔(22)而压迫第一膜片(20)或撤销对第一膜片(20)的压迫。

Description

开关阀 技术领域
本发明涉及一种隔膜阀尤其涉及一种开关阀。
背景技术
在管路中可以通过电磁阀实现控制液体的通断,但电磁阀需要电源供电,因而,无法满足无电环境中对管路内液体的通断控制。
技术问题
针对现有技术中存在的上述技术问题,本发明的实施例提供了一种开关阀。
技术解决方案
为解决上述技术问题,本发明的实施例采用的技术方案是:
一种开关阀,包括:
阀体,其具有进水口、出水口以及液控口,所述阀体内形成有与所述进水口连通的进水腔以及与所述出水口连通的出水腔,所述进水腔与所述出水腔由分隔部件分隔;
第一膜片,其设置于所述进水腔与所述出水腔的上方并能够覆盖所述进水腔与所述出水腔;所述第一膜片与所述进水腔所对应的区域具有平衡孔,所述第一膜片与所述出水腔所对应的区域具有由管体的内孔形成受控孔;
阀芯机构,其介于所述液控口与所述第一膜片之间并与所述受控孔相对,所述阀芯机构通过封堵压迫受控孔而使所述第一膜片随后压迫所述分隔部件以将所述进水腔与所述出水腔分隔关闭或者通过撤销对所述第一膜片的受控孔的压迫而使来自所述进水口而进入到进水腔的液体向上推抵所述第一膜片而将所述进水腔与所述出水腔连通;其中:
所述液控口用于引入压力液体,所述阀芯机构在受驱于所述液控口所引入的压力液体后通过压迫所述受控孔而压迫所述第一膜片或撤销对所述第一膜片的压迫。
优选地,所述阀芯机构在受驱于压力液体后压迫所述第一膜片,并在所述阀芯机构解除受驱后而撤销对所述第一膜片的压迫。
优选地,所述阀芯机构包括直动阀芯,所述直动阀芯在受驱于压力液体后压迫所述第一膜片,并在所述直动阀芯解除受驱后而撤销对所述第一膜片的压迫。
优选地,所述阀芯机构包括主动部件和从动阀芯,所述从动阀芯响应于所述主动部件的动作以使得所述主动部件在受驱于压力液体后而带动所述从动阀芯压迫所述第一膜片,并在所述主动部件解除受驱后而带动所述从动阀芯撤销对所述第一膜片的压迫。
优选地,所述阀芯机构在受驱于压力液体后而撤销对所述第一膜片的压迫,并在所述阀芯机构解除受驱后压迫所述第一膜片。
优选地,所述阀芯机构包括主动部件和从动阀芯,所述从动阀芯响应于所述主动部件的动作以使得所述主动部件在受驱于压力液体后而迫使所述从动阀芯撤销对所述第一膜片的压迫,并在所述主动部件解除受驱后而迫使所述从动阀芯压迫所述第一膜片。
优选地,所述直动阀芯与所述阀体之间设置有作动部件,在所述直动阀芯解除受驱后,所述作动部件用于使所述直动阀芯复位以撤销对所述第一膜片的压迫。
优选地,所述作动部件包括分别设置在所述阀体以及所述直动阀芯上的磁力部件,所述磁力部件之间借由磁斥力或磁引力而使得所述直动阀芯在解除受驱后复位。
优选地,所述作动部件为设置于所述直动阀芯与所述阀体之间的复位弹簧。
优选地,所述主动部件与所述从动阀芯之间设置有第一作动部件,所述主动部件与所述阀体之间设置有第二作动部件;其中:
所述第一作动部件用于使所述从动阀芯与所述主动部件同向运动,以通过使所述主动部件朝第一膜片受驱而带动所述从动阀芯压迫所述第一膜片;
所述第二作动部件用于使所述主动部件在解除受驱后复位,在所述主动部件复位过程中借由第一作动部件而带动所述从动阀芯撤销对所述第一膜片的压迫。
优选地,所述第一作动部件包括分别设置于所述主动部件以及所述从动阀芯上的磁力部件,所述磁力部件之间通过提供磁引力而使得所述主动部件带动所述从动部件;
所述第二作动部件包括设置于所述主动部件与所述阀体之间的弹簧或者所述第二作动部件包括分别设置于所述主动部件以及所述阀体上的磁力部件,两个磁力部件之间通过提供磁斥力而使得所述主动部件复位。
优选地,所述从动阀芯与所述主动部件之间设置有第一作动部件和第二作动部件;所述主动部件为套筒,所述从动阀芯设置于顶部封闭的限位筒中;其中:
所述第一作动部件包括设置于所述从动阀芯中的第一磁体以及设置于所述套筒中的第二磁体;所述第一磁体和所述第二磁体的同性磁极朝向相同在所述套筒解除受驱后,所述第一磁体低于所述第二磁体以使得所述套筒对所述从动阀芯施加磁斥力而迫使所述从动阀芯压迫所述第一膜片,而在所述套筒受驱于压力液体而移动过程中,所述套筒带动所述第二磁体移动并通过所述限位筒对所述从动阀芯的限制而使得第二磁体低于第一磁体而使得所述套筒对所述从动阀芯施加反向的磁斥力,所述从动阀芯受驱于反向磁斥力而撤销对所述第一膜片的压迫;
