WO2024009376A1 - 発光素子および発光素子の製造方法 - Google Patents

発光素子および発光素子の製造方法 Download PDF

Info

Publication number
WO2024009376A1
WO2024009376A1 PCT/JP2022/026664 JP2022026664W WO2024009376A1 WO 2024009376 A1 WO2024009376 A1 WO 2024009376A1 JP 2022026664 W JP2022026664 W JP 2022026664W WO 2024009376 A1 WO2024009376 A1 WO 2024009376A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
metal
metal particles
functional layer
emitting device
Prior art date
Application number
PCT/JP2022/026664
Other languages
English (en)
French (fr)
Inventor
吉裕 上田
Original Assignee
シャープディスプレイテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープディスプレイテクノロジー株式会社 filed Critical シャープディスプレイテクノロジー株式会社
Priority to PCT/JP2022/026664 priority Critical patent/WO2024009376A1/ja
Publication of WO2024009376A1 publication Critical patent/WO2024009376A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes

Definitions

  • the present disclosure relates to a light emitting device and a method for manufacturing the light emitting device.
  • a light-emitting element includes a light-emitting layer, an electrode, and a charge functional layer located between the light-emitting layer and the electrode, and the charge functional layer has the charge functional layer.
  • a layer includes a first metal particle located on the side of the electrode, and a second metal particle located at a distance of 5 nm or less from the first metal particle, and the second metal particle includes: It has a portion located closer to the light emitting layer than the lower end portion of the first metal particle.
  • FIG. 3 is a first cross-sectional view showing a schematic configuration of another light emitting element according to an embodiment of the present disclosure.
  • 1 is an example of an element map of a light emitting element according to Embodiment 1 of the present disclosure.
  • the light emitting layer 3 may be a so-called QLED (quantum dot light emitting diode) layer that emits light by the quantum dots 6, but is not limited thereto, and may be a so-called OLED (organic light emitting diode) layer.
  • QLED quantum dot light emitting diode
  • OLED organic light emitting diode
  • the charge functional layer 4 is located between the light emitting layer 3 and the electrode 5.
  • Charge functional layer 4 has at least one metal structure 7 .
  • the metal structure 7 includes a first conductor part 8 and a second conductor part 9.
  • the first conductor portion 8 is located on the side of the electrode 5 in the charge functional layer 4 .
  • the second conductor portion 9 protrudes from the first conductor portion 8 toward the light emitting layer 3 .
  • the metal structure 7 is electrically connected to the electrode 5.
  • the material of the metal structure 7 is not particularly limited as long as it is a conductive metal. Although the shape of the metal structure 7 is illustrated as a wedge in FIG. 1, this is only a typical example, and the shape of the metal structure 7 is not limited to the wedge shape.
  • FIG. 11 is a diagram showing a first example of the metal structure 7.
  • FIG. 11 may be interpreted as an enlarged view of the metal structure 7.
  • the charge functional layer 4 may have the following metal structure 7.
  • the metal structure 7 includes first metal particles 18 and second metal particles 19.
  • the metal structure 7 includes first metal particles 18 located on the electrode 5 side and second metal particles 19 located within a distance of 5 nm from the first metal particles 18.
  • the second metal particles 19 have a portion located closer to the light emitting layer 3 than the lower end portion 27 of the first metal particles 18 .
  • the distance between the first metal particles 18 and the second metal particles 19 the shortest distance among the distances between the two particles may be adopted.
  • the shapes of the first metal particles 18 and the second metal particles 19 are not particularly limited.
  • FIG. 2 is a diagram illustrating the behavior of the charges 10 in the charge functional layer 4 in the light emitting element 101.
  • FIG. 3 is a diagram illustrating the behavior of the charges 10 in the charge functional layer 4 in the comparative element A.
  • the configuration of comparative element A differs from that of light emitting element 101 in that charge functional layer 4 does not have metal structure 7, and is otherwise the same as that of light emitting element 101.
  • the charge 10 is a hole when the charge functional layer 4 is in the above-mentioned (1), and is an electron when the charge functional layer 4 is in the above-mentioned (2).
  • the light emitting element 101 In the light emitting element 101, most of the large number of charges 10 accumulated in the charge functional layer 4 are guided to the electrode 5 via the metal structure 7 when the light emitting element 101 is powered off. As a result, the amount of charges 10 accumulated in the charge functional layer 4 is stably small each time the light emitting element 101 is powered on. Therefore, variations in the electrical characteristics of the light emitting element 101 each time the light emitting element 101 is energized are small.
  • comparison element A In comparison element A, most of the large number of charges 10 accumulated in charge function layer 4 continue to remain in charge function layer 4 when comparison element A is powered off. As a result, the amount of charge 10 accumulated in the charge functional layer 4 varies greatly each time the comparison element A is powered on. Therefore, the electrical characteristics of the comparison element A vary greatly each time the comparison element A is energized.
  • the first conductor portion 8 and the second conductor portion 9 may contain the same metal element.
  • the first metal particles 18 and the second metal particles 19 may contain the same metal element.
  • the width 11 of the first conductor section 8 may be larger than the width 12 of the second conductor section 9.
  • the “width” of each of the first conductor portion 8 and the second conductor portion 9 is defined as a dimension in a certain direction 14 perpendicular to the thickness direction 13 of the charge functional layer 4 . If the width of each of the first conductor part 8 and the second conductor part 9 is not constant, attention may be paid to the maximum value of the width. In FIG.
  • the width 11 of the first conductor part 8 is constant and the width 12 of the second conductor part 9 is not constant, and the width 11 of the first conductor part 8 is , which is larger than the maximum width of the second conductor portion 9.
  • the metal structure 7 may be spaced apart from the light emitting layer 3. Furthermore, the width of the second conductor section 9 may be smaller than the width of the first conductor section 8.
  • the metal structure 7 may be in contact with the electrode 5.
  • the electric charge 10 can be guided from the metal structure 7 to the electrode 5 by the tunnel effect, it is not essential that the metal structure 7 and the electrode 5 are in contact with each other; They may not be in contact with each other but may be very close together (for example, with a spacing of less than 5 nm).
  • the position of the first conductor portion 8 on the “electrode 5 side” of the charge functional layer 4 refers to a configuration in which the metal structure 7 and the electrode 5 are in contact with each other, and a configuration in which the metal structure 7 and the electrode 5 are in contact with each other. However, it includes a very similar configuration. For example, regarding the metal structure 7 shown in FIG.
  • the first metal particles 18 may be in contact with the electrode 5, or the first metal particles 18 and the electrode 5 may not be in contact but are very close (e.g. The spacing may be less than 5 nm).
  • the position of the first metal particles 18 on the "electrode 5 side" in the charge functional layer 4 refers to a configuration in which the first metal particles 18 and the electrode 5 are in contact with each other, and a configuration in which the first metal particles 18 and the electrode 5 are in contact with each other. Although it is not, it includes a very similar configuration.
  • FIG. 4 is a second sectional view showing a schematic configuration of the light emitting element 101 according to Embodiment 1 of the present disclosure.
  • the surface of the charge functional layer 4 shown in FIG. 1 is a first cross section
  • the surface of the charge functional layer 4 shown in FIG. 4 is a second cross section.
  • the charge functional layer 4 includes a first cross section and a second cross section. Each of the first cross section and the second cross section is along the thickness direction 13 of the charge functional layer 4.
  • the second cross section is perpendicular to the first cross section.
  • the charge functional layer 4 has a plurality of metal structures 7. At least two of the plurality of metal structures 7 are present in the first cross section. At least two of the plurality of metal structures 7 are also present in the second cross section. This means that the plurality of metal structures 7 are two-dimensionally arranged when viewed from above of the charge functional layer 4.
  • the distance between two adjacent metal structures 7 may be 100 nm or more.
  • the width 11 of the first conductor portion 8 may be 100 nm or less, and the width of the second conductor portion 9 may be 40 nm or less. If the width of each of the first conductor part 8 and the second conductor part 9 is not constant, attention may be paid to the maximum value of the width.
  • the distance between adjacent two of the plurality of metal structures 7 may be the distance 15 between the two adjacent parts of the charge functional layer 4 in the direction perpendicular to the thickness direction 13 .
  • the charge functional layer 4 includes a plurality of metal nanoparticles, and the particle size distribution of these metal nanoparticles has a median value of 4 nm or more and 6 nm or less, a minimum value of 1 nm or more, and a maximum value of 30 nm. The following may be sufficient.
  • Each of the plurality of metal nanoparticles may be any one of a Group 1 element, a Group 4 element, a Group 6 element, and a Group 12 element.
  • Specific examples of materials for the metal nanoparticles include zinc oxide (ZnO), magnesium zinc oxide (MgZnO), titanium oxide (TiO 2 ), strontium oxide (SrTiO 3 ), and the like.
