WO2024007740A1 - 一种超短焦光学系统及投影设备 - Google Patents

一种超短焦光学系统及投影设备 Download PDF

Info

Publication number
WO2024007740A1
WO2024007740A1 PCT/CN2023/094098 CN2023094098W WO2024007740A1 WO 2024007740 A1 WO2024007740 A1 WO 2024007740A1 CN 2023094098 W CN2023094098 W CN 2023094098W WO 2024007740 A1 WO2024007740 A1 WO 2024007740A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
rear lens
mirror
optical system
optical axis
Prior art date
Application number
PCT/CN2023/094098
Other languages
English (en)
French (fr)
Inventor
郭跃武
李文艳
徐航宇
侯健
陈果
Original Assignee
沂普光电(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沂普光电(天津)有限公司 filed Critical 沂普光电(天津)有限公司
Publication of WO2024007740A1 publication Critical patent/WO2024007740A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics

Definitions

  • the present invention relates to the technical field of optical projection equipment, and in particular to an ultra-short throw optical system and projection equipment.
  • an ultra-short throw optical system including:
  • the front group mirror group, the middle group mirror group, the rear group mirror group and the reflector are arranged at intervals along the direction of the imaging optical axis; the direction of the imaging optical axis is the direction from the first front lens to the reflector;
  • the front group lens group includes:
  • the first front lens, the second front doublet lens, and the third front triplet lens are arranged at intervals along the direction of the imaging optical axis;
  • the corresponding surface shapes of the first front lens, the second front doublet lens and the third front triplet lens are all standard spherical surfaces
  • the surface shape of the first front lens, the second front doublet lens and the third front triplet lens arranged along the imaging optical axis direction meets the following conditions:
  • R is the center curvature radius of the mirror corresponding to the standard spherical surface
  • the third front three cemented lens has a first sub-lens, a second sub-lens and a third sub-lens in sequence along the direction of the imaging optical axis.
  • the corresponding Abbe numbers of the first sub-lens, the second sub-lens and the third sub-lens are
  • the refractive index is as follows:
  • the mid-group lens group includes:
  • a first middle lens and a second middle doublet lens arranged at intervals along the direction of the imaging optical axis;
  • the rear group lens group includes:
  • a first rear lens, a second rear lens, a third rear lens and a fourth rear lens are arranged at intervals along the direction of the imaging optical axis.
  • the first rear lens, the second rear lens, the third rear lens and the fourth rear lens are The rear lens can all move along a preset path, and the preset path is parallel to the direction of the imaging optical axis.
  • a projection device including:
  • the ultra-short focus optical system in the present invention is provided with a front group mirror group, a middle group mirror group, a rear group mirror group and a reflecting mirror that are arranged in sequence along the propagation direction of the imaging light. And there is a three-cemented lens at the end of the front group lens group, that is, the third front three-cemented lens.
  • the third front three-cemented lens is composed of three sub-lenses with different refractive index and Abbe number. It is composed of this lens.
  • the triple cemented lens composed of three sub-lenses defined in the invention has better light adjustment (deflection) ability and chromatic aberration correction ability than the existing optical system composed of double cemented lenses and/or single lenses.
  • the chromatic aberration of the entire optical system can be reduced, thereby improving the imaging quality of the entire optical system.
  • the triplet lens has higher deflection and adjustment capabilities for the overall light. Without affecting the overall image quality, the entire system has fewer lenses than projection systems with the same conditions currently on the market.
  • the imaging light can be completely adjusted within a short distance, thereby shortening the total length of the optical system in the present invention.
  • the total length of the optical system in the present invention can be controlled to be less than 180 mm.
