WO2024010314A1 - Vacuum chamber having multilayer graphite stack - Google Patents

Vacuum chamber having multilayer graphite stack Download PDF

Info

Publication number
WO2024010314A1
WO2024010314A1 PCT/KR2023/009355 KR2023009355W WO2024010314A1 WO 2024010314 A1 WO2024010314 A1 WO 2024010314A1 KR 2023009355 W KR2023009355 W KR 2023009355W WO 2024010314 A1 WO2024010314 A1 WO 2024010314A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
unit
sheets
vacuum chamber
thickness
Prior art date
Application number
PCT/KR2023/009355
Other languages
French (fr)
Korean (ko)
Inventor
주학식
주세현
Original Assignee
주학식
주세현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주학식, 주세현 filed Critical 주학식
Publication of WO2024010314A1 publication Critical patent/WO2024010314A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20472Sheet interfaces
    • H05K7/20481Sheet interfaces characterised by the material composition exhibiting specific thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20954Modifications to facilitate cooling, ventilating, or heating for display panels
    • H05K7/20963Heat transfer by conduction from internal heat source to heat radiating structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties

Definitions

  • the present invention relates to a vacuum chamber having a multi-layer graphite laminate. More specifically, the present invention relates to a vacuum chamber having a multi-layer graphite laminate. More specifically, a plurality of graphite sheets with high thermal conductivity are stacked in a multi-layer structure, and these are placed inside a chamber housing that forms a vacuum receiving space, so that each By keeping the graphite sheets closely attached to each other, the thermal diffusion rate is improved, and heat transfer in the vertical direction is blocked on the upper side of the stacked graphite sheets, allowing the heat transferred from the heat source to quickly diffuse horizontally, leading to excellent thermal insulation. It relates to a vacuum chamber having a multi-layer graphite laminate that can guarantee cooling performance.
  • the temperature rise is so large that the maximum temperature of the chip exceeds 80°C when operated in full mode.
  • the most effective method is to use a heat diffusion mechanism to spread the temperature of the hot spot to the entire space to lower the average temperature.
  • it has high thermal conductivity in the horizontal direction and is flexible and adhesive like existing adhesive films.
  • Korean Patent No. 10-0755014 which is manufactured by mixing polydimethylsiloxane, silicone resin, and thermally conductive pillar on one side of the graphite heat dissipation sheet.
  • a thermally conductive adhesive By applying a thermally conductive adhesive, it is easy to adhere to the display product and improve thermal conductivity.
  • it not only does it have the disadvantage of poor heat dissipation performance as the graphite layer is easily cracked or damaged due to bending deformation or external force, but it is also relatively expensive.
  • claim 1 includes a pair of containers arranged opposite each other; a pair of wicks disposed inside the pair of containers; and a spacer disposed inside the pair of wicks; It includes, wherein the container, the wick, and the spacer are made of a low dielectric constant polymer material having a dielectric constant in the range of 1 to 3.5, and the working fluid provided in the wick transfers heat supplied to one of the containers to the other one of the containers.
  • a vapor chamber that changes phase for delivery to a container is disclosed.
  • the present invention was created to solve the problems of the prior art as described above.
  • the purpose of the present invention is to prepare a graphite unit made by laminating two or more graphite sheets with excellent thermal conductivity inside a chamber housing, and to provide a graphite unit for the chamber housing. It is placed inside the unit and then sealed by applying vacuum pressure.
  • the graphite unit which is made up of multi-layer graphite sheets, can quickly and efficiently diffuse the heat transferred from the heat source by the action of its arrangement structure, resulting in excellent cooling performance.
  • the aim is to provide a vacuum chamber with a multi-layer graphite laminate that can provide guaranteed stability.
  • the present invention additionally configures an element to suppress heat transfer on the upper side of the stacked graphite unit, thereby suppressing the rapid diffusion and transfer of heat transferred from the heat source in the vertical direction from the graphite unit, thereby achieving uniform heat diffusion characteristics in the horizontal direction.
  • the aim is to provide a vacuum chamber having a multi-layer graphite laminate capable of having a.
  • a vacuum chamber having a multi-layer graphite laminate according to another preferred embodiment of the present invention for realizing the above object is made of a metal material by joining the upper cover and the lower cover to form an accommodating space inside where vacuum pressure acts.
  • the graphite unit is composed of stacking 2 to 20 graphite sheets having different thicknesses, and each graphite sheet is provided with a thickness of 5 ⁇ m to 300 ⁇ m.
  • the chamber housing is provided with a lower cover whose edge protrudes upward as the graphite unit is raised, and a lower cover with a shape corresponding to the upper side of the lower cover to form a receiving space together with the lower cover.
  • a side wall unit seals the internal receiving space by joining the cover and the edges of the upper cover and lower cover, and the receiving space is divided into upper and lower parts to form a space for accommodating a plurality of graphite units, the edge of which is inside the side wall part. It consists of one or more vertical heat diffusion plates made of metal plates that are connected to the wall and transmit heat.
  • the graphite unit is an upwardly increasing thickness type graphite unit in which graphite sheets of increased thickness are sequentially stacked on the upper side of the graphite sheet located at the lowermost side.
  • a downward thickness increasing type graphite unit that sequentially stacks graphite sheets of reduced thickness on the upper side based on the graphite sheet located at the bottom;
  • a random graphite unit that randomly stacks graphite sheets of different thicknesses.
  • a vacuum chamber having a multi-layer graphite laminate according to another preferred embodiment of the present invention for realizing the above object has a lower cover made of a metal material provided in the form of a plate and disposed opposite to the upper side thereof, and has a lower cover with respect to the lower cover.
  • a chamber housing consisting of an upper cover made of a metal material with thermal conductivity to block heat transmitted in the vertical direction, and a side wall portion that joins the edges of the lower cover and the upper cover to form an accommodating space where vacuum pressure is applied; Thermal diffusion is induced in the horizontal direction by the upper cover, which is provided in the receiving space and has low thermal conductivity, and 2 to 20 graphite sheets with a thickness of 5 ⁇ m ⁇ 300 ⁇ m are stacked and each graphite sheet is brought into close contact with each other by vacuum pressure. It is characterized by being composed of a graphite unit provided in the state.
  • a vacuum chamber having a multi-layer graphite laminate includes an upper cover provided with a heat shear element for blocking heat transfer in the vertical direction, a lower cover disposed oppositely below the upper cover, and the upper cover
  • a chamber housing consisting of a side wall portion that forms a vacuum accommodation space therein by protruding and joining one or both of the edges of the lower cover and the lower cover; It is characterized by being composed of a graphite unit, which is made by stacking a plurality of graphite sheets in the receiving space, and each graphite sheet is provided in close contact with each other by vacuum pressure.
  • the graphite unit is an upwardly increasing thickness type graphite unit in which graphite sheets of increased thickness are sequentially stacked on the upper side of the lowermost graphite sheet as a reference; .
  • a downward thickness increasing type graphite unit that sequentially stacks graphite sheets of reduced thickness on the upper side based on the graphite sheet located at the bottom;
  • a random graphite unit that randomly stacks graphite sheets of different thicknesses.
  • the blocking element is an insulating film formed by coating a synthetic resin material or attaching a sheet of synthetic resin material to the upper or lower surface of the upper cover to reduce heat transfer in the vertical direction; or It is one of a porous insulating sheet made of metal or synthetic resin that is provided to reduce heat transfer in the vertical direction between the lower surface of the upper cover and the upper surface of the graphite unit.
  • the chamber housing divides the receiving space into upper and lower sections to form a space for accommodating a plurality of graphite units
  • the edge of the chamber is a metal plate connected to the inner wall of the side wall to transmit heat. It consists of one or more vertical heat diffusion plates.
  • a vacuum chamber having a multi-layer graphite laminate In a vacuum chamber having a multi-layer graphite laminate according to an embodiment of the present invention, heat transferred from the outside is provided inside the chamber housing made of copper or an alloy material containing copper or a known metal material with excellent thermal conductivity.
  • the effect of ensuring improved performance in heat dissipation and heat dissipation for heat generated from electronic devices as heat diffusion is achieved quickly and efficiently through a graphite unit consisting of a plurality of graphite sheets closely attached to each other by vacuum pressure. I'm looking forward to it.
  • the present invention has a simple structure and can be manufactured in a large area, so not only can it be economically mass produced, but it can also be easily applied to electronic devices with a large heating surface to ensure optimal performance. As a result, it has the effect of increasing the product value of electronic products using it.
  • the present invention can secure excellent heat dissipation characteristics by using sintered metal or graphite with excellent thermal conductivity as the multi-layer graphite layer, so it is expected to have the effect of ensuring high heat dissipation according to the high performance of electronic devices.
  • the upper cover constituting the chamber housing is made of a metal material with a relatively low thermal conductivity compared to the lower cover, so that the heat transferred from the heat source to the graphite unit is not spread uniformly in the horizontal direction but rapidly spreads in the vertical direction.
  • the graphite unit provided in the form of a plate is encouraged to spread evenly in the area direction, that is, in the horizontal direction, thereby achieving uniform heat dissipation performance for electronic components such as large-area displays such as smart and tablet PCs.
  • the entire chamber housing is molded from a metal material such as copper with excellent thermal conductivity, and an insulating film is formed on the upper or lower surface of the upper cover constituting the chamber housing to reduce heat transfer in the vertical direction, or the upper cover of the upper cover is formed.
  • a porous insulation sheet between the lower surface and the upper surface of the graphite unit, heat transfer in the vertical direction is blocked, allowing the heat transferred to the graphite unit to be transferred evenly in the horizontal direction.
  • it can be used in devices such as smartphones and tablet PCs.
  • it is possible to secure uniform heat dissipation characteristics over the entire large area rather than local heat dissipation, so it is expected to have the effect of guaranteeing the performance of electronic devices using it.
  • FIG. 1 is a cross-sectional view illustrating the configuration of a vacuum chamber having a multilayer graphite laminate according to a preferred embodiment of the present invention
  • Figure 2 is a partially cut away perspective view for explaining the internal structure of the vacuum chamber having the multi-layer graphite laminate shown in Figure 1;
  • Figure 3 is a cross-sectional view for explaining the internal structure of a vacuum chamber having a multi-layer graphite laminate according to another embodiment of the present invention.
  • Figure 4 is a heat conduction comparison diagram between a vacuum chamber having a multi-layer graphite laminate according to the present invention and the prior art
  • Figure 5 is a thermal image comparison diagram of a single-layer graphite and a multi-layer graphite laminate structure in a vacuum chamber having a multi-layer graphite laminate according to the present invention.
  • Figure 6 is a schematic diagram showing test conditions for comparing performance with existing products in a vacuum chamber having a multi-layer graphite laminate according to the present invention.
  • Figure 7 is a graph showing the GaP temperature change at points P0 to P2 over time under the conditions of Figure 6 in a vacuum chamber having a multi-layer graphite laminate according to the present invention
  • Figure 8 is a graph showing the change in heat source temperature over time under the conditions of Figure 6 in a vacuum chamber having a multi-layer graphite laminate according to the present invention
  • FIGS. 9 and 11 are schematic diagrams showing several examples of graphite units in a vacuum chamber having a multi-layer graphite laminate according to the present invention.
  • FIGS. 12 and 15 are views showing several embodiments of chamber housing in a vacuum chamber with a multilayer graphite laminate according to the present invention.
  • Chamber housing 11 Upper cover
  • FIG. 1 is a cross-sectional view illustrating the configuration of a vacuum chamber having a multi-layer graphite laminate according to a preferred embodiment of the present invention
  • FIG. 2 is a perspective view cut from the bottom illustrating the internal configuration of FIG. 1 .
  • a chamber housing 10 made of a metal material with excellent thermal conductivity such as copper is formed to form an accommodating space inside which vacuum pressure acts, and a plurality of graphite sheets are stacked inside the chamber housing 10.
  • a vacuum chamber (1) is shown having a multi-layer graphite laminate consisting of graphite units (30) kept closely attached to each other by the vacuum pressure acting within the chamber housing (10).
  • Figure 3 is a cross-sectional view for explaining the internal structure of a vacuum chamber having a multi-layer graphite laminate according to another embodiment of the present invention.
  • a chamber housing 10 made of a metal material that provides an empty receiving space (not shown) for vacuum pressure to act inside, and a plurality of graphite sheets 31 inside the chamber housing 10.
  • Graphite units 30, which are made by stacking two or more units and remain closely attached to each other by the vacuum pressure acting on the inside of the chamber housing 10, and the inner space of the chamber housing 10,
  • a vacuum chamber having a multi-layer graphite laminate made of a vertical heat diffusion plate (20) made of a metal plate that is divided into lower sections and whose edge is connected to one side of the chamber housing (10) to receive heat and transmit it to the upper and lower sides. (1) is shown.
  • Figure 4 shows a heat conduction comparison diagram between a vacuum chamber having a multi-layer graphite laminate according to the present invention and the prior art.
  • the binder bonded comparative product had a heat conduction of 302 W/mK and a heat diffusion of 188.9 mm 2 /s, while the product according to the present invention had a heat conduction of 951.3 W/mK and a heat diffusion of 594.6 mm. It was confirmed to be 2 /s. In other words, it can be seen that the heat conduction of the conventional comparative product using a binder drops sharply due to the thermal resistance generated from the binder.
  • Figure 5 is a comparative thermal image diagram of a single-layer graphite and a multi-layer graphite laminate structure in a vacuum chamber having a multi-layer graphite laminate according to the present invention.
  • the left side is a photograph of a thermal image of a vacuum chamber with a single-layer graphite sheet interposed therebetween
  • the right side is a photograph of a thermal image of a vacuum chamber formed by stacking multi-layer graphite sheets according to the present invention, and the GAP temperature
  • the GAP temperature The lower the value, the better the heat transfer (diffusion), and it was confirmed that a laminate made of multi-layer graphite sheets with the same thickness was relatively better than a configuration using single-layer graphite sheets.
  • FIG. 6 is a schematic diagram for comparing the performance of a vacuum chamber with a multi-layer graphite laminate according to the present invention with existing products.
  • the left side (A) is a diagram for measuring the temperature characteristics of a mobile phone (electronic device) to which the present invention is applied.
  • the conditions for measuring the temperature characteristics of a mobile phone (electronic device) to which the prior art is applied are shown on the left, with P0, P1, P2, and P3 being the heat source (heater) of the electronic device; such as an electronic chip, etc. ) indicates the point for measuring temperature characteristics.
  • the product standard of the present invention and the prior art is 130mm ⁇ 70mm ⁇ 0.1mm
  • the power consumption of the heater is 11.5W (5.5V, 2A)
  • the temperature of the chamber is 25 degrees ( ⁇ 0.5). The test was conducted under conditions.
  • Figure 7 is a graph showing the GaP temperature change at points P0 to P2 over time under the conditions of Figure 6 in a vacuum chamber having a multi-layer graphite laminate according to the present invention.
  • the graph line located at the top shows the GaP temperature change at points P0 to P2 for existing products
  • the graph line located at the bottom of the drawing shows the GaP temperature change at points P0 to P2 for the product according to the present invention. It can be seen that the temperature difference of the product of the present invention is small compared to the existing product. This can be interpreted as ensuring stable heat dissipation performance over time.
  • Figure 8 is a graph showing the change in heat source temperature over time under the conditions of Figure 6 in a vacuum chamber having a multi-layer graphite laminate according to the present invention.
  • the graph line located on the upper side is a measurement of the heat source temperature for the existing product
  • the lower graph line in the drawing is a measurement of the heat source temperature for the product of the present invention.
  • FIGS. 9 and 11 are diagrams showing several examples of graphite units in a vacuum chamber having a multi-layer graphite laminate according to the present invention.
  • Figure 9 shows an upwardly increasing thickness type graphite unit 31a having a stacked form in which the thickness of the graphite sheets stacked on the upper side of the graphite sheet 31a1 located at the lowermost side is gradually increased.
  • Figure 10 shows a downward-thickness-increasing graphite unit 31b having a stacked form in which the thickness of the graphite sheets stacked on the upper side of the graphite sheet 31b1 located at the lowermost side is gradually reduced.
  • FIG. 11 shows a random graphite unit 31c in which a plurality of graphite sheets having different thicknesses are randomly stacked.
  • FIG 12 and 14 are views showing several examples of chamber housing in a vacuum chamber having a multilayer graphite laminate according to the present invention.
  • the upper cover 11 and lower cover 13 constituting the chamber housing 10 are molded and joined from different metal materials, and the upper cover 11 is formed by lower cover 13. ) shows a configuration that is molded from a metal material with low thermal conductivity.
  • FIG. 13 shows a configuration in which an insulating film 50 is provided by coating a synthetic resin material or attaching a synthetic resin sheet to the upper surface of the upper cover 11 constituting the chamber housing 10,
  • the insulation film 50 is an element to prevent local heat dissipation from occurring due to rapid transfer of heat from the heat source to the graphite unit 30 in the vertical direction, and reduces the heat dissipation characteristics in the vertical direction, resulting in It is an element to ensure that heat is spread uniformly in the horizontal direction of the graphite unit 30.
  • FIG. 14 shows a configuration in which an insulating film 50 is provided on the lower surface of the upper cover 11 constituting the chamber housing 10.
  • the insulating film 50 is made of a synthetic resin material with insulating properties. It is formed by coating it to have a certain thickness or attaching a synthetic resin material and performs the same function as in Figure 13.
  • the embodiment shown in FIG. 15 is a porous material made of metal or synthetic resin to reduce heat transfer in the vertical direction between the lower surface of the upper cover 11 constituting the chamber housing 10 and the upper surface of the graphite unit 30.
  • This porous insulation sheet 55 has physical properties that enable volume reduction by external force as it forms pores, and has the effect of reducing heat transfer through the pores.
  • the present invention is to provide a vacuum chamber having a multi-layer graphite laminate that contacts the heating surface of an electronic device with heat generating characteristics and performs a heat dissipation function, comprising a chamber housing 10 largely forming an external body, and this chamber housing ( It consists of a graphite unit 30 provided inside 10).
  • the chamber housing 10 is made of copper, a copper alloy containing copper, or a known metal material with excellent thermal conductivity, and largely consists of an upper cover 11, a lower cover 13, and a side wall portion 15.
  • the upper cover 11 is provided in the form of a plate made of copper or metal, and its lower surface is provided so that the upper surface of the graphite unit 30 is in contact with it. This upper cover 11 is preferably provided so that an edge portion protrudes downward to form a side wall portion 15, which will be described later.
  • the lower cover 13 is spaced apart from the upper cover 11 to form an accommodating space 10s therein.
  • the lower cover 13 is made of copper or thermally conductive material. It is molded from an excellent metal material, and the lower surface of the graphite unit 30 is raised in close contact with the upper surface.
  • This lower cover 13 is provided in a shape corresponding to the upper cover 11, and the edge portion protrudes upward and comes into contact with the protruding edge portion of the upper cover 11 to form a side wall portion 15, which will be described later. It is desirable to form
  • the side wall portion 15 is formed by protruding the edges of the upper cover 11 and the lower cover 13 and joining them with welding or adhesive, and is formed inside the upper cover 11 and the lower cover 13.
  • a receiving space (10s) is formed in which the graphite unit (30) on which pneumatic pressure acts is placed.
  • This side wall portion 15 is formed by placing a strip-shaped length member made of copper or metal between the upper cover 11 and the lower cover 13 and then integrally joining it by welding, or It would also be possible to bend the edge of the lower cover 13 in a vertical direction and weld the vertically bent end to the lower cover 13 or upper cover 11 to form an integrated structure.
  • the chamber housing 10 of the present invention must be preceded by a process of placing the graphite unit 30 therein before integrating the side wall portion 15 with the upper cover 11 and lower cover 13. .
  • the graphite unit 30 is constructed by stacking a plurality of graphite sheets 31.
  • each graphite sheet 31 constituting the graphite unit 30 has a thickness of 5 ⁇ m to 300 ⁇ m.
  • the left side of the drawing is a photograph of a thermal image of a vacuum chamber interposed with a single-layer graphite sheet
  • the right side is a thermal image of a vacuum chamber formed by stacking multi-layer graphite sheets according to the present invention.
  • the left side of the drawing is a configuration in which several graphite sheets are stacked using a binder (adhesive or double-sided adhesive tape) according to the conventional method
  • the right side is a configuration in which vacuum pressure is applied without the use of a binder according to the present invention. It is used to attach several graphite sheets to each other.
  • the graphite sheet used in these binder-type existing products and the vacuum pressure attachment-type product of the present invention was both used to have a thickness of 0.025 mm, and the thickness of the copper layer forming the chamber housing was 0.020 mm in the prior art, and in the present invention Experimental data on heat conduction and heat diffusion were obtained using 0.025mm.
  • the binder bonded comparative product had a heat conduction of 302 W/mK and a heat diffusion of 188.9 mm 2 /s, while the product according to the present invention had a heat conduction of 951.3 W/mK and a heat diffusion of 594.6 mm. It was confirmed to be 2 /s. In other words, it can be seen that the heat conduction of the conventional comparative product using a binder drops sharply due to the thermal resistance generated from the binder.
  • the vacuum chamber 10 when the metal chamber housing 10 is in close contact with the heating surface of the electronic device and heat is conducted, the vacuum chamber 10 is generated inside the chamber housing 10. Cooling by reverse diffusion occurs by the graphite unit 30, which is made up of a plurality of graphite sheets 31 that are closely attached to each other by pneumatic pressure.
  • the graphite unit 30 stacks a plurality of graphite sheets 31 and applies vacuum pressure to the inside of the chamber housing 10 containing the graphite sheets 31, thereby creating pressure between the graphite sheets 31.
  • heat transfer efficiency can be maximized. That is, when multiple graphite sheets 31 are stacked and an adhesive is used between each graphite sheet 31, the heat dissipation performance is lowered as the heat transfer property by the adhesive decreases.
  • the present invention is a method of stacking a plurality of graphite sheets 31. Since it is a method of bringing the sheets (31) into close contact with each other using vacuum pressure without any inclusions between them, the heat dissipation characteristics of the graphite sheet (31) can be fully guaranteed.
  • the present invention proposes an embodiment as shown in FIGS. 9 to 11 in configuring the graphite unit 30 in consideration of heat transfer efficiency.
  • the graphite unit 30 shown in the embodiment of FIG. 9 is an upward-thickness-increasing graphite type in which graphite sheets of gradually increased thickness are stacked and arranged upwardly based on the graphite sheet 31a1 located at the bottom. It is suggested that it be provided as a unit.
  • the first graphite sheet (31a1) placed at the bottom has the thinnest thickness
  • the second graphite sheet (31a2) placed on top has a relatively increased thickness with respect to the first graphite sheet.
  • the third graphite sheet 31a3 placed on the upper side of the second graphite sheet 31a2 also has an increased thickness relative to the second graphite sheet
  • the third graphite sheet 31a4 also has a relatively increased thickness with respect to the third graphite sheet and is arranged in a stacked manner.
  • the graphite sheet placed closest to the heat source is thin, so it quickly receives heat transferred from the heat source and performs a heat diffusion function.
  • the graphite unit shown in the example of FIG. 10 represents a downward thickness increasing type graphite unit 31b in which the thickness of the graphite sheet gradually increases as it progresses from the top to the bottom.
  • the first graphite sheet (31b1) disposed is the thickest, and the second graphite sheet (31b2) placed on top is laminated with a thickness that is reduced relative to the first graphite sheet, and the second graphite sheet (31b2) is laminated
  • the third graphite sheet (31b3) placed on the upper side of the sheet (31b2) is also laminated with a thickness relatively reduced with respect to the second graphite sheet, and the fourth graphite sheet (31b4) placed on the upper side of the third graphite sheet.
  • the third graphite sheet has a relatively reduced thickness and is stacked.
  • This downward-thickness-increasing graphite unit performs heat dissipation by quickly transferring heat through a heat sink (not shown) provided on the upper surface of the chamber housing.
  • the graphite unit according to the embodiment of FIG. 11 is a randomly stacked arrangement of a plurality of graphite sheets 31 with various thicknesses, and its effect is improved performance in terms of thermal diffusion and conductivity compared to the embodiment of FIGS. 9 and 10. It may fall, but it can be applied and manufactured according to the orderer's request.
  • the vacuum chamber having a multi-layer graphite laminate according to this embodiment is substantially the same as the configuration of the embodiment described above. However, this embodiment has the feature of additionally forming a vertical heat diffusion plate 20 that divides the inner space of the chamber housing 10 into upper and lower sections to form a plurality of receiving spaces 10s.
  • the present invention largely consists of a chamber housing 10, a graphite unit 30, and a vertical heat diffusion plate 20.
  • the chamber housing 10 provides an accommodating space, which is a sealed space where vacuum pressure is applied, and is formed of copper or an alloy material containing copper or other metal material with excellent thermal conductivity.
  • This chamber housing 10 is composed of an upper cover 11, a lower cover 13, and a side wall portion 15, and the upper cover 11, lower cover 13, and side wall portion 15 are each molded. After forming the side wall by joining it together through welding or bending the edge of either the upper cover 11 or the lower cover 13 vertically, the lower cover 13 is attached to the end of the side wall. ) or can be formed by joining the upper cover 11 by welding.
  • the chamber housing 10 of this configuration is substantially similar to the configuration of the previously described embodiment.
  • the graphite unit 30 is a stack of 2 to 10 graphite sheets 31, and each graphite sheet 31 is proposed to have a thickness of 5 ⁇ m to 300 ⁇ m. Since this graphite unit 30 is substantially the same as the configuration of the previously described embodiment, detailed description will be omitted.
  • the vertical heat diffusion plate 20 is a type of diaphragm for dividing the internal space of the chamber housing 10 into upper and lower sections, and in the present invention, it is formed of copper, an alloy containing copper, or other metal material with good thermal conductivity.
  • This vertical heat diffusion plate 20 is configured such that its edge portion is connected by welding to the inner surface of the chamber housing 10, and the upper cover 11 or lower cover 13 and the side wall constituting the chamber housing 10. It serves to receive heat transferred from the part 15 and transfer it to each graphite unit 30 disposed on the upper and lower surfaces of the unit 15 to cause a reverse diffusion effect.
  • the vacuum chamber having a multi-layer graphite laminate with a vertical heat diffusion plate 20 is configured to conduct heat when the metal chamber housing 10 is in close contact with the heating surface of the electronic device and conducts heat. Heat is dissipated through a reverse diffusion action by two or more graphite units 30 made up of a plurality of graphite sheets 31 that are closely attached to each other by vacuum pressure inside the chamber housing 10.
  • FIGS. 12 to 15 a vacuum chamber having a multilayer graphite laminate according to another embodiment of the present invention will be described with reference to FIGS. 12 to 15.
  • the present invention selectively suppresses the rapid diffusion of heat transferred to the graphite unit 30, which is composed of a plurality of graphite sheets 31, in the vertical direction, so that it can be used in electronic devices with a relatively large area, such as a large-area display. It is proposed as a technical feature that an insulation film 50 or a porous insulation sheet 55 that can ensure uniform heat dissipation characteristics is added.
  • the first embodiment proposed by the present invention for this purpose proposes molding the upper cover 11 and lower cover 13, which constitute the chamber housing 10, from different metal materials, as shown in FIG. 12.
  • the upper cover 11 is made of a metal material with a low heat transfer rate relative to the lower cover 13.
  • the upper cover 11 may be molded from a metal material such as magnesium, nickel, iron, lead, or antimony, which has a lower heat transfer rate than copper.
  • the heat transferred from the heat source of the electronic device in contact with the lower surface of the lower cover 13 heats several graphite sheets. It is transferred to the stacked graphite unit 30, and the heat transferred to this graphite unit 30 cannot spread quickly in the vertical direction due to the low heat conduction characteristics of the upper cover 11 with respect to the lower cover 13. The diffusion is induced uniformly in the horizontal direction.
  • a synthetic resin material is applied to the upper or lower surface of the upper cover 11 constituting the chamber housing 10 to a certain thickness. It is proposed to provide an insulating film 50 made of or by attaching a synthetic resin sheet. Since this insulation film 50 is made of a synthetic resin material, it has a lower thermal conductivity than metal, and as a result, it prevents the heat transferred to the graphite unit from being rapidly transferred in the vertical direction, thereby increasing the horizontal direction of the graphite unit 30. It induces heat diffusion to ensure uniform heat dissipation characteristics.
  • the third embodiment proposed by the present invention is as shown in Figure 15.
  • a porous insulation sheet 55 made of synthetic resin or metal is provided between the lower surface of the upper cover 11 constituting the chamber housing 10 and the upper surface of the graphite unit 30.
  • the porous insulation sheet 55 in this embodiment suppresses heat transfer in the vertical direction so that the heat transferred to the graphite unit 30 can spread in the area direction, that is, the horizontal direction. This ensures uniform heat dissipation characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Resistance Heating (AREA)
  • Ceramic Products (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention provides a vacuum chamber having a multilayer graphite stack. The objective of the present invention is to provide a vacuum chamber having a multilayer graphite stack, the chamber having a graphite unit, formed by stacking a plurality of graphite sheets, that is vacuum-accommodated in a chamber housing, thereby maximizing thermal diffusion efficiency so as to ensure excellent cooling performance, and decreasing heat transfer in the vertical direction so that heat can be uniformly diffused in the horizontal direction.