  • FIG. 5 is an example of a cross-sectional TEM (transmission electron microscope) image of the light emitting element 101.
  • FIG. 14 is an example of an element map of the light emitting element 101.
  • the surface of the light emitting element 101 shown in FIGS. 5 and 14 corresponds to the surface of the light emitting element 101 shown in FIG.
  • the image shown in FIG. 14 is an elemental map, and the structure in the depth direction can also be confirmed. Therefore, a case where some of the metal structures 7 appear to be in contact with the light emitting layer 3 in the depth direction is also allowed.
  • FIG. 6 is a graph showing voltage-current density characteristics for each energization in the light emitting element 101 and the comparative element A.
  • the light-emitting element 101 exhibits almost the same voltage-current density characteristics in the first and second energizations, but in the comparison element A, the voltage-current density characteristics vary in stages from the first energization to the fourth energization.
  • the voltage-current density characteristics fluctuate over time.
  • the EQE (external quantum efficiency) was about 7% for the light emitting element 101, and 3% or less for the comparative element A at the fourth energization.
  • the comparison element A was energized for the first time, the EQE of the comparison element A was 1% or less. From this result, it can be seen that the light emitting element 101 has stable electrical characteristics and improved EQE compared to the comparative element A.
  • FIG. 7 is a diagram illustrating a method for manufacturing the light emitting element 101.
  • the method for manufacturing the light emitting element 101 includes the following steps (A) to (C).
  • a base metal film 17 is formed on the charge functional layer 26.
  • the metal structure 7 of the light emitting element 101 is formed from the metal obtained by reducing the metal oxide 16 with the base metal film 17.
  • the first metal particles 18 and the second metal particles 19 of the light emitting element 101 may be formed using a metal obtained by reducing the metal oxide 16 with the base metal film 17. good.
  • the metal oxide 16 may correspond to the plurality of metal nanoparticles described above.
  • the light emitting element 101 has a structure in which a conductive metal structure 7 is introduced into the charge function layer 26 based on a general light emitting element that emits light using quantum dots 6. Since the manufacturing method of each layer below the light emitting layer 3 is within the category of well-known technology, detailed explanation will be omitted here.
  • a colloidal solution is used in which the particle size distribution of the ZnO nanoparticles contained in the colloidal solution has a median value closer to its minimum value than its maximum value.
  • the difference between the median value of the particle size distribution of ZnO nanoparticles in the colloidal solution and the maximum value of the distribution may be about 100 nm at most.
  • the charge functional layer 26 can be formed by applying the colloidal solution and heat-treating it at about 100° C. for 15 minutes. At this time, local irregularities occur within the plane of the charge functional layer 26 due to the large-diameter ZnO nanoparticles contained in the colloidal solution.
  • a base metal film 17 such as Al is formed to a thickness of about 10 nm using a general method such as vacuum evaporation, and a heat treatment is performed at about 100° C. for 10 minutes while maintaining a vacuum state. Since base metals such as Al are easily oxidized themselves, they reduce other oxides with which they come in contact. The base metal film 17 reduces ZnO contained in the charge functional layer 26 to precipitate Zn.
  • Zn is selectively precipitated, tracing the gap between a large-diameter ZnO nanoparticle and an adjacent ZnO nanoparticle, and Zn is precipitated.
  • Zn is formed as the metal structure 7 (for example, the first metal particles 18 and the second metal particles 19 in the metal structure 7 shown in FIG. 11) in the region where the unevenness is formed.
  • an electrode 5 is formed by vapor depositing Al or the like to a predetermined thickness on the charge functional layer 4 having the metal structure 7. At least a portion of the electrode 5 of the light emitting element 101 may be formed by the base metal film 17.
  • the unevenness may be formed by large-diameter nanoparticles or may be a gap formed as a result of agglomeration of nanoparticles.
  • FIG. 12 is a diagram showing a second example of the metal structure 7.
  • FIG. 12 may be interpreted as an enlarged view of the metal structure 7.
  • the charge functional layer 4 has a metal structure 7 made of a plurality of metal particles including first metal particles 18 and second metal particles 19.
  • the metal structure 7 may include metal particles in addition to the first metal particles 18 and the second metal particles 19.
  • the metal structure 7 refers to a structure made of metal particles connected to each other within a distance of 5 nm. Note that, for example, if the interparticle distance between two metal particles is 0 nm, the two metal particles may be regarded as one metal particle.
  • the metal structure 7 shown in FIG. 12 includes metal particles 28, metal particles 29, and metal particles 30 in addition to the first metal particles 18 and the second metal particles 19.
  • the interparticle distance between the metal particles 28 and the second metal particles 19, the interparticle distance between the metal particles 29 and the second metal particles 19, and the interparticle distance between the metal particles 29 and the metal particles 30 are each 5 nm or less.
  • the maximum distance between any two adjacent metal particles may be 5 nm or less.
  • the metal particles 28 are located within 5 nm from the electrode 5 in the thickness direction, they may be regarded as first metal particles.
  • the width L2 including the second metal particles 19 is smaller than the width L1 including the first metal particles 18. Specifically, one direction 14 perpendicular to the thickness direction 13 including the first metal particles 18 and one direction 14 perpendicular to the thickness direction 13 including the second metal particles 19 are compared. Note that if the above width is not constant, attention may be paid to the maximum width of the width.
  • the metal structure 7 shown in FIG. 12 includes metal particles 28, metal particles 29, and metal particles 30 in addition to the first metal particles 18 and the second metal particles 19.
  • the width L1 including the first metal particles 18 is the maximum width L1 in one direction 14 perpendicular to the thickness direction 13 including the first metal particles 18, and the width L2 including the second metal particles 19 is the maximum width L1 including the first metal particles 18 in one direction 14 perpendicular to the thickness direction 13.
  • the width is L2, which is the maximum width in one direction 14 perpendicular to the thickness direction 13 including the two metal particles 19.
  • width L2 including the second metal particles 19 located closer to the light emitting layer 3 than the width L1 including the first metal particles 18 is smaller than the width L1 including the first metal particles 18, it reaches the light emitting layer 3 more. Electrons can pass through it more easily.
  • the metal particles may be spaced apart from the light emitting layer 3.
  • the second metal particles 19 shown in FIG. 11 and the metal particles 30 located closest to the light emitting layer 3 among the metal particles included in the metal structure 7 shown in FIG. 12 are spaced apart from the light emitting layer 3. Good too.
  • the width L2 including the second metal particles 19 may be smaller than the width L1 including the first metal particles 18.
  • step (C) for example, regarding the metal structure 7 shown in FIG. 12, the first metal particles 18 and the second metal particles of the light emitting element 101 are A plurality of metal particles including 19 may be formed.
  • FIG. 8 is a first sectional view showing a schematic configuration of a modified example of the light emitting element 101 according to Embodiment 1 of the present disclosure.
  • a light emitting element 102 shown in FIG. 8 is a modification of the light emitting element 101.
  • the surface of the light emitting element 102 shown in FIG. 8 corresponds to the first cross section of the light emitting element 101 shown in FIG.
  • the structure of the light emitting element 102 differs from the structure of the light emitting element 101 in that the charge functional layer 4 has a plurality of first metal particles 18 and a plurality of second metal particles 19 instead of the metal structure 7. , otherwise the structure is the same as that of the light emitting element 101.
  • the plurality of first metal particles 18 are located on the side of the electrode 5 in the charge functional layer 4.
  • the plurality of second metal particles 19 are located on the side of the light emitting layer 3 with respect to the plurality of first metal particles 18.
  • the interval 20 between the two adjacent ones is 5 nm or less.
  • any one of the plurality of first metal particles 18 (first metal particle 18) and any one of the plurality of second metal particles 19 (second metal particle 19) may contain the same metal element. At least one of the plurality of first metal particles 18 (first metal particle 18) may be in contact with the electrode 5.
  • Each of the plurality of second metal particles 19 may be spaced apart from the light emitting layer 3.
  • the charge functional layer 4 includes a plurality of metal nanoparticles, and the particle size distribution of these metal nanoparticles has a median value of 4 nm or more and 6 nm or less, a minimum value of 1 nm or more, and a maximum value of 30 nm. It may be the following.
  • the light emitting layer 3 may emit light using the quantum dots 6.
  • FIG. 9 is a diagram illustrating a method for manufacturing the light emitting element 102.
  • the method for manufacturing the light emitting element 102 includes the following steps (D) to (F).
  • a charge functional layer 26 of the light emitting device 102 containing the metal oxide 16 is formed.
  • a base metal film 17 is formed on the charge functional layer 26.
