WO2024007341A1 - 雾化器及电子雾化装置 - Google Patents

雾化器及电子雾化装置 Download PDF

Info

Publication number
WO2024007341A1
WO2024007341A1 PCT/CN2022/104752 CN2022104752W WO2024007341A1 WO 2024007341 A1 WO2024007341 A1 WO 2024007341A1 CN 2022104752 W CN2022104752 W CN 2022104752W WO 2024007341 A1 WO2024007341 A1 WO 2024007341A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
liquid storage
liquid outlet
chamber
storage chamber
Prior art date
Application number
PCT/CN2022/104752
Other languages
English (en)
French (fr)
Inventor
龚博学
赵月阳
樊文远
李光辉
吕铭
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to PCT/CN2022/104752 priority Critical patent/WO2024007341A1/zh
Publication of WO2024007341A1 publication Critical patent/WO2024007341A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps

Definitions

  • the present application relates to the field of atomization technology, and in particular, to an atomizer and an electronic atomization device.
  • Electronic atomization devices generally include an atomizer, a battery, and a control circuit.
  • the atomizer is used to store and atomize aerosol-generating substrates, and the control circuit is used to control the battery to output energy to the atomizer.
  • the atomizer includes a liquid storage chamber and a heating element.
  • the liquid storage chamber is used to store the aerosol-generating substrate.
  • the heating element is used to atomize the aerosol-generating substrate.
  • the liquid storage chamber is in fluid communication with the heating element.
  • the heating element is generally placed below the liquid storage chamber. During normal suction, the aerosol-generating matrix flows to the heating element under the action of gravity.
  • the aerosol-generating matrix in the liquid storage chamber flows away from the heating element, which cannot maintain the normal liquid supply to the heating element, causing the heating element to dry out.
  • the atomizer and electronic atomization device provided by this application solve the problem in the prior art of dry burning caused by insufficient liquid supply to the heating element when the atomizer is tilted or turned over.
  • the first technical solution provided by this application is: a liquid storage chamber, including at least one sub-liquid storage chamber, a liquid locking chamber, a liquid outlet hole and an atomization core; the liquid storage chamber has a liquid outlet ;
  • the liquid locking chamber is connected to the liquid storage chamber through the liquid outlet;
  • the atomizing core is in fluid communication with the liquid locking chamber; when the liquid storage chamber is located above the liquid locking chamber, the The aerosol-generating matrix in the liquid storage chamber enters the liquid-locking chamber through the liquid outlet; when the liquid storage chamber is located below the liquid-locking chamber, the aerosol-generating matrix enters the liquid outlet at the liquid outlet.
  • a liquid film is formed, and the liquid film seals the aerosol-generating matrix in the liquid-locking chamber and the liquid outlet hole in the liquid-locking chamber and the liquid outlet hole.
  • the liquid outlet further includes a liquid outlet, the liquid outlet is located between the liquid locking chamber and the liquid storage chamber, and fluidly communicates with the liquid locking chamber and the liquid storage chamber; the outlet The port of the liquid hole close to the liquid storage chamber is the liquid outlet.
  • the angle formed by the wall of the liquid outlet and the wall around the liquid outlet is not less than 240°, and the aperture r of the liquid outlet satisfies the formula r ⁇ 2 ⁇ cos ⁇ / ⁇ gh, where ⁇ is the surface tension coefficient of the aerosol-generating matrix, ⁇ is the density of the aerosol-generating matrix, g is the acceleration of gravity, and ⁇ is the difference between the aerosol-generating matrix and the liquid outlet near the liquid outlet.
  • the contact angle of the wall, h is the height of the aerosol-generating matrix above the liquid film.
  • the number of the liquid storage chambers is multiple, and the plurality of liquid storage chambers are independent of each other.
  • a plurality of the liquid storage chambers are physically isolated from each other and are only connected through the liquid outlet hole and the liquid lock chamber;
  • the plurality of liquid storage chambers are physically isolated from each other. In addition to being connected through the liquid outlet hole and the liquid locking chamber, they are only connected through microchannels with a liquid locking function.
  • the number of the liquid storage chambers is multiple. When the multiple liquid storage chambers are located below the liquid lock chamber, the multiple liquid storage chambers do not flow gas and/or cross-flow between each other. or aerosol-generating matrix.
  • multiple liquid storage chambers are in fluid communication with the same liquid lock chamber; each liquid storage chamber and the liquid lock chamber are in fluid communication only through one liquid outlet hole.
  • the plurality of liquid outlets are at the same height position on the central axis of the atomizer.
  • the equivalent diameter of the liquid outlet is 1 mm-6 mm.
  • the ratio of the cross-sectional area of the liquid storage chamber near the liquid outlet to the area of the liquid outlet is greater than 1.2.
  • the contact angle between the wall surface of the liquid storage chamber near the liquid outlet and the aerosol-generating matrix is smaller than the contact angle between the wall surface of the liquid outlet hole near the liquid outlet and the aerosol. The contact angle of the generated matrix.
  • the contact angle between the liquid outlet hole and the aerosol-generating matrix between the wall surface near the liquid storage chamber side and the aerosol-generating matrix is greater than the contact angle between the liquid outlet hole and the wall surface near the liquid lock chamber side. Contact angle of the aerosol-generating matrix.
