WO2024008158A1 - 用于抑制c5基因表达的双链核糖核酸及其修饰物、缀合物和用途 - Google Patents

用于抑制c5基因表达的双链核糖核酸及其修饰物、缀合物和用途 Download PDF

Info

Publication number
WO2024008158A1
WO2024008158A1 PCT/CN2023/106129 CN2023106129W WO2024008158A1 WO 2024008158 A1 WO2024008158 A1 WO 2024008158A1 CN 2023106129 W CN2023106129 W CN 2023106129W WO 2024008158 A1 WO2024008158 A1 WO 2024008158A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
sequence shown
nucleotide sequence
strand includes
antisense strand
Prior art date
Application number
PCT/CN2023/106129
Other languages
English (en)
French (fr)
Inventor
王书成
黄河
刘薇
王岩
林国良
产运霞
耿玉先
汪小君
荣梅
Original Assignee
北京福元医药股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京福元医药股份有限公司 filed Critical 北京福元医药股份有限公司
Publication of WO2024008158A1 publication Critical patent/WO2024008158A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7115Nucleic acids or oligonucleotides having modified bases, i.e. other than adenine, guanine, cytosine, uracil or thymine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/712Nucleic acids or oligonucleotides having modified sugars, i.e. other than ribose or 2'-deoxyribose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7125Nucleic acids or oligonucleotides having modified internucleoside linkage, i.e. other than 3'-5' phosphodiesters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/472Complement proteins, e.g. anaphylatoxin, C3a, C5a
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs

Definitions

  • the present disclosure belongs to the field of biomedicine. Specifically, the present disclosure relates to a double-stranded ribonucleic acid, a double-stranded ribonucleic acid modification, a double-stranded ribonucleic acid conjugate, a pharmaceutical composition and uses for inhibiting C5 gene expression, and Methods for inhibiting intracellular C5 gene expression.
  • Complement is a group of heat-labile proteins that exist in the serum and tissue fluid of humans and animals, have enzymatic activity after activation, and can mediate immune responses and inflammatory responses. After the complement system is activated, it mediates a series of cellular reactions, such as cell lysis, opsonophagocytosis (antigen-antibody binding), inflammatory response, clearance of immune complexes, etc.
  • the complement system is mainly composed of more than 30 types of glycoproteins such as intrinsic components, regulatory proteins and receptors. These proteins exist as soluble proteins in the blood or as membrane-associated proteins.
  • Complement is activated by one of three pathways: the classical pathway, the alternative pathway, and the lectin pathway, producing a series of proteolytic cleavage enzymes to enhance the immune response or form the membrane attack complex (MAC).
  • C5 convertase is the last enzyme that cleaves C5, releasing C5a and C5b.
  • C5b combines with four other complement proteins (C6, C7, C8, and C9) to form MAC, a transmembrane channel that induces cell lysis.
  • Inappropriate activation of complement protein C5 is responsible for proliferation and/or initiating pathology in a number of diseases, including, for example, paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), generalized myasthenia gravis (gMG), and thromboembolism.
  • PNH paroxysmal nocturnal hemoglobinuria
  • aHUS atypical hemolytic uremic syndrome
  • gMG generalized myasthenia gravis
  • thromboembolism emboembolism
  • C5 complement inhibitors are a promising treatment method.
  • the only C5 inhibitors approved in the world for the treatment of PNH are Soliris (Eculizumab) and Ultomiris (Ravulizumab), both developed by Alexion.
  • the currently approved C5 inhibitors are all antibody drugs, and no related RNA drugs are yet on the market. Therefore, the development of new complement C5 inhibitors has great clinical value and market prospects.
  • the present disclosure aims to provide a series of double-stranded ribonucleic acid, double-stranded ribonucleic acid modifications, double-stranded ribonucleic acid conjugates and pharmaceutical compositions for inhibiting the expression of complement C5 gene, which can inhibit the expression of C5 gene and be used in the treatment of clinical diseases. It has important application prospects.
  • a double-stranded ribonucleic acid the double-stranded ribonucleic acid includes a sense strand and an antisense strand, the sense strand is complementary and/or substantially reverse complementary to the antisense strand to form the double strands of the double-stranded ribonucleic acid district;
  • the sense strand includes a sequence A that differs from at least 15 consecutive nucleotides in the target sequence by no more than 3 nucleotides
  • the antisense strand includes a sequence A that differs from at least 15 consecutive nucleotides in the target sequence.
  • Sequence B that differs from the complementary sequence by no more than 3 nucleotides;
  • nucleotide sequence of the sense strand is the nucleotide sequence shown in any one of SEQ ID NO: 8-51 and SEQ ID NO: 615-657
  • Sequence A consisting of 15-28 consecutive nucleotides is preferably 19-25 consecutive nucleotides, more preferably 19-23 consecutive nucleotides, and more preferably 19, 21 or 23 nucleotides.
  • the double-stranded ribonucleic acid according to any one of [1]-[4], wherein the antisense strand consists of 15-28 nucleotides, preferably 19-25 nucleotides, more preferably 19-23 nucleotides nucleotides, more preferably 19, 21 or 23 nucleotides.
  • nucleotide sequence of the antisense strand is the nucleotide sequence shown in any one of SEQ ID NO:8-51 and SEQ ID NO:615-657
  • Sequence B consisting of 15-28 consecutive nucleotides in the sequence is reverse complementary and/or substantially reverse complementary, preferably 19-25 consecutive nucleotides, more preferably 19-23 consecutive nucleotides, More preferred are 19, 21 or 23 nucleotides.
  • the double-stranded ribonucleic acid according to any one of [1]-[6], wherein the length of the double-stranded region is 15-25 nucleotides, preferably 19-23 nucleotides, more preferably 19- 21 nucleotides, more preferably 19, 21 or 23 nucleotides.
  • the sense strand and the antisense strand are complementary to form the double-stranded region, and the 3' end of the sense strand has 1-2 protruding nucleotides extending out of the double-stranded region, and the antisense strand is complementary to the double-stranded region.
  • the 3' end of the chain forms a blunt end; or,
  • the sense strand and the antisense strand are complementary to form the double-stranded region, and the 3' end of the antisense strand has 1-2 protruding nucleotides extending out of the double-stranded region, and the sense strand The 3' end of the chain forms a blunt end; or,
  • the sense strand and the antisense strand are complementary to form the double-stranded region, and the 3' ends of the sense strand and the antisense strand each have 1-2 protruding cores extending out of the double-stranded region. glycoside; or,
  • the sense strand and the antisense strand are complementary to form the double-stranded region, and the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:283, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:370;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:52, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:145;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:53, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:146;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:54, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:147;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:55, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:148;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:56, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:149;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:57, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:150;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:58, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:151;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:59, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:152;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:60, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:153;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:61, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:154;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:62, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:155;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:63, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:156;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:64, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:157;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:65, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:158;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:66, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:159;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:67, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:160;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:69, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:162;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:70, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:163;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:72, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:165;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:73, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:166;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:74, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:167;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:75, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:168;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:76, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:169;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:77, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:170;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:78, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:171;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:80, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:173;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:81, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:174;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:82, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:82 The nucleotide sequence shown in NO:175;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:83, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:176;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:84, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:177;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:85, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:178;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:86, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:179;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:87, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:180;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:88, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:181;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:89, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:182;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:90, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:183;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:91, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:184;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:92, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:185;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:93, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:186;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:94, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:187;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:95, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:188;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:96, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:189;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:97, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:190;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:98, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:191;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:99, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:192;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:100, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:193;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:101, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:194;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:102, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:195;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:103, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:196;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:104, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:197;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:105, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:198;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:106, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:199;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO: 110, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO: 203;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO: 111, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO: 204;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:112, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:205;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:113, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:206;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:114, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:207;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:115, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:208;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:116, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:209;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:117, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:210;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:118, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:211;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:119, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:212;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:120, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:213;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:122, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:215;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:123, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:216;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:124, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:217;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:125, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:218;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:126, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:219;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:127, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:127 The nucleotide sequence shown in NO:220;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:128, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:221;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:129, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:222;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:130, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:223;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:131, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:224;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:132, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:225;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:133, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:226;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:134, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:227;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:135, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:228;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:136, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:229;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:137, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:230;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:138, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:231;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:139, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:232;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:140, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:233;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:141, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:234;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:142, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:235;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:143, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:236;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:144, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:237;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:262, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:349;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:263, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:350;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:264, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:351;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:265, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:352;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:266, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:353;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:267, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:354;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:268, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:355;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:270, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:357;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:271, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:358;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:272, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:359;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:273, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:360;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:274, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:361;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:276, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:363;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:278, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:365;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:279, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:366;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:280, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:367;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:282, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:369;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:284, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:371;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:285, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:372;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:286, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:373;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:288, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:375;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:289, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:376;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:290, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:377;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:291, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:378;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:292, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:379;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:293, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:293 The nucleotide sequence shown in NO:380;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:294, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:381;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:295, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:382;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:296, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:383;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:297, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:384;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:298, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:385;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:299, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:386;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:300, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:387;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:302, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:389;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:303, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:390;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:305, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:392;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:306, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:393;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:307, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:394;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:308, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:395;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:310, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:397;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:311, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:398;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:315, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:402;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:316, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:403;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:317, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:404;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:318, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:405;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:319, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:406;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:320, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:407;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:321, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:408;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:322, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:409;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:323, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:410;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:324, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:411;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:325, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:412;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:326, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:413;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:327, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:414;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:328, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:415;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:330, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:417;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:331, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:418;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:332, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:419;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:334, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:421;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:335, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:422;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:336, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:423;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:337, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:424;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:338, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:425;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:340, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:427;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:341, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:428;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:344, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:431;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:345, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:432;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:346, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:433;
  • the sense strand comprises the nucleotide sequence shown in SEQ ID NO:347
  • the antisense strand comprises the nucleotide sequence shown in SEQ ID NO:347
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:530, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:541;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:531, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:542;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:532, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:543;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:533, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:544;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:534, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:545;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:535, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:546;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:536, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:547;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:537, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:548;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:538, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:549;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:539, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:550;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:540, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:551.
  • each nucleotide in the sense strand is independently a modified nucleotide or an unmodified nucleotide, and/ Alternatively, each nucleotide in the antisense strand is independently a modified nucleotide or an unmodified nucleotide.
  • any two nucleotides connected in the sense strand are connected by a phosphodiester bond or a phosphorothioate diester bond, and/ Or, any two connected nucleotides in the antisense strand are connected by a phosphodiester bond or a phosphorothioate diester bond.
  • the double-stranded ribonucleic acid according to any one of [1] to [11], wherein the 5' terminal nucleotide of the sense strand is connected to a 5' phosphate group or a 5' phosphate derivative group, and/or, The 5' terminal nucleotide of the antisense strand is connected to a 5' phosphate group or a 5' phosphate derivative group.
  • double-stranded ribonucleic acid according to any one of [1] to [12], wherein the double-stranded ribonucleic acid is siRNA.
  • the double-stranded ribonucleic acid according to any one of [1] to [13], wherein the double-stranded ribonucleic acid is siRNA for inhibiting C5 gene expression.
  • a double-stranded ribonucleic acid modification which is a double-stranded ribonucleic acid modification as described in any one of [1]-[14], and the double-stranded ribonucleic acid modification includes at least one of the following chemical modifications:
  • sequence A in the sense strand of the double-stranded ribonucleic acid is connected to sequence D consisting of 1-2 nucleotides, preferably a sequence consisting of 1-2 thymidine deoxyribonucleotides D; and/or, the 3' end of sequence B in the antisense strand of the double-stranded ribonucleic acid is connected to sequence E consisting of 1-2 nucleotides, preferably 1-2 thymidine deoxyribonucleotides Sequence E consisting of; and/or, the 3' end of sequence A in the sense strand of the double-stranded ribonucleic acid excludes 1-2 The sequence A' is formed after the nucleotide;
  • the sense strand and antisense strand of the double-stranded ribonucleic acid modification are selected from the following sequence combinations:
  • nucleotide sequence of the sense strand is the sequence shown in sequence A, and the nucleotide sequence of the antisense strand is the sequence shown in sequence B;
  • nucleotide sequence of the sense strand is the sequence shown in sequence A
  • nucleotide sequence of the antisense strand is the sequence shown in sequence B connected to sequence E;
  • nucleotide sequence of the sense strand is the sequence shown in sequence A connected to sequence D
  • nucleotide sequence of the antisense strand is the sequence shown in sequence B connected to sequence E;
  • nucleotide sequence of the sense strand is the sequence shown in sequence A'
  • nucleotide sequence of the antisense strand is the sequence shown in sequence B;
  • nucleotide sequence of the sense strand is the sequence represented by sequence A'
  • nucleotide sequence of the antisense strand is the sequence represented by sequence B connected to sequence E.
  • the double-stranded ribonucleic acid modification according to any one of [15] to [18], wherein, along the 5' end to the 3' end, the 7th, 9th, 10th and 10th positions in the sense strand are
  • the ribonucleotide at position 11 is a 2'-F modified ribonucleotide, and the remaining ribonucleotides in the sense strand are 2'-O- CH3 modified ribonucleotides.
  • the sense strand contains phosphorothioate diester bonds at the positions shown below:
  • the sense strand contains phosphorothioate diester bonds at the positions shown below:
  • the double-stranded ribonucleic acid modification according to any one of [15] to [20], wherein the ribonucleotides at any odd-numbered position in the antisense strand along the 5' end to the 3' end are 2 '-O-CH 3 modified ribonucleotide, the antisense strand
  • the ribonucleotide at any even-numbered position in is a 2'-F modified ribonucleotide;
  • the ribonucleotides at positions 2, 6, 14 and 16 in the antisense strand are 2'-F modified ribonucleotides,
  • the remaining ribonucleotides in the antisense strand are 2'-O-CH 3 modified ribonucleotides;
  • the ribonucleotides at positions 2, 6, 8, 9, 14 and 16 in the antisense strand are 2'- F-modified ribonucleotides, the remaining ribonucleotides in the antisense strand are 2'-O-CH 3 modified ribonucleotides;
  • the ribonucleotides at positions 2, 14 and 16 in the antisense strand are 2'-F modified ribonucleotides, and the antisense strand
  • the ribonucleotide at position 6 in the chain is a ribonucleotide modified by the nucleotide derivative GNA, and the ribonucleotides at the remaining positions in the antisense chain are ribonucleotides modified by 2'-O-CH 3 acid;
  • the ribonucleotides at positions 2, 6, 14 and 16 in the antisense strand are 2'-F modified ribonucleotides
  • the ribonucleotide at position 7 in the antisense strand is a ribonucleotide modified by the nucleotide derivative GNA, and the ribonucleotides at the remaining positions in the antisense strand are modified with 2'-O-CH 3 of ribonucleotides.
  • the double-stranded ribonucleic acid modification according to any one of [15] to [21], wherein the nucleotide at the 5' end of the antisense strand is connected to a 5' phosphate in the direction from the 5' end to the 3' end. group or 5' phosphate derivative group.
  • the antisense strand contains a phosphorothioate diester bond at the position shown below:
  • the double-stranded ribonucleic acid modified product according to any one of [15] to [23], wherein the sense strand of the double-stranded ribonucleic acid modified product has a structure as shown in any one of (a 1 ) to (a 6 ) Structure:
  • N 1 -N 23 are independently selected from ribonucleotides whose bases are A, U, C or G,
  • T stands for deoxyribonucleotide whose base is thymine.
  • the lowercase letter m indicates that the ribonucleotide adjacent to the right side of the letter m is a 2'-O-CH 3 modified ribonucleotide.
  • the lowercase letter f indicates that the ribonucleotide adjacent to the left side of the letter f is a 2’-F modified ribonucleotide.
  • -(s)- indicates that two adjacent nucleotides are connected by a phosphorothioate diester bond.
  • the double-stranded ribonucleic acid modified product according to any one of [15] to [24], wherein the antisense strand of the double-stranded ribonucleic acid modified product has the properties of any one of (b 1 ) to (b 17 )
  • N 1 -N 23 are independently selected from ribonucleotides whose bases are A, U, C or G,
  • T stands for deoxyribonucleotide whose base is thymine.
  • the lowercase letter m indicates that the ribonucleotide adjacent to the right side of the letter m is a 2'-O-CH 3 modified ribonucleotide.
  • the lowercase letter f indicates that the ribonucleotide adjacent to the left side of the letter f is a 2’-F modified ribonucleotide.
  • P1 indicates that the nucleotide adjacent to the right side of the letter is a 5’-phosphate nucleotide
  • EVP indicates that the adjacent nucleotide on the right is 5'-trans vinyl phosphate nucleotide
  • -(s)- means that two adjacent nucleotides are connected by a phosphorothioate diester bond
  • GNA indicates that the ribonucleotide adjacent to the right side is a ribonucleotide modified by GNA.
  • the double-stranded ribonucleic acid modified product according to any one of [15] to [25], wherein the double-stranded ribonucleic acid modified product is an siRNA modified product.
  • double-stranded ribonucleic acid modification according to any one of [15] to [26], wherein the double-stranded ribonucleic acid modification is an siRNA modification for inhibiting C5 gene expression.
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:238, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:250;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:239, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:251;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:240, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:252;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:241, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:253;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:242, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:254;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:243, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:255;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:244, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:256;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:245, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:257;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:246, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:251;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:247, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:257;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:248, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:255;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:249, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:252;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:436, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:472;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:437, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:473;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:437, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:474;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:438, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:475;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:439, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:475;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:438, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:476;
  • the sense strand comprises the nucleotide sequence shown in SEQ ID NO:440
  • the antisense strand comprises the nucleotide sequence shown in SEQ ID NO:440
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:440, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:478;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:441, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:478;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:440, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:479;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:440, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:480;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:442, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:481;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:442, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:482;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:443, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:483;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:444, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:484;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:444, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:485;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:445, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:486;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:446, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:486;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:445, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:487;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:445, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:488;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:445, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:489;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:447, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:490;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:448, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:491;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:449, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:492;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:450, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:493;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:451, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:494;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:451, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:495;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:452, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:496;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:453, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:497;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:454, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:498;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:455, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:499;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:456, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:500;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:457, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:501;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:457, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:502;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:458, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:503;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:459, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:504;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:460, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:505;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:461, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:506;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:461, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:507;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:462, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:508;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:463, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:509;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:463, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:510;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:464, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:511;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:465, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:512;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:466, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:513;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:467, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:514;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:468, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:515;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:469, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:516;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:470, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:517;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:471, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:518;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:239, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:565;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:246, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:246 The nucleotide sequence shown in ID NO:565;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:239, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:566;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:246, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:566;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:239, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:567;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:239, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:568;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:552, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:569;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:245, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:570;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:247, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:570;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:245, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:571;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:247, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:571;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:245, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:572;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:245, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:573;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:243, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:574;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:248, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:574;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:243, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:575;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:243, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:576;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:243, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:577;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:245, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:578;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:240, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:579;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:249, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:579;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:240, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:580;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:240, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:581;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:240, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:582;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:553, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:583;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:554, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:584;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:555, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:585;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:556, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:586;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:557, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:587;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:558, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:588;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:559, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:589;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:560, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:590;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:561, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:591;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:562, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:592;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:563, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:593;
  • the sense strand includes the nucleotide sequence as shown in SEQ ID NO:564, and the antisense strand includes the nucleotide sequence as shown in SEQ ID NO:594.
  • a double-stranded ribonucleic acid conjugate wherein the double-stranded ribonucleic acid conjugate includes the double-stranded ribonucleic acid as described in any one of [1]-[14], or as [15]-[28] The double-stranded ribonucleic acid modification of any one; and, conjugation to a conjugation group connected to the double-stranded ribonucleic acid or the double-stranded ribonucleic acid modification.
  • the sense strand and the antisense strand of the double-stranded ribonucleic acid conjugate are complementary to form a double-stranded region of the double-stranded ribonucleic acid conjugate, and the 3' end of the sense strand forms a blunt end, and the The 3' end of the antisense strand has 1-2 protruding nucleotides extending out of the double-stranded region;
  • the sense strand and the antisense strand of the double-stranded ribonucleic acid conjugate are complementary to form the double-stranded region of the double-stranded ribonucleic acid conjugate, and the 3' end of the sense strand forms a blunt end, and the antisense strand The 3' end forms a blunt end.
  • the double-stranded ribonucleic acid conjugate according to any one of [29] to [32], wherein the double-stranded ribonucleic acid conjugate has the following structure:
  • the double helix structure is double-stranded ribonucleic acid or double-stranded ribonucleic acid modification.
  • double-stranded ribonucleic acid conjugate according to any one of [29] to [33], wherein the double-stranded ribonucleic acid conjugate is an siRNA conjugate.
  • the double-stranded ribonucleic acid conjugate according to any one of [29] to [34], wherein the double-stranded ribonucleic acid conjugate is an siRNA conjugate for inhibiting C5 gene expression.
  • the double-stranded ribonucleic acid conjugate according to any one of [29] to [35], wherein the double-stranded ribonucleic acid conjugate is formed by connecting any siRNA shown in Table 1 with a conjugating group , or, the double-stranded ribonucleic acid conjugate is formed by connecting any siRNA modification shown in Table 2 and a conjugation group;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:258, and the antisense strand includes the sequence shown in SEQ ID NO:251 sequence;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:259, and the antisense strand includes the sequence shown in SEQ ID NO:257 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:260, and the antisense strand includes the sequence shown in SEQ ID NO:255 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:261, and the antisense strand includes the sequence shown in SEQ ID NO:252 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:519, and the antisense strand includes the sequence shown in SEQ ID NO:477 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:519, and the antisense strand includes the sequence shown in SEQ ID NO:478 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:520, and the antisense strand includes the sequence shown in SEQ ID NO:509 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:519, and the antisense strand includes the sequence shown in SEQ ID NO:479 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:519, and the antisense strand includes the sequence shown in SEQ ID NO:480 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:521, and the antisense strand includes the sequence shown in SEQ ID NO:481 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:521, and the antisense strand includes the sequence shown in SEQ ID NO:482 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:522, and the antisense strand includes the sequence shown in SEQ ID NO:486 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:522, and the antisense strand includes the sequence shown in SEQ ID NO:487 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO: 522, and the antisense strand includes the sequence shown in SEQ ID NO: 488 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:522, and the antisense strand includes the sequence shown in SEQ ID NO:489 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO: 523, and the antisense strand includes the sequence shown in SEQ ID NO: 492 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO: 524, and the antisense strand includes the sequence shown in SEQ ID NO: 493 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:525, and the antisense strand includes the sequence shown in SEQ ID NO:494 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:525, and the antisense strand includes the sequence shown in SEQ ID NO:495 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:526, and the antisense strand includes the sequence shown in SEQ ID NO:499 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:527, and the antisense strand includes the sequence shown in SEQ ID NO:500 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:528, and the antisense strand includes the sequence shown in SEQ ID NO:501 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:528, and the antisense strand includes the sequence shown in SEQ ID NO:502 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:529, and the antisense strand includes the sequence shown in SEQ ID NO:508 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:258, and the antisense strand includes the sequence shown in SEQ ID NO:565 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:258, and the antisense strand includes the sequence shown in SEQ ID NO:566 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:258, and the antisense strand includes the sequence shown in SEQ ID NO:567 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:258, and the antisense strand includes the sequence shown in SEQ ID NO:568 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:259, and the antisense strand includes the sequence shown in SEQ ID NO:570 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:259, and the antisense strand includes the sequence shown in SEQ ID NO:571 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:259, and the antisense strand includes the sequence shown in SEQ ID NO:572 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:259, and the antisense strand includes the sequence shown in SEQ ID NO:573 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:259, and the antisense strand includes the sequence shown in SEQ ID NO:578 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:260, and the antisense strand includes the sequence shown in SEQ ID NO:574 ;
  • the sense strand connecting the conjugate group includes SEQ ID NO: 260
  • the sequence shown, the antisense strand includes the sequence shown in SEQ ID NO:575;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:260, and the antisense strand includes the sequence shown in SEQ ID NO:576 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:260, and the antisense strand includes the sequence shown in SEQ ID NO:577 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:261, and the antisense strand includes the sequence shown in SEQ ID NO:579 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:261, and the antisense strand includes the sequence shown in SEQ ID NO:580 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:261, and the antisense strand includes the sequence shown in SEQ ID NO:581 ;
  • the sense strand connecting the conjugate group includes the sequence shown in SEQ ID NO:261
  • the antisense strand includes the sequence shown in SEQ ID NO:582 .
  • a pharmaceutical composition wherein the pharmaceutical composition includes at least one of the following: a double-stranded ribonucleic acid as described in any one of [1]-[14], as described in any one of [15]-[28]
  • the double-stranded ribonucleic acid modification described above is the double-stranded ribonucleic acid conjugate described in any one of [29]-[36].
  • composition according to [37], wherein the pharmaceutical composition further includes one or more pharmaceutically acceptable carriers.
  • the double-stranded ribonucleic acid according to any one of [1]-[14], the double-stranded ribonucleic acid modification according to any one of [15]-[28], according to any one of [29]-[36] The double-stranded ribonucleic acid conjugate described in the item, or the use of the pharmaceutical composition according to any one of [37]-[38] in at least one of the following:
  • Paroxysmal nocturnal hemoglobinuria atypical hemolytic-uremic syndrome, generalized myasthenia gravis, thromboembolism, neuromyelitis optica, antibody-mediated renal transplant rejection, Guillain-Barré syndrome, antineutrophil cells Plasma antibody-related vasculitis, amyotrophic lateral sclerosis, Parkinson's disease, autoimmune encephalitis, IgG4-related diseases, asthma, antiphospholipid antibody syndrome, ischemia-reperfusion injury, typical hemolytic-uremic syndrome, multifocal Motor neuropathy, multiple sclerosis, thrombotic thrombocytopenic purpura, traumatic brain injury, cold agglutinin disease, dermatomyositis, hemolytic uremic syndrome associated with Shiga toxin-producing Escherichia coli, transplantation Dysfunction, myocardial infarction, sepsis, atherosclerosis, septic shock, spinal cord injury, psoriasis, autoimmune hemolytic anemia
  • a method for inhibiting intracellular C5 gene expression includes combining the cell with the double-stranded ribonucleic acid according to any one of [1]-[14], according to [15]-[28 ] The double-stranded ribonucleic acid modification according to any one of [29]-[36], or the double-stranded ribonucleic acid conjugate according to any one of [37]-[38] contact with the pharmaceutical composition.
  • the double-stranded ribonucleic acid provided by the present disclosure can combine in cells to form an RNA-induced silencing complex (RISC), cleave the mRNA transcribed by the complement C5 gene, and efficiently and specifically inhibit the expression of the complement C5 gene.
  • RISC RNA-induced silencing complex
  • the double-stranded ribonucleic acid is siRNA.
  • siRNA targets and degrades the transcript product of the C5 gene, mRNA, exerts the effect of RNA interference and inhibits the protein expression of the C5 gene. It is a method with high inhibition rate and good specificity.
  • C5 complement inhibitor C5 complement inhibitor.
  • the present disclosure modifies double-stranded ribonucleic acid to obtain a double-stranded ribonucleic acid modified product.
  • the double-stranded ribonucleic acid modified product has high stability and is suitable for use in in vivo disease treatment.
  • the double-stranded ribonucleic acid modification is a siRNA modification, which has high stability and good inhibitory activity.
  • the present disclosure connects a conjugation group to double-stranded ribonucleic acid or double-stranded ribonucleic acid modifications to obtain a conjugate of double-stranded ribonucleic acid or double-stranded ribonucleic acid modifications, which can be used to deliver tissues and cells.
  • Medium and high-efficiency targeted delivery reduces the impact of double-stranded ribonucleic acid or double-stranded ribonucleic acid modifications on non-targeted normal tissues and cells, and improves its safety in clinical disease treatment.
  • the double-stranded ribonucleic acid conjugate is an siRNA conjugate, which maintains the inhibitory activity and stability of siRNA while also having organ or tissue targeting, which can reduce the impact on other tissues or organs and reduce the use of siRNA molecules. quantity, can achieve the purpose of reducing toxicity and reducing costs.
  • the conjugation group in the present disclosure is a group (GalNAc) with the structure shown in Formula I.
  • GalNAc can be used for targeted delivery to liver cells and tissues, and can be used to efficiently inhibit the expression of the C5 gene in the liver.
  • C5D genes and polypeptides also known in the art as: C5D; C5a; C5b; ECLZB;CPAMD4.
  • the C5 gene and C5 mRNA sequences are easily obtained using, for example, GenBank (GenBank), database (UniProt), Online Mendelian Inheritance in Man (OMIM), etc.
  • C5 gene can be a wild-type C5 gene or a C5 gene mutant with sequence variation. Many sequence variations in the C5 gene have been identified and can be found, for example, in NCBIdbSNP and UniProt (see, eg, ncbi.nlm.nih.gov/snp).
  • polypeptide and protein interchangeably refer to a string of at least two molecules linked to each other by covalent bonds (e.g., peptide bonds) amino acid residues, which can be recombinant polypeptides, natural polypeptides or synthetic polypeptides.
  • a polypeptide can be linear or branched, it can contain modified amino acids, and it can be interrupted by non-amino acids.
  • the term also includes amino acid polymers that have been modified (eg, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation, such as conjugation with a labeling component).
  • target sequence refers to the contiguous portion of the nucleotide sequence of the mRNA molecule formed during the transcription of the target gene, including the mRNA as a product of RNA processing of the primary transcript.
  • the target sequence is no less than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 50, 80, 100, 150, A nucleotide sequence composed of 200, 300, 400, 500, 600, 700 or 800 consecutively connected nucleosides.
  • the target sequences are 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 35, 36, 38, 41, 44, 45, 65, 77, 84, 113 , 123, 129, 135, 136, 139, 148, 157, 159, 192, 245, 258, 259, 290, 353, 426, 614, 684, 693 or 731 nucleotide sequences composed of continuously connected nucleosides.
  • another shorter target sequence may be included in the target sequence.
  • one or more shorter target sequences may be included in the target sequence. It should be considered that two or more shorter target sequences included in the same target sequence have the same characteristics.
  • the target gene is the C5 gene.
  • the target portion of the sequence will be at least long enough to serve as a substrate for iRNA-directed cleavage at or near the nucleotide sequence portion of the mRNA molecule formed during transcription of the C5 gene.
  • G", “C”, “A”, “T” and “U” usually represent the bases of guanine, cytosine, adenine, thymine and uracil respectively, but in this field It is also commonly known that “G”, “C”, “A”, “T” and “U” each also generally represent nucleosides containing guanine, cytosine, adenine, thymine and uracil as bases respectively acid, which is a common way of expressing deoxyribonucleic acid sequences and/or ribonucleic acid sequences, so in the context of this disclosure, “G”, “C”, “A”, “T”, “U” The meaning includes various possible situations mentioned above.
  • ribonucleotide or “nucleotide” may also refer to a modified nucleotide (as described in further detail below) or an alternative replacement moiety.
  • guanine, cytosine, adenine, and uracil can be substituted by other moieties without substantially changing the base of an oligonucleotide, including a nucleotide having such a substituted moiety.
  • Base pairing properties For example, without limitation, a nucleotide including inosine as its base may be base-paired with a nucleotide including adenine, cytosine, or uracil.
  • uracil, guanine or adenine containing nucleotides may be replaced by eg inosine containing nucleotides in the nucleotide sequence of the dsRNA characterized in the present invention.
  • adenine and cytosine anywhere in the oligonucleotide can be replaced with guanine and uracil, respectively, to form G-U wobble base pairing with the target mRNA. Sequences containing such substituted moieties are suitable for use in the compositions and methods characterized herein.
  • RNAi agent RNAi agent
  • RNA interference agent RNA interference agent
  • siRNA siRNA and mediate silencing induced by RNA.
  • RISC RISC complex
  • iRNA directs the sequence-specific degradation of mRNA through a process known as RNA interference (RNAi).
  • RNAi RNA interference
  • An iRNA modulates, eg, inhibits, the expression of a target gene in a cell, such as a cell of a subject (eg, a mammalian subject).
  • double-stranded ribonucleic acid double-stranded RNA (dsRNA) molecule
  • dsRNA double-stranded RNA
  • dsRNA double-stranded RNA
  • double-stranded ribonucleic acid triggers the degradation of target RNA, such as mRNA, through a post-transcriptional gene silencing mechanism (referred to herein as RNA interference or RNAi).
  • target RNA such as mRNA
  • RNA interference post-transcriptional gene silencing mechanism
  • each or both strands may also include one or more non-ribonucleotides Acids, for example, deoxyribonucleotides and/or modified nucleotides.
  • double-stranded ribonucleic acid may include nucleic acids with chemical modifications. Sugar nucleotides, phosphate backbone, etc. These modifications may include all types of modifications disclosed herein or known in the art.
  • nucleotide refers to compounds in which the position of the base in the ribose ring is changed in the nucleotide, for example, the base is not attached to the 1'-position of the ribose ring, but is A compound formed by linking to the 2'-position or 3'-position of the ribose ring.
  • the double-stranded ribonucleic acid of the present disclosure is an siRNA that interacts with the mRNA sequence transcribed by the target gene (eg, the mRNA sequence transcribed by the C5 gene) to direct cleavage of the target RNA.
  • siRNA a type III endonuclease called Dicer (Sharp et al., Genes Dev. 2001, 15: 485).
  • Dicer ribonuclease III-like enzyme
  • processes dsRNA into 19-23 base pair short interfering RNA with a characteristic two-base 3' overhang (Bernstein et al.
  • siRNAs are subsequently incorporated into the RNA-induced silencing complex (RISC), where one or more helicases unwind the siRNA duplex, making it possible for the complementary antisense strand to guide target recognition (Nykanen et al., (2001) Cell 107:309).
  • RISC RNA-induced silencing complex
  • one or more endonucleases within the RISC cleave the target to induce silencing (Elbashir et al., (2001) Genes Dev. 15: 188).
  • overhanging nucleotide refers to a protruding or Multiple unpaired nucleotides, or vice versa.
  • “Blunt end” or “blunt end” means that there are no unpaired nucleotides, ie, no nucleotide overhangs, at that end of the double-stranded ribonucleic acid.
  • a "blunt-ended" double-stranded RNA is a dsRNA that is double-stranded throughout its length, ie, it has no nucleotide overhangs at either end of the molecule.
  • antisense strand refers to the strand of a region of double-stranded RNA that is substantially complementary to a target sequence (eg, derived from human C5 mRNA).
  • a target sequence eg, derived from human C5 mRNA.
  • mismatches are most tolerated in the terminal region, and if mismatches occur, they are usually in one or more regions at the terminal end, such as the 5' and/or Within 5, 4, 3, 2 or 1 nucleotide of the 3 end.
  • sense strand refers to a double-stranded nucleic acid strand containing a region that is substantially complementary to a region of the antisense strand.
  • the terms “complementary” or “reverse complementary” are used interchangeably and have the meaning well known to those skilled in the art, that is, in a double-stranded nucleic acid molecule, the bases on one strand are connected to the bases on the other strand. Paired in complementary ways.
  • the purine base adenine (A) always pairs with the pyrimidine base thymine (T) (or uracil (U) in RNA);
  • the purine base guanine (C) always pairs with the pyrimidine base Pairs with cytosine (G).
  • Each base pair consists of a purine and a pyrimidine.
  • mismatch in this field means that in double-stranded nucleic acids, the bases at corresponding positions do not pair in a complementary manner.
  • substantially reverse complementary means that there are no more than 3 base mismatches between the two nucleotide sequences involved, that is, there are 1, 2, and 2 base mismatches between the two nucleotide sequences involved. or 3 base mismatches; “complete complementarity” means that there are no base mismatches between the two nucleotide sequences.
  • suppression may be used interchangeably with “reduction,” “silencing,” “downregulation,” “suppression” and other similar terms and includes any level of suppression.
  • the term "inhibiting the expression of a C5 gene” includes inhibiting any C5 gene (such as, for example, a mouse C5 gene, a rat C5 gene, a monkey C5 gene, or a human C5 gene) as well as variants (eg, naturally occurring variants) of the C5 gene, or Expression of mutants.
  • the C5 gene may be a wild-type C5 gene, a mutant C5 gene, or in the case of a genetically manipulated cell, cell population or organism, a transgenic C5 gene.
  • “Inhibiting C5 gene expression” includes any level of inhibition of the C5 gene, such as at least partial inhibition of the C5 gene Expression, such as inhibiting at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, At least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, At least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%.
  • each independently means that at least two groups (or ring systems) present in the structure with the same or similar value ranges can have the same or different meanings under specific circumstances.
  • substituent X and substituent Y are each independently hydrogen, hydroxyl, alkyl or aryl, then when substituent X is hydrogen, substituent Y can be either hydrogen, hydroxyl, alkyl or aryl. ;Similarly, when the substituent Y is hydrogen, the substituent X can be either hydrogen, hydroxyl, alkyl or aryl.
  • alkyl includes straight-chain, branched or cyclic saturated alkyl groups.
  • alkyl groups include, but are not limited to, methyl, ethyl, propyl, cyclopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, cyclobutyl, n-pentyl, cyclohexyl, and the like. group.
  • C 1-6 " in "C 1-6 alkyl” refers to a linear, branched or cyclic arrangement containing 1, 2, 3, 4, 5 or 6 carbon atoms. group.
  • alkoxy refers to an alkyl group attached to the remainder of the molecule through an oxygen atom (-O-alkyl), wherein said alkyl group is as defined herein.
  • alkoxy include methoxy, ethoxy, trifluoromethoxy, difluoromethoxy, n-propoxy, isopropoxy, n-butoxy, tert-butoxy, n- Pentyloxy etc.
  • treatment means exposing a subject to (e.g., administering) a double-stranded ribonucleic acid, a double-stranded ribonucleic acid modification, a double-stranded ribonucleic acid conjugate, or a pharmaceutical composition following the development of a disease, thereby making the subject unexposed. Reducing the symptoms of the disease does not necessarily mean that they must be completely suppressed. Suffering from a disease means that the body has symptoms of the disease.
  • prevention means: by exposing a subject to (e.g., administering) a double-stranded ribonucleic acid, double-stranded ribonucleic acid modification, double-stranded ribonucleic acid conjugate, or pharmaceutical composition of the present disclosure before suffering from a disease, Thus, reducing the symptoms of a disease compared with no exposure does not necessarily mean that the disease must be completely suppressed.
  • an effective amount refers to an amount or dose of a double-stranded ribonucleic acid, double-stranded ribonucleic acid modification, double-stranded ribonucleic acid conjugate or pharmaceutical composition of the invention that, after administration to a patient in single or multiple doses, Produce the desired effect in patients in need of treatment or prophylaxis.
  • the effective amount can be readily determined by the attending physician, who is one of skill in the art, by considering various factors such as: the species of the mammal; its size, age and general health; the specific disease involved; the extent or severity of the disease; The individual patient's response; the specific antibody administered; the mode of administration; the bioavailability characteristics of the administered formulation; the dosage regimen selected; and the use of any concomitant therapy.
  • disease associated with abnormal expression of the C5 gene is a disease or disorder caused by or associated with complement activation.
  • disease associated with abnormal expression of the C5 gene includes diseases, disorders or conditions that would benefit from reduced expression of C5 (i.e., "C5-related diseases”).
  • Such diseases are typically associated with inflammation and/or immune system activation and include, for example, paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), generalized myasthenia gravis (gMG), thromboembolism , Neuromyelitis optica (NMO), antibody-mediated renal transplant rejection, Guillain Barre syndrome (GBS), antineutrophil cytoplasmic antibody-associated vasculitis (ANCA-associated vasculitis), myocardial infarction Amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), autoimmune encephalitis, IgG4-related diseases, asthma, antiphospholipid antibody syndrome, ischemia-reperfusion injury, classic hemolytic uremic syndrome (tHUS), multiple Focal motor neuropathy (MMN), multiple sclerosis (MS), thrombotic thrombocytopenic purpura (TTP), spontaneous abortion, habitual abortion, traumatic brain injury, cold agglutinin disease, dermatomy
  • pharmaceutically acceptable excipients or “pharmaceutically acceptable carriers” refers to auxiliary materials widely used in the field of pharmaceutical production.
  • the main purpose of using excipients is to provide a product that is safe to use, stable in properties and/or has specific functions.
  • the functional pharmaceutical composition also aims to provide a method so that after the drug is administered to the subject, the active ingredient can be dissolved at a desired rate, or the active ingredient can be effectively absorbed in the subject receiving the administration.
  • Pharmaceutically acceptable excipients may be inert fillers or functional ingredients that provide a certain function for the pharmaceutical composition (such as stabilizing the overall pH value of the composition or preventing the degradation of the active ingredients in the composition).
  • Non-limiting examples of pharmaceutically acceptable excipients include, but are not limited to, binders, suspending agents, emulsifiers, diluents (or fillers), granulating agents, adhesives, disintegrants, lubricants, and anti-adhesive agents. , glidants, wetting agents, gelling agents, absorption delaying agents, dissolution inhibitors, enhancers, adsorbents, buffers, chelating agents, preservatives, colorants, flavoring agents, sweeteners, etc.
  • compositions of the present disclosure may be prepared using any method known to those skilled in the art. For example, conventional mixing, dissolving, granulating, emulsifying, grinding, encapsulating, embedding and/or lyophilizing processes.
  • the methods of administration can be varied or adapted in any applicable manner to meet the needs of the nature of the drug, convenience of the patient and medical staff, and other relevant factors.
  • mammals include, but are not limited to, domestic animals (e.g., cattle, sheep, cats, dogs, and horses), primates (e.g., humans and non-human primates such as monkeys), rabbits, and rodents (e.g., , mice and rats).
  • domestic animals e.g., cattle, sheep, cats, dogs, and horses
  • primates e.g., humans and non-human primates such as monkeys
  • rabbits e.g., mice and rats.
  • a first aspect of the present disclosure provides a double-stranded ribonucleic acid (dsRNA) for inhibiting the expression of the complement C5 gene.
  • dsRNA double-stranded ribonucleic acid
  • One strand of the double-stranded ribonucleic acid is the antisense strand.
  • the antisense strand is complementary to the mRNA sequence formed during the expression process of the target gene (i.e., the C5 gene) and is used to guide the transcript of the target mRNA (i.e., the C5 gene). ) cutting.
  • the other sense strand in the double-stranded RNA includes a double-stranded region that is partially complementary and fully complementary to the antisense strand to form a double-stranded RNA.
  • double-stranded ribonucleic acid serves as a substrate for endonuclease (Dicer) and is cleaved into small fragments of dsRNA, that is, siRNA.
  • the double-stranded ribonucleic acid is siRNA.
  • siRNA assembles to form the RNA-induced silencing complex (RISC) RISC complex, which cleaves the target mRNA and inhibits the expression of the complement C5 gene.
  • RISC RNA-induced silencing complex
  • siRNA that binds to the target mRNA is designed.
  • the target sequence is selected from the nucleotide sequences shown in any one of SEQ ID NOs: 1-7 and SEQ ID NOs: 595-614.
  • the target sequence is selected from the nucleotide sequences shown in any one of SEQ ID NO: 8-51 and SEQ ID NO: 615-657.
  • the nucleotide sequence shown in SEQ ID NO: 1 includes the nucleotide sequence shown in SEQ ID NO: 8-9.
  • the nucleotide sequence shown in SEQ ID NO:2 includes the nucleotide sequence shown in SEQ ID NO:10-14.
  • the nucleotide sequence shown in SEQ ID NO:3 includes the nucleotide sequence shown in SEQ ID NO:15 ⁇ 19.
  • the nucleotide sequence shown in SEQ ID NO:4 includes the nucleotide sequence shown in SEQ ID NO:20-26.
  • the nucleotide sequence shown in SEQ ID NO:5 includes the nucleotide sequence shown in SEQ ID NO:27 ⁇ 34.
  • the nucleotide sequence shown in SEQ ID NO: 6 includes the nucleotide sequence shown in SEQ ID NO: 35-40.
  • the nucleotide sequence shown in SEQ ID NO:7 includes the nucleotide sequence shown in SEQ ID NO:41 ⁇ 51.
  • the nucleotide sequence set forth in SEQ ID NO: 596 includes the nucleotide sequences set forth in SEQ ID NO: 615-616.
  • the nucleotide sequence shown in SEQ ID NO:597 includes the nucleotide sequence shown in SEQ ID NO:617 ⁇ 621.
  • the nucleotide sequence shown in SEQ ID NO:598 includes the nucleotide sequence shown in SEQ ID NO:622 ⁇ 625.
  • the nucleotide sequence shown in SEQ ID NO:599 includes the nucleotide sequence shown in SEQ ID NO:626 ⁇ 629.
  • the nucleotide sequence shown in SEQ ID NO:604 includes the nucleotide sequence shown in SEQ ID NO:630 ⁇ 636.
  • the nucleotide sequence shown in SEQ ID NO:606 includes the nucleotide sequence shown in SEQ ID NO:637 ⁇ 639.
  • the nucleotide sequence shown in SEQ ID NO:607 includes the nucleotide sequence shown in SEQ ID NO:640 ⁇ 643.
  • the nucleotide sequence shown in SEQ ID NO: 608 includes the nucleotide sequence shown in SEQ ID NO: 644-647.
  • the nucleotide sequence shown in SEQ ID NO: 610 includes the nucleotide sequence shown in SEQ ID NO: 648-649.
  • the nucleotide sequence shown in SEQ ID NO:611 includes the nucleotide sequence shown in SEQ ID NO:650 ⁇ 654.
  • the nucleotide sequence shown in SEQ ID NO: 612 includes the nucleotide sequence shown in SEQ ID NO: 655-657.
  • the antisense strand comprises sequence B that differs by no more than 3 nucleotides from the reverse complement of at least 15 contiguous nucleotides in the target sequence.
  • the starting nucleotide is selected in the target sequence in the direction from the 5' end to the 3' end, and at least 15 nucleotides extending in the 3' direction including the starting nucleotide are used as the siRNA.
  • the antisense strand contains the reverse complement of the nucleotide sequence corresponding to the binding region.