  • a plurality of first metal particles 18 and a plurality of second metal particles 19 of the light emitting element 102 are formed using the metal obtained by reducing the metal oxide 16 with the base metal film 17.
  • At least a portion of the electrode 5 of the light emitting element 102 may be formed by the base metal film 17.
  • FIG. 10 is a diagram illustrating a method for manufacturing the light emitting element 101 according to Embodiment 2 of the present disclosure.
  • the method for manufacturing the light emitting element 101 according to Embodiment 2 of the present disclosure is different from the method for manufacturing the light emitting element 101 according to Embodiment 1 of the present disclosure in the following points, and the other points are different from the method for manufacturing the light emitting element 101 according to Embodiment 1 of the present disclosure.
  • the method for manufacturing the light emitting element 101 is the same.
  • the nanoimprint mold 24 is pressed onto the surface 23 of the charge functional layer 26 on the side opposite to the light emitting layer 3, and the charge functional layer A recess 25 is formed on the surface 23 of the light emitting layer 26 opposite to the light emitting layer 3.
  • a base metal film 17 is formed on the charge functional layer 26 so that the base metal film 17 fills the recess 25 .
  • the metal structure 7 of the light emitting element 101 is formed from the metal obtained by reducing the metal oxide 16 with the base metal film 17.
  • the charge functional layer 26 is formed by coating nanoparticles, sputtering, or the like. Thereafter, the intermediate body of the light emitting device 101 in which up to the charge functional layer 26 has been formed is loaded into the nanoimprint apparatus.
  • a material for the charge functional layer 26 a material containing, for example, ZnO nanoparticles and having charge transporting properties and/or charge injection properties is suitable.
  • the shape of the nanoimprint mold 24 corresponds to the shape of the metal structure 7.
  • the intermediate body of the light emitting element 101 is heated to about 100° C. and the nanoimprint mold 24 is pressure-bonded to the surface 23 of the charge function layer 26 opposite to the light emitting layer 3, thereby forming the metal structure 7 on the charge function layer 26.
  • a recess 25 having an inverted shape is formed.
  • the intermediate body of the light emitting element 101 is taken out, a thin base metal film 17 such as Al is formed by vacuum evaporation, and the process up to the formation of the electrode 5 is performed using the same method as the method for manufacturing the light emitting element 101 according to Embodiment 1 of the present disclosure. .
  • the light-emitting layer 3 may deteriorate due to contact with a developer or the like during patterning, but the method of manufacturing the light-emitting element 101 according to Embodiments 1 and 2 of the present disclosure prevents damage to the light-emitting layer 3. Controlled processing is possible. However, in the step of heating the light-emitting layer 3, it is necessary to perform the treatment at 150° C. or less and for 15 minutes or less in order to prevent thermal deterioration. If attention is paid to thermal deterioration, it is possible to maintain the characteristics of the light emitting element 101 even if the light emitting layer 3 is exposed to the process of forming the metal structure 7.
  • the metal structure 7 is replaced with a plurality of first metal particles 18 and a plurality of second metal particles 19, the light emitting device according to the second embodiment of the present disclosure 102 manufacturing methods can be realized.
  • FIG. 13 is a first sectional view showing a schematic configuration of another light emitting element 103 according to an embodiment of the present disclosure.
  • the particle size of the metal particles is smaller than that of the light emitting element 102 shown in FIG.
  • the light emitting element 103 can be manufactured by the same method as the manufacturing method of the light emitting element 102.
  • the first metal particles 18 and the second metal particles 19 or the metal structure 7 may be formed by filling the recesses 25 with a metal material 31 instead of the base metal film 17. This eliminates the need for reduction using the base metal film 17.
  • Comparative element B had a member having the same shape as the metal structure 7, the electrical characteristics of the comparative element B varied each time the comparative element B was energized. That is, comparative element B exhibited electrical characteristics similar to those of comparative element A described above. Comparative element B is estimated to have a poor ability to guide the charges accumulated in charge functional layer 4 to electrode 5 due to the substitution of metal structure 7 with an insulating material.
  • a light emitting device includes a light emitting layer, an electrode, and a charge functional layer located between the light emitting layer and the electrode, and the charge functional layer has the charge functional layer.
  • a layer includes a first metal particle located on the side of the electrode, and a second metal particle located at a distance of 5 nm or less from the first metal particle, and the second metal particle includes: It has a portion located closer to the light emitting layer than the lower end portion of the first metal particle.
  • a light emitting element in the aspect 1, includes a metal structure made of a plurality of metal particles including at least the first metal particles and the second metal particles, wherein The maximum value of the distance between any two adjacent ones is 5 nm or less.
  • a width including the second metal particles is smaller than a width including the first metal particles.
  • the metal particles are spaced apart from the light emitting layer.
  • the first metal particles and the second metal particles each contain the same metal element.
  • the first metal particles are in contact with the electrode.
  • a light emitting device includes a light emitting layer, an electrode, and a charge functional layer located between the light emitting layer and the electrode, and the charge functional layer includes at least one
  • the metal structure includes a first conductor portion located on a side of the electrode in the charge functional layer, and a first conductor portion protruding from the first conductor portion toward the light emitting layer. It includes a second conductor portion.
  • the first conductor portion and the second conductor portion each contain the same metal element.
  • the width of the first conductor portion is larger than the width of the second conductor portion.
  • the metal structure is spaced apart from the light emitting layer.
  • the metal structure is in contact with the electrode.
  • the charge functional layer has a plurality of metal structures, and the charge functional layer is arranged along the thickness direction of the charge functional layer.
  • a first cross section in which at least two of the plurality of metal structures exist; and a first cross section that is along the thickness direction of the charge functional layer and perpendicular to the first cross section and at least two of the plurality of metal structures. includes a second cross-section in which there is.
  • the distance between two adjacent metal structures of the plurality of metal structures is 100 nm or more.
  • the width of the first conductor portion is 100 nm or less, and the width of the second conductor portion is 40 nm or less.
  • the charge functional layer includes a plurality of metal nanoparticles, and the particle size distribution of the plurality of metal nanoparticles is centered The value is 4 nm or more and 6 nm or less, the minimum value is 1 nm or more, and the maximum value is 30 nm or less.
  • each of the plurality of metal nanoparticles is any one of a Group 1 element, a Group 4 element, a Group 6 element, and a Group 12 element. .
  • the light emitting layer in any one of Aspects 1 to 16, the light emitting layer emits light using quantum dots.
  • a method for manufacturing a light emitting device according to Aspect 18 of the present disclosure is a method for manufacturing a light emitting device according to any one of Aspects 1 to 6, comprising: forming a charge functional layer of the light emitting device containing a metal oxide; A base metal film is formed on the charge functional layer, and the metal obtained by reducing the metal oxide with the base metal film forms first metal particles and second metal particles of the light emitting element.
  • a method for manufacturing a light emitting device according to Aspect 19 of the present disclosure is a method for manufacturing a light emitting device according to any one of Aspects 7 to 14, comprising: forming a charge functional layer of the light emitting device containing a metal oxide; A base metal film is formed on the charge functional layer, and the metal structure of the light emitting device is formed using the metal obtained by reducing the metal oxide with the base metal film.
  • a method for manufacturing a light-emitting element according to Aspect 20 of the present disclosure includes forming at least a part of the electrode of the light-emitting element with the base metal film in Aspect 18 or 19 above.
  • a method for manufacturing a light-emitting element according to Aspect 21 of the present disclosure is that in any one of Aspects 18 to 20, the light-emitting layer of the light-emitting element emits light using quantum dots.
  • Second conductor part 10 Charge 11 Width of first conductor part 12 Maximum width of second conductor part 13 Thickness direction of the charge functional layer 14 One direction perpendicular to the thickness direction of the charge functional layer 15 Spacing between two adjacent metal structures 16 Metal oxide 17 Base metal film 18 First metal particles 19 Second metal particles 20 Spacing 23 between adjacent two of the plurality of first metal particles and the plurality of second metal particles Surface 24 of the charge functional layer opposite to the light emitting layer Nanoimprint mold 25 Concave portion 27 Lower end portions 28 to 30 of the first metal particles Metal Particles 31 Metal materials 101 to 103 Light emitting element L1 Width including first metal particles L2 Width including second metal particles

