WO2024011795A1 - 锂吸附剂、其制备方法及锂离子的提取方法 - Google Patents

锂吸附剂、其制备方法及锂离子的提取方法 Download PDF

Info

Publication number
WO2024011795A1
WO2024011795A1 PCT/CN2022/130314 CN2022130314W WO2024011795A1 WO 2024011795 A1 WO2024011795 A1 WO 2024011795A1 CN 2022130314 W CN2022130314 W CN 2022130314W WO 2024011795 A1 WO2024011795 A1 WO 2024011795A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
ions
adsorbent
lithium adsorbent
preparation
Prior art date
Application number
PCT/CN2022/130314
Other languages
English (en)
French (fr)
Inventor
李军
罗清龙
吴志坚
刘忠
Original Assignee
中国科学院青海盐湖研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院青海盐湖研究所 filed Critical 中国科学院青海盐湖研究所
Publication of WO2024011795A1 publication Critical patent/WO2024011795A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present application relates to the technical field of adsorbent materials, and in particular to a lithium adsorbent, its preparation method and a lithium ion extraction method.
  • Lithium and its compounds are widely used in nuclear fusion, ceramic glass, cement, aircraft products, especially in the lithium-ion battery industry. Most lithium is extracted from terrestrial minerals. However, the availability of terrestrial lithium-containing minerals is limited, requiring the development of alternative lithium sources, such as lithium ions in liquids.
  • Primary liquid lithium resources are, for example, seawater and salt lake brine, which are virtually inexhaustible and are estimated to total about 230 billion tons. Therefore, it is urgent to develop methods to efficiently extract lithium from liquid resources.
  • Li/Al-LDHs Li-Mn-O and Li-Ti-O.
  • Li-Mn-O and Li-Ti-O adsorbents have obvious advantages such as adsorption capacity, but due to It is adsorbed in an alkaline environment and desorbed in an acidic environment. It has problems such as high dissolution loss and slow adsorption and desorption rate, and cannot be applied on a large scale.
  • Li/Al-LDHs adsorbents have been industrialized, but they have problems such as low adsorption capacity, high dissolution loss, co-adsorption of borate anions, lithium source synthesis, and increased costs.
  • the aluminum-based lithium adsorbent Li/Al-LDHs uses lithium chloride, lithium carbonate, lithium sulfate, lithium nitrate, and lithium hydroxide as lithium sources, and uses aluminum chloride, aluminum sulfate, and aluminum carbonate as lithium sources.
  • the prepared lithium adsorbent also needs to desorb lithium to form a lithium-deficient compound and become an adsorbent that can be recycled.
  • LiAl-LDHs has low adsorption capacity, high dissolution loss, weak interference resistance against ions (especially borate anions), structural changes during adsorbent regeneration, and high dissolution rate, resulting in attenuation of adsorption capacity.
  • the purpose of this application is to provide a lithium adsorbent, its preparation method and a lithium ion extraction method.
  • the application provides a lithium adsorbent, the lithium adsorbent includes a hydroxycarbonate, the chemical formula of the hydroxycarbonate is DGCO 3 (OH) 2 , wherein D is selected from NH 4 + , Na + , K + and any one of H 3 O + , G is selected from any one of Al 3+ , Fe 3+ , Cr 3+ and Ga 3+ .
  • this application also provides a method for preparing a lithium adsorbent, including:
  • Construct a reaction system which includes D ions, G ions, carbonate ions and/or bicarbonate ions, wherein the D ions include NH 4 + , Na + , K + and H 3 O + Any one or a combination of two or more, G ions include any one or a combination of two or more of Al 3+ , Cr 3+ , Fe 3+ and Ga 3+ ;
  • the reaction system undergoes a precipitation reaction to obtain the lithium adsorbent.
  • this application also provides a method for extracting lithium ions, including:
  • the desorption liquid is brought into contact with the lithium adsorbent, so that the lithium ions adsorbed in the lithium adsorbent are desorbed into the desorption liquid.
  • this application also provides the use of the hydroxycarbonate as a lithium adsorbent.
  • the application may include adsorption and desorption processes.
  • it may only include the adsorption process but not the desorption process.
  • the beneficial effects of this application at least include:
  • the preparation method of lithium adsorbent provided by this application requires no lithium source, the required raw materials are easy to obtain, and the cost is low; the prepared lithium adsorbent has low dissolution loss, long cycle life, strong resistance to ion interference, and high The adsorption capacity; at the same time, when using the lithium adsorbent provided by this application to extract lithium ions, water is used for desorption, which is environmentally friendly and has good economic benefits.
  • Figure 1 is an XRD test chart of a lithium adsorbent provided in a typical implementation case of this application;
  • Figure 2 is an electron microscope photo of the surface morphology of the lithium adsorbent provided in another typical implementation case of this application;
  • Figure 3 is a test chart of the element content of the lithium adsorbent provided by another typical implementation example of this application.
  • Hydroxycarbonate is a layered compound. Due to its special structure, it can reversibly insert and extract lithium ions while maintaining the skeleton. It has the advantages of high stability, high capacity, low dissolution loss, and stable structure. It is a promising lithium adsorbent material. The technical solution, its implementation process and principles will be further explained below.
  • Embodiments of the present application provide a lithium adsorbent, including hydroxycarbonate.
  • the chemical formula of the hydroxycarbonate is DGCO 3 (OH) 2 , wherein D is selected from NH 4 + , Na + , K + and H 3 O + , G is selected from any one of Al 3+ , Fe 3+ , Cr 3+ and Ga 3+ .
  • the hydroxycarbonates may include: NH 4 AlCO 3 (OH) 2 , NaAlCO 3 (OH) 2 , KAlCO 3 (OH) 2 , NH 4 CrCO 3 (OH) 2 , NaCrCO 3 ( OH) 2 , KCrCO 3 (OH) 2 , NH 4 FeCO 3 (OH) 2 , NaFeCO 3 (OH) 2 , KFeCO 3 (OH) 2 , NH 4 GaCO 3 (OH) 2 , NaGaCO 3 (OH) 2 and Any one or a combination of two or more KGaCO 3 (OH) 2 .
  • the lithium adsorbent may further include a carrier, and the hydroxycarbonate is dispersed on the carrier and granulated.
  • the adsorption amount of lithium ions by the lithium adsorbent may be 7-15 mg/g.
  • the embodiments of this application also provide a method for preparing a lithium adsorbent, which includes the following steps:
  • Construct a reaction system which includes D ions, G ions, carbonate ions and/or bicarbonate ions, wherein the D ions include NH 4 + , Na + , K + and H 3 O + Any one or a combination of two or more, G ions include any one or a combination of two or more of Al 3+ , Fe 3+ , Cr 3+ and Ga 3+ .
  • the new lithium hydroxycarbonate adsorbent provided by the above technical solution can be prepared by a one-step method without the need for a lithium source or the need for elution of lithium before use. It has the advantages of pure water desorption and regeneration, low dissolution loss, and high structural stability.
  • the hydroxycarbonate has the advantages of high structural strength, low dissolution loss, no need for lithium source, and can be recycled multiple times.
  • the synthesis process is simple, low-priced, and has no environmental pollution problems.
  • the main carrier inorganic salts (aluminum, iron, chromium-based salts, etc.) used in the synthesis are all common inorganic salts. The conditions used for synthesis are mild and suitable for large-scale production.
  • the reaction system undergoes a precipitation reaction to obtain the lithium adsorbent.
  • the concentration of D ions in the reaction system may be 0.1-14 mol/L.
  • the concentration of G ions in the reaction system may be 0.1-14 mol/L.
  • the total concentration of carbonate ions and bicarbonate ions in the reaction system may be 0.1-14 mol/L.
  • concentration of the above ions is not a clear fixed value. Therefore, the concentration of ions described in this application refers to the ion equivalent calculated based on the assumption that the fed compound is completely dissociated. Concentration; the total concentration means that when both carbonate ions and bicarbonate ions exist, the total concentration is the sum of the concentrations of the two. When only one of them exists, the total concentration is the concentration of one of them.
  • the above concentration range is a preferred partial concentration range for this application to balance the preparation time cost and solution cost.
  • the ion concentration can be significantly lower than the above concentration range, and a lithium adsorbent with lithium adsorption activity can also be prepared. . Therefore, the above-mentioned preferred concentration range does not limit the protection scope of the present application.
  • the lithium adsorbent equivalently obtained by other concentrations that may be replaced by those skilled in the art based on the technical concept of the present application also falls within the protection scope of the present application.
  • the reaction system also includes carbonate ions and bicarbonate ions including surfactant and/or ammonia and/or urea.
  • the concentration of surfactant in the reaction system may be 0.01-4 mol/L.
  • the total concentration of ammonia water and urea in the reaction system may be 0.1-10 mol/L.
  • the temperature of the precipitation reaction may be 25-180°C
  • the time may be 2-24 h
  • the pH may be 9-10.5.
  • the above-mentioned concentration and pH selections are also preferred partial parameter ranges for this application to balance the preparation time cost and solution cost.
  • the above-mentioned range may be exceeded.
  • a parameter different from 9-10.5 is used.
  • Lithium adsorbents with adsorption activity can also be obtained at pH values. The focus of this application is to creatively explore the application of the above-mentioned hydroxycarbonate in the field of lithium adsorption, and the preferred parameters when preparing the lithium adsorbent obviously do not limit the scope of protection of this application.
  • the preparation method may further include: drying, grinding and then granulating the lithium adsorbent obtained by the precipitation reaction.
