WO2024010048A1 - 添加剤を含有するシリカゾル及びその製造方法 - Google Patents

添加剤を含有するシリカゾル及びその製造方法 Download PDF

Info

Publication number
WO2024010048A1
WO2024010048A1 PCT/JP2023/024993 JP2023024993W WO2024010048A1 WO 2024010048 A1 WO2024010048 A1 WO 2024010048A1 JP 2023024993 W JP2023024993 W JP 2023024993W WO 2024010048 A1 WO2024010048 A1 WO 2024010048A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica sol
scattering
silica
additive
mass
Prior art date
Application number
PCT/JP2023/024993
Other languages
English (en)
French (fr)
Inventor
裕丈 北川
正司 大野
雅也 柏原
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2024010048A1 publication Critical patent/WO2024010048A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/146After-treatment of sols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/54Silicon compounds

Definitions

  • the present invention relates to a highly stable dispersion of silica particles based on the charge on the particle surface determined by small-angle X-ray scattering.
  • the small-angle scattering method using X-rays is used for structural analysis of several nanometers to several tens of nanometers.
  • an energy beam is irradiated onto a sample and evaluated based on the intensity depending on the scattered angle.
  • X-rays When X-rays are used, X-ray scattering occurs, and when X-rays have a short wavelength, scattering from the structure becomes small-angle scattering that appears at a small angle of several degrees or less, which is used for structural analysis.
  • Light scattering may appear as fluctuations in the refractive index (permittivity), and X-ray scattering may appear as fluctuations in electron density.
  • the scattering intensity I corresponding to the scattering vector q is related to fluctuations in the electron density in the sample, and can detect the shape and surface state of the nanoscale structure. For example, when silica particles are 9.5 to 30% in a semiconductor insulating material containing silicon atoms, carbon atoms, and oxygen atoms, and the scattering vector q is 0.1 nm ⁇ 1 in small-angle X-ray scattering measurement.
  • the ratio (I 1 (q)/I 2 (q)) of the scattering intensity I 1 (q) to the scattering intensity I 2 (q) when the scattering vector q is 0.2 nm ⁇ 1 is 1.35 or less. Insulating materials for semiconductors have been reported (see Patent Document 1).
  • a sol in which silica particles are dispersed in a dispersion medium can be dispersed in the dispersion medium without agglomeration because a suitable electrical repulsion force is generated between the silica particles due to the electric charge on the surface of the silica particles.
  • the dispersion medium is an aqueous medium or an organic solvent containing an ionic component
  • the present invention has been made in view of the above, and an object of the present invention is to provide a silica sol that can be dispersed without aggregation even when the dispersion medium is an aqueous medium containing an ionic component or an organic solvent, and a method for producing the silica sol. shall be.
  • the present inventors discovered that the charge on the surface of silica particles can be changed by adding an additive to silica sol, and that the charge on the surface of the particle can affect the dispersion state of silica particles in a dispersion medium. I focused on the left and right. Then, it was discovered that a stable silica sol could be obtained by satisfying a specific condition when the scattering intensity (I) for a specific scattering vector of an additive-containing silica sol determined by small-angle scattering method using X-rays, and the present invention. completed.
  • the first aspect of the present invention is that the scattering intensity (I) for the scattering vector (q) of the additive-containing silica sol determined by the small-angle scattering method using X-rays satisfies the following formulas (2) and (3).
  • the present invention relates to an additive-containing silica sol characterized by the following.
  • I B 0 represents the scattering intensity when the scattering vector (q) nm ⁇ 1 of the silica sol before containing the additive is 0.05 when the silica particle concentration is 3.5% by mass
  • I B max represents the scattering intensity at which the scattering vector (q) nm ⁇ 1 of the silica sol has a maximum value when the silica particle concentration is 3.5% by mass in the silica sol before containing additives
  • I A 0 represents the scattering intensity in the silica sol after containing the additive when the scattering vector (q) nm ⁇ 1 of the silica sol is 0.05 when the silica particle concentration is 3.5% by mass
  • I A max represents the scattering intensity at which the scattering vector (q) nm ⁇ 1 of the silica sol has a maximum value when the silica particle concentration is 3.5% by mass in the silica sol after containing the additive.
  • the HAZE value after storage at 20°C for 24 hours from the time of manufacture is the same as that of an additive.
  • the silica sol according to the first aspect has a lower HAZE value than the silica sol before containing the silica sol after being stored at 20° C. for 24 hours from the time of manufacture.
  • the particle diameter measured by dynamic light scattering of a silica sol with a silica particle concentration of 0.1% by weight using salt water with a salt concentration of 4% by mass as a dispersion medium and the particle size measured by dynamic light scattering at the time of manufacture.
  • the present invention relates to the silica sol according to the first aspect or the second aspect, which is lower than the particle diameter ratio determined by a light scattering method.
  • a fourth aspect relates to the silica sol according to any one of the first to third aspects, wherein the additive is an antioxidant.
  • the additive is a hydrolyzable silane, a sugar, an organic acid or a salt thereof, a sulfite, a thiocyanate, a mercapto organic acid or a salt thereof, a surfactant, or a polyhydroxy compound.
  • the present invention relates to a silica sol according to any one of three aspects.
  • the hydrolyzable silane has the following formula (1): (In formula (1), R 1 is an organic group having a cationic functional group or an organic group having an anionic functional group, and is bonded to a silicon atom through a Si-C bond, and R 2 each represents an alkoxy group, an acyloxy group, or a halogen atom, and a represents an integer of 1 to 3.
  • R 1 is an organic group having a cationic functional group or an organic group having an anionic functional group, and is bonded to a silicon atom through a Si-C bond
  • R 2 each represents an alkoxy group, an acyloxy group, or a halogen atom
  • a represents an integer of 1 to 3.
  • a seventh aspect relates to the silica sol according to the sixth aspect, wherein the cationic functional group is an amino group.
  • An eighth aspect relates to the silica sol according to the sixth aspect, wherein the anionic functional group is a glycidoxy group.
  • a ninth aspect relates to the silica sol according to the fifth aspect, wherein the sugar is sorbitol, glucose, or arabinose.
  • a tenth aspect relates to the silica sol according to the fifth aspect, wherein the organic acid or a salt thereof is gluconic acid, lactic acid, or thioglycolic acid, or a salt thereof.
  • An eleventh aspect relates to the silica sol according to the fifth aspect, wherein the sulfite is a pyrosulfite.
  • a twelfth aspect relates to the silica sol according to the fifth aspect, wherein the thiocyanate is sodium thiocyanate.
  • a thirteenth aspect relates to the silica sol according to the fifth aspect, wherein the mercapto organic acid or its salt is a mercapto acetate or an ammonium salt thereof.
  • the surfactant is at least one surfactant selected from the group consisting of anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants, and The present invention relates to the silica sol according to the fifth aspect, which is a surfactant containing at least a surfactant, a nonionic surfactant, or both.
  • a fifteenth aspect relates to the silica sol according to the fifth aspect, wherein the polyhydroxy compound is ascorbic acid.
  • the dispersion medium of the silica sol is an aqueous medium with a pH of 1 to 10, a salt water with a salinity concentration of 0.1 to 4.0% by mass, or an organic solvent. Regarding the silica sol described above.
  • a method for producing the additive-containing silica sol comprising: adding an additive to the silica sol using small-angle scattering method using X-rays;
  • the present invention relates to a method characterized by comprising a step of adjusting the scattering intensity (I) with respect to the scattering vector (q) of the additive-containing silica sol determined by the following formulas (2) and (3).
  • I B 0 represents the scattering intensity when the scattering vector (q) nm ⁇ 1 of the silica sol before containing the additive is 0.05 when the silica particle concentration is 3.5% by mass
  • I B max represents the scattering intensity at which the scattering vector (q) nm ⁇ 1 of the silica sol has a maximum value when the silica particle concentration is 3.5% by mass in the silica sol before containing additives
  • I A 0 represents the scattering intensity in the silica sol after containing the additive when the scattering vector (q) nm ⁇ 1 of the silica sol is 0.05 when the silica particle concentration is 3.5% by mass
  • I A max represents the scattering intensity at which the scattering vector (q) nm ⁇ 1 of the silica sol has a maximum value when the silica particle concentration is 3.5% by mass in the silica sol after containing the additive.
  • the present invention it is possible to provide a silica sol that can be stably dispersed without aggregation even when the dispersion medium is an aqueous medium or an organic solvent containing an ionic component, and a method for producing the silica sol.
  • FIG. 2 is an enlarged view of small-angle X-ray scattering measurements of the silica sols obtained in Example 1, Example 10, and Example 11. These are the results of small-angle X-ray scattering measurements of the silica sols obtained in Comparative Example 1, Comparative Example 2, and Comparative Example 3.
  • FIG. 2 is an enlarged view of small-angle X-ray scattering measurements of silica sols obtained in Comparative Example 1, Comparative Example 2, and Comparative Example 3. These are the results of small-angle X-ray scattering measurements of the silica sols obtained in Example 12 and Comparative Example 2.
  • FIG. 2 is an enlarged view of small-angle X-ray scattering measurements of the silica sols obtained in Example 1, Example 10, and Example 11.
  • FIG. 2 is an enlarged view of small-angle X-ray scattering measurements of silica sols obtained in Example 12 and Comparative Example 2. These are the results of small-angle X-ray scattering measurements of the silica sols obtained in Example 13 and Comparative Example 3.
  • FIG. 3 is an enlarged view of small-angle X-ray scattering measurements of silica sols obtained in Example 13 and Comparative Example 3.
  • the present invention is characterized in that the scattering intensity (I) for the scattering vector (q) of the additive-containing silica sol determined by the small-angle scattering method using X-rays satisfies the following formulas (2) and (3): It is a silica sol containing additives.
  • I B 0 represents the scattering intensity when the scattering vector (q) nm ⁇ 1 of the silica sol before containing the additive is 0.05 when the silica particle concentration is 3.5% by mass
  • I B max represents the scattering intensity at which the scattering vector (q) nm ⁇ 1 of the silica sol has a maximum value when the silica particle concentration is 3.5% by mass in the silica sol before containing additives
  • I A 0 represents the scattering intensity in the silica sol after containing the additive when the scattering vector (q) nm ⁇ 1 of the silica sol is 0.05 when the silica particle concentration is 3.5% by mass
  • I A max represents the scattering intensity at which the scattering vector (q) nm ⁇ 1 of the silica sol has a maximum value when the silica particle concentration is 3.5% by mass in the silica sol after containing the additive.
  • the scattering vector (q) nm ⁇ 1 indicates the direction in which the scattering angle 2 ⁇ increases from around 0°, and the measurement range by the small-angle scattering method is up to around 5°.
  • the scattering intensity (I max ) when the scattering vector (q) nm -1 is maximum is the same as the scattering intensity (I 0 ) when the scattering vector (q) nm -1 is 0.05. Able to show percentages.
  • the scattering intensity (I max ) is a value greater than or equal to the scattering intensity (I 0 ) when the scattering vector (q) nm ⁇ 1 is 0.05, and shows the maximum value among the scattering vectors (q) nm ⁇ 1 .
  • the scattering intensity (I max ) is the value of the scattering intensity (I) observed when the scattering vector (q) nm -1 is 0.05 or more where the scattering vector (q) nm -1 indicates the scattering intensity (I 0 ). It is. Therefore, the scattering intensity (I max ) may be the same value as the scattering intensity (I 0 ).
  • the scattering vector (q) nm ⁇ 1 indicating the scattering intensity (I 0 ) is derived from the lower limit of measurement of the measuring device, and is, for example, 0.05 nm ⁇ 1 , but is limited to 0.05 nm ⁇ 1 . It's not something you can do.
  • the intensity near the scattering vector 0 decreases, and a peak appears in the (q) region depending on the orderliness, but when the particle concentration is the same, the charge of the particles is large.
  • the intensity near the scattering vector 0 decreases. Since it is not possible to measure the intensity when the scattering vector is 0 in X-ray small-angle scattering measurement, the present invention uses the X-ray small-angle scattering method to measure the scattering vector at the lower measurement limit of the measurement device and the scattering vector whose peak is observed according to the orderliness. By measuring the ratio of the scattering intensity at , it is possible to know the charge of the silica particles, and as a result, the state of dispersion in the dispersion medium can be predicted.
  • the scattering intensity (I) indicates the charge of the silica particles of the additive-containing silica sol, and the larger the charge, the lower the scattering intensity in the (I 0 ) region. Therefore, the smaller (I max )/(I 0 ), the smaller the charge on the silica particles, and the larger (I max )/(I 0 ), the larger the charge on the silica particles.
  • the (I max )/(I 0 ) ratio of the additive-containing silica sol after adding the additive is 0.1 relative to the (I max )/(I 0 ) ratio of the silica sol before adding the additive.
  • the stability of the silica sol is high when the silica sol decreases in the range of ⁇ 4.8.
  • the dispersion stability is high when the dispersion medium is an aqueous medium with a pH of 1 to 10, or an aqueous medium with a pH of 1 to 6, or an aqueous medium with a pH of 8 to 10, or a salt water with a salt concentration of 0.1 to 4.0% by mass, or an organic solvent.