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Devices (AREA)

Abstract

電荷機能層(4)は、電荷機能層(4)における電極(5)の側に位置している第1金属粒子(18)と、第1金属粒子(18)との距離が5nm以下である箇所に位置する第2金属粒子(19)と、を含み、第2金属粒子(19)は、第1金属粒子(18)の下端部(27)よりも発光層(3)側に位置する部分を有する。

Description

発光素子および発光素子の製造方法
 本開示は、発光素子および発光素子の製造方法に関する。
 特許文献1に、発光層と電極との間の層が、金属酸化物または金属ハロゲン化物と金属との混合膜である発光素子が開示されている。
日本国特開平11-111461号
 従来技術においては、発光素子の通電毎の、発光素子の電気特性のバラつきが大きい。
 本開示の一態様に係る発光素子は、発光層と、電極と、前記発光層と前記電極との間に位置している電荷機能層とを備えており、前記電荷機能層は、前記電荷機能層における前記電極の側に位置している第1金属粒子と、前記第1金属粒子との距離が5nm以下である箇所に位置する第2金属粒子と、を含み、前記第2金属粒子は、前記第1金属粒子の下端部よりも前記発光層側に位置する部分を有する。
 本開示の一態様によれば、発光素子の通電毎の、発光素子の電気特性のバラつきを抑制することができる。
本開示の実施形態1に係る発光素子の概略構成を示す第1断面図である。 本開示の実施形態1に係る発光素子における、電荷機能層での電荷の挙動を説明する図である。 比較素子Aにおける、電荷機能層での電荷の挙動を説明する図である。 本開示の実施形態1に係る発光素子の概略構成を示す第2断面図である。 本開示の実施形態1に係る発光素子の断面TEM(透過型電子顕微鏡)画像の一例である。 本開示の実施形態1に係る発光素子および比較素子Aそれぞれにおける、通電毎の、電圧‐電流密度特性を示すグラフである。 本開示の実施形態1に係る発光素子の製造方法を説明する図である。 本開示の実施形態1に係る発光素子の変形例の概略構成を示す第1断面図である。 本開示の実施形態1に係る発光素子の変形例の製造方法を説明する図である。 本開示の実施形態2および3に係る発光素子の製造方法を説明する図である。 金属構造体の第1例を示す図である。 金属構造体の第2例を示す図である。 本開示の実施形態に係る別の発光素子の概略構成を示す第1断面図である。 本開示の実施形態1に係る発光素子の元素マップの一例である。
 本開示を実施するための形態について説明する。説明の便宜上、先に説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない場合がある。
 〔実施形態1〕
 図1は、本開示の実施形態1に係る発光素子101の概略構成を示す第1断面図である。発光素子101は、電極1、電荷機能層2、発光層3、電荷機能層4、および電極5を備えている。発光素子101は、電極1と電極5との間に流れる電流によって発光する。
 電荷機能層2は、(1)正孔注入層および正孔輸送層の少なくとも一方ならびに(2)電子注入層および電子輸送層の少なくとも一方、の一方を含んでいる。電荷機能層4は、これら(1)および(2)の他方を含んでいる。
 発光層3は、量子ドット6により発光するいわゆるQLED(量子ドット発光ダイオード)層であってもよいが、これに限定されず、いわゆるOLED(有機発光ダイオード)層であってもよい。
 電荷機能層4は、発光層3と電極5との間に位置している。電荷機能層4は、少なくとも1つの金属構造体7を有している。金属構造体7は、第1導体部8および第2導体部9を含んでいる。第1導体部8は、電荷機能層4における電極5の側に位置している。第2導体部9は、第1導体部8から発光層3へ向けて突出している。金属構造体7は、電極5と電気的に接続されている。金属構造体7の材料は、導電性を有する金属でさえあれば、特に限定されない。図1では金属構造体7の形状を楔形に図示しているが、これは典型例に過ぎず、金属構造体7の形状は楔形に限定されない。
 図11は、金属構造体7の第1例を示す図である。図11は、金属構造体7の拡大図と解釈されてもよい。
 電荷機能層4は、次のような金属構造体7を有していてもよい。金属構造体7は、第1金属粒子18と第2金属粒子19とを含む構成である。具体的には、金属構造体7は、電極5の側に位置する第1金属粒子18と、当該第1金属粒子18との距離が5nm以内に位置する第2金属粒子19とを含む。さらに、当該第2金属粒子19は、当該第1金属粒子18の下端部27よりも発光層3側に位置する部分を有する。なお、第1金属粒子18と第2金属粒子19との距離に関し、両粒子間距離のうち、最短距離を採用してもよい。なお、第1金属粒子18および第2金属粒子19それぞれの形状は特に限定されない。
 図2は、発光素子101における、電荷機能層4での電荷10の挙動を説明する図である。図3は、比較素子Aにおける、電荷機能層4での電荷10の挙動を説明する図である。比較素子Aの構成は、電荷機能層4が金属構造体7を有していない点が発光素子101の構成と異なっており、それ以外は発光素子101の構成と同一である。電荷10は、電荷機能層4が前述した(1)である場合正孔であり、電荷機能層4が前述した(2)である場合電子である。
 発光素子101においては、発光素子101の電源オフ状態において、電荷機能層4に蓄積された多数の電荷10の多くが、金属構造体7を介して電極5に導かれる。この結果、毎回の発光素子101の電源オン状態に関し、電荷機能層4に蓄積される電荷10の量は安定して少ない。従って、発光素子101の通電毎の、発光素子101の電気特性のバラつきが小さい。
 比較素子Aにおいては、比較素子Aの電源オフ状態において、電荷機能層4に蓄積された多数の電荷10のほとんどが電荷機能層4に残り続ける。この結果、比較素子Aの電源オン状態の度に、電荷機能層4に蓄積される電荷10の量は大きくバラつく。従って、比較素子Aの通電毎の、比較素子Aの電気特性のバラつきが大きい。
 第1導体部8と第2導体部9とが互いに同一の金属元素を含んでいてもよい。例えば図11に示す金属構造体7に関しては、第1金属粒子18と第2金属粒子19とが互いに同一の金属元素を含んでいてもよい。第1導体部8の幅11は、第2導体部9の幅12より大きくてもよい。第1導体部8および第2導体部9それぞれの“幅”は、電荷機能層4の厚み方向13と垂直なある1方向14における寸法と定義される。第1導体部8および第2導体部9それぞれについて、幅が一定でない場合はその幅の最大値に注目してもよい。図1においては、電荷機能層4の厚み方向13に沿って、第1導体部8の幅11が一定かつ第2導体部9の幅12が一定でなく、第1導体部8の幅11は、第2導体部9の最大幅より大きい例を示している。金属構造体7は、発光層3から離間されていてもよい。更に、第2導体部9の幅は第1導体部8の幅よりも小さくてもよい。上記構成により、第2導体部9と発光層3との間に生じる容量を抑制することができる。
 金属構造体7は、電極5と接触していてもよい。一方、トンネル効果で金属構造体7から電極5へ電荷10を導き得ることを考えると、金属構造体7と電極5とが接触していることは必須でなく、金属構造体7と電極5とが接触していないが極めて近い(例:間隔5nm未満)構成であってもよい。第1導体部8の位置が電荷機能層4における“電極5の側”とは、金属構造体7と電極5とが接触している構成と、金属構造体7と電極5とが接触していないが極めて近い構成と、を包含するものである。例えば図11に示す金属構造体7に関しては、第1金属粒子18は、電極5と接触していてもよいし、第1金属粒子18と電極5とが接触していないが極めて近い(例:間隔5nm未満)構成であってもよい。第1金属粒子18の位置が電荷機能層4における“電極5の側”とは、第1金属粒子18と電極5とが接触している構成と、第1金属粒子18と電極5とが接触していないが極めて近い構成と、を包含するものである。