Description

다층 그라파이트 적층체를 갖는 진공챔버Vacuum chamber with multi-layer graphite laminate
본 발명은 다층 그라파이트 적층체를 갖는 진공챔버에 관한 것으로서, 더욱 상세하게는 열전도율이 복수의 그라파이트 시트를 다층으로 적층하고, 이를 진공의 수용공간을 형성한 챔버 하우징 내부에 구성시킴으로써 진공압에 의해 각 그라파이트 시트가 서로 밀접하게 부착된 상태를 유지하는 것에 의해 열확산율을 향상시키고 아울러 적층된 그라파이트 시트의 상측면에 수직방향으로의 열전달을 차단하여 발열원으로부터 전달된 열을 수평방향으로 빠르게 확산유도하여 우수한 냉각 성능을 보장할 수 있는 다층 그라파이트 적층체를 갖는 진공챔버에 관한 것이다.The present invention relates to a vacuum chamber having a multi-layer graphite laminate. More specifically, the present invention relates to a vacuum chamber having a multi-layer graphite laminate. More specifically, a plurality of graphite sheets with high thermal conductivity are stacked in a multi-layer structure, and these are placed inside a chamber housing that forms a vacuum receiving space, so that each By keeping the graphite sheets closely attached to each other, the thermal diffusion rate is improved, and heat transfer in the vertical direction is blocked on the upper side of the stacked graphite sheets, allowing the heat transferred from the heat source to quickly diffuse horizontally, leading to excellent thermal insulation. It relates to a vacuum chamber having a multi-layer graphite laminate that can guarantee cooling performance.
최근 들어 고성능의 휴대용 무선정보 단말기를 비롯하여 유무선 통신망과 연계 운영되는 가전제품 등 각종 첨단 전자기기의 보급이 급속하게 늘어남에 따라 이들 기기들에 사용되는 전자소자의 고집적화 및 주파수의 광대역화 추세로 인하여 전자파의 발생원, 기기의 방열 필요성이 늘어나고 있는 추세에 있다.Recently, as the spread of various cutting-edge electronic devices, such as high-performance portable wireless information terminals and home appliances operated in conjunction with wired and wireless communication networks, has rapidly increased, the trend toward high integration of electronic devices used in these devices and widening frequencies has led to electromagnetic waves. The need for heat dissipation from devices and sources of heat is increasing.
일례로, 휴대폰의 MSM(Mobile Solution Module) 칩의 경우 Full 모드로 구동시 칩의 최고온도가 80℃를 넘어설 정도로 온도 상승이 크다 휴대폰과 같이 슬림형 디지털기기에는 Heat Sink를 장착 할 공간적인 여유가 없기 때문에 열 확산기구를 사용하여 열집중점(Hot spot)의 온도를 전체 공간으로 퍼뜨려 평균 온도를 낮추는 방법이 가장 효과적이다 이에 따라 수평 방향으로의 열전도성이 높으면서 기존의 접착 필름과 같이 유연하고 접착성이 우수한 시트형태로 제조하는 기술개발이 필요하다. 이를 통해 확인할 수 있듯이 전가기기의 고 성능화에 따른 효과적인 방열기술의 개발이 시급한 실정이다.For example, in the case of the MSM (Mobile Solution Module) chip of a mobile phone, the temperature rise is so large that the maximum temperature of the chip exceeds 80℃ when operated in full mode. There is no space to install a heat sink in slim digital devices such as mobile phones. Therefore, the most effective method is to use a heat diffusion mechanism to spread the temperature of the hot spot to the entire space to lower the average temperature. As a result, it has high thermal conductivity in the horizontal direction and is flexible and adhesive like existing adhesive films. There is a need to develop technology to manufacture it in a sheet form with excellent properties. As can be seen from this, there is an urgent need to develop effective heat dissipation technology as the performance of electrical appliances increases.
종래기술로는 대한민국 등록특허 제10-0755014호를 통해 열전도성 점착제가 도포된 그라파이트 방열시트가 제안된 바 있으며, 그라파이트 방열시트의 일측면에 폴리디메틸실록산과 실리콘 레진 및 열전도성 필라를 혼합 제조된 열전도성 점착제를 도포함으로써 디스플레이 제품에 쉽게 점착되면서도 열전도성을 개선하도록 하였으나, 휨변형이나 외력에 의해 그라파이트층이 쉽게 균열되거나 손상이 발생함에 따라 방열성능이 불량해지는 폐단이 있을 뿐만 아니라 비교적 고가의 그라파이트를 대면적용 디스플레이 등과 같은 전자기기용으로 제작하기에는 기술적으로 난해할 뿐만 아니라 전용 설비를 갖춰야 하는 등 양산성이 불량함에 따라 비교적 저사양 전자기기의 열분산 목적으로사용되고 있는 실정이다.As a prior art, a graphite heat dissipation sheet coated with a thermally conductive adhesive has been proposed through Korean Patent No. 10-0755014, which is manufactured by mixing polydimethylsiloxane, silicone resin, and thermally conductive pillar on one side of the graphite heat dissipation sheet. By applying a thermally conductive adhesive, it is easy to adhere to the display product and improve thermal conductivity. However, not only does it have the disadvantage of poor heat dissipation performance as the graphite layer is easily cracked or damaged due to bending deformation or external force, but it is also relatively expensive. It is not only technically difficult to manufacture for electronic devices such as large-scale displays, but also requires dedicated facilities and has poor mass production, so it is being used for heat dissipation purposes in relatively low-specification electronic devices.
또 다른 종래기술로는 평판형의 디바이스 또는 원형의 히트파이프형 디바이스로 제작되는 베어퍼 챔버가 있으며, 그 종래기술로는 대한민국 공개특허 제10-2021-0122572호의 '베이퍼 챔버'가 제안된 바 있으며, 그 청구항 1에는 상호 대향 배치되는 한 쌍의 컨테이너; 한 쌍의 상기 컨테이너의 내측에 배치되는 한 쌍의 윅; 및 한 쌍의 상기 윅의 내측에 배치되는 스페이서; 를 포함하며, 상기 컨테이너, 상기 윅 및 상기 스페이서는 유전율이 1 내지 3.5 범위에서 형성되는 저유전율 폴리머재질이고, 상기 윅에 구비된 작동 유체는 어느 하나의 상기 컨테이너로 공급되는 열을 다른 하나의 상기 컨테이너로 전달하도록 상변화하는 베이퍼 챔버가 개시되어 있다.Another prior art is a vapor chamber manufactured with a flat device or a circular heat pipe type device, and the 'vapor chamber' of Korean Patent Publication No. 10-2021-0122572 has been proposed as the prior art. , claim 1 includes a pair of containers arranged opposite each other; a pair of wicks disposed inside the pair of containers; and a spacer disposed inside the pair of wicks; It includes, wherein the container, the wick, and the spacer are made of a low dielectric constant polymer material having a dielectric constant in the range of 1 to 3.5, and the working fluid provided in the wick transfers heat supplied to one of the containers to the other one of the containers. A vapor chamber that changes phase for delivery to a container is disclosed.
그러나, 상기 종래기술에 따른 베이퍼 챔버는 대면적화가 곤란할 뿐만 아니라 제조공정이 난해하여 경제적인 양산이 어렵고, 특히 전자기기의 열 분산을 목적으로 방열시트와 복합 사용해야 하는 폐단으로 인해 적용 대상이 제한적인 문제점이 있었다.However, not only is it difficult to enlarge the vapor chamber according to the prior art, but the manufacturing process is difficult, making economical mass production difficult. In particular, the application target is limited due to the disadvantage of having to use it in combination with a heat dissipation sheet for the purpose of dispersing heat in electronic devices. There was a problem.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 창출된 것으로서, 본 발명의 목적은 챔버 하우징의 내부에 열전도율이 우수한 두 장 이상의 그라파이트 시트를 적층하여 된 그라파이트 유닛을 준비하고, 이를 상기 챔버 하우징의 내부에 위치시킨 뒤 진공압을 걸어 밀봉시킨 것으로, 다층의 그라파이트 시트로 이루어진 그라파이트 유닛은 발열원으로부터 전달된 열을 그 배치구조가 갖는 작용에 의해 빠르고 효율적으로 확산시킬 수 있어 결과적으로 우수한 냉각성능을 보장할 수 있는 다층 그라파이트 적층체를 갖는 진공 챔버를 제공하는데 있다.The present invention was created to solve the problems of the prior art as described above. The purpose of the present invention is to prepare a graphite unit made by laminating two or more graphite sheets with excellent thermal conductivity inside a chamber housing, and to provide a graphite unit for the chamber housing. It is placed inside the unit and then sealed by applying vacuum pressure. The graphite unit, which is made up of multi-layer graphite sheets, can quickly and efficiently diffuse the heat transferred from the heat source by the action of its arrangement structure, resulting in excellent cooling performance. The aim is to provide a vacuum chamber with a multi-layer graphite laminate that can provide guaranteed stability.
또한, 본 발명은 적층된 그라파이트 유닛의 상측면에 열전달을 억제하는 요소를 부가 구성함으로써, 발열원으로부터 전달된 열이 그라파이트 유닛에서 수직방향으로 급격하게 확산 전달되는 것을 억제하여 수평 방향으로 균일한 열확산 특성을 가질 수 있도록 한 다층 그라파이트 적층체를 갖는 진공 챔버를 제공하는데 있다.In addition, the present invention additionally configures an element to suppress heat transfer on the upper side of the stacked graphite unit, thereby suppressing the rapid diffusion and transfer of heat transferred from the heat source in the vertical direction from the graphite unit, thereby achieving uniform heat diffusion characteristics in the horizontal direction. The aim is to provide a vacuum chamber having a multi-layer graphite laminate capable of having a.
상기의 목적을 실현하기 위한 본 발명의 바람직한 다른 실시례에 따른 다층 그라파이트 적층체를 갖는 진공챔버는, 내부에 진공압이 작용하는 수용공간을 형성하는 것으로 상커버와 하커버를 접합하여 된 금속재로된 챔버 하우징; 상기 챔버 하우징의 내부에 서로 다른 두께를 갖는 복수의 그라파이트 시트를 적층하여 된 것으로, 상기 챔버 하우징 내에 작용하는 진공압에 의해 상,하 서로 밀접하게 부착 상태를 유지하는 그라파이트 유닛;으로 구성된 것을 그 특징으로 한다.A vacuum chamber having a multi-layer graphite laminate according to another preferred embodiment of the present invention for realizing the above object is made of a metal material by joining the upper cover and the lower cover to form an accommodating space inside where vacuum pressure acts. chamber housing; A graphite unit made by stacking a plurality of graphite sheets with different thicknesses inside the chamber housing and maintaining the top and bottom closely attached to each other by vacuum pressure acting within the chamber housing. Do it as
본 발명의 바람직한 한 특징으로서, 상기 그라파이트 유닛은, 서로 다른 두께를 갖는 2~20개의 그라파이트 시트를 적층 구성하되, 상기 각 그라파이트 시트는 5㎛ ~300㎛ 두께로 구비되는 것에 있다.As a preferred feature of the present invention, the graphite unit is composed of stacking 2 to 20 graphite sheets having different thicknesses, and each graphite sheet is provided with a thickness of 5㎛ to 300㎛.
본 발명의 바람직한 또 다른 특징으로서, 상기 챔버 하우징은 상기 그라파이트 유닛이 올려지는 것으로 테두리가 상향 돌출된 하커버 및 이 하커버의 상측에 대응되는 형상으로 구비되어 하커버와 함께 수용공간을 형성하는 상커버 및 상기 상커버와 하커버의 테두리를 접합하여 내부의 수용공간을 밀폐시키는 측벽부 그리고 상기 수용공간을 상,하로 구획하여 복수의 그라파이트 유닛을 수용하는 공간을 형성한 것으로 그 테두리가 측벽부의 내벽면에 연결되어 열을 전달하는 금속판재로 된 하나 또는 복수의 수직 열확산판으로 이루어진 것에 있다.As another preferred feature of the present invention, the chamber housing is provided with a lower cover whose edge protrudes upward as the graphite unit is raised, and a lower cover with a shape corresponding to the upper side of the lower cover to form a receiving space together with the lower cover. A side wall unit seals the internal receiving space by joining the cover and the edges of the upper cover and lower cover, and the receiving space is divided into upper and lower parts to form a space for accommodating a plurality of graphite units, the edge of which is inside the side wall part. It consists of one or more vertical heat diffusion plates made of metal plates that are connected to the wall and transmit heat.
본 발명의 바람직한 또 다른 특징으로서, 상기 그라파이트 유닛은 제일 하측에 위치한 그라파이트 시트를 기준으로 그 상측에 두께가 증가 된 그라파이트 시트를 순차 적층하는 형태의 상향 두께 증가형 그라파이트 유닛;. 또는 제일 하측에 위치한 그라파이트 시트를 기준으로 그 상측에 두께가 감소된 그라파이트 시트를 순차 적층하는 형태의 하향 두께 증가형 그라파이트 유닛;, 또는 서로 다른 두께를 그라파이트 시트를 무작위로 적층 배치하는 무작위 그라파이트 유닛 중 어느 하나 인 것을 특징으로 하는 다층 그라파이트 적층체를 갖는 진공챔버.As another preferred feature of the present invention, the graphite unit is an upwardly increasing thickness type graphite unit in which graphite sheets of increased thickness are sequentially stacked on the upper side of the graphite sheet located at the lowermost side. Or, a downward thickness increasing type graphite unit that sequentially stacks graphite sheets of reduced thickness on the upper side based on the graphite sheet located at the bottom;, or a random graphite unit that randomly stacks graphite sheets of different thicknesses. A vacuum chamber having a multi-layer graphite laminate, characterized in that:
상기의 목적을 실현하기 위한 본 발명의 바람직한 다른 실시례에 따른 다층 그라파이트 적층체를 갖는 진공챔버는, 판재형으로 구비된 금속재로 된 하커버 및 이의 상측에 대향 배치되는 것으로 상기 하커버에 대해 낮은 열전도율을 갖는 금속재로 되어 수직 방향으로 전달되는 열을 차단하는 상커버 그리고 상기 하커버와 상커버의 테두리를 접합하여 내부에 진공압이 작용하는 수용공간을 형성하는 측벽부로 이루어진 챔버 하우징; 상기 수용공간 내에 구비되어 상기 열전도율이 낮은 상커버에 의해 수평 방향으로 열확산이 유도되는 것으로, 5㎛ ~300㎛ 두께를 갖는 그라파이트 시트 2~20장을 적층하여 진공압에 의해 각 그라파이트 시트들이 서로 밀착상태로 구비되는 그라파이트 유닛;으로 구성된 것을 그 특징으로 한다.A vacuum chamber having a multi-layer graphite laminate according to another preferred embodiment of the present invention for realizing the above object has a lower cover made of a metal material provided in the form of a plate and disposed opposite to the upper side thereof, and has a lower cover with respect to the lower cover. A chamber housing consisting of an upper cover made of a metal material with thermal conductivity to block heat transmitted in the vertical direction, and a side wall portion that joins the edges of the lower cover and the upper cover to form an accommodating space where vacuum pressure is applied; Thermal diffusion is induced in the horizontal direction by the upper cover, which is provided in the receiving space and has low thermal conductivity, and 2 to 20 graphite sheets with a thickness of 5㎛ ~ 300㎛ are stacked and each graphite sheet is brought into close contact with each other by vacuum pressure. It is characterized by being composed of a graphite unit provided in the state.