  • the amount of decrease in the (I max )/(I 0 ) ratio of the silica sol after adding the additive from the (I max )/(I 0 ) ratio of the silica sol containing the additive before adding the additive [the above formula This corresponds to (I B max )/(I B 0 ) ⁇ (I A max )/(I A 0 ) in (2). ] can be set in the range of 0.1 to 4.8, or 0.2 to 4.4, or 0.8 to 4.4, or 1.7 to 4.4 [However, additives The (I max )/(I 0 ) ratio of the additive-containing silica sol after adding is 1 or more (corresponding to the above formula (3))].
  • the silica sol used in the present invention has an average particle diameter of 5 to 200 nm, or 5 to 150 nm, or 5 to 100 nm, or 5 to 80 nm, or 5 to 50 nm as determined by the dynamic light scattering method (DLS method) of silica particles.
  • the average primary particle diameter is in the range of 5 to 200 nm, or 5 to 150 nm, or 5 to 100 nm, or 5 to 80 nm, or 5 to 50 nm. It can be obtained with The average primary particle diameter can be expressed by the BET method, the Sears method, or observation using a transmission electron microscope.
  • the silica sol of the present invention has a solid content of 0.1 to 60% by mass, or 1 to 55% by mass, or 10 to 55% by mass.
  • the solid content refers to all the components of the silica sol excluding the dispersion medium component.
  • the additive-containing silica sol of the present invention uses salt water with a salt concentration of 4% by mass as a dispersion medium and has a silica particle concentration of 0.1% by mass.
  • the value (elapsed HAZE value) is preferably in the range of 0 to 50, 0 to 30, 0 to 10, 0 to 5, 0 to 4, or 0 to 3.
  • the particle diameter measured by dynamic light scattering of a silica sol with a salt water concentration of 4% by mass as a dispersion medium and a silica particle concentration of 0.1% by mass was determined by 20% compared to the particle diameter determined by dynamic light scattering during manufacture.
  • the particle size ratio can be lowered compared to the particle size ratio.
  • the additive-containing silica sol of the present invention uses salt water with a salt concentration of 4% by mass as a dispersion medium, and the particle size of the silica sol with a silica particle concentration of 0.1% by mass is determined by dynamic light scattering within 12 hours from the time of production. How many times the value (elapsed DLS diameter) after 24-hour storage increases from the initial value (initial DLS diameter) (DLS change) is 0.5 to 5, 0.5 to 4, 0.5 to 3, 0 It is preferably in the range of .5 to 2, 0.5 to 1.8, 0.5 to 1.5, 0.8 to 4, or 0.8 to 1.8.
  • the silica particles contained in the silica sol are difficult to aggregate when dispersed in salt water or an organic solvent, so it can be used with a large number of silica particles and a high specific surface area. can.
  • Examples of the silica sol used in the present invention include 1) a silica sol obtained by heating water glass after removing alkali metal ions by cation exchange, and 2) a silica sol obtained by hydrolyzing a hydrolyzable silane compound. 3) Silica sol obtained by condensing silane hydrolyzate; 3) Silica sol obtained by dispersing gas-phase fumed silica obtained by hydrolyzing tetrachlorosilane gas with hydrogen and oxygen in a medium; 4) Examples include silica sol obtained by redispersing precipitated silica in an aqueous medium, which is obtained by washing a precipitate obtained by reacting an aqueous alkali silicate solution with an acid.
  • the silica sol of the present invention can contain antioxidants as additives. Furthermore, the silica sol of the present invention may contain a hydrolyzable silane, sugar, organic acid or its salt, sulfite, thiocyanate, mercapto organic acid or its salt, surfactant, or polyhydroxy compound as an additive. can.
  • hydrolyzable silane is added to the silica sol, and a part of it is coated on the surface of the silica particles, and a part of it is present in the medium or on the surface of the silica particles as a hydrolyzate.
  • both can exist in a mixed state.
  • the hydrolyzable silane used in the present invention can have the structure of general formula (1).
  • R 1 is an organic group having a cationic functional group or an organic group having an anionic functional group, and is bonded to a silicon atom through a Si-C bond
  • R 2 each represents an alkoxy group, an acyloxy group, or a halogen atom, and a represents an integer of 1 to 3.
  • the organic group having a cationic group is an organic group having an amino group, and examples of the amino group include a primary amino group, a secondary amino group, and a tertiary amino group.
  • Examples of organic groups having these cationic groups include N-2-(aminoethyl)-3-aminopropyl group, 3-aminopropyl group, N-(1,3-dimethyl-butylidene)propyl group, N- Examples include phenyl-3-aminopropyl group and 3-ureidopropyl group.
  • silane compounds include N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, and 3-aminopropyltrimethoxysilane. , 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, N-phenyl-3-aminopropyltrimethoxysilane, and 3-ureidopropyltrialkoxysilane. It will be done.
  • Examples of the organic group having an anionic group include organic groups having a 2-(3,4-epoxycyclohexyl)ethyl group, 3-glycidoxypropyl group, and propylsuccinic anhydride group.
  • Examples of these silane compounds include 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl Examples include methyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, and 3-trimethoxysilylpropylsuccinic anhydride.
  • monosaccharides and polysaccharides are used as the sugar used in the present invention.
  • the monosaccharides include triose, tetrose, pentose, hexose, heptose, arabinose, and glucose
  • polysaccharides include disaccharides and trisaccharides.
  • tetrasaccharides include arabinose and glucose, and further include sorbitol obtained by catalytic reduction of glucose.
  • the organic acid or salt thereof used in the present invention is an organic acid or a salt thereof having a carboxy group or a sulfonic acid group, and an organic acid or a salt thereof having a carboxy group is particularly preferable.
  • These organic acid salts are alkali metal salts such as sodium and potassium salts, or ammonium salts. Furthermore, it may have a hydroxy group or a thiol group as an antioxidant functional group.
  • organic acids include citric acid, acetic acid, malic acid, gluconic acid, lactic acid, succinic acid, tartaric acid, butyric acid, fumaric acid, propionic acid, formic acid, thioglycolic acid, etc., but hydroxycarboxylic acids are particularly preferred. , citric acid, malic acid, lactic acid, tartaric acid, thioglycolic acid and the like.
  • the sulfite used in the present invention is a pyrosulfite and has an antioxidant effect.
  • the salt include sodium salt, potassium salt, or ammonium salt.
  • sodium thiocyanate can be used as the thiocyanate used in the present invention.
  • mercapto organic acid or its salt used in the present invention mercaptoacetate or its ammonium salt can be used.
  • the surfactants used in the present invention include anionic surfactants, cationic surfactants, nonionic surfactants, and amphoteric surfactants.
  • the surfactant is at least one surfactant selected from the group consisting of anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants, and the anionic surfactants, A nonionic surfactant or a surfactant containing at least both can be used.
  • anionic surfactants include sodium and potassium salts of fatty acids, alkylbenzene sulfonates, higher alcohol sulfate sulfates, polyoxyethylene alkyl ether sulfates, ⁇ -sulfo fatty acid esters, ⁇ -olefin sulfonates, Examples include monoalkyl phosphate ester salts and alkanesulfonate salts.
  • the alkylbenzene sulfonate has, for example, sodium ions, potassium ions, and lithium ions as counterions.
  • Specific examples of the alkylbenzene sulfonate include sodium C10 to C16 alkylbenzene sulfonate, potassium C10 to C16 alkylbenzene sulfonate, and sodium alkylnaphthalene sulfonate.
  • higher alcohol sulfate salts include sodium dodecyl sulfate (sodium lauryl sulfate) having 12 carbon atoms, triethanolamine lauryl sulfate, and ammonium triethanol lauryl sulfate.
  • polyoxyethylene alkyl ether sulfates examples include sodium polyoxyethylene styrenated phenyl ether sulfate, ammonium polyoxyethylene styrenated phenyl ether sulfate, sodium polyoxyethylene decyl ether sulfate, ammonium polyoxyethylene decyl ether sulfate, and polyoxyethylene lauryl. Examples include sodium ether sulfate, ammonium polyoxyethylene lauryl ether sulfate, sodium polyoxyethylene tridecyl ether sulfate, sodium polyoxyethylene oleyl cetyl ether sulfate, and the like.
  • Examples of the ⁇ -olefin sulfonate include sodium ⁇ -olefin sulfonate.
  • alkanesulfonate examples include sodium 2-ethylhexyl sulfate.
  • cationic surfactant examples include alkyltrimethylammonium salts, dialkyldimethylammonium salts, alkyldimethylbenzylammonium salts, and amine salt agents.
  • the alkyltrimethylammonium salt is a quaternary ammonium salt, and has, for example, a chlorine ion or a bromine ion as a counter ion.
  • Specific examples of the alkyltrimethylammonium salt include dodecyltrimethylammonium chloride, cetyltrimethylammonium chloride, coconut alkyltrimethylammonium chloride, and alkyl(C16-18)trimethylammonium chloride.
  • Dialkyldimethylammonium salts have two main chains that are lipophilic and two methyl groups, and examples include didecyldimethylammonium chloride, dialkyldimethylammonium chloride, dihardened beef tallow alkyldimethylammonium chloride, Examples include dialkyl (C14-18) dimethylammonium.
  • Alkyldimethylbenzyl ammonium salt is a quaternary ammonium salt (benzalkonium chloride) having one lipophilic main chain, two methyl groups, and a benzyl group. Examples include dimethylbenzylammonium.
  • the amine salt agent is one in which the hydrogen atom of ammonia is replaced with one or more hydrocarbon groups, and includes, for example, N-methylbishydroxyethylamine fatty acid ester hydrochloride.
  • amphoteric surfactants include N-alkyl- ⁇ -alanine type alkylamino fatty acid salts, alkylcarboxybetaine type alkylbetaines, and N,N-dimethyldodecylamine oxide type alkylamine oxides. Examples of these include lauryl betaine, stearyl betaine, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine, and lauryl dimethylamine oxide.
  • Nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, alkyl glucosides, polyoxyethylene fatty acid esters, sucrose fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, and fatty acid alkanolamides. selected from the group.
  • polyoxyethylene alkyl ether examples include polyoxyethylene dodecyl ether (polyoxyethylene lauryl ether), polyoxyalkylene lauryl ether, polyoxyethylene tridecyl ether, polyoxyalkylene tridecyl ether, polyoxyethylene myristyl ether, and polyoxyethylene tridecyl ether.
  • examples include oxyethylene cetyl ether, polyoxyethylene oleyl ether, polyoxyethylene stearyl ether, polyoxyethylene behenyl ether, polyoxyethylene-2-ethylhexyl ether, and polyoxyethylene isodecyl ether.
  • polyoxyethylene alkylphenyl ether examples include polyoxyethylene styrenated phenyl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene distyrenated phenyl ether, and polyoxyethylene tribenzylphenyl ether.
  • alkyl glucoside examples include decyl glucoside and lauryl glucoside.
  • polyoxyethylene fatty acid esters examples include polyoxyethylene monolaurate, polyoxyethylene monostearate, polyoxyethylene monooleate, polyethylene glycol distearate, polyethylene glycol dioleate, polypropylene glycol dioleate, and the like.
  • sucrose fatty acid ester examples include sucrose palmitate, sucrose stearate, sucrose laurate, sucrose erucate, and sucrose oleate.
  • sorbitan fatty acid esters examples include sorbitan monocaprylate, sorbitan monolaurate, sorbitan monomyristate, sorbitan monopalmitate, sorbitan monostearate, sorbitan distearate, sorbitan tristearate, sorbitan monooleate, and sorbitan triolate. , sorbitan monosesquiolate, and ethylene oxide adducts thereof.
  • polyoxyethylene sorbitan fatty acid esters examples include polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan monooleate, Examples include polyoxyethylene sorbitan triolate and polyoxyethylene sorbitan triisostearate.
  • fatty acid alkanolamide examples include coconut oil fatty acid diethanolamide, beef tallow fatty acid diethanolamide, lauric acid diethanolamide, and oleic acid diethanolamide.
  • polyoxyalkyl ethers or polyoxyalkyl glycols such as polyoxyethylene polyoxypropylene glycol, polyoxyethylene fatty acid ester, polyoxyethylene hydrogenated castor oil ether, sorbitan fatty acid ester alkyl ether, alkyl polyglucoside, etc. can also be used.
  • a polyhydroxy compound can be used as an additive.
  • Polyhydroxy compounds exhibit antioxidant activity.
  • a polyhydroxy compound has a structure in which a plurality of hydroxyl groups are bonded to a linear or cyclic hydrocarbon structure, and can contain a diol, a triol, or a repeating unit thereof.
  • a typical example is ascorbic acid, and derivatives thereof, such as glyceryl ascorbic acid, can also be used.
  • the dispersion medium of the silica sol containing additives is preferably a highly ionic dispersion medium or a highly polar organic solvent.
  • a highly ionic dispersion medium for example, an aqueous medium with a pH of 1 to 10, or an aqueous medium with a pH of 1 to 6, or an aqueous medium with a pH of 8 to 10, or salt water with a salt concentration of 0.1 to 4.0% by mass, including seawater.
  • organic solvents particularly highly polar organic solvents.
  • the polar organic solvent may be a protic solvent or an aprotic solvent.
  • Protic polar solvents are polar solvents that readily donate protons and have a high dielectric constant.
  • Aprotic polar organic solvents have a dielectric constant.
  • Examples of the polar organic solvent include organic solvents such as dimethylformamide, N-methylpyrrolidone, dimethylsulfoxide, methanol, ethanol, and acetic acid.
  • the silica sol is made to contain additives, and the scattering intensity (I) for the scattering vector (q) of the additive-containing silica sol determined by the small-angle scattering method using X-rays is expressed by the following formulas (2) and (3).
  • the additive-containing silica sol of the present invention can be produced by a method including a step of adjusting so as to satisfy the following.
  • I B 0 represents the scattering intensity when the scattering vector (q) nm ⁇ 1 of the silica sol before containing the additive is 0.05 when the silica particle concentration is 3.5% by mass
  • I B max represents the scattering intensity at which the scattering vector (q) nm ⁇ 1 of the silica sol has a maximum value when the silica particle concentration is 3.5% by mass in the silica sol before containing additives
  • I A 0 represents the scattering intensity in the silica sol after containing the additive when the scattering vector (q) nm ⁇ 1 of the silica sol is 0.05 when the silica particle concentration is 3.5% by mass
  • I A max represents the scattering intensity at which the scattering vector (q) nm ⁇ 1 of the silica sol has a maximum value when the silica particle concentration is 3.5% by mass in the silica sol after containing the additive.
  • Additive-containing silica particles can be stably dispersed in the dispersion medium by including the step of adding an additive to the silica sol and adjusting it so as to satisfy the above formulas (2) and (3).
