WO2024007442A1 - 一种通气减阻装置以及包括它的船用通气减阻系统 - Google Patents

一种通气减阻装置以及包括它的船用通气减阻系统 Download PDF

Info

Publication number
WO2024007442A1
WO2024007442A1 PCT/CN2022/117441 CN2022117441W WO2024007442A1 WO 2024007442 A1 WO2024007442 A1 WO 2024007442A1 CN 2022117441 W CN2022117441 W CN 2022117441W WO 2024007442 A1 WO2024007442 A1 WO 2024007442A1
Authority
WO
WIPO (PCT)
Prior art keywords
ventilation
segment
drag reduction
cavity
plate
Prior art date
Application number
PCT/CN2022/117441
Other languages
English (en)
French (fr)
Inventor
谷家扬
刘伟发
张忠宇
陶延武
徐晓森
Original Assignee
江苏科技大学
江苏科技大学海洋装备研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学, 江苏科技大学海洋装备研究院 filed Critical 江苏科技大学
Publication of WO2024007442A1 publication Critical patent/WO2024007442A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • B63B2001/387Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes using means for producing a film of air or air bubbles over at least a significant portion of the hull surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the invention relates to the technical field of ship manufacturing, and in particular to a ventilation and drag reduction device and a marine ventilation and drag reduction system including the same.
  • EEDI ship energy efficiency design index
  • EEXI operating ship energy efficiency index
  • Ventilation and drag reduction technology utilizes the physical property that the viscosity coefficient of gas is much smaller than that of water.
  • the gas forms a gas layer on the surface of the ship through the ventilation device, thereby reducing the wet surface area of the ship, which can effectively reduce the frictional resistance of navigation in the water, thereby improving
  • the fuel economy effect reduces the overall energy consumption of the ship and reduces the emissions of harmful gases such as carbides, sulfides, and nitrogen oxides.
  • Chinese invention patent CN216468300U discloses a marine gas layer drag reduction system that uses branch pipelines to adjust the gas volume. As shown in Figure 1, it includes gas supply equipment, gas transmission equipment, multiple sets of pressure stabilizing chambers, controllers, Detection equipment, a control valve group and a number of nozzles located on the bottom of the ship; the gas supply equipment is connected to the gas transmission equipment; the gas transmission equipment is connected to each pressure stabilizing chamber, and the gas transmission equipment is used to connect the gas supply equipment The output gas is transmitted to each pressure stabilizing chamber; the pressure stabilizing chamber is arranged at the bottom of the ship.
  • the pressure stabilizing chambers extend along the width of the ship and are spaced along the length of the ship. Each pressure stabilizing chamber is connected to multiple nozzles to stabilize the pressure.
  • the pressure chamber is used to eject the gas transmitted by the gas transmission equipment from the nozzle hole; the controller is connected to the detection equipment and the control valve group; the control valve group is arranged on the gas transmission equipment, and the detection equipment is arranged on the gas transmission equipment. Detect the air flow and pressure values input by the gas transmission equipment into each pressure stabilizing chamber, and transmit the air flow and pressure values to the controller.
  • the controller is used to control the opening of the control valve group according to the air flow and pressure values. Thereby controlling the amount of gas input by the gas transmission equipment into each pressure stabilizing chamber.
  • the research team of the present invention collected relevant information, and after multiple evaluations and considerations, as well as continuous experiments and modifications by the team members, finally led to the emergence of the ventilation and drag reduction device.
  • the present invention relates to a ventilation and drag reducing device, which is installed flush with the bottom of the hull to form an isolation air layer at the bottom of the hull.
  • the ventilation and drag reduction device includes a main housing, a first rectification component, a second rectification component and a flow isolation component.
  • the main housing is composed of a first segment, a second segment, a third segment, and a fourth segment that are connected in sequence and connected end to end.
  • the longitudinal sectional areas of the first segment and the third segment remain unchanged, while the longitudinal sectional areas of the second segment and the fourth segment become smaller.
  • the first segment is used as an air inlet end and has an air inlet opening on its top wall.
  • the ventilation and drag reducing device further includes a rectifying filling body.
  • the rectifying filling body is embedded in the cavity of the third segment, and has a rectifying flow channel that completely penetrates along its length direction.
  • the rectifying flow channel is composed of a contraction cavity, a flat equal-section cavity, and a downwardly folded exhaust cavity.
  • an inclined limiting wall is formed in the downwardly folded exhaust cavity.
  • the deflection angle of the deflection plate is controlled between 0 and 60°. And when the deflection plate is flush with the inclined limiting wall, the deflection angle of the deflection plate is 60°.
  • the top wall of the fourth segment is arc-shaped, and the arc radius value r is controlled between 300 and 350 cm.
  • the ventilation and drag reduction device also includes a flow stabilizing component.
  • the flow stabilizing assembly is built into the cavity of the fourth segment, and consists of a plurality of first flat flow stabilizing plates, a second flat flow stabilizing plate, a third flat flow stabilizing plate, and a plurality of pieces that are offset in the left and right directions and parallel to each other. It is composed of flat flow stabilizing plate.
  • the first flat flow stabilizing plate and the third flat flow stabilizing plate are both fixed on the right side wall of the second rectifying plate, and are kept in a non-top contact state with the top wall of the fourth segment.
  • the second flat flow stabilizing plate is fixed on the top wall of the fourth segment, and is kept in a non-top contact state with the second rectifying plate.
  • the flow path of high-pressure gas is: air inlet - first rectification component - flow isolation component - second rectification component - air outlet -The bottom of the hull.
  • the high-pressure gas is rectified by the synergistic effect of the first rectification component, the flow isolation component and the second rectification component during the circulation process in the main shell cavity, ultimately reducing the flow of high-pressure gas through
  • the instantaneous turbulence at the air outlet is conducive to the formation of a long-lasting and stable isolation air layer at the bottom of the hull, thereby reducing the frictional resistance of the ship when sailing in the water, and ultimately improving its fuel economy.
  • the overall design structure of the ventilation and drag reduction device is extremely simple and easy to manufacture and implement. During ship operation, no routine maintenance is required unless structural damage occurs.
  • the invention also discloses a marine ventilation and drag reduction system, which includes a high-pressure air source, a main pipeline, a main stop valve, N branch pipelines, N secondary stop valves, N throttle valves and N