  • the starting nucleotide can be a nucleotide at any position of the target sequence, as long as at least 15 consecutive nucleotides (including the starting nucleotide) can be obtained based on the starting nucleotide extending in the 3' direction of the target sequence. nucleotide at the starting position).
  • the nucleotide sequence of the antisense strand may be completely complementary or substantially complementary to the target sequence.
  • the nucleotide sequence of the antisense strand contains no more than 3 mismatched bases with the target sequence. For example, there are 1, 2, or 3 mismatched bases.
  • the nucleotide sequence of the antisense strand is completely complementary to the target sequence, there are no mismatched bases between the nucleotide sequence of the antisense strand and the target sequence.
  • the antisense strand consists of at least 15 nucleotides. In some embodiments, the antisense strand consists of 15-28 nucleotides. For example, the antisense strand is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides in length.
  • the antisense strand consists of 19-25 nucleotides, more preferably 19-23 nucleotides, and most preferably 19, 21 or 23 nucleotides.
  • the sense strand comprises sequence A that differs by no more than 3 nucleotides from at least 15 consecutive nucleotides in the target sequence.
  • the sense strand includes a region complementary to the antisense strand, and the nucleotide sequence of the sense strand is identical or substantially identical to the sequence of the binding region of the antisense strand on the target sequence. Therefore, the nucleotide sequence of the sense strand is at least 15 consecutive nucleotides in the target sequence that binds the antisense strand; alternatively, the nucleotide sequence of the sense strand is the same as at least 15 consecutive nucleotides in the target sequence that binds the antisense strand.
  • the sense strand consists of at least 15 nucleotides. In some embodiments, the sense strand consists of 15-28 nucleotides. For example, the sense strand is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides in length.
  • the sense strand consists of 19-25 nucleotides, more preferably 19-23 nucleotides, most preferably 19, 21 or 23 nucleotides.
  • the length of the sense strand and the length of the antisense strand may be the same or different.
  • the sense strand and the antisense strand have the same length.
  • the length ratio of the sense strand/antisense strand is 15/15, 16/16, 17/17, 18/18, 19/19, 20 /20, 21/21, 22/22, 23/23, 24/24, 25/25, 26/26, 27/27 or 28/28.
  • the length ratio of the sense strand/antisense strand is 19/19, 20/20, 21/21, 22/22, 23/23, 24/24 or 25/25, more preferably 19/19, 20/20 , 21/21, 22/22 or 23/23, most preferably 19/19, 21/21 or 23/23.
  • the sense and antisense strands are different lengths.
  • the length ratio of sense strand/antisense strand is 19/20, 19/21, 19/22, 19/23, 19/24, 19/25, 19/26, 20/19, 20/21, 20/ 22, 20/23, 20/24, 20/25, 20/26, 21/19, 21/20, 21/22, 21/23, 21/24, 21/25, 21/26, 22/19, 22/20, 22/21, 22/23, 22/24, 22/25, 22/26, 23/19, 23/20, 23/21, 23/22, 23/24, 23/25 or 23/ 26, etc.; in some preferred embodiments, the length ratio of the sense strand/antisense strand is 19/21 or 21/23.
  • the sense strand and the antisense strand may be completely complementary or substantially complementary. When the two are substantially complementary, there will be no more than 3 mismatched bases in the double-stranded region formed by the sense strand and the antisense strand.
  • the sense strand, the antisense strand, or a combination thereof has overhanging nucleotides extending out of the double-stranded region.
  • the number of overhanging nucleotides may be 1 or more, for example, 1 or 2.
  • the protruding 1-2 nucleotides can be located at the 5' end, 3' end or both ends of any antisense strand or sense strand, and each protruding nucleotide can be any type of nucleotide.
  • the sense strand is complementary to the antisense strand to form the double-stranded region, and the 3' end of the sense strand has 1-2 protruding nucleosides extending out of the double-stranded region. acid, the 3' end of the antisense strand forms a blunt end.
  • the sense strand and the antisense strand are complementary to form the double-stranded region, and the 3' end of the antisense strand has 1-2 protruding cores extending out of the double-stranded region. The 3' end of the sense strand forms a blunt end.
  • the sense strand and the antisense strand are complementary to form the double-stranded region, and the 3' ends of the sense strand and the antisense strand each have 1-2 strands extending out of the double-stranded region. Overhanging nucleotides in the chain region.
  • the sense strand and the antisense strand are complementary to form the double-stranded region, and the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the nucleotide sequence of the antisense strand and the target sequence may be completely complementary or substantially complementary; the sense strand and the antisense strand may be completely complementary or substantially complementary. Therefore, in the following description of the target sequences SEQ ID NO:8 ⁇ SEQ ID NO:51, SEQ ID NO:1 ⁇ 7, SEQ ID NO:595 ⁇ 657 and siRNA that can be complementary to these target sequences, for each siRNA
  • the antisense strands all include their complementary target sequences (for example, any of SEQ ID NO: 8 ⁇ SEQ ID NO: 51, SEQ ID NO: 1 ⁇ 7, SEQ ID NO: 595 ⁇ 657) Basically
  • complementarity that is, the nucleotide sequence of the antisense strand of each siRNA may have a base mismatch with the corresponding target sequence; the sense strand of each siRNA includes a target sequence that is complementary to it (For example, any of SEQ ID NO: 8 ⁇ SEQ ID NO: 51, S
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:8, and the nucleotide sequence of the antisense strand is SEQ ID NO:8
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is any one of siRNA1 to siRNA2 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:9
  • the nucleotide sequence of the antisense strand is SEQ ID NO:9
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA3 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 21 consecutive nucleotides in the sequence shown in SEQ ID NO:10
  • the nucleotide sequence of the antisense strand is SEQ ID NO:10
  • the reverse complementary sequence B consisting of 21 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the nucleotide sequence of the sense strand is sequence A consisting of 23 consecutive nucleotides in the sequence shown in SEQ ID NO:10
  • the nucleotide sequence of the antisense strand is SEQ ID NO:10
  • the reverse complementary sequence B consisting of 23 consecutive nucleotides in the sequence shown.
  • the 3' end of the antisense strand has two protruding nucleotides extending out of the double-stranded region.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:10
  • the nucleotide sequence of the antisense strand is SEQ ID NO:10
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is any one of siRNA4 to siRNA22 and siRNA120 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:11
  • the nucleotide sequence of the antisense strand is SEQ ID NO:11
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA23 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:12
  • the nucleotide sequence of the antisense strand is SEQ ID NO:12
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA24 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:13
  • the nucleotide sequence of the antisense strand is SEQ ID NO:13
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA25 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:14
  • the nucleotide sequence of the antisense strand is SEQ ID NO:14
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA26 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:15
  • the nucleotide sequence of the antisense strand is SEQ ID NO:15
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA27 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:16
  • the nucleotide sequence of the antisense strand is SEQ ID NO:16
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA28 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:17
  • the nucleotide sequence of the antisense strand is SEQ ID NO:17 19 consecutive nucleotides in the sequence shown
  • the acid sequence consists of the reverse complement of sequence B. Furthermore, the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA29 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:18
  • the nucleotide sequence of the antisense strand is SEQ ID NO:18
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA30 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:19
  • the nucleotide sequence of the antisense strand is SEQ ID NO:19
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA31 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:20
  • the nucleotide sequence of the antisense strand is SEQ ID NO:20
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the nucleotide sequence of the sense strand is sequence A consisting of 21 consecutive nucleotides in the sequence shown in SEQ ID NO:20
  • the nucleotide sequence of the antisense strand is SEQ ID NO:20
  • the reverse complementary sequence B consisting of 21 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is any siRNA among siRNA32 to siRNA38 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:21
  • the nucleotide sequence of the antisense strand is SEQ ID NO:21
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA39 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:22
  • the nucleotide sequence of the antisense strand is SEQ ID NO:22
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the nucleotide sequence of the sense strand is sequence A consisting of 21 consecutive nucleotides in the sequence shown in SEQ ID NO:22
  • the nucleotide sequence of the antisense strand is SEQ ID NO:22
  • the reverse complementary sequence B consisting of 21 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the nucleotide sequence of the sense strand is sequence A consisting of 23 consecutive nucleotides in the sequence shown in SEQ ID NO:22
  • the nucleotide sequence of the antisense strand is SEQ ID NO:22
  • the reverse complementary sequence B consisting of 23 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is any one of siRNA40 to siRNA48 and siRNA151 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:23
  • the nucleotide sequence of the antisense strand is SEQ ID NO:23
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA49 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:24
  • the nucleotide sequence of the antisense strand is SEQ ID NO:24
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA50 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:25
  • the nucleotide sequence of the antisense strand is SEQ ID NO:25
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA51 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:26
  • the nucleotide sequence of the antisense strand is SEQ ID NO:26
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA52 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:27
  • the nucleotide sequence of the antisense strand is SEQ ID NO:27
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA53 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:28
  • the nucleotide sequence of the antisense strand is SEQ ID NO:28
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is any siRNA among siRNA54 to siRNA56 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:29
  • the nucleotide sequence of the antisense strand is SEQ ID NO:29
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA57 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:30
  • the nucleotide sequence of the antisense strand is SEQ ID NO:30
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA58 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:31
  • the nucleotide sequence of the antisense strand is SEQ ID NO:31
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA59 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:32
  • the nucleotide sequence of the antisense strand is SEQ ID NO:32
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is any one of siRNA60 to siRNA62 and siRNA172 shown in Table 1 siRNA.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:33
  • the nucleotide sequence of the antisense strand is SEQ ID NO:33
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the nucleotide sequence of the sense strand is sequence A consisting of 21 consecutive nucleotides in the sequence shown in SEQ ID NO:33
  • the nucleotide sequence of the antisense strand is SEQ ID NO:33
  • Sequence B which is the reverse complement of the sequence consisting of 21 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is any one of siRNA63 to siRNA65 and siRNA175 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:34
  • the nucleotide sequence of the antisense strand is SEQ ID NO:34
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is any siRNA among siRNA66 to siRNA67 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:35
  • the nucleotide sequence of the antisense strand is SEQ ID NO:35
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA68 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:36
  • the nucleotide sequence of the antisense strand is SEQ ID NO:36
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA69 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:37
  • the nucleotide sequence of the antisense strand is SEQ ID NO:37
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA70 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:38
  • the nucleotide sequence of the antisense strand is SEQ ID NO:38
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is any one of siRNA71 to siRNA72 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:39
  • the nucleotide sequence of the antisense strand is SEQ ID NO:39
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA73 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:40
  • the nucleotide sequence of the antisense strand is SEQ ID NO:40
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is any siRNA among siRNA74 to siRNA75 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:41
  • the nucleotide sequence of the antisense strand is SEQ ID NO:41
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA76 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:42
  • the nucleotide sequence of the antisense strand is SEQ ID NO:42
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA77 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:43
  • the nucleotide sequence of the antisense strand is SEQ ID NO:43
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is any one of siRNA78 to siRNA79 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:44
  • the nucleotide sequence of the antisense strand is SEQ ID NO:44
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA80 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:45
  • the nucleotide sequence of the antisense strand is SEQ ID NO:45
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA81 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:46
  • the nucleotide sequence of the antisense strand is SEQ ID NO:46
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA82 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:47
  • the nucleotide sequence of the antisense strand is SEQ ID NO:47
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is any one of siRNA83 to siRNA85 and siRNA194 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:48
  • the nucleotide sequence of the antisense strand is SEQ ID NO:48
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is any siRNA among siRNA86 to siRNA88 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:49
  • the nucleotide sequence of the antisense strand is SEQ ID NO:49 19 consecutive nucleotides in the sequence shown
  • the acid sequence consists of the reverse complement of sequence B. Furthermore, the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA89 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:50
  • the nucleotide sequence of the antisense strand is SEQ ID NO:50
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA90 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:51
  • the nucleotide sequence of the antisense strand is SEQ ID NO:51
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is any one of siRNA91 to siRNA93 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 21 consecutive nucleotides in the sequence shown in SEQ ID NO:595, and the nucleotide sequence of the antisense strand is SEQ ID NO:595
  • the reverse complementary sequence B consisting of 21 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is siRNA110 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:615, and the nucleotide sequence of the antisense strand is SEQ ID NO:615
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is any one of siRNA111 to siRNA112 and siRNA247 to siRNA249 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 21 consecutive nucleotides in the sequence shown in SEQ ID NO:616, and the nucleotide sequence of the antisense strand is SEQ ID NO:616
  • the reverse complementary sequence B consisting of 21 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the nucleotide sequence of the sense strand is sequence A consisting of 23 consecutive nucleotides in the sequence shown in SEQ ID NO:616, and the nucleotide sequence of the antisense strand is SEQ ID NO:616
  • the reverse complementary sequence B consisting of 23 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is any one of siRNA 113 and siRNA 114 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 23 consecutive nucleotides in the sequence shown in SEQ ID NO:617
  • the nucleotide sequence of the antisense strand is SEQ ID NO:617
  • the reverse complementary sequence B consisting of 23 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is any one of siRNA115 and siRNA116 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 23 consecutive nucleotides in the sequence shown in SEQ ID NO:619
  • the nucleotide sequence of the antisense strand is SEQ ID NO:619
  • the reverse complementary sequence B consisting of 23 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both have 2 extensions. Overhanging nucleotides extending beyond the double-stranded region.
  • the double-stranded ribonucleic acid is any one of siRNA118 and siRNA119 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 23 consecutive nucleotides in the sequence shown in SEQ ID NO:620
  • the nucleotide sequence of the antisense strand is SEQ ID NO:620
  • the reverse complementary sequence B consisting of 23 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is any siRNA among siRNA121 to siRNA122 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:621, and the nucleotide sequence of the antisense strand is SEQ ID NO:621
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the nucleotide sequence of the sense strand is sequence A consisting of 23 consecutive nucleotides in the sequence shown in SEQ ID NO:621, and the nucleotide sequence of the antisense strand is SEQ ID NO:621
  • the reverse complementary sequence B consisting of 23 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is any one of siRNA 124 and siRNA 125 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:622, and the nucleotide sequence of the antisense strand is SEQ ID NO:622
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the nucleotide sequence of the sense strand is sequence A consisting of 23 consecutive nucleotides in the sequence shown in SEQ ID NO:622, and the nucleotide sequence of the antisense strand is SEQ ID NO:622
  • the reverse complementary sequence B consisting of 23 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is any one of siRNA126 to siRNA127 and siRNA250 to siRNA252 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 23 consecutive nucleotides in the sequence shown in SEQ ID NO:623, and the nucleotide sequence of the antisense strand is SEQ ID NO:623
  • the reverse complementary sequence B consisting of 23 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is siRNA128 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:624, and the nucleotide sequence of the antisense strand is SEQ ID NO:624
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the nucleotide sequence of the sense strand is sequence A consisting of 21 consecutive nucleotides in the sequence shown in SEQ ID NO:624, and the nucleotide sequence of the antisense strand is SEQ ID NO:624
  • the reverse complementary sequence B consisting of 21 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is any siRNA among siRNA129 to siRNA130 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:625, and the nucleotide sequence of the antisense strand is SEQ ID NO:625 19 consecutive nucleotides in the sequence shown
  • the acid sequence consists of the reverse complement of sequence B. Furthermore, the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the nucleotide sequence of the sense strand is sequence A consisting of 23 consecutive nucleotides in the sequence shown in SEQ ID NO:625, and the nucleotide sequence of the antisense strand is SEQ ID NO:625
  • the reverse complementary sequence B consisting of 23 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is any one of siRNA131, siRNA253 to siRNA255 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 23 consecutive nucleotides in the sequence shown in SEQ ID NO:626, and the nucleotide sequence of the antisense strand is SEQ ID NO:626
  • the reverse complementary sequence B consisting of 23 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is siRNA132 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:627
  • the nucleotide sequence of the antisense strand is SEQ ID NO:627
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the nucleotide sequence of the sense strand is sequence A consisting of 21 consecutive nucleotides in the sequence shown in SEQ ID NO:627
  • the nucleotide sequence of the antisense strand is SEQ ID NO:627
  • the reverse complementary sequence B consisting of 21 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is any siRNA among siRNA133 to siRNA134 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:628, and the nucleotide sequence of the antisense strand is SEQ ID NO:628
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA136 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 23 consecutive nucleotides in the sequence shown in SEQ ID NO:629
  • the nucleotide sequence of the antisense strand is SEQ ID NO:629
  • the reverse complementary sequence B consisting of 23 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is siRNA137 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:600
  • the nucleotide sequence of the antisense strand is SEQ ID NO:600
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the nucleotide sequence of the sense strand is sequence A consisting of 23 consecutive nucleotides in the sequence shown in SEQ ID NO:600
  • the nucleotide sequence of the antisense strand is SEQ ID NO:600
  • the reverse complementary sequence B consisting of 23 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is any siRNA among siRNA138 to siRNA140 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:601
  • the nucleotide sequence of the antisense strand is SEQ ID NO:601 19 consecutive nucleotides in the sequence shown
  • the acid sequence consists of the reverse complement of sequence B. Furthermore, the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the nucleotide sequence of the sense strand is sequence A consisting of 23 consecutive nucleotides in the sequence shown in SEQ ID NO:601
  • the nucleotide sequence of the antisense strand is SEQ ID NO:601
  • the reverse complementary sequence B consisting of 23 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is any siRNA among siRNA141 to siRNA143 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:602
  • the nucleotide sequence of the antisense strand is SEQ ID NO:602
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is any siRNA among siRNA144 to siRNA145 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:603, and the nucleotide sequence of the antisense strand is SEQ ID NO:603
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA146 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:630
  • the nucleotide sequence of the antisense strand is SEQ ID NO:630
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is any siRNA among siRNA147 to siRNA148 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:631
  • the nucleotide sequence of the antisense strand is SEQ ID NO:631
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is any one of siRNA150 to siRNA151 and siRNA256 to siRNA257 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:633, and the nucleotide sequence of the antisense strand is SEQ ID NO:633
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the nucleotide sequence of the sense strand is sequence A consisting of 23 consecutive nucleotides in the sequence shown in SEQ ID NO:633, and the nucleotide sequence of the antisense strand is SEQ ID NO:633
  • the reverse complementary sequence B consisting of 23 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is any siRNA among siRNA153 to siRNA154 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:634, and the nucleotide sequence of the antisense strand is SEQ ID NO:634
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the nucleotide sequence of the sense strand is sequence A consisting of 21 consecutive nucleotides in the sequence shown in SEQ ID NO:634, and the nucleotide sequence of the antisense strand is SEQ ID NO:634
  • the reverse complementary sequence B consisting of 21 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is any siRNA among siRNA155 to siRNA156 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:636, and the nucleotide sequence of the antisense strand is SEQ ID NO:636
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA158 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:605, and the nucleotide sequence of the antisense strand is SEQ ID NO:605
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is any siRNA among siRNA159 to siRNA160 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:638, and the nucleotide sequence of the antisense strand is SEQ ID NO:638
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA163 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:639
  • the nucleotide sequence of the antisense strand is SEQ ID NO:639
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA164 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 23 consecutive nucleotides in the sequence shown in SEQ ID NO:640
  • the nucleotide sequence of the antisense strand is SEQ ID NO:640
  • the reverse complementary sequence B consisting of 23 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is any siRNA among siRNA165 to siRNA166 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:641
  • the nucleotide sequence of the antisense strand is SEQ ID NO:641
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA167 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:642, and the nucleotide sequence of the antisense strand is SEQ ID NO:642
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is any siRNA among siRNA168 to siRNA169 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 21 consecutive nucleotides in the sequence shown in SEQ ID NO:643, and the nucleotide sequence of the antisense strand is SEQ ID NO:643
  • the reverse complementary sequence B consisting of 21 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the nucleotide sequence of the sense strand is sequence A consisting of 23 consecutive nucleotides in the sequence shown in SEQ ID NO:643, and the nucleotide sequence of the antisense strand is SEQ ID NO:643
  • the reverse complementary sequence B consisting of 23 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is any siRNA among siRNA170 to siRNA171 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:644, and the nucleotide sequence of the antisense strand is SEQ ID NO:644
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is any siRNA among siRNA173 to siRNA174 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 23 consecutive nucleotides in the sequence shown in SEQ ID NO:645, and the nucleotide sequence of the antisense strand is SEQ ID NO:645
  • the reverse complementary sequence B consisting of 23 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is siRNA176 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:646, and the nucleotide sequence of the antisense strand is SEQ ID NO:646
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA177 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:647
  • the nucleotide sequence of the antisense strand is SEQ ID NO:647
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA178 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:609
  • the nucleotide sequence of the antisense strand is SEQ ID NO:609
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the nucleotide sequence of the sense strand is sequence A consisting of 23 consecutive nucleotides in the sequence shown in SEQ ID NO:609
  • the nucleotide sequence of the antisense strand is SEQ ID NO:609
  • the reverse complementary sequence B consisting of 23 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is any siRNA among siRNA179 to siRNA180 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 23 consecutive nucleotides in the sequence shown in SEQ ID NO:648, and the nucleotide sequence of the antisense strand is SEQ ID NO:648
  • the reverse complementary sequence B consisting of 23 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is siRNA182 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:649
  • the nucleotide sequence of the antisense strand is SEQ ID NO:649
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA183 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:650
  • the nucleotide sequence of the antisense strand is SEQ ID NO:650 19 consecutive nucleotides in the sequence shown
  • the acid sequence consists of the reverse complement of sequence B. Furthermore, the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA184 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:651
  • the nucleotide sequence of the antisense strand is SEQ ID NO:651
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA185 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:652
  • the nucleotide sequence of the antisense strand is SEQ ID NO:652
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA186 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:654, and the nucleotide sequence of the antisense strand is SEQ ID NO:654
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA188 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:655
  • the nucleotide sequence of the antisense strand is SEQ ID NO:655
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is siRNA189 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 19 consecutive nucleotides in the sequence shown in SEQ ID NO:613, and the nucleotide sequence of the antisense strand is SEQ ID NO:613
  • the reverse complementary sequence B consisting of 19 consecutive nucleotides in the sequence shown.
  • the 3' ends of the sense strand and the antisense strand both form blunt ends.
  • the double-stranded ribonucleic acid is any siRNA among siRNA192 to siRNA193 shown in Table 1.
  • the nucleotide sequence of the sense strand is sequence A consisting of 23 consecutive nucleotides in the sequence shown in SEQ ID NO:614, and the nucleotide sequence of the antisense strand is SEQ ID NO:614
  • the reverse complementary sequence B consisting of 23 consecutive nucleotides in the sequence shown.
  • the 3' ends of both the sense strand and the antisense strand have two protruding nucleotides extending out of the double-stranded region.
  • the double-stranded ribonucleic acid is siRNA195 shown in Table 1.
  • the sense strand includes the nucleotide sequence shown in any one of SEQ ID NO: 52-144, 262-348, 530-540
  • the antisense strand includes the nucleotide sequence shown in any one of SEQ ID NO: 52-144, 262-348, 530-540 : The nucleotide sequence represented by any one of 145-237, 349-435, and 541-551.
  • the double-stranded ribonucleic acid is selected from any of the siRNAs shown in Table 1.
  • the siRNA provided by the present disclosure has high binding specificity to target mRNA (C5 mRNA), has good silencing activity of target mRNA, can significantly inhibit complement C5 gene expression, and is used to treat inappropriate activation of the complement system. disease.
  • the present disclosure provides an siRNA composition comprising any one or a combination of two or more of the siRNAs shown in Table 1.
  • each nucleotide of the sense strand is independently a modified nucleotide or an unmodified nucleotide. In some embodiments, each nucleotide of the antisense strand is independently a modified nucleotide or an unmodified nucleotide.
  • any two adjacent nucleotides in the sense strand are connected by a phosphodiester bond or a phosphorothioate diester bond. In some embodiments, any two adjacent nucleotides in the antisense strand are connected by a phosphodiester bond or a phosphorothioate diester bond.
  • the 5' terminal nucleotide of the sense strand is linked to a 5' phosphate group or a 5' phosphate derivative group. In some embodiments, the 5' terminal nucleotide of the antisense strand is linked to a 5' phosphate group or a 5' phosphate derivative group.
  • the structure of the 5' phosphate group is:
  • the structures of the 5' phosphate derivative group include but are not limited to: wait.
  • Base represents a base, such as A, U, G, C or T.
  • R' is hydroxyl or substituted by various groups known to those skilled in the art, for example, 2'-fluoro (2'-F) modified nucleotides, 2'-alkoxy modified nucleotides , 2'-substituted alkoxy modified nucleotides, 2'-alkyl modified nucleotides, 2'-substituted alkyl modified nucleotides, 2'-deoxyribonucleotides.
  • 2'-fluoro (2'-F) modified nucleotides 2'-alkoxy modified nucleotides
  • 2'-substituted alkoxy modified nucleotides 2'-alkyl modified nucleotides
  • 2'-substituted alkyl modified nucleotides 2'-deoxyribonucleotides.
  • a second aspect of the present disclosure provides a double-stranded ribonucleic acid modification.
  • the double-stranded ribonucleic acid modification is an siRNA modification.
  • siRNA modifications can improve the stability of siRNA while maintaining high C5 mRNA inhibitory activity.
  • double-stranded ribonucleic acid modifications comprise modification of at least one nucleotide.
  • the modification of the nucleotide is at least one selected from the group consisting of modification of the ribose group and modification of the base.
  • “modification of a nucleotide” refers to the replacement of the 2' hydroxyl group of the ribose group of a nucleotide with other groups to form a nucleotide or a nucleotide derivative, or a base on the nucleotide.
  • the base is a nucleotide or nucleotide derivative of a modified base.
  • modified nucleotide will not cause the siRNA's function of inhibiting gene expression to be significantly weakened or lost.
  • modified nucleotides disclosed in J.K. Watts, G.F. Deleavey, and M.J. Damha, Chemically modified siRNA: tools and applications. Drug Discov Today, 2008, 13(19-20): 842-55 can be selected.
  • the stability of siRNA can be improved through nucleotide modification and its high inhibition efficiency of C5 gene can be maintained.
  • the modified nucleotide has the following structure:
  • Base represents a base, such as A, U, G, C or T.
  • the hydroxyl group at the 2' position of the ribose group is substituted with R.
  • the hydroxyl groups at the 2' position of these ribosyl groups can be substituted with various groups known to those skilled in the art, for example, 2'-fluoro (2'-F) modified nucleotides, 2'-alkoxy modified nucleotides nucleotides, 2'-substituted alkoxy modified nucleotides, 2'-alkyl modified nucleotides, 2'-substituted alkyl modified nucleotides, 2'-deoxyribonucleosides acid.
  • 2'-fluoro (2'-F) modified nucleotides 2'-alkoxy modified nucleotides nucleotides, 2'-substituted alkoxy modified nucleotides, 2'-alkyl modified nucleotides, 2'-sub
  • the 2'-alkoxy modified nucleotide is a 2'-methoxy (2'-OMe, 2'-O- CH3 ) modified nucleotide, and the like.
  • the modification of the nucleotide is a modification of a base.
  • the modification of the base may be various types of modifications known to those skilled in the art. Exemplary base modifications include but are not limited to m 6 A, ⁇ , m 1 A, m 5 A, ms 2 i 6 A, i 6 A, m 3 C, m 5 C, ac 4 C, m 7 G, m 2,2 G, m 2 G, m 1 G, Q, m 5 U, mcm 5 U, ncm 5 U, ncm 5 Um, D, mcm 5 s 2 U, Inosine(I), hm 5 C , s 4 U, s 2 U, azobenzene, Cm, Um, Gm, t 6 A, yW, ms 2 t 6 A or its derivatives.
  • a nucleotide derivative refers to a nucleotide that can replace a nucleotide in a nucleic acid, but is structurally different from adenine ribonucleotide, guanine ribonucleotide, cytosine ribonucleotide, uracil ribose Nucleotides or thymine deoxyribonucleotide compounds.
  • the nucleotide derivative may be an isonucleotide, a bridged nucleic acid (BNA), or acyclic nucleotide.
  • BNA refers to constrained or inaccessible nucleotides.
  • BNA may contain a five-membered ring, a six-membered ring, or a seven-membered ring bridged structure with a "fixed" C3'-endoglycocondensation.
  • the bridge is usually incorporated into the 2'-, 4'-position of the ribose to provide a 2', 4'-BNA nucleotide, such as LNA, ENA, cET, etc.
  • LNA is shown in formula (1)
  • ENA is shown in formula (2)
  • cET is shown in formula (3):
  • Acyclic nucleotides are a type of nucleotide formed by opening the sugar ring of a nucleotide, such as unlocked nucleic acid (UNA) or glycerol nucleic acid (GNA).
  • UNA is represented by formula (4)
  • GNA is represented by formula (4). 5
  • R is selected from H, OH or alkoxy (O-alkyl).
  • nucleotide derivative modification refers to a nucleotide in a nucleic acid being replaced with a nucleotide derivative.
  • the nucleotide derivative is selected from isonucleotides, LNA, ENA, cET, UNA or GNA.
  • nucleotides in the nucleic acid are replaced with isonucleotides, also referred to as isonucleoside modifications in the context of this disclosure.
  • isonucleoside modification includes incorporation of isonucleoside at one or more sites of the sense strand and/or antisense strand of the siRNA to be modified, to replace the natural nucleoside for coupling at the corresponding position.
  • the isonucleoside modification employs D-isonucleoside modification. In other embodiments, the isonucleoside modification employs L-isonucleoside modification. In yet other embodiments, the isonucleoside modification employs D-isonucleoside modification and L-isonucleoside modification.
  • the double-stranded ribonucleic acid modification comprises modification of a phosphodiester bond at at least one position.
  • the modification of the phosphodiester bond means that at least one oxygen atom in the phosphodiester bond is replaced by a sulfur atom.
  • the phosphorothioate diester bond can stabilize the double-stranded structure of siRNA and maintain the specificity of base pairing.
  • An exemplary phosphorothioate diester bond structure is as follows:
  • the double-stranded ribonucleic acid modification comprises a chemical modification of at least one of the following:
  • the double-stranded ribonucleic acid modification is an siRNA modification comprising at least one chemical modification among (1)-(4).
  • sequence A in the sense strand and sequence B in the antisense strand are complementary to form a double-stranded region
  • sequence A and sequence B can be any of the following:
  • sequence A and sequence B both form blunt ends
  • sequence A has 1-2 protruding nucleotides extending out of the double-stranded region, and the 3’ end of sequence B forms a blunt end;
  • sequence B has 1-2 protruding nucleotides extending out of the double-stranded region, and the 3’ end of sequence A forms a blunt end;
  • sequence A has 1-2 protruding nucleotides extending out of the double-stranded region
  • sequence B has 1-2 protruding nucleotides extending out of the double-stranded region. Nucleotides.
  • nucleotide sequence of the sense strand is the sequence shown in Sequence A
  • nucleotide sequence of the antisense strand is the sequence shown in Sequence B.
  • the sense strand and the antisense strand are separated from each other.
  • Add 1-2 nucleotides to the 3' end of at least one of the strands as overhanging nucleotides Among them, 1-2 nucleotides connected to the 3' end of the sense strand constitute sequence D, and 1-2 nucleotides connected to the 3' end of the antisense strand constitute sequence E.
  • nucleotide sequence of the sense strand is the sequence shown in sequence A connected to sequence D
  • nucleotide sequence of the antisense strand is the sequence shown in sequence B connected to sequence E
  • nucleotide sequence of the sense strand is the sequence represented by sequence A
  • nucleotide sequence of the antisense strand is the sequence represented by sequence B connected to sequence E
  • nucleotide sequence of the sense strand is the sequence represented by sequence A connected to sequence D
  • nucleotide sequence of the antisense strand is the sequence represented by sequence represented by sequence B.
  • TT deoxyribonucleotides
  • TT deoxyribonucleotides
  • nucleotide sequences of the sense strand and the antisense strand are complementary to form a double-stranded region, and there is no overhanging nucleotide at the 3' end of the sense strand, 1 is added at the 3' end of the sense strand.
  • -Sequence D consisting of 2 nucleotides as the overhanging nucleotide. Then, when the nucleotide sequence formed by connecting sequence A to sequence D is chemically modified, sequence D consisting of 1-2 nucleotides is excluded.
  • the nucleotide sequence of the sense strand is the sequence shown in sequence A
  • the nucleotide sequence of the antisense strand is the sequence shown in sequence B.
  • the nucleotide sequence of the sense strand is the sequence represented by sequence A
  • the nucleotide sequence of the antisense strand is the sequence represented by sequence B connected to sequence E.
  • sequence A when sequence A is complementary to sequence B to form a double-stranded region, and the 3' end of sequence A has 1-2 protruding nucleotides extending out of the double-stranded region, the sequence A is located at 3 'The overhanging nucleotide at the end is excluded as the nucleotide sequence of the sense strand.
  • sequence A' The sequence excluding the overhanging nucleotide at the 3' end is called sequence A'.
  • nucleotide sequence of the sense strand of the double-stranded ribonucleic acid modified product is the sequence shown in sequence A'
  • nucleotide sequence of the antisense strand of the double-stranded ribonucleic acid modified product is the sequence shown in sequence B.
  • nucleotide sequence of the sense strand of the double-stranded ribonucleic acid modification is the sequence shown in sequence A'
  • nucleotide sequence of the antisense strand of the double-stranded ribonucleic acid modification is the sequence shown in sequence B connecting sequence E. .
  • the sense strand of the siRNA modification includes the following modifications: the ribonucleotides at positions 7, 9, 10 and 11 in the sense strand are 2'-fluoro modified ribonucleotide; ribonucleotides at other positions in the sense strand are 2'-methoxy modified ribonucleotides.
  • the sense strand of the siRNA modification includes a phosphorothioate diester bond at the following position: the 1st nucleotide starting from the 5' end and the 1st nucleotide starting from the 5' end. Between 2 nucleotides, between the 2nd nucleotide starting from the 5' end and the 3rd nucleotide, between the 1st nucleotide starting from the 3' end and the 2nd nucleotide starting from the 3' end between the 2nd and 3rd nucleotides starting from the 3' end.
  • the sense strand of the siRNA modification includes a phosphorothioate diester bond at the following position: the 1st nucleotide starting from the 5' end and the 1st nucleotide starting from the 5' end. Between 2 nucleotides, between the 2nd and 3rd nucleotides starting from the 5' end.
  • the sense strand of the siRNA modification includes a phosphorothioate diester bond at the following position: the 1st nucleotide starting from the 5' end and the 1st nucleotide starting from the 5' end.
  • nucleotides Between 2 nucleotides, between the 2nd and 3rd nucleotides starting from the 5' end, and between the 3rd and 4th nucleotides starting from the 5' end of the sense strand Between nucleotides, between the first nucleotide and the second nucleotide starting from the 3' end, between the second nucleotide and the third nucleotide starting from the 3' end, Between the 3rd and 4th nucleotides starting from the 3' end.
  • the sense strand of the siRNA modification has a structure shown in any one of (a 1 )-(a 3 ):
  • N 1 to N 23 are independently selected from ribonucleotides whose bases are A, U, C or G.
  • the capital letter T represents deoxyribonucleotides whose base is thymine, and the lowercase letter m represents this letter.
  • the ribonucleotide adjacent to the right side of m is a 2'-O-CH 3 modified ribonucleotide.
  • the lowercase letter f indicates that the ribonucleotide adjacent to the left side of the letter f is 2'-F modified.
  • Ribonucleotide, -(s)- means that two adjacent nucleotides are connected by a phosphorothioate diester bond.
  • the sense strand of the siRNA modification has a structure shown in any one of (a 4 ) to (a 5 ):
  • N 1 to N 23 are independently selected from ribonucleotides whose bases are A, U, C or G.
  • the capital letter T represents deoxyribonucleotides whose base is thymine, and the lowercase letter m represents this letter.
  • the ribonucleotide adjacent to the right side of m is a 2'-O-CH 3 modified ribonucleotide.
  • the lowercase letter f indicates that the ribonucleotide adjacent to the left side of the letter f is 2'-F modified.
  • Ribonucleotide, -(s)- means that two adjacent nucleotides are connected by a phosphorothioate diester bond.
  • the sense strand of the siRNA modification has the structure shown in (a 6 ):
  • N 1 to N 23 are independently selected from ribonucleotides whose bases are A, U, C or G.
  • the capital letter T represents deoxyribonucleotides whose base is thymine
  • the lowercase letter m represents this letter.
  • the ribonucleotide adjacent to the right side of m is 2'-O-CH 3 modified ribonucleotide
  • the lowercase letter f means that the ribonucleotide adjacent to the left of the letter f is a 2'-F modified ribonucleotide
  • -(s)- means before and after Two adjacent nucleotides are connected by a phosphorothioate diester bond.
  • the antisense strand of the siRNA modification includes the following modifications: ribonucleotides at any odd-numbered positions in the antisense strand are 2'-methoxy modified The ribonucleotide at any even-numbered position in the antisense strand is a 2'-fluorinated modified ribonucleotide.
  • the antisense strand of the siRNA modification includes the following modifications: ribose at positions 2, 6, 14 and 16 in the antisense strand
  • the nucleotides are 2'-fluoro modified ribonucleotides, and the remaining ribonucleotides in the antisense strand are 2'-methoxy modified ribonucleotides.
  • the antisense strand of the siRNA modification includes the following modifications: along the direction from the 5' end to the 3' end, the 2nd and 6th positions in the antisense strand , the ribonucleotides at positions 8, 9, 14 and 16 are 2'-fluoro modified ribonucleotides, and the ribonucleotides at the remaining positions in the antisense strand are 2' -Methoxy modified ribonucleotides.
  • the antisense strand of the siRNA modification includes the following modifications: the ribonucleotides at positions 2, 14 and 16 in the antisense strand are 2'-fluoro modified ribonucleotide, the ribonucleotide at position 6 in the antisense strand is a ribonucleotide modified by the nucleotide derivative GNA, and the ribose at the remaining positions in the antisense strand
  • the nucleotides are 2'-methoxy modified ribonucleotides.
  • the antisense strand of the siRNA modification includes the following modifications: ribose at positions 2, 6, 14 and 16 in the antisense strand
  • the nucleotide is a 2'-fluoro modified ribonucleotide
  • the ribonucleotide at position 7 in the antisense strand is a ribonucleotide modified by the nucleotide derivative GNA.
  • the remaining ribonucleotides are 2'-methoxy modified ribonucleotides.
  • the antisense strand of the siRNA modification includes a phosphorothioate diester bond at the following position: the 1st nucleotide starting from the 5' end and Between the 2nd nucleotide, between the 2nd nucleotide and the 3rd nucleotide starting from the 5' end, between the 1st nucleotide and the 2nd nucleotide starting from the 3' end between the 2nd and 3rd nucleotides starting from the 3' end.
  • the antisense strand of the siRNA modification includes a phosphorothioate diester bond at the following position: the 1st nucleotide starting from the 5' end and Between the 2nd nucleotide, between the 2nd nucleotide and the 3rd nucleotide starting from the 5' end, between the 3rd nucleotide and the 4th nucleotide starting from the 5' end between, between the first nucleotide and the second nucleotide starting from the 3' end, between the second nucleotide starting from the 3' end and the third nucleotide, the 3' end Between the first 3rd and 4th nucleotides.
  • a 5' phosphate group or a 5' phosphate derivative group is attached to the nucleotide at the 5' end of the antisense strand in the direction from the 5' end to the 3' end.
  • the structure of the 5' phosphate group is:
  • the structures of the 5' phosphate derivative group include but are not limited to: wait.
  • the siRNA modification antisense strand has the structure shown in any one of the following (b 1 )-(b 3 ):
  • N 1 to N 23 are independently selected from ribonucleotides whose bases are A, U, C or G.
  • the capital letter T represents deoxyribonucleotides whose base is thymine, and the lowercase letter m represents this letter.
  • the ribonucleotide adjacent to the right side of m is 2'-O-CH 3 modified ribonucleotide
  • the lowercase letter f indicates that the ribonucleotide adjacent to the left side of the letter f is a 2'-F modified ribonucleotide
  • P1 indicates the ribonucleotide adjacent to the right side of the letter f
  • the adjacent nucleotide is a 5'-phosphate nucleotide, and -(s)- indicates that the two adjacent nucleotides are connected by a phosphorothioate diester bond.
  • the antisense strand of the siRNA modification has the structure shown in any one of the following (b 4 ) to (b 17 ):
  • N 1 to N 23 are independently selected from ribonucleotides whose bases are A, U, C or G.
  • the capital letter T represents deoxyribonucleotides whose base is thymine, and the lowercase letter m represents this letter.
  • the ribonucleotide adjacent to the right side of m is a 2'-O-CH 3 modified ribonucleotide.
  • the lowercase letter f indicates that the ribonucleotide adjacent to the left side of the letter f is 2'-F modified.
  • Ribonucleotide P1 indicates that the nucleotide adjacent to the right of the letter is 5'-phosphate nucleotide, and EVP indicates that the nucleotide adjacent to the right is 5'-trans vinyl phosphate nucleoside Acid, -(s)- means that two adjacent nucleotides are connected by a phosphorothioate diester bond, [GNA] means that the adjacent ribonucleotide on the right is a GNA-modified ribonucleoside acid.
  • the sense strand comprises a nucleotide sequence as shown in any one of SEQ ID NOs: 238-249, 436-471, 552-564
  • the antisense strand comprises a nucleotide sequence as shown in any one of SEQ ID NOs: 238-249, 436-471, 552-564.
  • double-stranded ribonucleic acid modifications include, but are not limited to, siRNA modifications as shown in Table 2.
  • the third aspect of the present disclosure provides a double-stranded ribonucleic acid conjugate, which is obtained by conjugating the double-stranded ribonucleic acid provided by the first aspect of the present disclosure or the double-stranded ribonucleic acid modification provided by the second aspect and a conjugation group. .
  • the sense strand and the antisense strand of the double-stranded ribonucleic acid conjugate form a double-stranded region of the double-stranded ribonucleic acid conjugate, and are formed at the 3' end of the sense strand of the double-stranded ribonucleic acid conjugate.
  • Flat ends In some embodiments, the 3' end of the sense strand of the double-stranded ribonucleic acid conjugate forms a blunt end and the 3' end of the antisense strand of the double-stranded ribonucleic acid conjugate has 1-2 extensions out of the duplex. overhanging nucleotides in the region.
  • the 3' end of the sense strand of the double-stranded ribonucleic acid conjugate forms a blunt end
  • the 3' end of the antisense strand of the double-stranded ribonucleic acid conjugate forms a blunt end
  • the double-stranded ribonucleic acid conjugate is obtained by conjugating a double-stranded ribonucleic acid modification with a conjugating group.
  • the sense strand and the antisense strand of the double-stranded ribonucleic acid modification are complementary to form the double-stranded region of the double-stranded ribonucleic acid modification, and the 3' end of the sense strand of the double-stranded ribonucleic acid modification forms a blunt end, and the conjugation group The group is conjugated to the 3' end of the sense strand with a blunt end to form a double-stranded ribonucleic acid conjugate.
  • the sense strand of the double-stranded ribonucleic acid modification is the sequence shown in sequence A
  • the antisense strand is the sequence shown in sequence B connected to sequence E.
  • the 3' end of the sense strand of the double-stranded ribonucleic acid modified product is blunt-ended, and the 3' end of the sense strand of the double-stranded ribonucleic acid modified product is connected to a conjugation group to form a double-stranded ribonucleic acid conjugate.
  • the sense strand of the double-stranded ribonucleic acid modification is the sequence shown in sequence A
  • the antisense strand is the sequence shown in sequence B.
  • the 3' end of the sense strand of the double-stranded ribonucleic acid modified product forms a blunt end
  • a conjugation group is connected to the 3' end of the sense strand of the double-stranded ribonucleic acid modified product to form a double-stranded ribonucleic acid conjugate.
  • the sense strand of the double-stranded ribonucleic acid modification is the sequence shown in sequence A connected to sequence D
  • the antisense strand is the sequence shown in sequence B connected to sequence E.
  • the 3' end of the sense strand of the double-stranded ribonucleic acid modified product has a protruding sequence D consisting of 1-2 nucleotides. After excluding the sequence D at the 3' end of the sense strand of the double-stranded ribonucleic acid modified product, A conjugation group is connected to the 3' end of sequence A to form a double-stranded ribonucleic acid conjugate.
  • the sense strand of the double-stranded ribonucleic acid modification is the sequence shown in sequence A connected to sequence D
  • the antisense strand is the sequence shown in sequence B.
  • the 3' end of the sense strand of the double-stranded ribonucleic acid modified product has a protruding sequence D consisting of 1-2 nucleotides.
  • a conjugation group is connected to the 3' end of sequence A to form a double-stranded ribonucleic acid conjugate.
  • the sense strand of the double-stranded ribonucleic acid modification is the sequence shown in sequence A
  • the antisense strand is the sequence shown in sequence B connected to sequence E.
  • the 3' end of sequence A has a protruding nucleotide extending out of the double-stranded region, and the sequence after excluding the protruding nucleotide located at the 3' end of sequence A (also called sequence A') is used.
  • sequence A' The nucleotide sequence to which the conjugation group is attached.
  • nucleotide sequence of the sense strand of the double-stranded ribonucleic acid conjugate is the sequence represented by sequence A'
  • nucleotide sequence of the antisense strand is the sequence represented by sequence B connected to sequence E.
  • the sense strand of the double-stranded ribonucleic acid modification is the sequence shown in Sequence A
  • the antisense strand is the sequence shown in Sequence B.
  • the 3' end of sequence A has a protruding nucleotide extending out of the double-stranded region, and the sequence after excluding the protruding nucleotide located at the 3' end of sequence A (also called sequence A') is used.
  • sequence A' The nucleotide sequence to which the conjugation group is attached. Therefore, the nucleotide sequence of the sense strand of the double-stranded ribonucleic acid conjugate is the sequence shown in sequence A', and the nucleotide sequence of the antisense strand is the sequence shown in sequence B.
  • the sense strand of the double-stranded ribonucleic acid conjugate has a structure shown in any one of (d 1 )-(d 2 ):
  • N 1 to N 23 are independently selected from ribonucleotides whose bases are A, U, C or G.
  • the capital letter T represents deoxyribonucleotides whose base is thymine, and the lowercase letter m represents this letter.
  • the ribonucleotide adjacent to the right side of m is a 2'-O-CH 3 modified ribonucleotide.
  • the lowercase letter f indicates that the ribonucleotide adjacent to the left side of the letter f is 2'-F modified ribonucleotide.
  • Decorated ribonucleotide, -(s)- indicates that two adjacent nucleotides are connected by a phosphorothioate diester bond.
  • L96 is also the conjugate group GalNAc shown in formula I.
  • the antisense strand of the double-stranded ribonucleic acid conjugate has a structure shown in any one of (b 1 )-(b 3 ):
  • N 1 to N 23 are independently selected from ribonucleotides whose bases are A, U, C or G.
  • the capital letter T represents deoxyribonucleotides whose base is thymine, and the lowercase letter m represents this letter.
  • the ribonucleotide adjacent to the right side of m is a 2'-O-CH 3 modified ribonucleotide.
  • the lowercase letter f indicates that the ribonucleotide adjacent to the left side of the letter f is 2'-F modified.
  • Ribonucleotide, P1 indicates that the adjacent nucleotide on the right side of the letter is a 5'-phosphate nucleotide, -(s)- indicates that the two adjacent nucleotides are connected by a phosphorothioate diester bond .
  • the antisense strand of the double-stranded ribonucleic acid conjugate has a structure shown in any one of (b 4 ) to (b 17 ):
  • N 1 to N 23 are independently selected from ribonucleotides whose bases are A, U, C or G.
  • the capital letter T represents deoxyribonucleotides whose base is thymine, and the lowercase letter m represents this letter.
  • the ribonucleotide adjacent to the right side of m is a 2'-O-CH 3 modified ribonucleotide.
  • the lowercase letter f indicates that the ribonucleotide adjacent to the left side of the letter f is 2'-F modified.
  • Ribonucleotide indicates that the nucleotide adjacent to the right of the letter is 5'-phosphate nucleotide, and EVP indicates that the nucleotide adjacent to the right is 5'-trans vinyl phosphate nucleoside Acid; -(s)- indicates that two adjacent nucleotides are connected by a phosphorothioate diester bond; [GNA] indicates that the ribonucleotide adjacent to the right is a GNA-modified ribonucleotide. .
  • the double-stranded ribonucleic acid conjugate is an siRNA conjugate, wherein the siRNA molecule connected to the conjugation group in the siRNA conjugate can be unmodified siRNA or siRNA modification. While maintaining high inhibitory activity and stability, siRNA molecules modified with conjugation groups also have better tissue and organ targeting and the ability to promote cell endocytosis, which can reduce the impact on other tissues or organs. As well as reducing the amount of siRNA molecules used, the purpose of reducing toxicity and reducing costs can be achieved. Alternatively, select any siRNA molecule shown in Table 1 or Table 2 and connect it to the conjugation group to obtain a double-stranded ribonucleic acid conjugate.
  • the conjugation site of siRNA and the conjugation group can be at the 3’ end or 5’ end of the sense strand of siRNA, or at the 5’ end of the antisense strand, or in the internal sequence of siRNA. In some embodiments, the conjugation site of the siRNA and the conjugation group is at the 3' end of the sense strand of the siRNA.
  • the conjugation group can be attached to the phosphate group, the 2'-hydroxyl group, or the base of the nucleotide. In some embodiments, the conjugation group can also be connected to the 3'-position hydroxyl group, in which case the nucleotides are connected via a 2',5'-phosphodiester bond.
  • the conjugation group is usually attached to the phosphate group of the nucleotide; when the conjugation group is attached to the internal sequence of the siRNA, the conjugation group Usually attached to the ribose sugar ring or base.
  • the conjugating group may be a ligand commonly used in the field of siRNA delivery.
  • the conjugation group can be selected from one or more ligands formed by the following targeting molecules or derivatives thereof: lipophilic molecules, such as cholesterol, bile acids, vitamins (such as vitamin E ), lipid molecules of different chain lengths; polymers, such as polyethylene glycol; peptides, such as membrane-penetrating peptides; aptamers; antibodies; quantum dots; sugars, such as lactose, polylactose, mannose, galactose, N-acetylgalactosamine (GalNAc); folate; receptor ligands expressed by liver parenchymal cells, such as asialoglycoprotein, asialoglycoside residues, lipoproteins (such as high-density lipoprotein, low-density lipoprotein) Lipoproteins, etc.), glucagon, neurotransmitters (such as epinephrine), glucagon, neuro
  • the conjugation group has the structure shown below:
  • the conjugation group shown in Formula I is GalNAc.
  • GalNAc has liver-targeting properties and can deliver siRNA molecules to liver tissue with high specificity and specifically inhibit the high expression of the C5 gene in the liver.
  • GalNAc is conjugated to the 3' end of the sense strand through a phosphodiester bond, resulting in an siRNA conjugate with the following structure:
  • the double helix structure is unmodified siRNA or siRNA modification.
  • double-stranded ribonucleic acid conjugates include, but are not limited to, siRNA conjugates as shown in Table 3.
  • the fourth aspect of the present disclosure provides a pharmaceutical composition, including the double-stranded ribonucleic acid described in the first aspect, the double-stranded ribonucleic acid modification described in the second aspect, and the double-stranded ribonucleic acid conjugate described in the third aspect. one or more of the compounds.
  • the pharmaceutical composition contains siRNA as described above as an active ingredient and a pharmaceutically acceptable carrier.
  • the purpose of using pharmaceutical compositions is to promote administration to living organisms, facilitate the absorption of active ingredients, and thereby exert biological activity.
  • the pharmaceutical compositions of the present disclosure can be administered in any form, including injection (intra-arterial, intravenous, intramuscular, intraperitoneal, subcutaneous), mucosal, oral (oral solid formulation, oral liquid formulation), rectal, inhalation, implantation , local (such as eye) administration, etc.
  • oral solid preparations include, but are not limited to, powders, capsules, lozenges, granules, tablets, and the like.
  • Non-limiting examples of liquid formulations for oral or mucosal administration include, but are not limited to, suspensions, tinctures, elixirs, solutions, and the like.
  • Non-limiting examples of topical formulations include, but are not limited to, emulsions, gels, ointments, creams, patches, pastes, foams, lotions, drops, or serum formulations.
  • Non-limiting examples of parenteral formulations include, but are not limited to, solutions for injection, dry powders for injection, suspensions for injection, emulsions for injection, and the like.
  • the pharmaceutical compositions of the present disclosure may also be formulated into controlled release or delayed release dosage forms (eg, liposomes or microspheres).
  • the methods of administration can be varied or adapted in any applicable manner to meet the needs of the nature of the drug, convenience of the patient and medical staff, and other relevant factors.
  • a fifth aspect of the present disclosure provides at least one of the following uses of double-stranded ribonucleic acid, double-stranded ribonucleic acid modifications or double-stranded ribonucleic acid conjugates:
  • the present disclosure further provides the use of siRNA molecules (including unmodified siRNA, siRNA modifications, siRNA conjugates) or pharmaceutical compositions in at least one of the above (1)-(3).
  • abnormal expression of the C5 gene leads to inappropriate activation of the complement system, causing one or more of the following diseases related to abnormal expression of the C5 gene: paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, generalized severe disease Myasthenia, thromboembolism, neuromyelitis optica, antibody-mediated renal transplant rejection, Guillain-Barré syndrome, antineutrophil cytoplasmic antibody-associated vasculitis, amyotrophic lateral sclerosis, Parkinson's disease, autoimmunity Encephalitis, IgG4-related diseases, asthma, antiphospholipid antibody syndrome, ischemia-reperfusion injury, typical hemolytic-uremic syndrome, multifocal Motor neuropathy, multiple sclerosis, thrombotic thrombocytopenic purpura, traumatic brain injury, cold agglutinin disease, dermatomyositis, hemolytic uremic syndrome associated with Shiga toxin-producing Escherichia coli, transplant
  • the siRNA molecule causes the expression of the C5 gene to be inhibited by at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least About 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least About 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%, achieve abnormal expression of the C5 gene Treatment of related diseases.
  • the present disclosure provides a method of inhibiting C5 gene expression in a cell, comprising contacting a double-stranded ribonucleic acid, a double-stranded ribonucleic acid modification, a double-stranded ribonucleic acid conjugate, or a pharmaceutical composition with a cell.
  • a method for inhibiting the expression of C5 gene in cells is to introduce siRNA molecules (including unmodified siRNA, siRNA modifications, and siRNA conjugates) or pharmaceutical compositions into cells.
  • the cells are in vivo cells or in vitro cells. In some specific embodiments, the cells are in a subject.
  • the present disclosure provides methods of preventing or treating disease, comprising administering a double-stranded ribonucleic acid, a double-stranded ribonucleic acid modification, a double-stranded ribonucleic acid conjugate, or a pharmaceutical composition to a subject.
  • a method of preventing or treating disease is to administer siRNA molecules (including unmodified siRNA, siRNA modifications, siRNA conjugates) or pharmaceutical compositions to the subject.
  • siRNA molecules including unmodified siRNA, siRNA modifications, siRNA conjugates
  • pharmaceutical compositions to the subject.
  • subject includes either a human or a non-human animal, preferably a vertebrate, and more preferably a mammal.
  • Subjects may include genetically modified organisms. Most preferably, the subject is human. Further, the subject has at least one of the following characteristics:
  • the adjacent nucleotide is a 5'-trans vinyl phosphate nucleotide; [GNA] indicates that the adjacent ribonucleotide on the right is a ribonucleotide modified by GNA; L96 is also represented by Formula I.
  • the conjugate group shown is GalNAc.
  • the experimental techniques and experimental methods used in this example are all conventional technical methods unless otherwise specified.
  • the experimental methods without specifying specific conditions in the following examples usually follow conventional conditions, such as Sambrook et al., Molecular Cloning: Experiment Conditions described in the Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989), Or in accordance with the conditions recommended by the manufacturer.
  • the materials, reagents, etc. used in the examples can be obtained through regular commercial channels unless otherwise specified.
  • siRNA, siRNA modifications and siRNA conjugates involved in the following examples were synthesized by Tianlin Biotechnology (Shanghai) Co., Ltd.
  • the cells, reagents and instrument consumables used in the examples are shown in Table 4:
  • the target sequence used to design siRNA is as follows.
  • the target sequence is derived from the gene mRNA sequence of C5 (see NM_001735.3).
  • the nucleoside monomers are connected one by one from the 3'-5' direction in the order of nucleotide arrangement.
  • Each connection of a nucleoside monomer involves four steps of deprotection, coupling, capping, oxidation or sulfation.
  • deprotection, coupling, capping, oxidation or sulfation when two nucleotides are connected using a phosphate ester, when the next nucleoside monomer is connected, it includes four steps of deprotection, coupling, capping, and oxidation.
  • two nucleotides are connected using phosphorothioate, when the next nucleoside monomer is connected, it includes four steps of protection, coupling, capping and sulfation.
  • the nucleoside monomer is provided in an acetonitrile solution with a concentration of 0.1M.
  • the conditions for the deprotection reaction in each step are the same, that is, the temperature is 25°C, the reaction time is 70 seconds, and the deprotection reagent is dichloroacetic acid in dichloromethane (3% V/V), dichlor The molar ratio of acetic acid to the 4,4'-dimethoxytrityl protecting group on the solid support is 5:1.
  • the coupling reaction conditions for each step are the same, including a temperature of 25°C, a molar ratio of the nucleic acid sequence connected to the solid phase carrier to the nucleoside monomer of 1:10, and a molar ratio of the nucleic acid sequence connected to the solid phase carrier to the coupling reagent.
  • the ratio is 1:65
  • the reaction time is 600 seconds
  • the coupling reagent is a 0.5M acetonitrile solution of 5-ethylthio-1H-tetrazole.
  • the capping conditions in each step are the same, including a temperature of 25°C and a reaction time of 15 seconds.
  • the capping reagent solution is a mixed solution of CapA and CapB with a molar ratio of 1:1.
  • the oxidation reaction conditions for each step are the same, including a temperature of 25°C, a reaction time of 15 seconds, and the oxidizing reagent is iodine water with a concentration of 0.05M.
  • the molar ratio of iodine to the nucleic acid sequence attached to the solid support during the coupling step is 30:1.
  • the conditions for each step of the vulcanization reaction are the same, including a temperature of 25°C, a reaction time of 300 seconds, and the vulcanization reagent is hydrogenated xanthogen.
  • the molar ratio of the sulfide reagent to the nucleic acid sequence connected to the solid support in the coupling step is 120:1.
  • the nucleic acid sequence connected to the solid phase carrier is sequentially cut, deprotected, purified, and desalted, and then freeze-dried to obtain the sense strand and antisense strand; finally, the two strands are heated and annealed.
  • the product is obtained, freeze-dried, and freeze-dried powder is obtained.
  • siRNA conjugate has the structure shown in Formula II below:
  • compound L96-A is obtained by reacting DMTr-L96 and succinic anhydride:
  • Preparation process Add DMTr-L96, succinic anhydride, 4-dimethylaminopyridine and diisopropylethylamine into dichloromethane, stir and react at 25°C for 24 hours, and then wash with 0.5M triethylamine phosphate.
  • the reaction solution and aqueous phase were washed three times with methylene chloride, and the organic phases were combined and evaporated to dryness under reduced pressure to obtain a crude product. Then column chromatography purified to obtain pure product L96-A.
  • Preparation process Mix L96-A, O-benzotriazole-tetramethylurea hexafluorophosphate (HBTU) and diisopropylethylamine in acetonitrile, stir at room temperature for 5 minutes to obtain a uniform solution, add ammonia Add methyl resin (NH 2 -SPS, 100-200 mesh) to the reaction liquid, start shaking reaction at 25°C, filter after 18 hours of reaction, and wash the filter cake with dichloromethane and acetonitrile in sequence to obtain a filter cake. The obtained filter cake is capped with a CapA/CapB mixed solution to obtain L96-B, which is a solid-phase carrier containing the conjugated molecule.
  • HBTU O-benzotriazole-tetramethylurea hexafluorophosphate
  • diisopropylethylamine diisopropylethylamine in acetonitrile
  • the nucleoside monomer is connected to the conjugated molecule under the coupling reaction, and then the nucleoside monomer is connected to the conjugated molecule as described above.
  • the siRNA molecule synthesis method is used to synthesize the siRNA sense strand connected to the conjugate molecule, and the siRNA molecule synthesis method described above is used to synthesize the siRNA antisense strand, and annealed to generate the siRNA conjugate of the present application.
  • HepG2 cells purchased from ATCC, catalog number HB-8065;
  • DMEM medium purchased from Macgene, product number CM15019.
  • Step 1 Inoculate 500 ⁇ l of HepG2 cells at a concentration of 16 ⁇ 10 4 /ml into a 24-well plate containing DMEM medium and culture for 24 hours.
  • Step 2 Centrifuge the dry powder of the siRNA to be tested and siRNA modifications (for convenience of description, collectively referred to as siRNA in the description of the experimental process of this example) at low temperature and high speed, dissolve it with RNase-free ddH 2 O, and prepare a 100 ⁇ M siRNA stock solution.
  • Step 3 Prepare 25nM siRNA transfection diluent
  • Step 4 Transfect HepG2 cells. Wash the cells in the 24-well plate twice with PBS buffer, and add 450 ⁇ l of DMEM medium without PS (penicillin and streptomycin mixture). Add 50 ⁇ l of the mixture prepared in step 3 to the 24-well plate containing HepG2 cells, and perform transfection with a final siRNA concentration of 25 nM.
  • siRNA sample was set up in 3 replicates and cultured for 48 hours after transfection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