  • the content of the additive is the set value for the aqueous medium of silica sol, it may also be a set value for the aqueous medium of pH 1 to 10, for example, an aqueous medium of pH 1 to 6, an aqueous medium of pH 8 to 10, or a salinity concentration of 0.1 to 4.0 mass. % salt water or the value after changing the solvent to an organic solvent.
  • the additive-containing silica sol of the present invention can be used in adhesives, mold release agents, semiconductor encapsulants, LED encapsulants, paints, film internal additives, hard coating agents, photoresist materials, printing inks, cleaning agents, cleaners, etc. It can be used as additives for resins, insulating compositions, rust preventives, lubricating oils, metal processing oils, coating agents for films, stripping agents, well treatment agents, etc.
  • X-ray small angle scattering device The product name NANO-Viewer manufactured by Rigaku Co., Ltd. was used.
  • DLS average particle size (dynamic light scattering method particle size) A dynamic light scattering particle size measuring device (trade name: Zetersizer Nano (manufactured by Spectris Corporation, Malvern Division) was used.
  • pH measurement A pH meter (manufactured by Toa DKK Co., Ltd.) was used.
  • HAZE value The HAZE meter used was the product name NDH5000 (manufactured by Nippon Denshoku Kogyo Co., Ltd.). The HAZE value is a value indicating the haze value and turbidity of silica sol when irradiated with visible light.
  • Total light transmittance including T and all diffuse components T It is expressed as the ratio between T and the diffuse transmittance DIF excluding the parallel component.
  • HAZE value DIF/T.
  • T ⁇ 100 SAXS measurement conditions as X-ray small angle scattering spectrum
  • a sample sealed in a capillary was irradiated with X-rays using Cu-K ⁇ rays as an X-ray source, and the scattered X-rays were detected with a two-dimensional detector (trade name: PILATUS 200k (manufactured by Dektris)). The distance from the sample to the detector is 1200 mm.
  • each chemical solution produced in Examples 1 to 13 or Comparative Examples 1 to 3 was mixed with salt water (artificial seawater) and so on so that the silica concentration was 0.1% by mass. Diluted with pure water. For example, in Example 4, 0.56 g of the chemical solution was added and stirred with a magnetic stirrer.
  • salt water evaluation sample for evaluating the heat resistance and salt resistance of the chemical solution under a salt concentration of 4% by mass.
  • the main component of salt is sodium chloride, and it also contains calcium chloride, magnesium chloride, magnesium sulfate, sodium hydrogen carbonate, etc.
  • Example 12 For example, in Example 12, 0.97 g of the chemical solution was added and stirred with a magnetic stirrer. While stirring with a magnetic stirrer, 10.14 g of pure water and 88.89 g of salt water with a salt concentration of 4.5% by mass were added and stirred for 1 hour. This was used as a brine test sample (salt water evaluation sample) for evaluating the heat resistance and salt resistance of the chemical solution under a salt concentration of 4% by mass. The main component of salt is sodium chloride. Put 100g of the brine test sample into a 200ml styrene container that can be sealed, and after sealing, leave the styrene container at 20°C for 24 hours. ) was evaluated for its DLS average particle diameter and HAZE value.
  • Example 13 For example, in Example 13, 0.26 g of the chemical solution was added and stirred with a magnetic stirrer. While stirring with a magnetic stirrer, 10.85 g of pure water and 88.89 g of salt water with a salt concentration of 4.5% by mass were added and stirred for 1 hour. This was used as a brine test sample (salt water evaluation sample) for evaluating the heat resistance and salt resistance of the chemical solution under a salt concentration of 4% by mass. The main component of salt is sodium chloride. Put 100g of the brine test sample into a 200ml styrene container that can be sealed, and after sealing, leave the styrene container at 20°C for 24 hours. ) was evaluated for its DLS average particle diameter and HAZE value.
  • aqueous silica sol (1) a silica sol manufactured by Nissan Chemical Co., Ltd. (pH 2.6, silica concentration 20.0% by mass, average primary particle diameter 12.0 nm by BET method, average particle diameter 17 nm by DLS method) was prepared.
  • a silica sol manufactured by Nissan Chemical Co., Ltd. (pH 2.7, silica concentration 10.5% by mass, average primary particle diameter 5.0 nm by Sears, average particle diameter 9 nm by DLS method) was prepared.
  • aqueous silica sol (3) a silica sol manufactured by Nissan Chemical Co., Ltd. (pH 2.4, silica concentration 40.5% by mass, average primary particle diameter 22.0 nm by BET method, average particle diameter 35 nm by DLS method) was prepared.
  • Example 1 After putting 1,200 g of aqueous silica sol (1) and a magnetic stirrer into a 2,000 mL glass eggplant flask, the silane compound was added to the silica (colloidal silica particles) in the aqueous silica sol while stirring with the magnetic stirrer. 191.0 g of 3-glycidoxypropyltrimethoxysilane (Dynasylan (trade name) GLYMO manufactured by Evonik) was added so that the mass ratio was 0.80. Subsequently, a cooling tube through which tap water was flowed was installed at the top of the eggplant flask, and the aqueous sol was heated to 60° C. while refluxing, held at 60° C.
  • Example 2 A stirring bar was placed in a 120 mL styrene bottle, and 101.0 g of the aqueous silica sol produced in Example 1 was charged while stirring with a magnetic stirrer. After adding 15 g of pure water, 0.96 g of anionic surfactant sodium ⁇ -olefin sulfonate (Neogen (trade name) AO-90 manufactured by Daiichi Kogyo Seiyaku Co., Ltd., active ingredient 100% by mass) was added, Stir until completely dissolved.
  • anionic surfactant sodium ⁇ -olefin sulfonate Naogen (trade name) AO-90 manufactured by Daiichi Kogyo Seiyaku Co., Ltd., active ingredient 100% by mass
  • Example 2 A drug solution of Example 2 was produced by adding 2.07 g of diluted active ingredient to 70% by mass.
  • the mass ratio of the anionic surfactant to the silica solid content of the aqueous silica sol was 0.03, and the mass ratio of the nonionic surfactant to the silica solid content of the aqueous silica sol was 0.07.
  • Example 3 After putting 1,000 g of aqueous silica sol (1) and a magnetic stirrer into a 2,000 mL glass eggplant flask, lactic acid (Kanto Kagaku Co., Ltd. active ingredient 85-92% by mass) was added while stirring with the magnetic stirrer. After 121.36 g was added, 149.12 g of 4-aminopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBE-903) was added. Subsequently, a cooling tube through which tap water was flowed was installed at the top of the eggplant flask, and the aqueous sol was heated to 60° C. while refluxing, held at 60° C.
  • lactic acid Koreano Kagaku Co., Ltd. active ingredient 85-92% by mass
  • Example 4 A stirring bar was placed in a 120 mL styrene bottle, and 9.15 g of pure water and 87.76 g of aqueous silica sol (1) were added thereto, followed by stirring with a magnetic stirrer. Subsequently, while stirring with a magnetic stirrer, 3.09 g of ascorbic acid (manufactured by Junsei Kagaku Co., Ltd., active ingredient: 97% by mass) was added and stirred until completely dissolved to produce the chemical solution of Example 4.
  • ascorbic acid manufactured by Junsei Kagaku Co., Ltd., active ingredient: 97% by mass
  • Example 5 A stirring bar was placed in a 120 mL styrene bottle, and 9.15 g of pure water and 87.76 g of aqueous silica sol (1) were added thereto, followed by stirring with a magnetic stirrer. Next, while stirring with a magnetic stirrer, 3.09 g of sodium pyrosulfite (97% by mass of active ingredient, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was added and stirred until completely dissolved to produce the chemical solution of Example 5. did.
  • Example 6 A stirring bar was placed in a 120 mL styrene bottle, and 6.24 g of pure water and 87.76 g of aqueous silica sol (1) were added thereto, followed by stirring with a magnetic stirrer. Subsequently, while stirring with a magnetic stirrer, 5.99 g of gluconic acid (FUJIFILM Wako Pure Chemical Industries, Ltd. active ingredient 50% by mass) was added and stirred until completely dissolved to produce the chemical solution of Example 6. .
  • gluconic acid (FUJIFILM Wako Pure Chemical Industries, Ltd. active ingredient 50% by mass
  • Example 7 A stirring bar was placed in a 120 mL styrene bottle, and 9.15 g of pure water and 87.76 g of aqueous silica sol (1) were added thereto, followed by stirring with a magnetic stirrer. Next, while stirring with a magnetic stirrer, 3.09 g of sodium dodecyl sulfate (Shinoline (trade name) 90TK-T, manufactured by Shinnihon Chemical Co., Ltd., active ingredient 97% by mass) was added, and stirred until completely dissolved. The chemical solution of Example 7 was manufactured.
  • Example 8 A stirring bar was placed in a 120 mL styrene bottle, and 9.24 g of pure water and 87.76 g of aqueous silica sol (1) were added thereto, followed by stirring with a magnetic stirrer. Next, while stirring with a magnetic stirrer, 2.99 g of glucose (manufactured by Nihon Shokuhin Kako Co., Ltd., trade name: Solar Eclipse Anhydrous Crystalline Glucose #300, active ingredient 100% by mass) was added, and stirred until completely dissolved. The chemical solution of Example 8 was manufactured.
  • Example 9 A stirring bar was placed in a 120 mL styrene bottle, and 9.15 g of pure water and 87.76 g of aqueous silica sol (1) were added thereto, followed by stirring with a magnetic stirrer. Subsequently, while stirring with a magnetic stirrer, 3.09 g of sodium sulfite (FUJIFILM Wako Pure Chemical Industries, Ltd., active ingredient 97% by mass) was added and stirred until completely dissolved to produce the chemical solution of Example 9. .
  • a magnetic stirrer 3.09 g of sodium sulfite (FUJIFILM Wako Pure Chemical Industries, Ltd., active ingredient 97% by mass) was added and stirred until completely dissolved to produce the chemical solution of Example 9. .
  • Example 10 A stirring bar was placed in a 120 mL styrene bottle, and 9.24 g of pure water and 87.76 g of aqueous silica sol (1) were added thereto, followed by stirring with a magnetic stirrer. Next, while stirring with a magnetic stirrer, 2.99 g of sodium thiocyanate (FUJIFILM Wako Pure Chemical Industries, Ltd., active ingredient 100% by mass) was added and stirred until completely dissolved to produce the chemical solution of Example 10. did.
  • a magnetic stirrer 2.99 g of sodium thiocyanate (FUJIFILM Wako Pure Chemical Industries, Ltd., active ingredient 100% by mass) was added and stirred until completely dissolved to produce the chemical solution of Example 10. did.
  • Example 11 A stirring bar was placed in a 120 mL styrene bottle, and 6.24 g of pure water and 87.76 g of aqueous silica sol (1) were added thereto, followed by stirring with a magnetic stirrer. Next, while stirring with a magnetic stirrer, 5.99 g of ammonium mercaptoacetate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., active ingredient 50% by mass) was added and stirred until completely dissolved to produce the chemical solution of Example 11. did.
  • Example 12 A stirring bar was placed in a 120 mL styrofoam bottle, 98.23 g of aqueous silica sol (2) was added, and the mixture was stirred with a magnetic stirrer. Subsequently, while stirring with a magnetic stirrer, 1.77 g of ascorbic acid (manufactured by Junsei Kagaku Co., Ltd., active ingredient: 97% by mass) was added and stirred until completely dissolved to produce the chemical solution of Example 12.
  • ascorbic acid manufactured by Junsei Kagaku Co., Ltd., active ingredient: 97% by mass
  • Example 13 A stirring bar was placed in a 120 mL styrene bottle, 93.5 g of aqueous silica sol (3) was added, and the mixture was stirred with a magnetic stirrer. Subsequently, while stirring with a magnetic stirrer, 6.50 g of ascorbic acid (manufactured by Junsei Kagaku Co., Ltd., active ingredient: 97% by mass) was added, and the mixture was stirred until completely dissolved to produce the chemical solution of Example 13.
  • ascorbic acid manufactured by Junsei Kagaku Co., Ltd., active ingredient: 97% by mass
  • I B 0 represents the scattering intensity when the scattering vector (q) nm ⁇ 1 of the silica sol before containing the additive is 0.05 when the silica particle concentration is 3.5% by mass
  • I B max represents the scattering intensity at which the scattering vector (q) nm ⁇ 1 of the silica sol has a maximum value when the silica particle concentration is 3.5% by mass in the silica sol before containing additives
  • I A 0 represents the scattering intensity in the silica sol after containing the additive when the scattering vector (q) nm ⁇ 1 of the silica sol is 0.05 when the silica particle concentration is 3.5% by mass
  • I A max represents the scattering intensity at which the scattering vector (q) nm ⁇ 1 of the silica sol has a maximum value when the silica particle concentration is
  • FIG. 1 shows the results of small-angle X-ray scattering measurements of the silica sols obtained in Examples 1, 10, and 11.
  • the horizontal axis is the scattering vector (q)
  • the vertical axis is the scattering intensity (I).
  • FIG. 2 is an enlarged view thereof.
  • FIG. 3 shows the results of small-angle X-ray scattering measurements of the silica sols obtained in Comparative Example 1, Comparative Example 2, and Comparative Example 3.
  • the horizontal axis is the scattering vector (q)
  • the vertical axis is the scattering intensity (I).
  • the salt tolerance of the sample was evaluated using the HAZE value after storage at 20° C. for 24 hours, and the change over time using the particle diameter (DLS change) value determined by dynamic light scattering. That is, regarding the HAZE value of a silica sol with a salt water concentration of 4% by mass as a dispersion medium and a silica particle concentration of 0.1% by mass, the HAZE value (elapsed HAZE value) after storage at 20 ° C. for 24 hours from the time of manufacture is calculated. It is listed in the table below.
  • the additive-containing silica sols of Examples 1 to 11 have lower elapsed HAZE values than the additive-free silica sols of Comparative Example 1. Moreover, the DLS change could also be reduced. Similarly, by satisfying formulas (2) and (3), the additive-containing silica sol of Example 12 is more effective than the additive-containing silica sol of Example 13 than the additive-free silica sol of Comparative Example 2. The silica sol had a lower elapsed HAZE value and a smaller DLS change than the silica sol of Comparative Example 3 which did not contain any additives.
  • a stable silica sol can be obtained when the scattering intensity (I) for a specific scattering vector of the additive-containing silica sol determined by small-angle scattering method using X-rays satisfies a specific condition.
  • the silica sol is particularly suitable for dispersion medium having a pH of 1 to 10, such as an aqueous medium of pH 1 to 6, an aqueous medium of pH 8 to 10, a high electrolyte medium such as salt water with a salinity concentration of 0.1 to 4.0% by mass, and a polar organic solvent. It has high stability and can be applied to fields that utilize these dispersion media.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