  • the number of the liquid storage chambers is two, and the two liquid storage chambers, their corresponding liquid outlets, and the liquid locking chamber form a U-shaped structure.
  • the sum of the surface tension of the liquid film and the corresponding gas pressure of the liquid storage chamber is a first value
  • the liquid outlet The pressure of the aerosol-generating matrix in the hole and the liquid-locking chamber at the liquid outlet is a second value, and the first value is greater than the second value.
  • the cross section of the liquid outlet hole is narrowed relative to the cross section of the corresponding port of the liquid storage chamber close to the liquid outlet hole;
  • the cross-sectional shape of the liquid outlet hole is different from the cross-sectional shape of the corresponding port of the liquid storage chamber close to the liquid outlet hole.
  • it also includes:
  • the shell has a suction port at one end; the suction port and the liquid storage chamber are located on the same side of the liquid lock chamber;
  • the atomization seat is provided in the housing; the atomization seat cooperates with the housing to form the liquid storage chamber; the atomization seat is provided with the liquid outlet hole;
  • the atomizing core is located on the atomizing base and cooperates with the atomizing base to form the liquid locking chamber.
  • the atomizer further includes a sealing member, the sealing member is provided on the surface of the atomization seat, the sealing member is provided with a through hole corresponding to the liquid outlet hole, and the sealing member
  • the contact angle between the component and the aerosol-generating matrix is greater than the contact angle between the wall surface of the liquid storage chamber and the aerosol-generating matrix.
  • a boss is provided on the top surface of the atomization seat, and the boss is provided along the periphery of the liquid outlet hole; the boss is disposed in the through hole.
  • the sealing member includes a sealing body part and a first protruding part; the sealing body part is sleeved on the surface of the atomization seat, and the sealing body part corresponds to the opening of the liquid outlet hole.
  • the through hole is provided at a position, and the first protrusion surrounds the through hole and extends into the liquid storage chamber in a direction away from the atomizer seat.
  • the portion of the seal located on the top surface of the atomization seat extends to the hole wall of the liquid outlet hole, and the length of the seal member extending to the hole wall of the liquid outlet hole is less than Describe the depth of the outlet hole.
  • the hole wall of the liquid outlet hole is provided with a plurality of fins, and the plurality of fins are arranged at intervals along the circumferential direction of the hole wall of the liquid outlet hole.
  • the length direction of the fins It is parallel to the axis of the liquid outlet hole; the gap formed between two adjacent fins has a capillary force; the sealing member is spaced apart from or in contact with the fins.
  • the portion of the hole wall of the liquid outlet hole close to the liquid storage chamber is provided with a coating, or the portion of the hole wall of the liquid outlet hole close to the liquid storage chamber is modified to form microstructure.
  • the two liquid storage chambers are connected through microchannels, and the equivalent diameter of the microchannels is less than 5 mm.
  • one end of the liquid storage chamber close to the atomization core is connected through the microchannel.
  • the number of the liquid storage chambers is multiple; the housing has partitions, and the partitions make the plurality of liquid storage chambers independent of each other.
  • the housing includes an integrally formed outer shell, a central air outlet pipe and the spacer; the spacer connects the outer shell and the central air outlet pipe.
  • the number of the liquid storage chambers is two, and the atomization seat is provided with a ventilation groove and an air guide groove that communicate with each other, and the air guide groove is connected to the outside air or the atomization chamber; Wherein, the ventilation groove is located adjacent to the two liquid storage chambers, and the ventilation groove is connected to the two liquid storage chambers respectively.
  • the second technical solution provided by this application is to provide an electronic atomization device, including an atomizer and a host; the atomizer is used to store and atomize an aerosol-generating substrate; the atomizer The atomizer is the atomizer described in any of the above items; the host is used to provide energy for the operation of the atomizer.
  • the atomizer includes a liquid storage chamber, a liquid locking chamber and an atomization core; the liquid storage chamber has a liquid outlet. ;
  • the liquid locking chamber is connected to the liquid storage chamber through the liquid outlet;
  • the atomizing core is in fluid communication with the liquid locking chamber; when the liquid storage chamber is located above the liquid locking chamber, the aerosol-generating matrix in the liquid storage chamber enters the lock through the liquid outlet.
  • Liquid chamber when the sub-liquid storage chamber is located below the liquid-locking chamber, the aerosol-generating matrix forms a liquid film at the liquid outlet, and the liquid film seals the aerosol-generating matrix in the liquid-locking chamber and the liquid outlet. in the liquid hole to ensure sufficient liquid supply during back pumping.
  • Figure 1 is a schematic structural diagram of an electronic atomization device provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of the first embodiment of the atomizer provided by this application.