 図4は、本開示の実施形態1に係る発光素子101の概略構成を示す第2断面図である。図1に示される電荷機能層4の面を第1断面、図4に示される電荷機能層4の面を第2断面とする。換言すれば、電荷機能層4は、第1断面および第2断面を含んでいる。第1断面および第2断面それぞれは、電荷機能層4の厚み方向13に沿っている。第2断面は、第1断面と垂直である。
 電荷機能層4は、複数の金属構造体7を有している。第1断面には、複数の金属構造体7のうち少なくとも2つが存在している。第2断面にも、複数の金属構造体7のうち少なくとも2つが存在している。これは、複数の金属構造体7は、電荷機能層4の上面視において、2次元に配置されていることを意味している。
 複数の金属構造体7のうち隣り合う2つの間隔は、100nm以上であってもよい。複数の金属構造体7それぞれにおいて、第1導体部8の幅11は100nm以下であってもよく、第2導体部9の幅は40nm以下であってもよい。第1導体部8および第2導体部9それぞれについて、幅が一定でない場合はその幅の最大値に注目してもよい。複数の金属構造体7のうち隣り合う2つの間隔は、当該2つが電荷機能層4の厚み方向13と垂直な方向に最も近接する部分の間隔15であってもよい。
 電荷機能層4は、複数の金属ナノ粒子を含んでおり、これら複数の金属ナノ粒子の粒径分布は、中央値が4nm以上6nm以下であり、最小値が1nm以上であり、最大値が30nm以下であってもよい。複数の金属ナノ粒子それぞれは、第1族元素、第4族元素、第6族元素、および第12族元素のいずれかであってもよい。金属ナノ粒子の材料の具体例として、酸化亜鉛(ZnO)、酸化亜鉛マグネシウム(MgZnO)、酸化チタン(TiO)、酸化ストロンチウム(SrTiO)等が挙げられる。
 図5は、発光素子101の断面TEM(透過型電子顕微鏡)画像の一例である。図14は、発光素子101の元素マップの一例である。図5および図14に示される発光素子101の面は、図1に示される発光素子101の面に対応する。なお、図14に示す画像は、元素マップであり、奥行き方向の構造も確認できる。そのため、奥行き方向で一部の金属構造体7が発光層3と接触するように見える場合も許容する。図6は、発光素子101および比較素子Aそれぞれにおける、通電毎の、電圧‐電流密度特性を示すグラフである。
 図6によれば、発光素子101は、1回目の通電と2回目の通電とがほぼ同じ電圧‐電流密度特性を示すが、比較素子Aは、1回目の通電から4回目の通電まで、段階的に電圧‐電流密度特性が変動する。EQE(外部量子効率)は、発光素子101が約7%、比較素子Aの4回目の通電では3%以下であった。比較素子Aの1回目の通電では、比較素子AのEQEは1%以下であった。この結果から、発光素子101は、比較素子Aに対して、電気特性が安定してEQEが向上することが分かる。
 比較素子Aでは、比較素子Aの通電により電荷10が蓄積され、蓄積された電荷10が長時間(少なくとも数分)に亘って解放されないことが、図5、図14、および図6から分かる。比較素子Aの構造から、電荷10は、発光層3と電荷機能層4と電極5とからなるコンデンサに蓄積されていると考えられる。一方、発光素子101では、通電回数によらず電気特性が安定していることから、当該コンデンサによる電荷10の蓄積量が僅かであり、僅かに蓄積された電荷10の解放も早いと考えられる。
 具体的には、図6から以下の内容が読み取れる。「比較素子A:通電1回目」と「比較素子A:通電2回目」との間に、非通電で5分程度放置した履歴がある。放置した理由は、通常のコンデンサであれば短時間で放電するので、非通電で5分も放置すれば「比較素子A:通電1回目」と「比較素子A:通電2回目」とは同じ曲線を描くだろうとの予測によるものである。ところが当該予測に反した実験結果が得られたので、比較素子Aにおける電荷10の蓄積は、並行平板コンデンサのような一般的な機構ではなく、電荷機能層4のナノ粒子とナノ粒子に配位したリガンドとを含む有機化合物によって捕獲された電荷10に起因するものである。従って、比較素子Aに電荷10が一度蓄積されると、この電荷10は少なくとも数分程度では解放されないと考えられる。「比較素子A:通電3回目」および「比較素子A:通電4回目」は、間を置かずに連続して通電を繰り返した結果であり、(X)可能な上限まで電荷10が捕獲されたことで電圧‐電流密度特性に変化が無くなる、もしくは、(Y)繰り返し通電により電荷機能層4の状態が変化してほとんど電荷10を捕獲しなくなった、と考えられる。さらに、比較素子Aを翌日以降に再測定すると、通電回数で電圧‐電流密度特性が変化する特性が現れるので、以上の現象は可逆的な現象であることがわかっている。一方で、発光素子101では比較素子Aの連続複数回通電に近い電圧‐電流密度特性が初回通電で得られているので、比較素子Aの現象は(Y)によるのではないかと考えられる。
 図7は、発光素子101の製造方法を説明する図である。発光素子101の製造方法は、下記工程(A)~(C)を含んでいる。
 (A)金属酸化物16を含む、発光素子101の電荷機能層26を形成する。
 (B)電荷機能層26の上に卑金属膜17を形成する。
 (C)卑金属膜17により金属酸化物16を還元させて得られた金属によって、発光素子101の金属構造体7を形成する。例えば図11に示す金属構造体7に関しては、卑金属膜17により金属酸化物16を還元させて得られた金属によって、発光素子101の第1金属粒子18および第2金属粒子19を形成してもよい。
 金属酸化物16は、前述した複数の金属ナノ粒子に対応してもよい。発光素子101は、量子ドット6により発光する一般的な発光素子を基に、電荷機能層26に導電性の金属構造体7を導入した構造である。発光層3以下の各層の製造方法は周知技術の範疇なので、ここでは詳細な説明を省略する。
 ZnOナノ粒子(金属ナノ粒子の一例、金属酸化物16の構成要素)の塗布、もしくは、例えばスパッタリング法またはゾルゲル法で厚さ40nm程度のZnO連続膜を成膜する等によって、電荷機能層26を形成する。ここでは、電荷機能層26をZnOナノ粒子によって構成する例について説明する。
 電荷機能層26をZnOナノ粒子の塗布により形成する際、コロイド溶液に含まれるZnOナノ粒子の粒径分布が、その中央値がその最大値よりその最小値に近いコロイド溶液を用いる。例えば、当該コロイド溶液におけるZnOナノ粒子の粒径分布の中央値と、同分布の最大値との差が最大で100nm程度であればよい。当該コロイド溶液を塗布し、100℃程度で15分熱処理すれば、電荷機能層26を形成できる。その際、当該コロイド溶液に含まれる大径のZnOナノ粒子により、電荷機能層26の面内に局所的な凹凸が発生する。この凹凸は、大径のZnOナノ粒子の周囲に選択的に発生する。電荷機能層26におけるこの凹凸以外の領域は平坦性が維持される。次に、真空蒸着等の一般的な手法でAl等の卑金属膜17を厚さ10nm程度に成膜し、真空状態を維持して100℃程度で10分熱処理を行う。Al等の卑金属はそれ自体が酸化しやすいため、接触する他の酸化物を還元させる。卑金属膜17は、電荷機能層26に含まれるZnOを還元してZnを析出させる。この時、凹凸が形成された領域では、卑金属膜17との接触面積が大きいため、選択的にZnが析出し、大径のZnOナノ粒子と隣接するZnOナノ粒子との間隙をトレースしてZnが析出する。これにより、凹凸が形成された領域にZnが、金属構造体7(例えば図11に示す金属構造体7に関しては、第1金属粒子18および第2金属粒子19)として形成される。熱処理後、金属構造体7を有している電荷機能層4の上に、Al等を所定の厚さに蒸着して電極5を形成する。卑金属膜17によって発光素子101の電極5の少なくとも一部を形成してもよい。この凹凸は、大径のナノ粒子によって形成される以外にも、ナノ粒子が凝集した結果生じる隙間であってもよい。