  • the imaging light can be more concentrated. Therefore, the cross-sectional area formed by the imaging light emitted through the front group lens group is smaller, thereby reducing the number of lenses in subsequent lenses. Aperture, because in actual installation, the aperture size of the first rear lens and reflector will affect the size of the final housing device, mainly affecting the maximum diameter of the housing device. Therefore, in the optical system of the present invention, since the imaging light is more concentrated, the first rear lens and the reflector with smaller diameters can be used. Specifically, the diameter of the first rear lens is 28mm and the diameter of the reflector is 43mm.
  • the optical system in the present invention has a shorter length, a smaller number of lenses, and a smaller lens diameter, thereby achieving the effect of reducing volume and weight.
  • FIG. 1 is a schematic structural diagram of an ultra-short focus optical system in an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of TV distortion of an ultra-short throw optical system in an embodiment of the present invention.
  • Figure 3 is an MTF diagram of the ultra-short throw optical system when the projection size is 80 inches in an embodiment of the present invention.
  • Figure 4 is an MTF diagram of the ultra-short throw optical system when the projection size is 100 inches in an embodiment of the present invention.
  • FIG. 5 is an MTF diagram of the ultra-short throw optical system when the projection size is 120 inches in an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an ultra-short focus optical system in an embodiment of the present invention (only part is shown).
  • DMD chip 2. The first front lens; 3. The second front doublet lens; 4. The third front three doublet lens; 5. The first middle lens; 6. The second middle doublet lens; 7. The first Rear lens; 8. Second rear lens; 9. Third rear lens; 10. Fourth rear lens; 11. Reflector; 12. Imaging optical axis.
  • an ultra-short throw optical system including:
  • the front group mirror group, the middle group mirror group, the rear group mirror group and the reflector 11 are arranged at intervals along the direction of the imaging optical axis 12; the direction of the imaging optical axis 12 is the direction from the first front lens 2 to the reflector 11.
  • the present invention The first mirror surface and the second mirror surface are the two outer surfaces corresponding to any lens unit.
  • a lens unit can be a separate lens or a whole cemented lens.
  • the first mirror surface in this embodiment is the opposite surface of the lens unit.
  • the second mirror surface is a surface close to the side where the imaging light is incident, and the second mirror surface is a surface in the lens unit relatively close to the side where the imaging light exits.
  • the front group lens group includes:
  • the first front lens 2, the second front doublet lens 3, and the third front triplet lens 4 are arranged at intervals along the direction of the imaging optical axis 12;
  • the corresponding surface shapes of the first front lens 2, the second front doublet lens 3 and the third front triplet lens 4 are all standard spherical surfaces;
  • the surface shape of the first front lens 2, the second front doublet lens 3 and the third front triplet lens 4 arranged along the direction of the imaging optical axis 12 meets the following conditions:
  • R is the center curvature radius of the mirror corresponding to the standard spherical surface
  • the third front three cemented lens has a first sub-lens, a second sub-lens and a third sub-lens in sequence along the direction of the imaging optical axis.
  • the corresponding Abbe numbers of the first sub-lens, the second sub-lens and the third sub-lens are
  • the refractive index is as follows:
  • Zhongqun lens group includes:
  • the first middle lens 5 and the second middle doublet lens 6 are arranged at intervals along the direction of the imaging optical axis 12;
  • the surface shapes of the first middle lens 5 and the second middle double cemented lens 6 are both standard spherical surfaces.
  • the surface parameters of the first middle lens 5 and the second middle double cemented lens 6 satisfy the following conditions:
  • the rear group lens group includes:
  • the first rear lens 7, the second rear lens 8, the third rear lens 9 and the fourth rear lens 10 are arranged in sequence along the direction of the imaging optical axis 12; the first rear lens 7, the second rear lens 8 and the third rear lens 9 and the fourth rear lens 10 can both move along a preset path, and the preset path is parallel to the direction of the imaging optical axis 12 .
  • the first rear lens 7 , the second rear lens 8 , the third rear lens 9 and the fourth rear lens 10 respectively have a first mirror surface and a second mirror surface.