用于抑制C5基因表达的双链核糖核酸及其修饰物、缀合物和用途。具体来说,涉及一种用于抑制C5基因表达的双链核糖核酸、双链核糖核酸修饰物、双链核糖核酸缀合物、药物组合物和用途,以及用于抑制细胞内C5基因表达的方法。所述双链核糖核酸,能够在细胞内结合形成RNA诱导沉默复合物(RISC),切割补体C5基因转录的mRNA,高效、特异地抑制补体C5基因的表达,用于治疗补体系统的不适当的激活介导的疾病。

Description

用于抑制C5基因表达的双链核糖核酸及其修饰物、缀合物和用途
优先权和相关申请
本公开要求于2022年7月7日提交中国专利局、申请号为202210803750.7、发明名称为“用于抑制C5基因表达的双链核糖核酸及其修饰物、缀合物和用途”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开属于生物医药领域,具体来说,本公开涉及一种用于抑制C5基因表达的双链核糖核酸、双链核糖核酸修饰物、双链核糖核酸缀合物、药物组合物和用途,以及用于抑制细胞内C5基因表达的方法。
背景技术
补体(Complement,C)是存在于人和动物血清与组织液中的一组不耐热、经活化后具有酶活性、可介导免疫应答和炎症反应的蛋白质。补体系统(Complement system)被激活后,介导一系列的细胞反应,如细胞溶解、调理吞噬(抗原抗体结合)、炎症反应、清除免疫复合物等。补体系统主要由固有成分、调节蛋白及受体等30余种糖蛋白组成,这些蛋白质以血液中可溶性蛋白存在或以膜相关蛋白存在。补体由经典途径、替代途径和凝集素途径三种途径之一激活,产生一系列蛋白水解裂酶,以增强免疫反应或形成膜攻击复合体(MAC)。C5转化酶是裂解C5的最后一种酶,释放出C5a和C5b。C5b与另外四种补体蛋白(C6、C7、C8和C9)结合形成MAC,MAC是诱导细胞裂解的跨膜通道。
补体蛋白C5的不适当的激活是在许多疾病中的增殖和/或起始病变的原因,这些疾病包括例如,阵发性睡眠性血红蛋白尿症(PNH)、非典型溶血性尿毒症综合征(aHUS)、广泛性重症肌无力(gMG)和血栓栓塞。
开发C5补体抑制剂是一项有前景的治疗方法,目前全球获批治疗PNH的C5抑制剂仅有Soliris(Eculizumab)和Ultomiris(Ravulizumab),均由Alexion开发。然而,目前已获批的C5抑制剂均为抗体类药物,尚无相关RNA药物上市。因此,开发新型补体C5抑制剂拥有巨大的临床价值和市场前景。
发明内容
发明要解决的问题
鉴于现有技术中存在的问题,例如,需要开发更多C5补体抑制剂,用于治疗补体系统的不适当的激活介导的疾病。本公开旨在提供一系列用于抑制补体C5基因表达的双链核糖核酸、双链核糖核酸修饰物、双链核糖核酸缀合物及药物组合物,能够抑制C5基因表达,在临床疾病治疗中具有重要应用前景。
用于解决问题的方案
一种双链核糖核酸,所述双链核糖核酸包括正义链和反义链,所述正义链与所述反义链互补和/或基本上反向互补形成所述双链核糖核酸的双链区;
其中,所述正义链包含与靶标序列中至少15个连续核苷酸的差异不超过3个核苷酸的序列A,所述反义链包含与靶标序列中至少15个连续核苷酸的反向互补序列的差异不超过3个核苷酸的序列B;
所述靶标序列选自如SEQ ID NO:1-7、SEQ ID NO:595-614任一项所示的核苷酸序列。
根据[1]所述的双链核糖核酸,其中,所述靶标序列选自如SEQ ID NO:8-51、SEQ ID NO:615-657任一项所示的核苷酸序列,所述正义链包含如SEQ ID NO:8-51、SEQ ID  NO:615-657任一项所示的核苷酸序列中至少15个连续核苷酸组成的序列A,所述反义链包含如SEQ ID NO:8-51、SEQ ID NO:615-657任一项所示的核苷酸序列中至少15个连续核苷酸组成的序列反向互补和/或基本上反向互补的序列B。
根据[1]或[2]所述的双链核糖核酸,其中,所述正义链由15-28个核苷酸组成,优选19-25个核苷酸,更优选19-23个核苷酸,更优选19、21或23个核苷酸。
根据[3]所述的双链核糖核酸,其中,所述正义链的核苷酸序列为SEQ ID NO:8-51、SEQ ID NO:615-657任一项所示的核苷酸序列中的15-28个连续核苷酸组成的序列A,优选19-25个连续核苷酸,更优选19-23个连续核苷酸,更优选19、21或23个核苷酸。
根据[1]-[4]任一项所述的双链核糖核酸,其中,所述反义链由15-28个核苷酸组成,优选19-25个核苷酸,更优选19-23个核苷酸,更优选19、21或23个核苷酸。
根据[5]所述的双链核糖核酸,其中,所述反义链的核苷酸序列是与SEQ ID NO:8-51、SEQ ID NO:615-657任一项所示的核苷酸序列中的15-28个连续核苷酸组成的序列反向互补和/或基本上反向互补的序列B,优选19-25个连续核苷酸,更优选19-23个连续核苷酸,更优选19、21或23个核苷酸。
根据[1]-[6]任一项所述的双链核糖核酸,其中,所述双链区的长度为15-25个核苷酸,优选19-23个核苷酸,更优选19-21个核苷酸,更优选19、21或23个核苷酸。
根据[1]-[7]任一项所述的双链核糖核酸,其中,
所述正义链与所述反义链互补形成所述双链区,且所述正义链的3’末端具有1-2个延伸出所述双链区的突出的核苷酸,所述反义链的3’末端形成平末端;或者,
所述正义链与所述反义链互补形成所述双链区,且所述反义链的3’末端具有1-2个延伸出所述双链区的突出的核苷酸,所述正义链的3’末端形成平末端;或者,
所述正义链与所述反义链互补形成所述双链区,且所述正义链与所述反义链的3’末端均具有1-2个延伸出所述双链区的突出的核苷酸;或者,
所述正义链与所述反义链互补形成所述双链区,且所述正义链与所述反义链的3’末端均形成平末端。
根据[1]-[8]任一项所述的双链核糖核酸,其中,所述正义链与所述反义链选自如下组合:
125)所述正义链包含如SEQ ID NO:283所示的核苷酸序列,所述反义链包含如SEQ ID NO:370所示的核苷酸序列;
1)所述正义链包含如SEQ ID NO:52所示的核苷酸序列,所述反义链包含如SEQ ID NO:145所示的核苷酸序列;
2)所述正义链包含如SEQ ID NO:53所示的核苷酸序列,所述反义链包含如SEQ ID NO:146所示的核苷酸序列;
3)所述正义链包含如SEQ ID NO:54所示的核苷酸序列,所述反义链包含如SEQ ID NO:147所示的核苷酸序列;
4)所述正义链包含如SEQ ID NO:55所示的核苷酸序列,所述反义链包含如SEQ ID NO:148所示的核苷酸序列;
5)所述正义链包含如SEQ ID NO:56所示的核苷酸序列,所述反义链包含如SEQ ID NO:149所示的核苷酸序列;
6)所述正义链包含如SEQ ID NO:57所示的核苷酸序列,所述反义链包含如SEQ ID NO:150所示的核苷酸序列;
7)所述正义链包含如SEQ ID NO:58所示的核苷酸序列,所述反义链包含如SEQ ID NO:151所示的核苷酸序列;
8)所述正义链包含如SEQ ID NO:59所示的核苷酸序列,所述反义链包含如SEQ ID NO:152所示的核苷酸序列;
9)所述正义链包含如SEQ ID NO:60所示的核苷酸序列,所述反义链包含如SEQ ID NO:153所示的核苷酸序列;
10)所述正义链包含如SEQ ID NO:61所示的核苷酸序列,所述反义链包含如SEQ ID NO:154所示的核苷酸序列;
11)所述正义链包含如SEQ ID NO:62所示的核苷酸序列,所述反义链包含如SEQ ID NO:155所示的核苷酸序列;
12)所述正义链包含如SEQ ID NO:63所示的核苷酸序列,所述反义链包含如SEQ ID NO:156所示的核苷酸序列;
13)所述正义链包含如SEQ ID NO:64所示的核苷酸序列,所述反义链包含如SEQ ID NO:157所示的核苷酸序列;
14)所述正义链包含如SEQ ID NO:65所示的核苷酸序列,所述反义链包含如SEQ ID NO:158所示的核苷酸序列;
15)所述正义链包含如SEQ ID NO:66所示的核苷酸序列,所述反义链包含如SEQ ID NO:159所示的核苷酸序列;
16)所述正义链包含如SEQ ID NO:67所示的核苷酸序列,所述反义链包含如SEQ ID NO:160所示的核苷酸序列;
17)所述正义链包含如SEQ ID NO:68所示的核苷酸序列,所述反义链包含如SEQ ID NO:161所示的核苷酸序列;
18)所述正义链包含如SEQ ID NO:69所示的核苷酸序列,所述反义链包含如SEQ ID NO:162所示的核苷酸序列;
19)所述正义链包含如SEQ ID NO:70所示的核苷酸序列,所述反义链包含如SEQ ID NO:163所示的核苷酸序列;
20)所述正义链包含如SEQ ID NO:71所示的核苷酸序列,所述反义链包含如SEQ ID NO:164所示的核苷酸序列;
21)所述正义链包含如SEQ ID NO:72所示的核苷酸序列,所述反义链包含如SEQ ID NO:165所示的核苷酸序列;
22)所述正义链包含如SEQ ID NO:73所示的核苷酸序列,所述反义链包含如SEQ ID NO:166所示的核苷酸序列;
23)所述正义链包含如SEQ ID NO:74所示的核苷酸序列,所述反义链包含如SEQ ID NO:167所示的核苷酸序列;
24)所述正义链包含如SEQ ID NO:75所示的核苷酸序列,所述反义链包含如SEQ ID NO:168所示的核苷酸序列;
25)所述正义链包含如SEQ ID NO:76所示的核苷酸序列,所述反义链包含如SEQ ID NO:169所示的核苷酸序列;
26)所述正义链包含如SEQ ID NO:77所示的核苷酸序列,所述反义链包含如SEQ ID NO:170所示的核苷酸序列;
27)所述正义链包含如SEQ ID NO:78所示的核苷酸序列,所述反义链包含如SEQ ID NO:171所示的核苷酸序列;
28)所述正义链包含如SEQ ID NO:79所示的核苷酸序列,所述反义链包含如SEQ ID NO:172所示的核苷酸序列;
29)所述正义链包含如SEQ ID NO:80所示的核苷酸序列,所述反义链包含如SEQ ID NO:173所示的核苷酸序列;
30)所述正义链包含如SEQ ID NO:81所示的核苷酸序列,所述反义链包含如SEQ ID NO:174所示的核苷酸序列;
31)所述正义链包含如SEQ ID NO:82所示的核苷酸序列,所述反义链包含如SEQ ID  NO:175所示的核苷酸序列;
32)所述正义链包含如SEQ ID NO:83所示的核苷酸序列,所述反义链包含如SEQ ID NO:176所示的核苷酸序列;
33)所述正义链包含如SEQ ID NO:84所示的核苷酸序列,所述反义链包含如SEQ ID NO:177所示的核苷酸序列;
34)所述正义链包含如SEQ ID NO:85所示的核苷酸序列,所述反义链包含如SEQ ID NO:178所示的核苷酸序列;
35)所述正义链包含如SEQ ID NO:86所示的核苷酸序列,所述反义链包含如SEQ ID NO:179所示的核苷酸序列;
36)所述正义链包含如SEQ ID NO:87所示的核苷酸序列,所述反义链包含如SEQ ID NO:180所示的核苷酸序列;
37)所述正义链包含如SEQ ID NO:88所示的核苷酸序列,所述反义链包含如SEQ ID NO:181所示的核苷酸序列;
38)所述正义链包含如SEQ ID NO:89所示的核苷酸序列,所述反义链包含如SEQ ID NO:182所示的核苷酸序列;
39)所述正义链包含如SEQ ID NO:90所示的核苷酸序列,所述反义链包含如SEQ ID NO:183所示的核苷酸序列;
40)所述正义链包含如SEQ ID NO:91所示的核苷酸序列,所述反义链包含如SEQ ID NO:184所示的核苷酸序列;
41)所述正义链包含如SEQ ID NO:92所示的核苷酸序列,所述反义链包含如SEQ ID NO:185所示的核苷酸序列;
42)所述正义链包含如SEQ ID NO:93所示的核苷酸序列,所述反义链包含如SEQ ID NO:186所示的核苷酸序列;
43)所述正义链包含如SEQ ID NO:94所示的核苷酸序列,所述反义链包含如SEQ ID NO:187所示的核苷酸序列;
44)所述正义链包含如SEQ ID NO:95所示的核苷酸序列,所述反义链包含如SEQ ID NO:188所示的核苷酸序列;
45)所述正义链包含如SEQ ID NO:96所示的核苷酸序列,所述反义链包含如SEQ ID NO:189所示的核苷酸序列;
46)所述正义链包含如SEQ ID NO:97所示的核苷酸序列,所述反义链包含如SEQ ID NO:190所示的核苷酸序列;
47)所述正义链包含如SEQ ID NO:98所示的核苷酸序列,所述反义链包含如SEQ ID NO:191所示的核苷酸序列;
48)所述正义链包含如SEQ ID NO:99所示的核苷酸序列,所述反义链包含如SEQ ID NO:192所示的核苷酸序列;
49)所述正义链包含如SEQ ID NO:100所示的核苷酸序列,所述反义链包含如SEQ ID NO:193所示的核苷酸序列;
50)所述正义链包含如SEQ ID NO:101所示的核苷酸序列,所述反义链包含如SEQ ID NO:194所示的核苷酸序列;
51)所述正义链包含如SEQ ID NO:102所示的核苷酸序列,所述反义链包含如SEQ ID NO:195所示的核苷酸序列;
52)所述正义链包含如SEQ ID NO:103所示的核苷酸序列,所述反义链包含如SEQ ID NO:196所示的核苷酸序列;
53)所述正义链包含如SEQ ID NO:104所示的核苷酸序列,所述反义链包含如SEQ ID NO:197所示的核苷酸序列;
54)所述正义链包含如SEQ ID NO:105所示的核苷酸序列,所述反义链包含如SEQ ID NO:198所示的核苷酸序列;
55)所述正义链包含如SEQ ID NO:106所示的核苷酸序列,所述反义链包含如SEQ ID NO:199所示的核苷酸序列;
56)所述正义链包含如SEQ ID NO:107所示的核苷酸序列,所述反义链包含如SEQ ID NO:200所示的核苷酸序列;
57)所述正义链包含如SEQ ID NO:108所示的核苷酸序列,所述反义链包含如SEQ ID NO:201所示的核苷酸序列;
58)所述正义链包含如SEQ ID NO:109所示的核苷酸序列,所述反义链包含如SEQ ID NO:202所示的核苷酸序列;
59)所述正义链包含如SEQ ID NO:110所示的核苷酸序列,所述反义链包含如SEQ ID NO:203所示的核苷酸序列;
60)所述正义链包含如SEQ ID NO:111所示的核苷酸序列,所述反义链包含如SEQ ID NO:204所示的核苷酸序列;
61)所述正义链包含如SEQ ID NO:112所示的核苷酸序列,所述反义链包含如SEQ ID NO:205所示的核苷酸序列;
62)所述正义链包含如SEQ ID NO:113所示的核苷酸序列,所述反义链包含如SEQ ID NO:206所示的核苷酸序列;
63)所述正义链包含如SEQ ID NO:114所示的核苷酸序列,所述反义链包含如SEQ ID NO:207所示的核苷酸序列;
64)所述正义链包含如SEQ ID NO:115所示的核苷酸序列,所述反义链包含如SEQ ID NO:208所示的核苷酸序列;
65)所述正义链包含如SEQ ID NO:116所示的核苷酸序列,所述反义链包含如SEQ ID NO:209所示的核苷酸序列;
66)所述正义链包含如SEQ ID NO:117所示的核苷酸序列,所述反义链包含如SEQ ID NO:210所示的核苷酸序列;
67)所述正义链包含如SEQ ID NO:118所示的核苷酸序列,所述反义链包含如SEQ ID NO:211所示的核苷酸序列;
68)所述正义链包含如SEQ ID NO:119所示的核苷酸序列,所述反义链包含如SEQ ID NO:212所示的核苷酸序列;
69)所述正义链包含如SEQ ID NO:120所示的核苷酸序列,所述反义链包含如SEQ ID NO:213所示的核苷酸序列;
70)所述正义链包含如SEQ ID NO:121所示的核苷酸序列,所述反义链包含如SEQ ID NO:214所示的核苷酸序列;
71)所述正义链包含如SEQ ID NO:122所示的核苷酸序列,所述反义链包含如SEQ ID NO:215所示的核苷酸序列;
72)所述正义链包含如SEQ ID NO:123所示的核苷酸序列,所述反义链包含如SEQ ID NO:216所示的核苷酸序列;
73)所述正义链包含如SEQ ID NO:124所示的核苷酸序列,所述反义链包含如SEQ ID NO:217所示的核苷酸序列;
74)所述正义链包含如SEQ ID NO:125所示的核苷酸序列,所述反义链包含如SEQ ID NO:218所示的核苷酸序列;
75)所述正义链包含如SEQ ID NO:126所示的核苷酸序列,所述反义链包含如SEQ ID NO:219所示的核苷酸序列;
76)所述正义链包含如SEQ ID NO:127所示的核苷酸序列,所述反义链包含如SEQ ID  NO:220所示的核苷酸序列;
77)所述正义链包含如SEQ ID NO:128所示的核苷酸序列,所述反义链包含如SEQ ID NO:221所示的核苷酸序列;
78)所述正义链包含如SEQ ID NO:129所示的核苷酸序列,所述反义链包含如SEQ ID NO:222所示的核苷酸序列;
79)所述正义链包含如SEQ ID NO:130所示的核苷酸序列,所述反义链包含如SEQ ID NO:223所示的核苷酸序列;
80)所述正义链包含如SEQ ID NO:131所示的核苷酸序列,所述反义链包含如SEQ ID NO:224所示的核苷酸序列;
81)所述正义链包含如SEQ ID NO:132所示的核苷酸序列,所述反义链包含如SEQ ID NO:225所示的核苷酸序列;
82)所述正义链包含如SEQ ID NO:133所示的核苷酸序列,所述反义链包含如SEQ ID NO:226所示的核苷酸序列;
83)所述正义链包含如SEQ ID NO:134所示的核苷酸序列,所述反义链包含如SEQ ID NO:227所示的核苷酸序列;
84)所述正义链包含如SEQ ID NO:135所示的核苷酸序列,所述反义链包含如SEQ ID NO:228所示的核苷酸序列;
85)所述正义链包含如SEQ ID NO:136所示的核苷酸序列,所述反义链包含如SEQ ID NO:229所示的核苷酸序列;
86)所述正义链包含如SEQ ID NO:137所示的核苷酸序列,所述反义链包含如SEQ ID NO:230所示的核苷酸序列;
87)所述正义链包含如SEQ ID NO:138所示的核苷酸序列,所述反义链包含如SEQ ID NO:231所示的核苷酸序列;
88)所述正义链包含如SEQ ID NO:139所示的核苷酸序列,所述反义链包含如SEQ ID NO:232所示的核苷酸序列;
89)所述正义链包含如SEQ ID NO:140所示的核苷酸序列,所述反义链包含如SEQ ID NO:233所示的核苷酸序列;
90)所述正义链包含如SEQ ID NO:141所示的核苷酸序列,所述反义链包含如SEQ ID NO:234所示的核苷酸序列;
91)所述正义链包含如SEQ ID NO:142所示的核苷酸序列,所述反义链包含如SEQ ID NO:235所示的核苷酸序列;
92)所述正义链包含如SEQ ID NO:143所示的核苷酸序列,所述反义链包含如SEQ ID NO:236所示的核苷酸序列;
93)所述正义链包含如SEQ ID NO:144所示的核苷酸序列,所述反义链包含如SEQ ID NO:237所示的核苷酸序列;
106)所述正义链包含如SEQ ID NO:262所示的核苷酸序列,所述反义链包含如SEQ ID NO:349所示的核苷酸序列;
107)所述正义链包含如SEQ ID NO:263所示的核苷酸序列,所述反义链包含如SEQ ID NO:350所示的核苷酸序列;
108)所述正义链包含如SEQ ID NO:264所示的核苷酸序列,所述反义链包含如SEQ ID NO:351所示的核苷酸序列;
109)所述正义链包含如SEQ ID NO:265所示的核苷酸序列,所述反义链包含如SEQ ID NO:352所示的核苷酸序列;
110)所述正义链包含如SEQ ID NO:266所示的核苷酸序列,所述反义链包含如SEQ ID NO:353所示的核苷酸序列;
111)所述正义链包含如SEQ ID NO:267所示的核苷酸序列,所述反义链包含如SEQ ID NO:354所示的核苷酸序列;
112)所述正义链包含如SEQ ID NO:268所示的核苷酸序列,所述反义链包含如SEQ ID NO:355所示的核苷酸序列;
113)所述正义链包含如SEQ ID NO:270所示的核苷酸序列,所述反义链包含如SEQ ID NO:357所示的核苷酸序列;
114)所述正义链包含如SEQ ID NO:271所示的核苷酸序列,所述反义链包含如SEQ ID NO:358所示的核苷酸序列;
115)所述正义链包含如SEQ ID NO:272所示的核苷酸序列,所述反义链包含如SEQ ID NO:359所示的核苷酸序列;
116)所述正义链包含如SEQ ID NO:273所示的核苷酸序列,所述反义链包含如SEQ ID NO:360所示的核苷酸序列;
117)所述正义链包含如SEQ ID NO:274所示的核苷酸序列,所述反义链包含如SEQ ID NO:361所示的核苷酸序列;
118)所述正义链包含如SEQ ID NO:276所示的核苷酸序列,所述反义链包含如SEQ ID NO:363所示的核苷酸序列;
119)所述正义链包含如SEQ ID NO:277所示的核苷酸序列,所述反义链包含如SEQ ID NO:364所示的核苷酸序列;
120)所述正义链包含如SEQ ID NO:278所示的核苷酸序列,所述反义链包含如SEQ ID NO:365所示的核苷酸序列;
121)所述正义链包含如SEQ ID NO:279所示的核苷酸序列,所述反义链包含如SEQ ID NO:366所示的核苷酸序列;
122)所述正义链包含如SEQ ID NO:280所示的核苷酸序列,所述反义链包含如SEQ ID NO:367所示的核苷酸序列;
123)所述正义链包含如SEQ ID NO:281所示的核苷酸序列,所述反义链包含如SEQ ID NO:368所示的核苷酸序列;
124)所述正义链包含如SEQ ID NO:282所示的核苷酸序列,所述反义链包含如SEQ ID NO:369所示的核苷酸序列;
126)所述正义链包含如SEQ ID NO:284所示的核苷酸序列,所述反义链包含如SEQ ID NO:371所示的核苷酸序列;
127)所述正义链包含如SEQ ID NO:285所示的核苷酸序列,所述反义链包含如SEQ ID NO:372所示的核苷酸序列;
128)所述正义链包含如SEQ ID NO:286所示的核苷酸序列,所述反义链包含如SEQ ID NO:373所示的核苷酸序列;
129)所述正义链包含如SEQ ID NO:288所示的核苷酸序列,所述反义链包含如SEQ ID NO:375所示的核苷酸序列;
130)所述正义链包含如SEQ ID NO:289所示的核苷酸序列,所述反义链包含如SEQ ID NO:376所示的核苷酸序列;
131)所述正义链包含如SEQ ID NO:290所示的核苷酸序列,所述反义链包含如SEQ ID NO:377所示的核苷酸序列;
132)所述正义链包含如SEQ ID NO:291所示的核苷酸序列,所述反义链包含如SEQ ID NO:378所示的核苷酸序列;
133)所述正义链包含如SEQ ID NO:292所示的核苷酸序列,所述反义链包含如SEQ ID NO:379所示的核苷酸序列;
134)所述正义链包含如SEQ ID NO:293所示的核苷酸序列,所述反义链包含如SEQ ID  NO:380所示的核苷酸序列;
135)所述正义链包含如SEQ ID NO:294所示的核苷酸序列,所述反义链包含如SEQ ID NO:381所示的核苷酸序列;
136)所述正义链包含如SEQ ID NO:295所示的核苷酸序列,所述反义链包含如SEQ ID NO:382所示的核苷酸序列;
137)所述正义链包含如SEQ ID NO:296所示的核苷酸序列,所述反义链包含如SEQ ID NO:383所示的核苷酸序列;
138)所述正义链包含如SEQ ID NO:297所示的核苷酸序列,所述反义链包含如SEQ ID NO:384所示的核苷酸序列;
139)所述正义链包含如SEQ ID NO:298所示的核苷酸序列,所述反义链包含如SEQ ID NO:385所示的核苷酸序列;
140)所述正义链包含如SEQ ID NO:299所示的核苷酸序列,所述反义链包含如SEQ ID NO:386所示的核苷酸序列;
141)所述正义链包含如SEQ ID NO:300所示的核苷酸序列,所述反义链包含如SEQ ID NO:387所示的核苷酸序列;
142)所述正义链包含如SEQ ID NO:302所示的核苷酸序列,所述反义链包含如SEQ ID NO:389所示的核苷酸序列;
143)所述正义链包含如SEQ ID NO:303所示的核苷酸序列,所述反义链包含如SEQ ID NO:390所示的核苷酸序列;
144)所述正义链包含如SEQ ID NO:305所示的核苷酸序列,所述反义链包含如SEQ ID NO:392所示的核苷酸序列;
145)所述正义链包含如SEQ ID NO:306所示的核苷酸序列,所述反义链包含如SEQ ID NO:393所示的核苷酸序列;
146)所述正义链包含如SEQ ID NO:307所示的核苷酸序列,所述反义链包含如SEQ ID NO:394所示的核苷酸序列;
147)所述正义链包含如SEQ ID NO:308所示的核苷酸序列,所述反义链包含如SEQ ID NO:395所示的核苷酸序列;
148)所述正义链包含如SEQ ID NO:310所示的核苷酸序列,所述反义链包含如SEQ ID NO:397所示的核苷酸序列;
149)所述正义链包含如SEQ ID NO:311所示的核苷酸序列,所述反义链包含如SEQ ID NO:398所示的核苷酸序列;
150)所述正义链包含如SEQ ID NO:312所示的核苷酸序列,所述反义链包含如SEQ ID NO:399所示的核苷酸序列;
151)所述正义链包含如SEQ ID NO:315所示的核苷酸序列,所述反义链包含如SEQ ID NO:402所示的核苷酸序列;
152)所述正义链包含如SEQ ID NO:316所示的核苷酸序列,所述反义链包含如SEQ ID NO:403所示的核苷酸序列;
153)所述正义链包含如SEQ ID NO:317所示的核苷酸序列,所述反义链包含如SEQ ID NO:404所示的核苷酸序列;
154)所述正义链包含如SEQ ID NO:318所示的核苷酸序列,所述反义链包含如SEQ ID NO:405所示的核苷酸序列;
155)所述正义链包含如SEQ ID NO:319所示的核苷酸序列,所述反义链包含如SEQ ID NO:406所示的核苷酸序列;
156)所述正义链包含如SEQ ID NO:320所示的核苷酸序列,所述反义链包含如SEQ ID NO:407所示的核苷酸序列;
157)所述正义链包含如SEQ ID NO:321所示的核苷酸序列,所述反义链包含如SEQ ID NO:408所示的核苷酸序列;
158)所述正义链包含如SEQ ID NO:322所示的核苷酸序列,所述反义链包含如SEQ ID NO:409所示的核苷酸序列;
159)所述正义链包含如SEQ ID NO:323所示的核苷酸序列,所述反义链包含如SEQ ID NO:410所示的核苷酸序列;
160)所述正义链包含如SEQ ID NO:324所示的核苷酸序列,所述反义链包含如SEQ ID NO:411所示的核苷酸序列;
161)所述正义链包含如SEQ ID NO:325所示的核苷酸序列,所述反义链包含如SEQ ID NO:412所示的核苷酸序列;
162)所述正义链包含如SEQ ID NO:326所示的核苷酸序列,所述反义链包含如SEQ ID NO:413所示的核苷酸序列;
163)所述正义链包含如SEQ ID NO:327所示的核苷酸序列,所述反义链包含如SEQ ID NO:414所示的核苷酸序列;
164)所述正义链包含如SEQ ID NO:328所示的核苷酸序列,所述反义链包含如SEQ ID NO:415所示的核苷酸序列;
165)所述正义链包含如SEQ ID NO:329所示的核苷酸序列,所述反义链包含如SEQ ID NO:416所示的核苷酸序列;
166)所述正义链包含如SEQ ID NO:330所示的核苷酸序列,所述反义链包含如SEQ ID NO:417所示的核苷酸序列;
167)所述正义链包含如SEQ ID NO:331所示的核苷酸序列,所述反义链包含如SEQ ID NO:418所示的核苷酸序列;
168)所述正义链包含如SEQ ID NO:332所示的核苷酸序列,所述反义链包含如SEQ ID NO:419所示的核苷酸序列;
169)所述正义链包含如SEQ ID NO:334所示的核苷酸序列,所述反义链包含如SEQ ID NO:421所示的核苷酸序列;
170)所述正义链包含如SEQ ID NO:335所示的核苷酸序列,所述反义链包含如SEQ ID NO:422所示的核苷酸序列;
171)所述正义链包含如SEQ ID NO:336所示的核苷酸序列,所述反义链包含如SEQ ID NO:423所示的核苷酸序列;
172)所述正义链包含如SEQ ID NO:337所示的核苷酸序列,所述反义链包含如SEQ ID NO:424所示的核苷酸序列;
173)所述正义链包含如SEQ ID NO:338所示的核苷酸序列,所述反义链包含如SEQ ID NO:425所示的核苷酸序列;
174)所述正义链包含如SEQ ID NO:340所示的核苷酸序列,所述反义链包含如SEQ ID NO:427所示的核苷酸序列;
175)所述正义链包含如SEQ ID NO:341所示的核苷酸序列,所述反义链包含如SEQ ID NO:428所示的核苷酸序列;
176)所述正义链包含如SEQ ID NO:344所示的核苷酸序列,所述反义链包含如SEQ ID NO:431所示的核苷酸序列;
177)所述正义链包含如SEQ ID NO:345所示的核苷酸序列,所述反义链包含如SEQ ID NO:432所示的核苷酸序列;
178)所述正义链包含如SEQ ID NO:346所示的核苷酸序列,所述反义链包含如SEQ ID NO:433所示的核苷酸序列;
179)所述正义链包含如SEQ ID NO:347所示的核苷酸序列,所述反义链包含如SEQ ID  NO:434所示的核苷酸序列;
231)所述正义链包含如SEQ ID NO:530所示的核苷酸序列,所述反义链包含如SEQ ID NO:541所示的核苷酸序列;
232)所述正义链包含如SEQ ID NO:531所示的核苷酸序列,所述反义链包含如SEQ ID NO:542所示的核苷酸序列;
233)所述正义链包含如SEQ ID NO:532所示的核苷酸序列,所述反义链包含如SEQ ID NO:543所示的核苷酸序列;
234)所述正义链包含如SEQ ID NO:533所示的核苷酸序列,所述反义链包含如SEQ ID NO:544所示的核苷酸序列;
235)所述正义链包含如SEQ ID NO:534所示的核苷酸序列,所述反义链包含如SEQ ID NO:545所示的核苷酸序列;
236)所述正义链包含如SEQ ID NO:535所示的核苷酸序列,所述反义链包含如SEQ ID NO:546所示的核苷酸序列;
237)所述正义链包含如SEQ ID NO:536所示的核苷酸序列,所述反义链包含如SEQ ID NO:547所示的核苷酸序列;
238)所述正义链包含如SEQ ID NO:537所示的核苷酸序列,所述反义链包含如SEQ ID NO:548所示的核苷酸序列;
239)所述正义链包含如SEQ ID NO:538所示的核苷酸序列,所述反义链包含如SEQ ID NO:549所示的核苷酸序列;
240)所述正义链包含如SEQ ID NO:539所示的核苷酸序列,所述反义链包含如SEQ ID NO:550所示的核苷酸序列;
241)所述正义链包含如SEQ ID NO:540所示的核苷酸序列,所述反义链包含如SEQ ID NO:551所示的核苷酸序列。
根据[1]-[9]任一项所述的双链核糖核酸,其中,所述正义链中每个核苷酸彼此独立地为修饰的核苷酸或未修饰的核苷酸,和/或,所述反义链中每个核苷酸彼此独立地为修饰的核苷酸或未修饰的核苷酸。
根据[1]-[10]任一项所述的双链核糖核酸,其中,所述正义链中任意相连的两个核苷酸由磷酸二酯键或硫代磷酸二酯键连接,和/或,所述反义链中任意相连的两个核苷酸由磷酸二酯键或硫代磷酸二酯键连接。
根据[1]-[11]任一项所述的双链核糖核酸,其中,所述正义链的5’末端核苷酸连接5’磷酸基团或5’磷酸衍生基团,和/或,所述反义链的5’末端核苷酸连接5’磷酸基团或5’磷酸衍生基团。
根据[1]-[12]任一项所述的双链核糖核酸,其中,所述双链核糖核酸为siRNA。
根据[1]-[13]任一项所述的双链核糖核酸,其中,所述双链核糖核酸为用于抑制C5基因表达的siRNA。
一种双链核糖核酸修饰物,其为如[1]-[14]任一项所述的双链核糖核酸的修饰物,所述双链核糖核酸修饰物包含如下至少一种的化学修饰:
(1)正义链中至少一个核苷酸的修饰,
(2)正义链中至少一个位置处的磷酸二酯键的修饰,
(3)反义链中至少一个核苷酸的修饰,
(4)反义链中至少一个位置处的磷酸二酯键的修饰;
任选地,所述双链核糖核酸的正义链中序列A的3’末端连接由1-2个核苷酸组成的序列D,优选由1-2个胸腺嘧啶脱氧核糖核苷酸组成的序列D;和/或,所述双链核糖核酸的反义链中序列B的3’末端连接由1-2个核苷酸组成的序列E,优选由1-2个胸腺嘧啶脱氧核糖核苷酸组成的序列E;和/或,所述双链核糖核酸的正义链中序列A的3’末端排除1-2个 核苷酸后形成序列A’;
可选地,所述双链核糖核酸修饰物的正义链和反义链选自如下的序列组合:
所述正义链的核苷酸序列为序列A所示的序列,所述反义链的核苷酸序列为序列B所示的序列;
或者,所述正义链的核苷酸序列为序列A所示的序列,所述反义链的核苷酸序列为序列B连接序列E所示的序列;
或者,所述正义链的核苷酸序列为序列A连接序列D所示的序列,所述反义链的核苷酸序列为序列B所示的序列;
或者,所述正义链的核苷酸序列为序列A连接序列D所示的序列,所述反义链的核苷酸序列为序列B连接序列E所示的序列;
或者,所述正义链的核苷酸序列为序列A’所示的序列,所述反义链的核苷酸序列为序列B所示的序列;
或者,所述正义链的核苷酸序列为序列A’所示的序列,所述反义链的核苷酸序列为序列B连接序列E所示的序列。
根据[15]所述的双链核糖核酸修饰物,其中,所述核苷酸的修饰选自2’-氟代修饰、2’-烷氧基修饰、2’-取代的烷氧基修饰、2’-烷基修饰、2’-取代的烷基修饰、2’-脱氧修饰、核苷酸衍生物修饰或其中任意两种以上的组合。
根据[15]或[16]所述的双链核糖核酸修饰物,其中,所述核苷酸的修饰选自2’-F修饰、2’-O-CH3修饰、2’-O-CH2-CH2-O-CH3修饰、2’-O-CH2-CH=CH2修饰、2’-CH2-CH2-CH=CH2修饰、2’-脱氧修饰、核苷酸衍生物修饰或其中任意两种以上的组合。
根据[16]或[17]所述的双链核糖核酸修饰物,其中,所述核苷酸衍生物修饰中的核苷酸衍生物选自异核苷酸、LNA、ENA、cET、UNA或GNA。
根据[15]-[18]任一项所述的双链核糖核酸修饰物,其中,沿5’末端向3’末端方向,所述正义链中第7位、第9位、第10位和第11位的核糖核苷酸为2’-F修饰的核糖核苷酸,所述正义链中其余位置的核糖核苷酸为2’-O-CH3修饰的核糖核苷酸。
根据[15]-[19]任一项所述的双链核糖核酸修饰物,其中,沿5’末端向3’末端方向,所述正义链包含位于如下所示位置处的硫代磷酸二酯键:
所述正义链5’末端起始的第1个核苷酸与第2个核苷酸之间;
所述正义链5’末端起始的第2个核苷酸与第3个核苷酸之间;
所述正义链3’末端起始的第1个核苷酸与第2个核苷酸之间;
所述正义链3’末端起始的第2个核苷酸与第3个核苷酸之间;
或者,
所述正义链包含位于如下所示位置处的硫代磷酸二酯键:
所述正义链5’末端起始的第1个核苷酸与第2个核苷酸之间;
所述正义链5’末端起始的第2个核苷酸与第3个核苷酸之间;
或者,
所述正义链包含位于如下所示位置处的硫代磷酸二酯键:
所述正义链5’末端起始的第1个核苷酸与第2个核苷酸之间;
所述正义链5’末端起始的第2个核苷酸与第3个核苷酸之间;
所述正义链5’末端起始的第3个核苷酸与第4个核苷酸之间;
所述正义链3’末端起始的第1个核苷酸与第2个核苷酸之间;
所述正义链3’末端起始的第2个核苷酸与第3个核苷酸之间;
所述正义链3’末端起始的第3个核苷酸与第4个核苷酸之间。
根据[15]-[20]任一项所述的双链核糖核酸修饰物,其中,沿5’末端向3’末端方向,所述反义链中任意奇数位置处的核糖核苷酸为2’-O-CH3修饰的核糖核苷酸,所述反义链 中任意偶数位置处的核糖核苷酸为2’-F修饰的核糖核苷酸;
或者,沿5’末端向3’末端方向,所述反义链中第2位、第6位、第14位和第16位的核糖核苷酸为2’-F修饰的核糖核苷酸,所述反义链中其余位置的核糖核苷酸为2’-O-CH3修饰的核糖核苷酸;
或者,沿5’末端向3’末端方向,所述反义链中第2位、第6位、第8位、第9位、第14位和第16位的核糖核苷酸为2’-F修饰的核糖核苷酸,所述反义链中其余位置的核糖核苷酸为2’-O-CH3修饰的核糖核苷酸;
或者,沿5’末端向3’末端方向,所述反义链中第2位、第14位和第16位的核糖核苷酸为2’-F修饰的核糖核苷酸,所述反义链中第6位的核糖核苷酸为核苷酸衍生物GNA修饰的核糖核苷酸,所述反义链中其余位置的核糖核苷酸为2’-O-CH3修饰的核糖核苷酸;
或者,沿5’末端向3’末端方向,所述反义链中第2位、第6位、第14位和第16位的核糖核苷酸为2’-F修饰的核糖核苷酸,所述反义链中第7位的核糖核苷酸为核苷酸衍生物GNA修饰的核糖核苷酸,所述反义链中其余位置的核糖核苷酸为2’-O-CH3修饰的核糖核苷酸。
根据[15]-[21]任一项所述的双链核糖核酸修饰物,其中,沿5’末端向3’末端方向,所述反义链的5’末端的核苷酸连接5’磷酸基团或5’磷酸衍生基团。
根据[15]-[22]任一项所述的双链核糖核酸修饰物,其中,所述反义链包含位于如下所示位置处的硫代磷酸二酯键:
所述反义链5’末端起始的第1个核苷酸与第2个核苷酸之间;
所述反义链5’末端起始的第2个核苷酸与第3个核苷酸之间;
所述反义链3’末端起始的第1个核苷酸与第2个核苷酸之间;
所述反义链3’末端起始的第2个核苷酸与第3个核苷酸之间;
或者,
所述反义链包含位于如下所示位置处的硫代磷酸二酯键:
所述反义链5’末端起始的第1个核苷酸与第2个核苷酸之间;
所述反义链5’末端起始的第2个核苷酸与第3个核苷酸之间;
所述反义链5’末端起始的第3个核苷酸与第4个核苷酸之间;
所述反义链3’末端起始的第1个核苷酸与第2个核苷酸之间;
所述反义链3’末端起始的第2个核苷酸与第3个核苷酸之间;
所述反义链3’末端起始的第3个核苷酸与第4个核苷酸之间。
根据[15]-[23]任一项所述的双链核糖核酸修饰物,其中,所述双链核糖核酸修饰物的正义链具有如(a1)-(a6)任一项所示的结构:
(a1)5’-mN1-(s)-mN2-(s)-mN3-mN4-mN5-mN6-N7f-mN8-N9f-N10f-N11f-mN12-mN13-mN14-mN15-mN16-mN17-mN18-mN19-(s)-T-(s)-T-3’,
(a2)5’-mN1-(s)-mN2-(s)-mN3-mN4-mN5-mN6-N7f-mN8-N9f-N10f-N11f-mN12-mN13-mN14-mN15-mN16-mN17-mN18-mN19-(s)-mN20-(s)-mN21-3’,
(a3)5’-mN1-(s)-mN2-(s)-mN3-mN4-mN5-mN6-N7f-mN8-N9f-N10f-N11f-mN12-mN13-mN14-mN15-mN16-mN17-mN18-mN19-mN20-mN21-(s)-mN22-(s)-mN23-3’,
(a4)5’-mN1-(s)-mN2-(s)-mN3-mN4-mN5-mN6-N7f-mN8-N9f-N10f-N11f-mN12-mN13-mN14-mN15-mN16-mN17-mN18-mN19-3’,
(a5)5’-mN1-(s)-mN2-(s)-mN3-mN4-mN5-mN6-N7f-mN8-N9f-N10f-N11f-mN12-mN13-mN14-mN15-mN16-mN17-mN18-mN19-mN20-mN21-3’,
(a6)5’-mN1-(s)-mN2-(s)-mN3-(s)-mN4-mN5-mN6-N7f-mN8-N9f-N10f-N11f-mN12-mN13-mN14-mN15-mN16-mN17-mN18-(s)-mN19-(s)-T-(s)-T-3’;
其中,N1-N23彼此独立地选自碱基为A、U、C或G的核糖核苷酸,
大写字母T表示碱基为胸腺嘧啶的脱氧核糖核苷酸,
小写字母m表示该字母m右侧相邻的一个核糖核苷酸为2’-O-CH3修饰的核糖核苷酸,
小写字母f表示该字母f左侧相邻的一个核糖核苷酸为2’-F修饰的核糖核苷酸,
-(s)-表示前后相邻的两个核苷酸以硫代磷酸二酯键连接。
根据[15]-[24]任一项所述的双链核糖核酸修饰物,其中,所述双链核糖核酸修饰物的反义链具有如(b1)-(b17)任一项所示的结构:
(b1)5’-P1mN1-(s)-N2f-(s)-mN3-N4f-mN5-N6f-mN7-N8f-mN9-N10f-mN11-N12f-mN13-N14f-mN15-N16f-mN17-N18f-mN19-(s)-T-(s)-T-3’,
(b2)5’-P1mN1-(s)-N2f-(s)-mN3-N4f-mN5-N6f-mN7-N8f-mN9-N10f-mN11-N12f-mN13-N14f-mN15-N16f-mN17-N18f-mN19-(s)-N20f-(s)-mN21-3’,
(b3)5’-P1mN1-(s)-N2f-(s)-mN3-N4f-mN5-N6f-mN7-N8f-mN9-N10f-mN11-N12f-mN13-N14f-mN15-N16f-mN17-N18f-mN19-N20f-mN21-(s)-N22f-(s)-mN23-3’,
(b4)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N1 4f-mN15-N16f-mN17-mN18-mN19-(s)-T-(s)-T-3’,
(b5)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N1 4f-mN15-N16f-mN17-mN18-mN19-(s)-mN20-(s)-mN21-3’,
(b6)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N1 4f-mN15-N16f-mN17-mN18-mN19-mN20-mN21-(s)-mN22-(s)-mN23-3’,
(b7)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-N8f-N9f-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-T-(s)-T-3’,
(b8)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-N8f-N9f-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-mN20-(s)-mN21-3’,
(b9)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-N8f-N9f-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-mN20-mN21-(s)-mN22-(s)-mN23-3’,
(b10)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-[GNA]N6-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-T-(s)-T-3’,
(b11)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-[GNA]N6-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-mN20-(s)-mN21-3’,
(b12)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-[GNA]N6-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-mN20-mN21-(s)-mN22-(s)-mN23-3’,
(b13)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-[GNA]N7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-T-(s)-T-3’,
(b14)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-[GNA]N7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-mN20-(s)-mN21-3’,
(b15)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-[GNA]N7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-mN20-mN21-(s)-mN22-(s)-mN23-3’,
(b16)5’-P1mN1-(s)-N2f-(s)-mN3-(s)-N4f-mN5-N6f-mN7-N8f-mN9-N10f-mN11-N12f-mN13-N1 4f-mN15-N16f-mN17-N18f-(s)-mN19-(s)-T-(s)-T-3’,
(b17)5’-EVPmN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-T-(s)-T-3’;
其中,N1-N23彼此独立地选自碱基为A、U、C或G的核糖核苷酸,
大写字母T表示碱基为胸腺嘧啶的脱氧核糖核苷酸,
小写字母m表示该字母m右侧相邻的一个核糖核苷酸为2’-O-CH3修饰的核糖核苷酸,
小写字母f表示该字母f左侧相邻的一个核糖核苷酸为2’-F修饰的核糖核苷酸,
P1表示该字母右侧相邻的一个核苷酸为5’-磷酸核苷酸,
EVP表示其右侧相邻的一个核苷酸为5’-反式乙烯基磷酸核苷酸,
-(s)-表示前后相邻的两个核苷酸以硫代磷酸二酯键连接,
[GNA]表示其右侧相邻的一个核糖核苷酸为存在GNA修饰的核糖核苷酸。
根据[15]-[25]任一项所述的双链核糖核酸修饰物,其中,所述双链核糖核酸修饰物为siRNA修饰物。
根据[15]-[26]任一项所述的双链核糖核酸修饰物,其中,所述双链核糖核酸修饰物为用于抑制C5基因表达的siRNA修饰物。
根据[15]-[27]任一项所述的双链核糖核酸修饰物,其中,所述正义链与所述反义链选自如下组合:
94)所述正义链包含如SEQ ID NO:238所示的核苷酸序列,所述反义链包含如SEQ ID NO:250所示的核苷酸序列;
95)所述正义链包含如SEQ ID NO:239所示的核苷酸序列,所述反义链包含如SEQ ID NO:251所示的核苷酸序列;
96)所述正义链包含如SEQ ID NO:240所示的核苷酸序列,所述反义链包含如SEQ ID NO:252所示的核苷酸序列;
97)所述正义链包含如SEQ ID NO:241所示的核苷酸序列,所述反义链包含如SEQ ID NO:253所示的核苷酸序列;
98)所述正义链包含如SEQ ID NO:242所示的核苷酸序列,所述反义链包含如SEQ ID NO:254所示的核苷酸序列;
99)所述正义链包含如SEQ ID NO:243所示的核苷酸序列,所述反义链包含如SEQ ID NO:255所示的核苷酸序列;
100)所述正义链包含如SEQ ID NO:244所示的核苷酸序列,所述反义链包含如SEQ ID NO:256所示的核苷酸序列;
101)所述正义链包含如SEQ ID NO:245所示的核苷酸序列,所述反义链包含如SEQ ID NO:257所示的核苷酸序列;
102)所述正义链包含如SEQ ID NO:246所示的核苷酸序列,所述反义链包含如SEQ ID NO:251所示的核苷酸序列;
103)所述正义链包含如SEQ ID NO:247所示的核苷酸序列,所述反义链包含如SEQ ID NO:257所示的核苷酸序列;
104)所述正义链包含如SEQ ID NO:248所示的核苷酸序列,所述反义链包含如SEQ ID NO:255所示的核苷酸序列;
105)所述正义链包含如SEQ ID NO:249所示的核苷酸序列,所述反义链包含如SEQ ID NO:252所示的核苷酸序列;
181)所述正义链包含如SEQ ID NO:436所示的核苷酸序列,所述反义链包含如SEQ ID NO:472所示的核苷酸序列;
182)所述正义链包含如SEQ ID NO:437所示的核苷酸序列,所述反义链包含如SEQ ID NO:473所示的核苷酸序列;
183)所述正义链包含如SEQ ID NO:437所示的核苷酸序列,所述反义链包含如SEQ ID NO:474所示的核苷酸序列;
184)所述正义链包含如SEQ ID NO:438所示的核苷酸序列,所述反义链包含如SEQ ID NO:475所示的核苷酸序列;
185)所述正义链包含如SEQ ID NO:439所示的核苷酸序列,所述反义链包含如SEQ ID NO:475所示的核苷酸序列;
186)所述正义链包含如SEQ ID NO:438所示的核苷酸序列,所述反义链包含如SEQ ID NO:476所示的核苷酸序列;
187)所述正义链包含如SEQ ID NO:440所示的核苷酸序列,所述反义链包含如SEQ  ID NO:477所示的核苷酸序列;
188)所述正义链包含如SEQ ID NO:440所示的核苷酸序列,所述反义链包含如SEQ ID NO:478所示的核苷酸序列;
189)所述正义链包含如SEQ ID NO:441所示的核苷酸序列,所述反义链包含如SEQ ID NO:478所示的核苷酸序列;
190)所述正义链包含如SEQ ID NO:440所示的核苷酸序列,所述反义链包含如SEQ ID NO:479所示的核苷酸序列;
191)所述正义链包含如SEQ ID NO:440所示的核苷酸序列,所述反义链包含如SEQ ID NO:480所示的核苷酸序列;
192)所述正义链包含如SEQ ID NO:442所示的核苷酸序列,所述反义链包含如SEQ ID NO:481所示的核苷酸序列;
193)所述正义链包含如SEQ ID NO:442所示的核苷酸序列,所述反义链包含如SEQ ID NO:482所示的核苷酸序列;
194)所述正义链包含如SEQ ID NO:443所示的核苷酸序列,所述反义链包含如SEQ ID NO:483所示的核苷酸序列;
195)所述正义链包含如SEQ ID NO:444所示的核苷酸序列,所述反义链包含如SEQ ID NO:484所示的核苷酸序列;
196)所述正义链包含如SEQ ID NO:444所示的核苷酸序列,所述反义链包含如SEQ ID NO:485所示的核苷酸序列;
197)所述正义链包含如SEQ ID NO:445所示的核苷酸序列,所述反义链包含如SEQ ID NO:486所示的核苷酸序列;
198)所述正义链包含如SEQ ID NO:446所示的核苷酸序列,所述反义链包含如SEQ ID NO:486所示的核苷酸序列;
199)所述正义链包含如SEQ ID NO:445所示的核苷酸序列,所述反义链包含如SEQ ID NO:487所示的核苷酸序列;
200)所述正义链包含如SEQ ID NO:445所示的核苷酸序列,所述反义链包含如SEQ ID NO:488所示的核苷酸序列;
201)所述正义链包含如SEQ ID NO:445所示的核苷酸序列,所述反义链包含如SEQ ID NO:489所示的核苷酸序列;
202)所述正义链包含如SEQ ID NO:447所示的核苷酸序列,所述反义链包含如SEQ ID NO:490所示的核苷酸序列;
203)所述正义链包含如SEQ ID NO:448所示的核苷酸序列,所述反义链包含如SEQ ID NO:491所示的核苷酸序列;
204)所述正义链包含如SEQ ID NO:449所示的核苷酸序列,所述反义链包含如SEQ ID NO:492所示的核苷酸序列;
205)所述正义链包含如SEQ ID NO:450所示的核苷酸序列,所述反义链包含如SEQ ID NO:493所示的核苷酸序列;
206)所述正义链包含如SEQ ID NO:451所示的核苷酸序列,所述反义链包含如SEQ ID NO:494所示的核苷酸序列;
207)所述正义链包含如SEQ ID NO:451所示的核苷酸序列,所述反义链包含如SEQ ID NO:495所示的核苷酸序列;
208)所述正义链包含如SEQ ID NO:452所示的核苷酸序列,所述反义链包含如SEQ ID NO:496所示的核苷酸序列;
209)所述正义链包含如SEQ ID NO:453所示的核苷酸序列,所述反义链包含如SEQ ID NO:497所示的核苷酸序列;
210)所述正义链包含如SEQ ID NO:454所示的核苷酸序列,所述反义链包含如SEQ ID NO:498所示的核苷酸序列;
211)所述正义链包含如SEQ ID NO:455所示的核苷酸序列,所述反义链包含如SEQ ID NO:499所示的核苷酸序列;
212)所述正义链包含如SEQ ID NO:456所示的核苷酸序列,所述反义链包含如SEQ ID NO:500所示的核苷酸序列;
213)所述正义链包含如SEQ ID NO:457所示的核苷酸序列,所述反义链包含如SEQ ID NO:501所示的核苷酸序列;
214)所述正义链包含如SEQ ID NO:457所示的核苷酸序列,所述反义链包含如SEQ ID NO:502所示的核苷酸序列;
215)所述正义链包含如SEQ ID NO:458所示的核苷酸序列,所述反义链包含如SEQ ID NO:503所示的核苷酸序列;
216)所述正义链包含如SEQ ID NO:459所示的核苷酸序列,所述反义链包含如SEQ ID NO:504所示的核苷酸序列;
217)所述正义链包含如SEQ ID NO:460所示的核苷酸序列,所述反义链包含如SEQ ID NO:505所示的核苷酸序列;
218)所述正义链包含如SEQ ID NO:461所示的核苷酸序列,所述反义链包含如SEQ ID NO:506所示的核苷酸序列;
219)所述正义链包含如SEQ ID NO:461所示的核苷酸序列,所述反义链包含如SEQ ID NO:507所示的核苷酸序列;
220)所述正义链包含如SEQ ID NO:462所示的核苷酸序列,所述反义链包含如SEQ ID NO:508所示的核苷酸序列;
221)所述正义链包含如SEQ ID NO:463所示的核苷酸序列,所述反义链包含如SEQ ID NO:509所示的核苷酸序列;
222)所述正义链包含如SEQ ID NO:463所示的核苷酸序列,所述反义链包含如SEQ ID NO:510所示的核苷酸序列;
223)所述正义链包含如SEQ ID NO:464所示的核苷酸序列,所述反义链包含如SEQ ID NO:511所示的核苷酸序列;
224)所述正义链包含如SEQ ID NO:465所示的核苷酸序列,所述反义链包含如SEQ ID NO:512所示的核苷酸序列;
225)所述正义链包含如SEQ ID NO:466所示的核苷酸序列,所述反义链包含如SEQ ID NO:513所示的核苷酸序列;
226)所述正义链包含如SEQ ID NO:467所示的核苷酸序列,所述反义链包含如SEQ ID NO:514所示的核苷酸序列;
227)所述正义链包含如SEQ ID NO:468所示的核苷酸序列,所述反义链包含如SEQ ID NO:515所示的核苷酸序列;
228)所述正义链包含如SEQ ID NO:469所示的核苷酸序列,所述反义链包含如SEQ ID NO:516所示的核苷酸序列;
229)所述正义链包含如SEQ ID NO:470所示的核苷酸序列,所述反义链包含如SEQ ID NO:517所示的核苷酸序列;
230)所述正义链包含如SEQ ID NO:471所示的核苷酸序列,所述反义链包含如SEQ ID NO:518所示的核苷酸序列;
242)所述正义链包含如SEQ ID NO:239所示的核苷酸序列,所述反义链包含如SEQ ID NO:565所示的核苷酸序列;
243)所述正义链包含如SEQ ID NO:246所示的核苷酸序列,所述反义链包含如SEQ  ID NO:565所示的核苷酸序列;
244)所述正义链包含如SEQ ID NO:239所示的核苷酸序列,所述反义链包含如SEQ ID NO:566所示的核苷酸序列;
245)所述正义链包含如SEQ ID NO:246所示的核苷酸序列,所述反义链包含如SEQ ID NO:566所示的核苷酸序列;
246)所述正义链包含如SEQ ID NO:239所示的核苷酸序列,所述反义链包含如SEQ ID NO:567所示的核苷酸序列;
247)所述正义链包含如SEQ ID NO:239所示的核苷酸序列,所述反义链包含如SEQ ID NO:568所示的核苷酸序列;
248)所述正义链包含如SEQ ID NO:552所示的核苷酸序列,所述反义链包含如SEQ ID NO:569所示的核苷酸序列;
249)所述正义链包含如SEQ ID NO:245所示的核苷酸序列,所述反义链包含如SEQ ID NO:570所示的核苷酸序列;
250)所述正义链包含如SEQ ID NO:247所示的核苷酸序列,所述反义链包含如SEQ ID NO:570所示的核苷酸序列;
251)所述正义链包含如SEQ ID NO:245所示的核苷酸序列,所述反义链包含如SEQ ID NO:571所示的核苷酸序列;
252)所述正义链包含如SEQ ID NO:247所示的核苷酸序列,所述反义链包含如SEQ ID NO:571所示的核苷酸序列;
253)所述正义链包含如SEQ ID NO:245所示的核苷酸序列,所述反义链包含如SEQ ID NO:572所示的核苷酸序列;
254)所述正义链包含如SEQ ID NO:245所示的核苷酸序列,所述反义链包含如SEQ ID NO:573所示的核苷酸序列;
255)所述正义链包含如SEQ ID NO:243所示的核苷酸序列,所述反义链包含如SEQ ID NO:574所示的核苷酸序列;
256)所述正义链包含如SEQ ID NO:248所示的核苷酸序列,所述反义链包含如SEQ ID NO:574所示的核苷酸序列;
257)所述正义链包含如SEQ ID NO:243所示的核苷酸序列,所述反义链包含如SEQ ID NO:575所示的核苷酸序列;
258)所述正义链包含如SEQ ID NO:243所示的核苷酸序列,所述反义链包含如SEQ ID NO:576所示的核苷酸序列;
259)所述正义链包含如SEQ ID NO:243所示的核苷酸序列,所述反义链包含如SEQ ID NO:577所示的核苷酸序列;
260)所述正义链包含如SEQ ID NO:245所示的核苷酸序列,所述反义链包含如SEQ ID NO:578所示的核苷酸序列;
261)所述正义链包含如SEQ ID NO:240所示的核苷酸序列,所述反义链包含如SEQ ID NO:579所示的核苷酸序列;
262)所述正义链包含如SEQ ID NO:249所示的核苷酸序列,所述反义链包含如SEQ ID NO:579所示的核苷酸序列;
263)所述正义链包含如SEQ ID NO:240所示的核苷酸序列,所述反义链包含如SEQ ID NO:580所示的核苷酸序列;
264)所述正义链包含如SEQ ID NO:240所示的核苷酸序列,所述反义链包含如SEQ ID NO:581所示的核苷酸序列;
265)所述正义链包含如SEQ ID NO:240所示的核苷酸序列,所述反义链包含如SEQ ID NO:582所示的核苷酸序列;
266)所述正义链包含如SEQ ID NO:553所示的核苷酸序列,所述反义链包含如SEQ ID NO:583所示的核苷酸序列;
267)所述正义链包含如SEQ ID NO:554所示的核苷酸序列,所述反义链包含如SEQ ID NO:584所示的核苷酸序列;
268)所述正义链包含如SEQ ID NO:555所示的核苷酸序列,所述反义链包含如SEQ ID NO:585所示的核苷酸序列;
269)所述正义链包含如SEQ ID NO:556所示的核苷酸序列,所述反义链包含如SEQ ID NO:586所示的核苷酸序列;
270)所述正义链包含如SEQ ID NO:557所示的核苷酸序列,所述反义链包含如SEQ ID NO:587所示的核苷酸序列;
271)所述正义链包含如SEQ ID NO:558所示的核苷酸序列,所述反义链包含如SEQ ID NO:588所示的核苷酸序列;
272)所述正义链包含如SEQ ID NO:559所示的核苷酸序列,所述反义链包含如SEQ ID NO:589所示的核苷酸序列;
273)所述正义链包含如SEQ ID NO:560所示的核苷酸序列,所述反义链包含如SEQ ID NO:590所示的核苷酸序列;
274)所述正义链包含如SEQ ID NO:561所示的核苷酸序列,所述反义链包含如SEQ ID NO:591所示的核苷酸序列;
275)所述正义链包含如SEQ ID NO:562所示的核苷酸序列,所述反义链包含如SEQ ID NO:592所示的核苷酸序列;
276)所述正义链包含如SEQ ID NO:563所示的核苷酸序列,所述反义链包含如SEQ ID NO:593所示的核苷酸序列;
277)所述正义链包含如SEQ ID NO:564所示的核苷酸序列,所述反义链包含如SEQ ID NO:594所示的核苷酸序列。
一种双链核糖核酸缀合物,其中,所述双链核糖核酸缀合物包括如[1]-[14]任一项所述的双链核糖核酸,或如[15]-[28]任一项所述的双链核糖核酸修饰物;以及,缀合连接于所述双链核糖核酸或所述双链核糖核酸修饰物的缀合基团。
根据[29]所述的双链核糖核酸缀合物,其中,所述缀合基团具有如下所示结构:
根据[29]或[30]所述的双链核糖核酸缀合物,其中,所述缀合基团连接于正义链的3’末端。
根据[31]所述的双链核糖核酸缀合物,其中,所述缀合基团通过磷酸二酯键与正义链的3’末端缀合连接;
优选地,所述双链核糖核酸缀合物的正义链与反义链互补形成所述双链核糖核酸缀合物的双链区,且所述正义链的3’末端形成平末端,所述反义链的3’末端具有1-2个延伸出所述双链区的突出的核苷酸;
或者,
所述双链核糖核酸缀合物的正义链与反义链互补形成所述双链核糖核酸缀合物的双链区,且所述正义链的3’末端形成平末端,所述反义链的3’末端形成平末端。
根据[29]-[32]任一项所述的双链核糖核酸缀合物,其中,所述双链核糖核酸缀合物具有如下所示结构:
其中,双螺旋结构为双链核糖核酸或双链核糖核酸修饰物。
根据[29]-[33]任一项所述的双链核糖核酸缀合物,其中,所述双链核糖核酸缀合物为siRNA缀合物。
根据[29]-[34]任一项所述的双链核糖核酸缀合物,其中,所述双链核糖核酸缀合物是用于抑制C5基因表达的siRNA缀合物。
根据[29]-[35]任一项所述的双链核糖核酸缀合物,其中,所述双链核糖核酸缀合物由表1所示的任意一种siRNA与缀合基团连接形成,或者,所述双链核糖核酸缀合物由表2所示的任意一种siRNA修饰物与缀合基团连接形成;
优选地,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:258所示的序列,所述反义链包含如SEQ ID NO:251所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:259所示的序列,所述反义链包含如SEQ ID NO:257所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:260所示的序列,所述反义链包含如SEQ ID NO:255所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:261所示的序列,所述反义链包含如SEQ ID NO:252所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:519所示的序列,所述反义链包含如SEQ ID NO:477所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:519所示的序列,所述反义链包含如SEQ ID NO:478所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:520所示的序列,所述反义链包含如SEQ ID NO:509所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:519所示的序列,所述反义链包含如SEQ ID NO:479所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:519所示的序列,所述反义链包含如SEQ ID NO:480所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:521所示的序列,所述反义链包含如SEQ ID NO:481所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:521所示的序列,所述反义链包含如SEQ ID NO:482所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:522所示的序列,所述反义链包含如SEQ ID NO:486所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:522所示的序列,所述反义链包含如SEQ ID NO:487所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:522所示的序列,所述反义链包含如SEQ ID NO:488所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:522所示的序列,所述反义链包含如SEQ ID NO:489所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:523所示的序列,所述反义链包含如SEQ ID NO:492所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:524所示的序列,所述反义链包含如SEQ ID NO:493所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:525所示的序列,所述反义链包含如SEQ ID NO:494所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:525所示的序列,所述反义链包含如SEQ ID NO:495所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:526所示的序列,所述反义链包含如SEQ ID NO:499所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:527所示的序列,所述反义链包含如SEQ ID NO:500所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:528所示的序列,所述反义链包含如SEQ ID NO:501所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:528所示的序列,所述反义链包含如SEQ ID NO:502所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:529所示的序列,所述反义链包含如SEQ ID NO:508所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:258所示的序列,所述反义链包含如SEQ ID NO:565所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:258所示的序列,所述反义链包含如SEQ ID NO:566所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:258所示的序列,所述反义链包含如SEQ ID NO:567所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:258所示的序列,所述反义链包含如SEQ ID NO:568所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:259所示的序列,所述反义链包含如SEQ ID NO:570所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:259所示的序列,所述反义链包含如SEQ ID NO:571所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:259所示的序列,所述反义链包含如SEQ ID NO:572所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:259所示的序列,所述反义链包含如SEQ ID NO:573所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:259所示的序列,所述反义链包含如SEQ ID NO:578所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:260所示的序列,所述反义链包含如SEQ ID NO:574所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:260 所示的序列,所述反义链包含如SEQ ID NO:575所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:260所示的序列,所述反义链包含如SEQ ID NO:576所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:260所示的序列,所述反义链包含如SEQ ID NO:577所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:261所示的序列,所述反义链包含如SEQ ID NO:579所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:261所示的序列,所述反义链包含如SEQ ID NO:580所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:261所示的序列,所述反义链包含如SEQ ID NO:581所示的序列;
或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:261所示的序列,所述反义链包含如SEQ ID NO:582所示的序列。
一种药物组合物,其中,所述药物组合物包括如下至少一项:如[1]-[14]任一项所述的双链核糖核酸,如[15]-[28]任一项所述的双链核糖核酸修饰物,如[29]-[36]任一项所述的双链核糖核酸缀合物。
根据[37]所述的药物组合物,其中,所述药物组合物还包括一种或多种药学上可接受的载体。
根据[1]-[14]任一项所述的双链核糖核酸,根据[15]-[28]任一项所述的双链核糖核酸修饰物,根据[29]-[36]任一项所述的双链核糖核酸缀合物,或根据[37]-[38]任一项所述的药物组合物在如下至少一项中的用途:
(1)抑制C5基因表达,或制备用于抑制C5基因表达的药物;
(2)用于预防或治疗与C5基因异常表达相关的疾病,或制备用于预防或治疗与C5基因异常表达相关的疾病的药物;
(3)用于治疗患有将受益于补体C5基因表达降低的疾病的受试者,或制备用于治疗患有将受益于补体C5基因表达降低的疾病的受试者的药物。
根据[39]所述的用途,其中,所述与C5基因异常表达相关的疾病选自如下疾病组成的组:
阵发性睡眠性血红蛋白尿、非典型溶血尿毒综合征、广泛性重症肌无力、血栓栓塞、视神经脊髓炎、抗体介导的肾移植排斥反应、吉兰巴雷综合症、抗中性粒细胞胞质抗体相关血管炎、肌萎缩侧索硬化、帕金森病、自身免疫性脑炎、IgG4相关性疾病、哮喘、抗磷脂抗体综合征、缺血再灌注损伤、典型溶血尿毒综合征、多灶性运动神经病、多发性硬化、血栓性血小板减少性紫癜、创伤性脑损伤、冷凝集素病、皮肌炎、与产志贺氏毒素大肠埃希氏菌相关的溶血性尿毒症综合征、移植物功能障碍、心肌梗死、败血症、动脉粥样硬化、感染性休克、脊髓损伤、银屑病、自身免疫性溶血性贫血、抗磷脂综合征、心肌炎、免疫复合物血管炎、高安氏病、川崎病和类风湿性关节炎等疾病。
一种用于抑制细胞内C5基因表达的方法,其中,所述方法包括将所述细胞与根据[1]-[14]任一项所述的双链核糖核酸,根据[15]-[28]任一项所述的双链核糖核酸修饰物,根据[29]-[36]任一项所述的双链核糖核酸缀合物,或根据[37]-[38]任一项所述的药物组合物接触。
根据[41]所述的方法,其中,所述细胞为体内细胞或体外细胞。
根据[41]或[42]所述的方法,其中,所述细胞在受试者体内。
根据[43]所述的方法,其中,所述受试者为哺乳动物,优选为人。
根据[43]或[44]所述的方法,其中,所述受试者具有如下至少一种特性:
体内C5基因异常表达,更具体地为C5基因异常高表达;
患有与C5基因异常表达相关的疾病;
患有将受益于C5基因表达降低的疾病。
发明的效果
在一些实施方案中,本公开提供的双链核糖核酸,能够在细胞内结合形成RNA诱导沉默复合物(RISC),切割补体C5基因转录的mRNA,高效、特异地抑制补体C5基因的表达,用于治疗补体系统的不适当的激活介导的疾病。
进一步的,本公开中双链核糖核酸为siRNA,siRNA靶向结合并降解C5基因的转录产物mRNA,发挥RNA干扰的作用,抑制C5基因的蛋白表达,是一种抑制率高且特异性好的C5补体抑制剂。
在一些实施方案中,本公开对双链核糖核酸进行修饰,得到双链核糖核酸修饰物,双链核糖核酸修饰物的稳定性高,适合体内疾病治疗中的应用。
进一步的,双链核糖核酸修饰物为siRNA修饰物,具有高的稳定性和较好的抑制活性。
在一些实施方案中,本公开在双链核糖核酸、双链核糖核酸修饰物上连接缀合基团得到双链核糖核酸或双链核糖核酸修饰物的缀合物,能够用于向组织、细胞中高效靶向递送,降低双链核糖核酸或双链核糖核酸修饰物对非靶向的正常组织、细胞的影响,提高其在临床疾病治疗中的安全性。
进一步的,双链核糖核酸缀合物为siRNA缀合物,在保持siRNA抑制活性、稳定性的同时,兼具器官或组织靶向性,可降低对其他组织或器官的影响以及减少siRNA分子使用量,可达到减轻毒性和降低成本的目的。
进一步的,本公开中的缀合基团为式I所示结构的基团(GalNAc),GalNAc可用于向肝脏细胞、组织内的靶向递送,用于高效抑制肝脏内C5基因的表达。
具体实施方式
定义
除非有相反陈述,否则在本发明中所使用的术语具有下述含义。
在本发明的权利要求和/或说明书中,词语―一(a)‖或―一(an)‖或―一(the)‖可以指―一个‖,但也可以指―一个或多个‖、―至少一个‖以及―一个或多于一个‖。
如在权利要求和说明书中所使用的,词语―包含‖、―具有‖、―包括‖或―含有‖是指包括在内的或开放式的,并不排除额外的、未引述的元件或方法步骤。
在整个申请文件中,术语―约‖表示:一个值包括测定该值所使用的装置或方法的误差的标准偏差。用以界定本发明的数值范围与参数皆是约略的数值,此处已尽可能精确地呈现具体实施例中的相关数值。然而,任何数值本质上不可避免地含有因前述测试方法或装置所致的标准偏差。因此,除非另有明确的说明,应当理解本公开所用的所有范围、数量、数值与百分比均经过―约‖的修饰。在此处,―约‖通常是指实际数值在一特定数值或范围的正负10%、5%、1%或0.5%之内。
本公开上下文中使用的术语“C5”、“补体C5”、“C5补体”“complement C5(C5)”,是指熟知的基因和多肽,也在本领域已知为:C5D;C5a;C5b;ECLZB;CPAMD4。C5基因、C5mRNA序列的是例如使用以下容易获得的:基因库(GenBank)、数据库(UniProt)、人类孟德尔遗传在线(OMIM)等。
术语“C5基因”,可以是野生型C5基因,或存在序列变异的C5基因突变体。在C5基因中的许多序列变异已经被鉴别并且可以发现在例如NCBIdbSNP和UniProt(参见,例如,ncbi.nlm.nih.gov/snp)中。
术语“多肽”、“蛋白”可互换地指通过共价键(例如肽键)相互连接的一串至少两 个氨基酸残基,可以是重组多肽、天然多肽或合成多肽。多肽可以是线形或分支的,它可以包含修饰的氨基酸,并且它可以由非氨基酸隔断。该术语也包括已经被修饰(例如,二硫键形成、糖基化、脂质化、乙酰化、磷酸化或任何其他操作,如以标记组分缀合)的氨基酸聚合物。
本公开上下文中使用的术语“靶标序列”是指在靶基因转录期间形成的mRNA分子的核苷酸序列的连续部分,包括作为对初级转录产物进行RNA加工的产物的mRNA。
在一些实施方案中,靶标序列是不少于16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、50、80、100、150、200、300、400、500、600、700或800个连续连接核苷组成的核苷酸序列。示例性的,靶标序列是19、20、22、23、25、26、27、28、29、30、31、33、35、36、38、41、44、45、65、77、84、113、123、129、135、136、139、148、157、159、192、245、258、259、290、353、426、614、684、693或731个连续连接核苷组成的核苷酸序列。在一些可选的实施方案中,靶标序列中可以包含另一段较短的靶标序列。在一些实施方案中,靶标序列中可以包含一个或多个较短的靶标序列。应当认为,被包含于同一段靶标序列中的两个以上的较短靶标序列之间具有相同的特征。
在一些实施方案中,靶基因为C5基因。在一些实施方案中,序列的靶部分将会是至少足够地长,以在C5基因的转录期间形成的mRNA分子的核苷酸序列部分处或其附近充当iRNA指导的切割的底物。
在本技术领域中,“G”、“C”、“A”、“T”和“U”通常分别代表鸟嘌呤、胞嘧啶、腺嘌呤、胸腺嘧啶、尿嘧啶的碱基,但本领域中也通常知晓,“G”、“C”、“A”、“T”和“U”每个通常也代表分别含有鸟嘌呤、胞嘧啶、腺嘌呤、胸腺嘧啶和尿嘧啶作为碱基的核苷酸,这在表示脱氧核糖核酸序列和/或核糖核酸序列中是常见的方式,因此在本公开的上下文中,“G”、“C”、“A”、“T”、“U”表示的含义包括上述各种可能的情形。然而,应理解术语“核糖核苷酸”或“核苷酸”还可以指一种经修饰的核苷酸(如以下进一步详述)或一种替代性的置换部分。本领域人员可以意识到,鸟嘌呤、胞嘧啶、腺嘌呤以及尿嘧啶可以被其他部分置换而基本上不改变一种寡核苷酸(包括一种具有这种置换部分的核苷酸)的碱基配对特性。例如非限制性地,包括肌苷作为其碱基的核苷酸可以与包括腺嘌呤、胞嘧啶或尿嘧啶的核苷酸进行碱基配对。因此,含有尿嘧啶、鸟嘌呤或腺嘌呤的核苷酸可以在本发明表征的dsRNA的核苷酸序列中由含有例如肌苷的核苷酸替换。在另一个实例中,寡核苷酸中任何地方的腺嘌呤和胞嘧啶可以分别地替换为鸟嘌呤和尿嘧啶,以形成与靶mRNA的G-U摇摆碱基配对。含有这类替换部分的序列适用于本发明表征的组合物和方法。
本公开上下文使用的术语“iRNA”、“RNAi试剂”、“iRNA试剂”、“RNA干扰剂”在此可互换使用,是指在此所定义的术语包含siRNA,并且介导通过RNA诱导沉默复合物(RISC)途径的RNA转录物靶向切割。iRNA通过已知为RNA干扰(RNAi)的过程指导mRNA的序列特异性降解。iRNA调节,例如抑制,靶基因在细胞(如受试者(如哺乳动物受试者)的细胞)中的表达。
本公开上下文使用的术语“双链核糖核酸”、“双链RNA(dsRNA)分子”、“dsRNA”可以互换地使用。术语“dsRNA”,是指核糖核酸分子的复合体,其具有双链结构,包含两条反向平行的和基本上互补的核酸链,被称为相对于靶基因,例如C5基因,具有“正义”和“反义”定向。在一些实施例中,双链核糖核酸(dsRNA)通过转录后基因沉默机制(在此称为RNA干扰或RNAi)触发靶RNA例如mRNA的降解。
通常,dsRNA分子的每条链的大部分的核苷酸是核糖核苷酸,但是如在此详述的,两条链的每一者或两者还可以包括一个或多个非核糖核苷酸,例如,脱氧核糖核苷酸和/或修饰的核苷酸。另外,如本公开中所用,“双链核糖核酸”可以包括具有化学修饰的核 糖核苷酸、磷酸骨架等等。这些修饰可以包括在此披露的或在本领域中已知的所有类型的修饰。
本公开上下文使用的术语“异核苷酸”是指核苷酸中碱基在核糖环上的位置发生改变而形成的化合物,例如,碱基不与核糖环的1’-位相连,而是与核糖环的2’-位或3’-位相连而形成的化合物。
在一些实施方案中,本公开的双链核糖核酸是siRNA,其与靶基因转录的mRNA序列(例如C5基因转录的mRNA序列)相互作用以指导靶RNA的切割。不希望受理论约束,引入细胞中的长双链RNA被称作Dicer的III型核酸内切酶分解成siRNA(夏普(Sharp)等人,《基因与发育》(Genes Dev.)2001,15:485)。Dicer(核糖核酸酶III样酶)将dsRNA加工成至具有特征性双碱基3’突出端的19-23碱基对短干扰性RNA(Bernstein等人,(2001)自然(Nature)409:363)。这些siRNA随后掺入RNA诱导性沉默复合物(RISC)中,在其中一种或多种解旋酶解开siRNA双链体,这使得互补性反义链指导靶识别成为可能(Nykanen等人,(2001)细胞(Cell)107:309)。一旦与适宜的靶mRNA结合,RISC内部的一种或多种核酸内切酶切割靶以诱导沉默(巴希尔(Elbashir)等人,(2001)《基因与发育》(Genes Dev.)15:188)。
本公开上下文使用的术语“突出的核苷酸”是指当双链核糖核酸的一条链的一个3’端延伸超出另一条链的5’端时从该dsRNA的双链体结构突出的一个或多个不成对的核苷酸,或反之亦然。“平端”或“平末端”意指在该双链核糖核酸的那端处不存在不成对的核苷酸,即无核苷酸突出端。一种“平末端的”双链核糖核酸是一种在其整个长度上都是双链、即在该分子的任一端处都无核苷酸突出端的dsRNA。
术语“反义链”是指双链核糖核酸中与靶标序列(例如,来源于人类C5mRNA)基本上互补的一个区域的链。在该互补性区域不与该靶标序列完全互补的情况下,错配在末端区域是最为可容忍的,并且如果出现错配,它们通常在末端的一个或多个区域,例如5’和/或3末端的5、4、3、2或1个核苷酸之内。
术语“正义链”指的双链核糖核酸中含有与反义链区域基本上互补的区域的核酸链。
术语“互补”或“反向互补”一词可互相替代使用,并具有本领域技术人员周知的含义,即,在双链核酸分子中,一条链的碱基与另一条链上的碱基以互补的方式相配对。在DNA中,嘌呤碱基腺嘌呤(A)始终与嘧啶碱基胸腺嘧啶(T)(或者在RNA中为尿嘧啶(U))相配对;嘌呤碱基鸟嘌呤(C)始终与嘧啶碱基胞嘧啶(G)相配对。每个碱基对都包括一个嘌呤和一个嘧啶。当一条链上的腺嘌呤始终与另一条链上的胸腺嘧啶(或尿嘧啶)配对,以及鸟嘌呤始终与胞嘧啶配对时,两条链被认为是彼此相互补的,以及从其互补链的序列中可以推断出该链的序列。与此相应地,“错配”在本领域中意指在双链核酸中,对应位置上的碱基并未以互补的形式配对存在。
术语“基本上反向互补”是指所涉及的两段核苷酸序列之间存在不多于3个的碱基错配,即所涉及的两段核苷酸序列之间存在1个、2个或3个的碱基错配;“完全互补”是指两段核苷酸序列之间不存在碱基错配。
术语―互补‖、―完全互补‖和―基本上互补‖可相对于在dsRNA的正义链与反义链之间,或dsRNA的反义链与靶标序列之间的碱基配对使用,如将从其使用的上下文理解。
术语“抑制”,可以与“减少”、“沉默”、“下调”、“压制”和其他类似术语交替使用,并且包括任何水平的抑制。
术语“抑制C5基因的表达”包括抑制任何C5基因(如例如小鼠C5基因、大鼠C5基因、猴C5基因、或人类C5基因)以及C5基因的变体(例如天然存在的变体)或突变体的表达。因此,该C5基因可以是野生型C5基因、突变C5基因、或在遗传操作的细胞、细胞群组或生物体的情形下的转基因C5基因。
“抑制C5基因表达”包括任何水平的C5基因的抑制,例如至少部分抑制C5基因 的表达,如抑制至少约5%、至少约10%、至少约15%、至少约20%、至少约25%、至少约30%、至少约35%、至少约40%、至少约45%、至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%、至少约91%、至少约92%、至少约93%、至少约94%、至少约95%、至少约96%、至少约97%、至少约98%、或至少约99%。
术语―各自独立地‖是指结构中存在的取值范围相同或相近的至少两个基团(或环系)可以在特定情形下具有相同或不同的含义。例如,取代基X和取代基Y各自独立地为氢、羟基、烷基或芳基,则当取代基X为氢时,取代基Y既可以为氢,也可以为羟基、烷基或芳基;同理,当取代基Y为氢时,取代基X既可以为氢,也可以为羟基、烷基或芳基。
术语―烷基‖包括直链、支链或环状的饱和烷基。例如,烷基包括但不限于甲基、乙基、丙基、环丙基、正丁基、异丁基、仲丁基、叔丁基、环丁基、正戊基、环已基等类似基团。示例性的,―C1-6烷基‖中的―C1-6‖是指包含有1、2、3、4、5或6个碳原子的直链、支链或环状形式排列的基团。
术语―烷氧基‖在本文中是指烷基基团通过氧原子与分子其余部分相连(-O-烷基),其中所述烷基如本文中所定义。烷氧基的非限制性实例包括甲氧基、乙氧基、三氟甲氧基、二氟甲氧基、正丙氧基、异丙氧基、正丁氧基、叔丁氧基、正戊氧基等。
术语―治疗‖是指:在罹患疾病之后,使受试者接触(例如给药)双链核糖核酸、双链核糖核酸修饰物、双链核糖核酸缀合物、药物组合物,从而与不接触时相比使该疾病的症状减轻,并不意味着必需完全抑制疾病的症状。罹患疾病是指:身体出现了疾病症状。
术语―预防‖是指:在罹患疾病之前,通过使受试者接触(例如给药)本公开的双链核糖核酸、双链核糖核酸修饰物、双链核糖核酸缀合物、药物组合物,从而与不接触时相比减轻罹患疾病后的症状,并不意味着必需完全抑制患病。
术语―有效量‖指本发明的双链核糖核酸、双链核糖核酸修饰物、双链核糖核酸缀合物或药物组合物的这样的量或剂量,其以单一或多次剂量施用患者后,在需要治疗或预防的患者中产生预期效果。有效量可以由作为本领域技术人员的主治医师通过考虑以下多种因素来容易地确定:诸如哺乳动物的物种;它的大小、年龄和一般健康;涉及的具体疾病;疾病的程度或严重性;个体患者的应答;施用的具体抗体;施用模式;施用制剂的生物利用率特征;选择的给药方案;和任何伴随疗法的使用。
术语“与C5基因异常表达相关的疾病”是由补体激活引起或与补体激活相关联的疾病或障碍。术语“与C5基因异常表达相关的疾病”包括将从减少C5(即“C5-相关性疾病”)表达受益的疾病、障碍或病症。此类疾病典型地与炎症和/或免疫系统激活,例如该疾病包括阵发性睡眠性血红蛋白尿(PNH)、非典型溶血尿毒综合征(aHUS)、广泛性重症肌无力(gMG)、血栓栓塞、视神经脊髓炎(NMO)、抗体介导的肾移植排斥反应、吉兰巴雷综合症(Guillain Barre syndrome,GBS)、抗中性粒细胞胞质抗体相关血管炎(ANCA相关血管炎)、肌萎缩侧索硬化(ALS)、帕金森病(PD)、自身免疫性脑炎、IgG4相关性疾病、哮喘、抗磷脂抗体综合征、缺血再灌注损伤、典型溶血尿毒综合征(tHUS)、多灶性运动神经病(MMN)、多发性硬化(MS)、血栓性血小板减少性紫癜(TTP)、自然流产、习惯性流产、创伤性脑损伤、冷凝集素病、皮肌炎、与产志贺氏毒素大肠埃希氏菌(Shiga toxin-producing Escherichia coli)相关的溶血性尿毒症综合征、移植物功能障碍、心肌梗死、败血症、动脉粥样硬化、感染性休克、脊髓损伤、银屑病、自身免疫性溶血性贫血(AIHA)、抗磷脂综合征(APS)、心肌炎、免疫复合物血管炎、高安氏病(Takayasu”s disease)及川崎病(Kawasaki”s disease,动脉炎)、类风湿性关节炎等疾病。
术语―药学上可接受的辅料‖或―药学上可接受的载体‖是指在药物生产领域中广泛采用的辅助物料。使用辅料的主要目的在于提供一种使用安全、性质稳定和/或具有特定功 能性的药物组合物,还在于提供一种方法,以便在为受试者施用药物之后,活性成分能够以所期望的速率溶出,或者促进活性成分在接受给药的受试者体内得到有效吸收。药学上可接受的辅料可以是具有惰性的填充剂,也可以是为药用组合物提供某种功能(例如稳定组合物的整体pH值或防止组合物中活性成分的降解)的功效成分。药学上可接受的辅料的非限制性实例包括但不限于粘合剂、助悬剂、乳化剂、稀释剂(或填充剂)、成粒剂、胶粘剂、崩解剂、润滑剂、抗粘着剂、助流剂、润湿剂、胶凝剂、吸收延迟剂、溶解抑制剂、增强剂、吸附剂、缓冲剂、螯合剂、防腐剂、着色剂、矫味剂、甜味剂等。
本公开中的药物组合物可以使用本领域技术人员已知的任何方法来制备。例如,常规混合、溶解、造粒、乳化、磨细、包封、包埋和/或冻干工艺。
在本公开中,施用途经能够以任何适用的方式进行变化或调整,以满足药物的性质、患者和医务人员的便利以及其它相关因素的需求。
本公开上下文中使用的术语―个体‖、―患者‖或―受试者‖包括哺乳动物。哺乳动物包括但不限于,家养动物(例如,牛,羊,猫,狗和马),灵长类动物(例如,人和非人灵长类动物如猴),兔,以及啮齿类动物(例如,小鼠和大鼠)。
除非另外定义或由背景清楚指示,否则在本公开中的全部技术与科学术语具有如本公开所属领域的普通技术人员通常理解的相同含义。
双链核糖核酸
本公开的第一方面提供一种双链核糖核酸(dsRNA),用于抑制补体C5基因的表达。双链核糖核酸的一条链为反义链,反义链与靶基因(也即,C5基因)在表达过程中形成的mRNA序列互补配对,用于指导靶mRNA(也即,C5基因的转录产物)的切割。双链核糖核酸中另一条正义链包括与反义链部分互补和完全互补形成双链核糖核酸的双链区。
在一些实施方案中,双链核糖核酸作为核酸内切酶(Dicer)的底物,被切割为小片段的dsRNA,也即siRNA。在一些实施方案中,双链核糖核酸为siRNA。siRNA通过装配形成RNA诱导的沉默复合物(RNA-induced silencing complex,RISC)RISC复合体,切割靶mRNA,抑制补体C5基因的表达。
