WO2024009504A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2024009504A1
WO2024009504A1 PCT/JP2022/027117 JP2022027117W WO2024009504A1 WO 2024009504 A1 WO2024009504 A1 WO 2024009504A1 JP 2022027117 W JP2022027117 W JP 2022027117W WO 2024009504 A1 WO2024009504 A1 WO 2024009504A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat
flow path
refrigeration cycle
accumulator
Prior art date
Application number
PCT/JP2022/027117
Other languages
French (fr)
Japanese (ja)
Inventor
孔明 仲島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/027117 priority Critical patent/WO2024009504A1/en
Publication of WO2024009504A1 publication Critical patent/WO2024009504A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes

Definitions

  • the present disclosure relates to a refrigeration cycle device.
  • refrigeration cycle devices that include an accumulator to suppress liquid refrigerant from being sucked into the compressor.
  • Accumulators used in refrigeration cycles separate refrigerant into two phases: gas and liquid. Specifically, liquid refrigerant is stored at the bottom of the accumulator, and gas refrigerant is discharged from the top of the accumulator. In such an accumulator, the amount of liquid refrigerant stored in the accumulator increases when the refrigeration cycle is not operated for a long period of time, or when the compressor is operated intermittently with repeated on and off states. . If the amount of stored liquid refrigerant increases excessively, the possibility that the liquid refrigerant will be sucked into the compressor increases, and the amount of circulating refrigerant also decreases.
  • JP-A-7-301459 discloses that in order to prevent liquid refrigerant from being excessively stored in the accumulator, the liquid refrigerant in the accumulator is heated to evaporate and discharged as a gas refrigerant. A heat pump device is disclosed. In JP-A-7-301459 (Patent Document 1), an electric heater is used as a heating means.
  • Patent Document 2 discloses a method in which heat generated in a compressor is transferred to liquid refrigerant in an accumulator without using energy from outside the refrigeration cycle device.
  • a refrigerant heating system having a heat pipe for heating a liquid refrigerant is disclosed. Heat from the compressor side that contacts one end of the heat pipe is transferred to the accumulator side that contacts the other end of the heat pipe.
  • the refrigerant heating system disclosed in Japanese Patent Application Publication No. 2013-185761 (Patent Document 2) evaporates the refrigerant in the liquid state in the accumulator without requiring energy from outside the refrigeration cycle device.
  • Patent Document 2 As described in Japanese Unexamined Patent Publication No. 2013-185761 (Patent Document 2), if a heat pipe is used to heat the liquid refrigerant in the accumulator, the accumulator can be heated without requiring external energy. As long as there is a temperature difference between one end of the pipe in contact with the compressor and the other end in contact with the accumulator, heat exchange will always take place. Therefore, even if there is no liquid refrigerant in the accumulator, the heat pipe transfers the heat generated in the compressor to the accumulator.
  • the thermal energy generated in the compressor that should be used for the refrigeration cycle process itself is used to heat the accumulator in which no liquid refrigerant remains. That is, the heat generated in the compressor is transferred unnecessarily.
  • the present disclosure has been made to solve such problems, and the purpose is to provide a refrigeration cycle that heats an accumulator using thermal energy on the compressor side without requiring energy from outside the refrigeration cycle device.
  • a refrigeration cycle device in the present disclosure connects a compressor, a first heat exchanger, a pressure reduction device, a second heat exchanger, a compressor, a first heat exchanger, a pressure reduction device, and a second heat exchanger.
  • the refrigerant refrigerant includes a first circulation channel for circulating the first refrigerant, an accumulator provided on the refrigerant suction side of the compressor, and a heat pipe circuit connecting the compressor and the accumulator.
  • the heat pipe circuit includes a loop-type second circulation flow path that circulates the second refrigerant, a heat absorption part that absorbs heat from the first refrigerant in the compressor, a heat radiation part that radiates heat to the first refrigerant in the accumulator, and a second refrigerant. and a constant pressure valve that can shut off the circulation.
  • the second circulation flow path includes a gas phase flow path through which the second refrigerant in a gaseous state passes, and a liquid phase flow path through which the second refrigerant in a liquid state passes.
  • the constant pressure valve is provided in the liquid phase flow path, and is closed when the pressure of the second refrigerant is equal to or higher than a prescribed value, and is opened when the pressure of the second refrigerant is less than a prescribed value.
  • liquid refrigerant to be evaporated remains in the accumulator. If not, it is possible to suppress the thermal energy generated on the compressor side from being transmitted to the accumulator side.
  • FIG. 1 is a diagram showing the configuration of a refrigeration cycle device in Embodiment 1.
  • FIG. 3 is a diagram for explaining the arrangement relationship of an accumulator, a compressor, and a heat pipe circuit.
  • FIG. 3 is a diagram for explaining the internal structure of a heat pipe circuit.
  • FIG. 3 is a diagram for explaining the pressure increase of the second refrigerant using a Ph diagram (Mollier diagram).
  • FIG. 3 is a diagram for explaining the internal structure of the heat pipe circuit when no liquid refrigerant to be evaporated remains in the accumulator.
  • FIG. 3 is a diagram for explaining the internal structure of a heat pipe circuit in Embodiment 2.
  • FIG. 7 is a diagram for explaining the internal structure of the heat pipe circuit when no liquid refrigerant to be evaporated remains in the accumulator in Embodiment 2.
  • FIG. 7 is a diagram for explaining a modification of the internal structure of the heat pipe circuit in Embodiment 2.
  • the four-way valve 45 switches the flow path through which the first refrigerant flows in the circulation flow path L1.
  • the state of the four-way valve 45 is switched between a first state and a second state, and FIG. 1 shows the circulation flow path L1 when the four-way valve 45 is in the first state.
  • the first refrigerant circulates through the compressor 10, the four-way valve 45, the first heat exchanger 20, the expansion valve 30, the second heat exchanger 40, and the accumulator 21 in this order.
  • the type of the first refrigerant is, for example, an HFC refrigerant or a natural refrigerant.
  • the natural refrigerant is, for example, a refrigerant made of carbon dioxide, hydrocarbon, helium, or the like.
  • the compressor 10 is configured to compress the first refrigerant in a gaseous state within the circulation flow path L1.
  • the refrigerant discharged from the compressor 10 becomes a high-temperature, high-pressure superheated gas state.
  • Direction D is the direction in which the compressor 10 discharges refrigerant.
  • the direction in which the refrigerant flows from an arbitrary position is sometimes referred to as "downstream", and the direction opposite to "downstream” and in which the refrigerant flows is sometimes referred to as "upstream”.
  • accumulator 21 is placed upstream of compressor 10
  • compressor 10 is placed downstream of accumulator 21.
  • the number of compressors included in the refrigeration cycle device 100 is one in this embodiment, the refrigeration cycle device 100 may be equipped with a plurality of compressors.
  • the first heat exchanger 20 When the four-way valve 45 is in the first state, the first heat exchanger 20 functions as a condenser. Due to the forced convection generated by the blower F1, the gas refrigerant passing through the first heat exchanger 20 exchanges heat with the air surrounding the first heat exchanger 20. Thereby, the refrigerant passing through the first heat exchanger 20 is condensed and becomes liquid refrigerant. The liquid refrigerant is depressurized by the expansion valve 30 and becomes a gas-liquid two-phase refrigerant.
  • the expansion valve 30 may correspond to a "pressure reducing device" in the present disclosure.
  • the refrigerant in a gas-liquid two-phase state passes through the extension pipe P1 and flows into the second heat exchanger 40.
  • the second heat exchanger 40 functions as an evaporator.
  • the gas-liquid two-phase refrigerant exchanges heat with the air around the second heat exchanger 40 by forced convection generated by the blower F2.
  • a part of the gas-liquid two-phase refrigerant passing through the second heat exchanger 40 evaporates, and the proportion of the gas-state first refrigerant in the gas-liquid two-phase first refrigerant increases.
  • each component included in the refrigeration cycle device 100 forms a refrigeration cycle in which the first refrigerant circulates through the circulation channel L1. Note that when the four-way valve 45 is in the second state, the first heat exchanger 20 functions as an evaporator, and the second heat exchanger 40 functions as a condenser.
  • the accumulator 21 separates a liquid refrigerant and a gas refrigerant, and stores the separated liquid refrigerant at the bottom of the accumulator 21. If the amount of liquid refrigerant stored in the accumulator 21 increases, the possibility that the liquid refrigerant will be sucked into the compressor 10 will increase, and the amount of refrigerant circulating through the circulation path L1 will decrease. Therefore, the refrigeration cycle device 100 of the present embodiment is provided with a loop-type heat pipe circuit 50 for evaporating the liquid refrigerant stored in the accumulator 21. In this embodiment, the heat absorption part of the heat pipe circuit 50 contacts the compressor 10, and the heat radiation part of the heat pipe circuit 50 contacts the accumulator 21. Thereby, the heat pipe circuit 50 transfers the heat generated by the compressor 10 to the liquid refrigerant remaining in the accumulator 21, and evaporates the liquid refrigerant in the accumulator 21.
  • the refrigeration cycle device 100 in this embodiment is used as an air conditioner, and can perform heating operation by switching the four-way valve 45.
  • the thermal energy within the compressor 10 is not transferred unnecessarily, thereby making it possible to improve indoor heating efficiency.
  • FIG. 2 is a diagram for explaining the arrangement relationship among the accumulator 21, compressor 10, and heat pipe circuit 50.
  • the vertical direction will be referred to as the "Z-axis direction”
  • the direction perpendicular to the Z-axis direction will be referred to as the "X-axis direction”
  • the direction perpendicular to both the Z-axis and the X-axis will be referred to as the "Y-axis direction.””axialdirection”.
  • the positive direction of the Z-axis in each figure may be referred to as the upper side
  • the negative direction may be referred to as the lower side.
  • the gas-liquid two-phase first refrigerant flows into the accumulator 21 through the pipe P3.
  • the accumulator 21 has a container that stores liquid refrigerant, and the container is, for example, cylindrical with a circular cross section.
  • FIG. 2 shows a space 21S inside the container of the accumulator 21 and a liquid level Sf1 of the liquid refrigerant stored in the accumulator 21.
  • liquid refrigerant is stored on the negative side of the Z-axis due to gravity, while gas refrigerant is present on the positive side of the Z-axis.
  • only the gas refrigerant is discharged to the compressor 10 through the pipe P4 extending from the negative direction side to the positive direction side of the Z axis shown in FIG.
  • a part of the heat pipe circuit 50 is arranged in the space 21S within the accumulator 21.
  • the liquid level Sf1 is on the positive side of the Z-axis of the heat pipe circuit 50 in the space 21S. That is, all of the heat pipe circuits 50 in the space 21S are submerged in the liquid refrigerant in the accumulator 21.
  • Compressor 10 includes a shell 11, a shaft 14, a compression mechanism 15, and a motor 17.
  • the compression mechanism 15, the shaft 14, and the motor 17 are arranged in a space 10S inside the shell 11.
  • a pipe P4 for causing the gas refrigerant to flow into the compression mechanism 15 of the compressor 10 and a pipe P5 for flowing the gas refrigerant to the outside of the compressor 10 are connected to the shell 11.
  • the gas refrigerant that has flowed into the compression mechanism 15 is compressed to a high temperature and high pressure, and is discharged from the pipe P5. That is, the compression mechanism 15 is configured to compress the gas refrigerant that has flowed into the shell 11 from the pipe P4 and discharge it from the pipe P5.
  • the compression mechanism 15 is, for example, a rotary type compression mechanism.
  • Motor 17 drives compression mechanism 15 through shaft 14 .
  • Motor 17 includes rotor 12 and stator 13.
  • the rotor 12 is connected to a shaft 14 by a connection portion (not shown).
  • the compressed gas refrigerant is discharged from the discharge hole 16 of the compression mechanism 15 into the space 10S.
  • the discharged high-temperature, high-pressure gas refrigerant passes through the gap in the motor 17 (the gap between the rotor 12 and the stator 13, the groove provided on the outer peripheral surface of the stator 13, etc.), and then is discharged from the pipe P5 to the four-way valve 45.