所述第二作动部件包括设置于所述套筒与所述阀体之间的弹簧以用于使所述套筒复位。
优选地,所述分隔部件为筒状体,所述分隔部件围成内环腔以作为出水腔,所述内环腔外形成外环腔以作为进水腔,所述内环腔的顶部形成阀孔。
优选地,所述液控口与所述阀芯机构之间设置有密封部件以限制所述液控口与所述阀芯机构的所在腔连通。
优选地,所述密封部件为第二膜片,所述第二膜片将所述液控口与所述阀芯机构隔离,压力液体通过压迫所述第二膜片而驱动所述阀芯机构。
优选地,所述第一膜片为鼓膜。
优选地,所述第二膜片为鼓膜或者簧片;
所述簧片具有初始状态凸出的弧形部,所述簧片叠置有限位环,所述簧片的弧形部受驱于压力液体而朝反向变形,所述限位环用于限制所述簧片的变形程度以使得所述簧片解除受驱后能够复位。
优选地,所述第一膜片上设置有限位板以限定所述第一膜片使得阀孔打开的开度。
优选地,所述阀体中开设有气体排泄通道,以用于在所述直动阀芯受驱时将所述第二膜片下方的气体排入所述第一膜片所对的区域。
有益效果
与现有技术相比,本发明公开的开关阀的有益效果是:
1、无电源时依靠其他管路液体的压力能够控制开关阀所在管路中的液体的通断。
2、能够实现不同类型及不同浓度的液体间混合时,择一性的打开或关闭,进而联动其他液体的通断。
3、能够实现不同类型及不同浓度的液体间流动控制时,择一性的打开或关闭,进而联动其他液体的通断。
4、开关阀具有锁死功能,避免液体压力波动时开关阀出现泄漏。
5、采用簧片作为第二膜片,使得液体压力满足预先设定的压力阈值时,再打开或关闭开关阀,进而避免了开关阀内部阀芯机构误动。
6、选用磁体作为作动部件,这使得对阀芯机构的力的作用不会因为长期使用而失效,进而提高了开关阀的使用寿命。
7、在液体压力不足时开关阀关闭,进而阻断液体的流动,进而保护了管路系统中的部件的正常工作。
应当理解,前面的一般描述和以下详细描述都仅是示例性和说明性的,而不是用于限制本发明。
本发明中描述的技术的各种实现或示例的概述,并不是所公开技术的全部范围或所有特征的全面公开。
附图说明
在不一定按比例绘制的附图中,相同的附图标记可以在不同的视图中描述相似的部件。具有字母后缀或不同字母后缀的相同附图标记可以表示相似部件的不同实例。附图大体上通过举例而不是限制的方式示出各种实施例,并且与说明书以及权利要求书一起用于对所发明的实施例进行说明。在适当的时候,在所有附图中使用相同的附图标记指代同一或相似的部分。这样的实施例是例证性的,而并非旨在作为本装置或方法的穷尽或排他实施例。
图1为本发明的实施例1所提供的开关阀的使用状态视图(作动部件为磁体,阀孔打开)。
图2为本发明的实施例1所提供的开关阀的使用状态视图(作动部件为磁体,阀孔关闭)。
图3为实施例1选用簧片作为第二膜片的示意图。
图4为本发明的实施例1所提供的开关阀的使用状态视图(作动部件为弹簧,阀孔打开)。
图5为本发明的实施例1所提供的开关阀的使用状态视图(作动部件为弹簧,阀孔关闭)。
图6为作动部件采用磁引力驱动直动阀芯。
图7为本发明的实施例2所提供的开关阀的使用状态视图(阀孔打开)。
图8为本发明的实施例2所提供的开关阀的使用状态视图(阀孔关闭)。
图9为实施例2选用鼓膜作为第二膜片的示意图。
图10为本发明的实施例2所提供的开关阀的使用状态视图(阀孔关闭)。
图11为本发明的实施例2所提供的开关阀的使用状态视图(阀孔打开)。
附图标记:
100-开关阀;10-阀体;11-下阀体;12-上阀体;13-进水口;14-出水口;15-液控口;16-内环腔;161-分隔部件;17-阀孔;18-外环腔;19-压力腔;20-第一膜片;21-平衡孔;22-受控孔;23-管体;24-限位板;40-第二膜片; 30-阀芯机构;31-直动阀芯;311-顶部;312-密封圈;313-弹性塞;321-磁体;322-磁体;33-气体排泄通道;34-弹簧;41-限位环; 30’-阀芯机构;31’-从动阀芯;321’-第一磁体;322’-第二磁体;33’-排气孔;34’-套筒;341’-顶部;35’-限位筒;36’-弹簧。30’’-阀芯机构。30’’-阀芯机构;100’-开关阀;100’’-开关阀。