  • the ventilation and drag reduction device mentioned above Each ventilation and drag reduction device is connected to the high-pressure air source through its corresponding branch pipeline and main pipeline in sequence.
  • the main stop valve is matched with the main pipeline to communicate or block the high-pressure gas source and the main pipeline.
  • the secondary stop valve is matched with the branch pipeline to communicate or block the branch pipeline and the ventilation and drag reduction device.
  • the throttle valve is matched with the branch pipeline to increase or decrease the amount of high-pressure gas supplied to the ventilation and drag reduction device through the branch pipeline unit per unit time.
  • the marine ventilation and drag reduction system also includes N liquid level sensors.
  • the secondary stop valve is preferably an electromagnetic stop valve.
  • the liquid level sensor is used to control the opening/closing state of the secondary stop valve. It is matched with the ventilation and drag reduction device to sense in real time whether there is water intrusion in the inner cavity of the main shell.
  • the high-pressure gas source is preferably an electric air pump, an air compressor or a high-pressure gas storage tank.
  • the same high-pressure air source and one main pipeline can be used to supply air to multiple ventilation and drag reduction devices at the same time, thus effectively reducing the amount of ship modification projects and thus greatly reducing construction costs. , and shortened the transformation cycle.
  • the amount of high-pressure gas supplied to the corresponding ventilation and drag reduction device can be quickly and efficiently adjusted to ensure that the high-pressure gas is maintained in an optimal distribution state to better match the actual navigation of the ship.
  • a stable isolation air layer can be formed at the bottom of the hull, ultimately achieving a drag reduction effect and realizing the design purpose of energy saving and emission reduction for ship navigation.
  • Figure 1 is a schematic structural diagram of a marine air layer drag reduction system in the prior art.
  • Figure 2 is an application state diagram when the marine ventilation and drag reduction system of the present invention is matched with the ship.
  • Figure 3 is a schematic structural diagram of the marine ventilation and drag reduction system of the present invention.
  • Figure 4 is a perspective view of a first embodiment of the ventilation and drag reducing device of the present invention.
  • Figure 5 is a schematic three-dimensional view from another perspective of the first embodiment of the ventilation and drag reducing device of the present invention.
  • Figure 6 is a three-dimensional schematic view from one perspective of the first embodiment of the ventilation and drag reduction device of the present invention (with hidden lines visible).
  • FIG. 7 is a top view of FIG. 4 .
  • Fig. 8 is a cross-sectional view taken along line A-A in Fig. 7 .
  • FIG. 9 is an enlarged view of part I of FIG. 8 .
  • Figure 10 is a schematic structural diagram of the second embodiment of the ventilation and drag reduction device in the present invention.
  • FIG. 11 is a partial enlarged view of II in FIG. 10 .
  • 1-High-pressure gas storage tank 2-Main pipeline; 3-Main stop valve; 4-Branch pipeline; 5-Secondary stop valve; 6-Throttle valve; 7-Ventilation and drag reduction device; 71-Main shell; 711- First segment; 7111-air inlet; 712-second segment; 713-third segment; 714-fourth segment; 7141-air outlet; 72-first rectification component; 721-first rectification plate ; 7211-First vent; 73-Second rectification component; 731-Second rectifier plate; 7311-Second vent; 74-Baffle component; 741-Baffle; 75-Rectifier filler; 751-Rectifier Flow channel; 7511-shrinking chamber; 7512-flat equal-section chamber; 7513-folded exhaust chamber; 75131-inclined limit wall; 76-deflection plate; 77-stabilizing flow component; 771-first flat Stable flow plate; 772-the second flat flow
  • Figure 2 shows an application state diagram when the marine ventilation and drag reduction system of the present invention is matched with the ship. It can be seen that the marine ventilation and drag reduction system is matched with the ship. The purpose of matching is to form a stable isolation air layer at the bottom of the hull, thereby laying a good foundation for reducing the frictional resistance of the ship when sailing in the water.
  • the crew can quickly and efficiently adjust the corresponding ventilation and drag reduction device 7 by changing the opening and closing degree of the throttle valve 6 .
  • the amount of high-pressure gas supplied is adjusted to ensure that the high-pressure gas is maintained in an optimal distribution state between the ventilation and drag reduction devices 7 to better match the actual sailing sea conditions of the ship, and ultimately forms a stable and stable bottom of the ship. Long-lasting air barrier.
  • the flow path of high-pressure gas is: air inlet 7111 - first rectification component 72 - flow isolation component 74 - second rectification component 73 - air outlet 7141 - bottom of the hull.
  • the working principle is specifically described as follows: First, when the high-pressure gas flows into the second segment 712 through the first segment 711, a plurality of first rectifying plates 721 are arranged at intervals in the cavity of the second segment 712, and along the Its longitudinal cross-sectional area becomes smaller in the flow direction. Combining the above two factors can effectively reduce the turbulence of high-pressure gas.
  • the above-mentioned ventilation and drag reduction device has achieved at least the following beneficial effects, specifically:
  • the high-pressure gas is rectified by the synergistic effect of the first rectification component 72, the flow isolation component 74 and the second rectification component 73 during the circulation process in the cavity of the main housing 71 , ultimately reducing the turbulence at the moment when high-pressure gas is discharged through the air outlet 7141, which is conducive to the formation of a long-lasting and stable isolation gas layer at the bottom of the hull, thereby reducing the frictional resistance of the ship when sailing in the water, and ultimately improving its fuel economy.
  • an additional deflection plate 76 is added. Near its outlet end, the deflection plate 76 is freely swingably hinged to the top wall of the flat equal-section cavity 7512 to communicate or block the flat equal-section cavity 7512 and the downwardly folded exhaust cavity 7513.
  • the first flat flow stabilizing plate 771 and the third flat flow stabilizing plate 773 are both fixed on the right side wall of the second rectifying plate 731, and are kept in non-top contact with the arc-shaped top wall of the fourth segment 714. state.
  • the second flat flow stabilizing plate 772 is fixed on the arc-shaped top wall of the fourth segment 714 and remains in a non-top contact state with the second rectifying plate 731 .
  • the high-pressure gas circulates along the "Zigzag" path, which can further reduce the probability of the occurrence of "turbulent flow” and ensure that the high-pressure gas is ejected through the outlet 7141 the moment it is ejected.
  • the flow rates in different distribution areas tend to be consistent, which is more conducive to the subsequent formation of a stable and long-lasting isolation gas layer at the bottom of the ship.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Ventilation (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