  • a portion of the heat pipe circuit 50 is arranged in the space 10S within the shell 11. That is, all of the heat pipe circuits 50 in the space 10S are exposed to the high temperature and high pressure gas refrigerant.
  • FIG. 3 is a diagram for explaining the internal structure of the heat pipe circuit 50.
  • FIG. 3 shows a cross section of a loop-type heat pipe circuit 50.
  • the heat pipe circuit 50 has a loop-type circulation flow path L2 that circulates the second refrigerant.
  • the loop-type heat pipe circuit 50 has a rectangular cross section.
  • a second refrigerant is sealed in the circulation flow path L2.
  • the type of second refrigerant is, for example, an HFC refrigerant or a natural refrigerant.
  • the type of first refrigerant and the type of second refrigerant may be the same.
  • the refrigeration cycle device 100 can be constructed from one type of refrigerant, and therefore, cost increases can be suppressed.
  • the heat absorbing section 51E absorbs heat from the first refrigerant in a high temperature and high pressure gas state passing through the space 10S in the compressor 10.
  • the heat absorbing portion 51E is a region of the heat pipe circuit 50 that can come into contact with the first refrigerant in a gaseous state at high temperature and high pressure.
  • the second refrigerant in the heat pipe circuit 50 exchanges heat with the first refrigerant in the compressor 10. Thereby, the second refrigerant changes from a liquid state to a gas state in the heat absorption part 51E. In other words, the second refrigerant evaporates.
  • the heat radiation section 51D radiates heat to the first refrigerant in a liquid state remaining in the space 21S of the accumulator 21.
  • the heat radiation section 51D is a region of the heat pipe circuit 50 that can come into contact with the first refrigerant in the accumulator 21. That is, in the heat radiation section 51D, the second refrigerant in the heat pipe circuit 50 exchanges heat with the first refrigerant in the accumulator 21. As a result, the second refrigerant changes from a gas state to a liquid state in the heat radiation section 51D. In other words, the second refrigerant condenses.
  • the first refrigerant evaporates and undergoes nucleate boiling.
  • the second refrigerant in the heat absorption part 51E passes through the gas phase flow path 50G arranged on the positive side of the Z-axis in the circulation flow path L2, and returns to the heat radiation part 51D.
  • the second refrigerant circulates by evaporating the second refrigerant in the heat absorption section 51E and condensing the second refrigerant in the heat radiation section 51D.
  • the second refrigerant is circulating counterclockwise.
  • the constant pressure valve 55 is provided on the liquid phase flow path 50L.
  • the constant pressure valve 55 is configured to be able to cut off circulation of the second refrigerant. More specifically, the constant pressure valve 55 is configured to be in a closed state when the pressure of the second refrigerant is equal to or higher than a specified value. That is, the constant pressure valve 55 blocks the circulation of the second refrigerant without allowing the second refrigerant to pass through when the pressure of the second refrigerant is equal to or higher than a specified value. On the other hand, the constant pressure valve 55 is configured to be in an open state when the pressure of the second refrigerant is less than a specified value.
  • the refrigeration cycle device 100 suppresses the transfer of thermal energy generated on the compressor 10 side to the accumulator 21 side when no liquid refrigerant to be evaporated remains in the accumulator 21.
  • the pressure of the second refrigerant in the heat pipe circuit 50 decreases as the liquid level Sf1 decreases.
  • the second refrigerant in the heat pipe circuit 50 repeats evaporation and condensation and circulates in the circulation flow path L2.
  • the second refrigerant evaporated in the heat absorption part 51E is condensed in the heat radiation part 51D immediately after passing through the gas phase flow path 50G. Further, the second refrigerant condensed in the heat radiation part 51D is evaporated in the heat absorption part 51E immediately after passing through the liquid phase flow path 50L. That is, the temperature of the second refrigerant in the heat pipe circuit 50 is constant, being the saturation temperature T, regardless of the state of the second refrigerant.
  • FIG. 4 is a diagram for explaining the pressure increase of the second refrigerant using a Ph diagram (Mollier diagram).
  • the saturation temperature T is shown on the Ph diagram.
  • the second refrigerant moves on a line indicated as the saturation temperature T by exchanging heat between the heat absorption part 51E and the heat radiation part 51D.
  • the state of the second refrigerant moves from left to right by evaporating in the heat absorption part 51E, and from right to left by condensing in the heat radiation part 51D.
  • the amount of heat transfer Qh is the value obtained by subtracting the saturation temperature T from the temperature Th of the first refrigerant in the compressor 10 multiplied by the heat passage rate Kh between the second refrigerant and the first refrigerant in the heat absorption section 51E. becomes.
  • FIG. 5 is a diagram for explaining the internal structure of the heat pipe circuit 50 when no liquid refrigerant to be evaporated remains in the accumulator 21.
  • FIG. 5 shows a state in which the liquid refrigerant in the accumulator 21 has sufficiently evaporated and the position of the liquid level Sf1 has become lower than the heat radiation part 51D.
  • the target for heat exchange with the second refrigerant in the heat radiating part 51D changes from the first refrigerant in the liquid state in the accumulator 21 to the first refrigerant in the gas state. change. That is, the heat transfer rate Kc shown in FIG. 4 decreases. If the heat transfer rate Kc decreases, the amount of heat transfer Qc will decrease, but the circulation within the heat pipe circuit 50 balances the amount of heat transfer Qc and the amount of heat transfer Qh to be the same.
  • the saturation temperature T increases. In other words, as the saturation temperature T increases, the amount of heat transfer Qc and the amount of heat transfer Qh become the same value. As shown in FIG. 4, for example, the saturation temperature T rises to the saturation temperature Ta. Thereby, the pressure of the second refrigerant increases from pressure P to pressure Pa.
  • the constant pressure valve 55 Based on the increase in the pressure within the heat pipe circuit 50, the constant pressure valve 55 enters the closed state. That is, the circulation of the second refrigerant within the heat pipe circuit 50 is stopped.
  • the prescribed pressure value for the constant pressure valve 55 to be in the closed state is any value between pressure P and pressure Pa.
  • the pressure in the heat pipe circuit 50 increases, and the constant pressure valve 55 is brought into the closed state. becomes. That is, in the refrigeration cycle device 100, the heat of the first refrigerant in a gas state on the compressor 10 side is transferred to the first refrigerant in a liquid state on the accumulator 21 side by circulating the second refrigerant in the heat pipe circuit 50. is suppressed. As a result, in the refrigeration cycle device 100 that heats the accumulator 21 using thermal energy from the compressor 10 side without using external energy, if no liquid refrigerant to be evaporated remains in the accumulator 21. In other words, it is possible to suppress the thermal energy generated on the compressor 10 side from being transmitted to the accumulator 21 side.
  • the second refrigerant is condensed in the heat radiation part 51D, and the second refrigerant is evaporated in the heat absorption part 51E. That is, as shown in FIG. 5, the liquid level Sf2 rises and the liquid level Sf3 falls. When the equilibrium state is reached, the liquid level Sf2 and the liquid level Sf3 are held at fixed positions, and the heat pipe circuit 50 no longer absorbs or radiates heat.
  • the constant pressure valve 55 which changes the open state and closed state according to a prescribed value between the pressure P and the pressure Pa, is operated by liquid phase flow without electrical control.
  • the heat pipe circuit 50 heats the liquid refrigerant in the accumulator 21 using thermal energy on the compressor 10 side, and causes the liquid refrigerant to evaporate in the accumulator 21. If the target liquid refrigerant is not present, thermal energy on the compressor 10 side is not transferred.
  • Embodiment 2 In the refrigeration cycle device 100 of the first embodiment, a configuration has been described in which heat exchange is performed using the rectangular loop heat pipe circuit 50. As explained with reference to FIG. 5, after the constant pressure valve 55 is closed, the liquid level Sf2 rises. However, when the liquid level Sf2 rises to the liquid level Sf4 shown in FIG. 5, the second refrigerant in the liquid state can flow backward through the gas phase flow path 50G. That is, the second refrigerant in a liquid state may flow into the heat absorption section 51E from the gas phase flow path 50G.
  • the second refrigerant in a liquid state flows backward from the heat radiation part 51D to the heat absorption part 51E on the negative side of the X-axis of the gas phase flow path 50G, and on the positive side of the X-axis of the gas phase flow path 50G.
  • the second refrigerant in a gas state moves from the heat absorption part 51E to the heat radiation part 51D. If such a backflow of the second refrigerant in a liquid state occurs, circulation of the second refrigerant may occur in the gas phase flow path 50G. That is, heat exchange using the second refrigerant is restarted.
  • Embodiment 2 a configuration of a heat pipe circuit 50A that suppresses backflow of the second refrigerant in a liquid state will be described.
  • description is not repeated about the structure which overlaps with the refrigeration cycle apparatus 100 of Embodiment 1.
  • FIG. 6 is a diagram for explaining the internal structure of the heat pipe circuit 50A in the second embodiment.
  • a heat pipe circuit 50A in the second embodiment has a shape as shown in FIG.
  • the heat radiating section 51D is arranged at a position lower than the position of the heat absorbing section 51E.
  • the liquid phase flow path 50L includes a conveying section 60 provided between the constant pressure valve 55 and the heat absorption section 51E in the circulation flow path L2.
  • the transport section 60 moves the second refrigerant that has passed through the constant pressure valve 55 to the heat absorption section 51E by capillary force. That is, the conveyance unit 60 conveys the second refrigerant in a vertically upward direction.
  • the conveying section in the second embodiment includes a porous body for generating capillary action.
  • the heat radiation part 51D has a length D4 in the X-axis direction parallel to the liquid surface Sf1. Moreover, the heat radiation part 51D has a length D3 with respect to the Z-axis direction which is the normal direction to the liquid surface Sf1. In the example of FIG. 2, length D4 is longer than length D3.
  • FIG. 7 is a diagram for explaining the internal structure of the heat pipe circuit 50A when no liquid refrigerant to be evaporated remains in the accumulator 21 in the second embodiment.
  • the position of the liquid level Sf1 is lower than the position of the heat radiation part 51D.
  • the pressure within the heat pipe circuit 50A increases, and the constant pressure valve 55 is switched to the closed state.
  • the second refrigerant is condensed in the heat radiation part 51D, and the second refrigerant is evaporated in the heat absorption part 51E. .
  • the liquid level Sf2 rises, but since the heat radiation part 51D is arranged at a position lower than the position of the heat absorption part 51E, the second refrigerant condensed in the heat radiation part 51D flows backward. equilibrium is reached by.
  • the length D4 parallel to the liquid surface Sf1 is longer than the length D3 in the Z-axis direction. Comparing FIG. 3 of Embodiment 1 and FIG. 6 of Embodiment 2, when the liquid level Sf1 gradually decreases due to evaporation of the second refrigerant, the example of FIG. The liquid level Sf1 reaches the upper part of the heat radiation part 51D earlier than in the example. When the liquid level Sf1 is located between the upper and lower parts of the heat radiating part 51D, heat exchange cannot be performed with the liquid refrigerant of the accumulator 21 in the heat radiating part 51D, which is located higher than the liquid level Sf1. .
  • the constant pressure valve 55 which changes the open state and the closed state according to the pressure within the heat pipe circuit 50A, is connected to the liquid phase flow path without electrical control.
  • the heat pipe circuit 50L By providing it on the heat pipe circuit 50L, it is possible to switch between starting and stopping the circulation of the heat pipe circuit 50A. That is, if the liquid refrigerant to be evaporated remains in the accumulator 21, the heat pipe circuit 50A heats the liquid refrigerant in the accumulator 21 using thermal energy on the compressor 10 side, and causes the liquid refrigerant to evaporate in the accumulator 21. If there is no target liquid refrigerant, no thermal energy is transferred from the compressor 10 side.
  • FIG. 8 is a diagram for explaining a modification of the internal structure of the heat pipe circuit 50A in the second embodiment.
  • the pipe diameter Td1 of the transport section 60A is smaller than the pipe diameter Td2 of the gas phase flow path 50G.
  • the tube diameter Td1 is smaller than the tube diameter Td2.
  • the tube diameter Td1 is a tube diameter sufficient to cause the second refrigerant to rise due to capillarity.