本发明的最佳实施方式
为了使得本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本发明使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本发明实施例的以下说明清楚且简明,本发明省略了已知功能和已知部件的详细说明。
实施例1
如图1至图6所示,本实施例所公开的开关阀100包括:阀体10、第一膜片20、第二膜片40以及阀芯机构30。
阀体10包括下阀体11以及对接于下阀体11的上方的上阀体12,上阀体12与下阀体11的对接区域的内部形成压力腔19。在下阀体11两侧形成有进水口13和出水口14,下阀体11的中部形成有由筒状体结构的分隔部件161形成的内环腔16,该内环腔16的底部与出水口14的内端连通,内环腔16的上端形成为阀孔17。内环腔16的外围形成有外环腔18,进水口13的内端贯通至外环腔18。如此,如图1所示,液体可通过进水口13流入外环腔18,并可从阀孔17的顶部进入到内环腔16,随后可从出水口14流出。
第一膜片20设置于阀孔17的上方,并径向的覆盖至外环腔18,优选地,可通过将第一膜片20的边缘夹持于上阀体12与下阀体11的对接处而实现对第一膜片20的安装,压力腔19位于第一膜片20的上方。该第一膜片20具有可变形的特点,具体地,如图2所示,可通过向下压迫第一膜片20而使得第一膜片20借由靠近边缘区域或整体区域的变形封堵阀孔17,并且,如图1所示,在撤销对第一膜片20向下的压迫后,从进水口13进入到外环腔18的液体能够将第一膜片20借由其靠近边缘区域变形或整体区域的变形而向上顶起而使阀孔17打开。可选用具有一定弹性且柔性的鼓膜作为第一膜片20。
第一膜片20与外环腔18对应的区域设置有平衡孔21,优选地,使平衡孔21设置在靠近进水口13的内端区域;第一膜片20与阀孔17对应的区域设置有受控孔22,该受控孔22由穿设第一膜片20并向上凸出于第一膜片20的管体23的顶部形成。
上阀体12的顶部具有液控口15,该液控口15可由安装于上阀体12的顶部的接头形成,第二膜片40设置于液控口15的下方。
如图1和图2所示,阀芯机构30设置于上阀体12中,并介于第一膜片20和第二膜片40之间。具体地,该阀芯机构30包括直动阀芯31和作动部件。上阀体12的内部开设有导向腔,该导向腔向下贯通至压力腔19,向上贯通至第二膜片40下方的腔室,直动阀芯31设置于导向腔中,该直动阀芯31的下端设置有弹性塞与第一膜片20的中部的管体23所形成的受控孔22相对,直动阀芯31通过向下运动而能够使得弹性塞封堵受控孔22并压迫第一膜片20,以随后带动第一膜片20封堵阀孔17,而在直动阀芯31向上运动以撤销对受控孔22的封堵以及撤销对第一膜片20的压迫后,如图1所示,来自进水口13的液体进入到外环腔18而对第一膜片20实施向上的推力,进而使得第一膜片20通过向上变形而将阀孔17打开。优选地,在第一膜片20上设置有限位板24,在第一膜片20向上变形时,限位板24通过与压力腔19的顶部止挡而限制第一膜片20对阀孔17的打开量(或称开度)。
液控口15用于引入液体而通过第二膜片40对直动阀芯31的上端进行施压,而使直动阀芯31朝下运动而实施对受控孔22封堵以及随后对第一膜片20的压迫。
作动部件用于为直动阀芯31提供复位力,而使得直动阀芯31在解除被液控口15的液体驱动后而向上运动至复位状态,进而撤销对受控孔22的封堵以及对第一膜片20的压迫。作动部件可以为分别设置于上阀体12以及直动阀芯31中的磁体322,321,该两个磁体322,321可通过磁斥力或磁引力为直动阀芯31提供复位,例如,如图1和图2所示,位于直动阀芯31中的磁体321的下端与位于上阀体12中的磁体322的上端磁极同极相对,这使得两个磁体322,321之间形成磁斥力,直动阀芯31利用磁斥力复位。再例如,如图6所示,位于直动阀芯31中的磁体322以及位于上阀体12中的磁体321异性磁极朝向相同(或者使其中一个为磁体,另一个为磁钢片),且位于直动阀芯31中的磁体321与位于上阀体12中的磁体322保持在高度上相对的位置,如此,上阀体12中的磁体322对直动阀芯31的磁体321之间形成磁引力,以带动直动阀芯31向上运动而复位。
