WO2024008188A1 - 降风噪结构及耳机 - Google Patents

降风噪结构及耳机 Download PDF

Info

Publication number
WO2024008188A1
WO2024008188A1 PCT/CN2023/106389 CN2023106389W WO2024008188A1 WO 2024008188 A1 WO2024008188 A1 WO 2024008188A1 CN 2023106389 W CN2023106389 W CN 2023106389W WO 2024008188 A1 WO2024008188 A1 WO 2024008188A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise reduction
microphone
wind noise
reduction structure
cavity
Prior art date
Application number
PCT/CN2023/106389
Other languages
English (en)
French (fr)
Inventor
张金
Original Assignee
安克创新科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202221749042.1U external-priority patent/CN218103452U/zh
Priority claimed from CN202221797087.6U external-priority patent/CN217935902U/zh
Application filed by 安克创新科技股份有限公司 filed Critical 安克创新科技股份有限公司
Publication of WO2024008188A1 publication Critical patent/WO2024008188A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones

Definitions

  • the present application relates to the technical field of earphones, and in particular to a wind noise reduction structure and earphones.
  • earphones are used in more and more scenarios and frequency. Wearing earphones to make calls in relatively quiet places such as indoors can still maintain good call quality. However, when in an open outdoor place, strong wind blows on the earphones, and the wind noise generated will interfere with the sound quality of the speaker. , resulting in poor call quality and affecting user experience.
  • this application provides a wind noise reduction structure, which includes:
  • An earphone shell is provided with an air inlet;
  • a microphone assembly is provided on the inner wall of the earphone shell, and a closed sound cavity is formed between the microphone assembly and the earphone shell, and the closed sound cavity is connected with the air inlet.
  • the wind noise reduction structure of the above solution is applied to headphones, which can achieve the effect of reducing wind noise of headphones.
  • the wind blows onto the earphones and flows from the air inlet to the inside of the earphone case.
  • the wind will encounter resistance when passing through the air inlet. is decelerated; then the wind passes through the air inlet and further flows into the closed sound cavity formed by the cooperation of the microphone assembly and the earphone shell.
  • the wind is further significantly decelerated by the blocking effect of the wall of the closed sound cavity, so that The incoming wind speed can be effectively suppressed, and wind noise is effectively reduced physically, ensuring the sound quality of the headset and call quality, and improving the user experience of wearing the headset in outdoor windy environments.
  • the plurality of air inlet holes are arranged in at least two rows, and the air inlet holes in two adjacent rows are arranged in a staggered manner;
  • a plurality of the air inlet holes are arranged in an array structure.
  • the earphone shell is provided with a mounting slot
  • the microphone assembly is installed in the mounting slot
  • the microphone assembly includes a microphone body
  • the microphone body is staggered with the air inlet. set up.
  • the microphone component is configured as a condenser microphone.
  • the condenser microphone includes a bracket and a microphone body arranged on the bracket.
  • the earphone shell is provided with a mounting slot.
  • the bracket is connected to the mounting slot. The grooves cooperate to form the closed sound cavity.
  • the microphone assembly is a silicon microphone.
  • the silicon microphone includes a microphone body and a circuit board assembly.
  • the microphone body is disposed on the circuit board assembly.
  • the earphone housing is provided with a mounting slot. , the circuit board assembly and the mounting groove cooperate to form the closed sound cavity.
  • the wind noise reduction structure further includes a first damping net
  • the earphone housing is provided with a mounting groove
  • the first damping net is disposed in the mounting groove and is located close to the microphone assembly.
  • One side of the air inlet is provided.
  • the wind noise reduction structure further includes a damping sponge, and the damping sea The cotton is disposed in the installation groove and between the first damping net and the microphone assembly.
  • the wind noise reduction structure further includes a windshield, the windshield is provided on the microphone assembly, and the windshield is provided between the air inlet and the between microphone components;
  • the windshield cover includes a base body and a cover body, the base body is provided with an air hole, the air hole is connected with the air inlet, and the cover body is located on the air hole facing the air inlet.
  • the hole end of the air inlet hole, and the cover body is provided with an air inlet hole.
  • the air inlet includes a plurality of first air inlets and a plurality of second air inlets
  • the microphone assembly includes a feedforward microphone and a call microphone
  • the earphone housing is provided with a first An installation groove and a second installation groove
  • the closed sound cavity shown includes a first closed sound cavity and a second closed sound cavity
  • the feedforward microphone is inserted into the first installation slot and cooperates with the earphone shell to form a first closed sound cavity, and the plurality of first air inlets are connected with the first closed sound cavity.
  • the microphone is inserted into the second installation slot and cooperates with the earphone shell to form a second closed sound cavity.
  • the plurality of second air inlet holes are all connected with the second closed sound cavity.
  • the wind noise reduction structure further includes a speaker base, a rear cavity cover and a speaker assembly.
  • the rear cavity cover is disposed on the speaker base and forms a first rear cavity between the speaker base and the speaker base. cavity; the earphone shell is arranged on the speaker base and covers the side of the rear cavity cover opposite to the speaker base, and a gap is formed between the earphone shell and the rear cavity cover. a second rear cavity; the speaker assembly is arranged on the speaker base and forms a front cavity;
  • first back cavity, the second back cavity and the front cavity are connected with each other, and the second back cavity is used to communicate with the external environment.
  • the earphone shell is provided with at least one first acoustic channel, and the second rear cavity is connected to the external environment through the first acoustic channel.
  • the wind noise reduction structure further includes at least one second damping net, At least one second damping net is provided at any channel opening of the first acoustic channel or at any position in the middle section of the channel.
  • the wind noise reduction structure further includes a sealing member, and the sealing member is disposed at the channel entrance of the first acoustic channel.
  • the speaker base is provided with at least one second acoustic channel, and the second rear cavity is connected to the front cavity through at least one second acoustic channel.
  • the wind noise reduction structure further includes at least one third damping net, and at least one third damping net is provided at any channel opening of the second acoustic channel or at any position in the middle section of the channel.