  • the second refrigerant can be transported from the constant pressure valve 55 to the heat absorption section 51E.
  • the transport unit 60A is not limited to a mechanism that transports the second refrigerant using capillary phenomenon, but can transport the second refrigerant using a drive mechanism whose driving power is smaller than the power consumption for heating the liquid refrigerant in the accumulator 21. May be transported.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

This refrigeration cycle device (100) comprises: a first circulation flow path (L1) by which a compressor (10), a first heat exchanger (20), a depressurization device (30), and a second heat exchanger (40) are connected and in which a first refrigerant is circulated; an accumulator (21); and a heat pipe circuit (50). The heat pipe circuit (50) is provided with a heat-absorbing part (51E), a heat-releasing part (51D), and a fixed-pressure valve (55). A second circulation flow path (L2) is provided with a gas phase flow path (50G) and a liquid phase flow path (50L). The fixed-pressure valve (55) attains a closed state when the pressure of a second refrigerant is equal to or greater than a stipulated value, and attains an open state when the pressure of the second refrigerant is less than the stipulated value.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本開示は、冷凍サイクル装置に関する。 The present disclosure relates to a refrigeration cycle device.
 従来、圧縮機に液冷媒が吸入されることを抑制するためアキュムレータを有する冷凍サイクル装置が存在する。冷凍サイクルに用いられるアキュムレータは、気液2相の冷媒を分離する。具体的には、アキュムレータの底部に液冷媒が貯留され、アキュムレータの上部からガス冷媒が吐出される。このようなアキュムレータでは、冷凍サイクルが長期間運転されない場合、または、オン状態とオフ状態とを圧縮機が繰り返す断続的な運転が行われる場合、アキュムレータ内に貯留される液冷媒の量が増大する。貯留される液冷媒の量が過度に増大すると、圧縮機に液冷媒が吸入される可能性は高まり、循環する冷媒の量も少なくなる。 Conventionally, there are refrigeration cycle devices that include an accumulator to suppress liquid refrigerant from being sucked into the compressor. Accumulators used in refrigeration cycles separate refrigerant into two phases: gas and liquid. Specifically, liquid refrigerant is stored at the bottom of the accumulator, and gas refrigerant is discharged from the top of the accumulator. In such an accumulator, the amount of liquid refrigerant stored in the accumulator increases when the refrigeration cycle is not operated for a long period of time, or when the compressor is operated intermittently with repeated on and off states. . If the amount of stored liquid refrigerant increases excessively, the possibility that the liquid refrigerant will be sucked into the compressor increases, and the amount of circulating refrigerant also decreases.
 特開平7-301459号(特許文献1)には、アキュムレータ内に液冷媒が過度に貯留されてしまうことを防止するために、アキュムレータ内の液冷媒を加熱して蒸発させ、ガス冷媒として吐出するヒートポンプ装置が開示されている。特開平7-301459号(特許文献1)では、加熱手段として電気ヒータが用いられている。 JP-A-7-301459 (Patent Document 1) discloses that in order to prevent liquid refrigerant from being excessively stored in the accumulator, the liquid refrigerant in the accumulator is heated to evaporate and discharged as a gas refrigerant. A heat pump device is disclosed. In JP-A-7-301459 (Patent Document 1), an electric heater is used as a heating means.
 これに対して、特開2013-185761号公報(特許文献2)には、冷凍サイクル装置の外部からのエネルギーを用いずに圧縮機にて発生する熱をアキュムレータ内の液冷媒へと伝達させて液冷媒を加熱するためのヒートパイプを有する冷媒加熱システムが開示されている。ヒートパイプの一方端に接触する圧縮機側の熱は、ヒートパイプの他方端に接触するアキュムレータ側へと伝達される。このように特開2013-185761号公報(特許文献2)の冷媒加熱システムは、冷凍サイクル装置の外部からのエネルギーを要することなくアキュムレータ内の液体状態の冷媒を蒸発させる。 On the other hand, Japanese Unexamined Patent Publication No. 2013-185761 (Patent Document 2) discloses a method in which heat generated in a compressor is transferred to liquid refrigerant in an accumulator without using energy from outside the refrigeration cycle device. A refrigerant heating system having a heat pipe for heating a liquid refrigerant is disclosed. Heat from the compressor side that contacts one end of the heat pipe is transferred to the accumulator side that contacts the other end of the heat pipe. In this manner, the refrigerant heating system disclosed in Japanese Patent Application Publication No. 2013-185761 (Patent Document 2) evaporates the refrigerant in the liquid state in the accumulator without requiring energy from outside the refrigeration cycle device.
特開平7-301459号公報Japanese Patent Application Publication No. 7-301459 特開2013-185761号公報Japanese Patent Application Publication No. 2013-185761
 特開2013-185761号公報(特許文献2)に記載されているように、アキュムレータ内の液冷媒の加熱のためにヒートパイプを用いれば外部からのエネルギーを要することなくアキュムレータを加熱できるが、ヒートパイプにおいて圧縮機と接触する一方端とアキュムレータと接触する他方端との間に温度差が生じている限り、常に熱交換が行われることとなる。そのため、アキュムレータ内に液冷媒が存在していない状態であっても、ヒートパイプは、圧縮機にて発生する熱をアキュムレータへと伝達させてしまう。 As described in Japanese Unexamined Patent Publication No. 2013-185761 (Patent Document 2), if a heat pipe is used to heat the liquid refrigerant in the accumulator, the accumulator can be heated without requiring external energy. As long as there is a temperature difference between one end of the pipe in contact with the compressor and the other end in contact with the accumulator, heat exchange will always take place. Therefore, even if there is no liquid refrigerant in the accumulator, the heat pipe transfers the heat generated in the compressor to the accumulator.
 その結果、冷凍サイクル処理自体のために用いられるべき圧縮機にて発生する熱エネルギーは、液冷媒の残存していないアキュムレータの加熱のために用いられてしまう。すなわち、圧縮機にて発生する熱は無用に伝達される。 As a result, the thermal energy generated in the compressor that should be used for the refrigeration cycle process itself is used to heat the accumulator in which no liquid refrigerant remains. That is, the heat generated in the compressor is transferred unnecessarily.
 本開示は、このような課題を解決するためになされたものであり、その目的は、冷凍サイクル装置の外部からのエネルギーを要することなく圧縮機側の熱エネルギーを用いてアキュムレータを加熱する冷凍サイクル装置において、蒸発の対象となる液冷媒がアキュムレータ内に残存していない場合には、圧縮機側にて発生する熱エネルギーをアキュムレータ側に伝達することを抑制する冷凍サイクル装置を提供することである。 The present disclosure has been made to solve such problems, and the purpose is to provide a refrigeration cycle that heats an accumulator using thermal energy on the compressor side without requiring energy from outside the refrigeration cycle device. To provide a refrigeration cycle device that suppresses thermal energy generated on a compressor side from being transmitted to an accumulator side when no liquid refrigerant to be evaporated remains in the accumulator. .
 本開示における冷凍サイクル装置は、圧縮機と、第1熱交換器と、減圧装置と、第2熱交換器と、圧縮機、第1熱交換器、減圧装置、および第2熱交換器を接続し、第1冷媒を循環させる第1循環流路と、圧縮機の冷媒吸入側に設けられたアキュムレータと、圧縮機とアキュムレータとを接続するヒートパイプ回路とを備える。ヒートパイプ回路は、第2冷媒を循環させるループ式の第2循環流路と、圧縮機内の第1冷媒から吸熱する吸熱部と、アキュムレータ内の第1冷媒に放熱する放熱部と、第2冷媒の循環を遮断可能な定圧弁とを備える。第2循環流路は、気体の状態の第2冷媒を通過させるための気相流路と、液体の状態の第2冷媒を通過させるための液相流路とを備える。定圧弁は、液相流路に設けられ、第2冷媒の圧力が規定の値以上であるときに閉状態となり、第2冷媒の圧力が規定の値未満であるときに開状態となる。 A refrigeration cycle device in the present disclosure connects a compressor, a first heat exchanger, a pressure reduction device, a second heat exchanger, a compressor, a first heat exchanger, a pressure reduction device, and a second heat exchanger. The refrigerant refrigerant includes a first circulation channel for circulating the first refrigerant, an accumulator provided on the refrigerant suction side of the compressor, and a heat pipe circuit connecting the compressor and the accumulator. The heat pipe circuit includes a loop-type second circulation flow path that circulates the second refrigerant, a heat absorption part that absorbs heat from the first refrigerant in the compressor, a heat radiation part that radiates heat to the first refrigerant in the accumulator, and a second refrigerant. and a constant pressure valve that can shut off the circulation. The second circulation flow path includes a gas phase flow path through which the second refrigerant in a gaseous state passes, and a liquid phase flow path through which the second refrigerant in a liquid state passes. The constant pressure valve is provided in the liquid phase flow path, and is closed when the pressure of the second refrigerant is equal to or higher than a prescribed value, and is opened when the pressure of the second refrigerant is less than a prescribed value.
 本開示によれば、冷凍サイクル装置の外部からのエネルギーを要することなく圧縮機側の熱エネルギーを用いてアキュムレータを加熱する冷凍サイクル装置において、蒸発の対象となる液冷媒がアキュムレータ内に残存していない場合には、圧縮機側にて発生する熱エネルギーをアキュムレータ側に伝達することを抑制できる。 According to the present disclosure, in a refrigeration cycle device that heats an accumulator using thermal energy from a compressor without requiring energy from outside the refrigeration cycle device, liquid refrigerant to be evaporated remains in the accumulator. If not, it is possible to suppress the thermal energy generated on the compressor side from being transmitted to the accumulator side.
実施の形態1における冷凍サイクル装置の構成を示す図である。1 is a diagram showing the configuration of a refrigeration cycle device in Embodiment 1. FIG. アキュムレータ、圧縮機、およびヒートパイプ回路の配置関係を説明するための図である。FIG. 3 is a diagram for explaining the arrangement relationship of an accumulator, a compressor, and a heat pipe circuit. ヒートパイプ回路の内部構造を説明するための図である。FIG. 3 is a diagram for explaining the internal structure of a heat pipe circuit. P-h線図(モリエル線図)を用いて第2冷媒の圧力上昇を説明するための図である。FIG. 3 is a diagram for explaining the pressure increase of the second refrigerant using a Ph diagram (Mollier diagram). 蒸発の対象となる液冷媒がアキュムレータ内に残存していない場合のヒートパイプ回路の内部構造を説明するための図である。FIG. 3 is a diagram for explaining the internal structure of the heat pipe circuit when no liquid refrigerant to be evaporated remains in the accumulator. 実施の形態2におけるヒートパイプ回路の内部構造を説明するための図である。FIG. 3 is a diagram for explaining the internal structure of a heat pipe circuit in Embodiment 2. FIG. 実施の形態2における蒸発の対象となる液冷媒がアキュムレータ内に残存していない場合のヒートパイプ回路の内部構造を説明するための図である。FIG. 7 is a diagram for explaining the internal structure of the heat pipe circuit when no liquid refrigerant to be evaporated remains in the accumulator in Embodiment 2. FIG. 実施の形態2におけるヒートパイプ回路の内部構造の変形例を説明するための図である。7 is a diagram for explaining a modification of the internal structure of the heat pipe circuit in Embodiment 2. FIG.
 以下、図面を参照しつつ、本開示に係る技術思想の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。 Hereinafter, embodiments of the technical idea according to the present disclosure will be described with reference to the drawings. In the following description, the same parts are given the same reference numerals. Their names and functions are also the same. Therefore, detailed descriptions thereof will not be repeated.
 実施の形態1.
 <冷凍サイクルシステムの構成と第1冷媒の循環>
 図1は、実施の形態1における冷凍サイクル装置100の構成を示す図である。本実施の形態における冷凍サイクル装置100は、空気調和機として用いられる。以下では、冷凍サイクル装置100が備える各構成の概要を説明する。冷凍サイクル装置100は、第1冷媒が封入されている循環流路L1を備える。冷凍サイクル装置100は、循環流路L1内にて第1冷媒を循環させることにより冷凍サイクル処理を行う。冷凍サイクル装置100は、圧縮機10と、四方弁45と、第1熱交換器20と、膨張弁30と、第2熱交換器40と、アキュムレータ21とを備える。
Embodiment 1.