一种通气减阻装置,包括主壳体(71)、第一整流组件(72)、第二整流组件(73)以及隔流组件(74),主壳体(71)由第一分段(711)、第二分段(712)、第三分段(713)、第四分段(714)构成,第一分段(711)被用作进气端。第一整流组件(72)由多件竖置于第二分段(712)空腔中的第一整流板(721)构成,第二整流组件(73)由至少1件竖置于第三分段(713)空腔中的第二整流板(731)构成,隔流组件(74)内置于第三分段(713)的空腔中,且位于第二整流组件(73)的一侧,第四分段(714)被用作出气端。该通气减阻装置利用第一整流组件、隔流组件以及第二整流组件协同整流,降低了高压气体经由出气口排出瞬间的湍流度,利于在船体底部形成稳定的隔离气层。

Description

一种通气减阻装置以及包括它的船用通气减阻系统 技术领域
本发明涉及船舶制造技术领域,尤其是一种通气减阻装置以及包括它的船用通气减阻系统。
背景技术
随着国际海事组织(IMO)对节能减排要求不断提升,船舶能效设计指数(EEDI)及营运船能效指数(EEXI)愈趋严格,降低船舶能耗成为船舶行业的发展趋势。通气减阻技术是船舶及水下航行体节能效果显著的前沿技术之一,日益受到船舶界的重视。
通气减阻技术利用气体的粘性系数远小于水的粘性系数这一物理属性,气体经由通气装置在船舶表面形成气层,从而减少船舶的湿表面积,可有效降低水中航行的摩擦阻力,从而达到提高燃油经济性效果,降低船舶的综合能耗,减少碳化物、硫化物、氮化物等有害气体的排放。
就目前情况而言,通气减阻技术在船舶上已经得到广泛地应用。例如:中国发明专利CN216468300U公开了一种采用分支管路调节气量的船用气层减阻系统,如图1中所示,其包括供气设备、输气设备、多组稳压腔、控制器、检测设备、控制阀组和设于船底板上的若干喷孔;所述供气设备与所述输气设备连接;输气设备与每一稳压腔连接,输气设备用于将供气设备输出的气体传输至每一稳压腔内;稳压腔设置于船底,稳压腔沿船的宽度方向延伸并沿船的长度方向间隔分布,每一稳压腔与多个喷孔连接,稳压腔用于将输气设备传输的气体从喷孔喷出;控制器与检测设备和控制阀组连接;控制阀组设置于输气设备上,检测设备设置于输气设备上,检测设备用于检测输气设备输入至每一稳压腔内的气流量和压力值,并将气流量和压力值传递至控制器,控制器用于根据气流量和压力值控制所述控制阀组的开度从而控制输气设备输入至每一稳压腔内的气体量。虽说如此可以有效地确保每一稳压腔的喷气量达到最佳分配状态,进而实现船舶低阻力航行的预期目标,然而,稳压腔内气压值的稳定需要检测设备(用来实时地对稳压腔内的气流量和压力值进行反馈)、控制阀组以及控制器协同配合,设计结构复杂,实施困难度较大,施工投入巨额花费(预估80~120W),更为紧要的是,系统结构的复杂性与故障发生概率呈正相关关系,鉴于此,在船舶实际运营中,势必要求投入大量的人力、物力对其进行例行检查、维护。因而,亟待本课题组解决上述问题。
发明内容
故,本发明课题组鉴于上述现有的问题以及缺陷,乃搜集相关资料,经由多方的评 估及考量,并经过课题组人员不断实验以及修改,最终导致该通气减阻装置的出现。
为了解决上述技术问题,本发明涉及了一种通气减阻装置,齐平于船体底部进行安装,以在船体底部形成隔离气层。通气减阻装置包括有主壳体、第一整流组件、第二整流组件以及隔流组件。沿着由左至右方向,主壳体由依序相连的、且首尾相贯通的第一分段、第二分段、第三分段、第四分段构成。沿着由左至右方向,第一分段和第三分段的纵截面面积保持不变,而第二分段和第四分段的纵截面面积趋小。第一分段被用作进气端,且在其顶壁上开设有进气口。第一整流组件由多件竖置于第二分段空腔中的、且沿着左右方向相间隔而置的第一整流板构成。在第一整流板上均布有多个第一通气孔。第二整流组件由至少1件竖置于第三分段空腔中的第二整流板构成。靠近其顶壁位置,在第二整流板上开设有多个第二通气孔。隔流组件内置于第三分段的空腔中,且位于第二整流组件的正左侧。隔流组件由多件均与第二整流板相平行的、且沿着上下方向相互错位而置的隔流板构成。第四分段被用作出气端,且在其底壁上开设有出气口。
作为本发明技术方案的进一步改进,通气减阻装置还包括有整流填充体。整流填充体嵌设于第三分段的空腔中,且其上开设有沿其长度方向进行完全贯穿的整流流道。沿着空气流动方向,整流流道依序由收缩腔、平置等截面腔、下折排气腔构成。
作为本发明技术方案的更进一步改进,通气减阻装置还包括有偏摆板。偏摆板铰接于整流填充体内,以用来沟通或阻断平置等截面腔和下折排气腔。工作状态下,向着进气口持续地供入高压气体,偏摆板在气体外推力作用下执行偏摆运动,以沟通平置等截面腔和下折排气腔。非工作状态下,暂停向着进气口供入高压气体,偏摆板在重力的作用下复位,以封堵阻断平置等截面腔和下折排气腔。