  • Figure 3 is a schematic bottom structural view of the housing of the atomizer provided in Figure 2;
  • Figure 4 is a schematic structural diagram of the atomizer provided in Figure 2 from another angle;
  • Figure 5 is a simple structural schematic diagram of the liquid storage chamber, liquid outlet hole and liquid lock chamber of the atomizer provided in Figure 2 after they are connected;
  • Figure 6 is a simple structural schematic diagram of the connected liquid storage chamber, liquid outlet hole and liquid locking chamber of the atomizer in the prior art
  • Figure 7 is a schematic diagram of the flow of gas and liquid during the tilting process of the connected structure of the liquid storage chamber, liquid outlet hole and liquid locking chamber of the atomizer in the prior art;
  • Figure 8 is a schematic diagram of the gas-liquid flow during the tilting process of the structure after connecting the liquid storage chamber, liquid outlet hole and liquid lock chamber of the atomizer provided in Figure 2;
  • Figure 9a is a partial structural schematic diagram of the second embodiment of the atomizer provided by this application.
  • Figure 9b is an exploded schematic view of the seal and top seat of the atomizer provided in Figure 9a;
  • Figure 10a is a partial structural schematic diagram of the third embodiment of the atomizer provided by this application.
  • Figure 10b is an exploded schematic view of the seal and top seat of the atomizer provided in Figure 10a;
  • Figure 11a is a partial structural schematic diagram of the fourth embodiment of the atomizer provided by the present application.
  • Figure 11b is an exploded schematic view of the seal and top seat of the atomizer provided in Figure 11a;
  • Figure 12 is a simplified structural schematic diagram of the liquid storage chamber, liquid outlet hole and liquid lock chamber connected to the fifth embodiment of the atomizer provided by the present application;
  • Figure 13 is a schematic diagram of the flow of gas and liquid during the tilting process of the structure after connecting the liquid storage chamber, liquid outlet hole and liquid lock chamber provided in Figure 12;
  • Figure 14 is a schematic structural diagram of the fifth embodiment of the atomizer provided by this application.
  • Figure 15 is a schematic structural diagram of the sixth embodiment of the atomizer provided by this application.
  • Figure 16 is a schematic structural diagram of the top seat of the atomizer provided in Figure 15;
  • Figure 17 is a partial enlarged structural schematic diagram of the top base provided in Figure 16;
  • Figure 18 is a simple structural schematic diagram of the liquid storage chamber, liquid outlet hole and liquid locking chamber in the seventh embodiment of the atomizer provided by this application;
  • Figure 19 is a simple structural schematic diagram of the liquid storage chamber, liquid outlet hole and liquid locking chamber in the eighth embodiment of the atomizer provided by this application.
  • first”, “second” and “third” in this application are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of said features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise clearly and specifically limited. All directional indications (such as up, down, left, right, front, back%) in the embodiments of this application are only used to explain the relative positional relationship between components in a specific posture (as shown in the drawings). , sports conditions, etc., if the specific posture changes, the directional indication will also change accordingly.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of recited phrases in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • FIG. 1 is a schematic structural diagram of an electronic atomization device provided by an embodiment of the present application.
  • an electronic atomization device 100 is provided.
  • the electronic atomization device 100 can be used to atomize an aerosol-generating substrate.
  • the electronic atomization device 100 includes an atomizer 1 and a host 2 that are electrically connected to each other.
  • the atomizer 1 is used to store the aerosol-generating substrate and atomize the aerosol-generating substrate to form an aerosol that can be inhaled by the user.
  • the atomizer 1 can be used in different fields, such as medical treatment, beauty, leisure smoking, etc.
  • the atomizer 1 can be used in an electronic aerosolization device to atomize an aerosol-generating matrix and generate aerosol for smokers to inhale.
  • the following embodiments are all based on recreational smoking. example.
  • the host 2 includes a battery (not shown) and a controller (not shown).
  • the battery is used to provide electrical energy for the operation of the atomizer 1, so that the atomizer 1 can atomize the aerosol-generating matrix to form an aerosol; the controller is used to control the operation of the atomizer 1.
  • the host 2 also includes other components such as a battery bracket and an air flow sensor.
  • the atomizer 1 and the host computer 2 can be integrated or detachably connected, and can be designed according to specific needs.
  • Figure 2 is a schematic structural diagram of a first embodiment of an atomizer provided by this application.
  • the atomizer 1 includes a housing 11 , an atomizer seat 12 and a heating element 13 .
  • One end of the housing 11 is an open end.
  • the atomizing seat 12 is located in the housing 11 and blocks the open end.
  • the atomizing seat 12 cooperates with the housing 11 to form a liquid storage chamber 10.
  • the liquid storage chamber 10 is used for storage. Aerosol-generating matrix.
  • the liquid storage chamber 10 includes one or more sub-liquid storage chambers 101 .
  • the atomizer base 12 includes a top base 121 and a base 122.
  • the base 122 blocks the open end of the housing 11, that is, the housing 11 and the top base 121 cooperate to form the liquid storage chamber 10; the top base 121 and the base 122 cooperate to form an installation cavity.
  • each sub-liquid storage chamber 101 has a corresponding liquid outlet hole 1211; that is, one or more sub-liquid storage chambers 101 and the liquid outlet holes 1211 are in a one-to-one correspondence, and one sub-liquid storage chamber 101 is connected to one liquid outlet hole 1211. , multiple sub-liquid storage chambers 101 and multiple liquid outlets 1211 are arranged in one-to-one correspondence.
  • the sub-liquid storage chamber 101 is the liquid storage chamber 10.