  • the fourth rear lens 10 , the second rear lens 8 and the third rear lens 9 The face shape satisfies the following conditions:
  • the surface curve of the lens is circular.
  • the K coefficient is greater than 0, the surface curve of the lens is circular.
  • the curve is an oblate circle; a1 to a8 respectively represent the coefficients corresponding to each radial coordinate;
  • the first mirror surface and the second mirror surface of the first rear lens 7 are both standard spherical surfaces.
  • the surface shape of the first rear lens 7 meets the following conditions:
  • the surface shape of the reflector 11 meets the following conditions:
  • the ultra-short focus optical system in the present invention is provided with a front group mirror group, a middle group mirror group, a rear group mirror group and a reflecting mirror 11 which are arranged in sequence along the propagation direction of the imaging light.
  • the imaging light After the imaging light is generated by the DMD chip 1, it enters the optical system of this embodiment through the first mirror surface of the first front lens 2, and then is deflected and corrected by the second front doublet lens 3 and the third front triplet lens 4. , and then enter the middle group mirror group and the rear group mirror group in sequence, and finally the imaging light is projected by the reflector 11 to the screen or image receiving side.
  • the third front three-cemented lens 4 there is a three-cemented lens at the end of the front group lens group, that is, the third front three-cemented lens 4. Since the three-cemented lens has higher deflection and adjustment capabilities for light, it can deflect the imaging light to a greater extent. Adjustment, while cooperating with the adjustment of the imaging light by the first front lens 2 and the second front doublet lens 3 in the front group lens group, can completely adjust the deflection of the imaging light within a short distance, thereby achieving imaging requirements. Therefore, the total length of the optical system in the present invention can be shortened. Specifically, the total length of the optical system in the present invention can be controlled to be less than 180 mm. In addition, as can be seen from Figure 2, the optical system in this embodiment can also ensure that the final imaging picture has smaller TV distortion (specifically less than 0.1%), thereby ensuring that the entire picture has higher authenticity and reduces distortion. .
  • the front lens group in the present invention can make the imaging light more concentrated, so that the cross-section area formed by the imaging light emitted through the front lens group is smaller, thereby reducing the lens diameter of the subsequent lens. Therefore, since the optical system in the present invention has a shorter length and a smaller lens diameter, the volume and weight can be reduced. In addition, since the third and first three cemented lenses 4 used in this embodiment have higher deflection and adjustment capabilities for light, the total number of lenses used can be reduced. Compared with the existing optical system, at least one lens can be reduced, thereby further reducing the length and weight of the optical fiber system.
  • the mirror distance between the first rear lens 7, the second rear lens 8, the third rear lens 9, the fourth rear lens 10 and the reflecting mirror 11 meets the following conditions:
  • L4 is the distance between the fourth rear lens 10 and the reflector 11;
  • L3 is the distance between the fourth rear lens 10 and the third rear lens 9;
  • L2 is the distance between the third rear lens 9 and the third rear lens 9.
  • L1 is the distance between the second rear lens 8 and the first rear lens 7;
  • X1, X2, X3 and X4 are respectively L1, L2, L3 and L4 when the projection size is 100 inches. The value of 0.04].
  • the OTF module value is greater than 0.5 to ensure good picture clarity.
  • the optical system in this embodiment is suitable for projection sizes of 80 inches, 100 inches and 120 inches. , the OTF module value can be guaranteed to be above 0.60. From this, it can be seen that the optical system in this embodiment has higher definition of the imaging images under different projection sizes, thereby improving the imaging quality.
  • the above adjustment method can also ensure that the projection picture has smaller TV distortion during the change of projection size, thereby ensuring that the entire picture has higher authenticity and reduces distortion.
  • a projection device including:

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明涉及光学投影设备技术领域,尤其涉及一种超短焦光学系统及投影设备。包括沿成像光轴方向依次间隔设置的前群镜组、中群镜组、后群镜组及反射镜;所述成像光轴方向即由第一前透镜向反射镜的方向;所述前群镜组包括:沿所述成像光轴方向依次间隔设置的第一前透镜、第二前双胶合透镜、第三前三胶合透镜;所述中群镜组包括:沿所述成像光轴方向依次间隔设置的第一中透镜及第二中双胶合透镜;所述后群镜组包括:沿所述成像光轴方向依次间隔设置的第一后透镜、第二后透镜、第三后透镜及第四后透镜。由此,本发明中的光学系统由于具有更短的长度以及更小的镜片口径,进而可以实现缩减体积以及重量的效果。

Description

一种超短焦光学系统及投影设备 技术领域
本发明涉及光学投影设备技术领域,尤其涉及一种超短焦光学系统及投影设备。
背景技术
随着投影技术的不断发展,投影仪已经广泛应用于家用、教育和办公等领域,其中,超短焦投影能够在短距离投影的情况下投射出大尺寸的画面,备受广大消费者的喜爱。
技术问题
[根据细则26改正 17.10.2023]
相关技术中,在可以满足DMD为0.37,投射尺寸为80-120寸,且投射比小于0.2的要求下,超短焦光学系统的体积较大,不利于投影设备的小型化,降低了投影设备的便携性。
技术解决方案
根据本发明的第一个方面,提供了一种超短焦光学系统,包括:
 沿成像光轴方向依次间隔设置的前群镜组、中群镜组、后群镜组及反射镜;所述成像光轴方向即由第一前透镜向反射镜的方向;
 所述前群镜组包括:
 沿所述成像光轴方向依次间隔设置的第一前透镜、第二前双胶合透镜、第三前三胶合透镜;
 所述第一前透镜、第二前双胶合透镜和第三前三胶合透镜对应的面型均为标准球面;
[根据细则26改正 17.10.2023]
其中,所述第一前透镜、第二前双胶合透镜和第三前三胶合透镜沿成像光轴方向排列的面型符合如下条件:
其中,R为标准球面对应的镜面中心曲率半径;
 第三前三胶合透镜沿成像光轴方向依次具有第一子透镜、第二子透镜和第三子透镜,所述第一子透镜、第二子透镜和第三子透镜对应的阿贝数及折射率如下所示:
所述中群镜组包括:
沿所述成像光轴方向依次间隔设置的第一中透镜及第二中双胶合透镜;
所述后群镜组包括:
沿所述成像光轴方向依次间隔设置的第一后透镜、第二后透镜、第三后透镜及第四后透镜,所述第一后透镜、第二后透镜、第三后透镜及第四后透镜均可沿预设路径移动, 所述预设路径与所述成像光轴方向平行。
根据本发明的第二个方面,提供了一种投影设备,包括:
如上所述的超短焦光学系统;
以及壳体,所述超短焦光学系统设置于所述壳体内。
有益效果
本发明中的超短焦光学系统设置有沿所述成像光线的传播方向依次间隔设置的前群镜组、中群镜组、后群镜组及反射镜。且在前群镜组的最后设置有一个三胶合透镜,也即第三前三胶合透镜,第三前三胶合透镜是由三个不同折射率和阿贝数的子透镜组合而成的,由本发明中限定的三个子透镜组成的三胶合透镜,相对于现有的双胶合镜片和/或单镜片构成的光学系统而言,具有更好的光线调整(偏折)能力以及色差矫正能力,由此,本发明中通过三胶合镜片与剩余透镜之间配合,可以降低整个光学系统的色差,从而提升整个光学系统的成像质量。同时,三胶合透镜对整体光线具有更高的偏转与调整能力,在不影响整体成像质量的情况下,整个系统较于目前市面上同等条件的投影系统来说,透镜的个数会更少,同时配合其余的镜面的调整,可以在较短的距离内完整对成像光线的调整,由此可以缩短本发明中光学系统的总长度,具体的可以控制本发明中光学系统的总长度小于180mm。
另外,并且通过配合前群镜组中的其他的透镜,可以使成像光线更加聚拢,由此, 经过前群镜组出射的成像光线对应形成的截面的面积更小,进而可以减少后续透镜的镜片口径,由于,在实际的安装中第一后透镜与反射镜的口径大小会影响到最终的壳体设备的大小,主要为会影响到壳体设备的最大的直径大小。所以,本发明的光学系统中由于成像光线更加聚拢,所以可以使用口径较小的第一后透镜与反射镜,具体为,第一后透镜的口径为28mm,反射镜的口径为43mm。
由此,本发明中的光学系统由于具有更短的长度、更少的镜片个数以及更小的镜片口径,进而可以实现缩减体积以及重量的效果。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明一实施例中超短焦光学系统的结构示意图。
图2为本发明一实施例中超短焦光学系统的TV畸变示意图。
图3为本发明一实施例中超短焦光学系统投影尺寸为80寸时的MTF图。
图4为本发明一实施例中超短焦光学系统投影尺寸为100寸时的MTF图。
图5为本发明一实施例中超短焦光学系统投影尺寸为120寸时的MTF图。
图6为本发明一实施例中超短焦光学系统的结构示意图(只示出部分)。
附图标记:
1、DMD芯片;2、第一前透镜;3、第二前双胶合透镜;4、第三前三胶合透镜;5、第一中透镜;6、第二中双胶合透镜;7、第一后透镜;8、第二后透镜;9、第三后透镜;10、第四后透镜; 11、反射镜;12、成像光轴。
本发明的实施方式
下面结合附图对本发明实施例进行详细描述。
需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合;并且,基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明的是,下文描述在所附权利要求书的范围内的实施例的各种方面。应显而易见,本文中所描述的方面可体现于广泛多种形式中,且本文中所描述的任何特定结构及/或功能仅为说明性的。基于本公开,所属领域的技术人员应了解,本文中所描述的一个方面可与任何其它方面独立地实施,且可以各种方式组合这些方面中的两者或两者以上。举例来说,可使用本文中所阐述的任何数目个方面来实施设备及/或实践方法。另外,可使用除了本文中所阐述的方面中的一或多者之外的其它结构及/或功能性实施此设备及/或实践此方法 。
根据本发明的第一个方面,如图1所示,提供了一种超短焦光学系统,包括:
沿成像光轴12方向依次间隔设置的前群镜组、中群镜组、后群镜组及反射镜11;成像光轴12方向即由第一前透镜2向反射镜11的方向,本发明中的第一镜面与第二镜面为任何一个透镜单元对应的两个外表面,一个透镜单元可以为一个单独的透镜或者一个胶合透镜的整体,本实施例中的第一镜面为透镜单元中相对靠近成像光线入射一侧的面,第二镜面为透镜单元中相对靠近成像光线出射一侧的面。
前群镜组包括:
沿成像光轴12方向依次间隔设置的第一前透镜2、第二前双胶合透镜3、第三前三胶合透镜 4;                                  
第一前透镜2、第二前双胶合透镜3和第三前三胶合透镜4对应的面型均为标准球面 ;                                                 
 其中,第一前透镜2、第二前双胶合透镜3和第三前三胶合透镜4沿成像光轴12方向排列的面型符合如下条件:
其中,R为标准球面对应的镜面中心曲率半径;
[根据细则26改正 17.10.2023]
第三前三胶合透镜沿成像光轴方向依次具有第一子透镜、第二子透镜和第三子透镜,所述第一子透镜、第二子透镜和第三子透镜对应的阿贝数及折射率如下所示:
[根据细则26改正 17.10.2023]
中群镜组包括:
沿成像光轴12方向依次间隔设置的第一中透镜5及第二中双胶合透镜6;
[根据细则26改正 17.10.2023]
第一中透镜5及第二中双胶合透镜6的面型均为标准球面。第一中透镜5及第二中双胶合透镜6的面型参数满足如下条件:
[根据细则26改正 17.10.2023]
后群镜组包括:
沿成像光轴12方向依次间隔设置的第一后透镜7、第二后透镜8、第三后透镜9及第四后透镜10,第一后透镜7、第二后透镜8、第三后透镜9及第四后透镜10均可沿预设路径移动,预设路径与成像光轴12方向平行。                                   
[根据细则26改正 17.10.2023]
第一后透镜7、第二后透镜8、第三后透镜9与第四后透镜10分别具有第一镜面及第二镜面,第四后透镜10、第二后透镜8与第三后透镜9的面型满足如下条件:
[根据细则26改正 17.10.2023]
其中,Z为镜面深度值,单位为毫米,即以各非球面与光轴交点为起点,平行于光轴方向的轴向值;c=1/R,其中R为镜面中心曲率半径,单位为毫米,c为镜面中心曲率;r为镜面中心高度,单位为毫米;当K系数小于-1时,透镜的面形曲线为双曲线,当K系数等于-1时,透镜的面形曲线为抛物线;当K系数数介于-1到0之间时,透镜的面形曲线为椭圆,当K系数等于0时,透镜的面形曲线为圆形,当K系数大于0时,透镜的面形曲线为扁圆形;a1至a8分别表示各径向坐标所对应的系数;
第一后透镜7的第一镜面及第二镜面均为标准球面,第一后透镜7的面型满足如下条件:
反射镜11的面型符合如下条件:
[根据细则26改正 17.10.2023]
其中,Z为镜面深度值,单位为毫米,即以各非球面与光轴交点为起点,平行于光轴方向的轴向值;c=1/R,其中R为镜面中心曲率半径,单位为毫米,c为镜面中心曲率;r为镜面中心高度,单位为毫米;当K系数小于-1时,透镜的面形曲线为双曲线,当K系数等于-1时,透镜的面形曲线为抛物线;当K系数介于-1到0之间时,透镜的面形曲线为椭圆,当K系数等于0时,透镜的面形曲线为圆形,当K系数大于0时,透镜的面形曲线为扁圆形;a1至a12分别表示各径向坐标所对应的系数;ρi=xi+yi,x与y代表坐标上取的连续的点对应的横纵坐标值,也即,每一个Z对应的横纵坐标值。
本发明中的超短焦光学系统设置有沿所述成像光线的传播方向依次间隔设置的前群镜组、中群镜组、后群镜组及反射镜11。成像光线经由DMD芯片1生成后,由第一前透镜2 进的第一镜面进入本实施例的光学系统中,然后经由第二前双胶合透镜3及第三前三胶合透镜4的偏转矫正后,再依次进入中群镜组与后群镜组,最终由反射镜11将成像光线投射至屏幕或图像承接侧。