  • the lithium adsorbent is dispersed in a carrier solution and granulated through calcium ion cross-linking. Specifically, sodium alginate is dropped into a CaCl2 solution for rapid molding and granulation. The presence of Ca2 + helps maintain strength. This is just a quick way to pelletize into a ball. It should be noted that the above-mentioned granulation and molding method is only the preferred granulation method for the embodiments of the present application. The technical effects of the present application can also be achieved by using other granulation and molding methods commonly used for adsorbents in the prior art. Equivalent replacement of granulation methods should fall within the protection scope of this application.
  • the lithium hydroxycarbonate adsorbent is synthesized using conventional stirring method or hydrothermal method.
  • Configuration 1.5-7mol/LAl 2 (SO 4 ) 3 ⁇ 18H 2 O can be replaced by iron sulfate, potassium carbonate, chromium carbonate, gallium phosphate, iron hydroxide, iron chloride, aluminum chloride and other chlorides, carbonic acid, sulfuric acid and carbonates, etc., and are not limited to this), 2-20mmol urea (can be replaced by ammonia, etc.) and 0.6-1.2mol surfactant (the optional range is, for example: 1.
  • Cationic surfactants such as quaternary ammonium compounds, etc.
  • Zwitterionic surfactants such as lecithin, amino acid type, betaine type, etc.
  • Nonionic surfactants For example, alkyl glucoside (APG), fatty acid glyceride, fatty acid sorbitan (Span), polysorbate (Tween); 5.
  • PEO, PEG and other polymer surfactants are dissolved in 30-65mL of water, stir After uniformity, place it into a drop of 0.5-3mol/L ammonium bicarbonate or ammonium carbonate solution, stir continuously at room temperature to 95°C or transfer to a 50-1000ml hydrothermal reaction kettle, react for 2-24h, wait for reaction After completion, cool to room temperature, filter, and continuously wash with deionized water until the pH of the upper water is close to 7. After cleaning, the wet powder will be dried in a constant temperature oven at 50-80°C. Finally, a powder product is obtained, which can be used as a lithium adsorbent. The product can be further ground and sealed for later use.
  • the powder product can be: NH 4 AlCO 3 (OH) 2 , NaAlCO 3 (OH) 2 , KAlCO 3 (OH) 2 , NH 4 CrCO 3 (OH) 2 , NaCrCO 3 (OH) 2 , KCrCO 3 (OH) 2 , NH 4 FeCO 3 (OH) 2 , NaFeCO 3 (OH) 2 , KFeCO 3 (OH) 2 , NH 4 GaCO 3 (OH) 2 , NaGaCO 3 (OH) 2 and KGaCO 3 ( OH) 2 , or multiple ions are compounded during preparation to prepare a variety of complex salts of the above-mentioned hydroxycarbonates.
  • the surfactant functions as a pore-forming agent and a morphology modifier, and the mesopores and macropores significantly increase the adsorption capacity of the adsorbent. .
  • the embodiment of the present application also provides a method for extracting lithium ions, which includes the following steps:
  • the lithium adsorbent provided in the above embodiment or the lithium adsorbent prepared by the preparation method provided in the above embodiment is provided.
  • the liquid to be extracted containing lithium ions is brought into contact with the lithium adsorbent, so that the lithium ions in the liquid to be extracted are adsorbed by the lithium adsorbent.
  • the desorption liquid is brought into contact with the lithium adsorbent, so that the lithium ions adsorbed in the lithium adsorbent are desorbed into the desorption liquid.
  • the desorption fluid may include water. Pure water can be used as the desorption liquid.
  • the water may contain some unavoidable impurities, which do not affect the desorption effect.
  • an aqueous solution can also be used as the desorption liquid, in which some components to assist desorption may be dissolved.
  • the packing height, inner diameter of the column, and packing particle size of the adsorption column select the appropriate pump speed, transfer the above lithium adsorbent into the adsorption column, use the bottom-in-top-out mode, and detect the lithium ion concentration in the effluent.
  • the dynamic adsorption of lithium ions in the extraction solution stops when it first penetrates the adsorption column, and its adsorption capacity is between 7-15mg/g.
  • the packing height, inner diameter of the column, and packing particle size of the adsorption column select the appropriate pump speed, pump the eluent (water) down into the adsorption column, collect the eluate, and detect the outflowing eluent.
  • the lithium ion concentration in the effluent drops to zero, stop pumping the eluent and repeat the operation described in step 2. Repeat adsorption and desorption to complete the extraction of lithium ions.
  • the embodiments of the present application design and provide a synthesis method of lithium hydroxycarbonate adsorbent and a process route for lithium adsorption.
  • the adsorbent has low dissolution loss, high selectivity, and anti-interference. In particular, it has strong resistance to boron anion interference and does not require the preparation of lithium sources.
  • This lithium ion extraction process route has the advantages of low cost, simple process flow, and no pollution.
  • This embodiment illustrates the synthesis of a lithium hydroxycarbonate adsorbent and its lithium adsorption application.
  • the step of calcium alginate method granulation includes: dispersing 10g of the above white powder product NH 4 AlCO 3 (OH) 2 in 2g/100ml sodium alginate solution, and then dripping Pelleted into 4% CaCl2 solution), the estimated lithium adsorbent loading is 80%.
  • the granulated adsorbent was loaded into an adsorption column with an inner diameter of 3 cm, and a 500 mg/L lithium chloride solution was pumped from the lower end of the adsorption column through a peristaltic pump for dynamic adsorption at a pump speed of 55 mL/h.
  • the adsorption capacity of the above-mentioned lithium adsorbent is 7.79 mg/g.
  • the adsorption capacity is calculated based on the total mass of the lithium adsorbent formed by the combination of the overall hydroxycarbonate + carrier.
  • This embodiment illustrates the synthesis of a hydroxylate lithium adsorbent and its lithium adsorption application.
  • the adsorption capacity of the above-mentioned lithium adsorbent is 10.53 mg/g.
  • the product is further ground and sealed for later use.
  • the polyacrylonitrile method is used to granulate, and the granulated adsorbent is loaded into a customized adsorption column with an inner diameter of 2.5cm and a height of 85cm.
  • a 1000 mg/L lithium chloride solution is pumped from the lower end of the adsorption column through a peristaltic pump. Input, pump speed 60mL/h. When the outflow of lithium ions is detected, the dynamic adsorption is stopped.
  • the adsorption capacity of the above-mentioned lithium adsorbent is 9.56 mg/g.
  • the lithium adsorption capacity of the lithium adsorbent in this embodiment is 7.79 mg/g.
  • the lithium adsorbent provided in this embodiment is applied to the brine of Dongtai Jinai Salt Lake for adsorption.
  • the changes in ion concentration before and after adsorption are shown in Table 1. From this, it is clear that the lithium adsorbent provided in this embodiment has the ability to absorb lithium ions. high selectivity.
  • the inventor performed the same adsorption of salt lake brine on the lithium adsorbents prepared in each of the above examples, and all showed the same significant lithium selectivity.
  • the adsorption capacity of the above-mentioned lithium adsorbent is 7.83 mg/g.
  • the adsorption capacity of the above-mentioned lithium adsorbent is 10.16 mg/g.
  • the adsorption capacity of the above-mentioned lithium adsorbent is 8.76 mg/g.
  • the prepared white precipitate is allowed to stand for aging, washed with deionized water, and dried to obtain a sample.
  • the final white powder product is NH 4 Al(OH) 2 CO 3 .
  • Example 1 use the calcium alginate method in Example 1 to granulate. Put the granulated adsorbent into an adsorption column with an inner diameter of 2.5cm and a height of 75cm. Pump 300mg/L lithium chloride solution from the lower end of the adsorption column through a peristaltic pump for dynamic adsorption. The pump speed 45mL/h. When the outflow of lithium ions is detected, the dynamic adsorption is stopped.
  • the adsorption capacity of the above-mentioned lithium adsorbent is 8.23 mg/g.
  • the preparation method of the lithium adsorbent provided by the embodiment of the present application does not require a lithium source for preparation, the required raw materials are easy to obtain, and the cost is low; the prepared lithium adsorbent has high structural strength, low dissolution loss, long cycle life, and is resistant to ions It has strong interference and high adsorption capacity; at the same time, when using the lithium adsorbent provided by this application to extract lithium ions, the process is simple and easy to implement, has low equipment cost requirements, and can use water for desorption, which is green and environmentally friendly. And the economic benefits are better.
  • the hydroxycarbonate lithium ion used in the embodiments of the present application has a high adsorption capacity, good selectivity, strong anti-interference ion performance (especially boron anion interference), long cycle life, low dissolution loss, and good regeneration performance, and is especially suitable for Extraction of lithium ions from salt lake brine or seawater.
  • the synthesis of lithium hydroxycarbonate adsorbent does not require a lithium source, is low-cost, and shows excellent selective adsorption performance in actual salt lake brine. The overall process of this process is simple, efficient and low-cost.
  • the above embodiments can illustrate that different hydroxycarbonates obtained based on various different steps and/or different parameters can all have significant lithium adsorption properties. Therefore, the hydroxycarbonates provided in the present application serve as lithium adsorbents.
  • the application of agents has broad applicability and should not be limited to a specific source or method of preparation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本申请公开了一种锂吸附剂、其制备方法及锂离子的提取方法。所述锂吸附剂包括羟基碳酸盐,化学式为DGCO 3(OH) 2,D选自NH 4 +、Na +和K +中的任一种,G选自Al 3+、Fe 3+、Cr 3+和Ga 3+中的任一种。所述制备方法包括:构建反应体系,包括D离子、G离子以及碳酸根和/或碳酸氢根离子;发生沉淀反应,获得锂吸附剂。本申请的锂吸附剂无需锂源进行制备,制备所需原料易得,成本低廉;所制得的锂吸附剂低溶损、长循环寿命、高选择性(不吸附硼阴离子),具有较高的吸附容量;采用本申请的锂吸附剂进行锂离子提取时,吸脱附速率快,无需酸碱再生,绿色环保,经济效益好。