  • the speaker base is further provided with at least one third acoustic channel, and the first rear cavity is connected to the front cavity through at least one third acoustic channel.
  • the wind noise reduction structure further includes at least one fourth damping net, and at least one fourth damping net is provided at any channel opening of the third acoustic channel or at any position in the middle section of the channel.
  • the rear cavity cover is provided with at least one sound hole, and the first rear cavity is connected to the second rear cavity through at least one of the sound holes.
  • the present application also provides an earphone, which includes the wind noise reduction structure as described above.
  • Figure 1 is a schematic structural diagram of a wind noise reduction structure according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of the condenser microphone solution used in this application.
  • Figure 3 is an exploded structural diagram of Figure 2;
  • FIG. 4 is a schematic structural diagram of the silicon microphone solution used in this application.
  • FIG. 5 is a schematic structural diagram of the windshield in this application.
  • Figure 6 is an exploded structural view of the windshield and headphone shell
  • Figure 7 is a schematic structural diagram of an earphone according to an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of Figure 7 from another perspective
  • Figure 9 is an assembly structural diagram of the speaker holder, rear cavity cover and headphone shell
  • Figure 10 is a cross-sectional structural view at A-A in Figure 9;
  • FIG 11 is a top structural view of the rear cavity cover in this application.
  • Figure 12 is a schematic structural diagram of the speaker housing in this application.
  • Figure 13 is a schematic structural diagram of Figure 7 from another perspective.
  • 60 First damping net; 70: Damping sponge; 80: Windshield;
  • 81 Base body; 811: Air hole; 82: Cover body;
  • 120 Rear cavity cover
  • 130 First rear cavity
  • 141 First acoustic channel
  • 160 Speaker assembly; 161: Speaker housing; 1611: Second acoustic channel;
  • 1612 The third acoustic channel; 162: The third damping network; 163: The fourth damping network;
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number or order of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • a wind noise reduction structure is shown in an embodiment of the present application, which includes an earphone shell 10 and a microphone assembly.
  • the earphone housing 10 is provided with an air inlet; the microphone assembly is disposed on the inner wall of the earphone housing 10 .
  • the microphone assembly is installed on the inner wall of the earphone housing 10, and the installation method may be but is not limited to any one of screw connection, bonding, snap connection, magnetic connection, etc.
  • the microphone component has a clearance fit with the inner wall of the earphone housing 10 , that is, a closed sound cavity is formed between the microphone component and the earphone housing 10 .
  • the size of the gap between the microphone assembly and the earphone shell 10 can be designed according to actual needs and is not particularly limited here.
  • a closed acoustic cavity is a closed cavity, that is, the wind cannot continue to circulate after entering the closed cavity.
  • the microphone component is bonded to the earphone shell 10 with glue to form a closed sound cavity with a certain volume.
  • the closed sound cavity is connected with the air inlet.
  • the air inlet is a through hole that allows air from the external environment to flow into the closed sound cavity.
  • the aperture, hole shape and other parameters of the air inlet hole can be set according to actual needs. Taking the hole type as an example, the air inlet hole can be any one of circular holes, square holes, triangular holes, etc.
  • the wind noise reduction structure of the above solution is applied to headphones, which can achieve the effect of reducing wind noise of the headphones.
  • the wind blows on the earphones and then flows from the air inlet to the inside of the earphone housing 10.
  • the wind will encounter resistance when passing through the air inlet. and is decelerated; then the wind passes through the air inlet and further flows into the closed sound cavity formed by the cooperation of the microphone assembly and the earphone shell 10.
  • the wind is further significantly decelerated by the flow resistance of the wall of the closed sound cavity. In this way, wind speed can be effectively suppressed, wind noise is effectively reduced physically, ensuring the sound quality of the headset and call quality, and improving the user experience of wearing the headset in outdoor windy environments.
  • a plurality of air inlet holes are provided, and the plurality of air inlet holes are arranged in a regular or irregular structure. Setting up multiple air inlets can further enhance the wind deceleration effect, and appropriately increase the air inlet area to help reduce wind noise.
  • multiple air inlets can be arranged in a regular structure.
  • multiple air inlet holes are arranged in an array structure. This not only facilitates the processing of the air inlet holes and reduces the difficulty of processing, but also makes the appearance of the headphones more beautiful. Graphical customization can also be performed based on customer needs to meet the personalized needs of different users and improve product competitiveness.
  • multiple air inlets can also be arranged in an irregular structure.
  • the plurality of air inlet holes are arranged in at least two rows, and two adjacent rows of air inlet holes are arranged in an offset manner.
  • the hole spacing between different air inlet holes may be large or small, or multiple air inlet holes may be processed and arranged according to the special pattern given by the customer.
  • the air inlet includes a plurality of first air inlets 11 and a plurality of second air inlets 12, the microphone assembly includes a feedforward microphone 20 and a call microphone 30, and the earphone
  • the housing 10 is provided with a first installation groove 13 and a second installation groove 14 .
  • Feedforward microphone 20 i.e. FF
  • the microphone 30 (Talk microphone) is used to collect environmental sounds; the call microphone 30 (Talk microphone) is used to collect the voice uttered by the user. The two work together to help improve the sound quality and call quality during calls.
  • the feedforward microphone 20 is inserted into the first installation slot 13 and cooperates with the earphone shell 10 to form a first closed sound cavity.
  • the plurality of first air inlets 11 are all connected with the first closed sound cavity.
  • the call microphone 30 is inserted into the second installation slot.
  • the groove 14 cooperates with the earphone shell 10 to form a second closed sound cavity, and the plurality of second air inlet holes 12 are all connected with the second closed sound cavity.
  • the first mounting groove 13 has a positioning function for the feedforward microphone 20, and the second mounting groove 14 also has a positioning function for the call microphone 30, thereby ensuring that the feedforward microphone 20 and the call microphone 30 are installed stably and reliably.