【課題】 添加剤含有シリカゾルをX線小角散乱法により散乱ベクトル間の散乱強度比が特定範囲である安定なシリカゾル。 【解決手段】 X線を用いた小角散乱法により求められる添加剤含有シリカゾルの散乱ベクトル(q)に対する散乱強度(I)が下記式(2)及び式(3)を満たすことを特徴とする、添加剤含有シリカゾル。 wi="149.6"/> ここで、前記式(2)及び式(3)において、 I は、添加剤を含有する前のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が0.05のときの散乱強度を表し、 I maxは、添加剤を含有する前のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が最大値となる散乱強度を表し、 I は、添加剤を含有した後のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が0.05のときの散乱強度を表し、 I maxは、添加剤を含有した後のシリカゾルおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が最大値となる散乱強度を表す。 塩分濃度4質量%の塩水を分散媒とし、シリカ粒子の濃度が0.1質量%のシリカゾルのHAZE値について、20℃で24時間保管後のHAZE値が添加剤含有前のHAZE値に比べて低い、シリカゾル。

Description

添加剤を含有するシリカゾル及びその製造方法
 本発明はX線の小角散乱法による粒子表面の電荷に基づいた安定性の高いシリカ粒子の分散液に関する。
 X線による小角散乱法は数nm~数十nmの構造解析に用いられる。散乱法はエネルギー線を試料に照射し散乱された角度に応じた強度により評価する。X線を用いればX線散乱となり、波長の短いX線の場合は構造からの散乱は数度以下の小さな角度に現れる小角散乱となり、構造解析に用いられる。
 光散乱は屈折率(誘電率)の揺らぎ、X線散乱は電子密度の揺らぎとして現れる場合がある。
 X線小角散乱において、散乱ベクトルqはq=4πsinθ/λであり、2θは散乱角度、λは入射X線の波長である。散乱ベクトルqに対応する散乱強度Iは試料中の電子密度の揺らぎに関係し、ナノスケール構造の形状や表面状態を検知することができる。
 例えば、ケイ素原子、炭素原子、及び酸素原子を含む半導体用絶縁材料においてシリカ粒子が9.5~30%であって、X線小角散乱測定における、散乱ベクトルqが0.1nm-1の時の散乱強度I(q)の、散乱ベクトルqが0.2nm-1の時の散乱強度I(q)に対する比(I(q)/I(q))が1.35以下である半導体用絶縁材料が報告されている(特許文献1参照)。
特開2014-067829号公報
 ところで、シリカ粒子が分散媒に分散したゾル(シリカゾル)は、シリカ粒子表面の電荷によりシリカ粒子間の適度な電気的な反発力を生じ分散媒中に凝集せずに分散することができる。しかしながら、分散媒がイオン成分を含む水性媒体や有機溶媒である場合は、シリカ粒子表面の電荷と分散媒の間で電気的なバランスが崩れ凝集を起こす虞があった。
 そこで、分散媒がイオン成分を含む水性媒体や有機溶媒である場合でも、凝集せずに分散が可能であるシリカゾルが求められていた。
 本発明は上記に鑑みてなされたもので、分散媒がイオン成分を含む水性媒体や有機溶媒である場合でも凝集せずに分散が可能であるシリカゾル及び該シリカゾルの製造方法を提供することを目的とする。
 上述した目的を達成するために、本発明者らは、シリカゾルに添加剤を加えることでシリカ粒子表面の電荷を変化させられること及び該粒子表面の電荷がシリカ粒子の分散媒中における分散状態を左右することに注目した。そして、X線を用いた小角散乱法により求められる添加剤含有シリカゾルの特定の散乱ベクトルに対する散乱強度(I)が特定の条件を満たすことで、安定なシリカゾルを得ることができることを見出し、本発明を完成した。
 すなわち、本発明は第1観点として、X線を用いた小角散乱法により求められる添加剤含有シリカゾルの散乱ベクトル(q)に対する散乱強度(I)が下記式(2)及び式(3)を満たすことを特徴とする、添加剤含有シリカゾルに関する。
Figure JPOXMLDOC01-appb-M000004
 ここで、前記式(2)及び式(3)において、
 I は、添加剤を含有する前のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が0.05のときの散乱強度を表し、
 I maxは、添加剤を含有する前のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が最大値となる散乱強度を表し、
 I は、添加剤を含有した後のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が0.05のときの散乱強度を表し、
 I maxは、添加剤を含有した後のシリカゾルおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が最大値となる散乱強度を表す。
 第2観点として、塩分濃度4質量%の塩水を分散媒とし、シリカ粒子の濃度が0.1質量%のシリカゾルのHAZE値について、製造時から20℃で24時間保管後のHAZE値が添加剤含有前のシリカゾルにおける製造時から20℃で24時間保管後のHAZE値に比べて低い、第1観点に記載のシリカゾルに関する。
 第3観点として、塩分濃度4質量%の塩水を分散媒とし、シリカ粒子の濃度が0.1質量%のシリカゾルの動的光散乱法による粒子径について、製造時の動的光散乱法による粒子径に対する20℃で24時間保管後の動的光散乱法による粒子径の比が添加剤含有前のシリカゾルにおける製造時の動的光散乱法による粒子径に対する20℃で24時間保管後の動的光散乱法による粒子径の比に比べて低い、第1観点又は第2観点に記載のシリカゾルに関する。
 第4観点として、添加剤が抗酸化物質である第1観点乃至第3観点の何れか一つに記載のシリカゾルに関する。
 第5観点として、添加剤が加水分解性シラン、糖、有機酸若しくはその塩、亜硫酸塩、チオシアン酸塩、メルカプト有機酸若しくはその塩、界面活性剤、又はポリヒドロキシ化合物である第1観点乃至第3観点の何れか一つに記載のシリカゾルに関する。
 第6観点として、加水分解性シランが下記式(1):
Figure JPOXMLDOC01-appb-C000005
(式(1)中、Rはそれぞれカチオン性官能基を有する有機基、又はアニオン性官能基を有する有機基で且つSi-C結合によりケイ素原子と結合しているものであって、Rはそれぞれアルコキシ基、アシルオキシ基、又はハロゲン原子を示し、aは1~3の整数を示す。)で示される第5観点に記載のシリカゾルに関する。
 第7観点として、カチオン性官能基がアミノ基である第6観点に記載のシリカゾルに関する。
 第8観点として、アニオン性官能基がグリシドキシ基である第6観点に記載のシリカゾルに関する。
 第9観点として、糖が、ソルビトール、グルコース、又はアラビノースである第5観点に記載のシリカゾルに関する。
 第10観点として、有機酸又はその塩が、グルコン酸、乳酸、若しくはチオグリコール酸、又はその塩である第5観点に記載のシリカゾルに関する。
 第11観点として、亜硫酸塩がピロ亜硫酸塩である第5観点に記載のシリカゾルに関する。
 第12観点として、チオシアン酸塩がチオシアン酸ナトリウムである第5観点に記載のシリカゾルに関する。
 第13観点として、メルカプト有機酸又はその塩が、メルカプト酢酸塩又はそのアンモニウム塩である第5観点に記載のシリカゾルに関する。
 第14観点として、界面活性剤がアニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤からなる群より選ばれる少なくとも1種の界面活性剤であって、アニオン性界面活性剤、非イオン性界面活性剤、又は両者を少なくとも含有する界面活性剤である第5観点に記載のシリカゾルに関する。
 第15観点として、ポリヒドロキシ化合物がアスコルビン酸である第5観点に記載のシリカゾルに関する。
 第16観点として、シリカゾルの分散媒が、pH1~10の水性媒体、塩分濃度0.1~4.0質量%の塩水、又は有機溶媒である第1観点乃至第15観点のいずれか一つに記載のシリカゾルに関する。
 第17観点として、第1観点乃至第16観点の何れか一つに記載の添加剤含有シリカゾルを製造する方法であって、シリカゾルに添加剤を含有させることによって、X線を用いた小角散乱法により求められる添加剤含有シリカゾルの散乱ベクトル(q)に対する散乱強度(I)が下記式(2)及び式(3)を満たすように調整する工程を含むことを特徴とする、方法に関する。
Figure JPOXMLDOC01-appb-M000006
 ここで、前記式(2)及び式(3)において、
 I は、添加剤を含有する前のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が0.05のときの散乱強度を表し、
 I maxは、添加剤を含有する前のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が最大値となる散乱強度を表し、
 I は、添加剤を含有した後のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が0.05のときの散乱強度を表し、
 I maxは、添加剤を含有した後のシリカゾルおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が最大値となる散乱強度を表す。
 本発明によれば、分散媒がイオン成分を含む水性媒体や有機溶媒である場合でも、凝集せずに安定に分散できるシリカゾル及びその製造方法を提供することができる。
実施例1、実施例10、及び実施例11で得られたシリカゾルのX線小角散乱測定の結果である。 実施例1、実施例10、及び実施例11で得られたシリカゾルのX線小角散乱測定の拡大図である。 比較例1、比較例2、及び比較例3で得られたシリカゾルのX線小角散乱測定の結果である。 比較例1、比較例2、及び比較例3で得られたシリカゾルのX線小角散乱測定の拡大図である。 実施例12、及び比較例2で得られたシリカゾルのX線小角散乱測定の結果である。 実施例12、及び比較例2で得られたシリカゾルのX線小角散乱測定の拡大図である。 実施例13、及び比較例3で得られたシリカゾルのX線小角散乱測定の結果である。 実施例13、及び比較例3で得られたシリカゾルのX線小角散乱測定の拡大図である。
 本発明はX線を用いた小角散乱法により求められる添加剤含有シリカゾルの散乱ベクトル(q)に対する散乱強度(I)が下記式(2)及び式(3)を満たすことを特徴とする、
添加剤含有シリカゾルである。
Figure JPOXMLDOC01-appb-M000007
 ここで、前記式(2)及び式(3)において、
 I は、添加剤を含有する前のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が0.05のときの散乱強度を表し、
 I maxは、添加剤を含有する前のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が最大値となる散乱強度を表し、
 I は、添加剤を含有した後のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が0.05のときの散乱強度を表し、
 I maxは、添加剤を含有した後のシリカゾルおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が最大値となる散乱強度を表す。