 図12は、金属構造体7の第2例を示す図である。図12は、金属構造体7の拡大図と解釈されてもよい。
 電荷機能層4は、第1金属粒子18および第2金属粒子19を含む複数の金属粒子からなる金属構造体7を有する。金属構造体7は、第1金属粒子18および第2金属粒子19の他に、金属粒子を含んでもよい。その場合、金属構造体7とは、金属粒子の間の距離が5nm以内で繋がる金属粒子からなる構造体を示す。なお、例えば、2つの金属粒子間の粒子間距離が0nmであれば、当該2つの金属粒子を1つの金属粒子とみなすとよい。
 金属構造体7の具体例を図12に示す。図12に示す金属構造体7は第1金属粒子18および第2金属粒子19の他に金属粒子28、金属粒子29、および金属粒子30を含む。金属粒子28と第2金属粒子19との粒子間距離、金属粒子29と第2金属粒子19との粒子間距離、金属粒子29と金属粒子30との粒子間距離はそれぞれ5nm以下である。
 複数の金属粒子における任意の隣り合う2つの間の距離の最大値が5nm以下であってもよい。粒子間距離を5nm以下することで、トンネル効果により、金属粒子周辺の電荷を、金属粒子を介して電極5へ導くことができる。
 例えば、金属粒子30周辺の電荷に関し、金属粒子30と第2金属粒子19との粒子間距離が5nm以上であったとしても、金属粒子29を介することで金属粒子29、第2金属粒子19、第1金属粒子18を介して電極5へ導くことができる。
 なお、金属粒子28は、電極5から厚さ方向に5nm以内に位置するため、第1金属粒子とみなしてもよい。
 図12によれば、金属構造体7の幅に関し、第2金属粒子19を含む幅L2は、第1金属粒子18を含む幅L1よりも小さい。具体的には、第1金属粒子18を含む厚み方向13と垂直なある1方向14と、第2金属粒子19を含む厚み方向13と垂直なある1方向14と、を比較する。なお、上記の幅が一定ではない場合は、その幅の最大幅に注目してもよい。
 具体例を図12に示す。図12に示す金属構造体7は、第1金属粒子18および第2金属粒子19の他に金属粒子28、金属粒子29、および金属粒子30を含む。第1金属粒子18を含む幅L1は、第1金属粒子18を含む厚み方向13と垂直なある1方向14のうち、最大幅であるL1となり、第2金属粒子19を含む幅L2は、第2金属粒子19を含む厚み方向13と垂直なある1方向14のうち、最大幅であるL2となる。
 第1金属粒子18を含む幅L1よりも発光層3側に位置する第2金属粒子19を含む幅L2は、第1金属粒子18を含む幅L1よりも小さいため、より発光層3に到達する電子が通りやすくなる。
 金属粒子は、発光層3から離間されていてもよい。例えば、図11に示す第2金属粒子19や図12に示す、金属構造体7に含まれる金属粒子の内、最も発光層3側に位置する金属粒子30は、発光層3から離間されていてもよい。更に、第2金属粒子19を含む幅L2は第1金属粒子18を含む幅L1よりも小さくてもよい。上記構成により、第2金属粒子19と発光層3との間に生じる容量を抑制することができる。
 工程(C)において、例えば図12に示す金属構造体7に関しては、卑金属膜17により金属酸化物16を還元させて得られた金属によって、発光素子101の第1金属粒子18および第2金属粒子19を含む複数の金属粒子を形成してもよい。
 図8は、本開示の実施形態1に係る発光素子101の変形例の概略構成を示す第1断面図である。図8に示す発光素子102が、発光素子101の変形例である。図8に示される発光素子102の面は、図1に示される発光素子101の第1断面に対応する。
 発光素子102の構成は、電荷機能層4が金属構造体7の替わりに複数の第1金属粒子18および複数の第2金属粒子19を有している点が発光素子101の構成と異なっており、それ以外は発光素子101の構成と同一である。
 複数の第1金属粒子18および複数の第2金属粒子19に関する各種技術事項は、第1導体部8および第2導体部9に関する各種技術事項と1対1に対応すると解釈することができる。すなわち、以下のことが言える。
 複数の第1金属粒子18は、電荷機能層4における電極5の側に位置している。複数の第2金属粒子19は、複数の第1金属粒子18に対して発光層3の側に位置している。複数の第1金属粒子18および複数の第2金属粒子19のうち隣り合う2つの組み合わせ全てに関し、当該隣り合う2つの間隔20が5nm以下である。
 複数の第1金属粒子18のいずれか(第1金属粒子18)と複数の第2金属粒子19のいずれか(第2金属粒子19)とが互いに同一の金属元素を含んでいてもよい。複数の第1金属粒子18のうち少なくとも1つ(第1金属粒子18)は、電極5と接触していてもよい。
 複数の第2金属粒子19それぞれは、発光層3から離間されていてもよい。電荷機能層4は、複数の金属ナノ粒子を含んでおり、これら複数の金属ナノ粒子の粒径分布は、中央値が4nm以上6nm以下であり、最小値が1nm以上であり、最大値が30nm以下であってもよい。発光素子101と同じく、発光素子102においても、発光層3は、量子ドット6により発光してもよい。
 図9は、発光素子102の製造方法を説明する図である。発光素子102の製造方法は、下記工程(D)~(F)を含んでいる。
 (D)金属酸化物16を含む、発光素子102の電荷機能層26を形成する。
 (E)電荷機能層26の上に卑金属膜17を形成する。
 (F)卑金属膜17により金属酸化物16を還元させて得られた金属によって、発光素子102の複数の第1金属粒子18および複数の第2金属粒子19を形成する。
 卑金属膜17によって発光素子102の電極5の少なくとも一部を形成してもよい。
 〔実施形態2〕
 図10は、本開示の実施形態2に係る発光素子101の製造方法を説明する図である。本開示の実施形態2に係る発光素子101の製造方法は、以下の点が本開示の実施形態1に係る発光素子101の製造方法と異なっており、それ以外は本開示の実施形態1に係る発光素子101の製造方法と同一である。
 金属酸化物16(図7参照)を含む発光素子101の電荷機能層26を形成した後、電荷機能層26における発光層3と反対側の面23にナノインプリント金型24を圧着させ、電荷機能層26における発光層3と反対側の面23に凹部25を形成する。電荷機能層26の上に卑金属膜17を、卑金属膜17が凹部25を充填するように形成する。卑金属膜17により金属酸化物16を還元させて得られた金属によって、発光素子101の金属構造体7を形成する。
 電荷機能層26をナノ粒子の塗布またはスパッタリング法等で形成する。その後、電荷機能層26までが形成された発光素子101の中間体をナノインプリント装置に装填する。電荷機能層26の材料としては、例えばZnOナノ粒子を含み、電荷輸送性および/または電荷注入性を有する材料が適している。ナノインプリント金型24の形状は、金属構造体7の形状に対応する形状である。発光素子101の中間体を100℃程度に昇温して電荷機能層26における発光層3と反対側の面23にナノインプリント金型24を圧着させることにより、電荷機能層26に金属構造体7の形状を反転させた形状の凹部25が形成される。発光素子101の中間体を取り出して真空蒸着にてAl等の卑金属膜17を薄く形成し、本開示の実施形態1に係る発光素子101の製造方法と同様の手法で電極5の形成までを行う。
 発光層3は、パターニングの際、現像液等との接触により劣化する可能性があるが、本開示の実施形態1および2に係る発光素子101の製造方法によれば発光層3へのダメージを抑制した加工が可能である。ただし、発光層3を加熱する工程では熱劣化を防止するため150℃以下かつ15分以下の処理が必要となる。熱劣化に注意すれば、金属構造体7を形成する工程に発光層3を晒しても、発光素子101の特性を維持することは可能である。