본 발명의 바람직한 또 다른 실시례에 따른 다층 그라파이트 적층체를 갖는 진공챔버는, 수직 방향으로의 열전달을 차단하기 위한 열전단 요소를 구비한 상커버 및 이의 하측에 대향 배치되는 하커버 그리고 상기 상커버와 하커버의 테두리 중 어느 하나 또는 둘 모두를 돌출시켜 접합하는 것에 의해 내부에 진공의 수용공간을 형성하는 측벽부로 이루어진 챔버 하우징; 상기 수용공간 내에 복수의 그라파이트 시트를 적층하여 된 것으로 진공압에 의해 각각의 그라파이트 시트들이 서로 밀착 상태로 구비되는 그라파이트 유닛;으로 구성된 것을 그 특징으로 한다.A vacuum chamber having a multi-layer graphite laminate according to another preferred embodiment of the present invention includes an upper cover provided with a heat shear element for blocking heat transfer in the vertical direction, a lower cover disposed oppositely below the upper cover, and the upper cover A chamber housing consisting of a side wall portion that forms a vacuum accommodation space therein by protruding and joining one or both of the edges of the lower cover and the lower cover; It is characterized by being composed of a graphite unit, which is made by stacking a plurality of graphite sheets in the receiving space, and each graphite sheet is provided in close contact with each other by vacuum pressure.
본 발명의 바람직한 한 특징으로서, 어느 한 항에 에 있어서, 상기 그라파이트 유닛은 제일 하측에 위치한 그라파이트 시트를 기준으로 그 상측에 두께가 증가 된 그라파이트 시트를 순차 적층하는 형태의 상향 두께 증가형 그라파이트 유닛;. 또는 제일 하측에 위치한 그라파이트 시트를 기준으로 그 상측에 두께가 감소된 그라파이트 시트를 순차 적층하는 형태의 하향 두께 증가형 그라파이트 유닛;, 또는 서로 다른 두께를 그라파이트 시트를 무작위로 적층 배치하는 무작위 그라파이트 유닛 중 어느 하나 인 것에 있다.As a preferred feature of the present invention, according to one of the preceding claims, the graphite unit is an upwardly increasing thickness type graphite unit in which graphite sheets of increased thickness are sequentially stacked on the upper side of the lowermost graphite sheet as a reference; . Or, a downward thickness increasing type graphite unit that sequentially stacks graphite sheets of reduced thickness on the upper side based on the graphite sheet located at the bottom;, or a random graphite unit that randomly stacks graphite sheets of different thicknesses. There is something about being one.
본 발명의 바람직한 다른 특징으로서, 상기 차단요소는 상기 상커버의 상면 또는 하면에 수직방향으로의 열전달을 저감시키기 위하여 합성수지재를 코팅하거나 또는 합성수지재로 된 시트를 부착하여 된 단열막;, 또는 상기 상커버의 하면과 그라파이트 유닛의 상면 사이에 수직 방향으로의 열전달을 저감하도록 구비되는 금속 또는 합성수지재로 된 다공소재의 다공 단열시트 중 어느 하나인 것에 있다.As another preferred feature of the present invention, the blocking element is an insulating film formed by coating a synthetic resin material or attaching a sheet of synthetic resin material to the upper or lower surface of the upper cover to reduce heat transfer in the vertical direction; or It is one of a porous insulating sheet made of metal or synthetic resin that is provided to reduce heat transfer in the vertical direction between the lower surface of the upper cover and the upper surface of the graphite unit.
본 발명의 바람직한 또 다른 특징으로서, 상기 챔버 하우징은 상기 수용공간을 상,하로 구획하여 복수의 그라파이트 유닛을 수용하는 공간을 형성한 것으로 그 테두리가 측벽부의 내벽면에 연결되어 열을 전달하는 금속판재로 된 하나 또는 복수의 수직 열확산판으로 이루어진 것에 있다.As another preferred feature of the present invention, the chamber housing divides the receiving space into upper and lower sections to form a space for accommodating a plurality of graphite units, and the edge of the chamber is a metal plate connected to the inner wall of the side wall to transmit heat. It consists of one or more vertical heat diffusion plates.
본 발명의 일 실시례에 따른 다층 그라파이트 적층체를 갖는 진공챔버는, 열전도율이 우수한 구리 또는 구리를 함유한 합금재 또는 공지의 금속재로 된 챔버 하우징을 통해 외부로부터 전달된 열은 그 내부에 구비되어 진공압에 의해 서로 밀접하게 부착 상태를 갖는 복수의 그라파이트 시트로 이루어진 그라파이트 유닛을 통해 빠르고 효율적으로 열확산이 이루어짐에 따라 전자기기에서 발생하는 열에 대한 열분산 및 방열에 대한 향상된 성능을 보장할 수 있는 효과가 기대된다.In a vacuum chamber having a multi-layer graphite laminate according to an embodiment of the present invention, heat transferred from the outside is provided inside the chamber housing made of copper or an alloy material containing copper or a known metal material with excellent thermal conductivity. The effect of ensuring improved performance in heat dissipation and heat dissipation for heat generated from electronic devices as heat diffusion is achieved quickly and efficiently through a graphite unit consisting of a plurality of graphite sheets closely attached to each other by vacuum pressure. I'm looking forward to it.
또한 본 발명은 구조가 간소하면서 대면적으로 제조가 가능함에 따라 경제적인 양산이 가능한 것은 물론이고 대면적의 발열면을 갖는 전자기기에도 최적의 성능을 확보할 수 있도록 용이하게 적용할 수 있음에 따라 결과적으로 이를 채용한 전자제품의 상품 가치를 높일 수 있는 효과가 있다.In addition, the present invention has a simple structure and can be manufactured in a large area, so not only can it be economically mass produced, but it can also be easily applied to electronic devices with a large heating surface to ensure optimal performance. As a result, it has the effect of increasing the product value of electronic products using it.
또한, 본 발명은 다층 그라파이트층을 열전도성이 우수한 소결금속이나 그라파이트를 사용하여 우수한 방열특성을 확보할 수 있음에 따라 전자기기의 고성능화에 따른 고방열을 보장할 수 있는 효과가 기대된다.In addition, the present invention can secure excellent heat dissipation characteristics by using sintered metal or graphite with excellent thermal conductivity as the multi-layer graphite layer, so it is expected to have the effect of ensuring high heat dissipation according to the high performance of electronic devices.
특히, 본 발명은 챔버 하우징을 구성하는 상커버를 하커버에 대해 상대적으로 열전도율이 낮은 금속재로 구비하는 것에 의해 발열원으로부터 그라파이트 유닛으로 전달된 열이 수평방향으로 균일하게 확산되지 못하고 수직 방향으로 급격하게 전달되는 것을 억제함으로써 결과적으로 판재 형태로 제공되는 그라파이트 유닛의 면적 방향 즉, 수평 방향으로 균일하게 확산될 수 있도록 유도함으로써 스마트이나 태블릿 PC 등과 같이 대면적의 디스플레이 등과 같은 전자부품에 대한 균일한 방열성능을 제공할 수 있는 이점이 있다.In particular, in the present invention, the upper cover constituting the chamber housing is made of a metal material with a relatively low thermal conductivity compared to the lower cover, so that the heat transferred from the heat source to the graphite unit is not spread uniformly in the horizontal direction but rapidly spreads in the vertical direction. By suppressing transmission, the graphite unit provided in the form of a plate is encouraged to spread evenly in the area direction, that is, in the horizontal direction, thereby achieving uniform heat dissipation performance for electronic components such as large-area displays such as smart and tablet PCs. There is an advantage that can be provided.
또한, 본 발명은 챔버 하우징 전체를 열전도율이 우수한 구리 등의 금속재로 성형하고, 챔버 하우징을 구성하는 상커버의 상면 또는 하면에 수직 방향으로의 열전달을 저감시키기 위한 단열막을 형성하거나 또는 상기 상커버의 하면과 그라파이트 유닛의 상면이 사이에 다공 단열시트를 구비시킴으로써 수직 방향으로의 열전달을 차단하도록 하여 그라파이트 유닛에 전달된 열이 수평방향으로 균일하게 전달될 수 있도록 하므로 결과적으로 스마트폰이나 태블릿 PC를 비롯한 디스플레이에 적용시 국부 방열이 아닌 대면적 전체에 대한 균일한 방열특성을 확보할 수 있으므로 이를 채용한 전자기기에 대한 성능을 보장할 수 있는 효과가 기대된다. In addition, in the present invention, the entire chamber housing is molded from a metal material such as copper with excellent thermal conductivity, and an insulating film is formed on the upper or lower surface of the upper cover constituting the chamber housing to reduce heat transfer in the vertical direction, or the upper cover of the upper cover is formed. By providing a porous insulation sheet between the lower surface and the upper surface of the graphite unit, heat transfer in the vertical direction is blocked, allowing the heat transferred to the graphite unit to be transferred evenly in the horizontal direction. As a result, it can be used in devices such as smartphones and tablet PCs. When applied to a display, it is possible to secure uniform heat dissipation characteristics over the entire large area rather than local heat dissipation, so it is expected to have the effect of guaranteeing the performance of electronic devices using it.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다. 이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니 되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야만 한다The features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings. Prior to this, terms or words used in this specification and claims should not be construed in their usual, dictionary meaning, and the inventor may appropriately define the concept of the term in order to explain his or her invention in the best way. It must be interpreted as meaning and concept consistent with the technical idea of the present invention based on the principle that
도 1은 본 발명의 바람직한 일 실시례에 따른 다층 그라파이트 적층체를 갖는 진공챔버의 구성을 설명하기 위한 단면도,1 is a cross-sectional view illustrating the configuration of a vacuum chamber having a multilayer graphite laminate according to a preferred embodiment of the present invention;
도 2는 도 1에 나타낸 다층 그라파이트 적층체를 갖는 진공챔버의 내부 구성을 설명하기 위한 부분 절개 사시도,Figure 2 is a partially cut away perspective view for explaining the internal structure of the vacuum chamber having the multi-layer graphite laminate shown in Figure 1;
도 3은 본 발명의 다른 실시례에 따른 다층 그라파이트 적층체를 갖는 진공챔버의 내부 구조를 설명하기 위한 단면도,Figure 3 is a cross-sectional view for explaining the internal structure of a vacuum chamber having a multi-layer graphite laminate according to another embodiment of the present invention;
도 4는 본 발명에 따른 다층 그라파이트 적층체를 갖는 진공챔버와 종래 기술간의 열전도 비교도면,Figure 4 is a heat conduction comparison diagram between a vacuum chamber having a multi-layer graphite laminate according to the present invention and the prior art;
도 5는 본 발명에 따른 다층 그라파이트 적층체를 갖는 진공챔버에서 싱글레이어 그라파이트와 다층 레이어 그라파이트 적층구조에 따른 열화상 비교도면.Figure 5 is a thermal image comparison diagram of a single-layer graphite and a multi-layer graphite laminate structure in a vacuum chamber having a multi-layer graphite laminate according to the present invention.
도 6은 본 발명에 따른 다층 그라파이트 적층체를 갖는 진공챔버에서 기존제품과의 성능 비교를 위한 시험조건을 나타낸 모식도.Figure 6 is a schematic diagram showing test conditions for comparing performance with existing products in a vacuum chamber having a multi-layer graphite laminate according to the present invention.
도 7은 본 발명에 따른 다층 그라파이트 적층체를 갖는 진공챔버에서 도 6의 조건에 의한 시간대별 P0~P2 포인트 GaP 온도변화를 나타낸 그래프,Figure 7 is a graph showing the GaP temperature change at points P0 to P2 over time under the conditions of Figure 6 in a vacuum chamber having a multi-layer graphite laminate according to the present invention;
도 8은 본 발명에 따른 다층 그라파이트 적층체를 갖는 진공챔버에서 도 6의 조건에 의한 시간대별 열원온도 변화를 나타낸 그래프,Figure 8 is a graph showing the change in heat source temperature over time under the conditions of Figure 6 in a vacuum chamber having a multi-layer graphite laminate according to the present invention;
도 9 및 도 11은 본 발명에 따른 다층 그라파이트 적층체를 갖는 진공챔버에서 그라파이트 유닛의 여러 실시례를 나타낸 모식도.9 and 11 are schematic diagrams showing several examples of graphite units in a vacuum chamber having a multi-layer graphite laminate according to the present invention.
도 12 및 도 15는 본 발명에 따른 다층 그라파이트 적층체를 갖는 진공챔버에서 챔버 하우징의 여러 실시례를 나타낸 도면.12 and 15 are views showing several embodiments of chamber housing in a vacuum chamber with a multilayer graphite laminate according to the present invention.
<부호의 설명><Explanation of symbols>
1 : 다층 그라파이트 적층체를 갖는 진공챔버1: Vacuum chamber with multi-layer graphite laminate
10 : 챔버 하우징 11 : 상커버10: Chamber housing 11: Upper cover
13 : 하커버 15 : 측벽부13: lower cover 15: side wall part
30 : 그라파이트 유닛 31 : 그라파이트 시트30: graphite unit 31: graphite sheet
50 : 단열막 55 : 다공 단열시트50: insulation film 55: porous insulation sheet
이하에서는 첨부한 도면을 참조하면서 본 발명의 실시례에 대한 구성 및 작용을 상세하게 설명하기로 한다. 다만, 본 발명을 특정한 개시형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 출원에서 "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 즉, 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Hereinafter, the configuration and operation of an embodiment of the present invention will be described in detail with reference to the attached drawings. However, it is not intended to limit the present invention to a specific disclosed form, and should be understood to include all changes, equivalents, and substitutes included in the spirit and technical scope of the present invention. In this application, terms such as “include” or “have” are intended to designate the presence of features, steps, operations, components, parts, or combinations thereof described in the specification, but not one or more other features, steps, or operations. , it should be understood that it does not exclude in advance the possibility of the existence or addition of components, parts, or combinations thereof. In other words, throughout the specification, when a part is said to “include” a certain component, this means that it does not exclude other components but may further include other components, unless specifically stated to the contrary.
또한, 다르게 정의되지 않는 한 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Additionally, unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as generally understood by those skilled in the art to which the present invention pertains. Terms defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and unless clearly defined in the present application, should not be interpreted in an ideal or excessively formal sense. No.
여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.Here, repetitive descriptions and detailed descriptions of known functions and configurations that may unnecessarily obscure the gist of the present invention are omitted in order to not obscure the gist of the present invention. Embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art. Therefore, the shapes and sizes of elements in the drawings may be exaggerated for clearer explanation.