 散乱ベクトル(q)nm-1は散乱角0°付近から散乱角2θが大きくなる方向を示し、5°付近までが小角散乱法による測定範囲である。本発明において散乱ベクトル(q)nm-1が最大となる時の散乱強度(Imax)は、散乱ベクトル(q)nm-1が0.05の時の散乱強度(I)に対してその割合を示すことができる。
 散乱強度(Imax)は、散乱ベクトル(q)nm-1が0.05の散乱強度(I)以上の値であり、散乱ベクトル(q)nm-1中で最大の値を示すが、その散乱強度(Imax)は散乱ベクトル(q)nm-1が散乱強度(I)を示す散乱ベクトル(q)nm-1である0.05以上で観測される散乱強度(I)の値である。故に、散乱強度(Imax)は散乱強度(I)と同値となることもある。尚、散乱強度(I)を示す散乱ベクトル(q)nm-1は、測定装置の測定下限に由来するものであり、例えば0.05nm-1であるが、0.05nm-1に限定されるものではない。
溶液中のシリカ粒子濃度が高くなるにつれて粒子間相互作用が表れ、シリカ粒子の空間分布に秩序性が生じる。このような場合、X線小角散乱法では散乱ベクトル0付近の強度が低下し、その秩序性に応じた(q)領域にピークが現れるが、粒子濃度が同じ場合においては、粒子の電荷が大きいほど散乱ベクトル0付近の強度が低下する。
 X線小角散乱測定では散乱ベクトルが0の強度を測定することはできないため、本発明ではX線小角散乱法により測定装置の測定下限の散乱ベクトル及び秩序性に応じたピークが観測される散乱ベクトルにおける散乱強度の比率を測定することで、シリカ粒子の電荷を知ることが可能であり、その結果、分散媒への分散状態を予測することができる。
 散乱強度(I)は添加剤含有シリカゾルのシリカ粒子の電荷を示しており、その電荷が大きいほど(I)領域の散乱強度は下がることが判った。したがって、(Imax)/(I)は小さいほどシリカ粒子の電荷は小さく、(Imax)/(I)は大きいほどシリカ粒子の電荷は大きい。本発明では添加剤を加えた後の添加剤含有シリカゾルの(Imax)/(I)比が添加剤を加える前のシリカゾルの(Imax)/(I)比に対して0.1~4.8の範囲で減少した時に当該シリカゾルの安定性が高いことを見出した。特に分散媒がpH1~10、又はpH1~6の水性媒体、又はpH8~10の水性媒体、又は塩分濃度0.1~4.0質量%の塩水、又は有機溶媒において分散安定性が高い。
 上記の添加剤を加える前の添加剤含有シリカゾルの(Imax)/(I)比からの添加剤を加えた後のシリカゾルの(Imax)/(I)比の減少量[上記式(2)中の(I max)/(I )-(I max)/(I )に相当する。]は、0.1~4.8、又は0.2~4.4、又は0.8~4.4、又は1.7~4.4の範囲に設定することができる[ただし、添加剤を加えた後の添加剤含有シリカゾルの(Imax)/(I)比は1以上である(上記式(3)に相当する。)]。
 本発明に用いられるシリカゾルは、シリカ粒子の動的光散乱法(DLS法)による平均粒子径が5~200nm、又は5~150nm、又は5~100nm、又は5~80nm、又は5~50nmの範囲で得られ、シリカ粒子のBET法、シアーズ法、又は透過型電子顕微鏡観察による平均一次粒子径が5~200nm、又は5~150nm、又は5~100nm、又は5~80nm、又は5~50nmの範囲で得られる。上記平均一次粒子径はBET法、シアーズ法、又は透過型電子顕微鏡観察により表すことができる。
 本発明のシリカゾルは固形分として0.1~60質量%、又は1~55質量%、又は10~55質量%である。ここで固形分とはシリカゾルの全成分から分散媒成分を除いたものである。
 上記散乱強度比に設定することで、例えば塩分濃度4質量%の塩水を分散媒とし、シリカ粒子の濃度が0.1質量%のシリカゾルのHAZE値について、製造時から20℃で24時間保管後のHAZE値が添加剤含有前のシリカゾルにおける製造時から20℃で24時間保管後のHAZE値に比べて低くすることができる。本発明の添加剤含有シリカゾルは、塩分濃度4質量%の塩水を分散媒とし、シリカ粒子の濃度が0.1質量%のシリカゾルのHAZE値について、製造時から20℃で24時間保管後のHAZE値(経過HAZE値)が0~50、0~30、0~10、0~5、0~4、又は0~3の範囲であることが好ましい。前記範囲となるシリカゾルとすることで、塩水、又は有機溶媒に分散させたときにシリカゾルに含まれるシリカ粒子が凝集しづらく、シリカ粒子の分散状態を維持した透明な分散液として使用することができる。
 また、塩分濃度4質量%の塩水を分散媒とし、シリカ粒子の濃度が0.1質量%のシリカゾルの動的光散乱法による粒子径について、製造時の動的光散乱法による粒子径に対する20℃で24時間保管後の動的光散乱法による粒子径の比が添加剤含有前のシリカゾルにおける製造時の動的光散乱法による粒子径に対する20℃で24時間保管後の動的光散乱法による粒子径の比に比べて低くすることができる。本発明の添加剤含有シリカゾルは、塩分濃度4質量%の塩水を分散媒とし、シリカ粒子の濃度が0.1質量%のシリカゾルの動的光散乱法による粒子径について、製造時から12時間以内の初期値(初期DLS径)に対する24時間保管後の値(経過DLS径)が何倍になるか(DLS変化)が0.5~5、0.5~4、0.5~3、0.5~2、0.5~1.8、0.5~1.5、0.8~4、又は0.8~1.8の範囲であることが好ましい。前記範囲となるシリカゾルとすることで、塩水、又は有機溶媒に分散させたときにシリカゾルに含まれるシリカ粒子が凝集しづらいため、シリカ粒子の個数が多く、比表面積が高い状態で使用することができる。
 本発明に用いられるシリカゾルとしては、例えば、1)水ガラスを原料として陽イオン交換によりアルカリ金属イオンを除去した後に加熱して得られるシリカゾル、2)加水分解性シラン化合物を加水分解して得られるシラン加水分解物を縮合して得られるシリカゾル、3)四塩化シランのガス化物を水素と酸素で加水分解して得られる気相法ヒュームドシリカを媒体に分散させて得られたシリカゾル、4)珪酸アルカリ水溶液と酸を反応させた沈降物を洗浄して得られた沈降法シリカを水性媒体に再分散させて得られたシリカゾルが挙げられる。
 本発明のシリカゾルは添加剤として抗酸化物質を含有することができる。また、本発明のシリカゾルは添加剤として加水分解性シラン、糖、有機酸若しくはその塩、亜硫酸塩、チオシアン酸塩、メルカプト有機酸若しくはその塩、界面活性剤、又はポリヒドロキシ化合物を含有することができる。
 上記加水分解性シランはシリカゾルに添加して一部はシリカ粒子表面に被覆され、一部は加水分解物として媒体中やシリカ粒子表面に存在する。本発明では両者が混在する状態で存在することができる。
 本発明に用いられる加水分解性シランは一般式(1)の構造を有することができる。
Figure JPOXMLDOC01-appb-C000008
(式(1)中、Rはそれぞれカチオン性官能基を有する有機基、又はアニオン性官能基を有する有機基で且つSi-C結合によりケイ素原子と結合しているものであって、Rはそれぞれアルコキシ基、アシルオキシ基、又はハロゲン原子を示し、aは1~3の整数を示す。)
 カチオン性基を有する有機基はアミノ基を有する有機基であり、アミノ基としては、1級アミノ基、2級アミノ基、3級アミノ基が挙げられる。これらカチオン性基を有する有機基としては、例えば、N-2-(アミノエチル)-3-アミノプロピル基、3-アミノプロピル基、N-(1,3-ジメチル-ブチリデン)プロピル基、N-フェニル-3-アミノプロピル基、3-ウレイドプロピル基等が挙げられる。これらのシラン化合物としては、例えば、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-ウレイドプロピルトリアルコキシシランが挙げられる。
 アニオン性基を有する有機基としては、例えば、2-(3,4-エポキシシクロヘキシル)エチル基、3-グリシドキシプロピル基、プロピルコハク酸無水物基等を有する有機基が挙げられる。これらのシラン化合物としては、例えば、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物が挙げられる。
 本発明に用いられる糖としては、単糖類、多糖類が用いられ、単糖類としては、例えば、トリオース、テトロース、ペントース、ヘキソース、ヘプトース、アラビノース、グルコースが挙げられ、多糖類は二糖類、三糖類、四糖類が挙げられる。これらの中でも、単糖類としては、アラビノースやグルコースが挙げられ、更にグルコースの接触還元で得られるソルビトールが挙げられる。
 本発明に用いられる有機酸又はその塩は、カルボキシ基又はスルホン酸基を有する有機酸又はその塩であり、特にカルボキシ基を有する有機酸又はその塩が好ましい。これらの有機酸塩はナトリウム、カリウム等のアルカリ金属塩、又はアンモニウム塩である。更に抗酸化性の官能基としてヒドロキシ基、チオール基を有していても良い。有機酸としては、例えば、クエン酸、酢酸、リンゴ酸、グルコン酸、乳酸、コハク酸、酒石酸、酪酸、フマル酸、プロピオン酸、ギ酸、チオグリコール酸等が挙げられるが、特にヒドロキシカルボン酸が好ましく、クエン酸、リンゴ酸、乳酸、酒石酸、チオグリコール酸等が挙げられる。
 本発明に用いられる亜硫酸塩はピロ亜硫酸塩であり抗酸化作用を有する。塩としては、例えば、ナトリウム塩、カリウム塩、又はアンモニウム塩が挙げられる。
 本発明に用いられるチオシアン酸塩はチオシアン酸ナトリウムを用いることができる。
 本発明に用いられるメルカプト有機酸又はその塩は、メルカプト酢酸塩又はそのアンモニウム塩を用いることができる。
 本発明に用いられる界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤、又は両性界面活性剤が挙げられる。
 界面活性剤がアニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤からなる群より選ばれる少なくとも1種の界面活性剤であって、アニオン性界面活性剤、非イオン性界面活性剤、又は両者を少なくとも含有する界面活性剤を用いることができる。
 アニオン性界面活性剤としては、例えば、脂肪酸のナトリウム塩及びカリウム塩、アルキルベンゼンスルホン酸塩、高級アルコール硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸塩、α-スルホ脂肪酸エステル、α-オレフィンスルホン酸塩、モノアルキルリン酸エステル塩、及びアルカンスルホン酸塩が挙げられる。
 アルキルベンゼンスルホン酸塩は、例えば、ナトリウムイオン、カリウムイオン及びリチウムイオンを対イオンとして有する。前記アルキルベンゼンスルホン酸塩の具体例として、C10~C16アルキルベンゼンスルホン酸ナトリウム、C10~C16アルキルベンゼンスルホン酸カリウム、アルキルナフタレンスルホン酸ナトリウムなどが挙げられる。
 高級アルコール硫酸エステル塩としては、例えば、炭素原子数12のドデシル硫酸ナトリウム(ラウリル硫酸ナトリウム)、ラウリル硫酸トリエタノールアミン、ラウリル硫酸トリエタノールアンモニウムなどが挙げられる。
 ポリオキシエチレンアルキルエーテル硫酸塩としては、例えば、ポリオキシエチレンスチレン化フェニルエーテル硫酸ナトリウム、ポリオキシエチレンスチレン化フェニルエーテル硫酸アンモニウム、ポリオキシエチレンデシルエーテル硫酸ナトリウム、ポリオキシエチレンデシルエーテル硫酸アンモニウム、ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸アンモニウム、ポリオキシエチレントリデシルエーテル硫酸ナトリウム、ポリオキシエチレンオレイルセチルエーテル硫酸ナトリウムなどが挙げられる。