<Configuration of refrigeration cycle system and circulation of first refrigerant>
FIG. 1 is a diagram showing the configuration of a refrigeration cycle device 100 in the first embodiment. Refrigeration cycle device 100 in this embodiment is used as an air conditioner. Below, the outline of each structure with which refrigeration cycle device 100 is provided is explained. The refrigeration cycle device 100 includes a circulation channel L1 in which a first refrigerant is sealed. The refrigeration cycle device 100 performs refrigeration cycle processing by circulating the first refrigerant within the circulation flow path L1. The refrigeration cycle device 100 includes a compressor 10, a four-way valve 45, a first heat exchanger 20, an expansion valve 30, a second heat exchanger 40, and an accumulator 21.
 四方弁45は、循環流路L1において第1冷媒が流れる流路を切り替える。本実施の形態において四方弁45の状態は、第1状態と第2状態とに切り替わり、図1には、四方弁45が第1状態である場合の循環流路L1が示されている。四方弁45が第1状態である場合、第1冷媒は、圧縮機10、四方弁45、第1熱交換器20、膨張弁30、第2熱交換器40、およびアキュムレータ21の順に循環する。第1冷媒の種類は、たとえば、HFC冷媒または自然冷媒である。自然冷媒とは、たとえば、二酸化炭素、炭化水素もしくはヘリウム等からなる冷媒である。 The four-way valve 45 switches the flow path through which the first refrigerant flows in the circulation flow path L1. In this embodiment, the state of the four-way valve 45 is switched between a first state and a second state, and FIG. 1 shows the circulation flow path L1 when the four-way valve 45 is in the first state. When the four-way valve 45 is in the first state, the first refrigerant circulates through the compressor 10, the four-way valve 45, the first heat exchanger 20, the expansion valve 30, the second heat exchanger 40, and the accumulator 21 in this order. The type of the first refrigerant is, for example, an HFC refrigerant or a natural refrigerant. The natural refrigerant is, for example, a refrigerant made of carbon dioxide, hydrocarbon, helium, or the like.
 四方弁45が第1状態から第2状態に切り替えられた場合、第1冷媒は、圧縮機10、四方弁45、第2熱交換器40、膨張弁30、第1熱交換器20、およびアキュムレータ21の順に循環する。すなわち、四方弁45の状態によって、四方弁45、第1熱交換器20、膨張弁30、第2熱交換器40の各々を接続する配管内の第1冷媒の流入方向は逆向きになる。以下では、冷凍サイクル装置100が備える構成を図1に示される第1状態において第1冷媒が循環流路L1を流れる順番で説明する。 When the four-way valve 45 is switched from the first state to the second state, the first refrigerant flows through the compressor 10, the four-way valve 45, the second heat exchanger 40, the expansion valve 30, the first heat exchanger 20, and the accumulator. It circulates in the order of 21. That is, depending on the state of the four-way valve 45, the inflow direction of the first refrigerant in the pipes connecting each of the four-way valve 45, the first heat exchanger 20, the expansion valve 30, and the second heat exchanger 40 is reversed. Below, the configuration of the refrigeration cycle device 100 will be described in the order in which the first refrigerant flows through the circulation channel L1 in the first state shown in FIG.
 圧縮機10は、循環流路L1内のガス状態の第1冷媒を圧縮するように構成されている。圧縮機10から吐出された冷媒は、高温高圧の過熱ガス状態となる。方向Dは、圧縮機10が冷媒を吐出する方向である。以下では、循環流路L1において、任意の位置から冷媒が流れて行く方向を「下流」と称し、「下流」の逆側であって冷媒が流れて来る方向を「上流」と称する場合がある。たとえば、アキュムレータ21は圧縮機10の上流に配置されており、圧縮機10はアキュムレータ21の下流に配置されている。本実施の形態では冷凍サイクル装置100に含まれる圧縮機の数は1つであるが、冷凍サイクル装置100には複数の圧縮機が備えられていてもよい。 The compressor 10 is configured to compress the first refrigerant in a gaseous state within the circulation flow path L1. The refrigerant discharged from the compressor 10 becomes a high-temperature, high-pressure superheated gas state. Direction D is the direction in which the compressor 10 discharges refrigerant. In the following, in the circulation flow path L1, the direction in which the refrigerant flows from an arbitrary position is sometimes referred to as "downstream", and the direction opposite to "downstream" and in which the refrigerant flows is sometimes referred to as "upstream". . For example, accumulator 21 is placed upstream of compressor 10, and compressor 10 is placed downstream of accumulator 21. Although the number of compressors included in the refrigeration cycle device 100 is one in this embodiment, the refrigeration cycle device 100 may be equipped with a plurality of compressors.
 四方弁45が第1状態である場合、第1熱交換器20は、凝縮器として機能する。送風機F1が生じさせる強制対流により、第1熱交換器20を通過するガス冷媒は、第1熱交換器20の周囲の空気との間で熱交換をする。これにより、第1熱交換器20を通過する冷媒は、凝縮されて液冷媒となる。液冷媒は、膨張弁30によって減圧され、気液2相状態の冷媒となる。膨張弁30は、本開示における「減圧装置」に対応し得る。 When the four-way valve 45 is in the first state, the first heat exchanger 20 functions as a condenser. Due to the forced convection generated by the blower F1, the gas refrigerant passing through the first heat exchanger 20 exchanges heat with the air surrounding the first heat exchanger 20. Thereby, the refrigerant passing through the first heat exchanger 20 is condensed and becomes liquid refrigerant. The liquid refrigerant is depressurized by the expansion valve 30 and becomes a gas-liquid two-phase refrigerant. The expansion valve 30 may correspond to a "pressure reducing device" in the present disclosure.
 気液2相状態の冷媒は、延長配管P1を通過し、第2熱交換器40へと流入する。四方弁45が第1状態である場合、第2熱交換器40は蒸発器として機能する。第2熱交換器40において、気液2相状態の冷媒は、送風機F2が生じさせる強制対流により、第2熱交換器40の周囲の空気との間で熱交換をする。これにより、第2熱交換器40を通過する気液2相状態の冷媒の一部は蒸発し、気液2相状態の第1冷媒におけるガス状態の第1冷媒の割合は増加する。 The refrigerant in a gas-liquid two-phase state passes through the extension pipe P1 and flows into the second heat exchanger 40. When the four-way valve 45 is in the first state, the second heat exchanger 40 functions as an evaporator. In the second heat exchanger 40, the gas-liquid two-phase refrigerant exchanges heat with the air around the second heat exchanger 40 by forced convection generated by the blower F2. As a result, a part of the gas-liquid two-phase refrigerant passing through the second heat exchanger 40 evaporates, and the proportion of the gas-state first refrigerant in the gas-liquid two-phase first refrigerant increases.
 しかしながら、第2熱交換器40を通過した後の第1冷媒には液冷媒も含まれており、この液冷媒が圧縮機10へと吸入されてしまうことを抑制するため、アキュムレータ21は、液冷媒とガス冷媒とを分離する。第2熱交換器40を通過した気液2相状態の第1冷媒は、延長配管P2を通過し、四方弁45を通過してアキュムレータ21に流入する。アキュムレータ21は、第2熱交換器40から流れ込む気液2相状態の冷媒のうち余剰となる液冷媒を貯留する。 However, the first refrigerant after passing through the second heat exchanger 40 also contains liquid refrigerant, and in order to prevent this liquid refrigerant from being sucked into the compressor 10, the accumulator 21 Separate the refrigerant and gas refrigerant. The gas-liquid two-phase first refrigerant that has passed through the second heat exchanger 40 passes through the extension pipe P2, passes through the four-way valve 45, and flows into the accumulator 21. The accumulator 21 stores surplus liquid refrigerant among the gas-liquid two-phase refrigerant flowing from the second heat exchanger 40 .
 アキュムレータ21によって分離されたガス冷媒は、圧縮機10に戻り、再度圧縮機10によって圧縮される。このように、冷凍サイクル装置100では、冷凍サイクル装置100が備える各構成によって循環流路L1を第1冷媒が循環する冷凍サイクルが形成されている。なお、四方弁45の状態が第2状態である場合、第1熱交換器20は蒸発器として機能し、第2熱交換器40は凝縮器として機能する。 The gas refrigerant separated by the accumulator 21 returns to the compressor 10 and is compressed by the compressor 10 again. In this way, in the refrigeration cycle device 100, each component included in the refrigeration cycle device 100 forms a refrigeration cycle in which the first refrigerant circulates through the circulation channel L1. Note that when the four-way valve 45 is in the second state, the first heat exchanger 20 functions as an evaporator, and the second heat exchanger 40 functions as a condenser.
 アキュムレータ21は、液冷媒とガス冷媒とを分離して、分離された液冷媒をアキュムレータ21の底部に貯留する。アキュムレータ21内に貯留される液冷媒の量が増大すれば、圧縮機10に液冷媒が吸入されてしまう可能性が高まり、また、循環流路L1を循環する冷媒量が低下してしまう。そのため、本実施の形態の冷凍サイクル装置100では、アキュムレータ21に貯留されている液冷媒を蒸発させるためのループ式のヒートパイプ回路50が設けられている。本実施の形態において、ヒートパイプ回路50の吸熱部が圧縮機10と接触し、ヒートパイプ回路50の放熱部はアキュムレータ21と接触する。これにより、ヒートパイプ回路50は、圧縮機10にて発生する熱をアキュムレータ21内に残存する液冷媒へと伝達させ、アキュムレータ21内の液冷媒を蒸発させる。 The accumulator 21 separates a liquid refrigerant and a gas refrigerant, and stores the separated liquid refrigerant at the bottom of the accumulator 21. If the amount of liquid refrigerant stored in the accumulator 21 increases, the possibility that the liquid refrigerant will be sucked into the compressor 10 will increase, and the amount of refrigerant circulating through the circulation path L1 will decrease. Therefore, the refrigeration cycle device 100 of the present embodiment is provided with a loop-type heat pipe circuit 50 for evaporating the liquid refrigerant stored in the accumulator 21. In this embodiment, the heat absorption part of the heat pipe circuit 50 contacts the compressor 10, and the heat radiation part of the heat pipe circuit 50 contacts the accumulator 21. Thereby, the heat pipe circuit 50 transfers the heat generated by the compressor 10 to the liquid refrigerant remaining in the accumulator 21, and evaporates the liquid refrigerant in the accumulator 21.
 上述したように、本実施の形態における冷凍サイクル装置100は、空気調和機として用いられ、四方弁45の切り替えによって暖房運転をすることができる。本実施の形態における冷凍サイクル装置100では、暖房運転が行われる場合、圧縮機10内の熱エネルギーが無用に伝達されないことによって室内の暖房効率を向上させることができる。 As described above, the refrigeration cycle device 100 in this embodiment is used as an air conditioner, and can perform heating operation by switching the four-way valve 45. In the refrigeration cycle device 100 according to the present embodiment, when heating operation is performed, the thermal energy within the compressor 10 is not transferred unnecessarily, thereby making it possible to improve indoor heating efficiency.
 <アキュムレータ21、圧縮機10、およびヒートパイプ回路50の配置関係>
 図2は、アキュムレータ21、圧縮機10、およびヒートパイプ回路50の配置関係を説明するための図である。以降の説明においては、鉛直方向を「Z軸方向」とし、Z軸方向に垂直な方向を「X軸方向」とし、さらに、Z軸とX軸との両方に対して垂直な方向を「Y軸方向」とする。また、以下では、各図におけるZ軸の正方向を上側、負方向を下側と称する場合がある。
<Arrangement relationship among accumulator 21, compressor 10, and heat pipe circuit 50>
FIG. 2 is a diagram for explaining the arrangement relationship among the accumulator 21, compressor 10, and heat pipe circuit 50. In the following description, the vertical direction will be referred to as the "Z-axis direction," the direction perpendicular to the Z-axis direction will be referred to as the "X-axis direction," and the direction perpendicular to both the Z-axis and the X-axis will be referred to as the "Y-axis direction.""axialdirection". Furthermore, hereinafter, the positive direction of the Z-axis in each figure may be referred to as the upper side, and the negative direction may be referred to as the lower side.