在前群镜组的最后设置有一个三胶合透镜,也即第三前三胶合透镜4,由于三胶合透镜对光线具有更高的偏转与调整能力,由此可以对成像光线进行更大幅度的调整,同时配合前群镜组中的第一前透镜2及第二前双胶合透镜3对成像光线的调整,可以在较短的距离内完整对成像光线的偏转调整,进而达到成像的要求。由此可以缩短本发明中光学系统的总长度,具体的可以控制本发明中光学系统的总长度小于180mm。另外,由图2可知,本实施例中的光学系统也可以保证最终的成像画面具有更小的TV畸变(具体小于0 .1%),从而保证整个画面具有更高的真实性,降低失真度。
另外,本发明中的前群镜组可以使成像光线更加聚拢,由此,经过前群镜组出射的成像光线对应形成的截面的面积更小,进而可以减少后续透镜的镜片口径。由此,由于本发明中的光学系统具有更短的长度以及更小的镜片口径,进而可以实现缩减体积以及重量的效果。另外,本实施例中由于使用的第三前三胶合透镜4对光线具有更高的偏转与调整能力,由此,可以减少总的镜片的使用数量。相对于现有的光学系统而言,至少可以减少一个透镜,由此,也可以进一步减小光纤系统的长度与重量。
作为本申请另一种可能的实施例,第一后透镜7、第二后透镜8、第三后透镜9、第四后透镜10与反射镜11之间的镜间距符合如下条件:
[根据细则26改正 17.10.2023]
L1=(1-K1)X1;L2=(1-K2)X2;L3=(1-K3)X3;L4=(1-K4)X4;
[根据细则26改正 17.10.2023]
其中,如图6所示,L4为第四后透镜10与反射镜11之间的距离;L3为第四后透镜10与第三后透镜9之间的距离;L2为第三后透镜9与第二后透镜8之间的距离;L1为第二后透镜8与第一后透镜7之间的距离;X1、X2、X3与X4分别为投影尺寸为100寸时L1、L2、L3与L4的值;K1、K2、K3以及K4均为变化系数,其中,K1∈[-0.01,0.009],K2∈[-0.03,0.045],K3∈[-0.0095,0.0087],K4∈[-0.032,0.04]。
[根据细则26改正 17.10.2023]
优选的,L1=15.8mm,L2=14.3mm,L3=2.3mm,L4=14mm。也即,当投影尺寸为100寸时,L1=X1=15.8mm;L2=X2=14.3mm;L3=X3=2.3mm;L4=X4=14mm。由图4可知,在该镜间距的状态下可保证画面有很好的清晰度和真实性。
[根据细则26改正 17.10.2023]
当投影尺寸为80寸时,K1=-0.01,K2=-0.03,K3=-0.0095,K4=-0.032。
当投影尺寸为120寸时,K1=0 .009,K2=0 .045,K3=0 .0087,K4=0 .04。
现有的光学系统,通常在主投影尺寸下可以保证成像画面具有较高的清晰度,也即具有较大的OTF模值,但是,在调整投影画面尺寸时清晰度会下降,进而导致画面的成像质量下降。而本实施例中的光学系统在投影尺寸发生变化时,可以按照上述方式,调整后群镜组与反射镜11之间的距离,由此可以控制在不同的投影尺寸下的成像画面均具有较高的清晰度,进而可以减小投影尺寸变化时对画面清晰度的影响,最终提高成像质量。
同时,根据图3至图5所示,通常OTF模值大于0 .5即可保证画面有很好的清晰度,本实施例中的光学系统在投影尺寸为80寸、100寸及120寸时,OTF模值均可保证在0 .60以上,由此可知本实施例中的光学系统在不同的投影尺寸下的成像画面均具有较高的清晰度,进而提高了成像质量。另外,通过上述调节方式还可以保证在投影尺寸的变化过程中,可以保证投影画面具有较小的TV畸变,从而保证整个画面具有更高的真实性,降低失真度。
根据本发明的第二个方面,提供了一种投影设备,包括:
[根据细则26改正 17.10.2023]
上述超短焦光学系统;以及壳体,超短焦光学系统设置于壳体内。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. [根据细则26改正 08.10.2023]
    一种超短焦光学系统,其特征在于,包括:沿成像光轴方向依次间隔设置的前群镜组、中群镜组、后群镜组及反射镜;所述成像光轴方向即由第一前透镜向反射镜的方向;所述前群镜组包括:沿所述成像光轴方向依次间隔设置的第一前透镜、第二前双胶合透镜、第三前三胶合透镜;
    所述第一前透镜、第二前双胶合透镜和第三前三胶合透镜对应的面型均为标准球面;其中,所述第一前透镜、第二前双胶合透镜和第三前三胶合透镜沿成像光轴方向排列的面型符合如下条件:
    其中,R为标准球面对应的镜面中心曲率半径;
    所述第三前三胶合透镜沿成像光轴方向依次具有第一子透镜、第二子透镜和第三子透镜,所述第一子透镜、第二子透镜和第三子透镜对应的阿贝数及折射率如下所示:
    所述中群镜组包括:
    沿所述成像光轴方向依次间隔设置的第一中透镜及第二中双胶合透镜;所述后群镜组包括:
    沿所述成像光轴方向依次间隔设置的第一后透镜、第二后透镜、第三后透镜及第四后透镜,所述第一后透镜、第二后透镜、第三后透镜及第四后透镜均可沿预设路径移动,所述预设路径与所述成像光轴方向平行。
  2. [根据细则26改正 08.10.2023]
    根据权利要求1所述的一种超短焦光学系统,其特征在于,所述第一后透镜、第二后透镜、第三后透镜与第四后透镜分别具有第一镜面及第二镜面,所述第四后透镜、第二后透镜与第三后透镜的面型满足如下条件:
    其中,Z为镜面深度值,单位为毫米,即以各非球面与光轴交点为起点,平行于光轴方向的轴向值;c=1/R,其中R为镜面中心曲率半径,单位为毫米,c为镜面中心曲率;r为镜面中心高度,单位为毫米;当K系数小于-1时,透镜的面形曲线为双曲线,当K系数等于-1时,透镜的面形曲线为抛物线;当K系数介于-1到0之间时,透镜的面形曲线为椭圆,当K系数等于0时,透镜的面形曲线为圆形,当K系数大于0时,透镜的面形曲线为扁圆形;a1至a8分别表示各径向坐标所对应的系数;
    所述第一后透镜的第一镜面及第二镜面均为标准球面,所述第一后透镜的面型满足如下条件:
  3. [根据细则26改正 08.10.2023]
    根据权利要求2所述的一种超短焦光学系统,其特征在于,所述第一后透镜、第二后透镜、第三后透镜、第四后透镜与反射镜之间的镜间距符合如下条件:L1=(1-K1)X1;L2=(1-K2)X2;L3=(1-K3)X3;L4=(1-K4)X4;
    其中,所述L4为第四后透镜与所述反射镜之间的距离;所述L3为第四后透镜与所述第三后透镜之间的距离;所述L2为第三后透镜与所述第二后透镜之间的距离;所述L1为第二后透镜与所述第一后透镜之间的距离;X1、X2、X3与X4分别为投影尺寸为100寸时L1、L2、L3与L4的值;K1、K2、K3以及K4均为变化系数,其中,K1∈[-0.01,0.009],K2∈[-0.03,0.045],K3∈[-0.0095,0.0087],K4∈[-0.032,0.04]。
  4. [根据细则26改正 08.10.2023]
    根据权利要求3所述的一种超短焦光学系统,其特征在于,所述L1=15.8mm,L2=14.3mm,L3=2.3mm,L4=14mm。
  5. [根据细则26改正 08.10.2023]
    根据权利要求3所述的一种超短焦光学系统,其特征在于,当投影尺寸为80寸时,所述K1=-0.01,K2=-0.03,K3=-0.0095,K4=-0.032。
  6. [根据细则26改正 08.10.2023]
    根据权利要求3所述的一种超短焦光学系统,其特征在于,当投影尺寸为120寸时,所述K1=0.009,K2=0.045,K3=0.0087,K4=0.04。
  7. [根据细则26改正 08.10.2023]
    根据权利要求1所述的一种超短焦光学系统,其特征在于,所述反射镜的面型符合如下条件:其中,Z为镜面深度值,单位为毫米,即以各非球面与光轴交点为起点,平行于光轴方向的轴向值;c=1/R,其中R为镜面中心曲率半径,单位为毫米,c为镜面中心曲率;r为镜面中心高度,单位为毫米;
    当K系数小于-1时,透镜的面形曲线为双曲线,当K系数等于-1时,透镜的面形曲线为抛物线;当K系数介于-1到0之间时,透镜的面形曲线为椭圆,当K系数等于0时,透镜的面形曲线为圆形,当K系数大于0时,透镜的面形曲线为扁圆形;a1至a12分别表示各径向坐标所对应的系数;ρi=xi+yi,x与y代表坐标上取的连续的点对应的横纵坐标值,也即,每一个Z对应的横纵坐标值;
  8. [根据细则26改正 08.10.2023]
    根据权利要求1所述的一种超短焦光学系统,其特征在于,所述第一中透镜及第二中双胶合透镜的面型均为标准球面。
  9. [根据细则26改正 08.10.2023]
    根据权利要求8所述的一种超短焦光学系统,其特征在于,所述第一中透镜及第二中双胶合透镜的面型参数满足如下条件:
  10. [根据细则26改正 08.10.2023]
    一种投影设备,其特征在于,包括:
    如权利要求1至权利要求9任意一项所述的超短焦光学系统;以及
    壳体,所述超短焦光学系统设置于所述壳体内。
PCT/CN2023/094098 2022-07-07 2023-05-15 一种超短焦光学系统及投影设备 WO2024007740A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210791259.7 2022-07-07
CN202210791259.7A CN114859524B (zh) 2022-07-07 2022-07-07 一种超短焦光学系统及投影设备