作为本发明技术方案的更进一步改进,正对应于平置等截面腔,在下折排气腔内成型出有斜置限位壁。偏摆板的偏摆角度控制在0~60°之间。且当偏摆板与斜置限位壁相平贴时,偏摆板的偏摆角度为60°。
作为本发明技术方案的更进一步改进,第四分段的顶壁呈弧线形,且弧线半径值r控制于300~350cm之间。
作为本发明技术方案的更进一步改进,通气减阻装置还包括有稳流组件。稳流组件内置于第四分段的空腔中,其由多件沿着左右方向相错位而置的、且相互平行的第一平置稳流板、第二平置稳流板、第三平置稳流板构成。其中,第一平置稳流板和第三平置稳流板均固定于第二整流板的右侧壁上,且与第四分段的顶壁保持于非顶触状态。第二平置稳流板固定于第四分段的顶壁上,且与第二整流板保持于非顶触状态。
相较于传统设计结构的通气减阻装置,在本发明中所公开的技术方案中,高压气体的流通路径为:进气口-第一整流组件-隔流组件-第二整流组件-出气口-船体底部。在不明显增加总施工成本的前提下,高压气体在主壳体空腔中流通进程中辅以第一整流组件、隔流组件以及第二整流组件的协同作用下得以整流,最终降低高压气体经由出气口排出瞬间的湍流度,利于在船体底部形成持久、且稳定的隔离气层,进而降低船舶在水中航行时的摩擦阻力,最终提高其燃油经济性。
更为重要的是,依靠通气减阻装置自身的设计结构特性,即可实现对高压气体的有效整流,而无需借助于现有技术中所涉及到的水流传感器、压力传感器以及控制器等,如此一来,该通气减阻装置的整体设计结构极为简洁,易于制造实施,且在船舶运营中,除非发生结构性损坏,否则无需进行日常维护。
另外,本发明还公开了一种船用通气减阻系统,其包括一高压气源、一主管路、一主截止阀、N个支管路、N个次截止阀、N个节流阀以及N个上述的通气减阻装置。各通气减阻装置依序经由与之相对应的支管路、主管路以实现与高压气源的连通。主截止阀与主管路相配套,以沟通或阻断高压气源和主管路。次截止阀与支管路相配套,以沟通或阻断支管路和通气减阻装置。节流阀与支管路相配套,以增大或减小单位时间内经由支管路单位向着通气减阻装置所供应的高压气体量。
作为本发明技术方案的进一步改进,船用通气减阻系统还包括有N个液位传感器。次截止阀优选为电磁截止阀。液位传感器用来控制次截止阀启/闭状态的切换,其与通气减阻装置相配套,以实时地感知主壳体的内腔中是否有水入侵。
作为本发明技术方案的更进一步改进,高压气源优选为电动气泵、空压机或高压储气罐。
通过采用上述技术方案进行设置,借用同一高压气源、一主管路即可实现对多个通气减阻装置的同时供气,从而有效地减少了船舶的改造工程量,进而大大地降低了施工成本,且缩短了改造周期。另外,借助于节流阀即可快捷、高效地实现对与之对应通气减阻装置所供入高压气体量的调节,确保高压气体得以保持于最佳分配状态,以更好地与船舶实际航行海况相匹配,进而得以在船体底部形成有稳定隔离气层,最终达到减阻效果,实现船舶航行节能减排的设计目的。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有 技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中船用气层减阻系统的结构示意图。
图2是本发明中船用通气减阻系统与船舶相配套时的应用状态图。
图3是本发明中船用通气减阻系统的结构示意图。
图4是本发明中通气减阻装置第一种实施方式一种视角的立体示意图。
图5是本发明中通气减阻装置第一种实施方式另一种视角的立体示意图。
图6是本发明中通气减阻装置第一种实施方式一种视角的立体示意图(隐线可见状态下)。
图7是图4的俯视图。
图8是图7的A-A剖视图。
图9是图8的I局部放大图。
图10是本发明中通气减阻装置第二种实施方式的结构示意图。
图11是图10的II局部放大图。
1-高压储气罐;2-主管路;3-主截止阀;4-支管路;5-次截止阀;6-节流阀;7-通气减阻装置;71-主壳体;711-第一分段;7111-进气口;712-第二分段;713-第三分段;714-第四分段;7141-出气口;72-第一整流组件;721-第一整流板;7211-第一通气孔;73-第二整流组件;731-第二整流板;7311-第二通气孔;74-隔流组件;741-隔流板;75-整流填充体;751-整流流道;7511-收缩腔;7512-平置等截面腔;7513-下折排气腔;75131-斜置限位壁;76-偏摆板;77-稳流组件;771-第一平置稳流板;772-第二平置稳流板;773-第三平置稳流板。
具体实施方式
在本发明的描述中,需要理解的是,术语“前”、“后”、“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