  • the first mounting slot 13 and the second mounting slot 14 are provided with screw posts, and the feedforward microphone 20 and the call microphone 30 are both provided with through holes. After the through holes are aligned with the screw posts, screws are screwed in. , that is, the feedforward microphone 20 and the call microphone 30 are quickly and firmly installed and fixed.
  • the earphone housing 10 is provided with a mounting slot, and the microphone assembly is installed in the mounting slot.
  • the microphone assembly includes a microphone body, and the microphone body and the air inlet are staggered. This prevents the wind flowing in from the air inlet from blowing directly onto the microphone body, preventing wind noise from affecting calls.
  • the feedforward microphone 20 is located outside the boundary of the distribution area of the plurality of first air inlets 11
  • the call microphone 30 is located outside the boundary of the distribution area of the plurality of second air inlets 12 .
  • the feedforward microphone 20 is outside the edge of the circle. This can prevent the wind flowing in from the first air inlet 11 and the second air inlet 12 from directly blowing the feedforward microphone 20 and the call microphone 30, and prevent wind noise from affecting the call.
  • the feedforward microphone 20 and the conversation microphone 30 may use either a condenser microphone or a silicon microphone.
  • the condenser microphone is also called the electret condenser microphone (ECM). Its working principle is that the electret microphone uses an electret material that can retain a permanent charge. There is no need to power the capacitor (if the electret microphone has a built-in amplifier circuit , then power supply is required).
  • Silicon microphone MEMS Micphone
  • MEMS Micphone is also called microphone chip or microelectromechanical microphone Its working principle is to integrate a preamplifier, and even some silicon microphones will integrate an analog-to-digital converter to directly output digital signals and become a digital microphone.
  • the microphone component is configured as a condenser microphone.
  • the condenser microphone includes a bracket 40 and a first microphone body arranged on the bracket 40 .
  • the headphone shell 10 is provided with a mounting slot.
  • the bracket 40 and the mounting slot They cooperate to form a closed sound cavity.
  • the feedforward microphone 20 and the call microphone 30 are both configured as condenser microphones.
  • the condenser microphone includes a bracket 40.
  • the bracket 40 cooperates with the first mounting slot 13 to form a first closed sound cavity.
  • the bracket 40 cooperates with the second mounting slot 14 to form a third closed sound cavity. 2. Closed vocal cavity.
  • the bracket 40 is provided with a receiving groove, and the microphone body is inserted and fixed in the receiving groove.
  • the microphone assembly is configured as a silicon microphone.
  • the silicon microphone includes a second microphone body and a circuit board assembly 50.
  • the second microphone body is disposed on the circuit board assembly 50.
  • the earphone housing 10 is provided with a mounting slot, and the circuit The plate assembly 50 cooperates with the mounting groove to form a closed sound cavity.
  • the feedforward microphone 20 and the call microphone 30 are both configured as silicon microphones
  • the circuit board assembly 50 cooperates with the first installation slot 13 to form a first closed sound cavity
  • the circuit board assembly 50 cooperates with the second installation slot 14 to form a second closed sound cavity. vocal tone. Therefore, the molding method of the first closed sound cavity and the second closed sound cavity is simple, and the bracket 40 and the circuit board assembly 50 can block the wind to prevent the wind from blowing directly and causing large wind noise that affects the call quality.
  • the wind noise reduction structure also includes a first damping net 60.
  • the earphone housing 10 is provided with an installation groove.
  • the first damping net 60 is disposed in the installation groove and Located on the side of the microphone assembly close to the air inlet.
  • first damping nets 60 there are two first damping nets 60 , one of which is disposed between the first mounting groove 13 and the feedforward microphone 20 and opposite to the first air inlet 11 , and the other first damping net 60 .
  • 60 is disposed between the second installation groove 14 and the call microphone 30 and faces the second air inlet 12 .
  • the first damping net 60 has a secondary blocking effect on the wind flowing in from the first air inlet 11 and the second air inlet 12, forcing the wind speed to further reduce, thereby enhancing the noise reduction effect.
  • the wind noise reduction structure also includes a damping sponge 70, a damping sea
  • the cotton 70 is disposed in the installation groove and between the first damping net 60 and the microphone assembly.
  • the damping sponge 70 is disposed between the first damping net 60 and the feedforward microphone 20
  • the damping sponge 70 is disposed between the first damping net 60 and the call microphone 30 .
  • the damping sponge 70 has a secondary blocking effect on the wind flowing through the first damping net 60, forcing the wind speed to further reduce, thereby enhancing the noise reduction effect.
  • the wind noise reduction structure further includes a windshield 80 , the windshield 80 is disposed on the microphone assembly, and the windshield 80 is disposed between the air inlet and the microphone assembly.
  • the windshield 80 faces the air inlet and maintains a certain distance from the air inlet. This can not only block the wind from directly blowing the microphone assembly, but also prevent the air inlet from being blocked.
  • the windshield cover 80 includes a base body 81 and a cover body 82.
  • the base body 81 is used to be assembled and connected with the earphone shell 11, so that the windshield cover 80 can Installation is fixed.
  • the base 81 and the earphone shell 11 may be connected by any method such as screw connection, snap connection, magnetic connection, etc.
  • the base 81 is provided with an air hole 811, and the air hole 811 is connected with the air inlet. It can be understood that the air holes 811 are through holes provided through the base body 81 .
  • the cover body 82 covers the hole end of the air hole 811 facing the air inlet, and the cover body 82 is provided with an air inlet 90 .
  • the cover body 82 has a buffer cavity connected to the air hole 811, and the air inlet 90 is connected to the buffer cavity. In this way, the air flow entering the earphone shell 10 from the air inlet hole will be blocked by the cover body 82, and the air flow will flow in from the air inlet 90.
  • the buffer cavity then flows from the buffer cavity through the air inlet 811 to contact the microphone body, thereby preventing the airflow flowing in from the air inlet hole from blowing directly onto the microphone body and causing wind noise.
  • an earphone 100 including a wind noise reduction structure.
  • the earphones 100 are usually used in pairs, that is, there are two earphones 100, which are respectively worn in the left ear and the right ear of the user during use.
  • the earphone 100 can be a wireless earphone or a wired earphone, which can be selected according to actual needs.
  • this application proposes an improved wind noise reduction structure applied to the earphones 100 .
  • the wind noise reduction structure also includes a speaker base 110 , a rear cavity cover 120 and a speaker assembly 160 .