  • the atomizer 1 includes multiple liquid storage chambers 10, it includes multiple sub-liquid storage chambers 101, and the sub-liquid storage chambers 101 are the liquid storage chambers 10.
  • the definition of the sub-liquid storage chambers 101 is only for convenience of description and has no substantive meaning. limited.
  • the heating element 13 is spaced apart from the bottom wall of the installation cavity to form an atomization cavity 120, that is, the surface of the heating element 13 away from the liquid storage cavity 10 cooperates with the cavity wall of the installation cavity to form an atomization cavity 120; the atomization generated by the heating element 13
  • the aerosol is released into the atomization chamber 120 .
  • the housing 11 has a mist outlet channel 111, and the top base 121 is provided with a mist outlet hole 1210.
  • the mist outlet hole 1210 communicates the atomization chamber 120 with the mist outlet channel 111.
  • the base 122 is provided with an air inlet channel 1221, which connects the outside air to the atomization chamber 120.
  • the port of the mist outlet channel 111 is a suction port 1111.
  • the outside air enters the atomization chamber 120 through the air inlet channel 1221, carrying the aerosol in the atomization chamber 120 and flowing to the mist outlet channel 111 through the mist outlet hole 1210.
  • the user inhales the aerosol through the suction port 1111.
  • this application defines the state in which the sub-liquid storage chamber 101 is located above the heating body 13 as the atomizer 1 is in an upright position, and the state in which the sub-liquid storage chamber 101 is located below the heating body 13 as the atomizer 1 is inverted. .
  • the suction port 1111 when the suction port 1111 is facing upward, the atomizer 1 is in an upright position, and the sub-liquid storage chamber 101 is located above the heating element 13; when the suction port 1111 is facing downward, the atomizer 1 is in an inverted position, and the sub-liquid storage chamber 101 is located above the heating element 13.
  • the liquid chamber 101 is located below the heating element 13 .
  • the heating element 13 is in the shape of a sheet.
  • the heating element 13 includes a liquid-conducting base body (not labeled) and a heating element (not labeled).
  • the heating element is disposed on the surface of the liquid-conducting base body.
  • the liquid-conducting base body is used for conductive conduction.
  • the aerosol-generating matrix is introduced, and the heating element is used to atomize the aerosol-generating matrix.
  • the material of the liquid-conducting matrix can be porous ceramics or dense materials; when the material of the liquid-conducting matrix is a dense material, it can be quartz, glass, dense ceramics or silicon.
  • the heating element 13 can be an existing porous ceramic heating element or a cotton core heating element, which can be specifically designed according to needs.
  • the heating element 13 is actually used as the atomizing core of the atomizer 1 . It can be understood that in addition to using a heating element as the atomizing core, the atomizer 1 can also use other types of atomizing cores, such as ultrasonic vibration atomizing sheets, etc., which are not limited here.
  • the atomization seat 12 is formed by assembling the top seat 121 and the base 122 up and down; in other embodiments, the atomization seat 12 can also be formed by assembling two structural parts left and right, and is specifically designed according to needs. . That is to say, this application does not limit the structure of the atomization seat 12. It only takes the atomization seat 12 formed by the top seat 121 and the base 122 as an example to introduce in detail the specific settings of the liquid outlet hole 1211.
  • Figure 3 is a schematic structural diagram of the atomizer housing provided in Figure 2 from below.
  • Figure 4 is a schematic structural diagram of the atomizer provided in Figure 2 from another angle.
  • Figure 5 is a schematic structural diagram of the atomizer provided in Figure 2. Schematic diagram of the simple structure of the atomizer after the liquid storage chamber, liquid outlet hole and liquid lock chamber are connected.
  • the partition 112 divides the liquid storage chamber 10 into a plurality of sub-liquid storage chambers 101.
  • the number of multiple sub-liquid storage chambers 101 is two, and the partition 112 divides the fluid storage chamber 10 into two sub-fluid storage chambers 101; specifically, the housing 11 has two partitions 112, two The partitions 112 are respectively arranged on opposite sides of the mist outlet channel 111.
  • One side of the partition 112 is connected to the outer surface of the mist outlet channel 111, and the other side of the partition 112 is connected to the inner surface of the housing 11.
  • the partition 112 The space formed by the housing 11 and the top base 121 is divided into two mutually independent sub-liquid storage chambers 101 .
  • the top base 121 is provided with two liquid outlets 1211, one liquid outlet 1211 is connected to one sub-liquid storage chamber 101, and the other liquid outlet 1211 is connected to another sub-liquid storage cavity 101; that is, two liquid outlets 1211 is connected to the two sub-liquid storage chambers 101 in a one-to-one correspondence.
  • the housing 11 is integrally formed with an outer shell (not labeled in the figure), a central air outlet pipe (not labeled in the figure) and a spacer 112.
  • the spacer 112 connects the outer shell and the central air outlet pipe and serves as a reinforcing rib; wherein, the outer shell It is used to cooperate with the atomization seat 12 to form the liquid storage chamber 10, and the central air outlet tube forms the mist outlet channel 111.
  • the two spacers 112 are arranged coplanarly and the plane where the two spacers 112 are located is perpendicular to the width direction of the atomizer 1 .