 α-オレフィンスルホン酸塩としては、例えば、α-オレフィンスルホン酸ナトリウムなどが挙げられる。
 アルカンスルホン酸塩としては、例えば、2-エチルヘキシル硫酸ナトリウムなどが挙げられる。
 カチオン性界面活性剤としては、例えば、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩、アミン塩系剤が挙げられる。
 アルキルトリメチルアンモニウム塩は第4級アンモニウム塩であり、例えば、塩素イオンや臭素イオンを対イオンとして有する。前記アルキルトリメチルアンモニウム塩の具体例として、塩化ドデシルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム、塩化ヤシアルキルトリメチルアンモニウム、塩化アルキル(C16-18)トリメチルアンモニウム等が挙げられる。
 ジアルキルジメチルアンモニウム塩は、親油性となる主鎖を2つ、メチル基を2つ有するものであり、例えば、塩化ジデシルジメチルアンモニウム、塩化ジヤシアルキルジメチルアンモニウム、塩化ジ硬化牛脂アルキルジメチルアンモニウム、塩化ジアルキル(C14-18)ジメチルアンモニウム等が挙げられる。
 アルキルジメチルベンジルアンモニウム塩は、親油性となる主鎖を1つ、メチル基を2つ、ベンジル基を有する第4級アンモニウム塩(塩化ベンザルコニウム)であり、例えば、塩化アルキル(C8-18)ジメチルベンジルアンモニウム等が挙げられる。
 アミン塩系剤は、アンモニアの水素原子を1つ以上の炭化水素基で置換したものであり、例えば、N-メチルビスヒドロキシエチルアミン脂肪酸エステル塩酸塩等が挙げられる。
 両性界面活性剤としては、N-アルキル-β-アラニン型のアルキルアミノ脂肪酸塩、アルキルカルボキシベタイン型のアルキルベタイン、N,N-ジメチルドデシルアミンオキシド型のアルキルアミンオキシドが挙げられる。
 これらの例示として、ラウリルベタイン、ステアリルベタイン、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン、ラウリルジメチルアミンオキシドが挙げられる。
 非イオン性界面活性剤は、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、アルキルグルコシド、ポリオキシエチレン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、脂肪酸アルカノールアミドからなる群より選ばれる。
 ポリオキシエチレンアルキルエーテルとしては、例えば、ポリオキシエチレンドデシルエーテル(ポリオキシエチレンラウリルエーテル)、ポリオキシアルキレンラウリルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシアルキレントリデシルエーテル、ポリオキシエチレンミリスチルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンベヘニルエーテル、ポリオキシエチレン-2-エチルヘキシルエーテル、ポリオキシエチレンイソデシルエーテル等が挙げられる。
 ポリオキシエチレンアルキルフェニルエーテルとしては、例えば、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレントリベンジルフェニルエーテルなどが挙げられる。
 アルキルグルコシドとしては、例えば、デシルグルコシド、ラウリルグルコシドなどが挙げられる。
 ポリオキシエチレン脂肪酸エステルとしては、例えば、ポリオキシエチレンモノラウレート、ポリオキシエチレンモノステアレート、ポリオキシエチレンモノオレート、ポリエチレングリコールジステアレート、ポリエチレングリコールジオレート、ポリプロピレングリコールジオレートなどが挙げられる。
 ショ糖脂肪酸エステルとしては、例えば、ショ糖パルミチン酸エステル、ショ糖ステアリン酸エステル、ショ糖ラウリン酸エステル、ショ糖エルカ酸エステル、ショ糖オレイン酸エステルなどが挙げられる。
 ソルビタン脂肪酸エステルとしては、例えば、ソルビタンモノカプリレート、ソルビタンモノラウレート、ソルビタンモノミリステート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタントリステアレート、ソルビタンモノオレート、ソルビタントリオレート、ソルビタンモノセスキオレート、及びこれらのエチレンオキシド付加物などが挙げられる。
 ポリオキシエチレンソルビタン脂肪酸エステルとしては、例えば、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリステアレート、ポリオキシエチレンソルビタンモノオレート、ポリオキシエチレンソルビタントリオレート、ポリオキシエチレンソルビタントリイソステアレートなどが挙げられる。
 また脂肪酸アルカノールアミドとしては、例えば、ヤシ油脂肪酸ジエタノールアミド、牛脂脂肪酸ジエタノールアミド、ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミドなどが挙げられる。
 さらに、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレン脂肪酸エステルなどのポリオキシアルキルエーテル又はポリオキシアルキルグリコール、ポリオキシエチレン硬化ヒマシ油エーテル、ソルビタン脂肪酸エステルアルキルエーテル、アルキルポリグルコシドなども使用できる。
 本発明では添加剤としてポリヒドロキシ化合物を用いることができる。ポリヒドロキシ化合物は抗酸化作用を示す。ポリヒドロキシ化合物は、直鎖又は環状の炭化水素構造に複数のヒドロキシル基が結合した構造を有するものであり、ジオール、トリオール、又はそれらの構造を繰り返し単位に含むことができる。代表例がアスコルビン酸であり、それらの誘導体、グリセリルアスコルビン酸等も用いることができる。
 本発明では添加剤を含有するシリカゾルの分散媒はイオン性の高い分散媒や極性の高い有機溶媒が好ましい。例えばpH1~10、又はpH1~6の水性媒体、又はpH8~10の水性媒体、又は塩分濃度が0.1~4.0質量%の塩水であり海水も例示される。そして有機溶媒、特に極性が高い有機溶媒も挙げられる。
 極性有機溶媒としてはプロトン性溶媒、又は非プロトン性溶媒であっても良い。プロトン性極性溶媒はプロトンを容易に供与する極性溶媒であり、高い誘電率を持つ。非プロトン性極性有機溶媒は誘電率を有する。極性有機溶媒としては、例えば、ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキシド、メタノール、エタノール、酢酸等の有機溶媒が挙げられる。
 本発明ではシリカゾルに添加剤を含有させて、X線を用いた小角散乱法により求められる添加剤含有シリカゾルの散乱ベクトル(q)に対する散乱強度(I)が下記式(2)及び式(3)を満たすように調整する工程を含む方法により、本発明の添加剤含有シリカゾルを製造することができる。
Figure JPOXMLDOC01-appb-M000009
 ここで、前記式(2)及び式(3)において、
 I は、添加剤を含有する前のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が0.05のときの散乱強度を表し、
 I maxは、添加剤を含有する前のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が最大値となる散乱強度を表し、
 I は、添加剤を含有した後のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が0.05のときの散乱強度を表し、
 I maxは、添加剤を含有した後のシリカゾルおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が最大値となる散乱強度を表す。
 シリカゾルに添加剤を含有させて、上記式(2)及び式(3)を満たすように調整する工程を含むことで、添加剤含有シリカ粒子が分散媒に対して安定的に分散することができる。
 添加剤の含有量はシリカゾルの水性媒体での設定値であっても、またpH1~10、例えばpH1~6の水性媒体、pH8~10の水性媒体、又は塩分濃度0.1~4.0質量%の塩水、又は有機溶媒に溶媒を変更した後の値であっても良い。
 本発明の添加剤含有シリカゾルは、接着剤、離型剤、半導体封止材、LED封止材、塗料、フィルム内添材、ハードコート剤、フォトレジスト材、印刷インキ、洗浄剤、クリーナー、各種樹脂用添加剤、絶縁用組成物、防錆剤、潤滑油、金属加工油、フィルム用塗布剤、剥離剤、坑井処理剤等に使用することができる。
 以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、下記実施例及び比較例において、試料の調製及び物性の分析に用いた装置及び条件は、以下の通りである。
(X線小角散乱装置)
リガク(株)製の商品名NANO-Viewerを用いた。
(DLS平均粒子径(動的光散乱法粒子径))
動的光散乱法粒子径測定装置 商品名ゼーターサイザー ナノ(スペクトリス(株)マルバーン事業部製)を用いた。
(pH測定)
pHメーター(東亞ディーケーケー(株)製)を用いた。
(HAZE値)
HAZEメーターは商品名NDH5000(日本電色工業(株)製)を用いた。HAZE値は、可視光を照射した時のシリカゾルの曇価や濁度を示す値であり、平行成分P.Tと拡散成分全てを含めた全光線透過率T.Tと、平行成分を除いた拡散透過率DIFの比で表される。
HAZE値=DIF/T.T×100
(X線小角散乱スペクトルとしてSAXS測定条件)
X線源としてはCu-Kα線を用いてキャピラリーに封入したサンプルにX線を照射し、散乱されたX線を二次元検出器 商品名PILATUS 200k(Dektris製)で検出した。
サンプルから検出器までの距離は1200mmである。得られた二次元像は2DP(リガク(株)製)で一次元化処理し、散乱ベクトル(q)と散乱強度(I)を抽出した。
(耐塩性評価)
 200mlのスチロール瓶に撹拌子を投入後、実施例1乃至実施例13又は比較例1乃至比較例3で製造した各薬液をシリカ濃度が0.1質量%となるように塩水(人工海水)及び純水で希釈した。例えば、実施例4では、薬液0.56gを投入しマグネットスターラーで撹拌した。マグネットスターラーで撹拌しながら、純水10.56gと塩濃度4.5質量%の塩水88.89gを投入し、1時間撹拌した。これを、4質量%の塩濃度下での薬液の耐熱性及び耐塩性を評価するブラインテストサンプル(塩水評価サンプル)とした。塩の主成分は塩化ナトリウムであり、塩化カルシウム、塩化マグネシウム、硫酸マグネシウム、炭酸水素ナトリウムなども含有する。
 200mlのスチロール製の密閉できる容器に、ブラインテストサンプル100gを入れ、密閉後、スチロール容器を20℃で静置し、24時間保持した後、ブラインテストサンプルの外観、サンプル中の水性シリカゾル(シリカ粒子)のDLS平均粒子径、HAZE値を評価した。
 例えば、実施例12では、薬液0.97gを投入しマグネットスターラーで撹拌した。マグネットスターラーで撹拌しながら、純水10.14gと塩濃度4.5質量%の塩水88.89gを投入し、1時間撹拌した。これを、4質量%の塩濃度下での薬液の耐熱性及び耐塩性を評価するブラインテストサンプル(塩水評価サンプル)とした。塩の主成分は塩化ナトリウムである。200mlのスチロール製の密閉できる容器に、ブラインテストサンプル100gを入れ、密閉後、スチロール容器を20℃で静置し、24時間保持した後、ブラインテストサンプルの外観、サンプル中の水性シリカゾル(シリカ粒子)のDLS平均粒子径、HAZE値を評価した。