  • the rear cavity cover 120 is disposed on the speaker base 110 and forms a first rear cavity 130 between the speaker base 110 and the speaker base 110; the headphone shell 10 is disposed on the speaker base 110 and covers above the rear cavity cover 120, and the headphone shell 10
  • a second rear cavity 150 is formed between 10 and the rear cavity cover 120; the horn assembly 160 is arranged on the horn base 110 and forms a front cavity 170; wherein the first rear cavity 130, the second rear cavity 150 and the front cavity 170 are mutually exclusive. Communicated, the second rear cavity 150 is used to communicate with the external environment.
  • first back cavity 130, the second back cavity 150 and the front cavity 170 are connected with each other. Specifically, it means that the first back cavity 130 is connected with the second back cavity 150, and the first back cavity 130 is connected with the front cavity 170. And at the same time, the second back cavity is connected with the front cavity 170 .
  • the noise in the external environment will first be transmitted into the second rear cavity 150, and then will be transmitted to the first rear cavity through the second rear cavity 150. cavity 130, and then pass through the first rear cavity 130 to the front cavity 170, and finally into the wearer's ears.
  • the noise will also be directly transferred from the second rear cavity 150 to the front cavity 170 and into the wearer's ears. middle.
  • this solution optimizes the wind noise reduction structure due to the design of the interconnected second rear cavity 150, first rear cavity 130 and front cavity 170.
  • the passive noise reduction performance improves the user experience.
  • the earphone housing 10 is provided with at least one first acoustic channel 141
  • the second rear cavity 150 is connected to the external environment through at least one first acoustic channel 141 .
  • noise in the external environment can be transmitted into the second rear cavity 150 through the first acoustic channel 141 Inside.
  • the number of first acoustic channels 141 may be one, two or more.
  • there are preferably two first acoustic channels 141 and the two first acoustic channels 141 are distributed at a preset angle in the circumferential direction of the circular earphone shell 10 . .
  • the first acoustic channel 141 can be circular, square or other shapes; the length of the first acoustic channel 141 can be adaptively designed according to parameters such as the thickness of the earphone shell 10 and is not particularly limited here.
  • the wind noise reduction structure also includes at least one second damping net 142.
  • At least one second damping net 142 is provided at any channel opening of the first acoustic channel 141 or at any position in the middle section of the channel.
  • the second damping network 142 provided has the function of blocking noise in the external environment from entering the second rear cavity 150, reducing the amount of noise transmitted into the earphone 100, and helping to enhance the passive noise reduction capability.
  • the wind noise reduction structure also includes a sealing member 143 , and the sealing member 143 is disposed at the channel entrance of the first acoustic channel 141 . Since the earphone shell 10 is almost directly exposed to the environment, the seal 143 can prevent dust, rain, etc. in the external environment from intruding into the earphone, thereby avoiding affecting the reliability and lifespan of the earphone.
  • the sealing member 143 can be any one of a sealing net, a sealing film, etc., which can be selected according to actual needs.
  • the speaker assembly 160 includes a speaker housing 161, a speaker body, and some other components.
  • the speaker body is installed in the speaker housing 161 and is connected to the audio playback device to meet the user's needs for listening to music.
  • the speaker base 110 is provided with at least one second acoustic channel 1611 , and the second rear cavity 150 is connected to the front cavity 170 through at least one second acoustic channel 1611 .
  • the noise in the second rear cavity 150 can be transmitted into the front cavity 170 through the second acoustic channel 1611, so that the noise transmitted into the front cavity 170 is weakened.
  • the number of second acoustic channels 1611 may be one, two or more.
  • one second acoustic channel 1611 is preferably provided, and the second acoustic channel 1611 is provided close to the edge of the circular speaker housing 161 in the circumferential direction.
  • the second acoustic channel 1611 can be circular, square or other shapes; the length of the second acoustic channel 1611 can be adaptively designed according to parameters such as the thickness of the earphone shell 10, and is not particularly limited here.
  • the wind noise reduction structure also includes at least one third damping net 162.
  • At least one third damping net 162 is provided at any channel opening of the second acoustic channel 1611 or at any position in the middle section of the channel.
  • the third damping network 162 provided has the function of blocking the noise in the second rear cavity 150 from entering the front cavity 170, further reducing the amount of noise transmitted into the interior of the earphone 100 (that is, transmitted into the ear), and helping to enhance the passive noise reduction capability. .
  • the speaker base 110 is also provided with at least one third acoustic channel 1612 , and the first rear cavity 130 is connected to the front cavity 170 through at least one third acoustic channel 1612 .
  • the noise in the first rear cavity 130 can be transmitted into the front cavity 170 through the third acoustic channel 1612, so that the noise transmitted into the front cavity 170 is further weakened.
  • the wind noise reduction structure also includes at least one fourth damping net 163.
  • At least one fourth damping net 163 is provided at any channel opening of the third acoustic channel 1612 or at any position in the middle section of the channel.
  • the fourth damping network 163 provided has the function of blocking the noise in the first rear cavity 130 from entering the front cavity 170, further reducing the amount of noise transmitted into the interior of the earphone 100 (that is, transmitted into the ear), and helping to enhance the passive noise reduction capability. .
  • the rear cavity cover 120 is provided with at least one sound hole, and the first rear cavity 130 communicates with the second rear cavity 150 through at least one sound hole.
  • the noise in the second back cavity 150 can be transmitted into the first back cavity 130 through the sound hole and further attenuated, further reducing the amount of noise transmitted into the ear.
  • damping nets can be one, two or more.
  • the noise in the external environment enters the wind noise reduction structure, it will pass through many different channels.
  • the propagation path is conducted inward, which can significantly weaken the noise propagation intensity on the basis of extending the propagation path.
  • the sound cavity volumes of the first rear cavity 130 , the second rear cavity 150 and the front cavity 170 of the earphones 100 worn on the left and right ears of the user are the same or close to ensure a more balanced passive noise reduction effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Headphones And Earphones (AREA)

