WO2024007842A1 - 穿戴式除颤系统 - Google Patents

穿戴式除颤系统 Download PDF

Info

Publication number
WO2024007842A1
WO2024007842A1 PCT/CN2023/100607 CN2023100607W WO2024007842A1 WO 2024007842 A1 WO2024007842 A1 WO 2024007842A1 CN 2023100607 W CN2023100607 W CN 2023100607W WO 2024007842 A1 WO2024007842 A1 WO 2024007842A1
Authority
WO
WIPO (PCT)
Prior art keywords
attachment
attachment unit
unit
ecg
module
Prior art date
Application number
PCT/CN2023/100607
Other languages
English (en)
French (fr)
Inventor
张建锋
于鹏
Original Assignee
创领心律管理医疗器械(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 创领心律管理医疗器械(上海)有限公司 filed Critical 创领心律管理医疗器械(上海)有限公司
Publication of WO2024007842A1 publication Critical patent/WO2024007842A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3904External heart defibrillators [EHD]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/33Heart-related electrical modalities, e.g. electrocardiography [ECG] specially adapted for cooperation with other devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3925Monitoring; Protecting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3968Constructional arrangements, e.g. casings

Definitions

  • the present invention relates to the technical field of medical devices, and in particular to a wearable defibrillation system.
  • SCD Sudden cardiac death
  • the direct cause may be ventricular tachycardia, ventricular fibrillation, asystole, or Nonarrhythmic.
  • the number of survivors of SCD is less than 5%, so primary prevention (prevention for patients who have not experienced cardiac arrest) is particularly important for the vast majority of high-risk patients with SCD.
  • ICD implantable cardioverter-defibrillator
  • CRT-D implantable cardiac resynchronization therapy cardioverter-defibrillator
  • AEDs Portable automated external defibrillators can enable patients with fatal arrhythmias to receive timely treatment, but they are relatively cumbersome to use and cannot achieve long-term heart monitoring.
  • the purpose of the present invention is to provide a wearable defibrillation system to solve the problem that the existing AED cannot monitor the patient's cardiac electrical activity for a long time and is troublesome to use.
  • the present invention provides a wearable defibrillation system, which includes: an upper attachment component, a lower attachment component and a control unit;
  • the upper attachment component is connected to the lower attachment component
  • the upper attachment component includes a first attachment unit and a second attachment unit that are connected by communication.
  • the first attachment unit and the second attachment unit are used to be arranged in different target areas to obtain different ECG signal;
  • the lower attachment component includes a high-voltage module, and the control unit controls the high-voltage module to send the ECG signal to the first attachment unit based on each of the ECG signals acquired by the first attachment unit and the second attachment unit.
  • the attachment unit transmits defibrillation pulses, and the first attachment unit is also used to deliver the defibrillation pulses.
  • control unit is configured to confirm the ECG event based on the different ECG signals acquired by the first attachment unit and the second attachment unit.
  • the first attachment unit and/or the second attachment unit include sensors, and the sensors are used to collect physiological characteristic signals; the control unit is based on the physiological characteristic signals acquired by each of the sensors, Adjust the delivery parameters of the defibrillation pulse.
  • control unit includes a heart failure monitoring module, which is used to confirm a heart failure event based on the physiological characteristic signals acquired by each of the sensors.
  • control unit includes a first microcontroller disposed in the first attachment unit, the first attachment unit and the second attachment unit respectively include an electrocardiogram monitoring module, each The ECG monitoring module is used to collect corresponding ECG signals, and the ECG signals collected by the ECG monitoring module of the second attachment unit are transmitted to the first microcontroller.
  • the first attachment unit and the second attachment unit are connected through wireless communication or wires
  • the ECG signals collected by the ECG monitoring module of the second attachment unit are connected through wireless communication. or wire to the first microcontroller.
  • the first attachment unit and the second attachment unit are connected through wires, and the first microcontroller is configured to, based on the first attachment unit and the second attachment unit Different collected ECG signals form different ECG monitoring vectors.
  • the first attachment unit includes at least one attachment electrode
  • the second attachment unit includes at least four attachment electrodes.
  • the first attachment unit and the second attachment unit respectively include attachment electrodes
  • the first attachment unit and/or the second attachment unit include an impedance measurement module
  • the impedance The measurement module is used to detect the impedance between the attachment electrode and the lower attachment component.
  • the lower attachment component includes a flexible substrate, a battery module and at least two mutually independent base bodies, all of the base bodies are connected to the same side of the flexible substrate, and the other side of the flexible substrate is used for lamination.
  • the battery module is located in one of the bases, and the high-voltage module is located in another of the bases; all the base bodies are arranged along an extension direction of the flexible substrate, and are connected to each other. There is a gap therebetween to allow the flexible substrate to bend along the extending direction.
  • the wearable defibrillation system includes an upper attachment component, a lower attachment component and a control unit; the upper attachment component is connected to the lower attachment component; the upper attachment component Bag It includes a first attachment unit and a second attachment unit that are connected by communication, and the first attachment unit and the second attachment unit are used to be arranged in different target areas to obtain different ECG signals;
  • the lower attachment component includes a high-voltage module, and the control unit controls the high-voltage module to transmit the ECG signal to the first attachment unit based on the ECG signals acquired by the first attachment unit and the second attachment unit.
  • defibrillation pulse the first attachment unit is also used to deliver the defibrillation pulse.
  • the upper attachment component includes a separate first attachment unit and a second attachment unit, which can completely cover the heart sound auscultation area and form different ECG monitoring vectors, while the lower attachment component can be attached without affecting daily life.
  • the position allows the entire wearable defibrillation system to fit snugly against the skin, avoiding the need to attach a larger device near the heart. It has long-term monitoring and automatic defibrillation functions and is very convenient to use.
  • the entire wearable defibrillation system can be used not only to deliver defibrillation pulses, but also for ECG monitoring and heart failure monitoring, effectively avoiding unintentional false discharges.
  • Figure 1 is a schematic diagram of an application scenario of a wearable defibrillation system according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of the first attachment unit according to the embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the second attachment unit according to the embodiment of the present invention.
  • Figure 4 is a schematic view of the front of the lower attachment component according to the embodiment of the present invention.
  • FIG. 5 is a schematic view of the back side of the lower attachment component according to the embodiment of the present invention.
  • first”, “second” and “third” may explicitly or implicitly include one or at least two of these features, “one end” and “other end” and “proximal end” and “Remote” usually refers to the two corresponding parts, which includes not only the endpoint.
  • “mounted”, “connected”, “connected”, one element is “disposed” on another element should be interpreted broadly, and usually only mean that there is a connection, coupling, or connection between the two elements.
  • the purpose of the present invention is to provide a wearable defibrillation system to solve the problem that the existing AED cannot monitor the patient's cardiac electrical activity for a long time and is troublesome to use.
  • An embodiment of the present invention provides a wearable defibrillation system, which includes an upper attachment component 1, a lower attachment component 2 and a control unit; the upper attachment component 1 and the lower attachment component
  • the attachment component 2 is connected, preferably through a cable 3;
  • the upper attachment component 1 includes a first attachment unit 11 and a second attachment unit 12 that are connected by communication.
  • the attachment unit 12 is used for Set in different target areas to obtain different ECG signals;
  • the lower attachment component 2 includes a high-voltage module (not shown), and the control unit is based on the first attachment unit 11 and the second attachment unit.
  • the ECG signal acquired by the attachment unit 12 controls the high-voltage module to transmit defibrillation pulses to the first attachment unit 11 , and the first attachment unit 11 is also used to deliver the defibrillation pulses.