  • the partition 112 may not be provided, and the inner surface of the housing 11 and the outer surface of the mist outlet channel 111 may be tangent and connected, thereby dividing the space formed by the housing 11 and the top base 121 into mutually exclusive spaces.
  • Two independent sub-liquid storage chambers 101 Two independent sub-liquid storage chambers 101.
  • the atomizer 1 also includes a seal 14, which is sleeved on the surface of the top base 121 to prevent liquid leakage.
  • the sealing member 14 is disposed on the top and side surfaces of the top base 121 , and the spacer 112 abuts the portion of the sealing member 14 located on the top surface of the top base 121 to completely separate the two sub-liquid storage chambers 101 , that is, the two sub-liquid storage chambers 101 are completely separated.
  • the sub-liquid storage chambers 101 are independent cavities. It can be understood that when the seal 14 for sealing is not provided on the top seat 121, the partition 112 abuts the top seat 121 to completely separate the two sub-liquid storage chambers 101.
  • the portion of the seal 14 located on the top surface of the top base 121 is provided with a first through hole (not labeled).
  • the first through hole is provided corresponding to the liquid outlet hole 1211 and the mist outlet hole 1210 on the top base 121, so that the liquid can be discharged.
  • the hole 1211 and the mist outlet hole 1210 are exposed, so that the liquid outlet hole 1211 is connected to the liquid storage chamber 10, and the mist outlet hole 1210 is connected to the mist outlet channel 111.
  • the heating element 13 cooperates with the top base 121 to form a liquid-locking chamber 130, and the two liquid outlets 1211 are respectively connected with the liquid-locking chamber 130. That is to say, the two sub-liquid storage chambers 101 are located above the liquid-locking chamber 130, and the heating element 13 is directly in liquid-conducting communication with the liquid-locking chamber 130.
  • the top base 121 has a step groove (not labeled) at one end close to the base 122.
  • the step groove includes a first groove (not labeled) close to the liquid outlet hole 1211 and a second groove (not labeled) away from the liquid outlet hole 1211.
  • the size of the second groove is larger than the size of the first groove; the heating element 13 is disposed in the second groove and covers the first groove, and the heating element 13 cooperates with the first groove to form a liquid locking chamber 130.
  • the suction port 1111 and all sub-liquid storage chambers 101 are located on the same side of the liquid lock chamber 130 .
  • the liquid outlet hole 1211 of the present application is located between the liquid lock chamber 130 and the sub-liquid storage chamber 101, and is fluidly connected to the liquid lock chamber 130 and the sub-liquid storage chamber 101.
  • the port of the liquid outlet hole 1211 close to the sub-liquid storage chamber 101 is the liquid outlet 1211a. It should be noted that when the length of the liquid outlet hole 1211 is very short, the liquid outlet hole 1211 can be considered as the liquid outlet 1211a.
  • the aerosol-generating matrix in the sub-liquid storage chamber 101 enters the liquid-locking chamber 130 through the liquid outlet hole 1211; when the sub-liquid storage chamber 101 is located below the liquid-locking chamber 130, The aerosol-generating matrix forms a liquid film at the liquid outlet 1211a, and the liquid film blocks the aerosol-generating matrix in the liquid lock chamber 130 and the liquid outlet hole 1211 in the liquid lock chamber 130 and the liquid outlet hole 1211. It can be understood that in this application, the manner of forming the sub-liquid storage chamber 101, the liquid outlet hole 1211 and the liquid lock chamber 130 is not limited to the above-mentioned manner.
  • each sub-liquid storage chamber 101 is fluidly connected to the liquid lock chamber 130 through only one liquid outlet hole 1211.
  • a liquid outlet hole may be a single through hole, or may include multiple sub-through holes whose total equivalent diameter is the same as the equivalent diameter of the single through hole.
  • the angle ⁇ formed by the wall surface of the liquid outlet 1211 and the wall surface around the liquid outlet 1211a is not less than 240°, and the aperture r of the liquid outlet 1211a satisfies the formula: r ⁇ 2 ⁇ cos ⁇ / ⁇ gh, where ⁇ is the surface tension coefficient of the aerosol-generating matrix, ⁇ is the density of the aerosol-generating matrix, g is the acceleration of gravity, and ⁇ is the distance between the aerosol-generating matrix and the liquid outlet 1211 near the liquid outlet 1211a
  • the contact angle of the wall, h is the height of the aerosol-generating matrix above the liquid film.
  • the angle ⁇ formed by the wall of the liquid outlet 1211 and the wall around the liquid outlet 1211a is less than 240°, and the sub-liquid storage chamber 101 is located above the liquid-locking chamber 130, the aerosol in the sub-liquid storage chamber 101 will generate a matrix. It is easier to infiltrate into the liquid outlet hole 1211. Similarly, when the sub-liquid storage chamber 101 is located below the liquid lock chamber 130, the aerosol-generating matrix in the liquid outlet hole 1211 is also easier to infiltrate into the sub-liquid storage chamber 101.
  • the aerosol-generating matrix in the liquid outlet hole 1211 is not easily disconnected from the aerosol-generating matrix in the sub-liquid storage chamber 101, that is, the aerosol-generating matrix in the liquid outlet hole 1211
  • the matrix does not easily form a liquid film.