이하, 첨부된 도면에 따른 본 발명의 구성을 간략하게 설명하기로 한다.Hereinafter, the configuration of the present invention will be briefly described according to the attached drawings.
도 1은 본 발명의 바람직한 일 실시례에 따른 다층 그라파이트 적층체를 갖는 진공챔버의 구성을 설명하기 위한 단면도이고, 도 2는 도 1의 내부 구성을 설명하기 위한 요부 절개 사시도이다.FIG. 1 is a cross-sectional view illustrating the configuration of a vacuum chamber having a multi-layer graphite laminate according to a preferred embodiment of the present invention, and FIG. 2 is a perspective view cut from the bottom illustrating the internal configuration of FIG. 1 .
도면에는, 내부에 진공압이 작용하는 수용공간을 형성하는 것으로 구리 등의 열전도율이 우수한 금속재로 된 챔버 하우징(10)과, 상기 챔버 하우징(10)의 내부에 복수의 그라파이트 시트를 적층하여 된 것으로 상기 챔버 하우징(10) 내에 작용하는 진공압에 의해 서로 밀접하게 부착 상태를 유지하는 그라파이트 유닛(30)으로 구성된 다층 그라파이트 적층체를 갖는 진공챔버(1)가 도시되어 있다.In the drawing, a chamber housing 10 made of a metal material with excellent thermal conductivity such as copper is formed to form an accommodating space inside which vacuum pressure acts, and a plurality of graphite sheets are stacked inside the chamber housing 10. A vacuum chamber (1) is shown having a multi-layer graphite laminate consisting of graphite units (30) kept closely attached to each other by the vacuum pressure acting within the chamber housing (10).
도 3은 본 발명의 다른 실시례에 따른 다층 그라파이트 적층체를 갖는 진공챔버의 내부 구조를 설명하기 위한 단면도이다.Figure 3 is a cross-sectional view for explaining the internal structure of a vacuum chamber having a multi-layer graphite laminate according to another embodiment of the present invention.
도면에는, 내부에 진공압이 작용하도록 빈 공간인 수용공간(미도시)을 제공하는 금속재로 된 챔버 하우징(10)과, 이 챔버 하우징(10)의 내부에 복수의 그라파이트 시트(31)를 적어도 2개 이상을 적층하여 된 것으로 상기 챔버 하우징(10) 내부에 작용하는 진공압에 의해 서로 밀접하게 부착된 상태를 유지하는 그라파이트 유닛(30)과, 상기 챔버 하우징(10)의 내부 공간을 상,하로 분할 구획하는 것으로 그 테두리 부분이 상기 챔버 하우징(10)의 일측에 연결되어 열을 전달받아 상,하면으로 전달하는 금속판재로 된 수직 열확산판(20)으로 이루어진 다층 그라파이트 적층체를 갖는 진공챔버(1)가 도시되어 있다.In the drawing, there is shown a chamber housing 10 made of a metal material that provides an empty receiving space (not shown) for vacuum pressure to act inside, and a plurality of graphite sheets 31 inside the chamber housing 10. Graphite units 30, which are made by stacking two or more units and remain closely attached to each other by the vacuum pressure acting on the inside of the chamber housing 10, and the inner space of the chamber housing 10, A vacuum chamber having a multi-layer graphite laminate made of a vertical heat diffusion plate (20) made of a metal plate that is divided into lower sections and whose edge is connected to one side of the chamber housing (10) to receive heat and transmit it to the upper and lower sides. (1) is shown.
도 4는 본 발명에 따른 다층 그라파이트 적층체를 갖는 진공챔버와 종래 기술간의 열전도 비교도면을 나타낸 것이다.Figure 4 shows a heat conduction comparison diagram between a vacuum chamber having a multi-layer graphite laminate according to the present invention and the prior art.
도면에서 좌측은 종래 방식에 의한 바인더(접착제 또는 양면 접착테이프)를 이용하여 여러 장의 그라파이트 시트를 적층 구성한 것이고, 우측은 본 발명에 따른 바인더의 사용없이 진공압을 이용하여 여러 장의 그라파이트 시트를 서로 부착한 것으로 양자 사용되는 그라파이트 시트는 0.025mm의 두께를 갖는 것을 사용하였고, 챔버 하우징을 이루는 구리층의 두께는 종래기술은 0.020mm이고, 본 발명은 0.025mm인 것을 사용하여 열전도와 열확산에 대한 실험 데이터를 얻었다.In the drawing, on the left, several graphite sheets are stacked using a conventional binder (adhesive or double-sided adhesive tape), and on the right, several graphite sheets are attached to each other using vacuum pressure without using a binder according to the present invention. The graphite sheet used in both cases was used to have a thickness of 0.025 mm, and the thickness of the copper layer forming the chamber housing was 0.020 mm in the prior art and 0.025 mm in the present invention, and experimental data on heat conduction and heat diffusion were obtained. got it
이를 통해 확인되는 바와 같이 바인더 결합방식의 비교제품은 열전도가 302W/mK 이고, 열확산은 188.9 mm2/s로 확인되었고, 본 발명에 따른 제품의 경우 열전도는 951.3 W/mK이고, 열확산은 594.6 mm2/s 으로 확인되었다. 즉, 바인더를 사용하는 종래의 비교제품은 바인더에서 발생하는 열저항으로 인하여 열전도가 급격하게 떨어지는 것을 알수 있다.As confirmed through this, the binder bonded comparative product had a heat conduction of 302 W/mK and a heat diffusion of 188.9 mm 2 /s, while the product according to the present invention had a heat conduction of 951.3 W/mK and a heat diffusion of 594.6 mm. It was confirmed to be 2 /s. In other words, it can be seen that the heat conduction of the conventional comparative product using a binder drops sharply due to the thermal resistance generated from the binder.
도 5는 본 발명에 따른 다층 그라파이트 적층체를 갖는 진공챔버에서 싱글레이어 그라파이트와 다층 레이어 그라파이트 적층구조에 따른 열화상 비교도면이다.Figure 5 is a comparative thermal image diagram of a single-layer graphite and a multi-layer graphite laminate structure in a vacuum chamber having a multi-layer graphite laminate according to the present invention.
도면에서 좌측은 싱글레이어 그라파이트 시트를 개재한 진공챔버에 대한 열화상을 촬영한 사진이고, 우측은 본 발명에 따른 다층 그라파이트 시트를 적층하여 된 진공챔버에 대한 열화상을 촬영한 사진으로서, GAP 온도가 낮을수록 열전달(확산)이 더 우수한 것으로, 싱글레이어 그라파이트 시트를 개재한 구성에 대하여 동일한 두께를 갖는 다층 그라파이트 시트를 적층한 적층체가 상대적으로 더 우수한 것으로 확인되었다.In the drawing, the left side is a photograph of a thermal image of a vacuum chamber with a single-layer graphite sheet interposed therebetween, and the right side is a photograph of a thermal image of a vacuum chamber formed by stacking multi-layer graphite sheets according to the present invention, and the GAP temperature The lower the value, the better the heat transfer (diffusion), and it was confirmed that a laminate made of multi-layer graphite sheets with the same thickness was relatively better than a configuration using single-layer graphite sheets.
도 6은 본 발명에 따른 다층 그라파이트 적층체를 갖는 진공챔버에서 기존제품과의 성능 비교를 위한 모식도로서, 도면에서 좌측 (A)는 본 발명이 적용된 휴대폰(전자기기)에 대한 온도 특성을 측정하기 위한 조건을 도시한 것이고, 좌측은 종래기술이 적용된 휴대폰(전자기기)에 대한 온도 특성을 측정하기 위한 조건을 나타낸 것으로, P0, P1, P2, P3는 전자기기의 발열원(heater; 예컨대 전자칩 등)을 중심으로 온도특성을 측정하기 위한 지점(point)를 나타낸 것이다.Figure 6 is a schematic diagram for comparing the performance of a vacuum chamber with a multi-layer graphite laminate according to the present invention with existing products. In the figure, the left side (A) is a diagram for measuring the temperature characteristics of a mobile phone (electronic device) to which the present invention is applied. The conditions for measuring the temperature characteristics of a mobile phone (electronic device) to which the prior art is applied are shown on the left, with P0, P1, P2, and P3 being the heat source (heater) of the electronic device; such as an electronic chip, etc. ) indicates the point for measuring temperature characteristics.
또한, 도면에서 본 발명과 종래기술의 제품규격은 130mm × 70mm × 0.1mm이고, 발열원(Heater)의 소비전력은 11.5W (5.5V, 2A)으로 하였으며, 챔버의 온도는 25도(± 0.5)의 조건에서 시험을 실시하였다.In addition, in the drawing, the product standard of the present invention and the prior art is 130mm × 70mm × 0.1mm, the power consumption of the heater is 11.5W (5.5V, 2A), and the temperature of the chamber is 25 degrees (± 0.5). The test was conducted under conditions.
도 7은 본 발명에 따른 다층 그라파이트 적층체를 갖는 진공챔버에서 도 6의 조건에 의한 시간대별 P0~P2 포인트 GaP 온도변화를 나타낸 그래프이다.Figure 7 is a graph showing the GaP temperature change at points P0 to P2 over time under the conditions of Figure 6 in a vacuum chamber having a multi-layer graphite laminate according to the present invention.
도면에서는 상측에 위치한 그래프선은 기존제품에 대하여 P0~P2 포인트의 GaP 온도 변화를 나타낸 것이고, 도면에서 하측에 위치한 그래프선은 본 발명에 따른 제품에 대하여 P0~P2 포인트의 GaP 온도 변화를 나타낸 것으로 기존제품에 비해 본 발명 제품의 온도차가 작은 것을 알 수 있다. 이는 시간변화에 따라 안정적인 방열 성능을 보장하는 것으로 해석될 수 있다.In the drawing, the graph line located at the top shows the GaP temperature change at points P0 to P2 for existing products, and the graph line located at the bottom of the drawing shows the GaP temperature change at points P0 to P2 for the product according to the present invention. It can be seen that the temperature difference of the product of the present invention is small compared to the existing product. This can be interpreted as ensuring stable heat dissipation performance over time.
도 8은 본 발명에 따른 다층 그라파이트 적층체를 갖는 진공챔버에서 도 6의 조건에 의한 시간대별 열원온도 변화를 나타낸 그래프이다.Figure 8 is a graph showing the change in heat source temperature over time under the conditions of Figure 6 in a vacuum chamber having a multi-layer graphite laminate according to the present invention.
도면에서는 상측에 위치한 그래프선은 기존제품에 대하여 열원온도를 측정한 것이고, 도면에서 아래측 그래프선은 본 발명 제품에 대한 열원온도를 측정한 것으로, 이를 통해서 확인되는 바와 같이 본 발명의 제품은 시간변화에 상관없이 비교적 안정된 범위내에서 열원에 대한 방열 성능을 보장하는 것임을 알 수 있다.In the drawing, the graph line located on the upper side is a measurement of the heat source temperature for the existing product, and the lower graph line in the drawing is a measurement of the heat source temperature for the product of the present invention. As confirmed through this, the product of the present invention is It can be seen that the heat dissipation performance for the heat source is guaranteed within a relatively stable range regardless of changes.
도 9 및 도 11은 본 발명에 따른 다층 그라파이트 적층체를 갖는 진공챔버에서 그라파이트 유닛의 여러 실시례를 나타낸 도면이다.9 and 11 are diagrams showing several examples of graphite units in a vacuum chamber having a multi-layer graphite laminate according to the present invention.
도 9는 제일 하측에 위치한 그라파이트 시트(31a1)를 기준으로 그 상측에 적층되는 그라파이트 시트의 두께가 점진적으로 증가된 적층 형태를 갖는 상향 두께 증가형 그라파이트 유닛(31a)이 개시되어 있다.Figure 9 shows an upwardly increasing thickness type graphite unit 31a having a stacked form in which the thickness of the graphite sheets stacked on the upper side of the graphite sheet 31a1 located at the lowermost side is gradually increased.
도 10은 제일 하측에 위치한 그라파이트 시트(31b1)를 기준으로 그 상측에 적층되는 그라파이트 시트의 두께가 점진적으로 감소된 적층 형태를 갖는 하향 두께 증가형 그라파이트 유닛(31b)이 개시되어 있다.Figure 10 shows a downward-thickness-increasing graphite unit 31b having a stacked form in which the thickness of the graphite sheets stacked on the upper side of the graphite sheet 31b1 located at the lowermost side is gradually reduced.
도 11은 서로 다른 두께를 갖는 복수의 그라파이트 시트들이 무작위로 적층 배치된 형태를 갖는 무작위 그라파이트 유닛(31c)이 개시되어 있다.FIG. 11 shows a random graphite unit 31c in which a plurality of graphite sheets having different thicknesses are randomly stacked.
도 12 및 도 14는 본 발명에 따른 다층 그라파이트 적층체를 갖는 진공챔버에서 챔버 하우징의 여러 실시례를 나타낸 도면이다.12 and 14 are views showing several examples of chamber housing in a vacuum chamber having a multilayer graphite laminate according to the present invention.
도 12에 나타낸 실시례는 챔버 하우징(10)을 구성하는 상커버(11)와 하커버(13)를 서로 다른 이종의 금속재로 성형하여 접합한 것으로, 상기 상커버(11)는 하커버(13)에 대해 열전도율이 낮은 금속재로 성형되는 구성을 나타내고 있다.In the embodiment shown in FIG. 12, the upper cover 11 and lower cover 13 constituting the chamber housing 10 are molded and joined from different metal materials, and the upper cover 11 is formed by lower cover 13. ) shows a configuration that is molded from a metal material with low thermal conductivity.
도 13에 나타낸 실시례는 챔버 하우징(10)을 구성하는 상커버(11)의 상면에 합성수지재를 코팅하거나 또는 합성수지재 시트를 부착하여 된 단열막(50)이 구비된 구성을 도시하고 있으며, 이때의 단열막(50)은 발열원으로부터 그라파이트 유닛(30)으로 전달된 열이 수직방향으로 급격하게 전달되어 국부 방열 현상이 일어나는 것을 억제하기 위한 요소로, 수직 방향으로의 방열 특성을 저감시켜 결과적으로 그라파이트 유닛(30)의 수평 방향으로 열이 균일하게 확산되도록 하기 위한 요소이다.The embodiment shown in FIG. 13 shows a configuration in which an insulating film 50 is provided by coating a synthetic resin material or attaching a synthetic resin sheet to the upper surface of the upper cover 11 constituting the chamber housing 10, At this time, the insulation film 50 is an element to prevent local heat dissipation from occurring due to rapid transfer of heat from the heat source to the graphite unit 30 in the vertical direction, and reduces the heat dissipation characteristics in the vertical direction, resulting in It is an element to ensure that heat is spread uniformly in the horizontal direction of the graphite unit 30.
도 14에 나타낸 실시례는 챔버 하우징(10)을 구성하는 상커버(11)의 하면에 단열막(50)이 구비된 구성을 나타낸 것으로, 이때의 단열막(50)은 단열성을 갖는 합성수지재를 일정 두께를 갖도록 코팅하거나 또는 합성수지재 시티를 부착하여 형성되는 것으로 도 13과 같은 작용을 수행한다.The embodiment shown in FIG. 14 shows a configuration in which an insulating film 50 is provided on the lower surface of the upper cover 11 constituting the chamber housing 10. In this case, the insulating film 50 is made of a synthetic resin material with insulating properties. It is formed by coating it to have a certain thickness or attaching a synthetic resin material and performs the same function as in Figure 13.
도 15에 나타낸 실시례는 상기 챔버 하우징(10)을 구성하는 상커버(11)의 하면과 그라파이트 유닛(30)의 상면 사이에 수직 방향으로의 열전달을 감소시키기 위한 금속 또는 합성수지재로 된 다공소재의 다공 단열시트(55)를 나타낸 것으로, 이때의 상기 다공 단열시트(55)는 앞서 설명한 단열막(50)과 동일한 역할을 수행한다. 이러한 다공 단열시트(55)는 다공을 형성하고 있음에 따라 외력에 의한 부피 축소가 가능한 물성 특징을 가지고 있으며, 다공에 의해 열전달을 저감시키는 작용을 한다.The embodiment shown in FIG. 15 is a porous material made of metal or synthetic resin to reduce heat transfer in the vertical direction between the lower surface of the upper cover 11 constituting the chamber housing 10 and the upper surface of the graphite unit 30. This shows the porous insulation sheet 55, where the porous insulation sheet 55 performs the same role as the insulation film 50 described above. This porous insulation sheet 55 has physical properties that enable volume reduction by external force as it forms pores, and has the effect of reducing heat transfer through the pores.