  • the human body can be divided into five heart sound auscultation areas with different positions.
  • the five auscultation areas are located at: sternum.
  • the target area can be set to any one of the five auscultation areas mentioned above.
  • the upper attachment component 1 is mainly used to collect ECG signals and deliver defibrillation pulses.
  • the attachment unit can generally be set on the right side of the sternum. Near the side, such as covering the 2RSB auscultation area.
  • the first attachment unit 11 is disposed at or near the 2RSB auscultation area. In addition to collecting ECG signals, it is also used to deliver defibrillation pulses. In one embodiment, the first attachment unit 11 can cover the 2RSB auscultation area.
  • the second attachment unit 12 can be disposed at or near the other four auscultation areas, whereby the two attachment units of the upper attachment assembly 1 (i.e., the first attachment unit 11 and the second attachment unit 12 ) can cover different heart sound auscultation areas, thus forming different ECG monitoring vectors. Furthermore, the second attachment unit 12 preferably completely covers the four auscultation areas of 2LSB, 3LSB, 4LSB and 5LMCL.
  • the control unit may include several microcontrollers, such as low-power microcontrollers (MCUs), etc., which may be provided in the upper attachment component 1, the lower attachment component 2, or both. Attached component 1 and attached component 2 below.
  • the control unit includes a first microcontroller 111 disposed in the first attachment unit 11 for controlling and logically processing the entire upper attachment component 1 .
  • the first attachment unit 11 and the second attachment unit 12 respectively include an ECG monitoring module 112, which mainly includes modules such as an ECG front end 1121 and a filtering module 1122, for performing ECG measurement and recording.
  • the first attachment unit 11 and the second attachment unit 12 include attachment electrodes respectively.
  • the attachment electrodes included in the first attachment unit 11 are called First post
  • the attached electrode included in the second attached unit 12 is called the second attached electrode 121
  • the first attached electrode 113 and the second attached electrode 121 have good conductivity and adhesion, for example, they can Pasted on human skin.
  • the first attachment unit 11 includes at least one first attachment electrode 113
  • the second attachment unit 12 includes at least four second attachment electrodes 121, the first attachment electrode 113 and the second attachment electrode 121.
  • the position of the attached electrode 121 can be adapted to each auscultation area. In the exemplary example shown in FIG.
  • the outer shape of the second attachment unit 12 is preferably a triangle or a triangle-like shape, but is not limited to the shape shown in FIG. 3 . In other embodiments, the shape of the second attachment unit 12 may also be circular, square or irregular.
  • the ECG front end 1121 is connected to the first attached electrode 113 and the second attached electrode 121 respectively, and the high voltage module is connected to the first attached electrode 113 to realize ECG monitoring or defibrillation pulse delivery.
  • the first attachment unit 11 and/or the second attachment unit 12 may be a whole, or may be divided into multiple mutually insulated sections, some of which may be heart sound pickup areas.
  • the first attachment unit 11 and/or the second attachment unit 12 further includes an impedance measurement module 114, which is used to detect the connection between the first attachment electrode 113 and the lower attachment unit.
  • the lower attachment assembly 2 includes a plurality of attachment segments, whereby different combinations between the first attachment electrode 113 , the second attachment electrode 121 and the plurality of attachment segments of the lower attachment assembly 2 Multiple loops will be formed.
  • the impedance measurement module 114 is mainly for low-voltage impedance measurement, which can measure the impedance of multiple different loops to check whether the first attachment electrode 113, the second attachment electrode 121 and the attachment section are reliably connected to Skin fit.
  • the first attachment unit 11 and/or the second attachment unit 12 also includes a switch array module 115.
  • the switch array module 115 is used to be responsible for various circuits (such as different signal circuits, power supply circuits or defibrillation circuits). ) switching and routing.
  • the ECG signal measured by the ECG front end 1121 is processed by the filtering module 1122 and then transmitted to the first microcontroller 111 .
  • the ECG signal acquired by the ECG monitoring module 112 of the second attachment unit 12 needs to be transmitted to the first attachment unit 11 and then to the first microcontroller 111 .
  • the first microcontroller 111 in the first attachment unit 11 can obtain different ECG signals from the two attachment units and confirm the ECG events therein.
  • the high-voltage module attached to the component 2 under the control of the first microcontroller 111 generates a high-energy defibrillation pulse, and the high-energy defibrillation pulse is transmitted to the third module through the cable 3
  • One attached unit 11, and Defibrillation pulses are sent to the human body, and the defibrillation pulses flow through the heart and form a circuit to the lower attachment component 2 to achieve the defibrillation effect.
  • the upper attachment component 1 includes separate first attachment unit 11 and second attachment unit 12, which can completely cover the heart sound auscultation area and form different ECG monitoring vectors, while the lower attachment component 2 can use cables.
  • the extension is attached to a position that does not affect daily life, so that the entire wearable defibrillation system can fit the skin, avoiding the attachment of larger devices near the heart, and has the ability to achieve long-term monitoring and automatic defibrillation functions. At the same time, it is very convenient to use.
  • the entire wearable defibrillation system can be used not only to deliver defibrillation pulses, but also for ECG monitoring and heart failure monitoring, effectively avoiding unintentional false discharges.
  • the first attachment unit 11 and/or the second attachment unit 12 include a sensor 116, which is used to collect physiological characteristic signals; the control unit is based on the information obtained by the sensor 116.
  • Physiological characteristic signals adjust the delivery parameters of the defibrillation pulse.
  • the first attachment unit 11 and the second attachment unit 12 respectively include sensors 116.
  • Sensors 116 include, but are not limited to, multi-axis accelerometers, multiple sets of heart sound sensors, sound sensors, body temperature sensors, pulmonary ventilation sensors, etc.
  • multi-axis accelerometers are used to record the patient's physical characteristics or posture; multiple sets of heart sound sensors are used to record heart sounds; sound sensors are used to record external environmental sounds; body temperature sensors are used to record body temperature; and pulmonary ventilation sensors are used to record Record pulmonary ventilation.
  • At least part of the physiological characteristic signals acquired by the sensor 116 can be used as auxiliary defibrillation markers, and can be used by the control unit to optimize the defibrillation algorithm to effectively reduce erroneous discharges.
  • the control unit adjusts the defibrillation pulse delivery parameters according to the optimized defibrillation algorithm.
  • the delivery parameters here include, for example, the timing, length, frequency, voltage and other parameters of pulse delivery, which can be understood by those skilled in the art based on the existing technology.
  • control unit includes a heart failure monitoring module, which is used to confirm a heart failure event based on the physiological characteristic signal acquired by the sensor 116 . Furthermore, after confirming a heart failure event, the control unit can output diagnostic information or alarm information to assist doctors in diagnosis.
  • a heart failure monitoring module which is used to confirm a heart failure event based on the physiological characteristic signal acquired by the sensor 116 . Furthermore, after confirming a heart failure event, the control unit can output diagnostic information or alarm information to assist doctors in diagnosis.
  • the first attachment unit 11 and the second attachment unit 12 are connected through wireless communication.
  • the ECG signals collected by the ECG monitoring module 112 of the second attachment unit 12 are transmitted to the first microcontroller 111 through wireless communication.
  • Wireless communication is such as but not limited to Bluetooth or Zigbee, so that the first attachment unit 11 and the second attachment unit 12 can be independent of each other, making it easy to wear. and long-term use. It can be understood that when the first attachment unit 11 and the second attachment unit 12 are connected through wireless communication, the second attachment unit 12, in addition to the ECG monitoring module 112, also includes a battery and a corresponding processing system (such as a second microcontroller). device) and the corresponding wireless communication module.