下面结合具体实施例,对本发明所公开的内容作进一步详细说明,图2示出了本发明中船用通气减阻系统与船舶相配套时的应用状态图,可知,船用通气减阻系统与船舶相配套,目的是为了在船体底部形成稳定的隔离气层,进而为降低船舶在水中航行时的摩擦阻力 作良好的铺垫。
图3示出了本发明中船用通气减阻系统的结构示意图,可知,其主要由一高压储气罐1、一主管路2、一主截止阀3、4个支管路4、4个次截止阀5、4个节流阀6以及4个通气减阻装置7等构成。其中,各通气减阻装置7均齐平于船体底部进行安装,且依序经由与之相对应的支管路4、主管路2以实现与高压储气罐1的连通。主截止阀3与主管路2相配套,以沟通或阻断高压储气罐1和主管路2。次截止阀3与支管路4相配套,以沟通或阻断支管路4和与之相对应的通气减阻装置7。节流阀6与支管路4相配套,以增大或减小单位时间内经由支管路4单位时间内向着通气减阻装置7所供应的高压气体量。通过上述技术方案进行设置,借用同一高压储气罐1、一主管路2即可实现对多个通气减阻装置7的同时供气,从而有效地减少了船舶的改造工程量,进而大大地降低了施工成本,且缩短了改造周期。
更为重要的是,当海况发生改变时,即水流速度以及方向发生变化时,船员可以通过改变节流阀6的开合度大小即可快捷、高效地实现对与之对应通气减阻装置7所供入高压气体量的调节,进而确保高压气体在各通气减阻装置7之间得以保持于最佳分配状态,以更好地与船舶实际航行海况相匹配,最终在船舶底部形成有稳定、且持久的隔离气层。
在船舶实际航行时,极易因通气减阻装置7受损而发生海水倒灌现象,进而影响到船用通气减阻系统的正常运行以及效能的发挥。为了解决这一问题,最初设计方案为在各支管路4均配套有单向阀,仅允许高压气体单向流通。然而,在实际使用中,在单向阀被关闭的瞬间,部分高压气体反方向流动,且随着阀瓣关闭进程的持续,高压气体从最大倒流速度迅速降至零,而压力则迅速升高,即产生可能对支管路4有破坏作用的“水锤”现象,进而会严重地降低支管路4的使用寿命,后续需要投入大量的人力、物力对其执行换新操作。鉴于此,作为上述技术方案的另一种改型设计,该船用通气减阻系统还可增设有4个液位传感器(图中未示出)。且次截止阀5优选为电磁截止阀,工作原理为:通电时,线圈产生电磁力把关闭件从阀座上提起,阀门打开,以沟通支管路4和主管路2;断电时,电磁力消失,弹簧力把关闭件压在阀座上,阀门关闭,以阻断支管路4和主管路2。液位传感器用来控制次截止阀启/闭状态的切换,其与通气减阻装置7相配套,以实时地感知其内腔中是否有水液入侵。在具体应用中,当通气减阻装置7的内腔中被水液所侵入后,且当液位传感器被水液所浸没后,其即时感应到水的存在,并发送控制指令至电磁截止阀以执行关闭操作,支管路4和主管路2的流通路径即被阻断,从而可以有效地避免海水倒灌现象的发生,而且还避免了支管路4因“水锤效应”而引起的寿命急剧缩短现象的发生。
在此需要说明以下两点内容:1)除了可以选用上述高压储气罐1作为通气减阻装置 7的供气源,亦可根据客户需求以及实际海况的不同选取其他高压气源,例如:电动气泵、空压机等;2)根据客户需求以及实际海况的不同,亦可对通气减阻装置7的配套数目以及具体安装位置进行调整,以船舶在高速航行中在其底部得以形成稳定、且持久的隔离气层为最终设计目的。
图4、图5分别示出了本发明中通气减阻装置第一种实施方式两种不同视角的立体示意图,可知,其主要由主壳体71、第一整流组件72、第二整流组件73以及隔流组件74等几部分构成。其中,沿着由左至右方向,主壳体71由依序相连的、且首尾相贯通的第一分段711、第二分段712、第三分段713、第四分段714构成。沿着由左至右方向,第一分段711和第三分段713的纵截面面积保持不变,而第二分段712和第四分段714的纵截面面积趋小。第一分段711被用作进气端,且在其顶壁上开设有进气口7111。第一整流组件72由3件竖置于第二分段712空腔中的、且沿着左右方向相间隔而置的第一整流板721构成。在第一整流板721上均布有多个第一通气孔7211。第二整流组件73由1件竖置于第三分段713空腔中的第二整流板731构成。靠近其顶壁位置,在第二整流板731上设有多个第二通气孔7311。隔流组件74内置于第三分段713的空腔中,且位于第二整流组件73的正左侧。隔流组件74由2件均与第二整流板731相平行的、且沿着上下方向相互错位而置的隔流板741构成。位于左侧的隔流板741呈竖放态,其固定于第三分段713空腔的底壁上,其与顶壁保持于非顶触状态(间隙控制在5~8cm)。位于右侧的隔流板741固定于第三分段713空腔的顶壁上,其与底壁保持于非顶触状态(间隙控制在5~8cm)。第四分段714被用作出气端,且在其底壁上开设有出气口7141。(如图6-9中所示)。