이상의 도면을 참조하여 본 발명에 따른 다층 그라파이트 적층체를 갖는 진공챔버를 설명하면 다음과 같다.A vacuum chamber having a multi-layer graphite laminate according to the present invention will be described with reference to the above drawings as follows.
본 발명은 발열특성을 갖는 전자기기의 발열면에 접촉하여 방열작용을 수행하는 다층 그라파이트 적층체를 갖는 진공챔버를 제공하기 위한 것으로, 크게 외체를 형성하는 챔버 하우징(10)과, 이 챔버 하우징(10)의 내부에 구비되는 그라파이트 유닛(30)으로 구성된다.The present invention is to provide a vacuum chamber having a multi-layer graphite laminate that contacts the heating surface of an electronic device with heat generating characteristics and performs a heat dissipation function, comprising a chamber housing 10 largely forming an external body, and this chamber housing ( It consists of a graphite unit 30 provided inside 10).
챔버 하우징(10)은 구리 또는 구리가 함유된 구리합금 또는 열전도성이 우수한 공지의 금속재로 성형되는 것으로, 크게 상커버(11)와 하커버(13) 그리고 측벽부(15)로 구성된다.The chamber housing 10 is made of copper, a copper alloy containing copper, or a known metal material with excellent thermal conductivity, and largely consists of an upper cover 11, a lower cover 13, and a side wall portion 15.
상기 상커버(11)는 구리 또는 금속재로 된 판재형상으로 제공되는 것으로 그 하면에 상기 그라파이트 유닛(30)의 상부면이 접촉되게 구비된다. 이러한 상커버(11)는 테두리부분이 하향 돌출되어 후술할 측벽부(15)를 형성할 수 있도록 구비되는 것이 바람직하다.The upper cover 11 is provided in the form of a plate made of copper or metal, and its lower surface is provided so that the upper surface of the graphite unit 30 is in contact with it. This upper cover 11 is preferably provided so that an edge portion protrudes downward to form a side wall portion 15, which will be described later.
상기 하커버(13)는 상기 상커버(11)의 하측으로 간격을 두고 이격 배치되는 것에 의해 그 내부에 수용공간(10s)을 형성하는 것으로, 상기 상커버(11)와 마찬가지로 구리 또는 열전도성이 우수한 금속재로 성형되되, 상면에 그라파이트 유닛(30)의 하부면이 밀착되게 올려지는 구성이다.The lower cover 13 is spaced apart from the upper cover 11 to form an accommodating space 10s therein. Like the upper cover 11, the lower cover 13 is made of copper or thermally conductive material. It is molded from an excellent metal material, and the lower surface of the graphite unit 30 is raised in close contact with the upper surface.
이러한 하커버(13)는 상기 상커버(11)와 대응되는 형상으로 구비되되, 테두리 부분을 상향 돌출시켜 상기 상커버(11)의 돌출된 테두리 부분과 접하는 것에 의해 후술할 측벽부(15)를 형성하는 것이 바람직하다. This lower cover 13 is provided in a shape corresponding to the upper cover 11, and the edge portion protrudes upward and comes into contact with the protruding edge portion of the upper cover 11 to form a side wall portion 15, which will be described later. It is desirable to form
상기 측벽부(15)는 상기 상커버(11)와 하커버(13)의 테두리를 각각 돌출시켜 용접 또는 접착제로 접합하여 형성된 것으로, 상기 상커버(11)와 하커버(13)의 내부에 진공압이 작용하는 그라파이트 유닛(30)이 배치되는 수용공간(10s)을 형성하게 된다. The side wall portion 15 is formed by protruding the edges of the upper cover 11 and the lower cover 13 and joining them with welding or adhesive, and is formed inside the upper cover 11 and the lower cover 13. A receiving space (10s) is formed in which the graphite unit (30) on which pneumatic pressure acts is placed.
이러한 측벽부(15)는 구리나 금속재로 된 길이재의 띠 형상의 부재를 상기 상커버(11)와 하커버(13) 사이에 배치시킨 뒤 용접으로 일체로 접합시키거나 또는 상기 상커버(11)나 하커버(13)의 테두리 부분을 수직하는 방향으로 굽힘 가공하고, 수직하게 굽힘된 끝단부를 상대물인 하커버(13)나 상커버(11)에 용접으로 접합하여 일체로 구비시키는 것도 가능할 것이다.This side wall portion 15 is formed by placing a strip-shaped length member made of copper or metal between the upper cover 11 and the lower cover 13 and then integrally joining it by welding, or It would also be possible to bend the edge of the lower cover 13 in a vertical direction and weld the vertically bent end to the lower cover 13 or upper cover 11 to form an integrated structure.
한편, 본 발명의 챔버 하우징(10)은 상기 측벽부(15)를 상기 상커버(11)와 하커버(13)에 일체화시키기 전에 그 내부에 그라파이트 유닛(30)을 배치시키는 공정이 선행되어야 한다.Meanwhile, the chamber housing 10 of the present invention must be preceded by a process of placing the graphite unit 30 therein before integrating the side wall portion 15 with the upper cover 11 and lower cover 13. .
그라파이트 유닛(30)은 복수의 그라파이트 시트(31)를 적층 구성하여 된 것으로, 본 발명에서는 바람직한 실시례로서 2~10개의 그라파이트 시트(31)를 적층한 것을 제안하며, 각 그라파이트 시트(31)는 5㎛ ~300 ㎛ 두께를 갖는 것이 바람직하다.The graphite unit 30 is constructed by stacking a plurality of graphite sheets 31. In the present invention, as a preferred embodiment, it is proposed that 2 to 10 graphite sheets 31 are stacked, and each graphite sheet 31 is It is desirable to have a thickness of 5㎛ ~ 300㎛.
상기 그라파이트 유닛(30)을 구성하는 각 그라파이트 시트(31)는 5㎛ ~300 ㎛ 두께를 갖는 것을 제안한다.It is proposed that each graphite sheet 31 constituting the graphite unit 30 has a thickness of 5 μm to 300 μm.
이는 그라파이트 시트(31)의 두께가 5㎛ 미만인 경우에는 상기 챔버 하우징(10)의 내부에 진공압을 작용하였을 때 그라파이트 시트(31)에 균열에 의한 손상이 발생하고, 이러한 균열은 결과적으로 방열특성을 불량하게 만드는 문제점을 야기한다. 만약, 그라파이트 시트(31)의 각 두께가 300 ㎛을 초과하는 경우에는 방열 특성의 상승 효과가 없고, 오히려 열전달 특성이 불량해지는 문제점을 초래하는 것으로 확인되었다.This means that if the thickness of the graphite sheet 31 is less than 5㎛, damage due to cracks occurs in the graphite sheet 31 when vacuum pressure is applied to the inside of the chamber housing 10, and these cracks ultimately affect the heat dissipation characteristics. It causes problems that make it defective. It was confirmed that if the thickness of each graphite sheet 31 exceeds 300 ㎛, there is no effect of increasing heat dissipation characteristics, and rather, it causes a problem of poor heat transfer characteristics.
본 발명에서는 그라파이트 유닛(30)을 구성하는 그라파이트 시트(31)를 2~10개로 적층하는 것을 제안한다.In the present invention, it is proposed to stack 2 to 10 graphite sheets 31 constituting the graphite unit 30.
특히, 그라파이트 시트(31)를 2개 이상 적층하는 경우에는 단일의 그라파이트 시트(31)에 비해 도 5에 나타내 보인 바와 같이 열의 확산률이 양호하여 우수한 방열특성을 갖는 것으로 확인되었다.In particular, it was confirmed that when two or more graphite sheets 31 are stacked, the heat diffusion rate is good and has excellent heat dissipation characteristics, as shown in FIG. 5, compared to a single graphite sheet 31.
즉, 도 5를 참조하면, 도면에서 좌측은 싱글레이어 그라파이트 시트를 개재한 진공챔버에 대한 열화상을 촬영한 사진이고, 우측은 본 발명에 따른 다층 그라파이트 시트를 적층하여 된 진공챔버에 대한 열화상을 촬영한 사진으로서, GAP 온도가 낮을수록 열전달(확산)이 더 우수한 것으로, 싱글레이어 그라파이트 시트를 개재한 구성에 대하여 동일한 두께를 갖는 다층 그라파이트 시트를 적층한 적층체가 상대적으로 더 우수한 것으로 확인되었다.That is, referring to FIG. 5, the left side of the drawing is a photograph of a thermal image of a vacuum chamber interposed with a single-layer graphite sheet, and the right side is a thermal image of a vacuum chamber formed by stacking multi-layer graphite sheets according to the present invention. As a photo taken, it was confirmed that the lower the GAP temperature, the better the heat transfer (diffusion), and that the laminate made of multi-layer graphite sheets with the same thickness was relatively better than the configuration using single-layer graphite sheets.
또한, 다층의 그라파이트 시트에 대하여 바인더(접착제 또는 양면 테이프)를 사용하여 적층구성한 것과, 본 발명에서와 같이 바인더의 사용없이 진공압으로 여러 장의 그라파이트 시트를 부착 적층한 구조에 대한 열전도를 비교하면 바인더를 사용하였을 경우 열저항에 의한 손실이 발생하는 것을 확인하였다.In addition, when comparing the heat conduction of a structure in which multi-layer graphite sheets are laminated using a binder (adhesive or double-sided tape) and a structure in which several graphite sheets are attached and laminated using vacuum pressure without the use of a binder as in the present invention, the binder It was confirmed that loss due to thermal resistance occurred when was used.
이를 도 4를 참조하여 설명하면, 도면에서 좌측은 종래 방식에 의한 바인더(접착제 또는 양면 접착테이프)를 이용하여 여러 장의 그라파이트 시트를 적층 구성한 것이고, 우측은 본 발명에 따른 바인더의 사용없이 진공압을 이용하여 여러 장의 그라파이트 시트를 서로 부착한 것이다.Explaining this with reference to FIG. 4, the left side of the drawing is a configuration in which several graphite sheets are stacked using a binder (adhesive or double-sided adhesive tape) according to the conventional method, and the right side is a configuration in which vacuum pressure is applied without the use of a binder according to the present invention. It is used to attach several graphite sheets to each other.
이들 바인더 방식의 기존제품과 진공압 부착 방식의 본 발명 제품에 사용되는 그라파이트 시트는 공히 0.025mm의 두께를 갖는 것을 사용하였고, 챔버 하우징을 이루는 구리층의 두께는 종래기술은 0.020mm이고, 본 발명은 0.025mm인 것을 사용하여 열전도와 열확산에 대한 실험 데이터를 얻었다.The graphite sheet used in these binder-type existing products and the vacuum pressure attachment-type product of the present invention was both used to have a thickness of 0.025 mm, and the thickness of the copper layer forming the chamber housing was 0.020 mm in the prior art, and in the present invention Experimental data on heat conduction and heat diffusion were obtained using 0.025mm.
이를 통해 확인되는 바와 같이 바인더 결합방식의 비교제품은 열전도가 302W/mK 이고, 열확산은 188.9 mm2/s로 확인되었고, 본 발명에 따른 제품의 경우 열전도는 951.3 W/mK이고, 열확산은 594.6 mm2/s 으로 확인되었다. 즉, 바인더를 사용하는 종래의 비교제품은 바인더에서 발생하는 열저항으로 인하여 열전도가 급격하게 떨어지는 것을 알수 있다.As confirmed through this, the binder bonded comparative product had a heat conduction of 302 W/mK and a heat diffusion of 188.9 mm 2 /s, while the product according to the present invention had a heat conduction of 951.3 W/mK and a heat diffusion of 594.6 mm. It was confirmed to be 2 /s. In other words, it can be seen that the heat conduction of the conventional comparative product using a binder drops sharply due to the thermal resistance generated from the binder.
이와 같이 구성되는 본 실시례에 따른 다층 그라파이트 적층체를 갖는 진공챔버는 금속으로 된 챔버 하우징(10)이 전자기기의 발열면에 밀착 접촉되어 열을 전도 받으면 상기 챔버 하우징(10)의 내부에 진공압에 의해 상호 밀접하게 부착 상태를 유지하는 복수의 그라파이트 시트(31)로 이루어진 그라파이트 유닛(30)에 의해 역확산에 의한 냉각 작용이 일어난다.In the vacuum chamber having the multi-layer graphite laminate according to the present embodiment configured as described above, when the metal chamber housing 10 is in close contact with the heating surface of the electronic device and heat is conducted, the vacuum chamber 10 is generated inside the chamber housing 10. Cooling by reverse diffusion occurs by the graphite unit 30, which is made up of a plurality of graphite sheets 31 that are closely attached to each other by pneumatic pressure.
특히, 그라파이트 유닛(30)은 복수의 그라파이트 시트(31)를 적층하고, 이들 그라파이트 시트(31)를 수용한 챔버 하우징(10)의 내부에 진공압을 작용시킴에 따라 각 그라파이트 시트(31) 사이의 간극을 제거할 수 있음에 따라 열전달 효율성을 극대화시킬 수 있다. 즉, 여러 장의 그라파이트 시트(31)를 적층시키되 각 그라파이트 시트(31) 사이에 접착제를 사용하는 경우에는 접착제에 의한 열전달성이 저하됨에 따라 결과적으로 방열성능이 저하되지만, 본 발명은 복수의 그라파이트 시트(31) 사이에 아무런 개재물 없이 진공압을 이용하여 서로 밀착시키는 방식이어서 그라파이트 시트(31)가 갖는 방열특성을 온전하게 보장할 수 있는 것이다.In particular, the graphite unit 30 stacks a plurality of graphite sheets 31 and applies vacuum pressure to the inside of the chamber housing 10 containing the graphite sheets 31, thereby creating pressure between the graphite sheets 31. By eliminating the gap, heat transfer efficiency can be maximized. That is, when multiple graphite sheets 31 are stacked and an adhesive is used between each graphite sheet 31, the heat dissipation performance is lowered as the heat transfer property by the adhesive decreases. However, the present invention is a method of stacking a plurality of graphite sheets 31. Since it is a method of bringing the sheets (31) into close contact with each other using vacuum pressure without any inclusions between them, the heat dissipation characteristics of the graphite sheet (31) can be fully guaranteed.
한편, 본 발명은 열전달 효율을 고려하여 그라파이트 유닛(30)을 구성함에 있어 도 9 내지 도 11에 나타내 보인 바와 같은 실시례를 제안한다.Meanwhile, the present invention proposes an embodiment as shown in FIGS. 9 to 11 in configuring the graphite unit 30 in consideration of heat transfer efficiency.
먼저, 도 9의 실시례에 나타낸 그라파이트 유닛(30)은 제일 하단에 위치한 그라파이트 시트(31a1)를 기준으로 상측으로 진행하면서 점진적으로 두께가 증가된 그라파이트 시트를 적층 배치하는 형태의 상향 두께 증가형 그라파이트 유닛으로 구비되는 것을 제안한다.First, the graphite unit 30 shown in the embodiment of FIG. 9 is an upward-thickness-increasing graphite type in which graphite sheets of gradually increased thickness are stacked and arranged upwardly based on the graphite sheet 31a1 located at the bottom. It is suggested that it be provided as a unit.
즉, 도면을 참조하면, 제일 하단에 배치되는 첫 번째 그라파이트 시트(31a1)은 가장 두께가 얇은 것으로, 그 상측에 올려지는 두 번째 그라파이트 시트(31a2)는 첫 번째 그라파이트 시트에 대하여 상대적으로 두께가 증가된 것이고, 그리고 상기 두 번째 그라파이트 시트(31a2)의 상측에 올려지는 세 번째 그라파이트 시트(31a3) 역시 두 번째 그라파이트 시트에 대해 상대적으로 두께가 증가된 것이며, 상기 세 번째 그라파이트 시트의 상측에 올려지는 네 번째 그라파이트 시트(31a4) 역시 세 번째 그라파이트 시트에 대하여 상대적으로 두께가 증가된 것이 적층 배치되는 구성이다. That is, referring to the drawing, the first graphite sheet (31a1) placed at the bottom has the thinnest thickness, and the second graphite sheet (31a2) placed on top has a relatively increased thickness with respect to the first graphite sheet. And the third graphite sheet 31a3 placed on the upper side of the second graphite sheet 31a2 also has an increased thickness relative to the second graphite sheet, and the fourth graphite sheet placed on the upper side of the third graphite sheet 31a2 The third graphite sheet 31a4 also has a relatively increased thickness with respect to the third graphite sheet and is arranged in a stacked manner.