如图4和图5所示,作动部件还可以是弹簧34,该弹簧34设置在直动阀芯31的顶部台阶与上阀体12的台阶之间,在液控口15的液体撤销对直动阀芯31驱动后,该弹簧34复位而带动直动阀芯31向上运动而复位。
如图1和图2所示,在液控口15处的液体通过第二膜片40驱动直动阀芯31时,第二膜片40会适应性的产生变形并使得其下方的腔室容积减小,为避免第二膜片40下方的液体因无法排出而产生抗力,在导向腔的腔壁与第二膜片40的下方的腔室之间开设气体排泄通道33,并且,直动阀芯31在未受驱而处于高位时,其上的密封圈312位于气体排泄通道33的下端口的上方,而在直动阀芯31受驱后处于低位时,密封圈312位于该下端口的下方。如此,在直动阀芯31受驱向下运动过程中,气体排泄通道33始终打开而将第二膜片40的腔室内的气体排入下阀体11的压力腔19中以避免该腔室内的气体产生抗力,而在直动阀芯31运动至最低位过程中先封堵受控孔22,随后压迫第一膜片20封堵阀孔17后,直动阀芯31的密封圈312将气体排泄通道33与压力腔19隔离,进而避免压力腔19内的液体通过气体排泄通道33上流。
第二膜片40可以为具有一定弹性和柔性的鼓膜,也可以为具有一定弹性和刚性的簧片。
如图1和图2所示,若第二膜片40为鼓膜,则使得第二膜片40上方的接头的底部设置成球形面,并将直动阀芯31的顶部311也设置成球形面。当液控口15处的液体压力不足以驱动直动阀芯31时,在作动部件的作用下,直动阀芯31向上推抵第二膜片40而使得第二膜片40处于张紧状态,而当液控口15处的液体驱动直动阀芯31时,第二膜片40变形而褶皱。
如图3所示,若第二膜片40为簧片,该簧片构造成在自由状态下呈向上凸出的拱形,直动阀芯31的顶部311配置成锥形结构且在中心位置形成顶针或球体结构。并且,簧片的拱形区域受驱于压力液体而朝反向变形(向下变形),限位环41用于限制簧片的变形程度以使得簧片解除受驱后能够复位。当液控口15处的液体压力达到足以能够使簧片的拱形区域向下变形并克服作动部件时,液体压迫簧片向下变形,该簧片向下变形时推抵直动阀芯31向下运动而使得直动阀芯31封堵受控孔22并压迫第一膜片20。而在液体压力不足以维持变形时,簧片受限位环41限制而自动复位,作动部件使得直动阀芯31复位。
对于使用簧片作为第二膜片40的情况,液体压力在驱动阀芯机构30前首先需要能够驱动簧片变形,可通过计算和多次实验来获得簧片向下变形所需的液体压力。因而,利用簧片作为第二膜片40需要使液体压力满足预设的压力阈值才能够驱动阀芯机构30动作,进而避免阀芯机构30误动。
下面介绍一下本实施例所提供的开关阀100的工作过程:
该开关阀100通过进水口13和出水口14连接在管路中, 自其它管路引出一液控管路而连接至开关阀的液控口15。
如图1所示,若来自液控管路的液体压力不足以驱动阀芯机构30封堵受控孔22而随后压迫第一膜片20时,开关阀所在管路内的液体会通过开关阀100的进水口13流入开关阀100的外环腔18,并将第一膜片20向上顶起,而使阀孔17处于打开状态,液体随后进入到阀孔17并从出水口14流出,部分液体通过平衡孔21流入压力腔19内并从受控孔22流出而随后也从出水口14流出,此时,开关阀100处于打开状态。如图1所示,在限位板24靠近平衡孔23的侧壁上开设有槽口241以使得液体也能够进入限位板24所包络的内部腔。
如图2所示,若来自液控管路的液体的压力上升至能够驱动阀芯机构30的程度,开关阀100的液控口15处的液体驱动阀芯机构30而使阀芯机构30封堵受控孔22并随后压迫第一膜片20,这使得第一膜片20关闭阀孔17,如此,从开关阀100的进水口13流入外环腔18的液体不能通过阀孔17,而只能通过平衡孔21入到压力腔19,由于受控孔22被封堵,进入压力腔19的液体在压力腔19中建立压力以与阀芯机构30共同向下压迫第一膜片20,进而使得开关阀100关闭。由于压力腔19内的液体也对第一膜片20进行压迫,因而,液控口15处的液体压力以及开关阀100所在的管路内的液体的压力出现一定的降低或波动也不会使得阀孔17打开。因而,本实施例所提供的开关阀100还具有在对阀孔17的锁死功能。