  • the angle ⁇ formed by the wall surface of the liquid outlet hole 1211 and the wall surface around the liquid outlet 1211a is greater than 270°, which is conducive to the separation between the aerosol-generating matrix in the liquid outlet hole 1211 and the aerosol-generating matrix in the sub-liquid storage chamber 101.
  • the liquid port 1211a is disconnected, thereby sealing the aerosol-generating matrix liquid film in the liquid outlet 1211 in the liquid outlet 1211 .
  • the aperture r of the liquid outlet 1211a is too large, the surface tension of the liquid film formed by the aerosol-generating matrix at the liquid outlet 1211a will be too small, and the surface tension is not enough to separate the aerosol in the liquid lock chamber 130 and the liquid outlet 1211.
  • the generated matrix is sealed in the liquid lock chamber 130 and the liquid outlet hole 1211.
  • the aperture r of the liquid outlet 1211a satisfies the formula r ⁇ 2 ⁇ cos ⁇ / ⁇ gh, that is, the liquid locking chamber 130 and the liquid outlet hole 1211 can be
  • the aerosol-generating matrix is sealed in the liquid lock chamber 130 and the liquid outlet hole 1211.
  • the atomizer 1 includes multiple sub-liquid storage chambers 101 and the multiple sub-liquid storage chambers 101 are fluidly connected to the same liquid-locking chamber 130, in order to ensure that the aerosol-generating matrix in the liquid-locking chamber 130 and the liquid outlet hole 1211 will not break through liquid film, it is necessary to ensure that the air pressure in the multiple sub-liquid storage chambers 101 is basically stable, that is, when the multiple sub-liquid storage chambers 101 are located below the liquid lock chamber 130, the gas and/or aerosol-generating matrix in the multiple sub-liquid storage chambers 101 does not cross. flow. Therefore, the plurality of sub-liquid storage chambers 101 are arranged independently of each other.
  • the multiple sub-liquid storage chambers 101 may be arranged independently of each other as follows: the multiple sub-liquid storage chambers 101 are physically isolated from each other and only communicate with each other through the liquid outlet hole 1211 and the liquid lock chamber 130 (as shown in FIG. 5 ); or The plurality of sub-liquid storage chambers 101 are physically isolated from each other. In addition to being connected through the liquid outlet hole 1211 and the liquid-locking chamber 130, they are only connected through the microchannel 102 with a liquid-locking function (as shown in Figure 12).
  • the connection between the liquid outlet hole 1211 and the sub-liquid storage chamber 101 forms a cross-sectional mutation structure.
  • the angle ⁇ formed by the wall surface of the liquid outlet 1211 and the wall surface around the liquid outlet 1211a is not less than 240°, and the aperture r of the liquid outlet 1211a satisfies the formula: r ⁇ 2 ⁇ cos ⁇ / ⁇ gh.
  • the cross-sectional mutation structure causes the aerosol-generating matrix in the liquid outlet 1211 to form a liquid film, and the aerosol in the liquid-locking chamber 130 is The generated matrix is sealed in the liquid lock chamber 130 .
  • a liquid film is formed in the liquid outlet 1211 close to the liquid outlet 1211a of the sub-liquid storage chamber 101, and the surface tension of the liquid film blocks the aerosol-generating matrix in the liquid outlet 1211 and the liquid lock chamber 130; the cross-section changes suddenly
  • the sum of the surface tension of the liquid film formed on the side of the liquid outlet hole 1211 and the gas pressure of the corresponding sub-liquid storage chamber 101 is the first value.
  • the aerosol-generating matrix in the liquid outlet hole 1211 and the liquid lock chamber 130 is The pressure of the port of the hole 1211 close to the sub-liquid storage chamber 101 is a second value, and the first value is greater than the second value, thereby achieving liquid locking.
  • the liquid-locking chamber 130 is formed by the cooperation between the heating element 13 and the top base 121, the two sub-liquid storage chambers 101 are located below the liquid-locking chamber 130, and the two sub-liquid storage chambers 101 are also located below the heating element 13. Atomizer 1 is inverted.
  • the two sub-liquid storage chambers 101, the two liquid outlets 1211 and the liquid lock chamber 130 form a U-shaped structure.
  • the two sub-liquid storage chambers 101 are respectively the first sub-liquid storage chamber 101 and the second sub-liquid storage chamber 101;
  • the two liquid outlet holes 1211 are respectively the first liquid outlet hole 1211 and the second liquid outlet hole 1211.
  • a sub-liquid storage chamber 101, the first liquid outlet hole 1211, the liquid lock chamber 130, the second liquid outlet hole 1211 and the second sub-liquid storage chamber 101 are connected in sequence to form a U-shaped structure.
  • the cross-sectional mutation structures of the liquid outlets 1211 of the two sub-liquid storage chambers 101 are at the same height position on the central axis of the atomizer 1, that is, the liquid outlets 1211a of the two sub-liquid storage chambers 101 are at The same height position on the central axis of the atomizer 1 makes the air pressure in the two sub-liquid storage chambers 101 basically the same, which is beneficial to maintaining balance after liquid locking.