Description

锂吸附剂、其制备方法及锂离子的提取方法
本申请基于并要求于2022年7月15日递交的申请号为202210838498.3、发明名称为“锂吸附剂、其制备方法及锂离子的提取方法”的中国专利申请的优先权。
技术领域
本申请涉及吸附材料技术领域,尤其涉及一种锂吸附剂、其制备方法及锂离子的提取方法。
背景技术
锂及其化合物广泛用于核聚变、陶瓷玻璃、水泥、飞机产品、尤其是在锂离子电池行业。大多数锂是从陆地矿物中提取。然而可用性陆地含锂矿物有限,需要开发可替代锂源,例如液体中的锂离子。
初级液体锂资源是例如是海水和盐湖卤水,它们实际上是取之不尽,估计总计约2300亿吨。因此,开发从液体资源中高效提取锂的方法迫在眉睫。
海水和盐湖卤水中有许多阴阳离子共存,如Li +、Na +、K +、Mg 2+、Ca 2+、Cl -、Borate,SO 4 2-等阴阳离子。在提取锂资源的过程中,盐湖中的其他离子会干扰锂的分离,从而增加了提取锂资源的难度。近年来,人们探索了多种不同的方法从海水和盐湖卤水中提取锂离子,如电渗析、共沉淀、溶剂萃取、膜分离和吸附法等,在这些各种方法中,吸附已被证明是一种特别有用的处理方法。
例如,目前研究的吸附剂有Li/Al-LDHs、Li-Mn-O和Li-Ti-O类,其中Li-Mn-O和Li-Ti-O类吸附剂吸附容量等优势明显,但是由于其是在碱性环境吸附、酸性环境脱附的,具有溶损高,吸脱附速率慢等问题而无法规模化应用。而Li/Al-LDHs类吸附剂已工业化,但是存在吸附容量低、溶损高、硼氧酸盐阴离子共吸附、锂源合成、推升成本等问题。
例如,在一些现有技术中,铝系锂吸附剂Li/Al-LDHs以氯化锂、碳酸锂、硫酸锂、硝酸锂、氢氧化锂为锂源,以氯化铝、硫酸铝、碳酸铝、氢氧化铝和无定型三氧化二铝等为铝源,在中性常温环境或在尿素等试剂加热条件(45-180℃)下按照Li/Al=1∶3-4∶1进行制备和合成,经过2-12小时以上后陈化、过滤、干燥得到白色固体粉末锂吸附剂。制备的锂吸附剂还需要脱附锂后,形成欠锂的化合物,成为可以循环使用的吸附剂。LiAl-LDHs吸附容量偏低,溶损高、抗离子(特别是硼氧酸盐阴离子)干扰性能弱、吸附剂再生时发生结构变化,溶损率 高,造成吸附容量衰减。
因此目前的现状迫切地需要成本低,溶损低、环境友好、无锂源制备、无需酸碱脱附的新型吸附剂。
发明内容
针对现有技术的不足,本申请的目的在于提供一种锂吸附剂、其制备方法及锂离子的提取方法。
为实现前述发明目的,本申请采用的技术方案包括:
第一方面,本申请提供一种锂吸附剂,所述锂吸附剂包括羟基碳酸盐,所述羟基碳酸盐的化学式为DGCO 3(OH) 2,其中D选自NH 4 +、Na +、K +以及H 3O +中的任意一种,G选自Al 3+、Fe 3+、Cr 3+和Ga 3+中的任意一种。
第二方面,本申请还提供一种锂吸附剂的制备方法,包括:
构建反应体系,所述反应体系的包括D离子、G离子以及碳酸根离子和/或碳酸氢根离子,其中,所述D离子包括NH 4 +、Na +、K +以及H 3O +中的任意一种或两种以上的组合,G离子包括Al 3+、Cr 3+、Fe 3+和Ga 3+中的任意一种或两种以上的组合;
使所述反应体系发生沉淀反应,获得所述锂吸附剂。
第三方面,本申请还提供一种锂离子的提取方法,包括:
提供上述锂吸附剂;
使含有锂离子的待提取液与所述锂吸附剂接触,以使所述待提取液中的锂离子被所述锂吸附剂吸附;
使脱附液与所述锂吸附剂接触,以使所述锂吸附剂中吸附的锂离子脱附至所述脱附液中。
第四方面,本申请还提供了所述羟基碳酸盐作为锂吸附剂的应用。
进一步地,该应用可以包含吸附和脱附过程,在某些特殊的应用场景下,例如去除溶液体系中的锂杂质等等的情形下,也可能仅包含吸附过程而不包含脱附过程。
基于上述技术方案,与现有技术相比,本申请的有益效果至少包括:
本申请提供的锂吸附剂的制备方法,无锂源制备,所需原料易得,成本低廉;所制得的锂吸附剂低溶损、循环寿命长,且抗离子干扰性强、具有较高的吸附容量;同时,采用本申请提供的锂吸附剂进行锂离子的提取时,以水进行脱附,绿色环保且经济效益好。
上述说明仅是本申请技术方案的概述,为了能够使本领域技术人员能够更清楚地了解本申请的技术手段,并可依照说明书的内容予以实施,以下以本申请的较佳实施例并配合详细附图说明如后。
附图说明
图1是本申请一典型实施案例提供的锂吸附剂的XRD测试图;
图2是本申请另一典型实施案例提供的锂吸附剂的表面形貌电镜照片;
图3是本申请另一典型实施案例提供的锂吸附剂的元素含量测试图。
具体实施方式
羟基碳酸盐是一种层状化合物化合物,因其特殊的结构,能够在保持骨架的同时,可逆地嵌入和脱出锂离子,具有稳定性高、容量高、低溶损、结构稳定等优点,是一种有前途的锂吸附剂材料。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
首先需要说明的是,在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
而且,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个与另一个具有相同名称的部件或方法步骤区分开来,而不一定要求或者暗示这些部件或方法步骤之间存在任何这种实际的关系或者顺序。
本申请实施例提供一种锂吸附剂,包括羟基碳酸盐,所述羟基碳酸盐的化学式为DGCO 3(OH) 2,其中D选自NH 4 +、Na +、K +以及H 3O +中的任意一种,G选自Al 3+、Fe 3+、Cr 3+和Ga 3+中的任意一种。