本实施例所提供的开关阀100的优势在于:
1、无电源时依靠其他管路液体的压力能够控制开关阀所在管路中的液体的通断。
2、能够实现不同类型及不同浓度的液体间混合时,择一性的打开或关闭,进而联动其他液体的通断。
3、能够实现不同类型及不同浓度的液体间流动控制时,择一性的打开或关闭,进而联动其他液体的通断。
4、开关阀具有锁死功能,避免液体压力波动时开关阀出现泄漏。
5、采用簧片作为第二膜片,使得液体压力满足预先设定的压力阈值时,再打开或关闭开关阀,进而避免了开关阀内部阀芯机构误动。
6、选用磁体作为作动部件,这使得对阀芯机构的力的作用不会因为长期使用而失效,进而提高了开关阀的使用寿命。
本发明的实施方式
实施例2
如图7至9所述,本实施例所提的开关阀100’的关于上阀体12、下阀体11的内部构造、第一膜片20、第二膜片40的结构类型、作用以及设置方式均与实施例1一致,本实施例与实施例1的主要区别在于阀芯机构的结构。
在本实施例中,阀芯机构30’包括主动部件、从动阀芯31’、第一作动部件以及第二作动部件、以及限位筒35’。从动阀芯31’所在的径向位置与实施例1的直动阀芯31的位置相同,即,位于第一膜片20的上方且下端朝向第一膜片20的受控孔22。限位筒35’固定的设置在从动阀芯31’外,该限位筒35’的顶部封闭以用于限制从动阀芯31’向上运动时的最高位置,优选地,主动部件被构造成套筒34’,套筒34’的顶部封闭,且构造成适合被第二膜片40驱动的构造,即顶部341’构造成与实施例1中的直动阀芯31的顶部311一致的构造。
套筒34’套设在限位筒35’外,第一作动部件设置在套筒34’与从动阀芯31’之间,该套筒34’作为被液控口15处的液体驱动的直接受驱部件,在套筒34’受驱时,套筒34’通过第一作动部件驱动从动阀芯31’在相同方向上运动。
该第一作动部件包括分别设置在从动阀芯31’与套筒34’中的第一磁体321’和第二磁体322’,并使得两个磁体的同性磁体朝向相同,如此,套筒34’受到液控口15的液体驱动时能够带动从动阀芯31’同向运动,以实现在套筒34’受驱时套筒34’通过第一作动部件带动从动阀芯31’向下运动,以封堵受控孔22并随后压迫第一膜片20。
第二作动部件设置在套筒34’与上阀体12之间,该第二作动部件用于为套筒34’提供向上的复位力,以当套筒34’解除液控口15处的液体的驱动时,第二作动部件驱动套筒34’向上运动而复位,在套筒34’复位过程中,套筒34’借由第一作动部件而带动从动阀芯31’向上运动而撤销对受控孔22的封堵以及第一膜片20的压迫。该第二作动部件可以是分别设置在套筒34’和上阀体12中通过磁斥力或磁引力驱动套筒34’向上运动复位的磁体,或者如图7和图8所示的设置在套筒34’与上阀体12之间的弹簧36’。
在上阀体12中还开设有自上阀体12的内部腔室贯通至上阀体12外的排气孔33’,该排气孔33’用于在第二膜片40向下变形时排出气体以避免内部腔室的气体对第二膜片40的变形产生抗力。
本实施例所提供的开关阀100’从整体的功能上与实施例1相同,区别主要在于阀芯机构30’内部部件及动作关系上,下面简单介绍一下本实施例所提供的开关阀100’的工作过程:
当液控口15处的液体达到一定压力时,液体借助第二膜片40(该第二膜片40可以为鼓膜,也可以为簧片,其作用与实施例1相同)驱动套筒34’,套筒34’向下运动,套筒34’借助于第一作动部件所产生的磁引力(图7和图8所展示的为磁引力)而带动从动阀芯31’向下运动,如图8所示,并最终使得从动阀芯31’封堵受控孔22并随后压迫第一膜片20,而后,借由平衡孔21,压力腔19内充满液体而对第一膜片20也进行压迫。
当液控口15处的液体解除对套筒34’的驱动时,第二作动部件为套筒34’提供复位,在套筒34’复位过程中,套筒34’通过第一作动部件带动从动阀芯31’向上运动,如图7所示,从而撤销对第一膜片20的压迫,进而使得从进水口13流入阀体内的液体能够将第一膜片20打开。