Abstract

一种降风噪结构及耳机(100),包括耳机壳体(10),耳机壳体(10)开设有进风孔;以及麦克风组件,麦克风组件设置于耳机壳体(10)的内侧壁,且麦克风组件与耳机壳体(10)之间配合形成有封闭声腔,封闭声腔与进风孔连通。

Description

降风噪结构及耳机
本申请要求于2022年7月13日提交中国专利局、申请号为2022217970876、发明名称为“降风噪结构及耳机”以及2022年7月8日提交中国专利局、申请号为2022217490421、发明名称为“声道结构及耳机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及耳机技术领域,特别是涉及一种降风噪结构及耳机。
背景技术
目前,出于在工作、学习的同时方便与他人进行通话的需要,耳机的使用场景和频次越来越多。佩戴耳机在室内等较为安静的场合内通话时,尚能保持较佳的通话质量,但当处于开阔的户外场所中时,大风吹到耳机上,产生的风噪会对喇叭的音质效果产生干扰,进而造成通话质量不佳,影响用户使用体验。
发明内容
基于此,有必要提供一种降风噪结构及耳机,旨在解决现有技术风噪大影响到耳机音质效果和通话质量,致使用户体验不佳的问题。
一方面,本申请提供一种降风噪结构,其包括:
耳机壳体,所述耳机壳体开设有进风孔;以及
麦克风组件,所述麦克风组件设置于所述耳机壳体的内侧壁,且所述麦克风组件与所述耳机壳体之间配合形成有封闭声腔,所述封闭声腔与所述进风孔连通。
上述方案的降风噪结构应用于耳机中,能够达到降低耳机风噪的效果。 具体而言,当用户佩戴耳机于室外大风环境中通话时,风吹到耳机上,进而会从进风孔向耳机壳体内部流动,此时风在穿过进风孔时便会受到阻力而被降速;紧接着风穿过进风孔后进一步流入由麦克风组件与耳机壳体配合形成的封闭声腔内,此时风受到封闭声腔腔壁的阻流作用而被进一步显著降速,如此一来风速便可得到有效抑制,从物理方式上使风噪被有效削减,保证了耳机音质效果和通话质量,提升用户佩戴耳机在户外大风环境下的使用体验感。
下面对本申请的技术方案作进一步的说明:
在其中一个实施例中,所述进风孔设置为多个,多个所述进风孔呈至少两排布置,相邻的两排所述进风孔呈错位设置;
或者,多个所述进风孔呈阵列结构排布。
在其中一个实施例中,所述耳机壳体设有安装槽,所述麦克风组件装设于所述安装槽内,且所述麦克风组件包括麦克风本体,所述麦克风本体与所述进风孔错开设置。
在其中一个实施例中,所述麦克风组件设置为电容麦克风,所述电容麦克风包括支架及设置于所述支架上的麦克风本体,所述耳机壳体设有安装槽,所述支架与所述安装槽之间配合形成所述封闭声腔。
在其中一个实施例中,所述麦克风组件设置为硅麦克风,所述硅麦克风包括麦克风本体和电路板组件,所述麦克风本体设置在所述电路板组件上,所述耳机壳体设有安装槽,所述电路板组件与所述安装槽之间配合形成所述封闭声腔。
在其中一个实施例中,所述降风噪结构还包括第一阻尼网,所述耳机壳体设有安装槽,所述第一阻尼网设置于所述安装槽内且位于所述麦克风组件靠近所述进风孔的一侧。
在其中一个实施例中,所述降风噪结构还包括阻尼海绵,所述阻尼海 绵设置于所述安装槽内且位于所述第一阻尼网与麦克风组件之间。
在其中一个实施例中,所述降风噪结构还包括挡风盖,所述挡风盖设置于所述麦克风组件上,且所述挡风盖隔挡设置于所述进风孔与所述麦克风组件之间;
所述挡风盖包括座体和盖本体,所述座体设有过风孔,所述过风孔与所述进风孔连通,所述盖本体盖设于所述过风孔面向所述进风孔的孔端,且所述盖本体设有进风口。
在其中一个实施例中,所述进风孔包括多个第一进风孔和多个第二进风孔,所述麦克风组件包括前馈麦克风和通话麦克风,所述耳机壳体设有第一安装槽和第二安装槽,所示封闭声腔包括第一封闭声腔和第二封闭声腔;
所述前馈麦克风插置于所述第一安装槽并与所述耳机壳体配合形成第一封闭声腔,多个所述第一进风孔均与所述第一封闭声腔连通,所述通话麦克风插置于所述第二安装槽内并与所述耳机壳体配合形成第二封闭声腔,多个所述第二进风孔均与所述第二封闭声腔连通。
在其中一个实施例中,所述降风噪结构还包括喇叭座、后腔盖和喇叭组件,所述后腔盖设置于所述喇叭座上并与所述喇叭座之间形成有第一后腔;所述耳机壳体设置于所述喇叭座上并盖设于所述后腔盖与所述喇叭座相背的一侧,且所述耳机壳体与所述后腔盖之间形成有第二后腔;所述喇叭组件设置于所述喇叭座上并形成有前腔;
其中,所述第一后腔、所述第二后腔与所述前腔相互连通,所述第二后腔用于与外界环境连通。
在其中一个实施例中,所述耳机壳体开设有至少一个第一声学通道,所述第二后腔通过所述第一声学通道与外部环境连通。
在其中一个实施例中,所述降风噪结构还包括至少一个第二阻尼网, 所述第一声学通道的任一通道口或通道中段任意位置设置有至少一个所述第二阻尼网。
在其中一个实施例中,所述降风噪结构还包括密封件,所述密封件设置于所述第一声学通道的通道进口处。
在其中一个实施例中,所述喇叭座开设有至少一个第二声学通道,所述第二后腔通过至少一个所述第二声学通道与所述前腔连通。
在其中一个实施例中,所述降风噪结构还包括至少一个第三阻尼网,所述第二声学通道的任一通道口或者通道中段任意位置设置有至少一个所述第三阻尼网。
在其中一个实施例中,所述喇叭座还开设有至少一个第三声学通道,所述第一后腔通过至少一个所述第三声学通道与所述前腔连通。
在其中一个实施例中,所述降风噪结构还包括至少一个第四阻尼网,所述第三声学通道的任一通道口或者通道中段任意位置设置有至少一个所述第四阻尼网。
在其中一个实施例中,所述后腔盖开设有至少一个声孔,所述第一后腔通过至少一个所述声孔与所述第二后腔连通。
另一方面,本申请还提供一种耳机,其包括如上所述的降风噪结构。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明本申请的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请一实施例所述的降风噪结构的结构示意图;
图2为本申请中采用电容麦克风方案的结构示意图;
图3为图2的爆炸结构图;
图4为本申请中采用硅麦克风方案的结构示意图;
图5为本申请中挡风盖的结构示意图;
图6为挡风盖与耳机壳体的爆炸结构图;
图7为本申请一实施例所述的耳机的结构示意图;
图8为图7的另一视角的结构示意图;
图9为喇叭座、后腔盖与耳机壳体的装配结构图;
图10为图9中A-A处的剖面结构图;
图11为本申请中后腔盖的俯视结构图;
图12为本申请中喇叭壳体的结构示意图;
图13为图7的又一视角的结构示意图。
附图标记说明:
10:耳机壳体;           11:第一进风孔;         12:第二进风孔;
13:第一安装槽;         14:第二安装槽;         20:前馈麦克风;
30:通话麦克风;         40:支架;               50:电路板组件;
60:第一阻尼网;         70:阻尼海绵;           80:挡风盖;
81:座体;               811:过风孔;            82:盖本体;
90:进风口;             100:耳机;              110:喇叭座;