이러한 상향 두께 증가형 그라파이트 유닛의 경우 발열원으로부터 가장 가까운 쪽에 배치된 그라파이트 시트는 그 두께가 얇기 때문에 발열원으로부 전달된 열을 빠르게 전달받아 열확산 작용을 수행한다.In the case of this upwardly increasing thickness graphite unit, the graphite sheet placed closest to the heat source is thin, so it quickly receives heat transferred from the heat source and performs a heat diffusion function.
도 10의 실시례에 나타낸 그라파이트 유닛은 상측에서 하측으로 진행하면서 그라파이트 시트의 두께가 점진적으로 증가된 형태의 하향 두께 증가형 그라파이트 유닛(31b)을 나타낸 것으로, 도면을 참조하여 설명하면,제일 하단에 배치되는 첫 번째 그라파이트 시트(31b1)은 가장 두께가 두꺼운 것으로, 그 상측에 올려지는 두 번째 그라파이트 시트(31b2)는 첫 번째 그라파이트 시트에 대하여 상대적으로 두께가 감소된 것이 적층되고, 그리고 상기 두 번째 그라파이트 시트(31b2)의 상측에 올려지는 세 번째 그라파이트 시트(31b3) 역시 두 번째 그라파이트 시트에 대해 상대적으로 두께가 감소된 것이 적층되며, 상기 세 번째 그라파이트 시트의 상측에 올려지는 네 번째 그라파이트 시트(31b4) 역시 상기 세 번째 그라파이트 시트에 대하여 상대적으로 두께가 감소된 것이 적층 배치되는 구성이다. The graphite unit shown in the example of FIG. 10 represents a downward thickness increasing type graphite unit 31b in which the thickness of the graphite sheet gradually increases as it progresses from the top to the bottom. When explained with reference to the drawing, at the bottom The first graphite sheet (31b1) disposed is the thickest, and the second graphite sheet (31b2) placed on top is laminated with a thickness that is reduced relative to the first graphite sheet, and the second graphite sheet (31b2) is laminated The third graphite sheet (31b3) placed on the upper side of the sheet (31b2) is also laminated with a thickness relatively reduced with respect to the second graphite sheet, and the fourth graphite sheet (31b4) placed on the upper side of the third graphite sheet. Again, the third graphite sheet has a relatively reduced thickness and is stacked.
이러한 하향 두께 증가형 그라파이트 유닛은 챔버 하우징의 상면에 구비되는 히트싱크(미도시)를 통해 빠르게 열을 전달하여 방열작용을 수행한다.This downward-thickness-increasing graphite unit performs heat dissipation by quickly transferring heat through a heat sink (not shown) provided on the upper surface of the chamber housing.
도 11의 실시례에 따른 그라파이트 유닛은 다양한 두께를 갖는 복수의 그라파이트 시트(31)를 무작위로 적층 배치한 것으로, 그 작용 효과는 상기 도 9 및 도 10의 실시례에 비해 열확산이나 전도성 면에서 성능이 떨어질 수 있으나 주문자의 요구에 의해 적용되어 제조될 수 있다.The graphite unit according to the embodiment of FIG. 11 is a randomly stacked arrangement of a plurality of graphite sheets 31 with various thicknesses, and its effect is improved performance in terms of thermal diffusion and conductivity compared to the embodiment of FIGS. 9 and 10. It may fall, but it can be applied and manufactured according to the orderer's request.
이하, 본 발명의 다른 실시례에 따른 다층 그라파이트 적층체를 갖는 진공챔버를 도 3을 참조하여 설명하기로 한다.Hereinafter, a vacuum chamber having a multilayer graphite laminate according to another embodiment of the present invention will be described with reference to FIG. 3.
본 실시례에 따른 다층 그라파이트 적층체를 갖는 진공챔버는 앞서 설명한 일 실시례의 구성과 대동소이하다. 다만 본 실시례에서는 상기 챔버 하우징(10)의 내부 공간을 상,하로 분리 구획하여 복수의 수용공간(10s)을 형성시키는 수직 열확산판(20)을 부가 구성한 특징을 갖는다.The vacuum chamber having a multi-layer graphite laminate according to this embodiment is substantially the same as the configuration of the embodiment described above. However, this embodiment has the feature of additionally forming a vertical heat diffusion plate 20 that divides the inner space of the chamber housing 10 into upper and lower sections to form a plurality of receiving spaces 10s.
이를 상세하게 설명하면, 본 발명은 크게 챔버 하우징(10)과 그라파이트 유닛(30) 그리고 수직 열확산판(20)으로 구성된다.To explain this in detail, the present invention largely consists of a chamber housing 10, a graphite unit 30, and a vertical heat diffusion plate 20.
챔버 하우징(10)은 내부에 진공압이 작용하는 밀폐된 공간인 수용공간을 제공하는 것으로 열전도율이 우수한 구리 또는 구리를 함유한 합금재 또는 기타 금속재 등으로 성형된다.The chamber housing 10 provides an accommodating space, which is a sealed space where vacuum pressure is applied, and is formed of copper or an alloy material containing copper or other metal material with excellent thermal conductivity.
이러한 챔버 하우징(10)은 상커버(11)와 하커버(13) 그리고 측벽부(15)로 구성되며, 이들 상커버(11)와 하커버(13) 및 측벽부(15)를 각각 성형하여 용접을 통해 일체로 접합 구성하거나 또는 상기 상커버(11)나 하커버(13) 중 어느 하나의 테두리를 수직하게 굽힙 가공하여 측벽을 형성한 뒤, 이 측벽의 끝단부분에 상대하는 하커버(13)나 상커버(11)를 용접으로 접합하는 것에 의해 성형될 수 있다. 이러한 구성의 챔버 하우징(10)은 앞서 설명한 일 실시례의 구성과 대동소하다.This chamber housing 10 is composed of an upper cover 11, a lower cover 13, and a side wall portion 15, and the upper cover 11, lower cover 13, and side wall portion 15 are each molded. After forming the side wall by joining it together through welding or bending the edge of either the upper cover 11 or the lower cover 13 vertically, the lower cover 13 is attached to the end of the side wall. ) or can be formed by joining the upper cover 11 by welding. The chamber housing 10 of this configuration is substantially similar to the configuration of the previously described embodiment.
그라파이트 유닛(30)은 복수의 그라파이트 시트(31)를 2~10개의 적층한 것으로, 각 그라파이트 시트(31)는 5㎛ ~300 ㎛ 두께를 갖는 것을 제안한다. 이러한 그라파이트 유닛(30)은 앞서 설명한 일 실시례의 구성과 대동소이하므로 상세한 설명은 생략한다.The graphite unit 30 is a stack of 2 to 10 graphite sheets 31, and each graphite sheet 31 is proposed to have a thickness of 5 ㎛ to 300 ㎛. Since this graphite unit 30 is substantially the same as the configuration of the previously described embodiment, detailed description will be omitted.
수직 열확산판(20)은 상기 챔버 하우징(10)의 내부 공간을 상하로 구획 분리하기 위한 일종의 격막으로서, 본 발명에서는 구리 또는 구리를 함유한 합금 또는 열전도율이 양호한 기타 금속재로 성형된다. 이러한 수직 열확산판(20)은 그 테두리 부분이 챔버 하우징(10)의 내면에 용접으로 접합 연결되는 구성이며, 상기 챔버 하우징(10)을 구성하는 상커버(11)나 하커버(13) 및 측벽부(15)에서 전달된 열을 전달받아 그 상면과 하면에 배치되는 각 그라파이트 유닛(30)에 전달하여 역확산 작용이 일어나도록 하는 역할을 한다.The vertical heat diffusion plate 20 is a type of diaphragm for dividing the internal space of the chamber housing 10 into upper and lower sections, and in the present invention, it is formed of copper, an alloy containing copper, or other metal material with good thermal conductivity. This vertical heat diffusion plate 20 is configured such that its edge portion is connected by welding to the inner surface of the chamber housing 10, and the upper cover 11 or lower cover 13 and the side wall constituting the chamber housing 10. It serves to receive heat transferred from the part 15 and transfer it to each graphite unit 30 disposed on the upper and lower surfaces of the unit 15 to cause a reverse diffusion effect.
이와 같이 구성되는 본 실시례에 따른 수직 열확산판(20)을 구비한 다층 그라파이트 적층체를 갖는 진공챔버는 금속으로 된 챔버 하우징(10)이 전자기기의 발열면에 밀착 접촉되어 열을 전도 받으면 상기 챔버 하우징(10)의 내부에 진공압에 의해 상호 밀접하게 부착 상태를 유지하는 복수의 그라파이트 시트(31)로 이루어진 두 개 이상의 그라파이트 유닛(30)에 의한 역확산 작용을 통해 방열을 하게 된다.The vacuum chamber having a multi-layer graphite laminate with a vertical heat diffusion plate 20 according to the present embodiment configured as described above is configured to conduct heat when the metal chamber housing 10 is in close contact with the heating surface of the electronic device and conducts heat. Heat is dissipated through a reverse diffusion action by two or more graphite units 30 made up of a plurality of graphite sheets 31 that are closely attached to each other by vacuum pressure inside the chamber housing 10.
이하, 본 발명의 또 다른 실시례에 따른 다층 그라파이트 적층체를 갖는 진공챔버를 도 12 내지 도 15를 참조하여 설명하기로 한다.Hereinafter, a vacuum chamber having a multilayer graphite laminate according to another embodiment of the present invention will be described with reference to FIGS. 12 to 15.
본 발명은 선택적으로 복수의 그라파이트 시트(31)로 이루어진 그라파이트 유닛(30)에 전달된 열이 수직 방향으로 급격하게 확산되는 것을 억제할 수 있도록 하여 대면적의 디스플레이 등과 같이 비교적 넓은 면적의 전자기기에 대한 균일한 방열 특성을 보장할 수 있는 단열막(50) 또는 다공 단열시트(55)를 부가 구성하는 것을 기술적 특징으로 제안한다.The present invention selectively suppresses the rapid diffusion of heat transferred to the graphite unit 30, which is composed of a plurality of graphite sheets 31, in the vertical direction, so that it can be used in electronic devices with a relatively large area, such as a large-area display. It is proposed as a technical feature that an insulation film 50 or a porous insulation sheet 55 that can ensure uniform heat dissipation characteristics is added.
이를 위한 본 발명에서 제안하는 제1실시레는, 도 12에 나타내 보인 바와 같이, 상기 챔버 하우징(10)을 구성하는 상커버(11)와 하커버(13)를 서로 다른 금속재로 성형하는 것을 제안하며, 이때의 상기 상커버(11)는 하커버(13)에 대해 열전달율이 낮은 금속재로 구비되는 것을 제안한다.The first embodiment proposed by the present invention for this purpose proposes molding the upper cover 11 and lower cover 13, which constitute the chamber housing 10, from different metal materials, as shown in FIG. 12. In this case, it is proposed that the upper cover 11 is made of a metal material with a low heat transfer rate relative to the lower cover 13.
일례로, 상기 하커버(13)가 구리로 성형된 경우에는, 이 구리에 비해 열전달율이 낮은 마그네슘이나 니켈, 철 또는 납이나 안티몬 등의 금속재로 상커버(11)가 성형될 수 있을 것이다.For example, if the lower cover 13 is molded from copper, the upper cover 11 may be molded from a metal material such as magnesium, nickel, iron, lead, or antimony, which has a lower heat transfer rate than copper.
이와 같이 상커버(11)의 열전달율이 하커버(13)에 대해 낮은 금속재로 구비한 경우에는 상기 하커버(13)의 하면에 접촉하고 있는 전자기기의 발열원으로부터 전달된 열이 여러장의 그라파이트 시트를 적층하여 된 그라파이트 유닛(30)에 전달되고, 이 그라파이트 유닛(30)에 전달된 열은 상기 상커버(11)가 하커버(13)에 대해 갖는 낮은 열전도 특성에 의해 수직 방향으로 빠르게 확산되지 못하고 수평 방향으로 균일하게 확산 유도된다.In this way, in the case where the upper cover 11 is made of a metal material whose heat transfer rate is lower than that of the lower cover 13, the heat transferred from the heat source of the electronic device in contact with the lower surface of the lower cover 13 heats several graphite sheets. It is transferred to the stacked graphite unit 30, and the heat transferred to this graphite unit 30 cannot spread quickly in the vertical direction due to the low heat conduction characteristics of the upper cover 11 with respect to the lower cover 13. The diffusion is induced uniformly in the horizontal direction.
따라서, 스마트폰이 태블릿 PC 등과 같이 대면적의 방열특성을 확보해야 하는 전자기기에 적용시 균일한 방열 특성을 보장할 수 있음에 따라 결과적으로 국부적인 방열로 인한 성능저하나 기기의 손상을 미연에 방지할 수 있다.Therefore, when applied to electronic devices that require large-area heat dissipation characteristics, such as smartphones and tablet PCs, uniform heat dissipation characteristics can be guaranteed. As a result, performance degradation or damage to the device due to localized heat dissipation can be prevented in advance. It can be prevented.
본 발명에서 제안하는 제2실시례는 도 13 및 도 14에 나타내 보인 바와 같이, 상기 챔버 하우징(10)을 구성하는 상커버(11)의 상면 또는 하면에 합성수지재를 도포하하여 일정 두께로 코팅을 하거나 또는 합성수지 시트를 부착하여 된 단열막(50)을 구비시키는 것을 제안한다. 이러한 단열막(50)은 합성수지재로 제공됨에 따라 금속에 비해 열전도율이 낮으므로 결과적으로 상기 그라파이트 유닛에 전달된 열이 급격하게 수직방향으로 전달되는 것을 방지함에 따라 상기 그라파이트 유닛(30)의 수평방향으로의 열 확산을 유도하여 균일한 방열특성을 갖도록 한다. In the second embodiment proposed by the present invention, as shown in FIGS. 13 and 14, a synthetic resin material is applied to the upper or lower surface of the upper cover 11 constituting the chamber housing 10 to a certain thickness. It is proposed to provide an insulating film 50 made of or by attaching a synthetic resin sheet. Since this insulation film 50 is made of a synthetic resin material, it has a lower thermal conductivity than metal, and as a result, it prevents the heat transferred to the graphite unit from being rapidly transferred in the vertical direction, thereby increasing the horizontal direction of the graphite unit 30. It induces heat diffusion to ensure uniform heat dissipation characteristics.
본 발명에서 제안하는 제3실시례는 도 15에 나타내 보인 바와 같이. 상기 챔버 하우징(10)을 구성하는 상커버(11)의 하면과 상기 그라파이트 유닛(30)의 상면 사이에 합성수지재 또는 금속재로 된 다공재의 다공 단열시트(55)를 구비하는 것이다. The third embodiment proposed by the present invention is as shown in Figure 15. A porous insulation sheet 55 made of synthetic resin or metal is provided between the lower surface of the upper cover 11 constituting the chamber housing 10 and the upper surface of the graphite unit 30.
본 실시례에서의 다공 단열시트(55) 앞서 설명한 단열막(50)과 마찬가지로 수직 방향으로의 열전달을 억제하여 상기 그라파이트 유닛(30)에 전달된 열이 면적 방향 즉, 수평 방향으로 확산될 수 있도록 하여 균일한 방열 특성을 갖도록 한다.The porous insulation sheet 55 in this embodiment, like the insulation film 50 described above, suppresses heat transfer in the vertical direction so that the heat transferred to the graphite unit 30 can spread in the area direction, that is, the horizontal direction. This ensures uniform heat dissipation characteristics.
한편, 본 발명은 기재된 실시례에 한정되는 것은 아니고, 적용 부위를 변경하여 사용하는 것이 가능하고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형을 할 수 있음은 이 기술 분야에서 통상의 지식을 가진 자에게는 자명하다. 따라서, 그러한 변형예 또는 수정예들은 본 발명의 특허청구범위에 속한다 해야 할 것이다.Meanwhile, the present invention is not limited to the described embodiments, and can be used by changing the application area, and various modifications and variations can be made without departing from the spirit and scope of the present invention. It is self-evident to those with knowledge. Accordingly, such variations or modifications should fall within the scope of the claims of the present invention.