 図2に示されるように、気液2相の第1冷媒は、配管P3を通過してアキュムレータ21に流入する。アキュムレータ21は、液冷媒を貯留する容器を有し、容器は、たとえば、断面が円形状となる円筒状である。図2には、アキュムレータ21の容器内部の空間21Sと、アキュムレータ21に貯留されている液冷媒の液面Sf1とが示されている。アキュムレータ21内において、重力によってZ軸の負方向側に液冷媒が貯留する一方で、Z軸の正方向側にはガス冷媒が存在する。これにより、図2に示されているZ軸の負方向側から正方向側へと延伸する配管P4によってガス冷媒だけが圧縮機10に対して吐き出される。 As shown in FIG. 2, the gas-liquid two-phase first refrigerant flows into the accumulator 21 through the pipe P3. The accumulator 21 has a container that stores liquid refrigerant, and the container is, for example, cylindrical with a circular cross section. FIG. 2 shows a space 21S inside the container of the accumulator 21 and a liquid level Sf1 of the liquid refrigerant stored in the accumulator 21. In the accumulator 21, liquid refrigerant is stored on the negative side of the Z-axis due to gravity, while gas refrigerant is present on the positive side of the Z-axis. Thereby, only the gas refrigerant is discharged to the compressor 10 through the pipe P4 extending from the negative direction side to the positive direction side of the Z axis shown in FIG.
 ヒートパイプ回路50の一部は、アキュムレータ21内の空間21Sに配置される。図2に示される例では、液面Sf1は、空間21S内のヒートパイプ回路50のZ軸の正方向側にある。すなわち、空間21S内のヒートパイプ回路50の全ては、アキュムレータ21内の液冷媒内に沈んでいる状態である。 A part of the heat pipe circuit 50 is arranged in the space 21S within the accumulator 21. In the example shown in FIG. 2, the liquid level Sf1 is on the positive side of the Z-axis of the heat pipe circuit 50 in the space 21S. That is, all of the heat pipe circuits 50 in the space 21S are submerged in the liquid refrigerant in the accumulator 21.
 配管P4を通過するガス冷媒は、圧縮機10に流入する。圧縮機10は、シェル11と、シャフト14と、圧縮機構15と、モータ17とを有する。圧縮機構15と、シャフト14と、モータ17とは、シェル11内部の空間10Sに配置されている。 The gas refrigerant passing through the pipe P4 flows into the compressor 10. Compressor 10 includes a shell 11, a shaft 14, a compression mechanism 15, and a motor 17. The compression mechanism 15, the shaft 14, and the motor 17 are arranged in a space 10S inside the shell 11.
 シェル11には、ガス冷媒を圧縮機10の圧縮機構15に流入させるための配管P4と、圧縮機10の外部に流出させるための配管P5とが接続されている。圧縮機構15に流入したガス冷媒は、圧縮されて高温高圧となり、配管P5から吐出される。つまり、圧縮機構15は、配管P4からシェル11に流入したガス冷媒を圧縮して配管P5から吐出するように構成されている。 A pipe P4 for causing the gas refrigerant to flow into the compression mechanism 15 of the compressor 10 and a pipe P5 for flowing the gas refrigerant to the outside of the compressor 10 are connected to the shell 11. The gas refrigerant that has flowed into the compression mechanism 15 is compressed to a high temperature and high pressure, and is discharged from the pipe P5. That is, the compression mechanism 15 is configured to compress the gas refrigerant that has flowed into the shell 11 from the pipe P4 and discharge it from the pipe P5.
 圧縮機構15は、たとえばロータリ型の圧縮機構である。モータ17は、シャフト14を通じて圧縮機構15を駆動する。モータ17は、ロータ12とステータ13とを含む。ロータ12は、図示されない接続部によってシャフト14と接続されている。圧縮されたガス冷媒は、圧縮機構15の吐出孔16から空間10Sに吐出される。吐出された高温高圧のガス冷媒はモータ17の隙間(ロータ12とステータ13間の隙間、ステータ13の外周面に設けた溝等)を通過した後、配管P5から四方弁45へ吐出される。 The compression mechanism 15 is, for example, a rotary type compression mechanism. Motor 17 drives compression mechanism 15 through shaft 14 . Motor 17 includes rotor 12 and stator 13. The rotor 12 is connected to a shaft 14 by a connection portion (not shown). The compressed gas refrigerant is discharged from the discharge hole 16 of the compression mechanism 15 into the space 10S. The discharged high-temperature, high-pressure gas refrigerant passes through the gap in the motor 17 (the gap between the rotor 12 and the stator 13, the groove provided on the outer peripheral surface of the stator 13, etc.), and then is discharged from the pipe P5 to the four-way valve 45.
 図2に示されるように、ヒートパイプ回路50の一部は、シェル11内の空間10Sに配置される。すなわち、空間10S内のヒートパイプ回路50の全ては、高温高圧のガス冷媒に晒される。 As shown in FIG. 2, a portion of the heat pipe circuit 50 is arranged in the space 10S within the shell 11. That is, all of the heat pipe circuits 50 in the space 10S are exposed to the high temperature and high pressure gas refrigerant.
 <ヒートパイプ回路の内部構造>
 図3は、ヒートパイプ回路50の内部構造を説明するための図である。図3には、ループ式のヒートパイプ回路50の断面が示されている。ヒートパイプ回路50は、第2冷媒を循環させるループ式の循環流路L2を有する。図3に示されるように、実施の形態1において、ループ式のヒートパイプ回路50の断面は矩形形状である。循環流路L2には、第2冷媒が封入されている。第2冷媒の種類は、たとえば、HFC冷媒または自然冷媒である。第1冷媒の種類と第2冷媒の種類とは、同一であってもよい。この場合、冷凍サイクル装置100では、1種類の冷媒から冷凍サイクル装置100を構成することができるためコスト上昇を抑制することができる。
<Internal structure of heat pipe circuit>
FIG. 3 is a diagram for explaining the internal structure of the heat pipe circuit 50. FIG. 3 shows a cross section of a loop-type heat pipe circuit 50. The heat pipe circuit 50 has a loop-type circulation flow path L2 that circulates the second refrigerant. As shown in FIG. 3, in the first embodiment, the loop-type heat pipe circuit 50 has a rectangular cross section. A second refrigerant is sealed in the circulation flow path L2. The type of second refrigerant is, for example, an HFC refrigerant or a natural refrigerant. The type of first refrigerant and the type of second refrigerant may be the same. In this case, the refrigeration cycle device 100 can be constructed from one type of refrigerant, and therefore, cost increases can be suppressed.
 ヒートパイプ回路50は、放熱部51Dと、吸熱部51Eと、定圧弁55と、気相流路50Gと、液相流路50Lとを有する。図2には、放熱部51Dにおいて液面Sf2が示されており、吸熱部51Eにおいて液面Sf3が示されている。すなわち、図2の例では、封入された第2冷媒のうちの液相がヒートパイプ回路50のZ軸の負方向側に存在している。また、封入された第2冷媒のうちの気相がヒートパイプ回路50のZ軸の正方向側に存在している。 The heat pipe circuit 50 includes a heat radiation section 51D, a heat absorption section 51E, a constant pressure valve 55, a gas phase flow path 50G, and a liquid phase flow path 50L. In FIG. 2, a liquid level Sf2 is shown in the heat radiating part 51D, and a liquid level Sf3 is shown in the heat absorbing part 51E. That is, in the example of FIG. 2, the liquid phase of the enclosed second refrigerant exists on the negative side of the Z-axis of the heat pipe circuit 50. Further, the gas phase of the enclosed second refrigerant exists on the positive side of the Z-axis of the heat pipe circuit 50.
 吸熱部51Eは、圧縮機10内の空間10Sを通過する高温高圧のガス状態の第1冷媒から吸熱する。吸熱部51Eは、ヒートパイプ回路50のうち、高温高圧のガス状態の第1冷媒と接触し得る領域である。吸熱部51Eにおいて、ヒートパイプ回路50内の第2冷媒は、圧縮機10内の第1冷媒と熱交換をする。これにより、吸熱部51Eにおいて第2冷媒は液状態からガス状態に変化する。換言すれば、第2冷媒は蒸発する。 The heat absorbing section 51E absorbs heat from the first refrigerant in a high temperature and high pressure gas state passing through the space 10S in the compressor 10. The heat absorbing portion 51E is a region of the heat pipe circuit 50 that can come into contact with the first refrigerant in a gaseous state at high temperature and high pressure. In the heat absorption section 51E, the second refrigerant in the heat pipe circuit 50 exchanges heat with the first refrigerant in the compressor 10. Thereby, the second refrigerant changes from a liquid state to a gas state in the heat absorption part 51E. In other words, the second refrigerant evaporates.
 一方で、放熱部51Dは、アキュムレータ21の空間21Sに残留する液状態の第1冷媒へと放熱する。放熱部51Dは、ヒートパイプ回路50のうち、アキュムレータ21内の第1冷媒と接触し得る領域である。すなわち、放熱部51Dにおいて、ヒートパイプ回路50内の第2冷媒は、アキュムレータ21内の第1冷媒と熱交換をする。これにより、放熱部51Dにおいて第2冷媒はガス状態から液状態に変化する。換言すれば、第2冷媒は凝縮する。一方で、図2に示されているように、第1冷媒は蒸発して核沸騰する。 On the other hand, the heat radiation section 51D radiates heat to the first refrigerant in a liquid state remaining in the space 21S of the accumulator 21. The heat radiation section 51D is a region of the heat pipe circuit 50 that can come into contact with the first refrigerant in the accumulator 21. That is, in the heat radiation section 51D, the second refrigerant in the heat pipe circuit 50 exchanges heat with the first refrigerant in the accumulator 21. As a result, the second refrigerant changes from a gas state to a liquid state in the heat radiation section 51D. In other words, the second refrigerant condenses. On the other hand, as shown in FIG. 2, the first refrigerant evaporates and undergoes nucleate boiling.
 図3に示されるように、放熱部51Dは、液面Sf1と平行なX軸方向に対して長さD2を有する。また、放熱部51Dは、液面Sf1の法線方向であるZ軸方向に対して長さD1を有する。図3の例では、長さD1は、長さD2よりも短い。 As shown in FIG. 3, the heat radiation part 51D has a length D2 with respect to the X-axis direction parallel to the liquid surface Sf1. Moreover, the heat radiation part 51D has a length D1 with respect to the Z-axis direction, which is the normal direction to the liquid surface Sf1. In the example of FIG. 3, length D1 is shorter than length D2.
 吸熱部51Eにおける第2冷媒の蒸発と放熱部51Dにおける第2冷媒の凝縮とによって、液面Sf2と液面Sf3のZ軸方向の高さに差異Df1が生じる。液状態の第2冷媒の密度は、ガス状態の第2冷媒の密度よりも大きい。そのため、差異Df1が発生することによって、放熱部51Dの第2冷媒は、循環流路L2においてZ軸の負方向側に配置されている液相流路50Lを通過して、吸熱部51Eへと流入する。 Due to the evaporation of the second refrigerant in the heat absorption part 51E and the condensation of the second refrigerant in the heat radiation part 51D, a difference Df1 occurs in the height of the liquid surface Sf2 and the liquid surface Sf3 in the Z-axis direction. The density of the second refrigerant in the liquid state is greater than the density of the second refrigerant in the gas state. Therefore, due to the difference Df1 occurring, the second refrigerant in the heat radiation part 51D passes through the liquid phase flow path 50L arranged on the negative side of the Z axis in the circulation flow path L2, and flows to the heat absorption part 51E. Inflow.