120:后腔盖;            130:第一后腔;          141:第一声学通道;
142:第二阻尼网;        143:密封件;            150:第二后腔;
160:喇叭组件;          161:喇叭壳体;          1611:第二声学通道;
1612:第三声学通道;     162:第三阻尼网;        163:第四阻尼网;
170:前腔。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。应该理解,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或顺序。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
如图1所示,为本申请一实施例展示的一种降风噪结构,其包括耳机壳体10以及麦克风组件。耳机壳体10开设有进风孔;麦克风组件设置于耳机壳体10的内侧壁。
具体而言,麦克风组件安装在耳机壳体10的内侧壁上,安装方式可以是但不限于螺接、粘接、卡扣连接、磁吸连接等其中的任意一种。
此外,麦克风组件与耳机壳体10的内侧壁间隙配合,即麦克风组件与耳机壳体10之间配合形成有封闭声腔。
需要说明的是,麦克风组件与耳机壳体10之间的间隙大小具体可根据实际需要设计,在此不作特别限定。
封闭声腔为一种密闭腔室,即风进入该密闭腔室后不可继续流通。例如,本实施例中麦克风组件通过胶水粘接在耳机壳体10上而形成具有一定容积大小的封闭声腔。
封闭声腔与进风孔连通。进风孔为通孔,可使外部环境中的空气流入封闭声腔。需要说明的是,进风孔的孔径、孔型等参数可以根据实际需要设定,以孔型为例,进风孔可以是圆形孔、方形孔、三角形孔等其中的任意一种。
综上,实施本实施例技术方案将具有如下有益效果:上述方案的降风噪结构应用于耳机中,能够达到降低耳机风噪的效果。具体而言,当用户佩戴耳机于室外大风环境中通话时,风吹到耳机上,进而会从进风孔向耳机壳体10内部流动,此时风在穿过进风孔时便会受到阻力而被降速;紧接着风穿过进风孔后进一步流入由麦克风组件与耳机壳体10配合形成的封闭声腔内,此时风受到封闭声腔腔壁的阻流作用而被进一步显著降速,如此一来风速便可得到有效抑制,从物理方式上使风噪被有效削减,保证了耳机音质效果和通话质量,提升用户佩戴耳机在户外大风环境下的使用体验感。
在上述实施例的基础上,进风孔设置为多个,多个进风孔呈规律或者非规律结构排布。设置多个进风孔,可进一步加强对风的减速效果,且适当增大进风面积,有助于降低风噪。
根据实际需要,多个进风孔可采用规律结构排布。例如一些实施例中,多个进风孔呈阵列结构排布。如此不仅方便对进风孔加工成型,降低加工难度,同时也能使耳机外观更加美观,并且还可基于客户需要进行图形化定制加工,满足不同用户个性化需求,提高产品竞争力。
当然,多个进风孔也能采用非规律结构排布。例如,多个进风孔呈至少两排布置,相邻的两排进风孔呈错位设置。不同进风孔之间的孔间距或大或小,或者多个进风孔根据客户给予的特殊图案进行加工排布等。
请继续参阅图1至图4,在一些实施例中,进风孔包括多个第一进风孔11和多个第二进风孔12,麦克风组件包括前馈麦克风20和通话麦克风30,耳机壳体10设有第一安装槽13和第二安装槽14。前馈麦克风20(即FF 咪)用于收集环境音;通话麦克风30(Talk咪)用于收集用户发出的语音。两者协同配合,有助于提高通话时的音质效果和通话质量。
前馈麦克风20插置于第一安装槽13并与耳机壳体10配合形成第一封闭声腔,多个第一进风孔11均与第一封闭声腔连通,通话麦克风30插置于第二安装槽14内并与耳机壳体10配合形成第二封闭声腔,多个第二进风孔12均与第二封闭声腔连通。第一安装槽13对前馈麦克风20具有定位作用,第二安装槽14对通话麦克风30也具有定位作用,从而可保证前馈麦克风20和通话麦克风30安装稳固可靠。例如,本实施例中第一安装槽13和第二安装槽14内设置有螺孔柱,前馈麦克风20和通话麦克风30均设有通孔,通孔与螺孔柱对位后拧入螺丝,即快速且牢固的使前馈麦克风20和通话麦克风30安装固定。
此外,在上述实施例的基础上,耳机壳体10设有安装槽,麦克风组件装设于安装槽内,且麦克风组件包括麦克风本体,且麦克风本体与进风孔错开设置。这样可以避免从进风孔流入的风直吹麦克风本体,防止风噪影响通话。
具体而言,前馈麦克风20处于多个第一进风孔11的分布区域的界线外部,通话麦克风30处于多个第二进风孔12的分布区域的界线外部。例如,以第一进风孔11为例,若多个第一进风孔11呈圆形结构排布,则前馈麦克风20处于该圆形的边缘之外。这样能够避免从第一进风孔11和第二进风孔12流入的风直吹前馈麦克风20和通话麦克风30,防止风噪影响通话。
根据实际生产需要,前馈麦克风20和通话麦克风30可以采用电容麦克风或者硅麦克风这两种麦克风的其中之一。电容麦克风又称作驻极体电容麦克风(ECM),其工作原理为驻极体麦克风使用了可保有永久电荷的驻极体物质,不需要再对电容供电(若驻极体麦克风中内置放大电路,则需要供电)。硅麦克风(MEMS Micphone)也称麦克风芯片或微机电麦克 风,其工作原理为集成了前置放大器,甚至有些硅麦克风会集成模拟数字转换器,直接输出数字信号,成为数字麦克风。
在一些实施例中,如图3所示,麦克风组件设置为电容麦克风,电容麦克风包括支架40及设置于支架40上的第一麦克风本体,耳机壳体10设有安装槽,支架40与安装槽之间配合形成封闭声腔。具体而言,前馈麦克风20和通话麦克风30均设置为电容麦克风,电容麦克风包括支架40,支架40与第一安装槽13配合形成第一封闭声腔,支架40与第二安装槽14配合形成第二封闭声腔。此外,支架40设有容纳槽,麦克风本体插置在容纳槽内固定。
或者,如图4所示,麦克风组件设置为硅麦克风,硅麦克风包括第二麦克风本体和电路板组件50,第二麦克风本体设置在电路板组件50上,耳机壳体10设有安装槽,电路板组件50与安装槽之间配合形成封闭声腔。具体而言,前馈麦克风20和通话麦克风30均设置为硅麦克风,电路板组件50与第一安装槽13配合形成第一封闭声腔,电路板组件50与第二安装槽14配合形成第二封闭声腔。因而第一封闭声腔和第二封闭声腔的成型方式简单,且支架40和电路板组件50能够隔挡风,避免风直吹而产生较大风噪影响通话质量。
请继续参阅图3,此外,在上述任一实施例的基础上,降风噪结构还包括第一阻尼网60,耳机壳体10设有安装槽,第一阻尼网60设置于安装槽内且位于麦克风组件靠近进风孔的一侧。
具体地,第一阻尼网60具体为两个,其中一个第一阻尼网60设置于第一安装槽13与前馈麦克风20之间并与第一进风孔11相对,另一个第一阻尼网60设置于第二安装槽14与通话麦克风30之间并与第二进风孔12相对。第一阻尼网60对从第一进风孔11和第二进风孔12流入的风起到二次阻挡效果,迫使风速进一步降低,从而强化降噪效果。
请继续参阅图4,进一步地,降风噪结构还包括阻尼海绵70,阻尼海 绵70设置于安装槽内且位于第一阻尼网60与麦克风组件之间。具体而言,阻尼海绵70设置于第一阻尼网60与前馈麦克风20之间,以及阻尼海绵70设置于第一阻尼网60与通话麦克风30之间。阻尼海绵70对流经第一阻尼网60的风起到二次阻挡效果,迫使风速进一步降低,从而强化降噪效果。