本实施例所提供的开关阀100’具有与实施例1所提供的开关阀100相同的功能,可应用于相同的场景。
实施例3
本实施例所提供的开关阀100’’与实施例2所提供的开关阀100’关于阀体、第一膜片20、第二膜片40以及阀芯机构的结构形式一种,所不同的是第一作动部件使得套筒34’与从动阀芯31’之间的相对运动关系发生了改变,这一改变使得本实施例所提供的开关阀100’’与实施例1、实施例2所提供的开关阀的功能产生了差异。
如图10和图11所示,在本实施例中,第一作动部件的第一磁体321’和第二磁体322’的同性磁极朝向相同,在套筒34’解除受驱后,第一磁体321’低于第二磁体322’以使得套筒34’对从动阀芯31’施加磁斥力而迫使从动阀芯31’压迫第一膜片20,而在套筒34’受驱于压力液体而移动过程中,套筒34’带动第二磁体322’移动并通过限位筒35’对从动阀芯31’的限制而使得第二磁体322’低于第一磁体321’而使得套筒34’对从动阀芯31’施加反向的磁斥力,从动阀芯31’受驱于反向磁斥力而撤销对第一膜片20的压迫;第二作动部件也是用于使套体复位的弹簧36’以用于使套筒34’复位。
从套筒34’与从动阀芯31’的动作关系上看,套筒34’与从动阀芯31’受到第一作动部件与第二作动部件的配合驱动而产生相反的位置关系。即,如图10所示,当套筒34’未受驱而处于高位时,套筒34’借由第一作动部件迫使从动阀芯31’处于封堵受控孔22并随后压迫第一膜片20的低位,如图11所示,而当套筒34’受驱后而处于低位时,套筒34’借由第一作动部件以及限位筒35’的限位作用而迫使撤销对受控孔22的封堵及对第一膜片20的压迫而切换至高位。
由于本实施例所提供的开关阀100’’的阀芯机构30’’的受驱状态与第一膜片20的受压状态的关系与实施例1、2所提供的阀芯机构的受驱状态与第一膜片20的受压状态的关系完全相反,进而导致本实施例所提供的开关阀100’’的功能与实施例1、实施例2所提供的开关阀不同。
本实施例所提供的开关阀100’’的特点是当液控口15处的液体压力升高至能够驱动阀芯机构30’’时,阀芯机构30’’将开关阀100’’的阀孔17打开,进而使开关阀100’’打开,而当液控口15处的液体压力较低而无法驱动阀芯机构30’’动作时,阀芯机构30’’保持压迫第一膜片20而使开关阀100’’保持截断状态。因而,本实施例所提供的开关阀100’’具有可在管路内的液体压力低时将管路关闭。另外,本实施例所提供的开关阀100’’利用液体控制相关关联通断也具有与实施例1、2一致的优势。即,均可不需要电力,并可实现管理通断的联动。
本实施例所提供的开关阀与其他实施例的开关阀不同的优势在于:
在液体压力不足时开关阀关闭,进而阻断液体的流动,进而保护了管路系统中的部件的正常工作。
序列表自由内容
此外,尽管已经在本发明中描述了示例性实施例,其范围包括任何和所有基于本发明的具有等同元件、修改、省略、组合(例如,各种实施例交叉的方案)、改编或改变的实施例。权利要求书中的元件将被基于权利要求中采用的语言宽泛地解释,并不限于在本说明书中或本申请的实施期间所描述的示例,其示例将被解释为非排他性的。因此,本说明书和示例旨在仅被认为是示例,真正的范围和精神由以下权利要求以及其等同物的全部范围所指示。
以上描述旨在是说明性的而不是限制性的。例如,上述示例(或其一个或更多方案)可以彼此组合使用。例如本领域普通技术人员在阅读上述描述时可以使用其它实施例。另外,在上述具体实施方式中,各种特征可以被分组在一起以简单化本发明。这不应解释为一种不要求保护的公开的特征对于任一权利要求是必要的意图。相反,本发明的主题可以少于特定的公开的实施例的全部特征。从而,以下权利要求书作为示例或实施例在此并入具体实施方式中,其中每个权利要求独立地作为单独的实施例,并且考虑这些实施例可以以各种组合或排列彼此组合。本发明的范围应参照所附权利要求以及这些权利要求赋权的等同形式的全部范围来确定。
以上实施例仅为本发明的示例性实施例,不用于限制本发明,本发明的保护范围由权利要求书限定。本领域技术人员可以在本发明的实质和保护范围内,对本发明做出各种修改或等同替换,这种修改或等同替换也应视为落在本发明的保护范围内。