在实际应用中,高压气体的流通路径为:进气口7111-第一整流组件72-隔流组件74-第二整流组件73-出气口7141-船体底部。工作原理具体阐述如下:首先,高压气体经由第一分段711而流入第二分段712时,因在第二分段712的空腔中间隔地布置有多个第一整流板721,且沿着流通方向其纵截面面积趋小,综合以上两方面因素可以有效地降低高压气体的湍流度,而在高压气体流经第三分段713的进程中,在各隔流板741的协同作用下高压气体得以沿着“折线形”路径以越过隔流组件74,随后,高压气体流入至第四分段714中,加之受到沿着流通方向其纵截面面积趋小这一因素的影响,从而更进一步降低了高压气体的湍流度,且确保气体经由出气口7141被喷出瞬间其各不同分布区域内流速趋于一致,进而利于后续在船舶的底部形成稳定、且持久的隔离气层。
在实际应用中,上述通气减阻装置至少取得了以下几方面的有益效果,具体为:
1)在不明显增加总施工成本的前提下,高压气体在主壳体71空腔中流通进程中辅以第一整 流组件72、隔流组件74以及第二整流组件73的协同作用下得以整流,最终降低高压气体经由出气口7141排出瞬间的湍流度,利于在船体底部形成持久、且稳定的隔离气层,进而降低船舶在水中航行时的摩擦阻力,最终提高其燃油经济性。
2)依靠通气减阻装置7自身的设计结构特性,即可实现对高压气体的有效整流,整体设计结构极为简洁,易于制造实施,且在船舶运营中,除非通气减阻装置7发生结构性损坏,否则无需对其执行日常维护操作。
再者,结合附图4、5、6中所示还可以明确看出,第四分段714的顶壁优选设计为弧线形,且弧线半径值r控制于300~350cm之间。如此一来,当其经由出气口7141而排出时,高压气体因被弧形引流而导致喷射方向的优化,利于后续在贴近船舶底壁的区域内形成有稳定、且持续的隔离气层。
再者,结合附图6-9中所示还可知,在第三分段713的空腔中还嵌设有整流填充体75。在整流填充体75上开设有沿其长度方向完全贯穿的整流流道751。沿着空气流动方向,整流流道751依序由收缩腔7511、平置等截面腔7512、下折排气腔7513构成。在实际运用中,当高压气体经由收缩腔7511时,随着截面的逐渐减小,高压气体的压强亦随之减小,但流速急剧地增大,这时就极易在收缩腔7511的入口处产生一个真空度,进而导致更多的高压气体被吸入至收缩腔7511中,如此,可有效地减少气流的震荡强度,避免高压气体在流经整流填充体75发生“紊流”现象,最终确保高压气体的湍流度得到大幅度下降。
在高压储气罐1未开启状态下,海水极易经由通气减阻装置7而倒灌入支管路4以及主管路2,进而势必会严重降低两者的使用寿命,后期需投入大量的人力、物力对其开展换新作业,鉴于此,作为上述通气减阻装置结构的进一步优化,如图6-9中所示,额外增设有偏摆板76。临近其出口端,偏摆板76可自由摆动地铰接于平置等截面腔7512的顶壁上,以用来沟通或阻断平置等截面腔7512和下折排气腔7513。工作状态下,当向着进气口7111持续地供入高压气体时,偏摆板76在气体外推力作用下执行偏摆运动,以沟通平置等截面腔7512和下折排气腔7513。正对应于平置等截面腔7512,在下折排气腔7513内成型出有斜置限位壁75131。偏摆板76的偏摆角度被限制在0~60°之间。且当偏摆板76与斜置限位壁75131相平贴时,偏摆板76的偏摆角度恰为60°。而在非工作状态下,暂停向着进气口7111供入高压气体,偏摆板76在重力的作用下复位,以封堵阻断平置等截面腔7512和下折排气腔7513,如此,即可有效地避免海水经由通气减阻装置7而倒灌入支管路4以及主管路2现象的发生,最终确保船用通气减阻系统的工作性能得以正常、高效地发挥。
图10示出了本发明中通气减阻装置第二种实施方式的结构示意图,可知,其相较于 上述第一种实施方式的区别点在于:在第四分段714的空腔中还增设有稳流组件77。正如附图11中所示,稳流组件77由沿着左右方向相错位而置的、且相互平行的第一平置稳流板771、第二平置稳流板772、第三平置稳流板773构成。其中,第一平置稳流板771和第三平置稳流板773均固定于第二整流板731的右侧壁上,且与第四分段714的弧形顶壁保持于非顶触状态。第二平置稳流板772固定于第四分段714的弧形顶壁上,且与第二整流板731保持于非顶触状态。这样一来,当被整流后的高压气体经由第二整流板731而流入至第四分段714空腔中时,在第一平置稳流板771、第二平置稳流板772、第三平置稳流板773的协同作用下,高压气体沿着“折线形”路径进行流通,从而可进一步降低“紊流”现象的发生的几率,确保高压气体经由出气口7141被喷出瞬间其各不同分布区域内流速趋于一致,进而更利于后续在船舶底部的形成稳定、且持久的隔离气层。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