在一些实施方案中,所述羟基碳酸盐可以包括:NH 4AlCO 3(OH) 2、NaAlCO 3(OH) 2、KAlCO 3(OH) 2、NH 4CrCO 3(OH) 2、NaCrCO 3(OH) 2、KCrCO 3(OH) 2、NH 4FeCO 3(OH) 2、NaFeCO 3(OH) 2、KFeCO 3(OH) 2、NH 4GaCO 3(OH) 2、NaGaCO 3(OH) 2以及KGaCO 3(OH) 2中的任意一种或两种以上的组合。
在一些实施方案中,所述锂吸附剂还可以包括载体,所述羟基碳酸盐分散于所述载体上并造粒成型。
在一些实施方案中,所述锂吸附剂对锂离子的吸附量可以为7-15mg/g。
本申请实施例还提供一种锂吸附剂的制备方法,包括如下的步骤:
构建反应体系,所述反应体系的包括D离子、G离子以及碳酸根离子和/或碳酸氢根离子,其中,所述D离子包括NH 4 +、Na +、K +以及H 3O +中的任意一种或两种以上的组合,G离子包括Al 3+、Fe 3+、Cr 3+和Ga 3+中的任意一种或两种以上的组合。
上述技术方案所提供的新型羟基碳酸盐锂吸附剂可以采用一步法制备,无需锂源、无需 洗脱锂后应用,具有纯水脱附和再生的优势,并且溶损低,结构稳定性高。该羟基碳酸盐结构强度高、溶损低、无需锂源、可多次循环利用的优点。合成过程简单,价格低廉、无污染环境问题,合成所使用的主载体无机盐(铝、铁、铬基等盐)均为常见无机盐。合成所使用的条件温和,适用于大规模生产。
使所述反应体系发生沉淀反应,获得所述锂吸附剂。
在一些实施方案中,所述反应体系中,D离子的浓度可以为0.1-14mol/L。
在一些实施方案中,所述反应体系中,G离子的浓度可以为0.1-14mol/L。
在一些实施方案中,所述反应体系中,碳酸根离子和碳酸氢根离子的总浓度可以为0.1-14mol/L。其中,受限于解离度的限制,上述离子的浓度并非明确的定值,因此,在本申请中所述的离子的浓度是指按照投料的化合物假设其完全解离计算所得的离子等效浓度;总浓度是指,当碳酸根离子和碳酸氢根离子均存在时,总浓度为两者的浓度之和,当仅存在其中一者时,总浓度为其中一者的浓度。
并且,上述浓度范围为本申请平衡制备时间成本和溶液成本的优选的部分浓度范围,在一些实施例中,离子浓度可以明显低于上述浓度范围,亦可以制备获得具有锂吸附活性的锂吸附剂。因此,上述优选的浓度范围并非对本申请保护范围的限制,本领域技术人员基于本申请的技术构思可能替换的其他浓度而等效获得的锂吸附剂亦属于本申请的保护范围之内。
在一些实施方案中,所述反应体系还碳酸根离子和碳酸氢根离子包括表面活性剂和/或氨水和/或尿素。
在一些实施方案中,所述反应体系中,表面活性剂的浓度可以为0.01-4mol/L。
在一些实施方案中,所述反应体系中,氨水和尿素的总浓度可以为0.1-10mol/L。
在一些实施方案中,所述沉淀反应的温度可以为25-180℃,时间可以为2-24h,pH可以是9-10.5。
同理,上述浓度以及pH的选择也是本申请平衡制备时间成本和溶液成本的优选的部分参数范围,在一些实施例中,可能超出上述范围,例如某些实施例中采用不同于9-10.5的pH值亦可获得具有吸附活性的锂吸附剂。本申请重点在于创造性地发掘了上述羟基碳酸盐在锂吸附领域的应用,而制备锂吸附剂时的优选参数显然并非对本申请保护范围的限制。
在一些实施方案中,所述制备方法还可以包括:对所述沉淀反应所获得的锂吸附剂进行干燥研磨后造粒。
在一些实施方案中,使所述锂吸附剂分散于载体溶液中通过钙离子交联而造粒成型。具体地,采用海藻酸钠滴入CaCl 2溶液快速成型造粒,Ca 2+的存在有助于保持强度。这只是一种快速呈球形的造粒方法。需要说明的是,上述造粒成型方法仅为本申请实施例所优选的造 粒方法,使用其他各类现有技术中的吸附剂常用的造粒成型方法亦可实现本申请的技术效果,对于造粒方法的等效替换理应属于本申请的保护范围。
基于上述概述的示例方案,其中一些较为优选的实施案例可以采用如下的步骤进行实施:
采用常规搅拌法或水热法合成羟基碳酸盐锂吸附剂。配置1.5-7mol/LAl 2(SO 4) 3·18H 2O(可以替换为硫酸铁、碳酸钾、碳酸铬、磷酸镓、氢氧化铁、氯化铁、氯化铝等氯化物、碳酸、硫酸和碳酸物等,且不限于此)、2-20mmol尿素(可以替换为氨水等)和0.6-1.2mol表面活性剂(可选范围例如是:1.阴离子表面活性剂:;例如硬脂酸,十二烷基苯磺酸钠等;2.阳离子表面活性剂:例如季铵化物等;3.两性离子表面活性剂:例如卵磷脂,氨基酸型,甜菜碱型等;4.非离子表面活性剂:例如烷基葡糖苷(APG),脂肪酸甘油酯,脂肪酸山梨坦(司盘),聚山梨酯(吐温);5.PEO、PEG等高分子表面活性剂)溶于30-65mL水中,搅拌均匀后置于滴入0.5-3mol/L的碳酸氢铵或碳酸铵溶液中,不断地在室温至95℃下搅拌或转移到50-1000ml的水热反应釜中,反应2-24h,待反应结束后、冷却至室温,过滤,不断地用去离子水洗涤,直到上层水的pH接近7。清洗后将得到湿的粉末在50-80℃的恒温箱干燥。最终得到粉末产物,该粉末产物即可以作为一种锂吸附剂使用。可以对产物进一步研磨后密封保存备用。其中,示例性地,该粉末产物可以是:NH 4AlCO 3(OH) 2、NaAlCO 3(OH) 2、KAlCO 3(OH) 2、NH 4CrCO 3(OH) 2、NaCrCO 3(OH) 2、KCrCO 3(OH) 2、NH 4FeCO 3(OH) 2、NaFeCO 3(OH) 2、KFeCO 3(OH) 2、NH 4GaCO 3(OH) 2、NaGaCO 3(OH) 2以及KGaCO 3(OH) 2中的任意一种,或者是在制备时复配多种离子,制得多种上述羟基碳酸盐的复合盐。
以上技术方案中,表面活性剂的作用为造孔剂和形貌调解剂,介孔和大孔显著增加吸附剂的吸附容量。。
本申请实施例还提供一种锂离子的提取方法,包括如下的步骤:
提供上述实施例提供的锂吸附剂或上述实施例提供的制备方法制得的锂吸附剂。
使含有锂离子的待提取液与所述锂吸附剂接触,以使所述待提取液中的锂离子被所述锂吸附剂吸附。
使脱附液与所述锂吸附剂接触,以使所述锂吸附剂中吸附的锂离子脱附至所述脱附液中。
在一些实施方案中,所述脱附液可以包括水。可以采用纯水作为脱附液,水中可能会含有一些不可避免的杂质,不影响脱附效果,当然也可以采用水溶液作为脱附液,其中可能会溶解有一些辅助脱附的组分。
基于上述概述的示例方案,其中一些较为优选的实施案例可以采用如下的步骤进行实施:
吸附过程
根据采用吸附柱的填料高度、柱内直径、填料粒径,选择合适的泵速,将上述锂吸附剂 转入吸附柱,采用下进上出的模式,并检测流出液中锂离子浓度,待提取液中锂离子刚穿透吸附柱时停止动态吸附,其吸附容量在7-15mg/g之间。
脱附过程
根据采用吸附柱的填料高度、柱内直径、填料粒径,选择合适的泵速,将洗脱液(水)下进上出泵入吸附柱中,收集洗脱液,并检测流出洗脱液中锂离子浓度,待流出液中锂离子浓度降低为零时,停止泵入洗脱液,并重复步骤2中描述操作,反复吸附及脱附,即完成了锂离子的提取。
当然,上述仅仅是一种优选的实施方式的示例,本申请的重点在于提供的吸附剂,至于利用该吸附剂如何完成锂离子的提取,本领域中存在多种常见方法,例如可以是静置浸泡来完成吸附等等可替代的方法,在此不再赘述。
基于上述示例性技术方案,本申请实施例设计并提供了一种羟基碳酸盐锂吸附剂的合成方法及应用于锂吸附的工艺路线,该吸附剂具备低溶损、选择性高、抗干扰尤其是抗硼阴离子干扰性强、无需锂源制备的特点,该锂离子提取的工艺路线具有成本低、工艺流程简单、无污染的优点。
以下通过若干实施例并结合附图进一步详细说明本申请的技术方案。然而,所选的实施例仅用于说明本申请,而不限制本申请的范围。
实施例1
本实施例示例一种羟基碳酸盐锂吸附剂的合成及其锂吸附应用。
在室温下,用去离子水配置1.5mol/L的碳酸氢铵溶液,并用氨水调节溶液的pH值为10左右,将0.5mol/L Al 2(SO 4) 3溶液利用蠕动泵滴加到碳酸氢铵溶液中(其中NH 4HCO 3/Al 2(SO 4) 3摩尔比为3/1),在55℃下反应8h。
最终会得到白色沉淀,将制备的白色沉淀静置老化,用去离子水清洗,干燥而得到样品。最终得到白色粉末产物为NH 4AlCO 3(OH) 2,其结构参见图1所示的XRD测试。
然后利用海藻酸钙法造粒(所述的海藻酸钙法造粒的步骤包括:将10g上述白色粉末产物NH 4AlCO 3(OH) 2分散于2g/100ml的海藻酸钠溶液中,然后滴入4%的CaCl 2溶液中造粒成型),估算的锂吸附剂装载量是80%。将造粒后的吸附剂装入内径为3cm的吸附柱内,通过蠕动泵将500mg/L的氯化锂溶液从吸附柱低端泵入,进行动态吸附,泵速55mL/h。
待检测到有锂离子流出时,停止动态吸附。
然后以3mL/min的流速泵入去离子水,至无锂离子流出为止,完成锂离子的脱附。
本实施例中,上述锂吸附剂的吸附容量7.79mg/g。本实施例以及下述实施例均按整体羟基碳酸盐+载体组合形成的锂吸附剂的总质量来计算吸附容量。
实施例2
本实施例示例一种羟基酸盐锂吸附剂的合成及其锂吸附应用。
取1.2mol·L -1硝酸铝溶液654ml缓慢滴加到2mol/L的碳酸铵溶液1170ml中,并不断地搅拌,混合溶液温度控制在55-65℃,pH值在7-8之间,进行10h。
待反应结束后、冷却至室温,陈化10小时,过滤,不断地用去离子水洗涤,直到上层水的pH接近7。清洗后将得到湿的白色粉末在60℃的恒温箱干燥。最终得到白色粉末产物NH 4AlCO 3(OH) 2,对产物进一步研磨后密封保存备用。
然后利用海藻酸钙法造粒,将造粒后的吸附剂装入内径为3cm的吸附柱内,通过蠕动泵将1000mg/L的氯化锂溶液从吸附柱低端泵入,泵速50mL/h。待检测到有锂离子流出时,停止动态吸附。
然后以2mL/min的流速泵入去离子水,至无锂离子流出为止,完成锂离子的脱附。
本实施例中,上述锂吸附剂的吸附容量为10.53mg/g。
实施例3
多孔羟基碳酸盐锂吸附剂的合成及锂吸附应用
将一0.1mol/L的分散剂(PEO、PEG、表面活性剂)加入到1.2mol/LAlCl 3·6H 2O溶液(1000ml)中并充分混合,温度需控制在50-60℃之间,然后将2mol/LNH 4HCO 3溶液(1000ml)以2mL/min的速度加入到上述溶液中,控制搅拌速度,同时用pH酸度计测量混合溶液的pH值在9左右,陈化12小时,待反应结束后、冷却至室温,过滤,不断地用去离子水洗涤,得到湿的粉末在60℃的恒温箱干燥。最终得到粉末产物为NH 4AlCO 3(OH) 2.其扫描电镜SEM见图2所示,元素分析见图3所示。
对产物进一步研磨后密封保存备用。然后利用聚丙烯腈法造粒,将造粒后的吸附剂装入内径为2.5cm,高为85cm的定制吸附柱内,通过蠕动泵将1000mg/L的氯化锂溶液从吸附柱低端泵入,泵速60mL/h。待检测到有锂离子流出时,停止动态吸附。
然后以2mL/min的流速泵入去离子水,至无锂离子流出为止,完成锂离子的脱附。
本实施例中,上述锂吸附剂的吸附容量为9.56mg/g。
实施例4
羟基碳酸盐锂吸附剂的合成及锂吸附应用
称取0.5mol硫酸铝铵、0.3mol碳酸氢钾、0.8mol尿素和0.1mol十二烷基硫酸钠表面活性剂溶于2000mL水中,pH值调节到9-9.5,搅拌均匀后置于水热反应釜中,95℃下反应12h。
待反应结束后、冷却至室温,过滤,不断地用去离子水洗涤,直到上层水的pH接近7。 清洗后将得到湿的粉末在60℃的恒温箱干燥。最终得到粉末产物KAlCO 3(OH) 2,对产物进一步研磨后密封保存备用。