  • Figure 6 is a simplified structural diagram of the liquid storage chamber, liquid outlet hole and liquid lock chamber of the atomizer in the prior art.
  • Figure 7 is the liquid storage chamber of the atomizer in the prior art. Schematic diagram of the flow of gas and liquid during the tilting process of the structure after the cavity, liquid outlet hole and liquid lock cavity are connected.
  • the existing liquid storage chamber includes two sub-liquid storage chambers 201 and a connecting liquid storage chamber 202 connecting the two sub-liquid storage chambers 201.
  • One end of the two liquid outlets 203 is connected to the communicating liquid storage chamber 202 respectively, and the other end of the two liquid outlets 203 is connected to the liquid locking chamber 204 respectively.
  • the liquid lock chamber 204 is directly in fluid communication with the heating element 205 .
  • the air pressures in the two sub-liquid storage chambers 201 are P A and PB respectively.
  • the aerosol-generating matrix in the sub-liquid storage chamber 201 will flow to a lower relative area under the action of gravity, causing the air pressure balance between the two sub-liquid storage chambers 201 to be destroyed and the gas pressure to be unbalanced. Circulation is carried out by connecting the liquid storage chamber 202, and so on.
  • the heating element 205 is located above the sub-liquid storage chamber 201, and the aerosol-generating matrix will all converge to the lower area.
  • the upper area where the heating element 205 is located cannot store the aerosol-generating substrate, causing the heating element 205 to dry out.
  • Figure 8 is a schematic diagram of the flow of gas and liquid during the tilting process of the structure after the liquid storage chamber, liquid outlet hole and liquid lock chamber of the atomizer of Figure 2 are connected.
  • the first sub-liquid storage chamber 101, the first liquid outlet hole 1211, the liquid lock chamber 130, the second liquid outlet hole 1211 and the second sub-liquid storage chamber 101 are sequentially connected to form a U-shaped structure.
  • the atomizer 1 During the tilting or flipping process, the gas in the two sub-liquid storage chambers 101 cannot break through the surface tension of the liquid film formed by the liquid outlet hole 1211 close to the port of the sub-liquid storage chamber 101, and the gas between the two sub-liquid storage chambers 101 cannot be realized. Gas circulates, and the pressure difference generated by the liquid levels in the two sub-liquid storage chambers 101 is balanced by the expansion and compression of the gas in the two sub-liquid storage chambers 101 .
  • the aerosol-generating matrix in the two sub-liquid storage chambers 101 flows in the direction away from the heating element 13 under the action of gravity, that is, to the bottom of the liquid storage chamber 10; due to the two sub-liquid storage chambers 101 cannot achieve gas circulation, and the aerosol-generating matrix and gas in the two sub-liquid storage chambers 101 can only flow in their respective areas; that is, the gas in the two sub-liquid storage chambers 101 is isolated by the aerosol-generating matrix.
  • the air pressure in the two sub-liquid storage chambers 101 remains basically unchanged. If the whole flow flows to a certain side, it will inevitably be resisted by the gas on both sides.
  • the aerosol-generating matrix in the liquid lock chamber 130 can only stay in the lock chamber.
  • the aerosol-generating matrix in the liquid chamber 130 and the liquid outlet hole 1211 can only stay in the liquid outlet hole 1211, thereby achieving the effect of storing liquid in the liquid lock chamber 130 and the liquid outlet hole 1211 after tilting and inversion, ensuring The liquid supply during back pumping is sufficient, and the heating element 13 will not be burned or burned out in a short period of time.
  • the tilting and inversion of the atomizer 1 in this application refers to the tilting and inverting process at the normal speed of the user, which is usually completed within 1 second, and does not include the very slow tilting and inverting process.
  • the cross-sectional area of the sub-liquid storage chamber 101 is the same; due to the larger cross-sectional area of the sub-liquid storage chamber 101, the surface of the liquid film formed in the sub-liquid storage chamber 101 The tension is small and the overall liquid level is large, the surface tension of the liquid film formed in the sub-liquid storage chamber 101 is easy to break through, and the aerosol-generating matrix in the sub-liquid storage chamber 101 can flow smoothly to the liquid outlet hole 1211.
  • the surface tension of the liquid film formed in the sub-liquid storage chamber 101 is small, when the atomizer 1 rotates, the surface tension of the liquid film formed in the sub-liquid storage chamber 101 is not enough to support the generation of aerosol in the sub-liquid storage chamber 101 matrix, so the aerosol-generating matrix in the two sub-liquid storage chambers 101 can flow freely in their respective areas.
  • the cross-sectional area of the liquid outlet port 1211 close to the port of the sub-liquid storage chamber 101 is smaller than the cross-sectional area of the sub-liquid storage chamber 101.
  • the surface tension of the liquid film formed at the port of the liquid outlet 1211 close to the sub-liquid storage chamber 101 is relatively large.
  • the aerosol-generating matrix in the liquid outlet hole 1211 is much smaller than the aerosol-generating matrix in the sub-liquid storage chamber 101. Therefore, when the atomizer 1 is inverted, the liquid outlet hole 1211 is close to the port of the sub-liquid storage chamber 101.