Publications (1)

Publication Number Publication Date
WO2024007740A1 true WO2024007740A1 (zh) 2024-01-11

Family

ID=82625719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094098 WO2024007740A1 (zh) 2022-07-07 2023-05-15 一种超短焦光学系统及投影设备

Country Status (2)

Country Link
CN (1) CN114859524B (zh)
WO (1) WO2024007740A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114859524B (zh) * 2022-07-07 2022-10-25 沂普光电(天津)有限公司 一种超短焦光学系统及投影设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006215476A (ja) * 2005-02-07 2006-08-17 Nitto Kogaku Kk 投写用レンズシステムおよびプロジェクタ装置
CN103777314A (zh) * 2012-10-25 2014-05-07 扬明光学股份有限公司 广角投影镜头
CN114296217A (zh) * 2021-12-29 2022-04-08 青岛海信激光显示股份有限公司 一种投影镜头及投影系统
CN114296218A (zh) * 2021-12-29 2022-04-08 青岛海信激光显示股份有限公司 一种投影镜头及投影系统
CN114859524A (zh) * 2022-07-07 2022-08-05 沂普光电(天津)有限公司 一种超短焦光学系统及投影设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619381A (en) * 1995-06-02 1997-04-08 Texas Instruments Incorporated Offset zoom lens for reflective light modulators
CN2609005Y (zh) * 2003-04-10 2004-03-31 昂纳明达网络技术(深圳)有限公司 一种具有长背焦距的广角投影光学系统
US7123426B2 (en) * 2003-12-05 2006-10-17 3M Innovative Properties Company Projection lens and display device
KR20050086076A (ko) * 2004-02-24 2005-08-30 삼성전자주식회사 대화각 고해상도를 제공하는 배면 투사 광학계
CN201725088U (zh) * 2010-07-02 2011-01-26 星盛光电股份有限公司 微型投影镜头模块
CN202383350U (zh) * 2011-11-23 2012-08-15 星盛光电股份有限公司 六片式投影镜头模块
JP2015215399A (ja) * 2014-05-08 2015-12-03 富士フイルム株式会社 投写用レンズおよび投写型表示装置
JP6481886B2 (ja) * 2014-11-19 2019-03-13 株式会社リコー 投射光学システムおよび画像表示装置
CN107422458B (zh) * 2017-09-08 2023-01-06 安徽仁和光电科技有限公司 一种低f数的l型短焦全高清投影镜头
JP7040171B2 (ja) * 2018-03-19 2022-03-23 セイコーエプソン株式会社 投射光学系及び投射型画像表示装置
JP2019164184A (ja) * 2018-03-19 2019-09-26 セイコーエプソン株式会社 投射光学系及び投射型画像表示装置
CN111290100B (zh) * 2018-12-10 2022-11-01 青岛海信激光显示股份有限公司 投影镜头及投影成像系统
CN112444930A (zh) * 2019-09-04 2021-03-05 青岛海信激光显示股份有限公司 投影镜头、投影镜头的调焦方法及装置、投影仪
CN112540442A (zh) * 2019-09-04 2021-03-23 青岛海信激光显示股份有限公司 投影镜头、投影镜头的调焦方法及装置、投影仪
TWI795592B (zh) * 2019-09-06 2023-03-11 揚明光學股份有限公司 投影鏡頭及投影機
CN112882203A (zh) * 2021-03-22 2021-06-01 沂普光电(天津)有限公司 一种短焦镜头及短焦光学系统
CN113504633B (zh) * 2021-06-29 2022-10-18 青岛海信激光显示股份有限公司 一种投影系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006215476A (ja) * 2005-02-07 2006-08-17 Nitto Kogaku Kk 投写用レンズシステムおよびプロジェクタ装置
CN103777314A (zh) * 2012-10-25 2014-05-07 扬明光学股份有限公司 广角投影镜头
CN114296217A (zh) * 2021-12-29 2022-04-08 青岛海信激光显示股份有限公司 一种投影镜头及投影系统
CN114296218A (zh) * 2021-12-29 2022-04-08 青岛海信激光显示股份有限公司 一种投影镜头及投影系统
CN114859524A (zh) * 2022-07-07 2022-08-05 沂普光电(天津)有限公司 一种超短焦光学系统及投影设备

Also Published As

Publication number Publication date
CN114859524B (zh) 2022-10-25
CN114859524A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
US5973848A (en) Retrofocus projection lens system and multivision projection display apparatus
CN107422458B (zh) 一种低f数的l型短焦全高清投影镜头
WO2024007740A1 (zh) 一种超短焦光学系统及投影设备
CN111290101A (zh) 投影成像系统及激光投影设备
US11106122B2 (en) Projecting device
CN114924457B (zh) 一种超短焦光学系统及投影设备
CN115047591B (zh) 投影镜头以及投影装置
JPH06175019A (ja) 背面投射方式tv用投射レンズシステム
CN116125637A (zh) 投影镜头以及投影装置
JPH0316002B2 (zh)
CN111487839A (zh) 光学引擎和投影设备
CN115453717A (zh) 光学透镜模组及虚拟现实设备
JPH06208054A (ja) 背面投射方式tv用投射レンズシステム
GB2143962A (en) Projection lens systems
CN112764208A (zh) 一种光学系统及投影设备
CN114924381B (zh) 一种投影镜头以及电子设备
CN219609328U (zh) 一种广角短焦投影镜头
CN211528809U (zh) 镜头、成像系统及电子设备
CN217443727U (zh) 投影光学模组及投影设备
CN214201903U (zh) 一种光学系统及投影设备
CN116859557B (zh) 投影镜头及投影装置
CN114879348B (zh) 一种投影镜头以及电子设备
CN113960870B (zh) 一种反射式超短焦光学模组
CN219122515U (zh) 一种利用透镜阵列的空中光投影放映系统
CN220455659U (zh) 一种投影系统和投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834514

Country of ref document: EP

Kind code of ref document: A1