然后利用海藻酸钙法造粒,将造粒后的吸附剂装入内径为2cm,高为75cm的定制吸附柱内,通过蠕动泵将1000mg/L的氯化锂溶液从吸附柱低端泵入,泵速60mL/h。待检测到有锂离子流出时,停止动态吸附。
然后以2.5mL/min的流速泵入去离子水,至无锂离子流出为止,完成脱附。
本实施例中的锂吸附剂的锂吸附容量为7.79mg/g。
此外,将本实施例提供的锂吸附剂应用于东台吉乃尔盐湖卤水中进行吸附,吸附前后的离子浓度变化见表1所示,从中可以明确,本实施例提供的锂吸附剂具有对锂离子的高选择性。
同时,发明人将前述各实施例制备的锂吸附剂均进行了相同的盐湖卤水吸附,均显现出同样显著的锂选择性。
表1.在东台吉乃尔盐湖卤水中吸附前后的离子浓度变化
Figure PCTCN2022130314-appb-000001
实施例5
羟基碳酸盐锂吸附剂的合成及锂吸附应用
取0.0104mol·L -1碳酸钠1000ml和0.017mol/L的硫酸铝溶液1000ml混合,并不断地搅拌,混合溶液温度控制在95℃,pH值在10左右,进行6h。
待反应结束后、冷却至室温,陈化8小时,过滤,不断地用去离子水洗涤,直到上层水的pH接近7。清洗后将得到湿的粉末在60℃的恒温箱干燥。最终得到粉末产物NaAlCO 3(OH) 2,对产物进一步研磨后密封保存备用。
然后利用海藻酸钙法造粒,将造粒后的吸附剂装入内径为3cm,高为85cm的的吸附柱内,通过蠕动泵将500mg/L的氯化锂溶液从吸附柱低端泵入,泵速60mL/h。待检测到有锂离子流出时,停止动态吸附。
然后以5mL/min的流速泵入去离子水,至无锂离子流出为止,完成锂离子的脱附。
本实施例中,上述锂吸附剂的吸附容量为7.83mg/g。
实施例6
羟基碳酸盐锂吸附剂的合成及锂吸附应用
取0.3mol·L -1碳酸氢钾和0.1mol/L的氢氧化铝溶液各1000ml混合,并不断地搅拌,混合溶液温度控制在180℃,pH值在10左右,进行6h。
待反应结束后、冷却至室温,陈化10小时,过滤,不断地用去离子水洗涤,直到上层水的pH接近7。清洗后将得到湿的粉末在60℃的恒温箱干燥。最终得到粉末产物KAlCO 3(OH) 2,对产物进一步研磨后密封保存备用。
然后利用海藻酸钙法造粒,将造粒后的吸附剂装入内径为3cm,高为75cm的吸附柱内,通过蠕动泵将1000mg/L的氯化锂溶液从吸附柱低端泵入,泵速70mL/h。待检测到有锂离子流出时,停止动态吸附。
然后以4mL/min的流速泵入去离子水,至无锂离子流出为止,完成锂离子的脱附。
本实施例中,上述锂吸附剂的吸附容量为10.16mg/g。
实施例7
羟基碳酸盐锂吸附剂的合成及锂吸附应用
取0.3mol·L -1碳酸钾、0.1mol·L -1碳酸氢铵和0.1mol/L的硫酸铁溶液各1000ml混合,并不断地搅拌,混合溶液温度控制在90℃,pH值控制在10左右,进行9h。
待反应结束后、冷却至室温,陈化11小时,过滤,不断地用去离子水洗涤,直到上层水的pH接近7。清洗后将得到湿的粉末在60℃的恒温箱干燥。最终得到粉末产物KFeCO 3(OH) 2,对产物进一步研磨后密封保存备用。
然后利用海藻酸钙法造粒,将造粒后的吸附剂装入内径为2cm,高为75cm的吸附柱内,通过蠕动泵将500mg/L的氯化锂溶液从吸附柱低端泵入,泵速70mL/h。待检测到有锂离子流出时,停止动态吸附。
然后以6mL/min的流速泵入去离子水,至无锂离子流出为止,完成锂离子的脱附。
本实施例中,上述锂吸附剂的吸附容量为8.76mg/g。
实施例8
羟基碳酸盐锂吸附剂的合成及锂吸附应用。
在35℃下,用去离子水配置1.5mol/L的碳酸氢铵溶液2000ml,并用氨水调节溶液的pH值为9.5左右,将2000ml 0.3mol/L硝酸铝溶液利用蠕动泵滴加到碳酸氢铵溶液中,在55℃下反应10h。
最终会得到白色沉淀,将制备的白色沉淀静置老化,用去离子水清洗,干燥而得到样品。最终得到白色粉末产物为NH 4Al(OH) 2CO 3
然后利用实施例1中的海藻酸钙法造粒。将造粒后的吸附剂装入内径为2.5cm,高度为 75的cm的吸附柱内,通过蠕动泵将300mg/L的氯化锂溶液从吸附柱低端泵入,进行动态吸附,泵速45mL/h。待检测到有锂离子流出时,停止动态吸附。
然后以4mL/min的流速泵入去离子水,至无锂离子流出为止,完成锂离子的脱附。
本实施例中,上述锂吸附剂的吸附容量8.23mg/g。
基于上述实施例,可以明确,本申请首次发现了羟基碳酸盐作为锂吸附剂的应用。本申请实施例提供的锂吸附剂的制备方法,无需锂源进行制备,所需原料易得,成本低廉;所制得的锂吸附剂结构强度高,低溶损、循环寿命长,且抗离子干扰性强、具有较高的吸附容量;同时,采用本申请提供的锂吸附剂进行锂离子的提取时,工艺流程简单易行,对设备成本要求低、并可以采用水进行脱附,绿色环保且经济效益较好。
具体而言,本申请实施例所用羟基碳酸盐锂离子吸附量高、选择性好,抗干扰离子性能强(尤其是硼阴离子干扰)、循环寿命长、低溶损、再生性能好,尤其适合于盐湖卤水或海水中锂离子的提取。羟基碳酸盐锂吸附剂合成无需锂源,成本低廉,在实际盐湖卤水中显示出优异的选择性吸附性能。该工艺整体流程简单、高效,低成本。
并且,上述各实施例可以说明,基于各种不同步骤和/或不同参数所获得的不同羟基碳酸盐均可以具有显著的锂吸附性,因此,本申请所提供的羟基碳酸盐作为锂吸附剂的应用具有广泛适用性,而不应当局限于具体的来源或制备方法。
应当理解,上述实施例仅为说明本申请的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本申请的内容并据以实施,并不能以此限制本申请的保护范围。凡根据本申请精神实质所作的等效变化或修饰,都应涵盖在本申请的保护范围之内。