  • the first attachment unit 11 and the second attachment unit 12 are connected through wires, and the ECG signals collected by the ECG monitoring module 112 of the second attachment unit 12 are connected through wires. transmitted to the first microcontroller 111.
  • the wires can be used not only to transmit ECG signals, but also to transmit power supply and control signals. Therefore, the second attachment unit 12 can omit the battery and processing system and only include the necessary ECG monitoring module 112. Instead, the battery and processing system are provided in the first attachment unit 11 or the lower attachment assembly 2 .
  • the second attachment unit 12 may also be provided with an independent battery and processing system.
  • the first attachment unit 11 can also be provided with an independent battery and processing system.
  • the first microcontroller 111 is configured to, based on the operation of the first attachment unit 11 and the second attachment unit 12 Different collected ECG signals form different ECG monitoring vectors for better monitoring of ECG signals.
  • the first attachment unit 11 also includes a wireless communication module 117.
  • the wireless communication module 117 is mainly used to transmit the collected ECG signals and related diagnostic information to an external program control system.
  • the external program control system can also transmit the corresponding Configuration information is transmitted to the wearable defibrillation system.
  • the wireless communication module 117 can also be used to implement wireless communication between the first attachment unit 11 and the second attachment unit 12 .
  • the first attachment unit 11 and/or the second attachment unit 12 also includes a storage module 118.
  • the storage module 118 is mainly used to store configurations, corresponding ECG information, diagnostic information, etc.
  • the first attachment unit 11 further includes a cable socket for detachably connecting to the cable 3 .
  • the upper attachment component 1 can be used alone without the help of the lower attachment component 2.
  • the upper attachment component 1 only has ECG monitoring and heart failure monitoring functions, but cannot achieve defibrillation function.
  • the upper attachment component 1 and the lower attachment component 2 work together to achieve the defibrillation function.
  • the lower attachment component 2 includes at least two attachment sections 25, and all the attachment sections 25 are insulated from each other; the impedance measurement module 114 is used to detect respectively. The impedance of at least two attachment sections 25 and the upper attachment component 1; the control module is based on the impedance The impedance detected by the module 114 is measured, and one of the attachment segments 25 is selected as the main loop end, and the remaining attachment segments 25 are used as auxiliary loop ends.
  • the upper attachment component 1 and the lower attachment component 2 need to form a circuit.
  • the arrangement of at least two attachment sections 25 is essentially redundant to each other.
  • the impedance measurement module 114 can be used to regularly measure the impedance of each loop path to detect whether the degree of attachment of each attachment segment meets the requirements. Furthermore, when defibrillation pulses are delivered, all attached segments 25 will be turned on at the same time to maximize the circulation path of the defibrillation pulses.
  • the lower attachment component 2 includes a flexible substrate 26 and at least two mutually independent base bodies 27. All the base bodies 27 are connected to the same side of the flexible substrate 26 (as shown in Figure 4, called the front side). , the attachment section 25 is provided on the other side of the flexible substrate 26 (as shown in Figure 5, called the back side), which is used to fit on a predetermined part of the human body; the lower attachment component 2 also includes a battery module, so The battery module is located in one of the base bodies 27 , and the high-voltage module is located in the other base body 27 . Separately arranging the high-voltage module and the battery module in different base bodies 27 is helpful to reduce mutual interference. Preferably, different base bodies 27 can be connected through a flexible bus to achieve communication and information exchange between separate base bodies 27 .
  • the lower attachment component 2 includes three base bodies 27 , which are generally arranged in a direction from left to right. It can be understood that due to the gap 28 between the three base bodies 27, the flexible substrate 26 can be bent in the direction from left to right to form a barrel-like curved shape, so that it can fit more compliantly on a predetermined part of the human body. It should be noted that the above three base bodies 27 are only an example and do not limit the number of base bodies 27 . Those skilled in the art can select a greater or lesser number of substrates 27 based on actual conditions.
  • the battery module includes a plurality of cylindrical batteries, and the plurality of batteries are arranged along the extension direction (meaning that the axial direction of the cylindrical battery is perpendicular to the extension direction), and the battery module is located
  • the base body 27 is located in the middle of the three base bodies 27 , and the base body 27 where the battery module is located can be bent along the extending direction.
  • the battery can be a rechargeable battery, for example, it can be in the shape of a cylinder.
  • the outer contour of the middle base 27 can be set in a wavy shape according to the outer contour shape of the battery and wrapped with a flexible material.
  • the base 27 where the battery module is located is capable of bending along the extending direction, The fitting compliance of the lower attachment component 2 is further improved, making it easier to attach to the human body.
  • the two base bodies 27 located on both sides can be configured to be rigid and inflexible due to the circuit boards arranged inside them. It can be understood that the positions of the three base bodies 27 are not limited to the arrangement shown in the above exemplary examples, and those skilled in the art can adjust the arrangement position of each base body 27 according to actual conditions.
  • the second base 27 includes at least one of a third microcontroller, a wireless charging module, a sensor and a human-computer interaction module.
  • the third microcontroller is responsible for the control and logic processing of the entire lower attached component 2.
  • the wireless charging module includes a power management chip and a charging coupling coil, which is used to charge the battery module.
  • Sensors include multi-axis accelerometers, which are used to record patient body characteristics or patient posture.
  • Human-computer interaction modules include but are not limited to buttons, LEDs, screens, vibrators, speakers, etc.
  • the second base 27 mainly contains low-voltage circuits and logic control circuits, which can be integrated on the circuit board. Those skilled in the art can understand the structure and principles of each module included in the second base body 27 based on the existing technology, and the present invention will not be further described.
  • the third base 27 also includes a high-voltage circuit monitoring module and a switch array module.
  • the high-voltage module includes a high-voltage capacitor, a capacitor charging circuit, a defibrillation waveform distribution circuit, etc.; the high-voltage circuit monitoring module is mainly used for high-voltage Part of the circuit monitoring, as well as the monitoring of defibrillation pulse delivery; the switch array module is responsible for the switching and routing of each line.
  • the third base body 27 mainly contains high-voltage circuits and logic control circuits, and these circuits can be integrated on the circuit board.
  • the wearable defibrillation system includes an upper attachment component, a lower attachment component and a control unit; the upper attachment component is connected to the lower attachment component; the upper attachment component It includes a first attachment unit and a second attachment unit that are connected by communication, and the first attachment unit and the second attachment unit are used to be arranged in different target areas to obtain different ECG signals;
  • the lower attachment component includes a high-voltage module, and the control unit controls the high-voltage module to transmit the ECG signal to the first attachment unit based on the ECG signals acquired by the first attachment unit and the second attachment unit.
  • defibrillation pulse the first attachment unit is also used to deliver the defibrillation pulse.
  • the upper attachment component includes a separate first attachment unit and a second attachment unit, which can completely cover the heart sound auscultation area and form different ECG monitoring vectors, while the lower attachment component can be attached without affecting daily life.
  • position allows the entire wearable defibrillation system to fit snugly on the skin, avoiding the need to attach a larger device near the heart. It has long-term monitoring and automatic defibrillation functions and is very convenient to use.
  • the entire wearable defibrillation system can be used not only to deliver defibrillation pulses, but also for ECG monitoring and heart failure monitoring, effectively avoiding unintentional false discharges.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Electrotherapy Devices (AREA)