根据来源于人C5mRNA(NM_000064.4)中的靶标序列,设计与靶mRNA结合的siRNA。在一些实施方案中,靶标序列选自如SEQ ID NO:1-7、SEQ ID NO:595~614任一项所示的核苷酸序列。在一些更为具体的实施方案中,靶标序列选自如SEQ ID NO:8-51、SEQ ID NO:615~657任一项所示的核苷酸序列。
在一些具体的实施方案中,SEQ ID NO:1所示的核苷酸序列包含SEQ ID NO:8~9所示的核苷酸序列。
在一些具体的实施方案中,SEQ ID NO:2所示的核苷酸序列包含SEQ ID NO:10~14所示的核苷酸序列。
在一些具体的实施方案中,SEQ ID NO:3所示的核苷酸序列包含SEQ ID NO:15~19所示的核苷酸序列。
在一些具体的实施方案中,SEQ ID NO:4所示的核苷酸序列包含SEQ ID NO:20~26所示的核苷酸序列。
在一些具体的实施方案中,SEQ ID NO:5所示的核苷酸序列包含SEQ ID NO:27~34所示的核苷酸序列。
在一些具体的实施方案中,SEQ ID NO:6所示的核苷酸序列包含SEQ ID NO:35~40所示的核苷酸序列。
在一些具体的实施方案中,SEQ ID NO:7所示的核苷酸序列包含SEQ ID NO:41~51所示的核苷酸序列。
在一些具体的实施方案中,SEQ ID NO:596所示的核苷酸序列包含SEQ ID NO:615~616所示的核苷酸序列。
在一些具体的实施方案中,SEQ ID NO:597所示的核苷酸序列包含SEQ ID NO:617~621所示的核苷酸序列。
在一些具体的实施方案中,SEQ ID NO:598所示的核苷酸序列包含SEQ ID NO:622~625所示的核苷酸序列。
在一些具体的实施方案中,SEQ ID NO:599所示的核苷酸序列包含SEQ ID NO:626~629所示的核苷酸序列。
在一些具体的实施方案中,SEQ ID NO:604所示的核苷酸序列包含SEQ ID NO:630~636所示的核苷酸序列。
在一些具体的实施方案中,SEQ ID NO:606所示的核苷酸序列包含SEQ ID NO:637~639所示的核苷酸序列。
在一些具体的实施方案中,SEQ ID NO:607所示的核苷酸序列包含SEQ ID NO:640~643所示的核苷酸序列。
在一些具体的实施方案中,SEQ ID NO:608所示的核苷酸序列包含SEQ ID NO:644~647所示的核苷酸序列。
在一些具体的实施方案中,SEQ ID NO:610所示的核苷酸序列包含SEQ ID NO:648~649所示的核苷酸序列。
在一些具体的实施方案中,SEQ ID NO:611所示的核苷酸序列包含SEQ ID NO:650~654所示的核苷酸序列。
在一些具体的实施方案中,SEQ ID NO:612所示的核苷酸序列包含SEQ ID NO:655~657所示的核苷酸序列。
在一些实施方案中,反义链包含与靶标序列中至少15个连续核苷酸的反向互补序列的差异不超过3个核苷酸的序列B。具体地,沿5’末端向3’末端的方向,在靶标序列中选择起始核苷酸,以包含起始核苷酸在内的向3’方向延伸的至少15个核苷酸作为siRNA的结合区域。反义链包含结合区域对应的核苷酸序列的反向互补序列。需要说明的是,起始核苷酸可以是靶标序列任意位置处的核苷酸,只要基于该起始核苷酸向靶标序列3’方向延伸,可以得到至少15个连续核苷酸(包含起始位置处的核苷酸)即可。
在本公开中,反义链的核苷酸序列与靶标序列可以是完全互补或基本上互补。当反义链的核苷酸序列与靶标序列基本上互补时,反义链的核苷酸序列中存在与靶标序列存在不超过3个的错配碱基。例如,错配碱基为1个、2个或3个。当反义链的核苷酸序列与靶标序列完全互补时,反义链的核苷酸序列与靶标序列不存在错配碱基。
进一步地,反义链由至少15个核苷酸组成。在一些实施方案中,反义链由15-28个核苷酸组成。例如,反义链的长度为15、16、17、18、19、20、21、22、23、24、25、26、27或28个核苷酸。
作为优选,反义链由19-25个核苷酸组成,更优选19-23个核苷酸,最优选19、21或23个核苷酸。
在一些实施方案中,所述正义链包含与靶标序列中至少15个连续核苷酸的差异不超过3个核苷酸的序列A。正义链中包括与反义链互补的区域,正义链的核苷酸序列与反义链在靶标序列上结合区域的序列完全相同或基本完全相同。因此,正义链的核苷酸序列为靶标序列中结合反义链的至少15个连续核苷酸;或者,正义链的核苷酸序列与靶标序列中结合反义链的至少15个连续核苷酸相比,存在1个、2个或3个碱基不同的差异核苷酸。
进一步地,正义链由至少15个核苷酸组成。在一些实施方案中,正义链由15-28个核苷酸组成。例如,正义链的长度为15、16、17、18、19、20、21、22、23、24、25、26、27或28个核苷酸。
作为优选,正义链由19-25个核苷酸组成,更优选19-23个核苷酸,最优选19、21 或23个核苷酸。
在本公开中,正义链的长度与反义链长度可以相同或不同。
在一些实施方式中,正义链与反义链的长度相同,具体地,正义链/反义链的长度比为15/15、16/16、17/17、18/18、19/19、20/20、21/21、22/22、23/23、24/24、25/25、26/26、27/27或28/28。作为优选,正义链/反义链的长度比为19/19、20/20、21/21、22/22、23/23、24/24或25/25,更优选19/19、20/20、21/21、22/22或23/23,最优选19/19、21/21或23/23。
在一些实施方式中,正义链与反义链的长度不同。例如,正义链/反义链的长度比为19/20、19/21、19/22、19/23、19/24、19/25、19/26、20/19、20/21、20/22、20/23、20/24、20/25、20/26、21/19、21/20、21/22、21/23、21/24、21/25、21/26、22/19、22/20、22/21、22/23、22/24、22/25、22/26、23/19、23/20、23/21、23/22、23/24、23/25或23/26等等;在一些优选的实施方式中,正义链/反义链的长度比为19/21或21/23。
在本公开中,正义链与反义链可以是完全互补或基本上互补,当两者基本上互补时,正义链与反义链形成的双链区内存在不超过3个错配碱基。
在一些实施方案中,正义链与反义链互补形成双链区后,正义链、反义链或其组合具有延伸出所述双链区的突出的核苷酸。突出的核苷酸的数量可以是1个或多个,例如,1个或2个。另外,突出1-2个核苷酸可以位于任意反义链或正义链的5’末端、3’末端或两端,并且,每一个突出的核苷酸可以是任意类型的核苷酸。
在一些实施方案中,所述正义链与所述反义链互补形成所述双链区,且所述正义链的3’末端具有1-2个延伸出所述双链区的突出的核苷酸,所述反义链的3’末端形成平末端。
在一些实施方案中,所述正义链与所述反义链互补形成所述双链区,且所述反义链的3’末端具有1-2个延伸出所述双链区的突出的核苷酸,所述正义链的3’末端形成平末端。
在一些实施方案中,所述正义链与所述反义链互补形成所述双链区,且所述正义链与所述反义链的3’末端均具有1-2个延伸出所述双链区的突出的核苷酸。
在一些实施方案中,所述正义链与所述反义链互补形成所述双链区,且所述正义链与所述反义链的3’末端均形成平末端。
在本公开中,如上所述,反义链的核苷酸序列与靶标序列可以是完全互补或基本上互补;正义链与反义链可以是完全互补或基本上互补。因此,以下对于靶标序列SEQ ID NO:8~SEQ ID NO:51、SEQ ID NO:1~7、SEQ ID NO:595~657以及能够与这些靶标序列互补的siRNA的描述中,对于每个siRNA的反义链,均包括与其互补的靶标序列(例如,SEQ ID NO:8~SEQ ID NO:51、SEQ ID NO:1~7、SEQ ID NO:595~657中的任一者)基本上互补的情况,也即,每个siRNA的反义链的核苷酸序列中可以存在与相应的靶标序列存在碱基错配的情况;对于每个siRNA的正义链,均包括与其互补的靶标序列(例如,SEQ ID NO:8~SEQ ID NO:51、SEQ ID NO:1~7、SEQ ID NO:595~657中的任一者)基本上互补的情况,也即,每个siRNA的正义链的核苷酸序列中可以存在与相应的靶标序列存在碱基错配的情况。在一些实施方案中,所述碱基错配可以是与靶标序列的差异不超过3个碱基的错配,例如,错配碱基为1个、2个或3个。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:8所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:8所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA1~siRNA2中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:9所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:9所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA3。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:10所示序列中21个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:10所示序列中21个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:10所示序列中23个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:10所示序列中23个连续核苷酸组成的序列反向互补的序列B。并且,所述反义链的3’末端具有2个延伸出所述双链区的突出的核苷酸。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:10所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:10所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA4~siRNA22、siRNA120中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:11所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:11所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA23。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:12所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:12所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA24。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:13所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:13所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA25。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:14所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:14所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA26。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:15所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:15所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA27。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:16所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:16所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA28。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:17所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:17所示序列中19个连续核苷 酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA29。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:18所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:18所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA30。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:19所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:19所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA31。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:20所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:20所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:20所示序列中21个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:20所示序列中21个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA32~siRNA38中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:21所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:21所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA39。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:22所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:22所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:22所示序列中21个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:22所示序列中21个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:22所示序列中23个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:22所示序列中23个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA40~siRNA48、siRNA151中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:23所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:23所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA49。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:24所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:24所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA50。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:25所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:25所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA51。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:26所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:26所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA52。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:27所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:27所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA53。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:28所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:28所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA54~siRNA56中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:29所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:29所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA57。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:30所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:30所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA58。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:31所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:31所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA59。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:32所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:32所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA60~siRNA62、siRNA172中的任一 siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:33所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:33所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:33所示序列中21个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:33所示序列中21个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA63~siRNA65、siRNA175中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:34所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:34所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA66~siRNA67中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:35所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:35所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA68。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:36所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:36所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA69。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:37所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:37所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA70。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:38所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:38所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA71~siRNA72中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:39所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:39所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA73。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:40所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:40所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA74~siRNA75中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:41所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:41所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA76。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:42所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:42所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA77。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:43所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:43所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA78~siRNA79中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:44所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:44所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA80。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:45所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:45所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA81。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:46所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:46所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA82。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:47所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:47所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA83~siRNA85、siRNA194中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:48所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:48所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA86~siRNA88中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:49所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:49所示序列中19个连续核苷 酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA89。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:50所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:50所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA90。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:51所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:51所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA91~siRNA93中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:595所示序列中21个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:595所示序列中21个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA110。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:615所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:615所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA111~siRNA112、siRNA247~siRNA249中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:616所示序列中21个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:616所示序列中21个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:616所示序列中23个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:616所示序列中23个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA113、siRNA114中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:617所示序列中23个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:617所示序列中23个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA115、siRNA116中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:619所示序列中23个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:619所示序列中23个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延 伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA118、siRNA119中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:620所示序列中23个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:620所示序列中23个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA121~siRNA122中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:621所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:621所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:621所示序列中23个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:621所示序列中23个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA124、siRNA125中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:622所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:622所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:622所示序列中23个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:622所示序列中23个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA126~siRNA127、siRNA250~siRNA252中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:623所示序列中23个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:623所示序列中23个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA128。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:624所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:624所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:624所示序列中21个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:624所示序列中21个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA129~siRNA130中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:625所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:625所示序列中19个连续核苷 酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:625所示序列中23个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:625所示序列中23个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA131、siRNA253~siRNA255中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:626所示序列中23个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:626所示序列中23个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA132。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:627所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:627所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:627所示序列中21个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:627所示序列中21个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA133~siRNA134中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:628所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:628所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA136。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:629所示序列中23个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:629所示序列中23个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA137。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:600所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:600所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:600所示序列中23个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:600所示序列中23个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA138~siRNA140中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:601所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:601所示序列中19个连续核苷 酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:601所示序列中23个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:601所示序列中23个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA141~siRNA143中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:602所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:602所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA144~siRNA145中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:603所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:603所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA146。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:630所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:630所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA147~siRNA148中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:631所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:631所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA150~siRNA151、siRNA256~siRNA257中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:633所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:633所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:633所示序列中23个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:633所示序列中23个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA153~siRNA154中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:634所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:634所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:634所示序列中21个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:634所示序列中21个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA155~siRNA156中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:636所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:636所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA158。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:605所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:605所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA159~siRNA160中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:638所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:638所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA163。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:639所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:639所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA164。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:640所示序列中23个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:640所示序列中23个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA165~siRNA166中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:641所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:641所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA167。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:642所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:642所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA168~siRNA169中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:643所示序列中21个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:643所示序列中21个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:643所示序列中23个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:643所示序列中23个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA170~siRNA171中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:644所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:644所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA173~siRNA174中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:645所示序列中23个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:645所示序列中23个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA176。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:646所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:646所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA177。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:647所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:647所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA178。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:609所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:609所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:609所示序列中23个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:609所示序列中23个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA179~siRNA180中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:648所示序列中23个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:648所示序列中23个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA182。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:649所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:649所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA183。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:650所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:650所示序列中19个连续核苷 酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA184。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:651所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:651所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA185。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:652所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:652所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA186。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:654所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:654所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA188。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:655所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:655所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA189。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:613所示序列中19个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:613所示序列中19个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均形成平末端。
示例性的,双链核糖核酸为表1中示出的siRNA192~siRNA193中的任一siRNA。
在一些具体的实施方式中,正义链的核苷酸序列为SEQ ID NO:614所示序列中23个连续核苷酸组成的序列A,反义链的核苷酸序列为SEQ ID NO:614所示序列中23个连续核苷酸组成的序列反向互补的序列B。并且,所述正义链与所述反义链的3’末端均具有2个延伸出所述双链区的突出的核苷酸。
示例性的,双链核糖核酸为表1中示出的siRNA195。
在一些具体的实施方式中,所述正义链包含如SEQ ID NO:52-144、262-348、530-540任一项所示的核苷酸序列,所述反义链包含如SEQ ID NO:145-237、349-435、541-551任一项所示的核苷酸序列。
在一些具体的实施方案中,双链核糖核酸选自如表1中所示的任一siRNA。本公开提供的siRNA,其与靶mRNA(C5mRNA)结合的特异性高,具有较好的靶mRNA的沉默活性,可以显著抑制补体C5基因表达,用于治疗补体系统的不适当的激活介导的疾病。
在一些实施方案中,本公开提供了一种siRNA组合物,其包含表1中所示siRNA中的任意一种或两种以上的组合。
在一些实施方案中,正义链的每个核苷酸彼此独立地为修饰的核苷酸或未修饰的核苷酸。在一些实施方案中,反义链的每个核苷酸彼此独立地为修饰的核苷酸或未修饰的核苷酸。
在一些实施方案中,正义链中任意相连的两个核苷酸由磷酸二酯键或硫代磷酸二酯键连接。在一些实施方案中,反义链中任意相连的两个核苷酸由磷酸二酯键或硫代磷酸二酯键连接。
在一些实施方式中,正义链的5’末端核苷酸连接5’磷酸基团或5’磷酸衍生基团。在一些实施方式中,所述反义链的5’末端核苷酸连接5’磷酸基团或5’磷酸衍生基团。
示例性的,5’磷酸基团的结构为:5’磷酸衍生基团的结构包括但不限于:等。
位于正义链或反义链的5’末端核苷酸连接5’磷酸基团或5’磷酸衍生基团后,形成如下所示结构:
其中,Base表示碱基,例如A、U、G、C或T。R’为羟基或被本领域技术人员所知晓的各类基团所取代,例如,2’-氟代(2’-F)修饰的核苷酸、2’-烷氧基修饰的核苷酸、2’-取代的烷氧基修饰的核苷酸、2’-烷基修饰的核苷酸、2’-取代的烷基修饰的核苷酸、2’-脱氧核糖核苷酸。
双链核糖核酸修饰物
本公开的第二方面提供一种双链核糖核酸修饰物。进一步地,双链核糖核酸修饰物为siRNA修饰物。siRNA修饰物在保持较高C5mRNA抑制活性的同时,可提高siRNA的稳定性。
在一些实施方案中,双链核糖核酸修饰物包含至少一个核苷酸的修饰。核苷酸的修饰选自核糖基团的修饰和碱基的修饰中的至少一种。在一些实施方案中,“核苷酸的修饰”是指核苷酸的核糖基团2’位羟基被其他基团取代从而形成核苷酸或核苷酸衍生物,或者核苷酸上的碱基是经修饰的碱基的核苷酸或核苷酸衍生物。所述核苷酸的修饰不会导致siRNA抑制基因表达的功能明显削弱或丧失。例如,可以选择J.K.Watts,G.F.Deleavey,and M.J.Damha,Chemically modified siRNA:tools and applications.Drug Discov Today,2008,13(19-20):842-55中公开的修饰的核苷酸。通过核苷酸的修饰可以提高siRNA的稳定性,并保持其对C5基因的高抑制效率。
示例性的,修饰的核苷酸具有如下所示结构:
其中,Base表示碱基,例如A、U、G、C或T。核糖基团2’位的羟基被R取代。这些核糖基2’位的羟基可以为本领域技术人员所知晓的各类基团所取代,例如,2’-氟代(2’-F)修饰的核苷酸、2’-烷氧基修饰的核苷酸、2’-取代的烷氧基修饰的核苷酸、2’-烷基修饰的核苷酸、2’-取代的烷基修饰的核苷酸、2’-脱氧核糖核苷酸。
在一些实施方案中,2’-烷氧基修饰的核苷酸为2’-甲氧基(2’-OMe,2’-O-CH3)修饰的核苷酸等等。
在一些实施方案中,2’-取代的烷氧基修饰的核苷酸为2’-甲氧基乙氧基(2’-O-CH2-CH2-O-CH3)修饰的核苷酸、2’-O-CH2-CH=CH2修饰的核苷酸等。
在一些实施方案中,2’-取代的烷基修饰的核苷酸为2’-CH2-CH2-CH=CH2修饰的核苷酸等等。
在一些实施方案中,核苷酸的修饰是碱基的修饰。碱基的修饰可以是本领域技术人员所知晓的各类型修饰。示例性的,碱基的修饰包括但不限于m6A、Ψ、m1A、m5A、ms2i6A、i6A、m3C、m5C、ac4C、m7G、m2,2G、m2G、m1G、Q、m5U、mcm5U、ncm5U、ncm5Um、D、mcm5s2U、Inosine(I)、hm5C、s4U、s2U、偶氮苯、Cm、Um、Gm、t6A、yW、ms2t6A或其衍生物。
在一些实施方案中,核苷酸衍生物是指能够在核酸中代替核苷酸,但结构不同于腺嘌呤核糖核苷酸、鸟嘌呤核糖核苷酸、胞嘧啶核糖核苷酸、尿嘧啶核糖核苷酸或胸腺嘧啶脱氧核糖核苷酸的化合物。在一些实施方案中,核苷酸衍生物可以是异核苷酸、桥联的核苷酸(bridged nucleic acid,简称BNA)或无环核苷酸。BNA是指受约束的或不能接近的核苷酸。BNA可以含有五元环、六元环、或七元环的具有“固定的”C3’-内切糖缩拢的桥联结构。通常将该桥掺入到该核糖的2’-、4’-位处以提供一个2’,4’-BNA核苷酸,如LNA、ENA、cET等。
LNA如式(1)所示,ENA如式(2)所示,cET如式(3)所示:
无环核苷酸是核苷酸的糖环被打开形成的一类核苷酸,如解锁核酸(UNA)或甘油核酸(GNA),其中,UNA如式(4)所示,GNA如式(5)所示:
上述式(4)和式(5)中,R选自H、OH或烷氧基(O-烷基)。
在一些实施方案中,核苷酸衍生物修饰是指核酸中的核苷酸被替代为核苷酸衍生物。示例性的,核苷酸衍生物选自异核苷酸、LNA、ENA、cET、UNA或GNA。
在一些实施方案中,核酸中的核苷酸被替代为异核苷酸,在本公开的上下文中,也称之为异核苷修饰。在一些实施方案中,异核苷修饰包括在欲修饰的siRNA的正义链和/或反义链的一个或多个位点掺入异核苷,以代替天然核苷在相应位置进行偶联。
在一些实施方案中,异核苷修饰采用D-异核苷修饰。在另一些实施方案中,异核苷修饰采用L-异核苷修饰。在又一些实施方案中,异核苷修饰采用D-异核苷修饰和L-异核苷修饰。
在一些实施方案中,双链核糖核酸修饰物包含至少一个位置处的磷酸二酯键的修饰。在一些实施方式中,磷酸二酯键的修饰是指磷酸二酯键中至少一个氧原子被硫原子取代 形成硫代磷酸二酯键。硫代磷酸二酯键可以稳定siRNA的双链结构,保持碱基配对的特异性。示例性的,硫代磷酸二酯键结构如下所示:
在一些实施方案中,双链核糖核酸修饰物包含如下至少一种的化学修饰:
(1)正义链中至少一个核苷酸的修饰,
(2)正义链中至少一个位置处的磷酸二酯键的修饰,
(3)反义链中至少一个核苷酸的修饰,
(4)反义链中至少一个位置处的磷酸二酯键的修饰。
进一步地,双链核糖核酸修饰物是包含(1)-(4)中至少一种化学修饰的siRNA修饰物。
在本公开中,正义链中的序列A与反义链中的序列B互补形成双链区后,序列A与序列B的3’末端可以为如下任意一种所示:
(1)序列A与序列B的3’末端均形成平末端;
(2)序列A的3’末端具有1-2个延伸出所述双链区的突出的核苷酸,且序列B的3’末端形成平末端;
(3)序列B的3’末端具有1-2个延伸出所述双链区的突出的核苷酸,且序列A的3’末端形成平末端;
(4)序列A的3’末端具有1-2个延伸出所述双链区的突出的核苷酸,且序列B的3’末端具有1-2个延伸出所述双链区的突出的核苷酸。
在一些实施方案中,正义链的核苷酸序列为序列A所示的序列,反义链的核苷酸序列为序列B所示的序列。
在一些实施方案中,当正义链与反义链的核苷酸序列互补形成双链区后,正义链与反义链的3’末端不存在突出的核苷酸时,在正义链和反义链中至少一条链的3’末端添加1-2个核苷酸,作为突出的核苷酸。其中,连接于正义链的3’末端的1-2个核苷酸组成序列D,连接于反义链的3’末端的1-2个核苷酸组成序列E。相应地,正义链的核苷酸序列为序列A连接序列D所示的序列,反义链的核苷酸序列为序列B连接序列E所示的序列。或者,正义链的核苷酸序列为序列A所示的序列,反义链的核苷酸序列为序列B连接序列E所示的序列。或者,正义链的核苷酸序列为序列A连接序列D所示的序列,反义链的核苷酸序列为序列B所示的序列。
示例性的,在正义链的3’末端添加2个脱氧核糖核苷酸(TT)作为序列D,在反义链的3’末端添加2个脱氧核糖核苷酸(TT)作为序列E。或者,仅在反义链的3’末端添加2个脱氧核糖核苷酸(TT)作为序列E。或者,仅在正义链的3’末端添加2个脱氧核糖核苷酸(TT)作为序列D。
在一些实施方案中,当正义链与反义链的核苷酸序列互补形成双链区后,正义链的3’末端不存在突出的核苷酸时,在正义链的3’末端添加由1-2个核苷酸组成的序列D,作为突出的核苷酸。然后,当序列A连接序列D形成的核苷酸序列在完成化学修饰后,排除由1-2个核苷酸组成的序列D。相应地,在双链核糖核酸修饰物中,正义链的核苷酸序列为序列A所示的序列,反义链的核苷酸序列为序列B所示的序列。或者,在双链核糖核酸修饰物中,正义链的核苷酸序列为序列A所示的序列,反义链的核苷酸序列为序列B连接序列E所示的序列。
在一些实施方案中,当序列A在与序列B互补形成双链区后,序列A的3’末端具有延伸出双链区的突出的1-2个核苷酸时,将序列A中位于3’末端的突出的核苷酸排除后作为正义链的核苷酸序列。排除掉3’末端的突出的核苷酸的序列称为序列A’。相应地, 双链核糖核酸修饰物的正义链的核苷酸序列为序列A’所示的序列,双链核糖核酸修饰物的反义链的核苷酸序列为序列B所示的序列。或者,双链核糖核酸修饰物的正义链的核苷酸序列为序列A’所示的序列,双链核糖核酸修饰物的反义链的核苷酸序列为序列B连接序列E所示的序列。
在一些实施方案中,沿5’末端向3’末端方向,siRNA修饰物的正义链包括如下修饰:正义链中第7位、第9位、第10位和第11位的核糖核苷酸为2’-氟代修饰的核糖核苷酸;正义链中其他位置的核糖核苷酸为2’-甲氧基修饰的核糖核苷酸。
在一些实施方案中,沿5’末端向3’末端方向,siRNA修饰物的正义链包括如下所示位置处的硫代磷酸二酯键:5’末端起始的第1个核苷酸与第2个核苷酸之间,5’末端起始的第2个核苷酸与第3个核苷酸之间,3’末端起始的第1个核苷酸与第2个核苷酸之间,以及3’末端起始的第2个核苷酸与第3个核苷酸之间。
在一些实施方案中,沿5’末端向3’末端方向,siRNA修饰物的正义链包括如下所示位置处的硫代磷酸二酯键:5’末端起始的第1个核苷酸与第2个核苷酸之间,5’末端起始的第2个核苷酸与第3个核苷酸之间。
在一些实施方案中,沿5’末端向3’末端方向,siRNA修饰物的正义链包括如下所示位置处的硫代磷酸二酯键:5’末端起始的第1个核苷酸与第2个核苷酸之间,5’末端起始的第2个核苷酸与第3个核苷酸之间,所述正义链5’末端起始的第3个核苷酸与第4个核苷酸之间,3’末端起始的第1个核苷酸与第2个核苷酸之间,3’末端起始的第2个核苷酸与第3个核苷酸之间,3’末端起始的第3个核苷酸与第4个核苷酸之间。
在一些具体的实施方案中,siRNA修饰物正义链具有如(a1)-(a3)任一项所示的结构:
(a1)5’-mN1-(s)-mN2-(s)-mN3-mN4-mN5-mN6-N7f-mN8-N9f-N10f-N11f-mN12-mN13-mN14-mN15-mN16-mN17-mN18-mN19-(s)-T-(s)-T-3’,
(a2)5’-mN1-(s)-mN2-(s)-mN3-mN4-mN5-mN6-N7f-mN8-N9f-N10f-N11f-mN12-mN13-mN14-mN15-mN16-mN17-mN18-mN19-(s)-mN20-(s)-mN21-3’,
(a3)5’-mN1-(s)-mN2-(s)-mN3-mN4-mN5-mN6-N7f-mN8-N9f-N10f-N11f-mN12-mN13-mN14-mN15-mN16-mN17-mN18-mN19-mN20-mN21-(s)-mN22-(s)-mN23-3’;
其中,N1-N23彼此独立地选自碱基为A、U、C或G的核糖核苷酸,大写字母T表示碱基为胸腺嘧啶的脱氧核糖核苷酸,小写字母m表示该字母m右侧相邻的一个核糖核苷酸为2’-O-CH3修饰的核糖核苷酸,小写字母f表示该字母f左侧相邻的一个核糖核苷酸为2’-F修饰的核糖核苷酸,-(s)-表示前后相邻的两个核苷酸以硫代磷酸二酯键连接。
在另外一些具体的实施方案中,siRNA修饰物正义链具有如(a4)-(a5)任一项所示的结构:
(a4)5’-mN1-(s)-mN2-(s)-mN3-mN4-mN5-mN6-N7f-mN8-N9f-N10f-N11f-mN12-mN13-mN14-mN15-mN16-mN17-mN18-mN19-3’,
(a5)5’-mN1-(s)-mN2-(s)-mN3-mN4-mN5-mN6-N7f-mN8-N9f-N10f-N11f-mN12-mN13-mN14-mN15-mN16-mN17-mN18-mN19-mN20-mN21-3’;
其中,N1-N23彼此独立地选自碱基为A、U、C或G的核糖核苷酸,大写字母T表示碱基为胸腺嘧啶的脱氧核糖核苷酸,小写字母m表示该字母m右侧相邻的一个核糖核苷酸为2’-O-CH3修饰的核糖核苷酸,小写字母f表示该字母f左侧相邻的一个核糖核苷酸为2’-F修饰的核糖核苷酸,-(s)-表示前后相邻的两个核苷酸以硫代磷酸二酯键连接。
在又一些具体的实施方案中,siRNA修饰物正义链具有如(a6)所示的结构:
(a6)5’-mN1-(s)-mN2-(s)-mN3-(s)-mN4-mN5-mN6-N7f-mN8-N9f-N10f-N11f-mN12-mN13-mN14-mN15-mN16-mN17-mN18-(s)-mN19-(s)-T-(s)-T-3’;
其中,N1-N23彼此独立地选自碱基为A、U、C或G的核糖核苷酸,大写字母T表示碱基为胸腺嘧啶的脱氧核糖核苷酸,小写字母m表示该字母m右侧相邻的一个核糖核苷酸为 2’-O-CH3修饰的核糖核苷酸,小写字母f表示该字母f左侧相邻的一个核糖核苷酸为2’-F修饰的核糖核苷酸,-(s)-表示前后相邻的两个核苷酸以硫代磷酸二酯键连接。
在一些实施方案中,沿5’末端向3’末端方向,siRNA修饰物的反义链包括如下修饰:所述反义链中任意奇数位置处的核糖核苷酸为2’-甲氧基修饰的核糖核苷酸,所述反义链中任意偶数位置处的核糖核苷酸为2’-氟代修饰的核糖核苷酸。
在一些实施方案中,沿5’末端向3’末端方向,siRNA修饰物的反义链包括如下修饰:所述反义链中第2位、第6位、第14位和第16位的核糖核苷酸为2’-氟代修饰的核糖核苷酸,所述反义链中其余位置的核糖核苷酸为2’-甲氧基修饰的核糖核苷酸。
在一些实施方案中,沿5’末端向3’末端方向,siRNA修饰物的反义链包括如下修饰:沿5’末端向3’末端方向,所述反义链中第2位、第6位、第8位、第9位、第14位和第16位的核糖核苷酸为2’-氟代修饰的核糖核苷酸,所述反义链中其余位置的核糖核苷酸为2’-甲氧基修饰的核糖核苷酸。
在一些实施方案中,沿5’末端向3’末端方向,siRNA修饰物的反义链包括如下修饰:所述反义链中第2位、第14位和第16位的核糖核苷酸为2’-氟代修饰的核糖核苷酸,所述反义链中第6位的核糖核苷酸为核苷酸衍生物GNA修饰的核糖核苷酸,所述反义链中其余位置的核糖核苷酸为2’-甲氧基修饰的核糖核苷酸。
在一些实施方案中,沿5’末端向3’末端方向,siRNA修饰物的反义链包括如下修饰:所述反义链中第2位、第6位、第14位和第16位的核糖核苷酸为2’-氟代修饰的核糖核苷酸,所述反义链中第7位的核糖核苷酸为核苷酸衍生物GNA修饰的核糖核苷酸,所述反义链中其余位置的核糖核苷酸为2’-甲氧基修饰的核糖核苷酸。
在一些实施方案中,沿5’末端向3’末端方向,siRNA修饰物的反义链包括如下所示位置处的硫代磷酸二酯键:5’末端起始的第1个核苷酸与第2个核苷酸之间,5’末端起始的第2个核苷酸与第3个核苷酸之间,3’末端起始的第1个核苷酸与第2个核苷酸之间,以及3’末端起始的第2个核苷酸与第3个核苷酸之间。
在一些实施方案中,沿5’末端向3’末端方向,siRNA修饰物的反义链包括如下所示位置处的硫代磷酸二酯键:5’末端起始的第1个核苷酸与第2个核苷酸之间,5’末端起始的第2个核苷酸与第3个核苷酸之间,5’末端起始的第3个核苷酸与第4个核苷酸之间,3’末端起始的第1个核苷酸与第2个核苷酸之间,3’末端起始的第2个核苷酸与第3个核苷酸之间,3’末端起始的第3个核苷酸与第4个核苷酸之间。
在一些实施方案中,沿5’末端向3’末端方向,反义链的5’末端的核苷酸连接5’磷酸基团或5’磷酸衍生基团。示例性的,5’磷酸基团的结构为:5’磷酸衍生基团的结构包括但不限于:等。
在一些具体的实施方案中,siRNA修饰物反义链具有如下(b1)-(b3)任一项所示的结构:
(b1)5’-P1mN1-(s)-N2f-(s)-mN3-N4f-mN5-N6f-mN7-N8f-mN9-N10f-mN11-N12f-mN13-N14f-mN15-N16f-mN17-N18f-mN19-(s)-T-(s)-T-3’,
(b2)5’-P1mN1-(s)-N2f-(s)-mN3-N4f-mN5-N6f-mN7-N8f-mN9-N10f-mN11-N12f-mN13-N14f-mN15-N16f-mN17-N18f-mN19-(s)-N20f-(s)-mN21-3’,
(b3)5’-P1mN1-(s)-N2f-(s)-mN3-N4f-mN5-N6f-mN7-N8f-mN9-N10f-mN11-N12f-mN13-N14f-mN15-N16f-mN17-N18f-mN19-N20f-mN21-(s)-N22f-(s)-mN23-3’;
其中,N1-N23彼此独立地选自碱基为A、U、C或G的核糖核苷酸,大写字母T表示碱基为胸腺嘧啶的脱氧核糖核苷酸,小写字母m表示该字母m右侧相邻的一个核糖核苷酸为 2’-O-CH3修饰的核糖核苷酸,小写字母f表示该字母f左侧相邻的一个核糖核苷酸为2’-F修饰的核糖核苷酸,P1表示该字母右侧相邻的一个核苷酸为5’-磷酸核苷酸,-(s)-表示前后相邻的两个核苷酸以硫代磷酸二酯键连接。
在另一些具体的实施方案中,siRNA修饰物反义链具有如下(b4)-(b17)任一项所示的结构:
(b4)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N1 4f-mN15-N16f-mN17-mN18-mN19-(s)-T-(s)-T-3’,
(b5)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N1 4f-mN15-N16f-mN17-mN18-mN19-(s)-mN20-(s)-mN21-3’,
(b6)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N1 4f-mN15-N16f-mN17-mN18-mN19-mN20-mN21-(s)-mN22-(s)-mN23-3’,
(b7)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-N8f-N9f-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-T-(s)-T-3’,
(b8)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-N8f-N9f-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-mN20-(s)-mN21-3’,
(b9)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-N8f-N9f-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-mN20-mN21-(s)-mN22-(s)-mN23-3’,
(b10)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-[GNA]N6-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-T-(s)-T-3’,
(b11)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-[GNA]N6-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-mN20-(s)-mN21-3’,
(b12)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-[GNA]N6-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-mN20-mN21-(s)-mN22-(s)-mN23-3’,
(b13)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-[GNA]N7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-T-(s)-T-3’,
(b14)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-[GNA]N7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-mN20-(s)-mN21-3’,
(b15)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-[GNA]N7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-mN20-mN21-(s)-mN22-(s)-mN23-3’,
(b16)5’-P1mN1-(s)-N2f-(s)-mN3-(s)-N4f-mN5-N6f-mN7-N8f-mN9-N10f-mN11-N12f-mN13-N1 4f-mN15-N16f-mN17-N18f-(s)-mN19-(s)-T-(s)-T-3’,
(b17)5’-EVPmN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-T-(s)-T-3’;
其中,N1-N23彼此独立地选自碱基为A、U、C或G的核糖核苷酸,大写字母T表示碱基为胸腺嘧啶的脱氧核糖核苷酸,小写字母m表示该字母m右侧相邻的一个核糖核苷酸为2’-O-CH3修饰的核糖核苷酸,小写字母f表示该字母f左侧相邻的一个核糖核苷酸为2’-F修饰的核糖核苷酸,P1表示该字母右侧相邻的一个核苷酸为5’-磷酸核苷酸,EVP表示其右侧相邻的一个核苷酸为5’-反式乙烯基磷酸核苷酸,-(s)-表示前后相邻的两个核苷酸以硫代磷酸二酯键连接,[GNA]表示表示其右侧相邻的一个核糖核苷酸为存在GNA修饰的核糖核苷酸。
在一些可选的实施方式中,所述正义链包含如SEQ ID NO:238-249、436-471、552-564任一项所示的核苷酸序列,并且所述反义链包含如SEQ ID NO:250-257、472-518、565-594任一项所示的核苷酸序列。
在一些实施方案中,双链核糖核酸修饰物包括但不限于如表2中所示的siRNA修饰物。
双链核糖核酸缀合物
本公开的第三方面提供一种双链核糖核酸缀合物,是本公开第一方面提供的双链核糖核酸或第二方面提供的双链核糖核酸修饰物与缀合基团缀合连接得到。
在本公开中,双链核糖核酸缀合物的正义链与反义链形成双链核糖核酸缀合物的双链区,并且,在双链核糖核酸缀合物的正义链的3’末端形成平末端。在一些实施方案中,双链核糖核酸缀合物的正义链的3’末端形成平末端,双链核糖核酸缀合物的反义链的3’末端具有1-2个延伸出所述双链区的突出的核苷酸。在另外一些实施方案中,双链核糖核酸缀合物的正义链的3’末端形成平末端,双链核糖核酸缀合物的反义链的3’末端形成平末端。
在一些优选地实施方案中,双链核糖核酸缀合物由双链核糖核酸修饰物与缀合基团缀合连接得到。其中,双链核糖核酸修饰物的正义链与反义链互补形成双链核糖核酸修饰物的双链区,并且,双链核糖核酸修饰物的正义链的3’末端形成平末端,缀合基团与具有平末端的正义链的3’末端缀合连接,形成双链核糖核酸缀合物。
示例性地,双链核糖核酸修饰物的正义链为序列A所示的序列,反义链为序列B连接序列E所示的序列。并且,双链核糖核酸修饰物的正义链的3’末端形成平末端,双链核糖核酸修饰物的正义链的3’末端连接缀合基团,形成双链核糖核酸缀合物。
示例性地,双链核糖核酸修饰物的正义链为序列A所示的序列,反义链为序列B所示的序列。并且,双链核糖核酸修饰物的正义链的3’末端形成平末端,双链核糖核酸修饰物的正义链3’末端连接缀合基团,形成双链核糖核酸缀合物。
示例性地,双链核糖核酸修饰物的正义链为序列A连接序列D所示的序列,反义链为序列B连接序列E所示的序列。并且,双链核糖核酸修饰物的正义链的3’末端具有突出的1-2个核苷酸组成的序列D,将双链核糖核酸修饰物中正义链的3’末端的序列D排除后,在序列A的3’末端连接缀合基团,形成双链核糖核酸缀合物。
示例性地,双链核糖核酸修饰物的正义链为序列A连接序列D所示的序列,反义链为序列B所示的序列。并且,双链核糖核酸修饰物的正义链的3’末端具有突出的1-2个核苷酸组成的序列D,将双链核糖核酸修饰物中正义链的3’末端的序列D排除后,在序列A的3’末端连接缀合基团,形成双链核糖核酸缀合物。
示例性地,双链核糖核酸修饰物的正义链为序列A所示的序列,反义链为序列B连接序列E所示的序列。其中,序列A的3’末端具有延伸出双链区的突出的核苷酸,将位于序列A中3’末端的突出的核苷酸排除后的序列(又称,序列A’)作为用于连接缀合基团的核苷酸序列。因此,双链核糖核酸缀合物的正义链的核苷酸序列为序列A’所示的序列,反义链的核苷酸序列为序列B连接序列E所示的序列。
示例性地,双链核糖核酸修饰物的正义链为序列A所示的序列,反义链为序列B所示所示的序列。其中,序列A的3’末端具有延伸出双链区的突出的核苷酸,将位于序列A中3’末端的突出的核苷酸排除后的序列(又称,序列A’)作为用于连接缀合基团的核苷酸序列。因此,双链核糖核酸缀合物的正义链的核苷酸序列为序列A’所示的序列,反义链的核苷酸序列为序列B所示的序列。
在一些可选地实施方案中,双链核糖核酸缀合物的正义链具有如(d1)-(d2)任一项所示的结构:
(d1)5’-mN1-(s)-mN2-(s)-mN3-mN4-mN5-mN6-N7f-mN8-N9f-N10f-N11f-mN12-mN13-mN14-mN15-mN16-mN17-mN18-mN19-L96-3’,
(d2)5’-mN1-(s)-mN2-(s)-mN3-mN4-mN5-mN6-N7f-mN8-N9f-N10f-N11f-mN12-mN13-mN14-mN15-mN16-mN17-mN18-mN19-mN20-mN21-L96-3’;
其中,N1-N23彼此独立地选自碱基为A、U、C或G的核糖核苷酸,大写字母T表示碱基为胸腺嘧啶的脱氧核糖核苷酸,小写字母m表示该字母m右侧相邻的一个核糖核苷酸为2’-O-CH3修饰的核糖核苷酸,小写字母f表示该字母f左侧相邻的一个核糖核苷酸为2’-F修 饰的核糖核苷酸,-(s)-表示前后相邻的两个核苷酸以硫代磷酸二酯键连接。L96也即式I所示的缀合物基团GalNAc。
在一些可选地实施方案中,双链核糖核酸缀合物的反义链具有如(b1)-(b3)任一项所示的结构:
(b1)5’-P1mN1-(s)-N2f-(s)-mN3-N4f-mN5-N6f-mN7-N8f-mN9-N10f-mN11-N12f-mN13-N14f-mN15-N16f-mN17-N18f-mN19-(s)-T-(s)-T-3’,
(b2)5’-P1mN1-(s)-N2f-(s)-mN3-N4f-mN5-N6f-mN7-N8f-mN9-N10f-mN11-N12f-mN13-N14f-mN15-N16f-mN17-N18f-mN19-(s)-N20f-(s)-mN21-3’,
(b3)5’-P1mN1-(s)-N2f-(s)-mN3-N4f-mN5-N6f-mN7-N8f-mN9-N10f-mN11-N12f-mN13-N14f-mN15-N16f-mN17-N18f-mN19-N20f-mN21-(s)-N22f-(s)-mN23-3’;
其中,N1-N23彼此独立地选自碱基为A、U、C或G的核糖核苷酸,大写字母T表示碱基为胸腺嘧啶的脱氧核糖核苷酸,小写字母m表示该字母m右侧相邻的一个核糖核苷酸为2’-O-CH3修饰的核糖核苷酸,小写字母f表示该字母f左侧相邻的一个核糖核苷酸为2’-F修饰的核糖核苷酸,P1表示该字母右侧相邻的一个核苷酸为5’-磷酸核苷酸,-(s)-表示前后相邻的两个核苷酸以硫代磷酸二酯键连接。
在另一些可选的实施方案中,双链核糖核酸缀合物的反义链具有如(b4)-(b17)任一项所示的结构:
(b4)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N1 4f-mN15-N16f-mN17-mN18-mN19-(s)-T-(s)-T-3’,
(b5)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N1 4f-mN15-N16f-mN17-mN18-mN19-(s)-mN20-(s)-mN21-3’,
(b6)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N1 4f-mN15-N16f-mN17-mN18-mN19-mN20-mN21-(s)-mN22-(s)-mN23-3’,
(b7)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-N8f-N9f-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-T-(s)-T-3’,
(b8)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-N8f-N9f-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-mN20-(s)-mN21-3’,
(b9)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-N8f-N9f-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-mN20-mN21-(s)-mN22-(s)-mN23-3’,
(b10)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-[GNA]N6-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-T-(s)-T-3’,
(b11)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-[GNA]N6-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-mN20-(s)-mN21-3’,
(b12)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-[GNA]N6-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-mN20-mN21-(s)-mN22-(s)-mN23-3’,
(b13)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-[GNA]N7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-T-(s)-T-3’,
(b14)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-[GNA]N7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-mN20-(s)-mN21-3’,
(b15)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-[GNA]N7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-mN20-mN21-(s)-mN22-(s)-mN23-3’,
(b16)5’-P1mN1-(s)-N2f-(s)-mN3-(s)-N4f-mN5-N6f-mN7-N8f-mN9-N10f-mN11-N12f-mN13-N1 4f-mN15-N16f-mN17-N18f-(s)-mN19-(s)-T-(s)-T-3’,
(b17)5’-EVPmN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-T-(s)-T-3’;
其中,N1-N23彼此独立地选自碱基为A、U、C或G的核糖核苷酸,大写字母T表示碱基为胸腺嘧啶的脱氧核糖核苷酸,小写字母m表示该字母m右侧相邻的一个核糖核苷酸为2’-O-CH3修饰的核糖核苷酸,小写字母f表示该字母f左侧相邻的一个核糖核苷酸为2’-F修饰的核糖核苷酸,P1表示该字母右侧相邻的一个核苷酸为5’-磷酸核苷酸,EVP表示其右侧相邻的一个核苷酸为5’-反式乙烯基磷酸核苷酸;-(s)-表示前后相邻的两个核苷酸以硫代磷酸二酯键连接;[GNA]表示其右侧相邻的一个核糖核苷酸为存在GNA修饰的核糖核苷酸。
进一步地,双链核糖核酸缀合物为siRNA缀合物,其中siRNA缀合物中与缀合基团连接的siRNA分子可以是未修饰的siRNA,或siRNA修饰物。缀合基团修饰的siRNA分子在保持了较高的抑制活性和稳定性的同时,还具有较好的组织、器官靶向性和促进细胞内吞的能力,可降低对其他组织或器官的影响以及减少siRNA分子使用量,可达到减轻毒性和降低成本的目的。可选地,选择表1或表2示出的任意一种siRNA分子与缀合基团连接,得到双链核糖核酸缀合物。
siRNA与缀合基团的缀合位点可以在siRNA正义链的3’末端或5’末端,也可在反义链的5’端,还可以在siRNA的内部序列中。在一些实施方案中,所述siRNA与缀合基团的缀合位点在siRNA正义链的3’末端。
在一些实施方式中,所述缀合基团可以连接在核苷酸的磷酸基团、2’-位羟基或者碱基上。在一些实施方式中,所述缀合基团还可以连接在3’-位羟基上,此时核苷酸之间采用2’,5’-磷酸二酯键连接。当缀合基团连接在siRNA链的末端时,所述缀合基团通常连接在核苷酸的磷酸基团上;当缀合基团连接在siRNA的内部序列时,所述缀合基团通常连接在核糖糖环或者碱基上。各种连接方式可以参考文献:Muthiah Manoharan et.al.siRNA conjugates carrying sequentially assembled trivalent N-acetylgalactosamine linked through nucleosides elicit robust gene silencing in vivo in hepatocytes.ACS Chemical biology,2015,10(5):1181-7。
在本公开中,缀合基团可以是siRNA给药领域常规使用的配体。在一些实施方式中,所述缀合基团可以选自以下靶向分子或其衍生物形成的配体中的一种或多种:亲脂分子,例如胆固醇、胆汁酸、维生素(例如维生素E)、不同链长的脂质分子;聚合物,例如聚乙二醇;多肽,例如透膜肽;适配体;抗体;量子点;糖类,例如乳糖、聚乳糖、甘露糖、半乳糖、N-乙酰半乳糖胺(GalNAc);叶酸(folate);肝实质细胞表达的受体配体,例如去唾液酸糖蛋白、去唾液酸糖残基、脂蛋白(如高密度脂蛋白、低密度脂蛋白等)、胰高血糖素、神经递质(如肾上腺素)、生长因子、转铁蛋白等。
在一些具体的实施方案中,所述缀合基团具有如下所示结构:
式I所示的缀合基团为GalNAc,GalNAc具有肝脏靶向性,可以将siRNA分子高特异性地递送于肝脏组织中,特异性抑制肝脏内C5基因的高表达。
在一些具体的实施方案中,GalNAc通过磷酸二酯键与正义链的3’末端缀合连接,得到如下所示结构的siRNA缀合物:
其中,双螺旋结构为未修饰的siRNA或siRNA修饰物。
在一些实施方案中,双链核糖核酸缀合物包括但不限于如表3中所示的siRNA缀合物。
药物组合物
本公开的第四方面提供一种药物组合物,包括第一方面所述的双链核糖核酸、第二方面所述的双链核糖核酸修饰物,以及第三方面所述的双链核糖核酸缀合物中的一种或多种。
在一些实施方案中,所述药物组合物含有如上所述的siRNA作为活性成分和药学上可接受的载体。在本公开中,使用药物组合物的目的在于促进针对生物体的给药,有利于活性成分的吸收,进而发挥生物活性。本公开的药物组合物可以通过任何形式给药,包括注射(动脉内、静脉内、肌肉内、腹膜内、皮下)、粘膜、口服(口服固体制剂、口服液体制剂)、直肠、吸入、植入、局部(例如眼部)给药等。口服固体制剂的非限制性实例包括但不限于散剂、胶囊剂、锭剂、颗粒剂、片剂等。口服或粘膜给药的液体制剂的非限制性实例包括但不限于混悬剂、酊剂、酏剂、溶液剂等。局部给药制剂的非限制性实例包括但不限于乳剂、凝胶剂、软膏剂、乳膏剂、贴剂、糊剂、泡沫剂、洗剂、滴剂或血清制剂。胃肠外给药制剂的非限制性实例包括但不限于注射用溶液剂、注射用干粉剂、注射用悬浮液、注射用乳剂等。本公开的药物组合物还可以制成控制释放或延迟释放剂型(例如脂质体或微球)。
在本公开中,施用途经能够以任何适用的方式进行变化或调整,以满足药物的性质、患者和医务人员的便利以及其它相关因素的需求。
医药用途
本公开的第五方面提供双链核糖核酸,双链核糖核酸修饰物或双链核糖核酸缀合物的如下至少一种用途:
(1)抑制C5基因表达,或制备用于抑制C5基因表达的药物;
(2)用于预防或治疗与C5基因异常表达相关的疾病,或制备用于预防或治疗与C5基因异常表达相关的疾病的药物;
(3)用于治疗患有将受益于补体C5基因表达降低的疾病的受试者,或制备用于治疗患有将受益于补体C5基因表达降低的疾病的受试者的药物。
本公开进一步提供了siRNA分子(包括未修饰的siRNA、siRNA修饰物、siRNA缀合物)或药物组合物在上述(1)-(3)至少一种中的用途。
在本公开中,C5基因异常表达,导致补体系统的不适当激活,引发如下一种或多种C5基因异常表达相关疾病:阵发性睡眠性血红蛋白尿、非典型溶血尿毒综合征、广泛性重症肌无力、血栓栓塞、视神经脊髓炎、抗体介导的肾移植排斥反应、吉兰巴雷综合症、抗中性粒细胞胞质抗体相关血管炎、肌萎缩侧索硬化、帕金森病、自身免疫性脑炎、IgG4相关性疾病、哮喘、抗磷脂抗体综合征、缺血再灌注损伤、典型溶血尿毒综合征、多灶 性运动神经病、多发性硬化、血栓性血小板减少性紫癜、创伤性脑损伤、冷凝集素病、皮肌炎、与产志贺氏毒素大肠埃希氏菌相关的溶血性尿毒症综合征、移植物功能障碍、心肌梗死、败血症、动脉粥样硬化、感染性休克、脊髓损伤、银屑病、自身免疫性溶血性贫血、抗磷脂综合征、心肌炎、免疫复合物血管炎、高安氏病、川崎病及类风湿性关节炎等疾病。
siRNA分子致使C5基因的表达被抑制至少约5%、至少约10%、至少约15%、至少约20%、至少约25%、至少约30%、至少约35%、至少约40%、至少约45%、至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%、至少约91%、至少约92%、至少约93%、至少约94%、至少约95%、至少约96%、至少约97%、至少约98%或至少约99%,实现对C5基因异常表达相关疾病的治疗。
在一些实施方案中,本公开提供一种抑制细胞内C5基因表达的方法,包括将双链核糖核酸、双链核糖核酸修饰物、双链核糖核酸缀合物或药物组合物与细胞接触。
进一步地,抑制细胞内C5基因表达的方法,是将siRNA分子(包括未修饰的siRNA、siRNA修饰物、siRNA缀合物)或药物组合物引入细胞内。
在一些实施方案中,所述细胞为体内细胞或体外细胞。在一些具体的实施方案中,所述细胞在受试者体内。
在一些实施方案中,本公开提供预防或治疗疾病的方法,包括向受试者施用双链核糖核酸、双链核糖核酸修饰物、双链核糖核酸缀合物或药物组合物。
进一步地,预防或治疗疾病的方法是向受试者施用siRNA分子(包括未修饰的siRNA、siRNA修饰物、siRNA缀合物)或药物组合物。
在本公开中,“受试者”包括或者人或者非人类动物,优选脊椎动物,并且更优选哺乳动物。受试者可以包括转基因生物体。最优选地,受试者是人。进一步地,受试者具有如下至少一种特性:
(1)体内C5基因异常表达,更具体地为C5基因异常高表达;
(2)患有与C5基因异常表达相关的疾病;
(3)患有将受益于C5基因表达降低的疾病。如罹患或倾向于患上与C5基因异常表达相关的疾病的人。
表1 siRNA序列信息