Claims (10)

  1. 一种锂吸附剂,其特征在于,所述锂吸附剂包括羟基碳酸盐,所述羟基碳酸盐的化学式为DGCO 3(OH) 2,其中D选自NH 4 +、Na +、K +以及H 3O +中的任意一种,G选自Al 3+、Fe 3+、Cr 3+、Ga 3+中的任意一种。
  2. 根据权利要求1所述的锂吸附剂,其特征在于,所述羟基碳酸盐包括NH 4AlCO 3(OH) 2、NaAlCO 3(OH) 2、KAlCO 3(OH) 2、NH 4CrCO 3(OH) 2、NaCrCO 3(OH) 2、KCrCO 3(OH) 2、NH 4FeCO 3(OH) 2、NaFeCO 3(OH) 2、KFeCO 3(OH) 2、NH 4GaCO 3(OH) 2、NaGaCO 3(OH) 2以及KGaCO 3(OH) 2中的任意一种或两种以上的组合。
  3. 根据权利要求1所述的锂吸附剂,其特征在于,所述锂吸附剂还包括载体,所述羟基碳酸盐分散于所述载体上并造粒成型。
  4. 根据权利要求1所述的锂吸附剂,其特征在于,所述锂吸附剂对锂离子的吸附量为7-15mg/g。
  5. 一种锂吸附剂的制备方法,其特征在于,包括:
    构建反应体系,所述反应体系的包括D离子、G离子以及碳酸根离子和/或碳酸氢根离子,其中,所述D离子包括NH 4 +、Na +、K +以及H 3O +中的任意一种或两种以上的组合,G离子包括Al 3+、Fe 3+、Cr 3+和Ga 3+中的任意一种或两种以上的组合;
    使所述反应体系发生沉淀反应,获得所述锂吸附剂。
  6. 根据权利要求5所述的制备方法,其特征在于,所述沉淀反应的温度为25-180℃,时间为2-24h,pH值为9-10.5;
  7. 根据权利要求5所述的制备方法,其特征在于,还包括:对所述沉淀反应所获得的锂吸附剂进行干燥、研磨后造粒;
    优选的,使所述锂吸附剂分散于载体溶液中通过钙离子交联而造粒成型。
  8. 根据权利要求5所述的制备方法,其特征在于,所述反应体系还包括表面活性剂和/或氨水和/或尿素;
    优选的,所述反应体系中表面活性剂的浓度为0.01-4mol/L;
    和/或,所述反应体系中氨水和尿素的总浓度为0.1-10mol/L。
  9. 一种锂离子的提取方法,其特征在于,包括:
    提供权利要求1-4中任意一项所述的锂吸附剂或权利要求5-8中任意一项所述制备方法制得的锂吸附剂;
    使含有锂离子的待提取液与所述锂吸附剂接触,以使所述待提取液中的锂离子被所述锂吸附剂吸附;
    使脱附液与所述锂吸附剂接触,以使所述锂吸附剂中吸附的锂离子脱附至所述脱附液中。
  10. 根据权利要求9所述的提取方法,其特征在于,所述脱附液包括水。
PCT/CN2022/130314 2022-07-15 2022-11-07 锂吸附剂、其制备方法及锂离子的提取方法 WO2024011795A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210838498.3 2022-07-15
CN202210838498.3A CN115869898B (zh) 2022-07-15 2022-07-15 锂吸附剂、其制备方法及锂离子的提取方法