Abstract

本发明提供一种穿戴式除颤系统,其包括上贴附组件、下贴附组件和控制单元;上贴附组件与下贴附组件连接;上贴附组件包括通信连接的第一贴附单元和第二贴附单元,第一贴附单元和第二贴附单元用于设置于不同的目标区域,以获取不同的心电信号;下贴附组件包括高压模块,控制单元基于第一贴附单元和第二贴附单元所获取的心电信号,控制高压模块向第一贴附单元传输除颤脉冲,第一贴附单元还用于发放除颤脉冲。如此配置,可完整覆盖心音听诊区域和组成不同的心电监测向量,下贴附组件则可贴附在不影响日常生活的位置上,具备实现长期监测和自动除颤功能。

Description

穿戴式除颤系统 技术领域
本发明涉及医疗器械技术领域,特别涉及一种穿戴式除颤系统。
背景技术
心源性猝死(SCD)是由于各种原因导致的在症状出现后一小时内的院外、急诊室或者入院途中出现的死亡,其直接原因可能为室性心动过速、心室颤动、无收缩或者非心律失常性。SCD的幸存者小于5%,所以对于绝大多数的SCD高危风险患者的一级预防(针对未发生过心脏骤停的患者进行的预防)就显得尤为重要。
心肌梗死(心梗)后SCD和心衰的发生率非常高。相关指南建议心梗后40天或者血运重建后90天后再考虑植入植入式心律转复除颤器(ICD)或者植入式心脏再同步治疗心律转复除颤器(CRT-D)。
便携式自动体外除颤器(AED)可使得致命性心律失常患者能够得到及时救治,但是使用相对较为麻烦,也不能够实现心脏的长期监测。
发明内容
本发明的目的在于提供一种穿戴式除颤系统,以解决现有的AED无法长期监测病患心电活动且使用麻烦的问题。
为解决上述技术问题,本发明提供一种穿戴式除颤系统,其包括:上贴附组件、下贴附组件和控制单元;
所述上贴附组件与所述下贴附组件连接;
所述上贴附组件包括通信连接的第一贴附单元和第二贴附单元,所述第一贴附单元和所述第二贴附单元用于设置于不同的目标区域,以获取不同的心电信号;
所述下贴附组件包括高压模块,所述控制单元基于所述第一贴附单元和所述第二贴附单元所获取的各所述心电信号,控制所述高压模块向所述第一贴附单元传输除颤脉冲,所述第一贴附单元还用于发放所述除颤脉冲。
可选的,所述控制单元用于根据所述第一贴附单元和所述第二贴附单元所获取的不同的各所述心电信号,对心电事件进行确认。
可选的,所述第一贴附单元和/或所述第二贴附单元包括传感器,所述传感器用于采集生理特征信号;所述控制单元基于各所述传感器所获取的生理特征信号,调节所述除颤脉冲的发放参数。
可选的,所述控制单元包括心衰监测模块,所述心衰监测模块用于根据各所述传感器所获取的生理特征信号,对心衰事件进行确认。
可选的,所述控制单元包括设置于所述第一贴附单元中的第一微控制器,所述第一贴附单元与所述第二贴附单元分别包括心电监测模块,各所述心电监测模块用于采集相应心电信号,所述第二贴附单元的所述心电监测模块所采集的心电信号传输至所述第一微控制器。
可选的,所述第一贴附单元与所述第二贴附单元通过无线通信连接或导线连接,所述第二贴附单元的所述心电监测模块所采集的心电信号通过无线通信或导线传输至所述第一微控制器。
可选的,所述第一贴附单元与所述第二贴附单元通过导线连接,所述第一微控制器被配置为,基于所述第一贴附单元和所述第二贴附单元所采集的不同的心电信号形成不同的各所述心电监测向量。
可选的,所述第一贴附单元包括至少一个贴附电极,所述第二贴附单元包括至少四个贴附电极。
可选的,所述第一贴附单元和所述第二贴附单元分别包括贴附电极,所述第一贴附单元和/或所述第二贴附单元包括阻抗测量模块,所述阻抗测量模块用于检测所述贴附电极与所述下贴附组件之间的阻抗。
可选的,所述下贴附组件包括柔性基板、电池模块和至少两个相互独立的基体,所有所述基体与所述柔性基板的同一面连接,所述柔性基板的另一面用于贴合在人体预定部位上;其中,所述电池模块位于一所述基体内,所述高压模块位于另一所述基体内;所有所述基体沿所述柔性基板的一延伸方向排布,且相互之间具有间隙,以允许所述柔性基板沿所述延伸方向弯曲。
综上所述,在本发明提供的穿戴式除颤系统包括上贴附组件、下贴附组件和控制单元;所述上贴附组件与所述下贴附组件连接;所述上贴附组件包 括通信连接的第一贴附单元和第二贴附单元,所述第一贴附单元和所述第二贴附单元用于设置于不同的目标区域,以获取不同的心电信号;所述下贴附组件包括高压模块,所述控制单元基于所述第一贴附单元和所述第二贴附单元所获取的心电信号,控制所述高压模块向所述第一贴附单元传输除颤脉冲,所述第一贴附单元还用于发放所述除颤脉冲。
如此配置,上贴附组件包括分离的第一贴附单元和第二贴附单元,可完整覆盖心音听诊区域和组成不同的心电监测向量,下贴附组件则可贴附在不影响日常生活的位置上,使得整个穿戴式除颤系统可贴合皮肤,避免了在靠近心脏的区域贴附体积较大的装置,具备实现长期监测和自动除颤功能的同时,使用非常方便。此外,整个穿戴式除颤系统既可用于发放除颤脉冲,又能用于心电监测和心衰监测,有效避免了无感知误放电的情况。
附图说明
本领域的普通技术人员将会理解,提供的附图用于更好地理解本发明,而不对本发明的范围构成任何限定。其中:
图1是本发明实施例的穿戴式除颤系统的应用场景的示意图;
图2是本发明实施例的第一贴附单元的示意图;
图3是本发明实施例的第二贴附单元的示意图;
图4是本发明实施例的下贴附组件的正面的示意图;
图5是本发明实施例的下贴附组件的背面的示意图。
附图中:
1-上贴附组件;11-第一贴附单元;111-第一微控制器;112-心电监测模块;1121-心电前端;1122-滤波模块;113-第一贴附电极;114-阻抗测量模块;115-开关阵列模块;116-传感器;117-无线通讯模块;118-存储模块;12-第二贴附单元;121-第二贴附电极;2-下贴附组件;25-贴附段;26-柔性基板;27-基体;28-间隙;3-线缆。
具体实施方式
为使本发明的目的、优点和特征更加清楚,以下结合附图和具体实施例 对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式且未按比例绘制,仅用以方便、明晰地辅助说明本发明实施例的目的。此外,附图所展示的结构往往是实际结构的一部分。特别的,各附图需要展示的侧重点不同,有时会采用不同的比例。
如在本发明中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,术语“或”通常是以包括“和/或”的含义而进行使用的,术语“若干”通常是以包括“至少一个”的含义而进行使用的,术语“至少两个”通常是以包括“两个或两个以上”的含义而进行使用的,此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者至少两个该特征,“一端”与“另一端”以及“近端”与“远端”通常是指相对应的两部分,其不仅包括端点。此外,如在本发明中所使用的,“安装”、“相连”、“连接”,一元件“设置”于另一元件,应做广义理解,通常仅表示两元件之间存在连接、耦合、配合或传动关系,且两元件之间可以是直接的或通过中间元件间接的连接、耦合、配合或传动,而不能理解为指示或暗示两元件之间的空间位置关系,即一元件可以在另一元件的内部、外部、上方、下方或一侧等任意方位,除非内容另外明确指出外。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。此外,诸如上方、下方、上、下、向上、向下、左、右等的方向术语相对于示例性实施方案如它们在图中所示进行使用,向上或上方向朝向对应附图的顶部,向下或下方向朝向对应附图的底部。