Claims (19)

  1. 一种开关阀,其特征在于,包括:
    阀体,其具有进水口、出水口以及液控口,所述阀体内形成有与所述进水口连通的进水腔以及与所述出水口连通的出水腔,所述进水腔与所述出水腔由分隔部件分隔;
    第一膜片,其设置于所述进水腔与所述出水腔的上方并能够覆盖所述进水腔与所述出水腔;所述第一膜片与所述进水腔所对应的区域具有平衡孔,所述第一膜片与所述出水腔所对应的区域具有由管体的内孔形成受控孔;
    阀芯机构,其介于所述液控口与所述第一膜片之间并与所述受控孔相对,所述阀芯机构通过封堵压迫受控孔而使所述第一膜片随后压迫所述分隔部件以将所述进水腔与所述出水腔分隔关闭或者通过撤销对所述第一膜片的受控孔的压迫而使来自所述进水口而进入到进水腔的液体向上推抵所述第一膜片而将所述进水腔与所述出水腔连通;其中:
    所述液控口用于引入压力液体,所述阀芯机构在受驱于所述液控口所引入的压力液体后通过压迫所述受控孔而压迫所述第一膜片或撤销对所述第一膜片的压迫。
  2. 根据权利要求1所述的开关阀,其特征在于,所述阀芯机构在受驱于压力液体后压迫所述第一膜片,并在所述阀芯机构解除受驱后而撤销对所述第一膜片的压迫。
  3. 根据权利要求2所述的开关阀,其特征在于,所述阀芯机构包括直动阀芯,所述直动阀芯在受驱于压力液体后压迫所述第一膜片,并在所述直动阀芯解除受驱后而撤销对所述第一膜片的压迫。
  4. 根据权利要求2所述的开关阀,其特征在于,所述阀芯机构包括主动部件和从动阀芯,所述从动阀芯响应于所述主动部件的动作以使得所述主动部件在受驱于压力液体后而带动所述从动阀芯压迫所述第一膜片,并在所述主动部件解除受驱后而带动所述从动阀芯撤销对所述第一膜片的压迫。
  5. 根据权利要求1所述的开关阀,其特征在于,所述阀芯机构在受驱于压力液体后而撤销对所述第一膜片的压迫,并在所述阀芯机构解除受驱后压迫所述第一膜片。
  6. 根据权利要求5所述的开关阀,其特征在于,所述阀芯机构包括主动部件和从动阀芯,所述从动阀芯响应于所述主动部件的动作以使得所述主动部件在受驱于压力液体后而迫使所述从动阀芯撤销对所述第一膜片的压迫,并在所述主动部件解除受驱后而迫使所述从动阀芯压迫所述第一膜片。
  7. 根据权利要求3所述的开关阀,其特征在于,所述直动阀芯与所述阀体之间设置有作动部件,在所述直动阀芯解除受驱后,所述作动部件用于使所述直动阀芯复位以撤销对所述第一膜片的压迫。
  8. 根据权利要求7所述的开关阀,其特征在于,所述作动部件包括分别设置在所述阀体以及所述直动阀芯上的磁力部件,所述磁力部件之间借由磁斥力或磁引力而使得所述直动阀芯在解除受驱后复位。
  9. 根据权利要求7所述的开关阀,其特征在于,所述作动部件为设置于所述直动阀芯与所述阀体之间的复位弹簧。
  10. 根据权利要求4所述的开关阀,其特征在于,所述主动部件与所述从动阀芯之间设置有第一作动部件,所述主动部件与所述阀体之间设置有第二作动部件;其中:
    所述第一作动部件用于使所述从动阀芯与所述主动部件同向运动,以通过使所述主动部件朝第一膜片受驱而带动所述从动阀芯压迫所述第一膜片;
    所述第二作动部件用于使所述主动部件在解除受驱后复位,在所述主动部件复位过程中借由第一作动部件而带动所述从动阀芯撤销对所述第一膜片的压迫。
  11. 根据权利要求10所述的开关阀,其特征在于,
    所述第一作动部件包括分别设置于所述主动部件以及所述从动阀芯上的磁力部件,所述磁力部件之间通过提供磁引力而使得所述主动部件带动所述从动部件;
    所述第二作动部件包括设置于所述主动部件与所述阀体之间的弹簧或者所述第二作动部件包括分别设置于所述主动部件以及所述阀体上的磁力部件,两个磁力部件之间通过提供磁斥力而使得所述主动部件复位。
  12. 根据权利要求6所述的开关阀,其特征在于,所述从动阀芯与所述主动部件之间设置有第一作动部件和第二作动部件;所述主动部件为套筒,所述从动阀芯设置于顶部封闭的限位筒中;其中:
    所述第一作动部件包括设置于所述从动阀芯中的第一磁体以及设置于所述套筒中的第二磁体;所述第一磁体和所述第二磁体的同性磁极朝向相同在所述套筒解除受驱后,所述第一磁体低于所述第二磁体以使得所述套筒对所述从动阀芯施加磁斥力而迫使所述从动阀芯压迫所述第一膜片,而在所述套筒受驱于压力液体而移动过程中,所述套筒带动所述第二磁体移动并通过所述限位筒对所述从动阀芯的限制而使得第二磁体低于第一磁体而使得所述套筒对所述从动阀芯施加反向的磁斥力,所述从动阀芯受驱于反向磁斥力而撤销对所述第一膜片的压迫;
    所述第二作动部件包括设置于所述套筒与所述阀体之间的弹簧以用于使所述套筒复位。
  13. 根据权利要求1所述的开关阀,其特征在于,所述分隔部件为筒状体,所述分隔部件围成内环腔以作为出水腔,所述内环腔外形成外环腔以作为进水腔,所述内环腔的顶部形成阀孔。
  14. 根据权利要求1所述的开关阀,其特征在于,所述液控口与所述阀芯机构之间设置有密封部件以限制所述液控口与所述阀芯机构的所在腔连通。
  15. 根据权利要求14所述的开关阀,其特征在于,所述密封部件为第二膜片,所述第二膜片将所述液控口与所述阀芯机构隔离,压力液体通过压迫所述第二膜片而驱动所述阀芯机构。
  16. 根据权利要求1所述的开关阀,其特征在于,所述第一膜片为鼓膜。
  17. 根据权利要求15所述的开关阀,其特征在于,所述第二膜片为鼓膜或者簧片;
    所述簧片具有初始状态凸出的弧形部,所述簧片叠置有限位环,所述簧片的弧形部受驱于压力液体而朝反向变形,所述限位环用于限制所述簧片的变形程度以使得所述簧片解除受驱后能够复位。
  18. 根据权利要求1所述的开关阀,其特征在于,所述第一膜片上设置有限位板以限定所述第一膜片使得阀孔打开的开度。
  19. 根据权利要求3所述的开关阀,其特征在于,所述阀体中开设有气体排泄通道,以用于在所述直动阀芯受驱时将所述第二膜片下方的气体排入所述第一膜片所对的区域。
PCT/CN2023/089950 2022-07-12 2023-04-22 开关阀 WO2024011997A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210853897.7A CN117432861A (zh) 2022-07-12 2022-07-12 开关阀
CN202210853897.7 2022-07-12