 本開示の実施形態2に係る発光素子101の製造方法において、金属構造体7を複数の第1金属粒子18および複数の第2金属粒子19に置き換えれば、本開示の実施形態2に係る発光素子102の製造方法を実現することができる。
 図13は、本開示の実施形態に係る別の発光素子103の概略構成を示す第1断面図である。図13に示す発光素子103は、図8に示す発光素子102より、金属粒子の粒径が小さい。発光素子103は、発光素子102の製造方法と同様の方法で製造可能である。
 〔実施形態3〕
 図10に示す内容において、卑金属膜17の替わりに金属材料31を凹部25に充填させて、第1金属粒子18および第2金属粒子19もしくは金属構造体7を形成してもよい。これにより、卑金属膜17を用いた還元は適用不要となる。
 発光素子101の電荷機能層26を形成した後、電荷機能層26における発光層3と反対側の面23にナノインプリント金型24を圧着させ、電荷機能層26における発光層3と反対側の面23に凹部25を形成する。電荷機能層26の上に金属材料31を、金属材料31が凹部25を充填するように形成する。金属材料31によって、発光素子101の第1金属粒子18および第2金属粒子19もしくは金属構造体7を形成する。
 金属材料31は、金属粒子群であってもよい。この場合は金属材料31を充填するので、単独で数十度程度に加熱してもよいが、電極5の蒸着の際、輻射で80℃程度まで温度上昇してもよい。これにより、電極5の蒸着の過程で充填した当該金属粒子群が相互に部分的に融合し得る。
 〔付記事項〕
 比較素子Bについて考える。比較素子Bは、発光素子101に対して、金属構造体7を、金属構造体7と同一の形状の絶縁材料に置換したものである。比較素子Bの製造方法は、卑金属膜17の替わりに絶縁性のPVP(ポリビニルピロリドン)膜を例えばスピンコート法で形成する以外、本開示の実施形態2に係る発光素子101の製造方法と同じである。
 比較素子Bは、金属構造体7と同一の形状の部材を有しているにもかかわらず、比較素子Bの通電毎に比較素子Bの電気特性がバラついた。すなわち、比較素子Bは、前述した比較素子Aに類似した電気特性を示した。比較素子Bは、金属構造体7を絶縁材料に置換したことに起因して、電荷機能層4に蓄積された電荷を電極5に導く能力に乏しいと推定される。
 〔まとめ〕
 本開示の態様1に係る発光素子は、発光層と、電極と、前記発光層と前記電極との間に位置している電荷機能層とを備えており、前記電荷機能層は、前記電荷機能層における前記電極の側に位置している第1金属粒子と、前記第1金属粒子との距離が5nm以下である箇所に位置する第2金属粒子と、を含み、前記第2金属粒子は、前記第1金属粒子の下端部よりも前記発光層側に位置する部分を有する。
 本開示の態様2に係る発光素子は、前記態様1において、少なくとも前記第1金属粒子および前記第2金属粒子を含む複数の金属粒子からなる金属構造体を備えており、前記複数の金属粒子における任意の隣り合う2つの間の距離の最大値が5nm以下である。
 本開示の態様3に係る発光素子は、前記態様2において、前記金属構造体において、前記第2金属粒子を含む幅は、前記第1金属粒子を含む幅よりも小さい。
 本開示の態様4に係る発光素子は、前記態様2または3において、前記金属粒子は、前記発光層から離間されている。
 本開示の態様5に係る発光素子は、前記態様1から4のいずれかにおいて、前記第1金属粒子と前記第2金属粒子とが互いに同一の金属元素を含んでいる。
 本開示の態様6に係る発光素子は、前記態様1から5のいずれかにおいて、前記第1金属粒子は、前記電極と接触している。
 本開示の態様7に係る発光素子は、発光層と、電極と、前記発光層と前記電極との間に位置している電荷機能層とを備えており、前記電荷機能層は、少なくとも1つの金属構造体を有しており、前記金属構造体は、前記電荷機能層における前記電極の側に位置している第1導体部、および、前記第1導体部から前記発光層へ向けて突出している第2導体部を含んでいる。
 本開示の態様8に係る発光素子は、前記態様7において、前記第1導体部と前記第2導体部とが互いに同一の金属元素を含んでいる。
 本開示の態様9に係る発光素子は、前記態様7または8において、前記第1導体部の幅は、前記第2導体部の幅より大きい。
 本開示の態様10に係る発光素子は、前記態様7から9のいずれかにおいて、前記金属構造体は、前記発光層から離間されている。
 本開示の態様11に係る発光素子は、前記態様7から10のいずれかにおいて、前記金属構造体は、前記電極と接触している。
 本開示の態様12に係る発光素子は、前記態様7から11のいずれかにおいて、前記電荷機能層は、複数の金属構造体を有しており、前記電荷機能層の厚み方向に沿っており前記複数の金属構造体のうち少なくとも2つが存在している第1断面、および、前記電荷機能層の厚み方向に沿っていると共に前記第1断面と垂直であり前記複数の金属構造体のうち少なくとも2つが存在している第2断面を含んでいる。
 本開示の態様13に係る発光素子は、前記態様12において、前記複数の金属構造体のうち隣り合う2つの間隔は、100nm以上である。
 本開示の態様14に係る発光素子は、前記態様13において、前記複数の金属構造体それぞれにおいて、前記第1導体部の幅は100nm以下であり、前記第2導体部の幅は40nm以下である。
 本開示の態様15に係る発光素子は、前記態様1から14のいずれかにおいて、前記電荷機能層は、複数の金属ナノ粒子を含んでおり、前記複数の金属ナノ粒子の粒径分布は、中央値が4nm以上6nm以下であり、最小値が1nm以上であり、最大値が30nm以下である。
 本開示の態様16に係る発光素子は、前記態様15において、前記複数の金属ナノ粒子それぞれは、第1族元素、第4族元素、第6族元素、および第12族元素のいずれかである。
 本開示の態様17に係る発光素子は、前記態様1から16のいずれかにおいて、前記発光層は、量子ドットにより発光する。
 本開示の態様18に係る発光素子の製造方法は、前記態様1から6のいずれかの発光素子の製造方法であって、金属酸化物を含む、前記発光素子の電荷機能層を形成し、前記電荷機能層の上に卑金属膜を形成し、前記卑金属膜により前記金属酸化物を還元させて得られた金属によって、前記発光素子の第1金属粒子および第2金属粒子を形成する。
 本開示の態様19に係る発光素子の製造方法は、前記態様7から14のいずれかの発光素子の製造方法であって、金属酸化物を含む、前記発光素子の電荷機能層を形成し、前記電荷機能層の上に卑金属膜を形成し、前記卑金属膜により前記金属酸化物を還元させて得られた金属によって、前記発光素子の金属構造体を形成する。
 本開示の態様20に係る発光素子の製造方法は、前記態様18または19において、前記卑金属膜によって前記発光素子の電極の少なくとも一部を形成する。
 本開示の態様21に係る発光素子の製造方法は、前記態様18から20のいずれかにおいて、前記発光素子の発光層は、量子ドットにより発光する。
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
1、5 電極
2、4、26 電荷機能層
3 発光層
6 量子ドット
7 金属構造体
8 第1導体部
9 第2導体部
10 電荷
11 第1導体部の幅
12 第2導体部の最大幅
13 電荷機能層の厚み方向
14 電荷機能層の厚み方向と垂直なある1方向
15 複数の金属構造体のうち隣り合う2つの間隔
16 金属酸化物
17 卑金属膜
18 第1金属粒子
19 第2金属粒子
20 複数の第1金属粒子および複数の第2金属粒子のうち隣り合う2つの間隔
23 電荷機能層における発光層と反対側の面
24 ナノインプリント金型
25 凹部
27 第1金属粒子の下端部
28~30 金属粒子
31 金属材料
101~103 発光素子
L1 第1金属粒子を含む幅
L2 第2金属粒子を含む幅