本发明的目的在于提供一种穿戴式除颤系统,以解决现有的AED无法长期监测病患心电活动且使用麻烦的问题。
以下参考附图进行描述。
请参考图1和图2,本发明实施例提供一种穿戴式除颤系统,其包括上贴附组件1、下贴附组件2和控制单元;所述上贴附组件1与所述下贴附组件2连接,优选通过线缆3连接;所述上贴附组件1包括通信连接的第一贴附单元11和第二贴附单元12,所述第一贴附单元11和所述第二贴附单元12用于 设置于不同的目标区域,以获取不同的心电信号;所述下贴附组件2包括高压模块(未图示),所述控制单元基于所述第一贴附单元11和所述第二贴附单元12所获取的心电信号,控制所述高压模块向所述第一贴附单元11传输除颤脉冲,所述第一贴附单元11还用于发放所述除颤脉冲。
发明人发现,心电信号的采集和贴附单元的位置有较大的关系,在一些应用场景下,人体可区分为五个位置不相同的心音听诊区域,该五个听诊区域分别位于:胸骨右缘第2肋间(2RSB),胸骨左缘第2肋间(2LSB),胸骨左缘第3肋间(3LSB),胸骨左缘第4肋间(4LSB),第5肋间与锁骨中线交汇处(5LMCL)。在本实施例中,可将目标区域设定为上述五个听诊区域中的任一个。
优选的,上贴附组件1主要用作采集心电信号和发放除颤脉冲,对于除颤脉冲的发放,为保证除颤电流尽可能地流经心脏,贴附单元一般可设置在胸骨偏右侧附近,如覆盖2RSB听诊区域。基于此,在一个可替代的实施例中,第一贴附单元11设置于2RSB听诊区域或其附近,其除了用于采集心电信号,还兼用于发放除颤脉冲。在一个实施例中,第一贴附单元11能够覆盖2RSB听诊区域。进一步的,第二贴附单元12可设置在其它四个听诊区域或其附近,由此,上贴附组件1的两个贴附单元(即第一贴附单元11和第二贴附单元12)可覆盖不同的心音听诊区域,从而可组成不同的心电监测向量。更进一步的,第二贴附单元12优选完整地覆盖2LSB,3LSB,4LSB和5LMCL四个听诊区域。
所述控制单元可包括若干微控制器,如低功耗微控制器(MCU)等,其可以设置在上贴附组件1中,也可以设置在下贴附组件2中,或者同时设置在上贴附组件1和下贴附组件2中。在一个可替代的实施例中,控制单元包括设置于第一贴附单元11中的第一微控制器111,其用于对整个上贴附组件1进行控制及逻辑处理。可选的,第一贴附单元11与所述第二贴附单元12分别包括心电监测模块112,其主要包含心电前端1121和滤波模块1122等模块,用于进行心电测量和记录。
请参考图3,可选的,所述第一贴附单元11和所述第二贴附单元12分别包括贴附电极,为便于叙述,将第一贴附单元11包含的贴附电极称为第一贴 附电极113,将第二贴附单元12包含的贴附电极称为第二贴附电极121,第一贴附电极113和第二贴附电极121具有良好的导电性和贴附性,例如能够粘贴在人体皮肤上。可选的,所述第一贴附单元11包括至少一个第一贴附电极113,所述第二贴附单元12包括至少四个第二贴附电极121,第一贴附电极113和第二贴附电极121的位置可与各听诊区域相适配。图3示出的示范例中,第二贴附单元12的外形优选为三角形或类似三角形的形状,但不局限于图3中所示出的形状。另一些实施例中,第二贴附单元12的外形也可为圆形、方形或不规则形状。心电前端1121分别与第一贴附电极113和第二贴附电极121连接,高压模块与第一贴附电极113连接,从而实现心电监测或除颤脉冲的发放。可选的,第一贴附单元11和/或第二贴附单元12可以为一个整体,也可以分为相互绝缘的多个区段,其中部分区域可为心音的拾音区。
进一步的,第一贴附单元11和/或所述第二贴附单元12还包括阻抗测量模块114,所述阻抗测量模块114用于检测所述第一贴附电极113与所述下贴附组件2之间的阻抗,和/或所述第二贴附电极121与所述下贴附组件2之间的阻抗。在一些实施例中,下贴附组件2包括多个贴附段,由此第一贴附电极113、第二贴附电极121和下贴附组件2的多个贴附段之间的不同组合将形成多条回路,阻抗测量模块114主要是低压阻抗测量,其可以测量不同的多条回路的阻抗,以检查第一贴附电极113、第二贴附电极121及贴附段是否可靠地与皮肤贴合。可以理解的,所有可能的回路的组合都可测量。更进一步的,第一贴附单元11和/或所述第二贴附单元12还包括开关阵列模块115,开关阵列模块115用于负责各个线路(如不同的信号线路、供电线路或除颤线路)的开关切换及路由。
第一贴附单元11中,心电前端1121所测量得到的心电信号经滤波模块1122处理后,传输至第一微控制器111。第二贴附单元12的心电监测模块112所获取的心电信号则需要传输至第一贴附单元11,进而传输至第一微控制器111。这样第一贴附单元11中的第一微控制器111即可获取两个贴附单元的不同的心电信号,并对其中的心电事件进行确认。具体的,在监测到心电信号中包含心律异常事件时,第一微控制器111控制下贴附组件2的高压模块产生高能量除颤脉冲,高能量除颤脉冲通过线缆3传输至第一贴附单元11,并 向人体发放除颤脉冲,除颤脉冲流经心脏,至下贴附组件2形成回路,达到除颤效果。
如此配置,上贴附组件1包括分离的第一贴附单元11和第二贴附单元12,可完整覆盖心音听诊区域和组成不同的心电监测向量,下贴附组件2则可利用线缆3延伸贴附在不影响日常生活的位置上,使得整个穿戴式除颤系统可贴合皮肤,避免了在靠近心脏的区域贴附体积较大的装置,具备实现长期监测和自动除颤功能的同时,使用非常方便。此外,整个穿戴式除颤系统既可用于发放除颤脉冲,又能用于心电监测和心衰监测,有效避免了无感知误放电的情况。
可选的,所述第一贴附单元11和/或所述第二贴附单元12包括传感器116,所述传感器116用于采集生理特征信号;所述控制单元基于所述传感器116所获取的生理特征信号,调节所述除颤脉冲的发放参数。较佳的,第一贴附单元11和第二贴附单元12分别包括传感器116。传感器116包括但不限于多轴加速度计、多组心音传感器、声音传感器、体温传感器和肺通气量传感器等。其中,多轴加速度计用于记录患者的身体特征或患者的姿态;多组心音传感器用于记录心音;声音传感器用于记录外部环境音;体温传感器,用于记录体温;肺通气量传感器用于记录肺通气量。其中传感器116所获取的至少一部分生理特征信号可用作辅助的除颤标志,可用于控制单元对除颤算法的优化,以有效降低误放电。进而,控制单元根据优化后的除颤算法调节除颤脉冲的发放参数。这里的发放参数如包括脉冲的发放的时机、长度、频率、电压等参数,本领域技术人员可根据现有技术进行理解。
进一步的,所述控制单元包括心衰监测模块,所述心衰监测模块用于根据所述传感器116所获取的生理特征信号,对心衰事件进行确认。更进一步的,在确认心衰事件后,控制单元可对外输出诊断信息或报警信息等,以辅助医生进行诊断。