Publications (1)

Publication Number Publication Date
WO2024011997A1 true WO2024011997A1 (zh) 2024-01-18

Family

ID=89535388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089950 WO2024011997A1 (zh) 2022-07-12 2023-04-22 开关阀

Country Status (2)

Country Link
CN (1) CN117432861A (zh)
WO (1) WO2024011997A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1654863A (zh) * 2004-01-06 2005-08-17 东京流量仪器仪表株式会社 流量控制阀和流量控制装置
JP2007024070A (ja) * 2005-07-12 2007-02-01 Advance Denki Kogyo Kk 圧力制御弁
CN102705530A (zh) * 2012-06-21 2012-10-03 昆山新莱洁净应用材料股份有限公司 膜片式气动隔膜阀
CN104564879A (zh) * 2014-12-19 2015-04-29 鞍钢集团信息产业有限公司 双隔膜液压阀
CN204922118U (zh) * 2015-09-10 2015-12-30 重庆长江涂装设备有限责任公司 压力可调式减压阀构造
CN105473915A (zh) * 2013-03-11 2016-04-06 滨特尔民用水处理有限责任公司 机械压力开关

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1654863A (zh) * 2004-01-06 2005-08-17 东京流量仪器仪表株式会社 流量控制阀和流量控制装置
JP2007024070A (ja) * 2005-07-12 2007-02-01 Advance Denki Kogyo Kk 圧力制御弁
CN102705530A (zh) * 2012-06-21 2012-10-03 昆山新莱洁净应用材料股份有限公司 膜片式气动隔膜阀
CN105473915A (zh) * 2013-03-11 2016-04-06 滨特尔民用水处理有限责任公司 机械压力开关
CN104564879A (zh) * 2014-12-19 2015-04-29 鞍钢集团信息产业有限公司 双隔膜液压阀
CN204922118U (zh) * 2015-09-10 2015-12-30 重庆长江涂装设备有限责任公司 压力可调式减压阀构造

Also Published As

Publication number Publication date
CN117432861A (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
WO2013097431A1 (zh) 一种过流保护阀
WO2024011997A1 (zh) 开关阀
CN206496069U (zh) 一种集成式电磁阀
KR101108077B1 (ko) 파일럿 작동형 안전밸브 및 그 개폐방법
JP2018152283A (ja) 燃料電池システム
CN105042109A (zh) 一种水路控制阀结构
CN203374900U (zh) 带负压破坏性逆止器的电磁阀
JP5351808B2 (ja) 真空弁の制御装置
CN201739574U (zh) 直角型倒流防止器
CN110542013B (zh) 一种浮球式疏水阀
CN103352997A (zh) 带负压破坏性逆止器的电磁阀
CN203516871U (zh) 一种膜片及使用该膜片的膜片密封式安全阀
KR20100083779A (ko) 배압대응형 밸브
WO2022019956A3 (en) Flushometer system
CN206706931U (zh) 真空便器系统用冲洗水阀及真空便器系统
WO2024011996A1 (zh) 无电净水系统
KR20180009437A (ko) 글로브 밸브용 액츄에이터
CN205479378U (zh) 一种直动膜片式电磁阀
JP7443506B2 (ja) 気液分離器及び圧縮システム
CN210770547U (zh) 一种wsv家电用水电磁阀
CN108757617A (zh) 一种先导式电磁开关阀
CN214384245U (zh) 一种电磁阀
CN103511687A (zh) 一种新型倒流防止器结构
CN214889128U (zh) 一种减压阀
CN221257829U (zh) 一种小型电磁阀用密封盖

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838498

Country of ref document: EP

Kind code of ref document: A1