 例えば、実施例13では、薬液0.26gを投入しマグネットスターラーで撹拌した。マグネットスターラーで撹拌しながら、純水10.85gと塩濃度4.5質量%の塩水88.89gを投入し、1時間撹拌した。これを、4質量%の塩濃度下での薬液の耐熱性及び耐塩性を評価するブラインテストサンプル(塩水評価サンプル)とした。塩の主成分は塩化ナトリウムである。200mlのスチロール製の密閉できる容器に、ブラインテストサンプル100gを入れ、密閉後、スチロール容器を20℃で静置し、24時間保持した後、ブラインテストサンプルの外観、サンプル中の水性シリカゾル(シリカ粒子)のDLS平均粒子径、HAZE値を評価した。
 水性シリカゾル(1)として、日産化学(株)製シリカゾル(pH2.6、シリカ濃度20.0質量%、BET法による平均一次粒子径12.0nm、DLS法による平均粒子径17nm)を準備した。
 水性シリカゾル(2)として、日産化学(株)製シリカゾル(pH2.7、シリカ濃度10.5質量%、シアーズによる平均一次粒子径5.0nm、DLS法による平均粒子径9nm)を準備した。
 水性シリカゾル(3)として、日産化学(株)製シリカゾル(pH2.4、シリカ濃度40.5質量%、BET法による平均一次粒子径22.0nm、DLS法による平均粒子径35nm)を準備した。
(実施例1)
 2,000mLのガラス製ナスフラスコに、水性シリカゾル(1)1,200gとマグネット撹拌子を投入した後、マグネットスターラーで撹拌しながら、水性シリカゾル中のシリカ(コロイダルシリカ粒子)に対してシラン化合物の質量比が0.80になるように3-グリシドキシプロピルトリメトキシシラン(エボニック社製Dynasylan(商品名)GLYMO)を191.0g投入した。続いて、水道水を流した冷却管をナスフラスコの上部に設置し、還流しながら水性ゾルを60℃に昇温し、60℃で4時間保持した後、冷却した。室温まで冷却後、水性ゾルを取り出した。この水性シリカゾルを坩堝に取り、ホットプレートにて100℃で加熱して溶媒を除去した後、電気炉にて1000℃で30分焼成し、得られた焼成残分をシリカ固形分として算出した。
 水性シリカゾル中のシリカに対するシラン化合物の質量比0.80、シリカ固形分=21.2質量%、pH=3.1、電気伝導率=353μS/cm、DLS平均粒子径=23.2nmの、シラン化合物で表面処理された実施例1の水性シリカゾル1,391.0gを得た。
(実施例2)
 120mLのスチロール瓶に撹拌子を入れ、マグネットスターラーで撹拌しながら、実施例1で製造した水性シリカゾル101.0gを投入した。純水15gを投入した後、アニオン性界面活性剤α-オレフィンスルホン酸ナトリウム(第一工業製薬(株)製ネオゲン(商品名)AO-90、有効成分100質量%)0.96gを投入し、完全に溶け切るまで撹拌した。続いて、アニオン性界面活性剤ドデシル硫酸ナトリウム(新日本理化(株)製シノリン(商品名)90TK-T、有効成分97質量%)0.36を投入し、完全に溶け切るまで撹拌した。続いて非イオン性界面活性剤としてHLB=14.3のポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬(株)製ノイゲン(商品名)EA-157、有効成分100質量%)を純水で希釈して有効成分70質量%にしたものを2.07g投入し、実施例2の薬液を製造した。この時の水性シリカゾルのシリカ固形分に対するアニオン性界面活性剤の質量比は0.03、水性シリカゾルのシリカ固形分に対する非イオン性界面活性剤の質量比は0.07であった。
(実施例3)
 2,000mLのガラス製ナスフラスコに、水性シリカゾル(1)1,000gとマグネット撹拌子を投入した後、マグネットスターラーで撹拌しながら、乳酸(関東化学(株) 有効成分85-92質量%)を121.36g投入した後、4-アミノプロピルトリエトキシシラン(信越化学工業(株)製、商品名KBE―903)を149.12g投入した。続いて、水道水を流した冷却管をナスフラスコの上部に設置し、還流しながら水性ゾルを60℃に昇温し、60℃で4時間保持した後、冷却した。室温まで冷却後、水性ゾルを取り出した。
 シリカ固形分=19.36質量%、pH=3.93、電気伝導率=697μS/cm、DLS平均粒子径=21.79nmの、シラン化合物で表面処理された実施例3の水性シリカゾル1270.48gを得た。
(実施例4)
 120mLのスチロール瓶に撹拌子を入れ、純水9.15gと水性シリカゾル(1)87.76gを投入し、マグネットスターラーで撹拌した。続いて、マグネットスターラーで撹拌しながら、アスコルビン酸(純正化学(株)製 有効成分97質量%)3.09gを投入し、完全に溶けきるまで撹拌し、実施例4の薬液を製造した。
(実施例5)
 120mLのスチロール瓶に撹拌子を入れ、純水9.15gと水性シリカゾル(1)87.76gを投入し、マグネットスターラーで撹拌した。続いて、マグネットスターラーで撹拌しながら、ピロ亜硫酸ナトリウム(FUJIFILM和光純薬(株)製 有効成分97質量%)3.09gを投入し、完全に溶けきるまで撹拌し、実施例5の薬液を製造した。
(実施例6)
 120mLのスチロール瓶に撹拌子を入れ、純水6.24gと水性シリカゾル(1)87.76gを投入し、マグネットスターラーで撹拌した。続いて、マグネットスターラーで撹拌しながら、グルコン酸(FUJIFILM和光純薬(株)製 有効成分50質量%)5.99gを投入し、完全に溶けきるまで撹拌し、実施例6の薬液を製造した。
(実施例7)
 120mLのスチロール瓶に撹拌子を入れ、純水9.15gと水性シリカゾル(1)87.76gを投入し、マグネットスターラーで撹拌した。続いて、マグネットスターラーで撹拌しながら、ドデシル硫酸ナトリウム(新日本理化(株)製シノリン(商品名)90TK-T 有効成分97質量%)3.09gを投入し、完全に溶けきるまで撹拌し、実施例7の薬液を製造した。
(実施例8)
 120mLのスチロール瓶に撹拌子を入れ、純水9.24gと水性シリカゾル(1)87.76gを投入し、マグネットスターラーで撹拌した。続いて、マグネットスターラーで撹拌しながら、グルコース(日本食品化工(株)製、商品名日食無水結晶ぶどう糖#300 有効成分100質量%)2.99gを投入し、完全に溶けきるまで撹拌し、実施例8の薬液を製造した。
(実施例9)
 120mLのスチロール瓶に撹拌子を入れ、純水9.15gと水性シリカゾル(1)87.76gを投入し、マグネットスターラーで撹拌した。続いて、マグネットスターラーで撹拌しながら、亜硫酸ナトリウム(FUJIFILM和光純薬(株)製 有効成分97質量%)3.09gを投入し、完全に溶けきるまで撹拌し、実施例9の薬液を製造した。
(実施例10)
 120mLのスチロール瓶に撹拌子を入れ、純水9.24gと水性シリカゾル(1)87.76gを投入し、マグネットスターラーで撹拌した。続いて、マグネットスターラーで撹拌しながら、チオシアン酸ナトリウム(FUJIFILM和光純薬(株)製 有効成分100質量%)2.99gを投入し、完全に溶けきるまで撹拌し、実施例10の薬液を製造した。
(実施例11)
 120mLのスチロール瓶に撹拌子を入れ、純水6.24gと水性シリカゾル(1)87.76gを投入し、マグネットスターラーで撹拌した。続いて、マグネットスターラーで撹拌しながら、メルカプト酢酸アンモニウム(FUJIFILM和光純薬(株)製 有効成分50質量%)5.99gを投入し、完全に溶けきるまで撹拌し、実施例11の薬液を製造した。
(実施例12)
 120mLのスチロール瓶に撹拌子を入れ、水性シリカゾル(2)98.23gを投入し、マグネットスターラーで撹拌した。続いて、マグネットスターラーで撹拌しながら、アスコルビン酸(純正化学(株)製 有効成分97質量%)1.77gを投入し、完全に溶けきるまで撹拌し、実施例12の薬液を製造した。
(実施例13)
 120mLのスチロール瓶に撹拌子を入れ、水性シリカゾル(3)93.5gを投入し、マグネットスターラーで撹拌した。続いて、マグネットスターラーで撹拌しながら、アスコルビン酸(純正化学(株)製 有効成分97質量%)6.50gを投入し、完全に溶けきるまで撹拌し、実施例13の薬液を製造した。
(比較例1)
 水性シリカゾル(1)を用いた。
(比較例2)
 水性シリカゾル(2)を用いた。
(比較例3)
 水性シリカゾル(3)を用いた。
(シリカゾルの評価)
 実施例1乃至実施例13及び比較例1乃至比較例3のI 、I max、I 及びI maxを表1乃至表4に記載した。
 I は、添加剤を含有する前のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が0.05のときの散乱強度を表し、
 I maxは、添加剤を含有する前のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が最大値となる散乱強度を表し、
 I は、添加剤を含有した後のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が0.05のときの散乱強度を表し、
 I maxは、添加剤を含有した後のシリカゾルおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が最大値となる散乱強度を表す。
 そして、実施例1乃至実施例13について、(I max)/(I )比から(I max)/(I )比を引いた値を表1乃至表3に記載した。
 図1は実施例1、実施例10、及び実施例11で得られたシリカゾルのX線小角散乱測定の結果である。横軸が散乱ベクトル(q)、縦軸が散乱強度(I)である。
 図2はその拡大図である。
 図3は比較例1、比較例2、及び比較例3で得られたシリカゾルのX線小角散乱測定の結果である。横軸が散乱ベクトル(q)、縦軸が散乱強度(I)である。
 図4はその拡大図である。
 サンプルの耐塩性評価は20℃で24時間保管後のHAZE値と、経時変化を動的光散乱法による粒子径(DLS変化)値で示した。
 即ち、塩分濃度4質量%の塩水を分散媒とし、シリカ粒子の濃度が0.1質量%のシリカゾルのHAZE値について、製造時から20℃で24時間保管後のHAZE値(経過HAZE値)を下記表に記載した。
 また、塩分濃度4質量%の塩水を分散媒とし、シリカ粒子の濃度が0.1質量%のシリカゾルの動的光散乱法による粒子径について、製造時から12時間以内の初期値(初期DLS径)に対する24時間保管後の値(経過DLS径)が何倍になるか(DLS変化)を下記表に記載した。
 なお、散乱強度(I)の単位は(a.u.)である。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 実施例1乃至実施例11の添加剤含有シリカゾルは、式(2)及び式(3)を満たすことで、比較例1の添加剤を含有していないシリカゾルに比べて、経過HAZE値が低く、かつDLS変化も小さくすることができた。同様に、式(2)及び式(3)を満たすことで、実施例12の添加剤含有シリカゾルは、比較例2の添加剤を含有していないシリカゾルに比べて、実施例13の添加剤含有シリカゾルは、比較例3の添加剤を含有していないシリカゾルに比べて、経過HAZE値が低く、かつDLS変化も小さくすることができた。
 X線を用いた小角散乱法により求められる添加剤含有シリカゾルの特定の散乱ベクトルに対する散乱強度(I)が特定の条件を満たすことで、安定なシリカゾルを得ることができる。該シリカゾルは、特に分散媒がpH1~10、例えばpH1~6の水性媒体、pH8~10の水性媒体、塩分濃度0.1~4.0質量%の塩水等の高電解質媒体、及び極性有機溶媒での安定性が高く、それら分散媒を利用する分野に適用することが可能である。
 