在一些实施例中,所述第一贴附单元11与所述第二贴附单元12通过无线通信连接。所述第二贴附单元12的心电监测模块112所采集的心电信号通过无线通信传输至所述第一微控制器111。无线通信例如但不限于蓝牙或Zigbee等,这样第一贴附单元11与第二贴附单元12可相互独立,便于穿戴 和长期使用。可以理解的,第一贴附单元11与第二贴附单元12通过无线通信连接时,第二贴附单元12除了心电监测模块112,还包括电池、相应的处理系统(如第二微控制器)以及相应的无线通讯模块。
在另一些实施例中,所述第一贴附单元11与所述第二贴附单元12通过导线连接,所述第二贴附单元12的心电监测模块112所采集的心电信号通过导线传输至所述第一微控制器111。进一步的,导线不仅可用于传输心电信号,还可以实现供电以及控制信号的传输,因此,第二贴附单元12可省略电池和处理系统的设置,而仅包括必要的心电监测模块112,而将电池和处理系统设置在第一贴附单元11或下贴附组件2中。当然在一些实施例中,第二贴附单元12也可设置有独立的电池和处理系统。可选的,第一贴附单元11也可设置有独立的电池和处理系统。进一步的,第一贴附单元11与第二贴附单元12通过导线连接时,第一微控制器111被配置为,基于所述第一贴附单元11和所述第二贴附单元12所采集的不同的心电信号形成不同的心电监测向量,以用于更好地监测心电信号。
可选的,第一贴附单元11还包括无线通讯模块117,无线通讯模块117主要用于将采集到的心电信号和相关的诊断信息传输至外部程控系统,外部程控系统也可将相应的配置信息传输至穿戴式除颤系统。此外,在第一贴附单元11与第二贴附单元12通过无线通信连接的方案中,无线通讯模块117还可以用于实现第一贴附单元11与第二贴附单元12的无线通信。可选的,第一贴附单元11和/或第二贴附单元12还包括存储模块118,存储模块118主要用于存储配置、相应的心电信息和诊断信息等。可选的,第一贴附单元11还包括线缆插座,其用于与线缆3可拆卸地连接。可以理解的,第一贴附单元11与线缆3分离时,上贴附组件1可以不借助于下贴附组件2而单独使用,当然此时由于缺乏高压模块,上贴附组件1只具有心电监测和心衰监测的功能,而无法实现除颤功能。第一贴附单元11与线缆3插接时,上贴附组件1与下贴附组件2协同工作,即可实现除颤功能。
可选的,请参考图4和图5,所述下贴附组件2包括至少两个贴附段25,所有所述贴附段25之间相互绝缘;所述阻抗测量模块114用于分别检测至少两个所述贴附段25与所述上贴附组件1的阻抗;所述控制模块基于所述阻抗 测量模块114所检测的阻抗,选择其中一个所述贴附段25作为主要回路端,其余的所述贴附段25作为辅助回路端。在心电检测和发放除颤脉冲时,需要上贴附组件1与下贴附组件2形成回路。至少两个贴附段25的设置,实质上互为冗余。为了避免某些贴附段脱落,或者贴合不严,可通过阻抗测量模块114定期地对各回路路径进行阻抗测量,以便检测各贴附段的贴合程度是否符合需求。进一步的,在发放除颤脉冲的场合下,所有贴附段25将同时被导通,以尽量扩大除颤脉冲的流通路径。
进一步的,所述下贴附组件2包括柔性基板26和至少两个相互独立的基体27,所有所述基体27与所述柔性基板26的同一面(如图4所示,称为正面)连接,贴附段25则设置在柔性基板26的另一面(如图5所示,称为背面),其用于贴合在人体预定部位上;所述下贴附组件2还包括电池模块,所述电池模块位于一所述基体27内,所述高压模块位于另一所述基体27内。将高压模块与电池模块分离设置在不同的基体27内,有利于减少互相之间的干扰。优选的,不同的基体27之间可通过柔性的总线连接,以实现各分离的基体27之间的联通及信息交换。
优选的,所有所述基体27沿所述柔性基板26的某一延伸方向排布,且相互之间具有间隙28,以允许所述柔性基板26沿所述延伸方向弯曲(指柔性基板26在延伸方向上弯曲,基体27随同形成桶状的弯曲)。在图4示出的示范例中,下贴附组件2包括三个所述基体27,其大致沿从左到右的方向排布。可以理解的,由于三个基体27之间存在间隙28,柔性基板26能够沿从左到右的方向弯曲,形成类似桶状的弯曲形态,从而能够更顺应地贴合在人体预定部位上。需要说明的,上述三个基体27仅为一示范例而非对基体27的数量的限定。本领域技术人员可根据实际,选择更多或更少数量的基体27。
优选的,所述电池模块包括多个柱体形的电池,多个所述电池沿着所述延伸方向排布(指柱体形的电池轴向垂直于所述延伸方向),所述电池模块所在的所述基体27位于三个所述基体27的中间,且所述电池模块所在的所述基体27能够沿所述延伸方向弯曲。电池如可为可充电电池,例如可呈圆柱体形,中间的基体27的外轮廓可根据电池的外轮廓形状设置为波浪形,并采用柔性的材料包裹,由此,电池模块所在的基体27即能够沿所述延伸方向弯曲, 进一步提高下贴附组件2的贴合顺应性,更便于贴附在人体上。位于两侧的两个基体27,由于其内部设置有电路板,可配置为硬质不可弯曲。可以理解的,三个基体27的位置并非限定于上述示范例所示出的排列方式,本领域技术人员可根据实际对各基体27的排布位置进行调整。
可选的,第二个基体27包括第三微控制器、无线充电模块、传感器和人机交互模块中的至少一者。第三微控制器负责整个下贴附组件2的控制及逻辑处理,无线充电模块包括电源管理芯片和充电耦合线圈,其用于为电池模块充电。传感器包括多轴加速度计,其用于记录患者的身体特征或患者姿态。人机交互模块包括但不限于按钮、LED、屏幕、振动器、扬声器等。第二个基体27主要包含低压电路及逻辑控制电路,这些电路可集成于电路板上。本领域技术人员可根据现有技术,对第二个基体27所包含的各模块的结构和原理进行理解,本发明不再展开说明。
可选的,第三个基体27除了包括高压模块,还包括高压电路监测模块和开关阵列模块,高压模块包括高压电容、电容充电电路及除颤波形发放电路等;高压电路监测模块主要用于高压部分的电路监测,以及除颤脉冲发放的监测;开关阵列模块用于负责各个线路的开关切换及路由。第三个基体27主要包含高压电路及逻辑控制电路,这些电路可集成于电路板上。本领域技术人员可根据现有技术,对第三个基体27所包含的各模块的结构和原理进行理解,本发明不再展开说明。
综上所述,在本发明提供的穿戴式除颤系统包括上贴附组件、下贴附组件和控制单元;所述上贴附组件与所述下贴附组件连接;所述上贴附组件包括通信连接的第一贴附单元和第二贴附单元,所述第一贴附单元和所述第二贴附单元用于设置于不同的目标区域,以获取不同的心电信号;所述下贴附组件包括高压模块,所述控制单元基于所述第一贴附单元和所述第二贴附单元所获取的心电信号,控制所述高压模块向所述第一贴附单元传输除颤脉冲,所述第一贴附单元还用于发放所述除颤脉冲。如此配置,上贴附组件包括分离的第一贴附单元和第二贴附单元,可完整覆盖心音听诊区域和组成不同的心电监测向量,下贴附组件则可贴附在不影响日常生活的位置上,使得整个穿戴式除颤系统可贴合皮肤,避免了在靠近心脏的区域贴附体积较大的装置, 具备实现长期监测和自动除颤功能的同时,使用非常方便。此外,整个穿戴式除颤系统既可用于发放除颤脉冲,又能用于心电监测和心衰监测,有效避免了无感知误放电的情况。
需要说明的,上述若干实施例之间可相互组合。上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (10)