 さらに、吸熱部51Eの第2冷媒は、循環流路L2においてZ軸の正方向側に配置されている気相流路50Gを通過して、放熱部51Dへと戻る。このように、ループ式のヒートパイプ回路50において、吸熱部51Eにおける第2冷媒の蒸発と放熱部51Dにおける第2冷媒の凝縮とによって、第2冷媒は循環する。図2の断面図の例では、第2冷媒は、反時計回りに循環している。 Further, the second refrigerant in the heat absorption part 51E passes through the gas phase flow path 50G arranged on the positive side of the Z-axis in the circulation flow path L2, and returns to the heat radiation part 51D. In this way, in the loop-type heat pipe circuit 50, the second refrigerant circulates by evaporating the second refrigerant in the heat absorption section 51E and condensing the second refrigerant in the heat radiation section 51D. In the example cross-sectional view of FIG. 2, the second refrigerant is circulating counterclockwise.
 定圧弁55は、液相流路50L上に設けられている。定圧弁55は、第2冷媒の循環を遮断可能であるように構成されている。より具体的には、定圧弁55は、第2冷媒の圧力が規定の値以上であるときに閉状態となるように構成されている。すなわち、定圧弁55は、第2冷媒の圧力が規定の値以上であるときに第2冷媒を通過させずに第2冷媒の循環を遮断する。一方で、定圧弁55は、第2冷媒の圧力が規定の値未満であるときに開状態となるように構成されている。すなわち、定圧弁55は、第2冷媒の圧力が規定の値未満であるときに第2冷媒を通過させる。図2には、第2冷媒の圧力が規定の値未満である状態の例が示されているため、定圧弁55の状態は開状態である。定圧弁55は、たとえば、ダイアフラムを含む構成である。なお、定圧弁55は、第2冷媒の圧力が規定の値を上回るときに閉状態となり、第2冷媒の圧力が規定の値以下のときに開状態となる構成であってもよい。 The constant pressure valve 55 is provided on the liquid phase flow path 50L. The constant pressure valve 55 is configured to be able to cut off circulation of the second refrigerant. More specifically, the constant pressure valve 55 is configured to be in a closed state when the pressure of the second refrigerant is equal to or higher than a specified value. That is, the constant pressure valve 55 blocks the circulation of the second refrigerant without allowing the second refrigerant to pass through when the pressure of the second refrigerant is equal to or higher than a specified value. On the other hand, the constant pressure valve 55 is configured to be in an open state when the pressure of the second refrigerant is less than a specified value. That is, the constant pressure valve 55 allows the second refrigerant to pass when the pressure of the second refrigerant is less than a specified value. FIG. 2 shows an example of a state in which the pressure of the second refrigerant is less than a specified value, so the constant pressure valve 55 is in an open state. The constant pressure valve 55 includes, for example, a diaphragm. Note that the constant pressure valve 55 may be configured to be in a closed state when the pressure of the second refrigerant exceeds a specified value, and to be in an open state when the pressure of the second refrigerant is below a specified value.
 本実施の形態では、アキュムレータ21の液冷媒が十分に蒸発して液面Sf1が低下したときに、ヒートパイプ回路50内の第2冷媒の圧力が上昇する。これにより、冷凍サイクル装置100は、蒸発の対象となる液冷媒がアキュムレータ21内に残存していない場合には、圧縮機10側にて発生する熱エネルギーをアキュムレータ21側に伝達することを抑制する。以下では、液面Sf1が低下するにしたがってヒートパイプ回路50内の第2冷媒の圧力が低下することについて説明する。 In this embodiment, when the liquid refrigerant in the accumulator 21 is sufficiently evaporated and the liquid level Sf1 is lowered, the pressure of the second refrigerant in the heat pipe circuit 50 increases. Thereby, the refrigeration cycle device 100 suppresses the transfer of thermal energy generated on the compressor 10 side to the accumulator 21 side when no liquid refrigerant to be evaporated remains in the accumulator 21. . Below, it will be explained that the pressure of the second refrigerant in the heat pipe circuit 50 decreases as the liquid level Sf1 decreases.
 ヒートパイプ回路50内の第2冷媒は、蒸発と凝縮とを繰り返して循環流路L2内を循環する。吸熱部51Eにて蒸発した第2冷媒は、気相流路50Gを通過した直後に放熱部51Dにて凝縮される。また、放熱部51Dにて凝縮した第2冷媒は、液相流路50Lを通過した直後に吸熱部51Eにて蒸発される。すなわち、ヒートパイプ回路50内における第2冷媒の温度は、第2冷媒の状態にかかわらず飽和温度Tとなり、一定である。 The second refrigerant in the heat pipe circuit 50 repeats evaporation and condensation and circulates in the circulation flow path L2. The second refrigerant evaporated in the heat absorption part 51E is condensed in the heat radiation part 51D immediately after passing through the gas phase flow path 50G. Further, the second refrigerant condensed in the heat radiation part 51D is evaporated in the heat absorption part 51E immediately after passing through the liquid phase flow path 50L. That is, the temperature of the second refrigerant in the heat pipe circuit 50 is constant, being the saturation temperature T, regardless of the state of the second refrigerant.
 図4は、P-h線図(モリエル線図)を用いて第2冷媒の圧力上昇を説明するための図である。P-h線図上には、飽和温度Tが示されている。第2冷媒は、吸熱部51Eと放熱部51Dとで熱交換することによって、飽和温度Tとして示される線上を移動する。飽和温度Tとして示される線上において、第2冷媒の状態は、吸熱部51Eにて蒸発することによって左から右に移動し、放熱部51Dにて凝縮することによって右から左に移動する。 FIG. 4 is a diagram for explaining the pressure increase of the second refrigerant using a Ph diagram (Mollier diagram). The saturation temperature T is shown on the Ph diagram. The second refrigerant moves on a line indicated as the saturation temperature T by exchanging heat between the heat absorption part 51E and the heat radiation part 51D. On the line indicated as the saturation temperature T, the state of the second refrigerant moves from left to right by evaporating in the heat absorption part 51E, and from right to left by condensing in the heat radiation part 51D.
 図4の右側には、吸熱部51Eにおける伝熱量Qhおよび放熱部51Dにおける伝熱量Qcを示す数式Qh=Kh×(Th-T),Qc=Kc×(T-Tc)が示されている。伝熱量Qhは、圧縮機10内における第1冷媒の温度Thから飽和温度Tを減じた値に対して吸熱部51Eにおける第2冷媒と第1冷媒との間の熱通過率Khを乗じた値となる。一方で、伝熱量Qcは、飽和温度Tからアキュムレータ21内における第1冷媒の温度Tcを減じた値に対して放熱部51Dにおける第2冷媒と第1冷媒との間の熱通過率Kcを乗じた値となる。 On the right side of FIG. 4, the formulas Qh=Kh×(Th−T) and Qc=Kc×(T−Tc) are shown, which indicate the amount of heat transfer Qh in the heat absorbing portion 51E and the amount Qc of heat transfer in the heat radiating portion 51D. The amount of heat transfer Qh is the value obtained by subtracting the saturation temperature T from the temperature Th of the first refrigerant in the compressor 10 multiplied by the heat passage rate Kh between the second refrigerant and the first refrigerant in the heat absorption section 51E. becomes. On the other hand, the heat transfer amount Qc is calculated by multiplying the value obtained by subtracting the temperature Tc of the first refrigerant in the accumulator 21 from the saturation temperature T by the heat transfer rate Kc between the second refrigerant and the first refrigerant in the heat radiation part 51D. will be the value.
 ヒートパイプ回路50では、伝熱量Qhと伝熱量Qcとが同一となることによって循環流路L2内の第2冷媒が安定して循環する。図5は、蒸発の対象となる液冷媒がアキュムレータ21内に残存していない場合のヒートパイプ回路50の内部構造を説明するための図である。図5には、アキュムレータ21内の液冷媒が十分に蒸発して、液面Sf1の位置が放熱部51Dよりも低下した状態が示されている。 In the heat pipe circuit 50, the amount of heat transfer Qh and the amount of heat transfer Qc are the same, so that the second refrigerant in the circulation flow path L2 circulates stably. FIG. 5 is a diagram for explaining the internal structure of the heat pipe circuit 50 when no liquid refrigerant to be evaporated remains in the accumulator 21. FIG. 5 shows a state in which the liquid refrigerant in the accumulator 21 has sufficiently evaporated and the position of the liquid level Sf1 has become lower than the heat radiation part 51D.
 液面Sf1の位置が放熱部51Dよりも低下すれば、放熱部51Dにおける第2冷媒と熱交換が行われる対象は、アキュムレータ21内の液状態の第1冷媒からガス状態の第1冷媒へと変わる。すなわち、図4に示される熱通過率Kcは低下する。熱通過率Kcが低下すれば、伝熱量Qcが低下してしまうが、ヒートパイプ回路50内の循環によって伝熱量Qcと伝熱量Qhとが同一となるようにバランスが取られる。アキュムレータ21内の液面Sf1の低下によって、圧縮機10側のガス状態の第1冷媒の温度Thおよび熱通過率Khは変化しないことから、伝熱量Qcと伝熱量Qhとのバランスを取るため、飽和温度Tが上昇する。言い換えれば、飽和温度Tが上昇することによって伝熱量Qcと伝熱量Qhとが同一の値となる。図4に示されるように、たとえば飽和温度Tは飽和温度Taまで上昇する。これにより、第2冷媒の圧力は、圧力Pから圧力Paまで上昇する。 If the position of the liquid level Sf1 becomes lower than the heat radiating part 51D, the target for heat exchange with the second refrigerant in the heat radiating part 51D changes from the first refrigerant in the liquid state in the accumulator 21 to the first refrigerant in the gas state. change. That is, the heat transfer rate Kc shown in FIG. 4 decreases. If the heat transfer rate Kc decreases, the amount of heat transfer Qc will decrease, but the circulation within the heat pipe circuit 50 balances the amount of heat transfer Qc and the amount of heat transfer Qh to be the same. Since the temperature Th and heat transfer rate Kh of the gaseous first refrigerant on the compressor 10 side do not change due to the decrease in the liquid level Sf1 in the accumulator 21, in order to balance the amount of heat transfer Qc and the amount of heat transfer Qh, The saturation temperature T increases. In other words, as the saturation temperature T increases, the amount of heat transfer Qc and the amount of heat transfer Qh become the same value. As shown in FIG. 4, for example, the saturation temperature T rises to the saturation temperature Ta. Thereby, the pressure of the second refrigerant increases from pressure P to pressure Pa.
 ヒートパイプ回路50内の圧力が上昇したことに基づいて、定圧弁55は、閉状態となる。すなわち、ヒートパイプ回路50内の第2冷媒の循環が停止する。本実施の形態において、定圧弁55が閉状態となるための規定の圧力の値は、圧力Pから圧力Paの間のいずれかの値である。 Based on the increase in the pressure within the heat pipe circuit 50, the constant pressure valve 55 enters the closed state. That is, the circulation of the second refrigerant within the heat pipe circuit 50 is stopped. In this embodiment, the prescribed pressure value for the constant pressure valve 55 to be in the closed state is any value between pressure P and pressure Pa.
 このように、本実施の形態における冷凍サイクル装置100では、液面Sf1の位置が放熱部51Dよりも低い位置まで変化したとき、ヒートパイプ回路50内の圧力が上昇し、定圧弁55が閉状態となる。すなわち、冷凍サイクル装置100では、ヒートパイプ回路50内における第2冷媒の循環によって圧縮機10側のガス状態の第1冷媒の熱が、アキュムレータ21側の液状態の第1冷媒に伝達されることが抑制される。これにより、外部からのエネルギーを使用することなく圧縮機10側の熱エネルギーを用いてアキュムレータ21を加熱する冷凍サイクル装置100において、蒸発の対象となる液冷媒がアキュムレータ21内に残存していない場合には、圧縮機10側にて発生する熱エネルギーをアキュムレータ21側に伝達することを抑制できる。 As described above, in the refrigeration cycle device 100 according to the present embodiment, when the position of the liquid level Sf1 changes to a position lower than the heat radiation part 51D, the pressure in the heat pipe circuit 50 increases, and the constant pressure valve 55 is brought into the closed state. becomes. That is, in the refrigeration cycle device 100, the heat of the first refrigerant in a gas state on the compressor 10 side is transferred to the first refrigerant in a liquid state on the accumulator 21 side by circulating the second refrigerant in the heat pipe circuit 50. is suppressed. As a result, in the refrigeration cycle device 100 that heats the accumulator 21 using thermal energy from the compressor 10 side without using external energy, if no liquid refrigerant to be evaporated remains in the accumulator 21. In other words, it is possible to suppress the thermal energy generated on the compressor 10 side from being transmitted to the accumulator 21 side.