表2 siRNA修饰物









上述表格中大写字母“G”、“C”、“A”、“T”和“U”每个通常代表分别含有鸟嘌呤、胞嘧啶、腺嘌呤、胸腺嘧啶和尿嘧啶作为碱基的核苷酸;mA、mU、mC、mG:表示2’-甲氧基修饰的核苷酸;Af、Gf、Cf、Uf:表示2’-氟代修饰的核苷酸;小写字母s表示与该字母s左右相邻的两个核苷酸之间为硫代磷酸酯基连接;P1:表示该P1右侧相邻的一个核苷酸为5’-磷酸核苷酸,EVP表示其右侧相邻的一个核苷酸为5’-反式乙烯基磷酸核苷酸;[GNA]表示其右侧相邻的一个核糖核苷酸为存在GNA修饰的核糖核苷酸。
表3 siRNA缀合物



上述表格中大写字母“G”、“C”、“A”、“T”和“U”每个通常代表分别含有鸟嘌呤、胞嘧啶、腺嘌呤、胸腺嘧啶和尿嘧啶作为碱基的核苷酸”;mA、mU、mC、mG:表示2’-甲氧基修饰的核苷酸;Af、Gf、Cf、Uf:表示2’-氟代修饰的核苷酸;小写字母s表示与该字母s左右相邻的两个核苷酸之间为硫代磷酸酯基连接;P1:表示该P1右侧相邻的一个核苷酸为5’-磷酸核苷酸,EVP表示其右侧相邻的一个核苷酸为5’-反式乙烯基磷酸核苷酸;[GNA]表示其右侧相邻的一个核糖核苷酸为存在GNA修饰的核糖核苷酸;L96也即式I所示的缀合物基团GalNAc。
实施例
本公开的其他目的、特征和优点将从以下详细描述中变得明显。但是,应当理解的是,详细描述和具体实施例(虽然表示本公开的具体实施方式)仅为解释性目的而给出,因为在阅读该详细说明后,在本公开的精神和范围内所作出的各种改变和修饰,对于本领域技术人员来说将变得显而易见。
本实施例中所用到的实验技术与实验方法,如无特殊说明均为常规技术方法,例如下列实施例中未注明具体条件的实验方法,通常按照常规条件如Sambrook等人,分子克隆:实验室手册(New York:Cold Spring Harbor Laboratory Press,1989)中所述的条件, 或按照制造厂商所建议的条件。实施例中所使用的材料、试剂等,如无特殊说明,均可通过正规商业渠道获得。
下述实施例涉及的siRNA、siRNA修饰物、siRNA缀合物由天霖生物科技(上海)有限公司合成,实施例中使用的细胞、试剂及仪器耗材如表4所示:
表4
实施例1:siRNA的合成
1.1 siRNA序列设计
根据人C5基因mRNA序列,选择不同位点设计多对C5siRNAs,设计的所有单个siRNA均能靶向靶基因的所有转录本(如表5),这些多对siRNA经序列相似性软件比对与其他所有非靶标基因序列有最低同源性。
表5
用于设计siRNA的靶标序列如下所示,靶标序列来源于C5的基因mRNA序列(参见NM_001735.3)。
靶标序列I:
靶标序列I-1:
靶标序列I-2:
靶标序列II:
靶标序列II-1:
靶标序列II-2:
靶标序列II-3:
靶标序列II-4:
靶标序列II-5:
靶标序列III:
靶标序列III-1:
靶标序列III-2:
靶标序列III-3:
靶标序列III-4:
靶标序列III-5:
靶标序列IV:
靶标序列IV-1:
靶标序列IV-2:
靶标序列IV-3:
靶标序列IV-4:
靶标序列IV-5:
靶标序列IV-6:
靶标序列IV-7:
靶标序列V:
靶标序列V-1:
靶标序列V-2:
靶标序列V-3:
靶标序列V-4:
靶标序列V-5:
靶标序列V-6:
靶标序列V-7:
靶标序列V-8:
靶标序列VI:
靶标序列VI-1:
靶标序列VI-2:
靶标序列VI-3:
靶标序列VI-4:
靶标序列VI-5:
靶标序列VI-6:
靶标序列VII:
靶标序列VII-1:
靶标序列VII-2:
靶标序列VII-3:
靶标序列VII-4:
靶标序列VII-5:
靶标序列VII-6:
靶标序列VII-7:
靶标序列VII-8:
靶标序列VII-9:
靶标序列VII-10:
靶标序列VII-11:
1.2合成方法描述:
通过固相亚磷酰胺法,按照核苷酸排布顺序自3'-5'方向逐一连接核苷单体。每连接一个核苷单体都包括脱保护、偶联、盖帽、氧化或硫化四步反应。其中,两个核苷酸之间采用磷酸酯连接时,连接后一个核苷单体时,包括脱保护、偶联、盖帽、氧化四步反应。两个核苷酸之间采用硫代磷酸酯连接时,连接后一个核苷单体时,包括保护、偶联、盖帽、硫化四步反应。
1.3合成条件给定如下:
核苷单体以0.1M浓度的乙腈溶液提供,每一步的脱保护反应的条件相同,即温度为25℃,反应时间为70秒,脱保护试剂为二氯乙酸的二氯甲烷溶液(3%V/V),二氯 乙酸与固相载体上4,4’-二甲氧基三苯甲基保护基的摩尔比为5:1。
每一步偶联反应条件均相同,包括温度为25℃,固相载体上连接的核酸序列与核苷单体的摩尔比为1:10,固相载体上连接的核酸序列和偶联试剂的摩尔比为1:65,反应时间为600秒,偶联试剂为5-乙硫基-1H-四氮唑的0.5M乙腈溶液。
每一步盖帽条件均相同,包括温度为25℃,反应时间为15秒。盖帽试剂溶液为摩尔比为1:1的CapA和CapB的混合溶液,盖帽试剂与固相载体上连接的核酸序列的摩尔比为乙酸酐:N-甲基咪唑:固相载体上连接的核酸序列=1:1:1。
每一步氧化反应条件相同,包括温度为25℃,反应时间为15秒,氧化试剂为浓度为0.05M的碘水。碘与偶联步骤中固相载体上连接的核酸序列的摩尔比为30:1。反应在四氢呋喃:水:吡啶=3:1:1的混合溶剂中进行。
每一步硫化反应的条件相同,包括温度为25℃,反应时间为300秒,硫化试剂为氢化黄原素。硫化试剂与偶联步骤中固相载体上连接的核酸序列的摩尔比为120:1。反应在乙腈:吡啶=1:1的混合溶剂中进行。
待最后一个核苷单体连接完成后,依次对固相载体上连接的核酸序列进行切割、脱保护、纯化、脱盐,随后冻干得到正义链和反义链;最后将两条链进行加热退火得到产品,冻干,得到冻干粉。
实施例2:siRNA缀合物(GalNAc-siRNA)的合成
2.1 siRNA缀合物具有如下式II所示的结构:
2.2 siRNA缀合物的合成过程
第一步,通过将DMTr-L96和丁二酸酐反应,得到化合物L96-A:
制备过程:将DMTr-L96、丁二酸酐、4-二甲基氨基吡啶和二异丙基乙胺加入二氯甲烷中,25℃下搅拌反应24小时,然后用0.5M三乙胺磷酸盐洗涤反应液,水相以二氯甲烷洗涤三次,合并有机相减压蒸干得粗品。然后柱层析纯化得到得到纯品L96-A。
第二步,将L96-A与NH2-SPS反应得到L96-B:
制备过程:将L96-A、O-苯并三氮唑-四甲基脲六氟磷酸酯(HBTU)和二异丙基乙胺混合溶于乙腈中,室温搅拌5分钟得到均一溶液,加入氨甲基树脂(NH2-SPS,100-200目)至反应液体中,25℃下开始摇床反应,反应18小时后过滤,滤饼依次用二氯甲烷和乙腈洗涤,得滤饼。所得滤饼用CapA/CapB混合溶液进行盖帽反应得到L96-B,即为含有缀合分子的固相载体,然后在偶联反应下将核苷单体连接至缀合分子,随后按照前文所述的siRNA分子合成方法合成连接至缀合物分子的siRNA正义链,采用前文所述的siRNA分子合成方法合成siRNA反义链,退火生成本申请的siRNA缀合物。
实施例3:siRNA、siRNA修饰物抑制C5基因表达
3.1实验材料:
HepG2细胞,购自ATCC,货号HB-8065;
DMEM培养基,购自Macgene,货号CM15019。
3.2实验方法:
步骤1.取浓度为16×104/ml的HepG2细胞500μl接种于含有DMEM培养基的24孔板中,培养24小时。
步骤2.将待测siRNA及siRNA修饰物(为便于描述,本实施例实验过程描述中统称为siRNA)的干粉以低温高速离心,用RNase-free ddH2O溶解,配制成100μM siRNA母液。
步骤3.配制25nM的siRNA转染稀释液
1)10μM siRNA转染稀释液配制:取100μM上述步骤2中制得的siRNA母液10μl,加入90μl RNase-free ddH2O,得到浓度为10μM的siRNA贮备液;
2)分别取25μl opti-MEM置于2个无菌的离心管中,在上述离心管中分别加入1μl lipofectamine 2000及1.25μl上述步骤1中制得的浓度为10μM的siRNA贮备液,室温孵育5min;后将上述2种溶液混合,孵育10min。
步骤4.转染HepG2细胞用PBS缓冲液清洗2次24孔板中的细胞,加入450μl无PS(青霉素链霉素混合液)的DMEM培养基。取步骤3中配制好的混合液50μl加入含有HepG2细胞的24孔板中,以25nM的siRNA终浓度进行转染。
每个siRNA样品设置3个重复,转染后培养48小时。
步骤5.RNA提取
1)吸掉每孔中的旧培养基,加入500μl PBS缓冲液洗涤两次,吸掉PBS缓冲液,重复洗涤两次;每孔中加入500μl Biozol总RNA提取试剂;室温裂解10min。
2)加入0.2倍体积的氯仿(三氯甲烷),剧烈震荡15s;4℃,12000g,离心10min。
3)转移水相至新的离心管,加入1倍体积的异丙醇,涡旋振荡15s;4℃,12000g,离心15min使沉淀析出。
4)弃掉上清液,加入500μl 75%乙醇,翻转震荡,洗涤沉淀。7500g离心5min,弃上清;重复洗涤3次。
5)将样品置于旋干仪中,10min后取出。加入30μl RNase-free ddH2O,震荡使其溶解,离心。
6)检测并记录每个样品的RNA浓度。
步骤6.逆转录
1)如下表所述制备逆转录反应混合物并充分混匀,操作在冰上进行。
表6
2)第一链cDNA合成反应液
表7
3)第一链cDNA合成反应
表8
4)加入30μl RNase-free ddH2O稀释逆转录产物,储存于-20℃以进行RT-qPCR分析。
步骤7.RT-qPCR
1)如下表所示制备qPCR反应混合物。在整个操作过程中,所有试剂都放置在冰上。
表9
表10
2)如下所述进行qPCR程序
表11
3)结果分析
(1)使用Quant Studio 6软件采用默认设置,自动计算Ct值;(2)使用以下公式计算基因的相对表达量:
ΔCt=Ct(C5)–Ct(GAPDH)
ΔΔCt=ΔCt(检测样品组)-ΔCt(Mock组)
相对于Mock组的mRNA表达=2-ΔΔCt
其中,Mock组表示:和检测样品组相比,未加入siRNA的组。
3.3沉默实验结果
选取浓度25nM进行测试
3.3.1设计序列结果
表12

3.3.2修饰序列IC50测定
对表13中的待测siRNA测定浓度范围设置(nM)为:0.005、0.01、0.05、0.1、0.2、 0.5、1、5、25、50、100,再按照与3.2相似的方法进行IC50测定。
结果分析:
a)使用Quant Studio 7软件采用默认设置,自动计算Ct值;
b)使用以下公式计算基因的相对表达量:
ΔCt=Ct(C5基因)–Ct(GAPDH)
ΔΔCt=ΔCt(检测样品组)–ΔCt(Mock组),其中Mock组表示和检测样品组相比,未加入siRNA的组;
相对于Mock组的mRNA表达=2-ΔΔCt
抑制率(%)=(Mock组mRNA相对表达量–检测样品组mRNA相对表达量)/Mock组mRNA相对表达量×100%;
以siRNA浓度的log值作为X轴,百分比抑制率为Y轴,采用分析软件GraphPad Prism 8的“log(抑制剂)vs.响应–变量斜率”功能模块,来拟合量效曲线,从而得出各个siRNA的IC50值。
拟合公式为:Y=Bottom+(Top–Bottom)/(1+10^((LogIC50–X)×HillSlope))
其中:Top表示顶部平台处的百分比抑制率,曲线的Top标准一般在80%至120%之间;Bottom表示底部平台处的百分比抑制率,曲线的Bottom一般在–20%至20%之间;HillSlope表示百分比抑制率曲线的斜率。
表13
实施例4:递送系统验证
4.1实验材料:
人原代肝细胞PHH细胞,由药明康德提供;
PHH培养基:invitroGRO CP Meduim serum free BIOVIT,货号:S03316
RNAiMAX转染试剂,购自Invitrogen,货号:13778-150;
RNA提取试剂盒96Kit(12),货号:QIAGEN-74182;
逆转录试剂盒FastKing RT Kit(With gDNase),货号:天根-KR116-02;
FastStart Universal Probe Master(Roche-04914058001);C5及GAPDH引物由药明康德提供。
4.2实验方法:
siRNA缀合物(siRNA缀合物终浓度为10nM、2.5nM、0.63nM、0.16nM、0.04nM、0.01nM、0.0024nM和0.0006nM,复孔)通过转染进入PHH细胞,过程如下所述:取冻存的PHH细胞,复苏,计数,调整细胞到6×105细胞/ml,同时应用Lipofectamine RNAiMax将siRNA缀合物转入细胞,以每孔54,000个细胞的密度接种到96孔板中,每孔加入PPH培养基100μL。细胞置于5%CO2、37℃孵箱中培养。48小时后,去除培养基并收集细胞用于RNA提取。根据说明书使用96Kit提取总RNA。
siRNA缀合物(siRNA缀合物终浓度为500nM、125nM、31.25nM、7.81nM、1.95nM、0.49nM、0.12nM和0.03nM,复孔)通过自由摄取进入PHH细胞,过程如下所述:取冻存的PHH细胞,复苏,计数,调整细胞到6×105细胞/ml,加入siRNA缀合物,以每孔54,000个细胞的密度接种到96孔板中,每孔培养液为100μl。细胞置于5%CO2、37℃孵箱中培养。48小时后,去除培养基并收集细胞用于RNA提取。根据说明书使用96Kit提取总RNA。
参照实施例3类似的方法,通过逆转录反应将提取的总RNA逆转录为cDNA。C5cDNA将通过qPCR进行检测。GAPDH cDNA将作为内部对照进行平行检测。PCR反应程序为:95℃10分钟,然后进入循环模式,95℃15秒,随后60℃,60秒,共40个循环。
4.3结果分析
a)使用Quant Studio 6pro软件采用默认设置,自动计算Ct值;
b)使用以下公式计算基因的相对表达量:
ΔCt=Ct(目的基因)–Ct(GAPDH)
ΔΔCt=ΔCt(检测样品组)-ΔCt(Mock组)
相对于Mock组的mRNA表达=2-ΔΔCt,其中Mock组表示和检测样品组相比,未加入siRNA缀合物的组。
抑制率(%)=(Mock组mRNA相对表达量–检测样品组mRNA相对表达量)/Mock组mRNA相对表达量×100%;
以siRNA缀合物浓度的log值作为X轴,百分比抑制率为Y轴,采用分析软件GraphPad Prism 8的“log(抑制剂)vs.响应–变量斜率”功能模块,来拟合量效曲线,从而得出各个siRNA缀合物的IC50值。
拟合公式为:Y=Bottom+(Top–Bottom)/(1+10^((LogIC50–X)×HillSlope))
其中:Top表示顶部平台处的百分比抑制率,曲线的Top标准一般在80%至120%之间;Bottom表示底部平台处的百分比抑制率,曲线的Bottom一般在–20%至20%之间;HillSlope表示百分比抑制率曲线的斜率。
表14
表14中的L96也即式I所示的缀合物基团GalNAc。
实施例5:siRNA的合成
5.1 siRNA序列设计
本实施例中的siRNA序列设计思想和方法与实施例1中的siRNA序列设计思想和方法相同,且用于设计siRNA的靶标序列如下所示,靶标序列来源于C5的基因mRNA序列(参见NM_001735.3)。
靶标序列VIII:
靶标序列IX:
靶标序列IX-1:
靶标序列IX-2:
靶标序列X:
靶标序列X-1:
靶标序列X-2:
靶标序列X-3:
靶标序列X-4:
靶标序列X-5:
靶标序列XI:
靶标序列XI-1:
靶标序列XI-2:
靶标序列XI-3:
靶标序列XI-4:
靶标序列XII:
靶标序列XII-1:
靶标序列XII-2:
靶标序列XII-3:
靶标序列XII-4:
靶标序列XIII:
靶标序列XIV:
靶标序列XV:
靶标序列XVI:
靶标序列XVII:
靶标序列XVII-1:
靶标序列XVII-2:
靶标序列XVII-3:
靶标序列XVII-4:
靶标序列XVII-5:
靶标序列XVII-6:
靶标序列XVII-7:
靶标序列XVIII:
靶标序列XIX:
靶标序列XIX-1:
靶标序列XIX-2:
靶标序列XIX-3:
靶标序列XX:
靶标序列XX-1:
靶标序列XX-2:
靶标序列XX-3:
靶标序列XX-4:
靶标序列XXI:
靶标序列XXI-1:
靶标序列XXI-2:
靶标序列XXI-3:
靶标序列XXI-4:
靶标序列XXII:
靶标序列XXIII:
靶标序列XXIII-1:
靶标序列XXIII-2:
靶标序列XXIV:
靶标序列XXIV-1:
靶标序列XXIV-2:
靶标序列XXIV-3:
靶标序列XXIV-4:
靶标序列XXIV-5:
靶标序列XXV:
靶标序列XXV-1:
靶标序列XXV-2:
靶标序列XXV-3:
靶标序列XXVI:
靶标序列XXVII:
5.2合成方法:
与实施例1中的“1.2”中的合成方法相同。
5.3合成条件:
与实施例1中的“1.3”中的合成条件相同。
实施例6:siRNA、siRNA修饰物抑制C5基因表达
6.1实验材料:

6.2实验方法:
步骤1.取浓度为11.1×104/ml的HepG2细胞90μl接种于含有DMEM培养基的96孔板中,培养24小时。
步骤2.将待测siRNA及siRNA修饰物(为便于描述,本实施例实验过程描述中统称为siRNA)的干粉以低温高速离心,用RNase-free ddH2O溶解,配制成100μM siRNA母液。
步骤3.配制20nM的siRNA稀释液Z和2nM的siRNA稀释液W
(1)0.1μM siRNA贮备液E和0.01μM siRNA贮备液F的制备:
a)取上述步骤2中制得的100μM siRNA母液2μl,加入18μl超纯蒸馏水,得到终浓度为10μM的siRNA贮备液Q;
b)取步骤a)中制得的10μM的siRNA贮备液Q 2μl,加入18μl超纯蒸馏水,得到终浓度为1μM的siRNA贮备液Y;
c)取步骤b)中制得的1μM的siRNA贮备液Y 2μl,加入18μl超纯蒸馏水,得到终浓度为0.1μM的siRNA贮备液E;
d)取步骤c)中制得的0.1μM的siRNA贮备液E 2μl,加入18μl超纯蒸馏水,得到终浓度为0.01μM的siRNA贮备液F;
(2)取上述配置好的siRNA贮备液E和siRNA贮备液F各2μl,分别加入8μl Opti-MEM,分别得到20nM的siRNA稀释液Z和2nM的siRNA稀释液W。
步骤4.转染HepG2细胞
(1)取Lipofectamine 2000 3μl,加入97μl Opti-MEM,得到Lipofectamine 2000稀释液;将Lipofectamine 2000稀释液与步骤3中制得的2nM siRNA稀释液W以1:1体积比混合,静置5分钟,将10μl的转染混合物加入到96孔板中转染步骤1中培养的HepG2细胞(终体积100μl,该体系中siRNA的浓度为0.1nM)。
(2)取Lipofectamine 2000 3μl,加入97μl Opti-MEM,得到Lipofectamine 2000稀释液;将Lipofectamine 2000稀释液与步骤3中制得的20nM siRNA稀释液Z以1:1体积比混合制备成转染混合物,静置5分钟,取10μl转染混合物加入到96孔板中转染步骤1中培养的HepG2细胞(终体积100μl,该体系中siRNA的浓度为1nM)。
步骤5.每个浓度(1nM和0.1nM)设置2个重复,转染后培养48小时。
步骤6.RNA提取
7)吸掉每孔中的旧培养基,加入500μl PBS缓冲液,吸掉PBS缓冲液,重复洗涤两次;每孔加入500μl Biozol总RNA提取试剂;室温裂解10min。
8)加入0.2倍体积的氯仿(三氯甲烷),剧烈震荡15s;4℃,12000g,离心10min。
9)转移水相至新的离心管,加入1倍体积的异丙醇,涡旋振荡15s;4℃,12000g,离心15min使沉淀析出。
10)弃掉上清液,加入500μl 75%乙醇,翻转震荡,洗涤沉淀。7500g离心5min,弃上清;重复洗涤3次。
11)将样品置于旋干仪中,10min后取出。加入30μl RNase-free ddH2O,震荡使其溶解,离心。
12)检测并记录每个样品的RNA浓度。
步骤7.逆转录
1)如下表所述制备逆转录反应混合物并充分混匀,操作在冰上进行。
表15
2)第一链cDNA合成反应液
表16
3)第一链cDNA合成反应
表17
4)加入30μl RNase-free ddH2O稀释逆转录产物,储存于-20℃以进行RT-qPCR分析。
步骤8.RT-qPCR
1)如下表所示制备qPCR反应混合物。在整个操作过程中,所有试剂都放置在冰上。
表18
表19

2)如下所述进行qPCR程序
表20
3)结果分析
(1)使用Quant Studio 6软件采用默认设置,自动计算Ct值;
(2)使用以下公式计算基因的相对表达量:
ΔCt=Ct(C5)–Ct(GAPDH)
ΔΔCt=ΔCt(检测样品组)-ΔCt(Mock组)
相对于Mock组的mRNA表达=2-ΔΔCt
其中,Mock组表示:和检测样品组相比,未加入siRNA的组。
抑制率(%)=(Mock组mRNA相对表达量–检测样品组mRNA相对表达量)/Mock组mRNA相对表达量×100%;
6.3沉默实验结果
选取浓度1nM和0.1nM进行测试。
6.3.1设计序列结果
表21






6.3.2修饰序列IC50测定
对表22中的待测siRNA测定浓度范围设置(nM)为:10nM起,4倍稀释,8个浓度梯度:10nM、2.5nM、0.63nM、0.16nM、0.04nM、0.01nM、0.0024nM和0.0006nM,再按照与6.2相似的方法进行IC50测定。
结果分析:
a)使用Quant Studio 6pro软件采用默认设置,自动计算Ct值;
b)使用以下公式计算基因的相对表达量:
ΔCt=Ct(C5基因)–Ct(GAPDH)
ΔΔCt=ΔCt(检测样品组)–ΔCt(Mock组),其中Mock组表示和检测样品组相比,未加入siRNA的组;
相对于Mock组的mRNA表达=2-ΔΔCt
抑制率(%)=(Mock组mRNA相对表达量–检测样品组mRNA相对表达量)/Mock组mRNA相对表达量×100%;
以siRNA浓度的log值作为X轴,百分比抑制率为Y轴,采用分析软件GraphPad Prism 8的“log(抑制剂)vs.响应–变量斜率”功能模块,来拟合量效曲线,从而得出各个siRNA的IC50值。
拟合公式为:Y=Bottom+(Top–Bottom)/(1+10^((LogIC50–X)×HillSlope))
其中:Top表示顶部平台处的百分比抑制率,曲线的Top标准一般在80%至120%之间;Bottom表示底部平台处的百分比抑制率,曲线的Bottom一般在–20%至20%之间;HillSlope表示百分比抑制率曲线的斜率。
表22
实施例7:递送系统验证
7.1实验材料:
人原代肝细胞PHH细胞,由药明康德提供;
PHH培养基:invitroGRO CP Meduim serum free BIOVIT,货号:S03316
RNAiMAX转染试剂,购自Invitrogen,货号:13778-150;
RNA提取试剂盒96Kit(12),货号:QIAGEN-74182;
逆转录试剂盒FastKing RT Kit(With gDNase),货号:天根-KR116-02;
FastStart Universal Probe Master(Roche-04914058001);C5及GAPDH引物由药明康德提供。
7.2实验方法:
siRNA缀合物(siRNA缀合物终浓度为5nM和0.5nM,每浓度设置两个重复)通过转染进入PHH细胞,过程如下所述:取冻存的PHH细胞,复苏,计数,调整细胞到6×105细胞/ml,同时应用Lipofectamine RNAiMax将siRNA转入细胞,以每孔54,000个细胞的密度接种到96孔板中,每孔加入PPH培养基100μL。细胞置于5%CO2、37℃孵箱中培养。48小时后,去除培养基并收集细胞用于RNA提取。根据说明书使用96Kit提取总RNA。
siRNA缀合物(siRNA缀合物终浓度为100nM和10nM,每浓度设置两个重复)通过自由摄取进入PHH细胞,过程如下所述:取冻存的PHH细胞,复苏,计数,调整细 胞到6×105细胞/ml,加入siRNA缀合物,以每孔54,000个细胞的密度接种到96孔板中,每孔培养液为100μl。细胞置于5%CO2、37℃孵箱中培养。48小时后,去除培养基并收集细胞用于RNA提取。根据说明书使用96Kit提取总RNA。
参照实施例6类似的方法,通过逆转录反应将提取的总RNA逆转录为cDNA。C5cDNA将通过qPCR进行检测。GAPDH cDNA将作为内部对照进行平行检测。PCR反应程序为:95℃10分钟,然后进入循环模式,95℃15秒,随后60℃,60秒,共40个循环。
7.3结果分析
a)使用Quant Studio 7软件采用默认设置,自动计算Ct值;
b)使用以下公式计算基因的相对表达量:
ΔCt=Ct(目的基因)–Ct(GAPDH)
ΔΔCt=ΔCt(检测样品组)-ΔCt(Mock组)
相对于Mock组的mRNA表达=2-ΔΔCt,其中Mock组表示和检测样品组相比,未加入siRNA缀合物的组。
抑制率(%)=(Mock组mRNA相对表达量–检测样品组mRNA相对表达量)/Mock组mRNA相对表达量×100%。
表23



其中的L96也即式I所示的缀合物基团GalNAc,[GNA]表示其右侧相邻的一个核糖核苷酸为存在GNA修饰的核糖核苷酸。
实施例8:siRNA缀合物在人源化小鼠中对人C5基因表达的抑制作用
6-8周龄的C57BL/6-hC5小鼠(由上海南方模式生物科技股份有限公司提供)进入饲养设施,适应性喂养7天后,以3mg/kg的单一剂量对小鼠分别皮下给药N-ER-FY008029-002M2L96、N-ER-FY008029-002M3L96、N-ER-FY008036M2L96、N-ER-FY008036M3L96、N-ER-FY008036M7L96、N-ER-FY008081M3L96和N-ER-FY008085M3L96(每组6只小鼠)。给药后第7日、第14日、第21日、第28日和第35日检测血清hC5蛋白表达量,由此得出siRNA缀合物对hC5蛋白表达的抑制率。
表24 siRNA缀合物对hC5蛋白抑制率
从表24可以看出,本公开的siRNA缀合物在体内对hC5基因表达的蛋白具有较高的抑制活性,能够长时间降低hC5蛋白水平,在实验期间长达35天的抑制率结果中均能够达到78%以上的抑制率,在第7天至第28天的抑制率结果中,各缀合物均出现78%以上的抑制率,说明设计的化合物能较好的抑制hC5蛋白的生成。
实施例9 siRNA缀合物在CD-1小鼠中的血浆动力学研究
试验动物:CD-1小鼠,SPF级,雄性,30g左右,购买于斯贝福(北京)生物技术有限公司。
给药剂量和方式:siRNA缀合物在3mg/kg(10mL/kg)的剂量下给药,随机分组后单次皮下注射给药,每组6只小鼠。
样品采集:采集给药后0.0833、0.25、0.5、1、2、4、8、24、36、48h全血样品,共10个点。每组前3只采集0.0833、0.5、2、8、36h,后3只采集0.25、1、4、24、48h,采集全血后离心分离血浆进行检测分析。
样品检测与分析:采用LC-MS/MS方法检测各时间点血浆样品中原形药物的浓度,使用WinNonlin软件计算PK参数:Cmax、Tmax、AUC、MRT、t1/2
从该实验中可以得出,本公开的siRNA缀合物在血浆中半衰期较短,清除较快。
实施例10 siRNA缀合物在CD-1小鼠中的组织分布试验
试验动物:CD-1小鼠,SPF级,雄性,30g左右,购买于斯贝福(北京)生物技术有限公司。
给药剂量和方式:siRNA缀合物在3mg/kg(10mL/kg)的剂量下给药,随机分组后单次皮下注射给药,每个时间点3只动物,共24只小鼠。
样品采集:
给药后24h:采集血浆、肝、肾、脾;
给药后72h:采集血浆、肝、肾、脾;
给药后168h(1周):采集血浆、肝、肾、脾、脑、心、肺、胃、小肠、肌肉、睾丸;
给药后336h(2周):采集血浆、肝、肾、脾;
给药后672h(4周):采集血浆、肝、肾、脾、脑、心、肺、胃、小肠、肌肉、睾丸;给药后1008h(6周):采集血浆、肝、肾、脾;
给药后1344h(8周):采集血浆、肝、肾、脾;
给药后1680h(10周):采集血浆、肝、肾、脾、脑、心、肺、胃、小肠、肌肉、睾丸。
样品检测与分析:采用LC-MS/MS方法检测各时间点血浆和组织样品中原形药物的浓度,采用梯形面积法计算血浆及组织中的AUC。
从该实验中可以得出,本公开的siRNA缀合物主要富集于肝脏,在组织中保留时间较长,具有很好的稳定性。
实施例11 siRNA缀合物单次皮下注射C57小鼠给予MTD试验
试验动物:C57小鼠,SPF级,雄性,25g左右,购买于斯贝福(北京)生物技术有限公司。动物根据适应期最后1天的体重,采用体重随机区组的方法,具体剂量设计和分组如下表25所示:
表25

检测指标:
临床观察:给药日连续观察4小时,恢复期每天至少进行一次临床观察。
体重:对所有存活动物每周进行2次体重称量。
免疫毒性:MTD剂量组动物于D1给药后1h±2min,4h±5min,8h±10min,24h±20min交替采血,每个时间点采集3只/性别/组动物,检测细胞因子(IFN-γ、TNF-α、IL-2/6/8)。
毒代动力学:MTD剂量组动物于D1给药前、给药后30min±2min,1h±2min,4h±5min,8h±10min,24h±20min交替采血,每个时间点采集3只/性别/组动物,检测血药浓度。
血液生化学:主试验组动物于D28剖检,卫星组动物于D7、D14、D21、D28分批次剖检,检测血液生化学。
组织分布:主试验组动物于D28剖检,卫星组动物于D7、D14、D21、D28分批次剖检,采集血、肝,检测组织药物浓度。
组织病理学检查:主试验组动物于D28剖检,采集主要脏器(心、肝、脾、肺、肾、脑、肾上腺、胸腺、胃、子宫/睾丸、卵巢/附睾)以及发现异常的组织或脏器,取材并固定,进行组织病理学检查。
从该实验中可以得出,本公开的siRNA缀合物毒性较低,具有优异的用药安全窗口。
本公开的上述实施例仅是为清楚地说明本公开所作的举例,而并非是对本公开的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开权利要求的保护范围之内。

Claims (45)