  1. 一种穿戴式除颤系统,其特征在于,包括:上贴附组件、下贴附组件和控制单元;
    所述上贴附组件与所述下贴附组件连接;
    所述上贴附组件包括通信连接的第一贴附单元和第二贴附单元,所述第一贴附单元和所述第二贴附单元用于设置于不同的目标区域,以获取不同的心电信号;
    所述下贴附组件包括高压模块,所述控制单元基于所述第一贴附单元和所述第二贴附单元所获取的各所述心电信号,控制所述高压模块向所述第一贴附单元传输除颤脉冲,所述第一贴附单元还用于发放所述除颤脉冲。
  2. 根据权利要求1所述的穿戴式除颤系统,其特征在于,所述控制单元用于根据所述第一贴附单元和所述第二贴附单元所获取的不同的各所述心电信号,对心电事件进行确认。
  3. 根据权利要求1所述的穿戴式除颤系统,其特征在于,所述第一贴附单元和/或所述第二贴附单元包括传感器,所述传感器用于采集生理特征信号;所述控制单元基于各所述传感器所获取的生理特征信号,调节所述除颤脉冲的发放参数。
  4. 根据权利要求3所述的穿戴式除颤系统,其特征在于,所述控制单元包括心衰监测模块,所述心衰监测模块用于根据各所述传感器所获取的生理特征信号,对心衰事件进行确认。
  5. 根据权利要求1所述的穿戴式除颤系统,其特征在于,所述控制单元包括设置于所述第一贴附单元中的第一微控制器,所述第一贴附单元与所述第二贴附单元分别包括心电监测模块,各所述心电监测模块用于采集相应心电信号,所述第二贴附单元的所述心电监测模块所采集的心电信号传输至所述第一微控制器。
  6. 根据权利要求5所述的穿戴式除颤系统,其特征在于,所述第一贴附单元与所述第二贴附单元通过无线通信连接或导线连接,所述第二贴附单元的所述心电监测模块所采集的心电信号通过无线通信或导线传输至所述第一 微控制器。
  7. 根据权利要求6所述的穿戴式除颤系统,其特征在于,所述第一贴附单元与所述第二贴附单元通过导线连接,所述第一微控制器被配置为,基于所述第一贴附单元和所述第二贴附单元所采集的不同的各所述心电信号形成不同的心电监测向量。
  8. 根据权利要求1所述的穿戴式除颤系统,其特征在于,所述第一贴附单元包括至少一个贴附电极,所述第二贴附单元包括至少四个贴附电极。
  9. 根据权利要求1所述的穿戴式除颤系统,其特征在于,所述第一贴附单元和所述第二贴附单元分别包括贴附电极,所述第一贴附单元和/或所述第二贴附单元包括阻抗测量模块,所述阻抗测量模块用于检测所述贴附电极与所述下贴附组件之间的阻抗。
  10. 根据权利要求1所述的穿戴式除颤系统,其特征在于,所述下贴附组件包括柔性基板、电池模块和至少两个相互独立的基体,所有所述基体与所述柔性基板的同一面连接,所述柔性基板的另一面用于贴合在人体预定部位上;其中,所述电池模块位于一所述基体内,所述高压模块位于另一所述基体内;所有所述基体沿所述柔性基板的一延伸方向排布,且相互之间具有间隙,以允许所述柔性基板沿所述延伸方向弯曲。
PCT/CN2023/100607 2022-07-06 2023-06-16 穿戴式除颤系统 WO2024007842A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210799724.1 2022-07-06
CN202210799724.1A CN117398610A (zh) 2022-07-06 2022-07-06 穿戴式除颤系统