Claims (8)

  1. 내부에 진공압이 작용하는 수용공간을 형성하는 것으로 상커버와 하커버를 접합하여 된 금속재로된 챔버 하우징;A chamber housing made of metal by joining an upper cover and a lower cover to form an accommodating space inside which vacuum pressure acts;
    상기 챔버 하우징의 내부에 서로 다른 두께를 갖는 복수의 그라파이트 시트를 적층하여 된 것으로, 상기 챔버 하우징 내에 작용하는 진공압에 의해 상,하 서로 밀접하게 부착 상태를 유지하는 그라파이트 유닛;으로 구성된 것을 특징으로 하는 다층 그라파이트 적층체를 갖는 진공챔버. A graphite unit made by stacking a plurality of graphite sheets with different thicknesses inside the chamber housing and maintaining the top and bottom closely attached to each other by vacuum pressure acting within the chamber housing. A vacuum chamber having a multi-layer graphite laminate.
  2. 제 1항에 있어서, 상기 그라파이트 유닛은, 서로 다른 두께를 갖는 2~20개의 그라파이트 시트를 적층 구성하되, 상기 각 그라파이트 시트는 5㎛ ~300㎛ 두께로 구비되는 것을 특징으로 하는 다층 그라파이트 적층체를 갖는 진공챔버.The multi-layer graphite laminate according to claim 1, wherein the graphite unit is composed of 2 to 20 graphite sheets having different thicknesses, wherein each graphite sheet is provided with a thickness of 5㎛ to 300㎛. Having a vacuum chamber.
  3. 제 1항에 있어서, 상기 챔버 하우징은 상기 그라파이트 유닛이 올려지는 것으로 테두리가 상향 돌출된 하커버 및 이 하커버의 상측에 대응되는 형상으로 구비되어 하커버와 함께 수용공간을 형성하는 상커버 및 상기 상커버와 하커버의 테두리를 접합하여 내부의 수용공간을 밀폐시키는 측벽부 그리고 상기 수용공간을 상,하로 구획하여 복수의 그라파이트 유닛을 수용하는 공간을 형성한 것으로 그 테두리가 측벽부의 내벽면에 연결되어 열을 전달하는 금속판재로 된 하나 또는 복수의 수직 열확산판으로 이루어진 것을 특징으로 하는 다층 그라이파이트 적층체를 갖는 진공챔버.The method of claim 1, wherein the chamber housing includes a lower cover whose edge protrudes upward as the graphite unit is raised, an upper cover provided in a shape corresponding to the upper side of the lower cover and forming a receiving space together with the lower cover, and the chamber housing. A side wall seals the internal receiving space by joining the edges of the upper and lower covers, and divides the receiving space into upper and lower parts to form a space for accommodating a plurality of graphite units, the edge of which is connected to the inner wall of the side wall. A vacuum chamber having a multi-layer graphite laminate, characterized in that it consists of one or a plurality of vertical heat diffusion plates made of metal plates that transmit heat.
  4. 제 1항에 있어서, 상기 그라파이트 유닛은 제일 하측에 위치한 그라파이트 시트를 기준으로 그 상측에 두께가 증가 된 그라파이트 시트를 순차 적층하는 형태의 상향 두께 증가형 그라파이트 유닛;. 또는 제일 하측에 위치한 그라파이트 시트를 기준으로 그 상측에 두께가 감소된 그라파이트 시트를 순차 적층하는 형태의 하향 두께 증가형 그라파이트 유닛;, 또는 서로 다른 두께를 그라파이트 시트를 무작위로 적층 배치하는 무작위 그라파이트 유닛 중 어느 하나 인 것을 특징으로 하는 다층 그라파이트 적층체를 갖는 진공챔버.According to claim 1, wherein the graphite unit is an upwardly increasing thickness type graphite unit in which graphite sheets of increased thickness are sequentially stacked on the upper side of the lowermost graphite sheet as a reference. Or, a downward thickness increasing type graphite unit that sequentially stacks graphite sheets of reduced thickness on the upper side based on the graphite sheet located at the bottom;, or a random graphite unit that randomly stacks graphite sheets of different thicknesses. A vacuum chamber having a multi-layer graphite laminate, characterized in that:
  5. 판재형으로 구비된 금속재로 된 하커버 및 이의 상측에 대향 배치되는 것으로 상기 하커버에 대해 낮은 열전도율을 갖는 금속재로 되어 수직 방향으로 전달되는 열을 차단하는 상커버 그리고 상기 하커버와 상커버의 테두리를 접합하여 내부에 진공압이 작용하는 수용공간을 형성하는 측벽부로 이루어진 챔버 하우징;A lower cover made of a metal material provided in the form of a plate, an upper cover disposed opposite to the upper side thereof and made of a metal material with low thermal conductivity with respect to the lower cover to block heat transmitted in the vertical direction, and an edge of the lower cover and the upper cover A chamber housing consisting of a side wall that is joined to form an accommodating space where vacuum pressure is applied;
    상기 수용공간 내에 구비되어 상기 열전도율이 낮은 상커버에 의해 수평 방향으로 열확산이 유도되는 것으로, 5㎛ ~300㎛ 두께를 갖는 그라파이트 시트 2~20장을 적층하여 진공압에 의해 각 그라파이트 시트들이 서로 밀착상태로 구비되는 그라파이트 유닛;으로 구성된 것을 특징으로 하는 다층 그라파이트 적층체를 갖는 진공챔버. Thermal diffusion is induced in the horizontal direction by the upper cover, which is provided in the receiving space and has low thermal conductivity, and 2 to 20 graphite sheets with a thickness of 5㎛ ~ 300㎛ are stacked and each graphite sheet is brought into close contact with each other by vacuum pressure. A vacuum chamber having a multi-layer graphite laminate, characterized in that it consists of a graphite unit provided in a state.
  6. 수직 방향으로의 열전달을 차단하기 위한 열전단 요소를 구비한 상커버 및 이의 하측에 대향 배치되는 하커버 그리고 상기 상커버와 하커버의 테두리 중 어느 하나 또는 둘 모두를 돌출시켜 접합하는 것에 의해 내부에 진공의 수용공간을 형성하는 측벽부로 이루어진 챔버 하우징;An upper cover equipped with a heat transfer element to block heat transfer in the vertical direction, a lower cover disposed oppositely on the lower side thereof, and one or both of the edges of the upper cover and the lower cover are protruded and joined to the inside. A chamber housing consisting of a side wall forming a vacuum accommodation space;
    상기 수용공간 내에 복수의 그라파이트 시트를 적층하여 된 것으로 진공압에 의해 각각의 그라파이트 시트들이 서로 밀착 상태로 구비되는 그라파이트 유닛;으로 구성된 것을 특징으로 하는 다층 그라파이트 적층체를 갖는 진공챔버. A vacuum chamber having a multi-layer graphite laminate, characterized in that it is composed of a graphite unit, which is made by stacking a plurality of graphite sheets in the receiving space and each graphite sheet is provided in close contact with each other by vacuum pressure.
  7. 제 5항 또는 제 6항 중 어느 한 항에 에 있어서, 상기 그라파이트 유닛은 제일 하측에 위치한 그라파이트 시트를 기준으로 그 상측에 두께가 증가 된 그라파이트 시트를 순차 적층하는 형태의 상향 두께 증가형 그라파이트 유닛;. 또는 제일 하측에 위치한 그라파이트 시트를 기준으로 그 상측에 두께가 감소된 그라파이트 시트를 순차 적층하는 형태의 하향 두께 증가형 그라파이트 유닛;, 또는 서로 다른 두께를 그라파이트 시트를 무작위로 적층 배치하는 무작위 그라파이트 유닛 중 어느 하나 인 것을 특징으로 하는 다층 그라파이트 적층체를 갖는 진공챔버.The method according to claim 5 or 6, wherein the graphite unit is an upwardly increasing thickness type graphite unit in which graphite sheets of increased thickness are sequentially stacked on the upper side of the lowermost graphite sheet as a reference; . Or, a downward thickness increasing type graphite unit that sequentially stacks graphite sheets of reduced thickness on the upper side based on the graphite sheet located at the bottom;, or a random graphite unit that randomly stacks graphite sheets of different thicknesses. A vacuum chamber having a multi-layer graphite laminate, characterized in that:
  8. 제 6항에 있어서, 상기 차단요소는, 상기 상커버의 상면 또는 하면에 수직방향으로의 열전달을 저감시키기 위하여 합성수지재를 코팅하거나 또는 합성수지재로 된 시트를 부착하여 된 단열막이거나;, 또는 상기 상커버의 하면과 그라파이트 유닛의 상면 사이에 수직 방향으로의 열전달을 저감하도록 구비되는 금속 또는 합성수지재로 된 다공소재의 다공 단열시트 중 어느 하나인 것을 특징으로 하는 다층 그라파이트 적층체를 갖는 진공챔버. The method of claim 6, wherein the blocking element is an insulating film formed by coating a synthetic resin material or attaching a sheet of synthetic resin material to the upper or lower surface of the upper cover to reduce heat transfer in the vertical direction; or A vacuum chamber having a multi-layer graphite laminate, characterized in that it is one of porous insulation sheets made of metal or synthetic resin and provided to reduce heat transfer in the vertical direction between the lower surface of the upper cover and the upper surface of the graphite unit.
PCT/KR2023/009355 2022-07-04 2023-07-03 Vacuum chamber having multilayer graphite stack WO2024010314A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220081966 2022-07-04
KR10-2022-0081966 2022-07-04