  1. 一种通气减阻装置,齐平于船体底部进行安装,以在船体底部形成隔离气层,其特征在于,包括有主壳体、第一整流组件、第二整流组件以及隔流组件;沿着由左至右方向,所述主壳体由依序相连的、且首尾相贯通的第一分段、第二分段、第三分段、第四分段构成;沿着由左至右方向,所述第一分段和所述第三分段的纵截面面积保持不变,而所述第二分段和所述第四分段的纵截面面积趋小;所述第一分段被用作进气端,且在其顶壁上开设有进气口;所述第一整流组件由多件竖置于所述第二分段空腔中的、且沿着左右方向相间隔而置的第一整流板构成;在所述第一整流板上均布有多个第一通气孔;所述第二整流组件由至少1件竖置于所述第三分段空腔中的第二整流板构成;靠近其顶壁位置,在所述第二整流板上开设有多个第二通气孔;所述隔流组件内置于所述第三分段的空腔中,且位于所述第二整流组件的正左侧;所述隔流组件由多件均与所述第二整流板相平行的、且沿着上下方向相互错位而置的隔流板构成;所述第四分段被用作出气端,且在其底壁上开设有出气口。
  2. 根据权利要求1所述的通气减阻装置,其特征在于,还包括有整流填充体;所述整流填充体嵌设于所述第三分段的空腔中,且其上开设有沿其长度方向进行完全贯穿的整流流道;沿着空气流动方向,所述整流流道依序由收缩腔、平置等截面腔、下折排气腔构成。
  3. 根据权利要求2所述的通气减阻装置,其特征在于,还包括有偏摆板;所述偏摆板铰接于所述整流填充体内,以用来沟通或阻断所述平置等截面腔和所述下折排气腔;工作状态下,向着所述进气口持续地供入高压气体,所述偏摆板在气体外推力作用下执行偏摆运动,以沟通所述平置等截面腔和所述下折排气腔;非工作状态下,暂停向着所述进气口供入高压气体,所述偏摆板在重力的作用下复位,以封堵阻断所述平置等截面腔和所述下折排气腔。
  4. 根据权利要求3所述的通气减阻装置,其特征在于,正对应于所述平置等截面腔,在所述下折排气腔内成型出有斜置限位壁;所述偏摆板的偏摆角度控制在0~60°之间;且当所述偏摆板与所述斜置限位壁相平贴时,所述偏摆板的偏摆角度为60°。
  5. 根据权利要求1所述的通气减阻装置,其特征在于,所述第四分段的顶壁呈弧线形,且弧线半径值r控制于300~350cm之间。
  6. 根据权利要求5所述的通气减阻装置,其特征在于,还包括有稳流组件;所述稳流组件内置于所述第四分段的空腔中,其由多件沿着左右方向相错位而置的、且相互平行的第一平置稳流板、第二平置稳流板、第三平置稳流板构成;其中,所述第一平置稳流板和所述第三平置稳流板均固定于所述第二整流板的右侧壁上,且与所述第四分段的顶壁保持于非顶触状态;所述第二平置稳流板固定于所述第四分段的顶壁上,且与所述第二整流板保持于非顶触状态。
  7. 一种船用通气减阻系统,其特征在于,包括一高压气源、一主管路、一主截止阀、N个支管路、N个次截止阀、N个节流阀以及N个如权利要求1-6中任一项所述的通气减阻装置;各所述通气减阻装置依序经由与之相对应的所述支管路、所述主管路以实现与所述高压气源的连通;所述主截止阀与所述主管路相配套,以沟通或阻断所述高压气源和所述主管路;所述次截止阀与所述支管路相配套,以沟通或阻断所述支管路和所述通气减阻装置;所述节流阀与所述支管路相配套,以增大或减小单位时间内经由所述支管路单位时间内向着所述通气减阻装置所供应的高压气体量。
  8. 根据权利要求7所述的船用通气减阻系统,其特征在于,还包括有N个液位传感器;所述次截止阀为电磁截止阀;所述液位传感器用来控制所述次截止阀启/闭状态的切换,其与所述通气减阻装置相配套,以实时地感知所述主壳体的内腔中是否有水入侵。
  9. 根据权利要求7所述的船用通气减阻系统,其特征在于,所述高压气源为电动气泵、空压机或高压储气罐。
PCT/CN2022/117441 2022-07-08 2022-09-07 一种通气减阻装置以及包括它的船用通气减阻系统 WO2024007442A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210799535.4A CN114940232B (zh) 2022-07-08 2022-07-08 一种通气减阻装置以及包括它的船用通气减阻系统
CN202210799535.4 2022-07-08