Publications (1)

Publication Number Publication Date
WO2024011795A1 true WO2024011795A1 (zh) 2024-01-18

Family

ID=85769501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130314 WO2024011795A1 (zh) 2022-07-15 2022-11-07 锂吸附剂、其制备方法及锂离子的提取方法

Country Status (2)

Country Link
CN (1) CN115869898B (zh)
WO (1) WO2024011795A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060252642A1 (en) * 2005-05-06 2006-11-09 Kanazirev Vladislav I Scavengers for removal of acid gases from fluid streams
US20070116620A1 (en) * 2005-11-21 2007-05-24 Kanazirev Vladislav I Halide scavengers for high temperature applications
CN108993376A (zh) * 2018-09-17 2018-12-14 华东理工大学 一种铝盐锂吸附剂及其制备方法与应用
CN110354796A (zh) * 2019-07-31 2019-10-22 湖南雅城新材料有限公司 一种铝盐型锂吸附剂及其制备方法与应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058841A1 (ja) * 2009-11-10 2011-05-19 財団法人北九州産業学術推進機構 リチウム吸着剤の製造方法及びリチウム吸着剤、リチウム吸着剤用原料、リチウム濃縮方法、リチウム濃縮装置
BR112019009018A2 (pt) * 2016-11-03 2019-09-10 6Th Wave Innovations Corp esferas de polímero de impressão molecular para extração de lítio, mercúrio e escândio
CN106902774B (zh) * 2017-04-05 2020-10-30 王云 一种层状铝盐吸附剂的制备方法和层状铝盐吸附剂
CN111804270B (zh) * 2020-06-28 2022-11-15 湖南邦普循环科技有限公司 一种铝基锂吸附剂及其制备方法
CN112142076B (zh) * 2020-09-08 2022-06-24 中国科学院青海盐湖研究所 一种吸附法从卤水中提取锂的方法
CN112808226B (zh) * 2020-12-18 2022-11-15 湖南邦普循环科技有限公司 一种铝基锂离子筛及其制备方法和应用
CN113842877B (zh) * 2021-09-24 2023-09-22 中国科学院青海盐湖研究所 一种用于液体锂资源提取的碳基吸附剂颗粒、制备方法及制备装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060252642A1 (en) * 2005-05-06 2006-11-09 Kanazirev Vladislav I Scavengers for removal of acid gases from fluid streams
US20070116620A1 (en) * 2005-11-21 2007-05-24 Kanazirev Vladislav I Halide scavengers for high temperature applications
CN108993376A (zh) * 2018-09-17 2018-12-14 华东理工大学 一种铝盐锂吸附剂及其制备方法与应用
CN110354796A (zh) * 2019-07-31 2019-10-22 湖南雅城新材料有限公司 一种铝盐型锂吸附剂及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HORIUCHI TATSURO, TOYOHIKO SUGIYAMA, HIROO TAKASHIMA: "Synthesis of NH4(Al, Cr)CO3(OH)2 and the Formation Process of Al2O3-Cr2O3 Solid Solution by Thermal Decomposition of That compound", JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 96, no. 8, 1 July 1988 (1988-07-01), pages 881 - 884, XP093128737 *

Also Published As

Publication number Publication date
CN115869898B (zh) 2023-06-02
CN115869898A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
Lv et al. Enhanced removal of uranium (VI) from aqueous solution by a novel Mg-MOF-74-derived porous MgO/carbon adsorbent
Wang et al. Selective recovery of lithium from geothermal water by EGDE cross-linked spherical CTS/LMO
Li et al. Design of MXene/graphene oxide nanocomposites with micro-wrinkle structure for efficient separating of uranium (VI) from wastewater
CN109225124A (zh) 一种颗粒锂吸附剂的制备方法
WO2022127316A1 (zh) 一种铝基锂离子筛及其制备方法和应用
CN109266851B (zh) 一种通过磁性微孔锂吸附剂提取锂的方法
CN115155528B (zh) 一种高吸附容量颗粒型铝盐提锂吸附剂的制备方法
Ji et al. Sorption enhancement of nickel (II) from wastewater by ZIF-8 modified with poly (sodium 4-styrenesulfonate): Mechanism and kinetic study
CN104525094A (zh) 一种锰系离子筛吸附剂及其前驱体的制备方法
Liu et al. Preparation and characterization of lithium ion sieves embedded in a hydroxyethyl cellulose cryogel for the continuous recovery of lithium from brine and seawater
Chen et al. Highly efficient and selective cesium recovery from natural brine resources using mesoporous Prussian blue analogs synthesized by ionic liquid-assisted strategy
Wang et al. Mesoporous hollow silicon spheres modified with manganese ion sieve: Preparation and its application for adsorption of lithium and rubidium ions
CN109078602B (zh) 磁性微孔锂吸附剂及其制备方法与应用
CN108543516A (zh) 一种锂离子选择性吸附剂、制备方法以及从卤水提锂的工艺
CN1803273A (zh) 一种锂吸附剂的制备方法
CN104549161B (zh) 一种含铁金属有机骨架材料的制备方法及其应用
WO2024011796A1 (zh) 一种锂吸附材料及其制备方法和应用
CN110237829A (zh) 一种改性锂吸附超高交联树脂微球及其制备方法和应用
WO2024011795A1 (zh) 锂吸附剂、其制备方法及锂离子的提取方法
Han et al. Improved adsorption performance and magnetic recovery capability of Al–Fe co-doped lithium ion sieves
Lu et al. Simultaneous recovery of lithium and boron from brine by the collaborative adsorption of lithium-ion sieves and boron chelating resins
CN109621922A (zh) 一种整体式酚醛树脂基锂离子筛及其制备方法和应用
CN115254072B (zh) 用于阴离子吸附剂的造粒剂及制备方法、阴离子吸附剂
CN116571221A (zh) 一种铝盐复合水凝胶吸附剂及其制备方法和应用
WO2023083062A1 (zh) 一种钛基锂离子交换体的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950903

Country of ref document: EP

Kind code of ref document: A1