Publications (1)

Publication Number Publication Date
WO2024010314A1 true WO2024010314A1 (en) 2024-01-11

Family

ID=89453744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009355 WO2024010314A1 (en) 2022-07-04 2023-07-03 Vacuum chamber having multilayer graphite stack

Country Status (2)

Country Link
KR (2) KR20240004112A (en)
WO (1) WO2024010314A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006095935A (en) * 2004-09-30 2006-04-13 Kaneka Corp High thermal conductive frame and graphite prepreg
KR20060075246A (en) * 2004-12-28 2006-07-04 제일모직주식회사 Thermoplastic multi layered resin sheet
KR100755014B1 (en) * 2006-10-25 2007-09-06 실리콘밸리(주) The manufacturing method of heat-conductive adhesive graphite sheet and graphite sheet
JP2012138566A (en) * 2010-12-08 2012-07-19 Nippon Dourooingu:Kk Composite heat conduction member
KR20180012702A (en) * 2016-07-27 2018-02-06 제이엑스금속주식회사 Structure attached metallic material for dissipating heat, printed circuit board, electronic device and metallic material for dissipating heat

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1453368A4 (en) 2001-11-09 2008-04-09 Tdk Corp Composite magnetic element, electromagnetic wave absorbing sheet, production method for sheet-form article, production method for electromagnetic wave absorbing sheet
KR102407157B1 (en) 2020-08-12 2022-06-10 주식회사 에이치티씨 Vapor chamber with efficient heat dissipation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006095935A (en) * 2004-09-30 2006-04-13 Kaneka Corp High thermal conductive frame and graphite prepreg
KR20060075246A (en) * 2004-12-28 2006-07-04 제일모직주식회사 Thermoplastic multi layered resin sheet
KR100755014B1 (en) * 2006-10-25 2007-09-06 실리콘밸리(주) The manufacturing method of heat-conductive adhesive graphite sheet and graphite sheet
JP2012138566A (en) * 2010-12-08 2012-07-19 Nippon Dourooingu:Kk Composite heat conduction member
KR20180012702A (en) * 2016-07-27 2018-02-06 제이엑스금속주식회사 Structure attached metallic material for dissipating heat, printed circuit board, electronic device and metallic material for dissipating heat

Also Published As

Publication number Publication date
KR20240004111A (en) 2024-01-11
KR20240004112A (en) 2024-01-11

Similar Documents

Publication Publication Date Title
WO2016093617A1 (en) Heat radiation sheet
WO2019182216A1 (en) Double-sided cooling type power module and manufacturing method therefor
US20150334871A1 (en) Thermal interface materials with thin film sealants
US20100132871A1 (en) Thermal diffusion sheet and method for mounting the same
JP6524098B2 (en) Electrostatic chuck, chamber and method of manufacturing electrostatic chuck
TW200301676A (en) Method for cooling electronic components and thermally conductive sheet for use therewith
US10130002B2 (en) Heat radiation adhesive, heat radiation sheet using same, and electronic device having same
JP2001274230A (en) Wafer holder for semiconductor manufacturing device
JP2010251386A (en) Electronic apparatus with thermal diffusion member, method of manufacturing electronic apparatus with thermal diffusion member, and thermal diffusion member
WO2015076636A1 (en) Device and method for bending strip-type electric heating wire and heat-generating body formed using strip-type electric heating wire
WO2024010314A1 (en) Vacuum chamber having multilayer graphite stack
WO2016167599A1 (en) Method for manufacturing embedded battery pack using hot-melting fixation structure, and battery pack manufactured using same
WO2020159177A1 (en) Thermoelectric device
CN113129761A (en) Display module and display device
CN210725770U (en) Electronic equipment heat dissipation assembly and electronic equipment
WO2024090878A1 (en) Composite heat dissipation hybrid tim sheet
US6370767B1 (en) Method for fabricating an electrical apparatus
KR101204718B1 (en) Thermal conductive plate member having improved thermal conductivity
WO2013139222A1 (en) Device combining heat conduction, insulation and voltage resistance
CN213545027U (en) LCD projector light valve heat abstractor
TW200522090A (en) Over-current protection apparatus
US8217506B2 (en) Semiconductor packaging structure having conductive gel to package semiconductor device
WO2016167607A1 (en) Battery pack manufacturing method using hot-melting fixing structure, and battery pack manufactured using same
TWM519879U (en) Improved heat dissipation structure of electronic device
CN206077833U (en) A kind of high thermal conductivity aluminium base

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835780

Country of ref document: EP

Kind code of ref document: A1