Claims (21)

  1.  発光層と、電極と、前記発光層と前記電極との間に位置している電荷機能層とを備えており、
     前記電荷機能層は、前記電荷機能層における前記電極の側に位置している第1金属粒子と、前記第1金属粒子との距離が5nm以下である箇所に位置する第2金属粒子と、を含み、
     前記第2金属粒子は、前記第1金属粒子の下端部よりも前記発光層側に位置する部分を有する、発光素子。
  2.  少なくとも前記第1金属粒子および前記第2金属粒子を含む複数の金属粒子からなる金属構造体を備えており、
     前記複数の金属粒子における任意の隣り合う2つの間の距離の最大値が5nm以下である、請求項1に記載の発光素子。
  3.  前記金属構造体において、前記第2金属粒子を含む幅は、前記第1金属粒子を含む幅よりも小さい、請求項2に記載の発光素子。
  4.  前記金属粒子は、前記発光層から離間されている、請求項2または3に記載の発光素子。
  5.  前記第1金属粒子と前記第2金属粒子とが互いに同一の金属元素を含んでいる、請求項1から4のいずれか1項に記載の発光素子。
  6.  前記第1金属粒子は、前記電極と接触している、請求項1から5のいずれか1項に記載の発光素子。
  7.  発光層と、電極と、前記発光層と前記電極との間に位置している電荷機能層とを備えており、
     前記電荷機能層は、少なくとも1つの金属構造体を有しており、前記金属構造体は、前記電荷機能層における前記電極の側に位置している第1導体部、および、前記第1導体部から前記発光層へ向けて突出している第2導体部を含んでいる、発光素子。
  8.  前記第1導体部と前記第2導体部とが互いに同一の金属元素を含んでいる、請求項7に記載の発光素子。
  9.  前記第1導体部の幅は、前記第2導体部の幅より大きい、請求項7または8に記載の発光素子。
  10.  前記金属構造体は、前記発光層から離間されている、請求項7から9のいずれか1項に記載の発光素子。
  11.  前記金属構造体は、前記電極と接触している、請求項7から10のいずれか1項に記載の発光素子。
  12.  前記電荷機能層は、
      複数の金属構造体を有しており、
      前記電荷機能層の厚み方向に沿っており前記複数の金属構造体のうち少なくとも2つが存在している第1断面、および、前記電荷機能層の厚み方向に沿っていると共に前記第1断面と垂直であり前記複数の金属構造体のうち少なくとも2つが存在している第2断面を含んでいる、請求項7から11のいずれか1項に記載の発光素子。
  13.  前記複数の金属構造体のうち隣り合う2つの間隔は、100nm以上である、請求項12に記載の発光素子。
  14.  前記複数の金属構造体それぞれにおいて、前記第1導体部の幅は100nm以下であり、前記第2導体部の幅は40nm以下である、請求項13に記載の発光素子。
  15.  前記電荷機能層は、複数の金属ナノ粒子を含んでおり、
     前記複数の金属ナノ粒子の粒径分布は、中央値が4nm以上6nm以下であり、最小値が1nm以上であり、最大値が30nm以下である、請求項1から14のいずれか1項に記載の発光素子。
  16.  前記複数の金属ナノ粒子それぞれは、第1族元素、第4族元素、第6族元素、および第12族元素のいずれかである、請求項15に記載の発光素子。
  17.  前記発光層は、量子ドットにより発光する、請求項1から16のいずれか1項に記載の発光素子。
  18.  請求項1から6のいずれか1項に記載の発光素子の製造方法であって、
     金属酸化物を含む、前記発光素子の電荷機能層を形成し、
     前記電荷機能層の上に卑金属膜を形成し、
     前記卑金属膜により前記金属酸化物を還元させて得られた金属によって、前記発光素子の第1金属粒子および第2金属粒子を形成する、発光素子の製造方法。
  19.  請求項7から14のいずれか1項に記載の発光素子の製造方法であって、
     金属酸化物を含む、前記発光素子の電荷機能層を形成し、
     前記電荷機能層の上に卑金属膜を形成し、
     前記卑金属膜により前記金属酸化物を還元させて得られた金属によって、前記発光素子の金属構造体を形成する、発光素子の製造方法。
  20.  前記卑金属膜によって前記発光素子の電極の少なくとも一部を形成する、請求項18または19に記載の発光素子の製造方法。
  21.  前記発光素子の発光層は、量子ドットにより発光する、請求項18から20のいずれか1項に記載の発光素子の製造方法。
PCT/JP2022/026664 2022-07-05 2022-07-05 発光素子および発光素子の製造方法 WO2024009376A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026664 WO2024009376A1 (ja) 2022-07-05 2022-07-05 発光素子および発光素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026664 WO2024009376A1 (ja) 2022-07-05 2022-07-05 発光素子および発光素子の製造方法

Publications (1)

Publication Number Publication Date
WO2024009376A1 true WO2024009376A1 (ja) 2024-01-11

Family

ID=89453010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026664 WO2024009376A1 (ja) 2022-07-05 2022-07-05 発光素子および発光素子の製造方法

Country Status (1)

Country Link
WO (1) WO2024009376A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08273836A (ja) * 1995-03-31 1996-10-18 Casio Comput Co Ltd 発光素子
JPH08279628A (ja) * 1995-04-05 1996-10-22 Casio Comput Co Ltd 電界発光素子
JPH08279626A (ja) * 1995-04-05 1996-10-22 Casio Comput Co Ltd 電界発光素子およびその製造方法
JP2005276803A (ja) * 2004-02-26 2005-10-06 Seiko Epson Corp 有機エレクトロルミネッセンス装置、その製造方法、及び電子機器
JP2015512564A (ja) * 2012-07-24 2015-04-27 エルジー・ケム・リミテッド 金属粒子層の形成方法、及びこれを用いて製造された発光素子
US20160087234A1 (en) * 2014-02-03 2016-03-24 Global Frontier Center For Multiscale Energy Systems Organic solar cell comprising nano-bump structure and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08273836A (ja) * 1995-03-31 1996-10-18 Casio Comput Co Ltd 発光素子
JPH08279628A (ja) * 1995-04-05 1996-10-22 Casio Comput Co Ltd 電界発光素子
JPH08279626A (ja) * 1995-04-05 1996-10-22 Casio Comput Co Ltd 電界発光素子およびその製造方法
JP2005276803A (ja) * 2004-02-26 2005-10-06 Seiko Epson Corp 有機エレクトロルミネッセンス装置、その製造方法、及び電子機器
JP2015512564A (ja) * 2012-07-24 2015-04-27 エルジー・ケム・リミテッド 金属粒子層の形成方法、及びこれを用いて製造された発光素子
US20160087234A1 (en) * 2014-02-03 2016-03-24 Global Frontier Center For Multiscale Energy Systems Organic solar cell comprising nano-bump structure and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP7320851B2 (ja) 補助電極を提供するための方法および補助電極を含むデバイス
TWI544671B (zh) 電流適應性經改良之具磁性結構之有機發光二極體
US8643044B2 (en) Semiconductor light emitting device
US8927325B2 (en) Method for producing an organic radiation-emitting component and organic radiation-emitting component
KR100371296B1 (ko) 유기 전계 발광 소자 및 그 제조 방법
CN111129320B (zh) 一种量子点发光二极管
US11342524B2 (en) Light emitting element, light emitting device, and apparatus for producing light emitting element
US11417851B2 (en) Light-emitting element, light-emitting device, and device for producing light-emitting element
JP5010129B2 (ja) 発光ダイオード及びその製造方法
WO2022157907A1 (ja) 発光素子、表示デバイス、発光素子の製造方法
KR20170108342A (ko) 코어쉘 구조의 나노 입자를 포함하는 발광 소자
WO2020129134A1 (ja) 電界発光素子および表示デバイス
WO2024009376A1 (ja) 発光素子および発光素子の製造方法
CN110649167A (zh) 一种量子点发光二极管及其制备方法
WO2021111556A1 (ja) 発光デバイス
WO2020084731A1 (ja) 発光素子
CN113196880B (zh) 发光元件、发光设备
CN109994641B (zh) 电极和qled器件
KR100841575B1 (ko) 발광 소자 및 그 제조방법
WO2018120514A1 (zh) Qled器件及其制备方法
WO2019159216A1 (ja) 発光デバイス
JP2007134445A (ja) 窒化物半導体レーザ素子
US20230292538A1 (en) Light-emitting element and display device
US20150155521A1 (en) Transparent supported electrode for oled
JP2011076726A (ja) 電界発光素子およびその製造方法