需要说明的是,根据使用环境条件,为了加强对风的降速强度,上述的第一阻尼网60和阻尼海绵70可以同时设置两个或以上的数量。
此外,在另一些实施例中,降风噪结构还包括挡风盖80,挡风盖80设置于麦克风组件上,且挡风盖80隔挡设置于进风孔与麦克风组件之间。挡风盖80正对进风孔,且与进风孔保持一定间距,这样既能够遮挡住风避免直吹麦克风组件,同时又可防止堵塞进风孔。
如图5和图6所示,具体而言,本实施例中挡风盖80包括座体81和盖本体82,座体81用于与耳机壳体11组装连接,以使挡风盖80能够安装固定。可选地,座体81与耳机壳体11之间可采用螺接、卡扣连接、磁吸连接等其中的任意一种方式。
座体81设有过风孔811,过风孔811与进风孔连通。可以理解的,过风孔811为贯穿座体81设置的通孔。盖本体82盖设于过风孔811面向进风孔的孔端,且盖本体82设有进风口90。盖本体82具有与过风孔811连通的缓冲腔,进风口90与缓冲腔连通,这样从进风孔进入耳机壳体10内的气流会被盖本体82阻挡,气流进而再从进风口90流入缓冲腔,然后再从缓冲腔流动经过过风孔811接触麦克风本体,由此形成避免从进风孔流入的气流直吹麦克风本体而产生风噪的效果。
如图7,图8和图13所示,示出了本申请实施例的一种耳机100,包括降风噪结构。该耳机100通常成对使用,即耳机100具有两个,使用时分别佩戴至用户的左耳和右耳中。
可选地,耳机100可以是无线耳机或者有线耳机,具体可根据实际需要进行选择。
为了改善耳机100的被动降噪性能,提升在嘈杂环境中用户佩戴耳机100的音质效果,本申请方案提出一种应用于耳机100上的改进型的降风噪结构。
具体地,请参阅图7至图11,降风噪结构还包括喇叭座110、后腔盖120和喇叭组件160。
后腔盖120设置于喇叭座110上并与喇叭座110之间形成有第一后腔130;耳机壳体10设置于喇叭座110上并盖设于后腔盖120的上方,且耳机壳体10与后腔盖120之间形成有第二后腔150;喇叭组件160设置于喇叭座110上并形成有前腔170;其中,第一后腔130、第二后腔150与前腔170相互连通,第二后腔150用于与外界环境连通。
需要说明的是,第一后腔130、第二后腔150与前腔170相互连通,具体是指第一后腔130与第二后腔150连通,第一后腔130与前腔170连通,且同时第二后腔与前腔170连通。
当用户佩戴该耳机100处于地铁车站、市场等声音嘈杂的场所中时,外部环境中的噪音会首先传入第二后腔150中,紧接着再经过第二后腔150迂回传入第一后腔130,之后再经过第一后腔130迂回传入前腔170,并最终传入佩戴者的人耳中,此外噪音还会从第二后腔150直接传入前腔170并进入佩戴者耳朵中。
相较于现有技术而言,本方案由于设计了相互连通的第二后腔150、第一后腔130和前腔170,使得降风噪结构得到优化,当外部环境中的噪音经过第二后腔150、第一后腔130和前腔170传入耳朵的传播路径增长,弱化了噪音传播强度,且可以改善共振效果,使最终传入耳朵的噪音量大幅减少或者消除,优化了耳机100的被动降噪性能,提升了用户使用体验。
请继续参阅图13,在一些实施例中,耳机壳体10开设有至少一个第一声学通道141,第二后腔150通过至少一个第一声学通道141与外部环境连通。使用时,外部环境中的噪音可通过第一声学通道141传入第二后腔150 内。
根据实际需要,第一声学通道141的设置数量可以是一个、两个或者更多个。例如,如图13所示本实施例中较佳地第一声学通道141设置有两个,两个第一声学通道141在圆形的耳机壳体10的圆周方向上呈预设角度分布。
根据实际需要,第一声学通道141可以是圆形、方形或者其它形状;第一声学通道141的长度可根据耳机壳体10的厚度等参数进行适应性设计,在此不作特别限定。
此外,在上述实施例的基础上,降风噪结构还包括至少一个第二阻尼网142,第一声学通道141的任一通道口或通道中段任意位置设置有至少一个第二阻尼网142。设置的第二阻尼网142具有阻隔外部环境中的噪音进入第二后腔150的作用,减少传入耳机100内的噪音量,有助于强化被动降噪能力。
进一步地,在上述任一实施例的基础上降风噪结构还包括密封件143,密封件143设置于第一声学通道141的通道进口处。由于耳机壳体10几乎直接暴露在环境中,通过设置密封件143可以阻挡外部环境中的灰尘、雨水等侵入耳机内部,避免影响耳机使用可靠性和寿命。
可选地,密封件143可以是密封网、密封薄膜等其中的任意一种,根据实际需要进行选择即可。
如图12所示,在一些实施例中,喇叭组件160包括喇叭壳体161、喇叭本体以及一些其它组件。喇叭本体安装在喇叭壳体161内,与音频播放设备连接,满足用户听歌等使用需求。
请继续参阅图11和图12,喇叭座110开设有至少一个第二声学通道1611,第二后腔150通过至少一个第二声学通道1611与前腔170连通。使用时,第二后腔150中的噪音可通过第二声学通道1611传入前腔170内,使传入前腔170的噪音被弱化。
根据实际需要,第二声学通道1611的设置数量可以是一个、两个或者更多个。例如本实施例中较佳地第二声学通道1611设置有一个,第二声学通道1611在圆形的喇叭壳体161的圆周方向上靠近边缘部位设置。
根据实际需要,第二声学通道1611可以是圆形、方形或者其它形状;第二声学通道1611的长度可根据耳机壳体10的厚度等参数进行适应性设计,在此不作特别限定。
在上述实施例的基础上,降风噪结构还包括至少一个第三阻尼网162,第二声学通道1611的任一通道口或者通道中段任意位置设置有至少一个第三阻尼网162。设置的第三阻尼网162具有阻隔第二后腔150中的噪音进入前腔170的作用,进一步减少传入耳机100内部(即传入耳朵内)的噪音量,有助于强化被动降噪能力。
请继续参阅图12,此外,在又一些实施例中喇叭座110还开设有至少一个第三声学通道1612,第一后腔130通过至少一个第三声学通道1612与前腔170连通。使用时,第一后腔130中的噪音可通过第三声学通道1612传入前腔170内,使传入前腔170的噪音进一步被弱化。
在上述实施例的基础上,降风噪结构还包括至少一个第四阻尼网163,第三声学通道1612的任一通道口或者通道中段任意位置设置有至少一个第四阻尼网163。设置的第四阻尼网163具有阻隔第一后腔130中的噪音进入前腔170的作用,进一步减少传入耳机100内部(即传入耳朵内)的噪音量,有助于强化被动降噪能力。
综上之外,后腔盖120开设有至少一个声孔,第一后腔130通过至少一个声孔与第二后腔150连通。如此可使第二后腔150内的噪音通过声孔传入第一后腔130而被进一步弱化,进一步减少传入耳朵内的噪音量。
并且根据需要,声孔内也可以选择加装阻尼网,且阻尼网的数量可以是一个、两个或者更多。
综上所述的,外界环境中的噪音进入降风噪结构中,会经过多条不同 的传播路径向内传导,在延长传播路径的基础上可以更加显著的弱化噪音传播强度。
且需要说明的是,佩戴于用户左右耳朵上的耳机100的第一后腔130、第二后腔150和前腔170的声腔容积相同或接近,以保证更加均衡的被动降噪效果。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准,说明书及附图可以用于解释权利要求的内容。