  1. 一种双链核糖核酸,所述双链核糖核酸包括正义链和反义链,所述正义链与所述反义链互补和/或基本上反向互补形成所述双链核糖核酸的双链区;
    其中,所述正义链包含与靶标序列中至少15个连续核苷酸的差异不超过3个核苷酸的序列A,所述反义链包含与靶标序列中至少15个连续核苷酸的反向互补序列的差异不超过3个核苷酸的序列B;
    所述靶标序列选自如SEQ ID NO:1-7、SEQ ID NO:595-614任一项所示的核苷酸序列。
  2. 根据权利要求1所述的双链核糖核酸,其中,所述靶标序列选自如SEQ ID NO:8-51、SEQ ID NO:615-657任一项所示的核苷酸序列,所述正义链包含如SEQ ID NO:8-51、SEQ ID NO:615-657任一项所示的核苷酸序列中至少15个连续核苷酸组成的序列A,所述反义链包含如SEQ ID NO:8-51、SEQ ID NO:615-657任一项所示的核苷酸序列中至少15个连续核苷酸组成的序列反向互补和/或基本上反向互补的序列B。
  3. 根据权利要求1或2所述的双链核糖核酸,其中,所述正义链由15-28个核苷酸组成,优选19-25个核苷酸,更优选19-23个核苷酸,更优选19、21或23个核苷酸。
  4. 根据权利要求3所述的双链核糖核酸,其中,所述正义链的核苷酸序列为SEQ ID NO:8-51、SEQ ID NO:615-657任一项所示的核苷酸序列中的15-28个连续核苷酸组成的序列A,优选19-25个连续核苷酸,更优选19-23个连续核苷酸,更优选19、21或23个核苷酸。
  5. 根据权利要求1-4任一项所述的双链核糖核酸,其中,所述反义链由15-28个核苷酸组成,优选19-25个核苷酸,更优选19-23个核苷酸,更优选19、21或23个核苷酸。
  6. 根据权利要求5所述的双链核糖核酸,其中,所述反义链的核苷酸序列是与SEQ ID NO:8-51、SEQ ID NO:615-657任一项所示的核苷酸序列中的15-28个连续核苷酸组成的序列反向互补和/或基本上反向互补的序列B,优选19-25个连续核苷酸,更优选19-23个连续核苷酸,更优选19、21或23个核苷酸。
  7. 根据权利要求1-6任一项所述的双链核糖核酸,其中,所述双链区的长度为15-25个核苷酸,优选19-23个核苷酸,更优选19-21个核苷酸,更优选19、21或23个核苷酸。
  8. 根据权利要求1-7任一项所述的双链核糖核酸,其中,
    所述正义链与所述反义链互补形成所述双链区,且所述正义链的3’末端具有1-2个延伸出所述双链区的突出的核苷酸,所述反义链的3’末端形成平末端;或者,
    所述正义链与所述反义链互补形成所述双链区,且所述反义链的3’末端具有1-2个延伸出所述双链区的突出的核苷酸,所述正义链的3’末端形成平末端;或者,
    所述正义链与所述反义链互补形成所述双链区,且所述正义链与所述反义链的3’末端均具有1-2个延伸出所述双链区的突出的核苷酸;或者,
    所述正义链与所述反义链互补形成所述双链区,且所述正义链与所述反义链的3’末端均形成平末端。
  9. 根据权利要求1-8任一项所述的双链核糖核酸,其中,所述正义链与所述反义链选自如下组合:
    125)所述正义链包含如SEQ ID NO:283所示的核苷酸序列,所述反义链包含如SEQ ID NO:370所示的核苷酸序列;
    1)所述正义链包含如SEQ ID NO:52所示的核苷酸序列,所述反义链包含如SEQ ID NO:145所示的核苷酸序列;
    2)所述正义链包含如SEQ ID NO:53所示的核苷酸序列,所述反义链包含如SEQ ID NO:146所示的核苷酸序列;
    3)所述正义链包含如SEQ ID NO:54所示的核苷酸序列,所述反义链包含如SEQ ID NO:147所示的核苷酸序列;
    4)所述正义链包含如SEQ ID NO:55所示的核苷酸序列,所述反义链包含如SEQ ID NO:148所示的核苷酸序列;
    5)所述正义链包含如SEQ ID NO:56所示的核苷酸序列,所述反义链包含如SEQ ID NO:149所示的核苷酸序列;
    6)所述正义链包含如SEQ ID NO:57所示的核苷酸序列,所述反义链包含如SEQ ID NO:150所示的核苷酸序列;
    7)所述正义链包含如SEQ ID NO:58所示的核苷酸序列,所述反义链包含如SEQ ID NO:151所示的核苷酸序列;
    8)所述正义链包含如SEQ ID NO:59所示的核苷酸序列,所述反义链包含如SEQ ID NO:152所示的核苷酸序列;
    9)所述正义链包含如SEQ ID NO:60所示的核苷酸序列,所述反义链包含如SEQ ID NO:153所示的核苷酸序列;
    10)所述正义链包含如SEQ ID NO:61所示的核苷酸序列,所述反义链包含如SEQ ID NO:154所示的核苷酸序列;
    11)所述正义链包含如SEQ ID NO:62所示的核苷酸序列,所述反义链包含如SEQ ID NO:155所示的核苷酸序列;
    12)所述正义链包含如SEQ ID NO:63所示的核苷酸序列,所述反义链包含如SEQ ID NO:156所示的核苷酸序列;
    13)所述正义链包含如SEQ ID NO:64所示的核苷酸序列,所述反义链包含如SEQ ID NO:157所示的核苷酸序列;
    14)所述正义链包含如SEQ ID NO:65所示的核苷酸序列,所述反义链包含如SEQ ID NO:158所示的核苷酸序列;
    15)所述正义链包含如SEQ ID NO:66所示的核苷酸序列,所述反义链包含如SEQ ID NO:159所示的核苷酸序列;
    16)所述正义链包含如SEQ ID NO:67所示的核苷酸序列,所述反义链包含如SEQ ID NO:160所示的核苷酸序列;
    17)所述正义链包含如SEQ ID NO:68所示的核苷酸序列,所述反义链包含如SEQ ID NO:161所示的核苷酸序列;
    18)所述正义链包含如SEQ ID NO:69所示的核苷酸序列,所述反义链包含如SEQ ID NO:162所示的核苷酸序列;
    19)所述正义链包含如SEQ ID NO:70所示的核苷酸序列,所述反义链包含如SEQ ID NO:163所示的核苷酸序列;
    20)所述正义链包含如SEQ ID NO:71所示的核苷酸序列,所述反义链包含如SEQ ID NO:164所示的核苷酸序列;
    21)所述正义链包含如SEQ ID NO:72所示的核苷酸序列,所述反义链包含如SEQ ID NO:165所示的核苷酸序列;
    22)所述正义链包含如SEQ ID NO:73所示的核苷酸序列,所述反义链包含如SEQ ID NO:166所示的核苷酸序列;
    23)所述正义链包含如SEQ ID NO:74所示的核苷酸序列,所述反义链包含如SEQ ID NO:167所示的核苷酸序列;
    24)所述正义链包含如SEQ ID NO:75所示的核苷酸序列,所述反义链包含如SEQ ID NO:168所示的核苷酸序列;
    25)所述正义链包含如SEQ ID NO:76所示的核苷酸序列,所述反义链包含如SEQ ID NO:169所示的核苷酸序列;
    26)所述正义链包含如SEQ ID NO:77所示的核苷酸序列,所述反义链包含如SEQ ID NO:170所示的核苷酸序列;
    27)所述正义链包含如SEQ ID NO:78所示的核苷酸序列,所述反义链包含如SEQ ID  NO:171所示的核苷酸序列;
    28)所述正义链包含如SEQ ID NO:79所示的核苷酸序列,所述反义链包含如SEQ ID NO:172所示的核苷酸序列;
    29)所述正义链包含如SEQ ID NO:80所示的核苷酸序列,所述反义链包含如SEQ ID NO:173所示的核苷酸序列;
    30)所述正义链包含如SEQ ID NO:81所示的核苷酸序列,所述反义链包含如SEQ ID NO:174所示的核苷酸序列;
    31)所述正义链包含如SEQ ID NO:82所示的核苷酸序列,所述反义链包含如SEQ ID NO:175所示的核苷酸序列;
    32)所述正义链包含如SEQ ID NO:83所示的核苷酸序列,所述反义链包含如SEQ ID NO:176所示的核苷酸序列;
    33)所述正义链包含如SEQ ID NO:84所示的核苷酸序列,所述反义链包含如SEQ ID NO:177所示的核苷酸序列;
    34)所述正义链包含如SEQ ID NO:85所示的核苷酸序列,所述反义链包含如SEQ ID NO:178所示的核苷酸序列;
    35)所述正义链包含如SEQ ID NO:86所示的核苷酸序列,所述反义链包含如SEQ ID NO:179所示的核苷酸序列;
    36)所述正义链包含如SEQ ID NO:87所示的核苷酸序列,所述反义链包含如SEQ ID NO:180所示的核苷酸序列;
    37)所述正义链包含如SEQ ID NO:88所示的核苷酸序列,所述反义链包含如SEQ ID NO:181所示的核苷酸序列;
    38)所述正义链包含如SEQ ID NO:89所示的核苷酸序列,所述反义链包含如SEQ ID NO:182所示的核苷酸序列;
    39)所述正义链包含如SEQ ID NO:90所示的核苷酸序列,所述反义链包含如SEQ ID NO:183所示的核苷酸序列;
    40)所述正义链包含如SEQ ID NO:91所示的核苷酸序列,所述反义链包含如SEQ ID NO:184所示的核苷酸序列;
    41)所述正义链包含如SEQ ID NO:92所示的核苷酸序列,所述反义链包含如SEQ ID NO:185所示的核苷酸序列;
    42)所述正义链包含如SEQ ID NO:93所示的核苷酸序列,所述反义链包含如SEQ ID NO:186所示的核苷酸序列;
    43)所述正义链包含如SEQ ID NO:94所示的核苷酸序列,所述反义链包含如SEQ ID NO:187所示的核苷酸序列;
    44)所述正义链包含如SEQ ID NO:95所示的核苷酸序列,所述反义链包含如SEQ ID NO:188所示的核苷酸序列;
    45)所述正义链包含如SEQ ID NO:96所示的核苷酸序列,所述反义链包含如SEQ ID NO:189所示的核苷酸序列;
    46)所述正义链包含如SEQ ID NO:97所示的核苷酸序列,所述反义链包含如SEQ ID NO:190所示的核苷酸序列;
    47)所述正义链包含如SEQ ID NO:98所示的核苷酸序列,所述反义链包含如SEQ ID NO:191所示的核苷酸序列;
    48)所述正义链包含如SEQ ID NO:99所示的核苷酸序列,所述反义链包含如SEQ ID NO:192所示的核苷酸序列;
    49)所述正义链包含如SEQ ID NO:100所示的核苷酸序列,所述反义链包含如SEQ ID NO:193所示的核苷酸序列;
    50)所述正义链包含如SEQ ID NO:101所示的核苷酸序列,所述反义链包含如SEQ ID NO:194所示的核苷酸序列;
    51)所述正义链包含如SEQ ID NO:102所示的核苷酸序列,所述反义链包含如SEQ ID NO:195所示的核苷酸序列;
    52)所述正义链包含如SEQ ID NO:103所示的核苷酸序列,所述反义链包含如SEQ ID NO:196所示的核苷酸序列;
    53)所述正义链包含如SEQ ID NO:104所示的核苷酸序列,所述反义链包含如SEQ ID NO:197所示的核苷酸序列;
    54)所述正义链包含如SEQ ID NO:105所示的核苷酸序列,所述反义链包含如SEQ ID NO:198所示的核苷酸序列;
    55)所述正义链包含如SEQ ID NO:106所示的核苷酸序列,所述反义链包含如SEQ ID NO:199所示的核苷酸序列;
    56)所述正义链包含如SEQ ID NO:107所示的核苷酸序列,所述反义链包含如SEQ ID NO:200所示的核苷酸序列;
    57)所述正义链包含如SEQ ID NO:108所示的核苷酸序列,所述反义链包含如SEQ ID NO:201所示的核苷酸序列;
    58)所述正义链包含如SEQ ID NO:109所示的核苷酸序列,所述反义链包含如SEQ ID NO:202所示的核苷酸序列;
    59)所述正义链包含如SEQ ID NO:110所示的核苷酸序列,所述反义链包含如SEQ ID NO:203所示的核苷酸序列;
    60)所述正义链包含如SEQ ID NO:111所示的核苷酸序列,所述反义链包含如SEQ ID NO:204所示的核苷酸序列;
    61)所述正义链包含如SEQ ID NO:112所示的核苷酸序列,所述反义链包含如SEQ ID NO:205所示的核苷酸序列;
    62)所述正义链包含如SEQ ID NO:113所示的核苷酸序列,所述反义链包含如SEQ ID NO:206所示的核苷酸序列;
    63)所述正义链包含如SEQ ID NO:114所示的核苷酸序列,所述反义链包含如SEQ ID NO:207所示的核苷酸序列;
    64)所述正义链包含如SEQ ID NO:115所示的核苷酸序列,所述反义链包含如SEQ ID NO:208所示的核苷酸序列;
    65)所述正义链包含如SEQ ID NO:116所示的核苷酸序列,所述反义链包含如SEQ ID NO:209所示的核苷酸序列;
    66)所述正义链包含如SEQ ID NO:117所示的核苷酸序列,所述反义链包含如SEQ ID NO:210所示的核苷酸序列;
    67)所述正义链包含如SEQ ID NO:118所示的核苷酸序列,所述反义链包含如SEQ ID NO:211所示的核苷酸序列;
    68)所述正义链包含如SEQ ID NO:119所示的核苷酸序列,所述反义链包含如SEQ ID NO:212所示的核苷酸序列;
    69)所述正义链包含如SEQ ID NO:120所示的核苷酸序列,所述反义链包含如SEQ ID NO:213所示的核苷酸序列;
    70)所述正义链包含如SEQ ID NO:121所示的核苷酸序列,所述反义链包含如SEQ ID NO:214所示的核苷酸序列;
    71)所述正义链包含如SEQ ID NO:122所示的核苷酸序列,所述反义链包含如SEQ ID NO:215所示的核苷酸序列;
    72)所述正义链包含如SEQ ID NO:123所示的核苷酸序列,所述反义链包含如SEQ ID  NO:216所示的核苷酸序列;
    73)所述正义链包含如SEQ ID NO:124所示的核苷酸序列,所述反义链包含如SEQ ID NO:217所示的核苷酸序列;
    74)所述正义链包含如SEQ ID NO:125所示的核苷酸序列,所述反义链包含如SEQ ID NO:218所示的核苷酸序列;
    75)所述正义链包含如SEQ ID NO:126所示的核苷酸序列,所述反义链包含如SEQ ID NO:219所示的核苷酸序列;
    76)所述正义链包含如SEQ ID NO:127所示的核苷酸序列,所述反义链包含如SEQ ID NO:220所示的核苷酸序列;
    77)所述正义链包含如SEQ ID NO:128所示的核苷酸序列,所述反义链包含如SEQ ID NO:221所示的核苷酸序列;
    78)所述正义链包含如SEQ ID NO:129所示的核苷酸序列,所述反义链包含如SEQ ID NO:222所示的核苷酸序列;
    79)所述正义链包含如SEQ ID NO:130所示的核苷酸序列,所述反义链包含如SEQ ID NO:223所示的核苷酸序列;
    80)所述正义链包含如SEQ ID NO:131所示的核苷酸序列,所述反义链包含如SEQ ID NO:224所示的核苷酸序列;
    81)所述正义链包含如SEQ ID NO:132所示的核苷酸序列,所述反义链包含如SEQ ID NO:225所示的核苷酸序列;
    82)所述正义链包含如SEQ ID NO:133所示的核苷酸序列,所述反义链包含如SEQ ID NO:226所示的核苷酸序列;
    83)所述正义链包含如SEQ ID NO:134所示的核苷酸序列,所述反义链包含如SEQ ID NO:227所示的核苷酸序列;
    84)所述正义链包含如SEQ ID NO:135所示的核苷酸序列,所述反义链包含如SEQ ID NO:228所示的核苷酸序列;
    85)所述正义链包含如SEQ ID NO:136所示的核苷酸序列,所述反义链包含如SEQ ID NO:229所示的核苷酸序列;
    86)所述正义链包含如SEQ ID NO:137所示的核苷酸序列,所述反义链包含如SEQ ID NO:230所示的核苷酸序列;
    87)所述正义链包含如SEQ ID NO:138所示的核苷酸序列,所述反义链包含如SEQ ID NO:231所示的核苷酸序列;
    88)所述正义链包含如SEQ ID NO:139所示的核苷酸序列,所述反义链包含如SEQ ID NO:232所示的核苷酸序列;
    89)所述正义链包含如SEQ ID NO:140所示的核苷酸序列,所述反义链包含如SEQ ID NO:233所示的核苷酸序列;
    90)所述正义链包含如SEQ ID NO:141所示的核苷酸序列,所述反义链包含如SEQ ID NO:234所示的核苷酸序列;
    91)所述正义链包含如SEQ ID NO:142所示的核苷酸序列,所述反义链包含如SEQ ID NO:235所示的核苷酸序列;
    92)所述正义链包含如SEQ ID NO:143所示的核苷酸序列,所述反义链包含如SEQ ID NO:236所示的核苷酸序列;
    93)所述正义链包含如SEQ ID NO:144所示的核苷酸序列,所述反义链包含如SEQ ID NO:237所示的核苷酸序列;
    106)所述正义链包含如SEQ ID NO:262所示的核苷酸序列,所述反义链包含如SEQ ID NO:349所示的核苷酸序列;
    107)所述正义链包含如SEQ ID NO:263所示的核苷酸序列,所述反义链包含如SEQ ID NO:350所示的核苷酸序列;
    108)所述正义链包含如SEQ ID NO:264所示的核苷酸序列,所述反义链包含如SEQ ID NO:351所示的核苷酸序列;
    109)所述正义链包含如SEQ ID NO:265所示的核苷酸序列,所述反义链包含如SEQ ID NO:352所示的核苷酸序列;
    110)所述正义链包含如SEQ ID NO:266所示的核苷酸序列,所述反义链包含如SEQ ID NO:353所示的核苷酸序列;
    111)所述正义链包含如SEQ ID NO:267所示的核苷酸序列,所述反义链包含如SEQ ID NO:354所示的核苷酸序列;
    112)所述正义链包含如SEQ ID NO:268所示的核苷酸序列,所述反义链包含如SEQ ID NO:355所示的核苷酸序列;
    113)所述正义链包含如SEQ ID NO:270所示的核苷酸序列,所述反义链包含如SEQ ID NO:357所示的核苷酸序列;
    114)所述正义链包含如SEQ ID NO:271所示的核苷酸序列,所述反义链包含如SEQ ID NO:358所示的核苷酸序列;
    115)所述正义链包含如SEQ ID NO:272所示的核苷酸序列,所述反义链包含如SEQ ID NO:359所示的核苷酸序列;
    116)所述正义链包含如SEQ ID NO:273所示的核苷酸序列,所述反义链包含如SEQ ID NO:360所示的核苷酸序列;
    117)所述正义链包含如SEQ ID NO:274所示的核苷酸序列,所述反义链包含如SEQ ID NO:361所示的核苷酸序列;
    118)所述正义链包含如SEQ ID NO:276所示的核苷酸序列,所述反义链包含如SEQ ID NO:363所示的核苷酸序列;
    119)所述正义链包含如SEQ ID NO:277所示的核苷酸序列,所述反义链包含如SEQ ID NO:364所示的核苷酸序列;
    120)所述正义链包含如SEQ ID NO:278所示的核苷酸序列,所述反义链包含如SEQ ID NO:365所示的核苷酸序列;
    121)所述正义链包含如SEQ ID NO:279所示的核苷酸序列,所述反义链包含如SEQ ID NO:366所示的核苷酸序列;
    122)所述正义链包含如SEQ ID NO:280所示的核苷酸序列,所述反义链包含如SEQ ID NO:367所示的核苷酸序列;
    123)所述正义链包含如SEQ ID NO:281所示的核苷酸序列,所述反义链包含如SEQ ID NO:368所示的核苷酸序列;
    124)所述正义链包含如SEQ ID NO:282所示的核苷酸序列,所述反义链包含如SEQ ID NO:369所示的核苷酸序列;
    126)所述正义链包含如SEQ ID NO:284所示的核苷酸序列,所述反义链包含如SEQ ID NO:371所示的核苷酸序列;
    127)所述正义链包含如SEQ ID NO:285所示的核苷酸序列,所述反义链包含如SEQ ID NO:372所示的核苷酸序列;
    128)所述正义链包含如SEQ ID NO:286所示的核苷酸序列,所述反义链包含如SEQ ID NO:373所示的核苷酸序列;
    129)所述正义链包含如SEQ ID NO:288所示的核苷酸序列,所述反义链包含如SEQ ID NO:375所示的核苷酸序列;
    130)所述正义链包含如SEQ ID NO:289所示的核苷酸序列,所述反义链包含如SEQ ID  NO:376所示的核苷酸序列;
    131)所述正义链包含如SEQ ID NO:290所示的核苷酸序列,所述反义链包含如SEQ ID NO:377所示的核苷酸序列;
    132)所述正义链包含如SEQ ID NO:291所示的核苷酸序列,所述反义链包含如SEQ ID NO:378所示的核苷酸序列;
    133)所述正义链包含如SEQ ID NO:292所示的核苷酸序列,所述反义链包含如SEQ ID NO:379所示的核苷酸序列;
    134)所述正义链包含如SEQ ID NO:293所示的核苷酸序列,所述反义链包含如SEQ ID NO:380所示的核苷酸序列;
    135)所述正义链包含如SEQ ID NO:294所示的核苷酸序列,所述反义链包含如SEQ ID NO:381所示的核苷酸序列;
    136)所述正义链包含如SEQ ID NO:295所示的核苷酸序列,所述反义链包含如SEQ ID NO:382所示的核苷酸序列;
    137)所述正义链包含如SEQ ID NO:296所示的核苷酸序列,所述反义链包含如SEQ ID NO:383所示的核苷酸序列;
    138)所述正义链包含如SEQ ID NO:297所示的核苷酸序列,所述反义链包含如SEQ ID NO:384所示的核苷酸序列;
    139)所述正义链包含如SEQ ID NO:298所示的核苷酸序列,所述反义链包含如SEQ ID NO:385所示的核苷酸序列;
    140)所述正义链包含如SEQ ID NO:299所示的核苷酸序列,所述反义链包含如SEQ ID NO:386所示的核苷酸序列;
    141)所述正义链包含如SEQ ID NO:300所示的核苷酸序列,所述反义链包含如SEQ ID NO:387所示的核苷酸序列;
    142)所述正义链包含如SEQ ID NO:302所示的核苷酸序列,所述反义链包含如SEQ ID NO:389所示的核苷酸序列;
    143)所述正义链包含如SEQ ID NO:303所示的核苷酸序列,所述反义链包含如SEQ ID NO:390所示的核苷酸序列;
    144)所述正义链包含如SEQ ID NO:305所示的核苷酸序列,所述反义链包含如SEQ ID NO:392所示的核苷酸序列;
    145)所述正义链包含如SEQ ID NO:306所示的核苷酸序列,所述反义链包含如SEQ ID NO:393所示的核苷酸序列;
    146)所述正义链包含如SEQ ID NO:307所示的核苷酸序列,所述反义链包含如SEQ ID NO:394所示的核苷酸序列;
    147)所述正义链包含如SEQ ID NO:308所示的核苷酸序列,所述反义链包含如SEQ ID NO:395所示的核苷酸序列;
    148)所述正义链包含如SEQ ID NO:310所示的核苷酸序列,所述反义链包含如SEQ ID NO:397所示的核苷酸序列;
    149)所述正义链包含如SEQ ID NO:311所示的核苷酸序列,所述反义链包含如SEQ ID NO:398所示的核苷酸序列;
    150)所述正义链包含如SEQ ID NO:312所示的核苷酸序列,所述反义链包含如SEQ ID NO:399所示的核苷酸序列;
    151)所述正义链包含如SEQ ID NO:315所示的核苷酸序列,所述反义链包含如SEQ ID NO:402所示的核苷酸序列;
    152)所述正义链包含如SEQ ID NO:316所示的核苷酸序列,所述反义链包含如SEQ ID NO:403所示的核苷酸序列;
    153)所述正义链包含如SEQ ID NO:317所示的核苷酸序列,所述反义链包含如SEQ ID NO:404所示的核苷酸序列;
    154)所述正义链包含如SEQ ID NO:318所示的核苷酸序列,所述反义链包含如SEQ ID NO:405所示的核苷酸序列;
    155)所述正义链包含如SEQ ID NO:319所示的核苷酸序列,所述反义链包含如SEQ ID NO:406所示的核苷酸序列;
    156)所述正义链包含如SEQ ID NO:320所示的核苷酸序列,所述反义链包含如SEQ ID NO:407所示的核苷酸序列;
    157)所述正义链包含如SEQ ID NO:321所示的核苷酸序列,所述反义链包含如SEQ ID NO:408所示的核苷酸序列;
    158)所述正义链包含如SEQ ID NO:322所示的核苷酸序列,所述反义链包含如SEQ ID NO:409所示的核苷酸序列;
    159)所述正义链包含如SEQ ID NO:323所示的核苷酸序列,所述反义链包含如SEQ ID NO:410所示的核苷酸序列;
    160)所述正义链包含如SEQ ID NO:324所示的核苷酸序列,所述反义链包含如SEQ ID NO:411所示的核苷酸序列;
    161)所述正义链包含如SEQ ID NO:325所示的核苷酸序列,所述反义链包含如SEQ ID NO:412所示的核苷酸序列;
    162)所述正义链包含如SEQ ID NO:326所示的核苷酸序列,所述反义链包含如SEQ ID NO:413所示的核苷酸序列;
    163)所述正义链包含如SEQ ID NO:327所示的核苷酸序列,所述反义链包含如SEQ ID NO:414所示的核苷酸序列;
    164)所述正义链包含如SEQ ID NO:328所示的核苷酸序列,所述反义链包含如SEQ ID NO:415所示的核苷酸序列;
    165)所述正义链包含如SEQ ID NO:329所示的核苷酸序列,所述反义链包含如SEQ ID NO:416所示的核苷酸序列;
    166)所述正义链包含如SEQ ID NO:330所示的核苷酸序列,所述反义链包含如SEQ ID NO:417所示的核苷酸序列;
    167)所述正义链包含如SEQ ID NO:331所示的核苷酸序列,所述反义链包含如SEQ ID NO:418所示的核苷酸序列;
    168)所述正义链包含如SEQ ID NO:332所示的核苷酸序列,所述反义链包含如SEQ ID NO:419所示的核苷酸序列;
    169)所述正义链包含如SEQ ID NO:334所示的核苷酸序列,所述反义链包含如SEQ ID NO:421所示的核苷酸序列;
    170)所述正义链包含如SEQ ID NO:335所示的核苷酸序列,所述反义链包含如SEQ ID NO:422所示的核苷酸序列;
    171)所述正义链包含如SEQ ID NO:336所示的核苷酸序列,所述反义链包含如SEQ ID NO:423所示的核苷酸序列;
    172)所述正义链包含如SEQ ID NO:337所示的核苷酸序列,所述反义链包含如SEQ ID NO:424所示的核苷酸序列;
    173)所述正义链包含如SEQ ID NO:338所示的核苷酸序列,所述反义链包含如SEQ ID NO:425所示的核苷酸序列;
    174)所述正义链包含如SEQ ID NO:340所示的核苷酸序列,所述反义链包含如SEQ ID NO:427所示的核苷酸序列;
    175)所述正义链包含如SEQ ID NO:341所示的核苷酸序列,所述反义链包含如SEQ ID  NO:428所示的核苷酸序列;
    176)所述正义链包含如SEQ ID NO:344所示的核苷酸序列,所述反义链包含如SEQ ID NO:431所示的核苷酸序列;
    177)所述正义链包含如SEQ ID NO:345所示的核苷酸序列,所述反义链包含如SEQ ID NO:432所示的核苷酸序列;
    178)所述正义链包含如SEQ ID NO:346所示的核苷酸序列,所述反义链包含如SEQ ID NO:433所示的核苷酸序列;
    179)所述正义链包含如SEQ ID NO:347所示的核苷酸序列,所述反义链包含如SEQ ID NO:434所示的核苷酸序列;
    231)所述正义链包含如SEQ ID NO:530所示的核苷酸序列,所述反义链包含如SEQ ID NO:541所示的核苷酸序列;
    232)所述正义链包含如SEQ ID NO:531所示的核苷酸序列,所述反义链包含如SEQ ID NO:542所示的核苷酸序列;
    233)所述正义链包含如SEQ ID NO:532所示的核苷酸序列,所述反义链包含如SEQ ID NO:543所示的核苷酸序列;
    234)所述正义链包含如SEQ ID NO:533所示的核苷酸序列,所述反义链包含如SEQ ID NO:544所示的核苷酸序列;
    235)所述正义链包含如SEQ ID NO:534所示的核苷酸序列,所述反义链包含如SEQ ID NO:545所示的核苷酸序列;
    236)所述正义链包含如SEQ ID NO:535所示的核苷酸序列,所述反义链包含如SEQ ID NO:546所示的核苷酸序列;
    237)所述正义链包含如SEQ ID NO:536所示的核苷酸序列,所述反义链包含如SEQ ID NO:547所示的核苷酸序列;
    238)所述正义链包含如SEQ ID NO:537所示的核苷酸序列,所述反义链包含如SEQ ID NO:548所示的核苷酸序列;
    239)所述正义链包含如SEQ ID NO:538所示的核苷酸序列,所述反义链包含如SEQ ID NO:549所示的核苷酸序列;
    240)所述正义链包含如SEQ ID NO:539所示的核苷酸序列,所述反义链包含如SEQ ID NO:550所示的核苷酸序列;
    241)所述正义链包含如SEQ ID NO:540所示的核苷酸序列,所述反义链包含如SEQ ID NO:551所示的核苷酸序列。
  10. 根据权利要求1-9任一项所述的双链核糖核酸,其中,所述正义链中每个核苷酸彼此独立地为修饰的核苷酸或未修饰的核苷酸,和/或,所述反义链中每个核苷酸彼此独立地为修饰的核苷酸或未修饰的核苷酸。
  11. 根据权利要求1-10任一项所述的双链核糖核酸,其中,所述正义链中任意相连的两个核苷酸由磷酸二酯键或硫代磷酸二酯键连接,和/或,所述反义链中任意相连的两个核苷酸由磷酸二酯键或硫代磷酸二酯键连接。
  12. 根据权利要求1-11任一项所述的双链核糖核酸,其中,所述正义链的5’末端核苷酸连接5’磷酸基团或5’磷酸衍生基团,和/或,所述反义链的5’末端核苷酸连接5’磷酸基团或5’磷酸衍生基团。
  13. 根据权利要求1-12任一项所述的双链核糖核酸,其中,所述双链核糖核酸为siRNA。
  14. 根据权利要求1-13任一项所述的双链核糖核酸,其中,所述双链核糖核酸为用于抑制C5基因表达的siRNA。
  15. 一种双链核糖核酸修饰物,其为如权利要求1-14任一项所述的双链核糖核酸的修 饰物,所述双链核糖核酸修饰物包含如下至少一种的化学修饰:
    (1)正义链中至少一个核苷酸的修饰,
    (2)正义链中至少一个位置处的磷酸二酯键的修饰,
    (3)反义链中至少一个核苷酸的修饰,
    (4)反义链中至少一个位置处的磷酸二酯键的修饰;
    任选地,所述双链核糖核酸的正义链中序列A的3’末端连接由1-2个核苷酸组成的序列D,优选由1-2个胸腺嘧啶脱氧核糖核苷酸组成的序列D;和/或,所述双链核糖核酸的反义链中序列B的3’末端连接由1-2个核苷酸组成的序列E,优选由1-2个胸腺嘧啶脱氧核糖核苷酸组成的序列E;和/或,所述双链核糖核酸的正义链中序列A的3’末端排除1-2个核苷酸后形成序列A’;
    可选地,所述双链核糖核酸修饰物的正义链和反义链选自如下的序列组合:
    所述正义链的核苷酸序列为序列A所示的序列,所述反义链的核苷酸序列为序列B所示的序列;
    或者,所述正义链的核苷酸序列为序列A所示的序列,所述反义链的核苷酸序列为序列B连接序列E所示的序列;
    或者,所述正义链的核苷酸序列为序列A连接序列D所示的序列,所述反义链的核苷酸序列为序列B所示的序列;
    或者,所述正义链的核苷酸序列为序列A连接序列D所示的序列,所述反义链的核苷酸序列为序列B连接序列E所示的序列;
    或者,所述正义链的核苷酸序列为序列A’所示的序列,所述反义链的核苷酸序列为序列B所示的序列;
    或者,所述正义链的核苷酸序列为序列A’所示的序列,所述反义链的核苷酸序列为序列B连接序列E所示的序列。
  16. 根据权利要求15所述的双链核糖核酸修饰物,其中,所述核苷酸的修饰选自2’-氟代修饰、2’-烷氧基修饰、2’-取代的烷氧基修饰、2’-烷基修饰、2’-取代的烷基修饰、2’-脱氧修饰、核苷酸衍生物修饰或其中任意两种以上的组合。
  17. 根据权利要求15或16所述的双链核糖核酸修饰物,其中,所述核苷酸的修饰选自2’-F修饰、2’-O-CH3修饰、2’-O-CH2-CH2-O-CH3修饰、2’-O-CH2-CH=CH2修饰、2’-CH2-CH2-CH=CH2修饰、2’-脱氧修饰、核苷酸衍生物修饰或其中任意两种以上的组合。
  18. 根据权利要求16或17所述的双链核糖核酸修饰物,其中,所述核苷酸衍生物修饰中的核苷酸衍生物选自异核苷酸、LNA、ENA、cET、UNA或GNA。
  19. 根据权利要求15-18任一项所述的双链核糖核酸修饰物,其中,沿5’末端向3’末端方向,所述正义链中第7位、第9位、第10位和第11位的核糖核苷酸为2’-F修饰的核糖核苷酸,所述正义链中其余位置的核糖核苷酸为2’-O-CH3修饰的核糖核苷酸。
  20. 根据权利要求15-19任一项所述的双链核糖核酸修饰物,其中,沿5’末端向3’末端方向,所述正义链包含位于如下所示位置处的硫代磷酸二酯键:
    所述正义链5’末端起始的第1个核苷酸与第2个核苷酸之间;
    所述正义链5’末端起始的第2个核苷酸与第3个核苷酸之间;
    所述正义链3’末端起始的第1个核苷酸与第2个核苷酸之间;
    所述正义链3’末端起始的第2个核苷酸与第3个核苷酸之间;
    或者,
    所述正义链包含位于如下所示位置处的硫代磷酸二酯键:
    所述正义链5’末端起始的第1个核苷酸与第2个核苷酸之间;
    所述正义链5’末端起始的第2个核苷酸与第3个核苷酸之间;
    或者,
    所述正义链包含位于如下所示位置处的硫代磷酸二酯键:
    所述正义链5’末端起始的第1个核苷酸与第2个核苷酸之间;
    所述正义链5’末端起始的第2个核苷酸与第3个核苷酸之间;
    所述正义链5’末端起始的第3个核苷酸与第4个核苷酸之间;
    所述正义链3’末端起始的第1个核苷酸与第2个核苷酸之间;
    所述正义链3’末端起始的第2个核苷酸与第3个核苷酸之间;
    所述正义链3’末端起始的第3个核苷酸与第4个核苷酸之间。
  21. 根据权利要求15-20任一项所述的双链核糖核酸修饰物,其中,沿5’末端向3’末端方向,所述反义链中任意奇数位置处的核糖核苷酸为2’-O-CH3修饰的核糖核苷酸,所述反义链中任意偶数位置处的核糖核苷酸为2’-F修饰的核糖核苷酸;
    或者,沿5’末端向3’末端方向,所述反义链中第2位、第6位、第14位和第16位的核糖核苷酸为2’-F修饰的核糖核苷酸,所述反义链中其余位置的核糖核苷酸为2’-O-CH3修饰的核糖核苷酸;
    或者,沿5’末端向3’末端方向,所述反义链中第2位、第6位、第8位、第9位、第14位和第16位的核糖核苷酸为2’-F修饰的核糖核苷酸,所述反义链中其余位置的核糖核苷酸为2’-O-CH3修饰的核糖核苷酸;
    或者,沿5’末端向3’末端方向,所述反义链中第2位、第14位和第16位的核糖核苷酸为2’-F修饰的核糖核苷酸,所述反义链中第6位的核糖核苷酸为核苷酸衍生物GNA修饰的核糖核苷酸,所述反义链中其余位置的核糖核苷酸为2’-O-CH3修饰的核糖核苷酸;
    或者,沿5’末端向3’末端方向,所述反义链中第2位、第6位、第14位和第16位的核糖核苷酸为2’-F修饰的核糖核苷酸,所述反义链中第7位的核糖核苷酸为核苷酸衍生物GNA修饰的核糖核苷酸,所述反义链中其余位置的核糖核苷酸为2’-O-CH3修饰的核糖核苷酸。
  22. 根据权利要求15-21任一项所述的双链核糖核酸修饰物,其中,沿5’末端向3’末端方向,所述反义链的5’末端的核苷酸连接5’磷酸基团或5’磷酸衍生基团。
  23. 根据权利要求15-22任一项所述的双链核糖核酸修饰物,其中,
    所述反义链包含位于如下所示位置处的硫代磷酸二酯键:
    所述反义链5’末端起始的第1个核苷酸与第2个核苷酸之间;
    所述反义链5’末端起始的第2个核苷酸与第3个核苷酸之间;所述反义链3’末端起始的第1个核苷酸与第2个核苷酸之间;
    所述反义链3’末端起始的第2个核苷酸与第3个核苷酸之间;
    或者,
    所述反义链包含位于如下所示位置处的硫代磷酸二酯键:
    所述反义链5’末端起始的第1个核苷酸与第2个核苷酸之间;
    所述反义链5’末端起始的第2个核苷酸与第3个核苷酸之间;
    所述反义链5’末端起始的第3个核苷酸与第4个核苷酸之间;
    所述反义链3’末端起始的第1个核苷酸与第2个核苷酸之间;
    所述反义链3’末端起始的第2个核苷酸与第3个核苷酸之间;
    所述反义链3’末端起始的第3个核苷酸与第4个核苷酸之间。
  24. 根据权利要求15-23任一项所述的双链核糖核酸修饰物,其中,所述双链核糖核酸修饰物的正义链具有如(a1)-(a6)任一项所示的结构:
    (a1)5’-mN1-(s)-mN2-(s)-mN3-mN4-mN5-mN6-N7f-mN8-N9f-N10f-N11f-mN12-mN13-mN14-mN15-mN16-mN17-mN18-mN19-(s)-T-(s)-T-3’,
    (a2)5’-mN1-(s)-mN2-(s)-mN3-mN4-mN5-mN6-N7f-mN8-N9f-N10f-N11f-mN12-mN13-mN14-mN15-mN16-mN17-mN18-mN19-(s)-mN20-(s)-mN21-3’,
    (a3)5’-mN1-(s)-mN2-(s)-mN3-mN4-mN5-mN6-N7f-mN8-N9f-N10f-N11f-mN12-mN13-mN14- mN15-mN16-mN17-mN18-mN19-mN20-mN21-(s)-mN22-(s)-mN23-3’,
    (a4)5’-mN1-(s)-mN2-(s)-mN3-mN4-mN5-mN6-N7f-mN8-N9f-N10f-N11f-mN12-mN13-mN14-mN15-mN16-mN17-mN18-mN19-3’,
    (a5)5’-mN1-(s)-mN2-(s)-mN3-mN4-mN5-mN6-N7f-mN8-N9f-N10f-N11f-mN12-mN13-mN14-mN15-mN16-mN17-mN18-mN19-mN20-mN21-3’,
    (a6)5’-mN1-(s)-mN2-(s)-mN3-(s)-mN4-mN5-mN6-N7f-mN8-N9f-N10f-N11f-mN12-mN13-mN14-mN15-mN16-mN17-mN18-(s)-mN19-(s)-T-(s)-T-3’;
    其中,N1-N23彼此独立地选自碱基为A、U、C或G的核糖核苷酸,
    大写字母T表示碱基为胸腺嘧啶的脱氧核糖核苷酸,
    小写字母m表示该字母m右侧相邻的一个核糖核苷酸为2’-O-CH3修饰的核糖核苷酸,
    小写字母f表示该字母f左侧相邻的一个核糖核苷酸为2’-F修饰的核糖核苷酸,
    -(s)-表示前后相邻的两个核苷酸以硫代磷酸二酯键连接。
  25. 根据权利要求15-24任一项所述的双链核糖核酸修饰物,其中,所述双链核糖核酸修饰物的反义链具有如(b1)-(b17)任一项所示的结构:
    (b1)5’-P1mN1-(s)-N2f-(s)-mN3-N4f-mN5-N6f-mN7-N8f-mN9-N10f-mN11-N12f-mN13-N14f-mN15-N16f-mN17-N18f-mN19-(s)-T-(s)-T-3’,
    (b2)5’-P1mN1-(s)-N2f-(s)-mN3-N4f-mN5-N6f-mN7-N8f-mN9-N10f-mN11-N12f-mN13-N14f-mN15-N16f-mN17-N18f-mN19-(s)-N20f-(s)-mN21-3’,
    (b3)5’-P1mN1-(s)-N2f-(s)-mN3-N4f-mN5-N6f-mN7-N8f-mN9-N10f-mN11-N12f-mN13-N14f-mN15-N16f-mN17-N18f-mN19-N20f-mN21-(s)-N22f-(s)-mN23-3’,
    (b4)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N1 4f-mN15-N16f-mN17-mN18-mN19-(s)-T-(s)-T-3’,
    (b5)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N1 4f-mN15-N16f-mN17-mN18-mN19-(s)-mN20-(s)-mN21-3’,
    (b6)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N1 4f-mN15-N16f-mN17-mN18-mN19-mN20-mN21-(s)-mN22-(s)-mN23-3’,
    (b7)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-N8f-N9f-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-T-(s)-T-3’,
    (b8)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-N8f-N9f-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-mN20-(s)-mN21-3’,
    (b9)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-N8f-N9f-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-mN20-mN21-(s)-mN22-(s)-mN23-3’,
    (b10)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-[GNA]N6-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-T-(s)-T-3’,
    (b11)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-[GNA]N6-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-mN20-(s)-mN21-3’,
    (b12)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-[GNA]N6-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-mN20-mN21-(s)-mN22-(s)-mN23-3’,
    (b13)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-[GNA]N7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-T-(s)-T-3’,
    (b14)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-[GNA]N7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-mN20-(s)-mN21-3’,
    (b15)5’-P1mN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-[GNA]N7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-mN20-mN21-(s)-mN22-(s)-mN23-3’,
    (b16)5’-P1mN1-(s)-N2f-(s)-mN3-(s)-N4f-mN5-N6f-mN7-N8f-mN9-N10f-mN11-N12f-mN13-N1 4f-mN15-N16f-mN17-N18f-(s)-mN19-(s)-T-(s)-T-3’,
    (b17)5’-EVPmN1-(s)-N2f-(s)-mN3-mN4-mN5-N6f-mN7-mN8-mN9-mN10-mN11-mN12-mN13-N14f-mN15-N16f-mN17-mN18-mN19-(s)-T-(s)-T-3’;
    其中,N1-N23彼此独立地选自碱基为A、U、C或G的核糖核苷酸,
    大写字母T表示碱基为胸腺嘧啶的脱氧核糖核苷酸,
    小写字母m表示该字母m右侧相邻的一个核糖核苷酸为2’-O-CH3修饰的核糖核苷酸,
    小写字母f表示该字母f左侧相邻的一个核糖核苷酸为2’-F修饰的核糖核苷酸,
    P1表示该字母右侧相邻的一个核苷酸为5’-磷酸核苷酸,
    EVP表示其右侧相邻的一个核苷酸为5’-反式乙烯基磷酸核苷酸,
    -(s)-表示前后相邻的两个核苷酸以硫代磷酸二酯键连接,
    [GNA]表示其右侧相邻的一个核糖核苷酸为存在GNA修饰的核糖核苷酸。
  26. 根据权利要求15-25任一项所述的双链核糖核酸修饰物,其中,所述双链核糖核酸修饰物为siRNA修饰物。
  27. 根据权利要求15-26任一项所述的双链核糖核酸修饰物,其中,所述双链核糖核酸修饰物为用于抑制C5基因表达的siRNA修饰物。
  28. 根据权利要求15-27任一项所述的双链核糖核酸修饰物,其中,所述正义链与所述反义链选自如下组合:
    94)所述正义链包含如SEQ ID NO:238所示的核苷酸序列,所述反义链包含如SEQ ID NO:250所示的核苷酸序列;
    95)所述正义链包含如SEQ ID NO:239所示的核苷酸序列,所述反义链包含如SEQ ID NO:251所示的核苷酸序列;
    96)所述正义链包含如SEQ ID NO:240所示的核苷酸序列,所述反义链包含如SEQ ID NO:252所示的核苷酸序列;
    97)所述正义链包含如SEQ ID NO:241所示的核苷酸序列,所述反义链包含如SEQ ID NO:253所示的核苷酸序列;
    98)所述正义链包含如SEQ ID NO:242所示的核苷酸序列,所述反义链包含如SEQ ID NO:254所示的核苷酸序列;
    99)所述正义链包含如SEQ ID NO:243所示的核苷酸序列,所述反义链包含如SEQ ID NO:255所示的核苷酸序列;
    100)所述正义链包含如SEQ ID NO:244所示的核苷酸序列,所述反义链包含如SEQ ID NO:256所示的核苷酸序列;
    101)所述正义链包含如SEQ ID NO:245所示的核苷酸序列,所述反义链包含如SEQ ID NO:257所示的核苷酸序列;
    102)所述正义链包含如SEQ ID NO:246所示的核苷酸序列,所述反义链包含如SEQ ID NO:251所示的核苷酸序列;
    103)所述正义链包含如SEQ ID NO:247所示的核苷酸序列,所述反义链包含如SEQ ID NO:257所示的核苷酸序列;
    104)所述正义链包含如SEQ ID NO:248所示的核苷酸序列,所述反义链包含如SEQ ID NO:255所示的核苷酸序列;
    105)所述正义链包含如SEQ ID NO:249所示的核苷酸序列,所述反义链包含如SEQ ID NO:252所示的核苷酸序列;
    181)所述正义链包含如SEQ ID NO:436所示的核苷酸序列,所述反义链包含如SEQ ID NO:472所示的核苷酸序列;
    182)所述正义链包含如SEQ ID NO:437所示的核苷酸序列,所述反义链包含如SEQ ID NO:473所示的核苷酸序列;
    183)所述正义链包含如SEQ ID NO:437所示的核苷酸序列,所述反义链包含如SEQ ID NO:474所示的核苷酸序列;
    184)所述正义链包含如SEQ ID NO:438所示的核苷酸序列,所述反义链包含如SEQ ID NO:475所示的核苷酸序列;
    185)所述正义链包含如SEQ ID NO:439所示的核苷酸序列,所述反义链包含如SEQ ID NO:475所示的核苷酸序列;
    186)所述正义链包含如SEQ ID NO:438所示的核苷酸序列,所述反义链包含如SEQ ID NO:476所示的核苷酸序列;
    187)所述正义链包含如SEQ ID NO:440所示的核苷酸序列,所述反义链包含如SEQ ID NO:477所示的核苷酸序列;
    188)所述正义链包含如SEQ ID NO:440所示的核苷酸序列,所述反义链包含如SEQ ID NO:478所示的核苷酸序列;
    189)所述正义链包含如SEQ ID NO:441所示的核苷酸序列,所述反义链包含如SEQ ID NO:478所示的核苷酸序列;
    190)所述正义链包含如SEQ ID NO:440所示的核苷酸序列,所述反义链包含如SEQ ID NO:479所示的核苷酸序列;
    191)所述正义链包含如SEQ ID NO:440所示的核苷酸序列,所述反义链包含如SEQ ID NO:480所示的核苷酸序列;
    192)所述正义链包含如SEQ ID NO:442所示的核苷酸序列,所述反义链包含如SEQ ID NO:481所示的核苷酸序列;
    193)所述正义链包含如SEQ ID NO:442所示的核苷酸序列,所述反义链包含如SEQ ID NO:482所示的核苷酸序列;
    194)所述正义链包含如SEQ ID NO:443所示的核苷酸序列,所述反义链包含如SEQ ID NO:483所示的核苷酸序列;
    195)所述正义链包含如SEQ ID NO:444所示的核苷酸序列,所述反义链包含如SEQ ID NO:484所示的核苷酸序列;
    196)所述正义链包含如SEQ ID NO:444所示的核苷酸序列,所述反义链包含如SEQ ID NO:485所示的核苷酸序列;
    197)所述正义链包含如SEQ ID NO:445所示的核苷酸序列,所述反义链包含如SEQ ID NO:486所示的核苷酸序列;
    198)所述正义链包含如SEQ ID NO:446所示的核苷酸序列,所述反义链包含如SEQ ID NO:486所示的核苷酸序列;
    199)所述正义链包含如SEQ ID NO:445所示的核苷酸序列,所述反义链包含如SEQ ID NO:487所示的核苷酸序列;
    200)所述正义链包含如SEQ ID NO:445所示的核苷酸序列,所述反义链包含如SEQ ID NO:488所示的核苷酸序列;
    201)所述正义链包含如SEQ ID NO:445所示的核苷酸序列,所述反义链包含如SEQ ID NO:489所示的核苷酸序列;
    202)所述正义链包含如SEQ ID NO:447所示的核苷酸序列,所述反义链包含如SEQ ID NO:490所示的核苷酸序列;
    203)所述正义链包含如SEQ ID NO:448所示的核苷酸序列,所述反义链包含如SEQ ID NO:491所示的核苷酸序列;
    204)所述正义链包含如SEQ ID NO:449所示的核苷酸序列,所述反义链包含如SEQ ID NO:492所示的核苷酸序列;
    205)所述正义链包含如SEQ ID NO:450所示的核苷酸序列,所述反义链包含如SEQ  ID NO:493所示的核苷酸序列;
    206)所述正义链包含如SEQ ID NO:451所示的核苷酸序列,所述反义链包含如SEQ ID NO:494所示的核苷酸序列;
    207)所述正义链包含如SEQ ID NO:451所示的核苷酸序列,所述反义链包含如SEQ ID NO:495所示的核苷酸序列;
    208)所述正义链包含如SEQ ID NO:452所示的核苷酸序列,所述反义链包含如SEQ ID NO:496所示的核苷酸序列;
    209)所述正义链包含如SEQ ID NO:453所示的核苷酸序列,所述反义链包含如SEQ ID NO:497所示的核苷酸序列;
    210)所述正义链包含如SEQ ID NO:454所示的核苷酸序列,所述反义链包含如SEQ ID NO:498所示的核苷酸序列;
    211)所述正义链包含如SEQ ID NO:455所示的核苷酸序列,所述反义链包含如SEQ ID NO:499所示的核苷酸序列;
    212)所述正义链包含如SEQ ID NO:456所示的核苷酸序列,所述反义链包含如SEQ ID NO:500所示的核苷酸序列;
    213)所述正义链包含如SEQ ID NO:457所示的核苷酸序列,所述反义链包含如SEQ ID NO:501所示的核苷酸序列;
    214)所述正义链包含如SEQ ID NO:457所示的核苷酸序列,所述反义链包含如SEQ ID NO:502所示的核苷酸序列;
    215)所述正义链包含如SEQ ID NO:458所示的核苷酸序列,所述反义链包含如SEQ ID NO:503所示的核苷酸序列;
    216)所述正义链包含如SEQ ID NO:459所示的核苷酸序列,所述反义链包含如SEQ ID NO:504所示的核苷酸序列;
    217)所述正义链包含如SEQ ID NO:460所示的核苷酸序列,所述反义链包含如SEQ ID NO:505所示的核苷酸序列;
    218)所述正义链包含如SEQ ID NO:461所示的核苷酸序列,所述反义链包含如SEQ ID NO:506所示的核苷酸序列;
    219)所述正义链包含如SEQ ID NO:461所示的核苷酸序列,所述反义链包含如SEQ ID NO:507所示的核苷酸序列;
    220)所述正义链包含如SEQ ID NO:462所示的核苷酸序列,所述反义链包含如SEQ ID NO:508所示的核苷酸序列;
    221)所述正义链包含如SEQ ID NO:463所示的核苷酸序列,所述反义链包含如SEQ ID NO:509所示的核苷酸序列;
    222)所述正义链包含如SEQ ID NO:463所示的核苷酸序列,所述反义链包含如SEQ ID NO:510所示的核苷酸序列;
    223)所述正义链包含如SEQ ID NO:464所示的核苷酸序列,所述反义链包含如SEQ ID NO:511所示的核苷酸序列;
    224)所述正义链包含如SEQ ID NO:465所示的核苷酸序列,所述反义链包含如SEQ ID NO:512所示的核苷酸序列;
    225)所述正义链包含如SEQ ID NO:466所示的核苷酸序列,所述反义链包含如SEQ ID NO:513所示的核苷酸序列;
    226)所述正义链包含如SEQ ID NO:467所示的核苷酸序列,所述反义链包含如SEQ ID NO:514所示的核苷酸序列;
    227)所述正义链包含如SEQ ID NO:468所示的核苷酸序列,所述反义链包含如SEQ ID NO:515所示的核苷酸序列;
    228)所述正义链包含如SEQ ID NO:469所示的核苷酸序列,所述反义链包含如SEQ ID NO:516所示的核苷酸序列;
    229)所述正义链包含如SEQ ID NO:470所示的核苷酸序列,所述反义链包含如SEQ ID NO:517所示的核苷酸序列;
    230)所述正义链包含如SEQ ID NO:471所示的核苷酸序列,所述反义链包含如SEQ ID NO:518所示的核苷酸序列;
    242)所述正义链包含如SEQ ID NO:239所示的核苷酸序列,所述反义链包含如SEQ ID NO:565所示的核苷酸序列;
    243)所述正义链包含如SEQ ID NO:246所示的核苷酸序列,所述反义链包含如SEQ ID NO:565所示的核苷酸序列;
    244)所述正义链包含如SEQ ID NO:239所示的核苷酸序列,所述反义链包含如SEQ ID NO:566所示的核苷酸序列;
    245)所述正义链包含如SEQ ID NO:246所示的核苷酸序列,所述反义链包含如SEQ ID NO:566所示的核苷酸序列;
    246)所述正义链包含如SEQ ID NO:239所示的核苷酸序列,所述反义链包含如SEQ ID NO:567所示的核苷酸序列;
    247)所述正义链包含如SEQ ID NO:239所示的核苷酸序列,所述反义链包含如SEQ ID NO:568所示的核苷酸序列;
    248)所述正义链包含如SEQ ID NO:552所示的核苷酸序列,所述反义链包含如SEQ ID NO:569所示的核苷酸序列;
    249)所述正义链包含如SEQ ID NO:245所示的核苷酸序列,所述反义链包含如SEQ ID NO:570所示的核苷酸序列;
    250)所述正义链包含如SEQ ID NO:247所示的核苷酸序列,所述反义链包含如SEQ ID NO:570所示的核苷酸序列;
    251)所述正义链包含如SEQ ID NO:245所示的核苷酸序列,所述反义链包含如SEQ ID NO:571所示的核苷酸序列;
    252)所述正义链包含如SEQ ID NO:247所示的核苷酸序列,所述反义链包含如SEQ ID NO:571所示的核苷酸序列;
    253)所述正义链包含如SEQ ID NO:245所示的核苷酸序列,所述反义链包含如SEQ ID NO:572所示的核苷酸序列;
    254)所述正义链包含如SEQ ID NO:245所示的核苷酸序列,所述反义链包含如SEQ ID NO:573所示的核苷酸序列;
    255)所述正义链包含如SEQ ID NO:243所示的核苷酸序列,所述反义链包含如SEQ ID NO:574所示的核苷酸序列;
    256)所述正义链包含如SEQ ID NO:248所示的核苷酸序列,所述反义链包含如SEQ ID NO:574所示的核苷酸序列;
    257)所述正义链包含如SEQ ID NO:243所示的核苷酸序列,所述反义链包含如SEQ ID NO:575所示的核苷酸序列;
    258)所述正义链包含如SEQ ID NO:243所示的核苷酸序列,所述反义链包含如SEQ ID NO:576所示的核苷酸序列;
    259)所述正义链包含如SEQ ID NO:243所示的核苷酸序列,所述反义链包含如SEQ ID NO:577所示的核苷酸序列;
    260)所述正义链包含如SEQ ID NO:245所示的核苷酸序列,所述反义链包含如SEQ ID NO:578所示的核苷酸序列;
    261)所述正义链包含如SEQ ID NO:240所示的核苷酸序列,所述反义链包含如SEQ  ID NO:579所示的核苷酸序列;
    262)所述正义链包含如SEQ ID NO:249所示的核苷酸序列,所述反义链包含如SEQ ID NO:579所示的核苷酸序列;
    263)所述正义链包含如SEQ ID NO:240所示的核苷酸序列,所述反义链包含如SEQ ID NO:580所示的核苷酸序列;
    264)所述正义链包含如SEQ ID NO:240所示的核苷酸序列,所述反义链包含如SEQ ID NO:581所示的核苷酸序列;
    265)所述正义链包含如SEQ ID NO:240所示的核苷酸序列,所述反义链包含如SEQ ID NO:582所示的核苷酸序列;
    266)所述正义链包含如SEQ ID NO:553所示的核苷酸序列,所述反义链包含如SEQ ID NO:583所示的核苷酸序列;
    267)所述正义链包含如SEQ ID NO:554所示的核苷酸序列,所述反义链包含如SEQ ID NO:584所示的核苷酸序列;
    268)所述正义链包含如SEQ ID NO:555所示的核苷酸序列,所述反义链包含如SEQ ID NO:585所示的核苷酸序列;
    269)所述正义链包含如SEQ ID NO:556所示的核苷酸序列,所述反义链包含如SEQ ID NO:586所示的核苷酸序列;
    270)所述正义链包含如SEQ ID NO:557所示的核苷酸序列,所述反义链包含如SEQ ID NO:587所示的核苷酸序列;
    271)所述正义链包含如SEQ ID NO:558所示的核苷酸序列,所述反义链包含如SEQ ID NO:588所示的核苷酸序列;
    272)所述正义链包含如SEQ ID NO:559所示的核苷酸序列,所述反义链包含如SEQ ID NO:589所示的核苷酸序列;
    273)所述正义链包含如SEQ ID NO:560所示的核苷酸序列,所述反义链包含如SEQ ID NO:590所示的核苷酸序列;
    274)所述正义链包含如SEQ ID NO:561所示的核苷酸序列,所述反义链包含如SEQ ID NO:591所示的核苷酸序列;
    275)所述正义链包含如SEQ ID NO:562所示的核苷酸序列,所述反义链包含如SEQ ID NO:592所示的核苷酸序列;
    276)所述正义链包含如SEQ ID NO:563所示的核苷酸序列,所述反义链包含如SEQ ID NO:593所示的核苷酸序列;
    277)所述正义链包含如SEQ ID NO:564所示的核苷酸序列,所述反义链包含如SEQ ID NO:594所示的核苷酸序列。
  29. 一种双链核糖核酸缀合物,其中,所述双链核糖核酸缀合物包括如权利要求1-14任一项所述的双链核糖核酸,或如权利要求15-28任一项所述的双链核糖核酸修饰物;以及,缀合连接于所述双链核糖核酸或所述双链核糖核酸修饰物的缀合基团。
  30. 根据权利要求29所述的双链核糖核酸缀合物,其中,所述缀合基团具有如下所示结构:
  31. 根据权利要求29或30所述的双链核糖核酸缀合物,其中,所述缀合基团连接于正义链的3’末端。
  32. 根据权利要求31所述的双链核糖核酸缀合物,其中,所述缀合基团通过磷酸二酯键与正义链的3’末端缀合连接;
    优选地,所述双链核糖核酸缀合物的正义链与反义链互补形成所述双链核糖核酸缀合物的双链区,且所述正义链的3’末端形成平末端,所述反义链的3’末端具有1-2个延伸出所述双链区的突出的核苷酸;
    或者,
    所述双链核糖核酸缀合物的正义链与反义链互补形成所述双链核糖核酸缀合物的双链区,且所述正义链的3’末端形成平末端,所述反义链的3’末端形成平末端。
  33. 根据权利要求29-32任一项所述的双链核糖核酸缀合物,其中,所述双链核糖核酸缀合物具有如下所示结构:
    其中,双螺旋结构为双链核糖核酸或双链核糖核酸修饰物。
  34. 根据权利要求29-33任一项所述的双链核糖核酸缀合物,其中,所述双链核糖核酸缀合物为siRNA缀合物。
  35. 根据权利要求29-34任一项所述的双链核糖核酸缀合物,其中,所述双链核糖核酸缀合物是用于抑制C5基因表达的siRNA缀合物。
  36. 根据权利要求29-35任一项所述的双链核糖核酸缀合物,其中,所述双链核糖核酸缀合物由表1所示的任意一种siRNA与缀合基团连接形成,或者,所述双链核糖核酸缀合物由表2所示的任意一种siRNA修饰物与缀合基团连接形成;
    优选地,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:258所示的序列,所述反义链包含如SEQ ID NO:251所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:259所示的序列,所述反义链包含如SEQ ID NO:257所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:260所示的序列,所述反义链包含如SEQ ID NO:255所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:261 所示的序列,所述反义链包含如SEQ ID NO:252所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:519所示的序列,所述反义链包含如SEQ ID NO:477所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:519所示的序列,所述反义链包含如SEQ ID NO:478所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:520所示的序列,所述反义链包含如SEQ ID NO:509所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:519所示的序列,所述反义链包含如SEQ ID NO:479所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:519所示的序列,所述反义链包含如SEQ ID NO:480所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:521所示的序列,所述反义链包含如SEQ ID NO:481所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:521所示的序列,所述反义链包含如SEQ ID NO:482所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:522所示的序列,所述反义链包含如SEQ ID NO:486所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:522所示的序列,所述反义链包含如SEQ ID NO:487所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:522所示的序列,所述反义链包含如SEQ ID NO:488所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:522所示的序列,所述反义链包含如SEQ ID NO:489所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:523所示的序列,所述反义链包含如SEQ ID NO:492所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:524所示的序列,所述反义链包含如SEQ ID NO:493所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:525所示的序列,所述反义链包含如SEQ ID NO:494所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:525所示的序列,所述反义链包含如SEQ ID NO:495所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:526所示的序列,所述反义链包含如SEQ ID NO:499所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:527所示的序列,所述反义链包含如SEQ ID NO:500所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:528所示的序列,所述反义链包含如SEQ ID NO:501所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:528所示的序列,所述反义链包含如SEQ ID NO:502所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:529所示的序列,所述反义链包含如SEQ ID NO:508所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:258所示的序列,所述反义链包含如SEQ ID NO:565所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:258所示的序列,所述反义链包含如SEQ ID NO:566所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:258所示的序列,所述反义链包含如SEQ ID NO:567所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:258所示的序列,所述反义链包含如SEQ ID NO:568所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:259所示的序列,所述反义链包含如SEQ ID NO:570所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:259所示的序列,所述反义链包含如SEQ ID NO:571所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:259所示的序列,所述反义链包含如SEQ ID NO:572所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:259所示的序列,所述反义链包含如SEQ ID NO:573所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:259所示的序列,所述反义链包含如SEQ ID NO:578所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:260所示的序列,所述反义链包含如SEQ ID NO:574所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:260所示的序列,所述反义链包含如SEQ ID NO:575所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:260所示的序列,所述反义链包含如SEQ ID NO:576所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:260所示的序列,所述反义链包含如SEQ ID NO:577所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:261所示的序列,所述反义链包含如SEQ ID NO:579所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:261所示的序列,所述反义链包含如SEQ ID NO:580所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:261所示的序列,所述反义链包含如SEQ ID NO:581所示的序列;
    或者,所述双链核糖核酸缀合物中,连接缀合物基团的正义链包含如SEQ ID NO:261所示的序列,所述反义链包含如SEQ ID NO:582所示的序列。
  37. 一种药物组合物,其中,所述药物组合物包括如下至少一项:如权利要求1-14任一项所述的双链核糖核酸,如权利要求15-28任一项所述的双链核糖核酸修饰物,如权利要求29-36任一项所述的双链核糖核酸缀合物。
  38. 根据权利要求37所述的药物组合物,其中,所述药物组合物还包括一种或多种药学上可接受的载体。
  39. 根据权利要求1-14任一项所述的双链核糖核酸,根据权利要求15-28任一项所述的双链核糖核酸修饰物,根据权利要求29-36任一项所述的双链核糖核酸缀合物,或根据权利要求37-38任一项所述的药物组合物在如下至少一项中的用途:
    (1)抑制C5基因表达,或制备用于抑制C5基因表达的药物;
    (2)用于预防或治疗与C5基因异常表达相关的疾病,或制备用于预防或治疗与C5基因异常表达相关的疾病的药物;
    (3)用于治疗患有将受益于补体C5基因表达降低的疾病的受试者,或制备用于治疗患有将受益于补体C5基因表达降低的疾病的受试者的药物。
  40. 根据权利要求39所述的用途,其中,所述与C5基因异常表达相关的疾病选自如下疾病组成的组:
    阵发性睡眠性血红蛋白尿、非典型溶血尿毒综合征、广泛性重症肌无力、血栓栓塞、视神经脊髓炎、抗体介导的肾移植排斥反应、吉兰巴雷综合症、抗中性粒细胞胞质抗体相关血管炎、肌萎缩侧索硬化、帕金森病、自身免疫性脑炎、IgG4相关性疾病、哮喘、抗磷脂抗体综合征、缺血再灌注损伤、典型溶血尿毒综合征、多灶性运动神经病、多发性硬化、血栓性血小板减少性紫癜、创伤性脑损伤、冷凝集素病、皮肌炎、与产志贺氏毒素大肠埃希氏菌相关的溶血性尿毒症综合征、移植物功能障碍、心肌梗死、败血症、动脉粥样硬化、感染性休克、脊髓损伤、银屑病、自身免疫性溶血性贫血、抗磷脂综合征、心肌炎、免疫复合物血管炎、高安氏病、川崎病和类风湿性关节炎等疾病。
  41. 一种用于抑制细胞内C5基因表达的方法,其中,所述方法包括将所述细胞与根据权利要求1-14任一项所述的双链核糖核酸,根据权利要求15-28任一项所述的双链核糖核酸修饰物,根据权利要求29-36任一项所述的双链核糖核酸缀合物,或根据权利要求37-38任一项所述的药物组合物接触。
  42. 根据权利要求41所述的方法,其中,所述细胞为体内细胞或体外细胞。
  43. 根据权利要求41或42所述的方法,其中,所述细胞在受试者体内。
  44. 根据权利要求43所述的方法,其中,所述受试者为哺乳动物,优选为人。
  45. 根据权利要求43或44所述的方法,其中,所述受试者具有如下至少一种特性:
    体内C5基因异常表达,更具体地为C5基因异常高表达;
    患有与C5基因异常表达相关的疾病;
    患有将受益于C5基因表达降低的疾病。
PCT/CN2023/106129 2022-07-07 2023-07-06 用于抑制c5基因表达的双链核糖核酸及其修饰物、缀合物和用途 WO2024008158A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210803750 2022-07-07
CN202210803750.7 2022-07-07

Publications (1)

Publication Number Publication Date
WO2024008158A1 true WO2024008158A1 (zh) 2024-01-11

Family

ID=89209440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106129 WO2024008158A1 (zh) 2022-07-07 2023-07-06 用于抑制c5基因表达的双链核糖核酸及其修饰物、缀合物和用途

Country Status (2)

Country Link
CN (1) CN117264950A (zh)
WO (1) WO2024008158A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130317080A1 (en) * 2010-09-15 2013-11-28 Alnylam Pharmaceuticals, Inc. MODIFIED iRNA AGENTS
CN105324485A (zh) * 2013-03-14 2016-02-10 阿尔尼拉姆医药品有限公司 补体组分C5 iRNA组合物及其使用方法
US20160237438A1 (en) * 2015-02-17 2016-08-18 Dicerna Pharmaceuticals, Inc. Methods and compositions for the specific inhibition of complement component 5(c5) by double-stranded rna
US20200032258A1 (en) * 2014-09-16 2020-01-30 Alnylam Pharmaceuticals, Inc. Complement component c5 irna compositions and methods of use thereof
US20200095578A1 (en) * 2014-09-12 2020-03-26 Alnylam Pharmaceuticals, Inc. Polynucleotide agents targeting complement component c5 and methods of use thereof
WO2021026476A1 (en) * 2019-08-08 2021-02-11 Mpeg La, L.L.C. Complement targeting with multimeric oligonucleotides
US20210261959A1 (en) * 2017-11-01 2021-08-26 Alnylam Pharmaceuticals, Inc. Complement component c3 irna compositions and methods of use thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130317080A1 (en) * 2010-09-15 2013-11-28 Alnylam Pharmaceuticals, Inc. MODIFIED iRNA AGENTS
CN105324485A (zh) * 2013-03-14 2016-02-10 阿尔尼拉姆医药品有限公司 补体组分C5 iRNA组合物及其使用方法
US20200095578A1 (en) * 2014-09-12 2020-03-26 Alnylam Pharmaceuticals, Inc. Polynucleotide agents targeting complement component c5 and methods of use thereof
US20200032258A1 (en) * 2014-09-16 2020-01-30 Alnylam Pharmaceuticals, Inc. Complement component c5 irna compositions and methods of use thereof
US20160237438A1 (en) * 2015-02-17 2016-08-18 Dicerna Pharmaceuticals, Inc. Methods and compositions for the specific inhibition of complement component 5(c5) by double-stranded rna
US20210261959A1 (en) * 2017-11-01 2021-08-26 Alnylam Pharmaceuticals, Inc. Complement component c3 irna compositions and methods of use thereof
WO2021026476A1 (en) * 2019-08-08 2021-02-11 Mpeg La, L.L.C. Complement targeting with multimeric oligonucleotides

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BORODOVSKY, A. ET AL.: "Development of RNAi Therapeutics Targeting the Complement Pathway", BLOOD, vol. 122, no. 21, 15 November 2013 (2013-11-15), XP055126934 *
KUSNER LINDA L., YUCIUS KRISTINA, SENGUPTA MANJISTHA, SPRAGUE ANDREW G., DESAI DHRUV, NGUYEN TUYEN, CHARISSE KLAUS, KUCHIMANCHI SA: "Investigational RNAi Therapeutic Targeting C5 Is Efficacious in Pre-clinical Models of Myasthenia Gravis", MOLECULAR THERAPY- METHODS & CLINICAL DEVELOPMENT, NATURE PUBLISHING GROUP, GB, vol. 13, 1 June 2019 (2019-06-01), GB , pages 484 - 492, XP093126285, ISSN: 2329-0501, DOI: 10.1016/j.omtm.2019.04.009 *
NAIR, J.K. ET AL.: "Multivalent N‑Acetylgalactosamine-Conjugated siRNA Localizes in Hepatocytes and Elicits Robust RNAi-Mediated Gene Silencing", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 136, no. 49, 1 December 2014 (2014-12-01), XP055181463, DOI: 10.1021/ja505986a *

Also Published As

Publication number Publication date
CN117264950A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
US20240132894A1 (en) Oligonucleotide compositions and methods of use thereof
US20230355775A1 (en) Nucleic acid, composition and conjugate containing same, preparation method, and use thereof
JP2022532169A (ja) オリゴヌクレオチド組成物及びその使用方法
JP6677679B2 (ja) 呼吸器疾患関連遺伝子特異的siRNA、そのようなsiRNAを含む二重らせんオリゴRNA構造体およびこれを含む呼吸器疾患予防または治療用組成物
TW202126810A (zh) 寡核苷酸組成物及其使用方法
JP2020534253A (ja) オリゴヌクレオチド組成物及びその方法
WO2020135581A1 (zh) 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
EP2647713B1 (en) Modified single-strand polynucleotide
TW202111118A (zh) 核酸、藥物組合物與綴合物及製備方法和用途
US20200291406A1 (en) Preventive or therapeutic agent for fibrosis
TW202111120A (zh) 核酸、藥物組合物與綴合物及製備方法和用途
CN114206389A (zh) 用于靶向递送治疗剂的多价配体簇
WO2024008114A1 (zh) 用于抑制补体因子B表达的siRNA、其缀合物和药物组合物及其用途
WO2020233651A1 (zh) 核酸、药物组合物与缀合物及制备方法和用途
CN117070517A (zh) 用于抑制血管紧张素原表达的siRNA、其缀合物和药物组合物及用途
WO2024008158A1 (zh) 用于抑制c5基因表达的双链核糖核酸及其修饰物、缀合物和用途
WO2023041079A9 (zh) Lpa抑制剂及其用途
WO2024061202A1 (zh) 用于抑制hmgb1基因表达的双链核糖核酸及其修饰物、缀合物和用途
WO2023227070A1 (zh) 用于抑制c3基因表达的双链核糖核酸及其修饰物、缀合物和用途
WO2022143531A1 (zh) 一种核酸、含有该核酸的药物组合物与siRNA缀合物及制备方法和用途
WO2024027518A1 (zh) 用于抑制angptl3基因表达的双链核糖核酸及其修饰物、缀合物和用途
EP3095867A1 (en) Nucleic acid capable of inhibiting expression of beta2gpi
WO2023213284A9 (zh) 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
WO2024104416A1 (zh) 抑制SCAP基因表达的siRNA、其缀合物和药物组合物及用途
CN117645995A (zh) 抑制去唾液酸糖蛋白受体基因表达的siRNA、其缀合物和药物组合物及用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834924

Country of ref document: EP

Kind code of ref document: A1