 さらに、定圧弁55が閉状態となった後、平衡状態となるまでの一定期間、放熱部51Dでは第2冷媒の凝縮が行われ、吸熱部51Eでは第2冷媒の蒸発が行われる。すなわち、図5に示されるように、液面Sf2は上昇し、液面Sf3は低下していく。平衡状態となったとき、液面Sf2と液面Sf3とは一定の位置に保持され、ヒートパイプ回路50による吸熱と放熱が行われなくなる。平衡状態となった後、再度、アキュムレータ21に残留する液冷媒の量が増大したことによって液面Sf1の位置が放熱部51Dの位置よりも高くなれば熱通過率Kcが増加し、ヒートパイプ回路50内の圧力が低下する。これにより、定圧弁55は開状態となる。 Further, after the constant pressure valve 55 is in the closed state, for a certain period of time until the equilibrium state is reached, the second refrigerant is condensed in the heat radiation part 51D, and the second refrigerant is evaporated in the heat absorption part 51E. That is, as shown in FIG. 5, the liquid level Sf2 rises and the liquid level Sf3 falls. When the equilibrium state is reached, the liquid level Sf2 and the liquid level Sf3 are held at fixed positions, and the heat pipe circuit 50 no longer absorbs or radiates heat. After reaching the equilibrium state, if the amount of liquid refrigerant remaining in the accumulator 21 increases again and the position of the liquid surface Sf1 becomes higher than the position of the heat radiation part 51D, the heat transfer rate Kc increases and the heat pipe circuit The pressure within 50 decreases. As a result, the constant pressure valve 55 becomes open.
 このように、本実施の形態においては、電気的な制御を行うことなく、圧力Pと圧力Paとの間の規定の値に応じて開状態と閉状態を変化させる定圧弁55を液相流路50L上に設けることによって、ヒートパイプ回路50の循環の開始と停止を切り替えることができる。すなわち、ヒートパイプ回路50は、蒸発対象となる液冷媒がアキュムレータ21内に残存している場合は圧縮機10側の熱エネルギーを用いてアキュムレータ21内の液冷媒を加熱し、アキュムレータ21内に蒸発対象となる液冷媒が存在していない場合は圧縮機10側の熱エネルギーの伝達を行われない。 As described above, in this embodiment, the constant pressure valve 55, which changes the open state and closed state according to a prescribed value between the pressure P and the pressure Pa, is operated by liquid phase flow without electrical control. By providing it on the path 50L, it is possible to switch between starting and stopping the circulation of the heat pipe circuit 50. That is, if the liquid refrigerant to be evaporated remains in the accumulator 21, the heat pipe circuit 50 heats the liquid refrigerant in the accumulator 21 using thermal energy on the compressor 10 side, and causes the liquid refrigerant to evaporate in the accumulator 21. If the target liquid refrigerant is not present, thermal energy on the compressor 10 side is not transferred.
 実施の形態2.
 実施の形態1の冷凍サイクル装置100においては、矩形形状であるループ式のヒートパイプ回路50を用いて熱交換をする構成について説明した。図5にて説明したように、定圧弁55が閉状態となった後、液面Sf2は上昇する。しかしながら、液面Sf2が図5に示される液面Sf4まで上昇した場合、液状態の第2冷媒は気相流路50Gを逆流し得る。すなわち、液状態の第2冷媒は気相流路50Gから吸熱部51Eへと流れ込んでしまう可能性がある。より具体的には、気相流路50GのX軸の負方向側において液状態の第2冷媒が放熱部51Dから吸熱部51Eへと逆流し、気相流路50GのX軸の正方向側においてガス状態の第2冷媒が吸熱部51Eから放熱部51Dへと移動する。このような液状態の第2冷媒の逆流が発生してしまった場合、気相流路50Gにおいて、第2冷媒の循環が発生し得る。すなわち、第2冷媒による熱交換が再開されてしまう。
Embodiment 2.
In the refrigeration cycle device 100 of the first embodiment, a configuration has been described in which heat exchange is performed using the rectangular loop heat pipe circuit 50. As explained with reference to FIG. 5, after the constant pressure valve 55 is closed, the liquid level Sf2 rises. However, when the liquid level Sf2 rises to the liquid level Sf4 shown in FIG. 5, the second refrigerant in the liquid state can flow backward through the gas phase flow path 50G. That is, the second refrigerant in a liquid state may flow into the heat absorption section 51E from the gas phase flow path 50G. More specifically, the second refrigerant in a liquid state flows backward from the heat radiation part 51D to the heat absorption part 51E on the negative side of the X-axis of the gas phase flow path 50G, and on the positive side of the X-axis of the gas phase flow path 50G. The second refrigerant in a gas state moves from the heat absorption part 51E to the heat radiation part 51D. If such a backflow of the second refrigerant in a liquid state occurs, circulation of the second refrigerant may occur in the gas phase flow path 50G. That is, heat exchange using the second refrigerant is restarted.
 実施の形態2においては、液状態の第2冷媒の逆流を抑制するヒートパイプ回路50Aの構成について説明する。なお、実施の形態2の冷凍サイクル装置100において、実施の形態1の冷凍サイクル装置100と重複する構成については、説明を繰り返さない。 In Embodiment 2, a configuration of a heat pipe circuit 50A that suppresses backflow of the second refrigerant in a liquid state will be described. In addition, in the refrigeration cycle apparatus 100 of Embodiment 2, description is not repeated about the structure which overlaps with the refrigeration cycle apparatus 100 of Embodiment 1.
 図6は、実施の形態2におけるヒートパイプ回路50Aの内部構造を説明するための図である。実施の形態2におけるヒートパイプ回路50Aは、図6に示されるような形状を有する。実施の形態2において、放熱部51Dは、吸熱部51Eの位置よりも低い位置に配置されている。液相流路50Lは、循環流路L2における定圧弁55と吸熱部51Eとの間に設けられた運搬部60を備える。運搬部60は、毛細管力により定圧弁55を通過した第2冷媒を吸熱部51Eへと移動させる。すなわち、運搬部60は、第2冷媒を鉛直上向き方向に運搬する。実施の形態2における運搬部は毛細管現象を発生させるための多孔質体を備える。 FIG. 6 is a diagram for explaining the internal structure of the heat pipe circuit 50A in the second embodiment. A heat pipe circuit 50A in the second embodiment has a shape as shown in FIG. In the second embodiment, the heat radiating section 51D is arranged at a position lower than the position of the heat absorbing section 51E. The liquid phase flow path 50L includes a conveying section 60 provided between the constant pressure valve 55 and the heat absorption section 51E in the circulation flow path L2. The transport section 60 moves the second refrigerant that has passed through the constant pressure valve 55 to the heat absorption section 51E by capillary force. That is, the conveyance unit 60 conveys the second refrigerant in a vertically upward direction. The conveying section in the second embodiment includes a porous body for generating capillary action.
 図6に示されるように、放熱部51Dは液面Sf1と平行なX軸方向に対して長さD4を有する。また、放熱部51Dは、液面Sf1の法線方向であるZ軸方向に対して長さD3を有する。図2の例では、長さD4は、長さD3よりも長い。 As shown in FIG. 6, the heat radiation part 51D has a length D4 in the X-axis direction parallel to the liquid surface Sf1. Moreover, the heat radiation part 51D has a length D3 with respect to the Z-axis direction which is the normal direction to the liquid surface Sf1. In the example of FIG. 2, length D4 is longer than length D3.
 図7は、実施の形態2における蒸発の対象となる液冷媒がアキュムレータ21内に残存していない場合のヒートパイプ回路50Aの内部構造を説明するための図である。図7では、液面Sf1の位置が放熱部51Dの位置よりも低下している。これによって、ヒートパイプ回路50A内の圧力が上昇し、定圧弁55は、閉状態に切り替わる。 FIG. 7 is a diagram for explaining the internal structure of the heat pipe circuit 50A when no liquid refrigerant to be evaporated remains in the accumulator 21 in the second embodiment. In FIG. 7, the position of the liquid level Sf1 is lower than the position of the heat radiation part 51D. As a result, the pressure within the heat pipe circuit 50A increases, and the constant pressure valve 55 is switched to the closed state.
 上述したように、定圧弁55が閉状態となった後、平衡状態となるまでの一定期間、放熱部51Dでは第2冷媒の凝縮が行われ、吸熱部51Eでは第2冷媒の蒸発が行われる。実施の形態2においても液面Sf2は上昇していくが、放熱部51Dが吸熱部51Eの位置よりも低い位置に配置されているため、放熱部51Dにて凝縮された第2冷媒が逆流するまでに平衡状態に到達する。これによって、実施の形態2の冷凍サイクル装置100では、定圧弁55が閉状態となった後に、放熱部51D側の液面Sf2が上昇して第2冷媒が逆流してしまうことを抑制できる。 As described above, after the constant pressure valve 55 is in the closed state, for a certain period of time until the equilibrium state is reached, the second refrigerant is condensed in the heat radiation part 51D, and the second refrigerant is evaporated in the heat absorption part 51E. . In the second embodiment as well, the liquid level Sf2 rises, but since the heat radiation part 51D is arranged at a position lower than the position of the heat absorption part 51E, the second refrigerant condensed in the heat radiation part 51D flows backward. equilibrium is reached by. Thereby, in the refrigeration cycle device 100 of the second embodiment, after the constant pressure valve 55 is in the closed state, it is possible to suppress the liquid level Sf2 on the heat radiating part 51D side from rising and the second refrigerant flowing backward.
 また、図6に示されるように、実施の形態2の放熱部51Dは、液面Sf1と平行な長さD4がZ軸方向の長さD3よりも長い。実施の形態1の図3と実施の形態2の図6とを比較して、第2冷媒の蒸発により液面Sf1が徐々に低下していった場合に、図3の例は、図6の例よりも液面Sf1が早く放熱部51Dの上部に到達する。液面Sf1が放熱部51Dの上部と下部との間の位置にある場合、液面Sf1よりも高い位置にある放熱部51Dでは、アキュムレータ21の液冷媒との間で熱交換をすることができない。図6に示される構成では、液面Sf1の低下が開始してから放熱部51Dの上部に到達するまで長い期間を要し、その期間、放熱部51D全体を用いて、アキュムレータ21内の液冷媒を蒸発させることができる。すなわち、図3の例と比較して、図6の例では、アキュムレータ21の液冷媒を蒸発させるために要する期間が短くなる。 Further, as shown in FIG. 6, in the heat dissipation portion 51D of the second embodiment, the length D4 parallel to the liquid surface Sf1 is longer than the length D3 in the Z-axis direction. Comparing FIG. 3 of Embodiment 1 and FIG. 6 of Embodiment 2, when the liquid level Sf1 gradually decreases due to evaporation of the second refrigerant, the example of FIG. The liquid level Sf1 reaches the upper part of the heat radiation part 51D earlier than in the example. When the liquid level Sf1 is located between the upper and lower parts of the heat radiating part 51D, heat exchange cannot be performed with the liquid refrigerant of the accumulator 21 in the heat radiating part 51D, which is located higher than the liquid level Sf1. . In the configuration shown in FIG. 6, it takes a long period from when the liquid level Sf1 starts to decrease until it reaches the upper part of the heat radiating part 51D, and during that period, the liquid refrigerant in the accumulator 21 is heated using the entire heat radiating part 51D. can be evaporated. That is, compared to the example of FIG. 3, in the example of FIG. 6, the period required to evaporate the liquid refrigerant in the accumulator 21 is shorter.