Claims (19)

  1. 一种降风噪结构,包括:
    耳机壳体,所述耳机壳体开设有进风孔;以及
    麦克风组件,所述麦克风组件设置于所述耳机壳体的内侧壁,且所述麦克风组件与所述耳机壳体之间配合形成有封闭声腔,所述封闭声腔与所述进风孔连通。
  2. 根据权利要求1所述的降风噪结构,其中,所述进风孔设置为多个,多个所述进风孔呈至少两排布置,相邻的两排所述进风孔呈错位设置;
    或者,多个所述进风孔呈阵列结构排布。
  3. 根据权利要求1所述的降风噪结构,其中,所述耳机壳体设有安装槽,所述麦克风组件装设于所述安装槽内,且所述麦克风组件包括麦克风本体,所述麦克风本体与所述进风孔错开设置。
  4. 根据权利要求1所述的降风噪结构,其中,所述麦克风组件设置为电容麦克风,所述电容麦克风包括支架及设置于所述支架上的麦克风本体,所述耳机壳体设有安装槽,所述支架与所述安装槽之间配合形成所述封闭声腔。
  5. 根据权利要求1所述的降风噪结构,其中,所述麦克风组件设置为硅麦克风,所述硅麦克风包括麦克风本体和电路板组件,所述麦克风本体设置在所述电路板组件上,所述耳机壳体设有安装槽,所述电路板组件与所述安装槽之间配合形成所述封闭声腔。
  6. 根据权利要求1所述的降风噪结构,其中,所述降风噪结构还包括第一阻尼网,所述耳机壳体设有安装槽,所述第一阻尼网设置于所述安装槽内且位于所述麦克风组件靠近所述进风孔的一侧。
  7. 根据权利要求6所述的降风噪结构,其中,所述降风噪结构还包括阻尼海绵,所述阻尼海绵设置于所述安装槽内且位于所述第一阻尼网与麦克风组件之间。
  8. 根据权利要求1所述的降风噪结构,其中,所述降风噪结构还包括挡 风盖,所述挡风盖设置于所述麦克风组件上,且所述挡风盖隔挡设置于所述进风孔与所述麦克风组件之间;
    所述挡风盖包括座体和盖本体,所述座体设有过风孔,所述过风孔与所述进风孔连通,所述盖本体盖设于所述过风孔面向所述进风孔的孔端,且所述盖本体设有进风口。
  9. 根据权利要求1至8任一项所述的降风噪结构,其中,所述进风孔包括多个第一进风孔和多个第二进风孔,所述麦克风组件包括前馈麦克风和通话麦克风,所述耳机壳体设有第一安装槽和第二安装槽,所示封闭声腔包括第一封闭声腔和第二封闭声腔;
    所述前馈麦克风插置于所述第一安装槽并与所述耳机壳体配合形成第一封闭声腔,多个所述第一进风孔均与所述第一封闭声腔连通,所述通话麦克风插置于所述第二安装槽内并与所述耳机壳体配合形成第二封闭声腔,多个所述第二进风孔均与所述第二封闭声腔连通。
  10. 根据权利要求1所述的降风噪结构,其中,所述降风噪结构还包括喇叭座、后腔盖和喇叭组件,所述后腔盖设置于所述喇叭座上并与所述喇叭座之间形成有第一后腔;所述耳机壳体设置于所述喇叭座上并盖设于所述后腔盖与所述喇叭座相背的一侧,且所述耳机壳体与所述后腔盖之间形成有第二后腔;所述喇叭组件设置于所述喇叭座上并形成有前腔;
    其中,所述第一后腔、所述第二后腔与所述前腔相互连通,所述第二后腔用于与外界环境连通。
  11. 根据权利要求10所述的降风噪结构,其中,所述耳机壳体开设有至少一个第一声学通道,所述第二后腔通过所述第一声学通道与外部环境连通。
  12. 根据权利要求11所述的降风噪结构,其中,所述降风噪结构还包括至少一个第二阻尼网,所述第一声学通道的任一通道口或通道中段任意位置设置有至少一个所述第二阻尼网。
  13. 根据权利要求12所述的降风噪结构,其中,所述降风噪结构还包括密封件,所述密封件设置于所述第一声学通道的通道进口处。
  14. 根据权利要求10所述的降风噪结构,其中,所述喇叭座开设有至少 一个第二声学通道,所述第二后腔通过至少一个所述第二声学通道与所述前腔连通。
  15. 根据权利要求14所述的降风噪结构,其中,所述降风噪结构还包括至少一个第三阻尼网,所述第二声学通道的任一通道口或者通道中段任意位置设置有至少一个所述第三阻尼网。
  16. 根据权利要求14所述的降风噪结构,其中,所述喇叭座还开设有至少一个第三声学通道,所述第一后腔通过至少一个所述第三声学通道与所述前腔连通。
  17. 根据权利要求16所述的降风噪结构,其中,所述降风噪结构还包括至少一个第四阻尼网,所述第三声学通道的任一通道口或者通道中段任意位置设置有至少一个所述第四阻尼网。
  18. 根据权利要求10所述的降风噪结构,其中,所述后腔盖开设有至少一个声孔,所述第一后腔通过至少一个所述声孔与所述第二后腔连通。
  19. 一种耳机,包括如上述权利要求1至18任一项所述的降风噪结构。
PCT/CN2023/106389 2022-07-08 2023-07-07 降风噪结构及耳机 WO2024008188A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202221749042.1 2022-07-08
CN202221749042.1U CN218103452U (zh) 2022-07-08 2022-07-08 声道结构及耳机
CN202221797087.6 2022-07-13
CN202221797087.6U CN217935902U (zh) 2022-07-13 2022-07-13 降风噪结构及耳机

Publications (1)

Publication Number Publication Date
WO2024008188A1 true WO2024008188A1 (zh) 2024-01-11

Family

ID=89454301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106389 WO2024008188A1 (zh) 2022-07-08 2023-07-07 降风噪结构及耳机

Country Status (1)

Country Link
WO (1) WO2024008188A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108429960A (zh) * 2018-05-08 2018-08-21 沈炜 防风降噪耳机
CN212115606U (zh) * 2020-06-22 2020-12-08 潍坊歌尔电子有限公司 麦克风结构和耳机
US20210099786A1 (en) * 2019-08-19 2021-04-01 Chihiro Sasaki Earphone
CN214177530U (zh) * 2021-01-28 2021-09-10 深圳市豪恩声学股份有限公司 耳机、通信设备及终端
CN217935902U (zh) * 2022-07-13 2022-11-29 安克创新科技股份有限公司 降风噪结构及耳机
CN218103452U (zh) * 2022-07-08 2022-12-20 安克创新科技股份有限公司 声道结构及耳机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108429960A (zh) * 2018-05-08 2018-08-21 沈炜 防风降噪耳机
US20210099786A1 (en) * 2019-08-19 2021-04-01 Chihiro Sasaki Earphone
CN212115606U (zh) * 2020-06-22 2020-12-08 潍坊歌尔电子有限公司 麦克风结构和耳机
CN214177530U (zh) * 2021-01-28 2021-09-10 深圳市豪恩声学股份有限公司 耳机、通信设备及终端
CN218103452U (zh) * 2022-07-08 2022-12-20 安克创新科技股份有限公司 声道结构及耳机
CN217935902U (zh) * 2022-07-13 2022-11-29 安克创新科技股份有限公司 降风噪结构及耳机

Similar Documents

Publication Publication Date Title
US8861766B2 (en) Headphones
JP2020107947A (ja) ヘッドホン
US11057695B2 (en) In-ear headphone device with active noise control
US20220394369A1 (en) An intelligent head-mounted apparatus
US20210037305A1 (en) In-ear earphone
TW200421823A (en) Mobile phone using bone conduction speaker
CN211744683U (zh) 包括dsf通道的入耳式耳机
CN215121124U (zh) 一种耳机用扬声器
CN209731560U (zh) 音质改良型双磁路双振膜的振动动圈复合喇叭
WO2022174413A1 (zh) 耳机、耳机控制方法及系统
CN211720724U (zh) 一种通话降噪无线耳机
WO2023050984A1 (zh) 一种耳机
JP2014220782A (ja) パッシブダイヤフラムを有するヘッドホン
CN217935902U (zh) 降风噪结构及耳机
JP2019115039A (ja) 複数の振動板を備えた音響器機
KR101479964B1 (ko) 저음 조절이 가능한 투웨이 이어폰
WO2024008188A1 (zh) 降风噪结构及耳机
US10419845B2 (en) Headphones and speaker unit
CN216752048U (zh) 喇叭及入耳式耳机
CN110381405A (zh) 一种耳塞
CN213186461U (zh) 一种耳机的内置麦克风结构
JP2019145964A (ja) イヤホン
CN216752042U (zh) 一种耳机和耳机组件
CN215871786U (zh) 抗风燥结构及无线耳机
KR102636014B1 (ko) 헤드셋

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834953

Country of ref document: EP

Kind code of ref document: A1