Publications (1)

Publication Number Publication Date
WO2024007442A1 true WO2024007442A1 (zh) 2024-01-11

Family

ID=82911383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117441 WO2024007442A1 (zh) 2022-07-08 2022-09-07 一种通气减阻装置以及包括它的船用通气减阻系统

Country Status (3)

Country Link
US (1) US20230348022A1 (zh)
CN (1) CN114940232B (zh)
WO (1) WO2024007442A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114940232B (zh) * 2022-07-08 2023-07-14 江苏科技大学 一种通气减阻装置以及包括它的船用通气减阻系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274478A (ja) * 2001-03-16 2002-09-25 Uemoto Kazutoshi 船舶の摩擦抵抗低減装置
CN101400567A (zh) * 2005-01-19 2009-04-01 北海岸伙伴公司 用于减小浸没表面上的流体拖曳力的设备及方法
CN101990511A (zh) * 2008-04-01 2011-03-23 独立行政法人海上技术安全研究所 船舶的摩擦阻力减小装置
CN108177724A (zh) * 2018-01-12 2018-06-19 中船重工船舶设计研究中心有限公司 一种用于气层减阻技术的稳压腔结构及安装方法
WO2019208842A1 (ko) * 2018-04-23 2019-10-31 목포해양대학교 산학협력단 외부공기를 이용한 마찰저항저감장치 및 이를 구비한 단차형 선박
WO2022107947A1 (ko) * 2020-11-23 2022-05-27 현대중공업 주식회사 선박
CN114940232A (zh) * 2022-07-08 2022-08-26 江苏科技大学 一种通气减阻装置以及包括它的船用通气减阻系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4953296B2 (ja) * 2006-12-08 2012-06-13 独立行政法人海上技術安全研究所 船体摩擦抵抗低減装置
JP5216121B2 (ja) * 2011-06-28 2013-06-19 三菱重工業株式会社 摩擦抵抗低減型船舶、その製造方法、及び船舶の改造方法
GB201505104D0 (en) * 2015-03-26 2015-05-06 Fleming James G A drag reduction system for vehicles
JP2017053505A (ja) * 2015-09-07 2017-03-16 株式会社ユニックス 換気口カバー
CN114013559A (zh) * 2021-12-17 2022-02-08 中船重工(上海)节能技术发展有限公司 采用分支管路调节气量的船用气层减阻系统和气层减阻船

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274478A (ja) * 2001-03-16 2002-09-25 Uemoto Kazutoshi 船舶の摩擦抵抗低減装置
CN101400567A (zh) * 2005-01-19 2009-04-01 北海岸伙伴公司 用于减小浸没表面上的流体拖曳力的设备及方法
CN101990511A (zh) * 2008-04-01 2011-03-23 独立行政法人海上技术安全研究所 船舶的摩擦阻力减小装置
CN108177724A (zh) * 2018-01-12 2018-06-19 中船重工船舶设计研究中心有限公司 一种用于气层减阻技术的稳压腔结构及安装方法
WO2019208842A1 (ko) * 2018-04-23 2019-10-31 목포해양대학교 산학협력단 외부공기를 이용한 마찰저항저감장치 및 이를 구비한 단차형 선박
WO2022107947A1 (ko) * 2020-11-23 2022-05-27 현대중공업 주식회사 선박
CN114940232A (zh) * 2022-07-08 2022-08-26 江苏科技大学 一种通气减阻装置以及包括它的船用通气减阻系统

Also Published As

Publication number Publication date
CN114940232B (zh) 2023-07-14
CN114940232A (zh) 2022-08-26
US20230348022A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
KR101012650B1 (ko) 유압작동식 가동구획부재를 갖는 공기 공동 선박
WO2024007442A1 (zh) 一种通气减阻装置以及包括它的船用通气减阻系统
CN107524127B (zh) 一种空气阻隔围油装置
EP2388188B1 (en) Air cavity vessel
KR101255134B1 (ko) 가동 구획부재를 갖는 공기 공동 선박
JP5361854B2 (ja) 空気空洞船舶
CN206871323U (zh) 一种顶边压载舱压载水泄放系统
CN203320504U (zh) 一种垂直升船机的可逆充泄水装置
CN202674811U (zh) 新型自由半浮球式蒸汽疏水阀
CN211823933U (zh) 一种低压损蒸汽蓄热装置
CN210239838U (zh) 一种船用发动机冷却系统、发动机及机动船
CN218229309U (zh) 一种船用气膜减阻系统
CN214367787U (zh) 一种带止回功能的低温气动截止阀
CN201902616U (zh) 一种止回阀
CN113173240B (zh) 船舶中央冷却水节能系统
CN203320503U (zh) 一种垂直升船机的充泄水装置
CN115783109A (zh) 一种开放式气腔
CN221138498U (zh) 船舶空气润滑系统用气泡发生装置
CN201636380U (zh) 一种双比重排液阀
CN220262982U (zh) 一种气层减阻系统可拆卸式稳压腔结构
CN209230079U (zh) 一种高效满液式换热器
CN220687717U (zh) 一种用于工程机械的比例多路阀
CN220662833U (zh) 一种船舶辅助推进及减阻系统
CN213655886U (zh) 节流型截止阀
CN202843298U (zh) 一种用于电蒸箱的蒸汽发生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950004

Country of ref document: EP

Kind code of ref document: A1