Claims (17)

  1.  X線を用いた小角散乱法により求められる添加剤含有シリカゾルの散乱ベクトル(q)に対する散乱強度(I)が下記式(2)及び式(3)を満たすことを特徴とする、添加剤含有シリカゾル。
    Figure JPOXMLDOC01-appb-M000001
     ここで、前記式(2)及び式(3)において、
     I は、添加剤を含有する前のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が0.05のときの散乱強度を表し、
     I maxは、添加剤を含有する前のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が最大値となる散乱強度を表し、
     I は、添加剤を含有した後のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が0.05のときの散乱強度を表し、
     I maxは、添加剤を含有した後のシリカゾルおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が最大値となる散乱強度を表す。
  2.  塩分濃度4質量%の塩水を分散媒とし、シリカ粒子の濃度が0.1質量%のシリカゾルのHAZE値について、製造時から20℃で24時間保管後のHAZE値が添加剤含有前のシリカゾルにおける製造時から20℃で24時間保管後のHAZE値に比べて低い、請求項1に記載のシリカゾル。
  3.  塩分濃度4質量%の塩水を分散媒とし、シリカ粒子の濃度が0.1質量%のシリカゾルの動的光散乱法による粒子径について、製造時の動的光散乱法による粒子径に対する20℃で24時間保管後の動的光散乱法による粒子径の比が添加剤含有前のシリカゾルにおける製造時の動的光散乱法による粒子径に対する20℃で24時間保管後の動的光散乱法による粒子径の比に比べて低い、請求項1又は請求項2に記載のシリカゾル。
  4.  添加剤が抗酸化物質である請求項1乃至請求項3の何れか1項に記載のシリカゾル。
  5.  添加剤が加水分解性シラン、糖、有機酸若しくはその塩、亜硫酸塩、チオシアン酸塩、メルカプト有機酸若しくはその塩、界面活性剤、又はポリヒドロキシ化合物である請求項1乃至請求項3の何れか1項に記載のシリカゾル。
  6.  加水分解性シランが下記式(1):
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、Rはそれぞれカチオン性官能基を有する有機基、又はアニオン性官能基を有する有機基で且つSi-C結合によりケイ素原子と結合しているものであって、Rはそれぞれアルコキシ基、アシルオキシ基、又はハロゲン原子を示し、aは1~3の整数を示す。)で示される請求項5に記載のシリカゾル。
  7.  カチオン性官能基がアミノ基である請求項6に記載のシリカゾル。
  8.  アニオン性官能基がグリシドキシ基である請求項6に記載のシリカゾル。
  9.  糖が、ソルビトール、グルコース、又はアラビノースである請求項5に記載のシリカゾル。
  10.  有機酸又はその塩が、グルコン酸、乳酸、若しくはチオグリコール酸、又はその塩である請求項5に記載のシリカゾル。
  11.  亜硫酸塩がピロ亜硫酸塩である請求項5に記載のシリカゾル。
  12.  チオシアン酸塩がチオシアン酸ナトリウムである請求項5に記載のシリカゾル。
  13.  メルカプト有機酸又はその塩が、メルカプト酢酸塩又はそのアンモニウム塩である請求項5に記載のシリカゾル。
  14.  界面活性剤がアニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤からなる群より選ばれる少なくとも1種の界面活性剤であって、アニオン性界面活性剤、非イオン性界面活性剤、又は両者を少なくとも含有する界面活性剤である請求項5に記載のシリカゾル。
  15.  ポリヒドロキシ化合物がアスコルビン酸である請求項5に記載のシリカゾル。
  16.  シリカゾルの分散媒が、pH1~10の水性媒体、塩分濃度0.1~4.0質量%の塩水、又は有機溶媒である請求項1乃至請求項15のいずれか1項に記載のシリカゾル。
  17.  請求項1乃至請求項16の何れか1項に記載の添加剤含有シリカゾルを製造する方法であって、シリカゾルに添加剤を含有させることによって、X線を用いた小角散乱法により求められる添加剤含有シリカゾルの散乱ベクトル(q)に対する散乱強度(I)が下記式(2)及び式(3)を満たすように調整する工程を含むことを特徴とする、方法。
    Figure JPOXMLDOC01-appb-M000003
     ここで、前記式(2)及び式(3)において、
     I は、添加剤を含有する前のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が0.05のときの散乱強度を表し、
     I maxは、添加剤を含有する前のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が最大値となる散乱強度を表し、
     I は、添加剤を含有した後のシリカゾルにおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が0.05のときの散乱強度を表し、
     I maxは、添加剤を含有した後のシリカゾルおける、シリカ粒子濃度3.5質量%の場合の当該シリカゾルの散乱ベクトル(q)nm-1が最大値となる散乱強度を表す。
     
PCT/JP2023/024993 2022-07-05 2023-07-05 添加剤を含有するシリカゾル及びその製造方法 WO2024010048A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-108332 2022-07-05
JP2022108332 2022-07-05

Publications (1)

Publication Number Publication Date
WO2024010048A1 true WO2024010048A1 (ja) 2024-01-11

Family

ID=89453503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024993 WO2024010048A1 (ja) 2022-07-05 2023-07-05 添加剤を含有するシリカゾル及びその製造方法

Country Status (2)

Country Link
TW (1) TW202408933A (ja)
WO (1) WO2024010048A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012245723A (ja) * 2011-05-30 2012-12-13 Riso Kagaku Corp 油中水型エマルションインク用後処理剤、インクセット、及び印刷方法
CN105801779A (zh) * 2016-04-05 2016-07-27 四川理工学院 一种富亲水基团改性纳米二氧化硅溶胶及其制备方法
JP2018070719A (ja) * 2016-10-27 2018-05-10 山口精研工業株式会社 サファイア基板用研磨剤組成物
JP2021006595A (ja) * 2017-09-13 2021-01-21 日産化学株式会社 原油回収用薬液
JP2021066888A (ja) * 2015-03-10 2021-04-30 昭和電工マテリアルズ株式会社 研磨剤、研磨剤用貯蔵液及び研磨方法
WO2021107048A1 (ja) * 2019-11-28 2021-06-03 国際石油開発帝石株式会社 二酸化炭素を用いた原油回収のためのシリカナノ粒子及び原油回収方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012245723A (ja) * 2011-05-30 2012-12-13 Riso Kagaku Corp 油中水型エマルションインク用後処理剤、インクセット、及び印刷方法
JP2021066888A (ja) * 2015-03-10 2021-04-30 昭和電工マテリアルズ株式会社 研磨剤、研磨剤用貯蔵液及び研磨方法
CN105801779A (zh) * 2016-04-05 2016-07-27 四川理工学院 一种富亲水基团改性纳米二氧化硅溶胶及其制备方法
JP2018070719A (ja) * 2016-10-27 2018-05-10 山口精研工業株式会社 サファイア基板用研磨剤組成物
JP2021006595A (ja) * 2017-09-13 2021-01-21 日産化学株式会社 原油回収用薬液
WO2021107048A1 (ja) * 2019-11-28 2021-06-03 国際石油開発帝石株式会社 二酸化炭素を用いた原油回収のためのシリカナノ粒子及び原油回収方法

Also Published As

Publication number Publication date
TW202408933A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
Lemyre et al. Synthesis of lanthanide fluoride nanoparticles of varying shape and size
US8889044B2 (en) Method for producing mesoporous silica particles
Chen et al. Ionic liquid-based route to spherical NaYF4 nanoclusters with the assistance of microwave radiation and their multicolor upconversion luminescence
WO2019053907A1 (en) CHEMICAL RECOVERY FLUID OF CRUDE OIL
Becerro et al. Bifunctional, monodisperse BiPO4-based nanostars: photocatalytic activity and luminescent applications
US20100096601A1 (en) Molecules with complexing groups for aqueous nanoparticle dispersions and uses thereof
KR100807165B1 (ko) 분산제로서의 2,3-디히드록시나프탈렌-6-술폰산의 용도
KR101216904B1 (ko) 비 수성 폴리머 용액 내의 나노입자의 합성 및 그 제조물
Khiew et al. Preparation and characterization of ZnS nanoparticles synthesized from chitosan laurate micellar solution
US9120681B2 (en) Method for production of zinc oxide particles
WO2024010048A1 (ja) 添加剤を含有するシリカゾル及びその製造方法
JP5517268B2 (ja) 微粒子状金属酸化物とその用途
JP2020083736A (ja) 中空シリカ粒子及びその製造方法
JPWO2019017305A1 (ja) 被覆無機微粒子及びその製造方法
JP7132827B2 (ja) 中空シリカ粒子及びその製造方法
Soni et al. Study on antimicrobial activity of undoped and Mn doped ZnO nanoparticles synthesized by microwave irradiation
Xu et al. Study on the properties of the Sb2O3 nanoparticles modified by different surfactants
WO2015137344A1 (ja) 樹脂-含フッ素ホウ酸コンポジット粒子複合体
JP2014133697A (ja) シリカ粒子の表面処理方法
Vaka et al. Corrosion, rheology, and thermal ageing behaviour of the eutectic salt-based graphene hybrid nanofluid for high-temperature TES applications
WO2022138601A1 (ja) 被覆板状チタン酸粒子及びその製造方法並びにその用途
JP2009073699A (ja) 表面修飾金属酸化物微粒子の製造方法。
JP2008258564A (ja) 磁性流体
Hu et al. E1 reaction-induced synthesis of hydrophilic oxide nanoparticles in a non-hydrophilic solvent
JP6030893B2 (ja) 内部に空隙を有するフルオロアルミン酸化合物粒子及びその製造方法並びに当該粒子を含有する組成物及び反射防止膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835579

Country of ref document: EP

Kind code of ref document: A1