Publications (1)

Publication Number Publication Date
WO2024007842A1 true WO2024007842A1 (zh) 2024-01-11

Family

ID=89454173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100607 WO2024007842A1 (zh) 2022-07-06 2023-06-16 穿戴式除颤系统

Country Status (2)

Country Link
CN (1) CN117398610A (zh)
WO (1) WO2024007842A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130056716A (ko) * 2011-11-22 2013-05-30 주식회사 에스원 자동 제세동 기능을 갖는 휴대기기
CN106110505A (zh) * 2015-05-08 2016-11-16 三星电子株式会社 控制器和使用其控制除颤的贴片型自动体外除颤器
US20190299015A1 (en) * 2018-03-28 2019-10-03 Linus KIM Portable automated external defibrillator
CN110960208A (zh) * 2018-09-28 2020-04-07 Zoll医疗公司 患者穿戴式心律失常监视和处置装置
CN215025277U (zh) * 2021-02-22 2021-12-07 丽水市人民医院 一种便携式除颤仪
US20220152407A1 (en) * 2019-04-01 2022-05-19 Yossi DVIR Personal Wearable Medical Emergency Device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130056716A (ko) * 2011-11-22 2013-05-30 주식회사 에스원 자동 제세동 기능을 갖는 휴대기기
CN106110505A (zh) * 2015-05-08 2016-11-16 三星电子株式会社 控制器和使用其控制除颤的贴片型自动体外除颤器
US20190299015A1 (en) * 2018-03-28 2019-10-03 Linus KIM Portable automated external defibrillator
CN110960208A (zh) * 2018-09-28 2020-04-07 Zoll医疗公司 患者穿戴式心律失常监视和处置装置
US20220152407A1 (en) * 2019-04-01 2022-05-19 Yossi DVIR Personal Wearable Medical Emergency Device
CN215025277U (zh) * 2021-02-22 2021-12-07 丽水市人民医院 一种便携式除颤仪

Also Published As

Publication number Publication date
CN117398610A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
US20210212397A1 (en) Garments for wearable medical devices
CN205796253U9 (zh) 医学治疗设备和可穿戴除颤器
US10155118B2 (en) Systems and methods for utilizing identification devices in a wearable medical therapy device
CN203379114U (zh) 外部心脏监测器
US10835752B2 (en) Injectable subcutaneous string heart device
US20140277226A1 (en) Externally-secured medical device
US20150037636A1 (en) Mechanical Aspects of a Battery Pack for a Medical Therapy Device
US20230390567A1 (en) Wearable medical device for continuous heart monitoring with intermittent additional signal data provided via one or more touch-sensitive electrodes
JP2004524074A (ja) リードレス全自動のペースメーカフォローアップ
US11534098B2 (en) Telemetry of wearable medical device information to secondary medical device or system
US20140088658A1 (en) Automatic external defibrillator for implatable cardiac defibrillator patients undergoing procedures involving electromagnetic interference
WO2024007842A1 (zh) 穿戴式除颤系统
WO2023197420A1 (zh) 可穿戴心脏医疗设备、控制方法及医疗系统
US20220152407A1 (en) Personal Wearable Medical Emergency Device
WO2023236705A1 (zh) 穿戴式除颤系统
CN211094088U (zh) 一种穿戴式心电监测装置
WO2023236648A1 (zh) 穿戴式除颤器及其使用方法
CN211674223U (zh) 易连接防脱落心电导联线
WO2024006829A1 (en) Double sequential and multiple vector defibrillation for wearable cardioverter defibrillators
US20220287612A1 (en) Ambulatory medical device having sensors with localized driven grounds
US20210236832A1 (en) Wearable medical device controller with capacitor framing
CN108815707A (zh) 远程警报心脏除颤监护仪
KR20210063826A (ko) 모니터링 전극띠를 장착한 무선 심전도 기기
WO2023172961A1 (en) Baselining therapy energy for wearable cardiac treatment devices
CN116616785A (zh) 心脏治疗系统及心电监测数据采集方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834616

Country of ref document: EP

Kind code of ref document: A1