 このように、実施の形態2における冷凍サイクル装置100においても、電気的な制御を行うことなくヒートパイプ回路50A内の圧力に応じて開状態と閉状態を変化させる定圧弁55を液相流路50L上に設けることによって、ヒートパイプ回路50Aの循環の開始と停止を切り替えることができる。すなわち、ヒートパイプ回路50Aは、蒸発対象となる液冷媒がアキュムレータ21内に残存している場合は圧縮機10側の熱エネルギーを用いてアキュムレータ21内の液冷媒を加熱し、アキュムレータ21内に蒸発対象となる液冷媒がない場合は圧縮機10側の熱エネルギーの伝達を行わない。 As described above, in the refrigeration cycle device 100 according to the second embodiment, the constant pressure valve 55, which changes the open state and the closed state according to the pressure within the heat pipe circuit 50A, is connected to the liquid phase flow path without electrical control. By providing it on the heat pipe circuit 50L, it is possible to switch between starting and stopping the circulation of the heat pipe circuit 50A. That is, if the liquid refrigerant to be evaporated remains in the accumulator 21, the heat pipe circuit 50A heats the liquid refrigerant in the accumulator 21 using thermal energy on the compressor 10 side, and causes the liquid refrigerant to evaporate in the accumulator 21. If there is no target liquid refrigerant, no thermal energy is transferred from the compressor 10 side.
 [変形例]
 実施の形態1の冷凍サイクル装置100においては、多孔質体を備える運搬部60によって第2冷媒が定圧弁55から吸熱部51Eへと運搬される構成を説明した。しかしながら、運搬部60による第2冷媒の運搬は、多孔質体に限られない。実施の形態2においては、運搬部60Aの管径を小さくする例を説明する。
[Modified example]
In the refrigeration cycle apparatus 100 of the first embodiment, the configuration has been described in which the second refrigerant is transported from the constant pressure valve 55 to the heat absorption section 51E by the transport section 60 including a porous body. However, the transportation of the second refrigerant by the transportation unit 60 is not limited to porous bodies. In the second embodiment, an example will be described in which the pipe diameter of the transport section 60A is reduced.
 図8は、実施の形態2におけるヒートパイプ回路50Aの内部構造の変形例を説明するための図である。図8に示されているように、運搬部60Aの管径Td1は、気相流路50Gの管径Td2よりも小さい。換言すれば、管径Td1は、管径Td2よりも細い。管径Td1は、毛細管現象によって第2冷媒を上昇させることに十分な管径である。これにより、変形例の冷凍サイクル装置100においても、第2冷媒を定圧弁55から吸熱部51Eに運搬することができる。なお、運搬部60Aは、毛細管現象を用いて第2冷媒を運搬する機構に限られず、アキュムレータ21内の液冷媒を加熱する消費電力よりも小さい電力を駆動電力とする駆動機構によって第2冷媒を運搬してもよい。 FIG. 8 is a diagram for explaining a modification of the internal structure of the heat pipe circuit 50A in the second embodiment. As shown in FIG. 8, the pipe diameter Td1 of the transport section 60A is smaller than the pipe diameter Td2 of the gas phase flow path 50G. In other words, the tube diameter Td1 is smaller than the tube diameter Td2. The tube diameter Td1 is a tube diameter sufficient to cause the second refrigerant to rise due to capillarity. Thereby, also in the modified refrigeration cycle device 100, the second refrigerant can be transported from the constant pressure valve 55 to the heat absorption section 51E. Note that the transport unit 60A is not limited to a mechanism that transports the second refrigerant using capillary phenomenon, but can transport the second refrigerant using a drive mechanism whose driving power is smaller than the power consumption for heating the liquid refrigerant in the accumulator 21. May be transported.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. The scope of the present invention is indicated by the claims rather than the above description, and it is intended that equivalent meanings and all changes within the scope of the claims are included.
 10 圧縮機、10S,21S 空間、11 シェル、12 ロータ、13 ステータ、14 シャフト、15 圧縮機構、16 吐出孔、17 モータ、20 第1熱交換器、21 アキュムレータ、30 膨張弁、40 第2熱交換器、45 四方弁、50,50A ヒートパイプ回路、50G 気相流路、50L,60L 液相流路、51D 放熱部、51E 吸熱部、55 定圧弁、60,60A 運搬部、100 冷凍サイクル装置
D 方向、D1~D4 長さ、Df1 差異、F1,F2 送風機、Kc,Kh 熱通過率、L1,L2 循環流路、P,Pa 圧力、P1,P2 延長配管、P3,P4,P5 配管、Qc,Qh 伝熱量、Sf1~Sf4 液面、T,Ta 飽和温度、Tc,Th 温度、Td1,Td2 管径。
10 compressor, 10S, 21S space, 11 shell, 12 rotor, 13 stator, 14 shaft, 15 compression mechanism, 16 discharge hole, 17 motor, 20 first heat exchanger, 21 accumulator, 30 expansion valve, 40 second heat Exchanger, 45 four-way valve, 50, 50A heat pipe circuit, 50G gas phase flow path, 50L, 60L liquid phase flow path, 51D heat radiation section, 51E heat absorption section, 55 constant pressure valve, 60, 60A transport section, 100 refrigeration cycle device D direction, D1 to D4 length, Df1 difference, F1, F2 blower, Kc, Kh heat transfer rate, L1, L2 circulation flow path, P, Pa pressure, P1, P2 extension piping, P3, P4, P5 piping, Qc , Qh amount of heat transfer, Sf1 to Sf4 liquid level, T, Ta saturation temperature, Tc, Th temperature, Td1, Td2 pipe diameter.

Claims (8)

  1.  冷凍サイクル装置であって、
     圧縮機と、
     第1熱交換器と、
     減圧装置と、
     第2熱交換器と、
     前記圧縮機、前記第1熱交換器、前記減圧装置、および前記第2熱交換器を接続し、第1冷媒を循環させる第1循環流路と、
     前記圧縮機の冷媒吸入側に設けられたアキュムレータと、
     前記圧縮機と前記アキュムレータとを接続するヒートパイプ回路とを備え、
     前記ヒートパイプ回路は、
      第2冷媒を循環させるループ式の第2循環流路と、
      前記圧縮機内の前記第1冷媒から吸熱する吸熱部と、
      前記アキュムレータ内の前記第1冷媒に放熱する放熱部と、
      前記第2冷媒の循環を遮断可能な定圧弁とを備え、
     前記第2循環流路は、
      気体の状態の前記第2冷媒を通過させるための気相流路と、
      液体の状態の前記第2冷媒を通過させるための液相流路とを備え、
     前記定圧弁は、
      前記液相流路に設けられ、
      前記第2冷媒の圧力が規定の値以上であるときに閉状態となり、
      前記第2冷媒の圧力が規定の値未満であるときに開状態となる、冷凍サイクル装置。
    A refrigeration cycle device,
    a compressor;
    a first heat exchanger;
    a pressure reducing device;
    a second heat exchanger;
    a first circulation flow path that connects the compressor, the first heat exchanger, the pressure reduction device, and the second heat exchanger and circulates the first refrigerant;
    an accumulator provided on the refrigerant suction side of the compressor;
    comprising a heat pipe circuit connecting the compressor and the accumulator,
    The heat pipe circuit is
    a loop-type second circulation flow path that circulates the second refrigerant;
    an endothermic part that absorbs heat from the first refrigerant in the compressor;
    a heat radiating part that radiates heat to the first refrigerant in the accumulator;
    a constant pressure valve capable of cutting off circulation of the second refrigerant;
    The second circulation flow path is
    a gas phase flow path for passing the second refrigerant in a gaseous state;
    a liquid phase flow path for passing the second refrigerant in a liquid state,
    The constant pressure valve is
    provided in the liquid phase flow path,
    It is in a closed state when the pressure of the second refrigerant is equal to or higher than a specified value,
    A refrigeration cycle device that is in an open state when the pressure of the second refrigerant is less than a specified value.
  2.  前記放熱部は、前記吸熱部の位置よりも低い位置に配置されている、請求項1に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 1, wherein the heat radiation part is located at a position lower than the position of the heat absorption part.
  3.  前記液相流路は、前記第2循環流路における前記定圧弁と前記吸熱部との間に設けられた運搬部を備え、
     前記運搬部は、毛細管力により前記定圧弁から前記吸熱部へと前記第2冷媒を移動させる、請求項2に記載の冷凍サイクル装置。
    The liquid phase flow path includes a conveying part provided between the constant pressure valve and the heat absorption part in the second circulation flow path,
    The refrigeration cycle device according to claim 2, wherein the transport section moves the second refrigerant from the constant pressure valve to the heat absorption section by capillary force.
  4.  前記運搬部は、多孔質体を備える、請求項3に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 3, wherein the transport section includes a porous body.
  5.  前記運搬部の径は、前記気相流路の径よりも小さい、請求項3に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 3, wherein the diameter of the transport section is smaller than the diameter of the gas phase flow path.
  6.  前記放熱部の前記第1冷媒の液面と平行な第1方向の長さは、前記放熱部の前記第1冷媒の液面の法線方向である第2方向の長さよりも長い、請求項1~請求項3のいずれか1項に記載の冷凍サイクル装置。 A length of the heat radiating section in a first direction parallel to the liquid surface of the first refrigerant is longer than a length of the heat radiating section in a second direction that is a normal direction to the liquid surface of the first refrigerant. The refrigeration cycle device according to any one of claims 1 to 3.
  7.  前記第1冷媒または前記第2冷媒は、自然冷媒である、請求項1~請求項6のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle device according to any one of claims 1 to 6, wherein the first refrigerant or the second refrigerant is a natural refrigerant.
  8.  前記第1冷媒と前記第2冷媒とは、同じ種類の冷媒である、請求項1~請求項6のいずれか1項に記載の冷凍サイクル装置。
     
    The refrigeration cycle device according to claim 1, wherein the first refrigerant and the second refrigerant are the same type of refrigerant.
PCT/JP2022/027117 2022-07-08 2022-07-08 Refrigeration cycle device WO2024009504A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027117 WO2024009504A1 (en) 2022-07-08 2022-07-08 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027117 WO2024009504A1 (en) 2022-07-08 2022-07-08 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2024009504A1 true WO2024009504A1 (en) 2024-01-11

Family

ID=89453189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027117 WO2024009504A1 (en) 2022-07-08 2022-07-08 Refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2024009504A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440970Y2 (en) * 1989-03-02 1992-09-25
JP2013185761A (en) * 2012-03-08 2013-09-19 Toshiba Corp Refrigerant heating system for refrigerating cycle device
JP2015169402A (en) * 2014-03-10 2015-09-28 パナソニックIpマネジメント株式会社 air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440970Y2 (en) * 1989-03-02 1992-09-25
JP2013185761A (en) * 2012-03-08 2013-09-19 Toshiba Corp Refrigerant heating system for refrigerating cycle device
JP2015169402A (en) * 2014-03-10 2015-09-28 パナソニックIpマネジメント株式会社 air conditioner

Similar Documents

Publication Publication Date Title
JP3662557B2 (en) Heat pump system
JP2001289465A (en) Air conditioner
JP2011133123A (en) Refrigerating cycle device
JP2011085331A (en) Air-conditioning hot water supply system
JP2009078246A (en) Dehumidifier
JP2012087978A (en) Refrigerating device
EP2541170A1 (en) Air-conditioning hot-water-supply system
JP2005114253A (en) Air conditioner
JP5503167B2 (en) Air conditioning system
WO2024009504A1 (en) Refrigeration cycle device
KR101320189B1 (en) Integrated heat pump system with boiler and air conditioner and its operating methodology for heat pump system
JP3666264B2 (en) Air conditioner
JP5627559B2 (en) Air conditioner
WO2011021532A1 (en) Refrigerator and heater
JP2007155203A (en) Air conditioner
KR100613502B1 (en) Heat pump type air conditioner
JP3502155B2 (en) Thermal storage type air conditioner
KR100554566B1 (en) Heat pump cycle for excessive low temperature
JP6458400B2 (en) Air conditioner
JP2019027601A (en) Refrigerant circuit device
Lee et al. Experimental study on a novel hybrid cooler for the cooling of telecommunication equipments
JP2004116930A (en) Gas heat pump type air conditioner
JP2008121930A (en) Refrigeration system
JP2009281595A (en) Refrigerating device
JP2006004254A (en) Automatic vending machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950298

Country of ref document: EP

Kind code of ref document: A1