  • the surface tension of the membrane can lock the aerosol-generating matrix in the liquid outlet hole 1211 and the liquid-locking chamber 130 .
  • the equivalent diameter of the cross-section mutation structure on the side of the liquid outlet hole 1211 is 1mm-6mm, which ensures that the liquid flows smoothly and has a certain surface tension, so that the atomizer 1 can pass through the surface of the liquid film when it is inverted.
  • the tension locks the aerosol-generating matrix in the liquid outlet hole 1211 and the liquid locking chamber 130, further improving the liquid locking ability.
  • the equivalent diameter of the cross-section mutation structure on the side of the liquid outlet hole 1211 is less than 1mm, and the amount of liquid entering the liquid lock chamber 130 from the liquid outlet hole 1211 is small, which may easily cause insufficient liquid supply to the heating element 13; the cross-section mutation structure is on the side of the liquid outlet hole 1211
  • the equivalent diameter is greater than 6 mm, and the surface tension of the liquid film formed on the side of the liquid outlet hole 1211 is too small to achieve a good liquid locking effect.
  • the equivalent diameter of the cross-section mutation structure on the side of the liquid outlet hole 1211 is 4 mm.
  • the ratio of the cross-sectional area of the cross-section mutation structure on the side of the sub-liquid storage chamber 101 to the cross-sectional area of the cross-section mutation structure on the side of the liquid outlet 1211 is greater than 1.2, that is, the sub-liquid storage cavity 101 is close to the port of the liquid outlet 1211
  • the ratio of the cross-sectional area to the cross-sectional area of the liquid outlet hole 1211 close to the port of the sub-liquid storage chamber 101 is greater than 1.2.
  • the ratio of the cross-sectional area of the cross-section mutation structure on the sub-liquid storage chamber 101 side to the cross-sectional area of the cross-section mutation structure on the liquid outlet 1211 side is greater than 1.5.
  • the cross-section of the port of the liquid outlet hole 1211 close to the sub-liquid storage chamber 101 is narrower than the cross-section of the corresponding port of the sub-liquid storage chamber 101 close to the liquid outlet hole 1211, so that between the liquid outlet hole 1211 and The connection between the sub-liquid storage chambers 101 forms a cross-sectional mutation structure; and/or, the cross-sectional shape of the port of the liquid outlet 1211 close to the sub-liquid storage chamber 101 is different from the corresponding port of the sub-liquid storage chamber 101 close to the liquid outlet 1211
  • the cross-sectional shape is so as to form a cross-sectional mutation structure at the connection between the liquid outlet hole 1211 and the sub-liquid storage chamber 101, so that there is a flow state change at the connection between the liquid outlet hole 1211 and the liquid storage chamber 10.
  • the port of the liquid outlet hole 1211 close to the sub-liquid storage chamber 101 is area A shown in FIG. 4
  • the port of the sub-liquid storage chamber 101 close to the liquid outlet hole 1211 is area B shown in FIG.
  • the contact angle between the cross-section mutation structure and the aerosol-generating matrix on the sub-liquid storage chamber 101 side is smaller than the contact angle between the cross-section mutation structure and the aerosol-generating matrix on the liquid outlet 1211 side, that is, the sub-liquid storage chamber 101 is close to
  • the contact angle between the wall surface at the liquid outlet 1211a and the aerosol-generating matrix is smaller than the contact angle between the wall surface at the liquid outlet 1211a and the aerosol-generating matrix.
  • the aerosol-generating matrix is likely to be close to the liquid outlet 1211.
  • the disconnection of the port of the liquid chamber 101 facilitates the formation of a liquid film at the port of the liquid outlet 1211 close to the sub-liquid storage chamber 101, thereby achieving a better liquid locking effect.
  • the material of the seal 14 and the material of the shell 11 have different lyophilicity
  • the seal 14 is provided on the sub-liquid storage chamber 101 side of the cross-section mutation structure, that is, the surface of the seal 14 and the aerosol generating matrix
  • the contact angle is greater than the surface contact angle between the inner wall of the sub-liquid storage chamber 101 and the aerosol-generating matrix, so that there is a sudden change in the contact angle with the aerosol-generating matrix at the connection between the liquid outlet hole 1211 and the sub-liquid storage chamber 101, and the aerosol-generating matrix It is easy to disconnect the port of the liquid outlet 1211 close to the sub-liquid storage chamber 101, which is conducive to the formation of a liquid film at the port of the liquid outlet 1211 close to the sub-liquid storage chamber 101, thereby achieving a better liquid locking effect.
  • the material of the seal 14 is silica gel
  • the material of the housing 11 is plastic; wherein, the surface contact angle between the silica gel and the aerosol-generating matrix is greater than the
  • Figure 9a is a partial structural schematic diagram of the second embodiment of the atomizer provided by this application.
  • Figure 9b is an exploded schematic diagram of the seal and the top seat of the atomizer provided in Figure 9a.
  • the structure of the second embodiment of the atomizer 1 is basically the same as that of the first embodiment of the atomizer 1. The difference is that the top surface of the top base 121 is also provided with a boss 1212, and the boss 1212 is along the liquid outlet hole. 1211 peripheral settings.
  • the sealing member 14 is provided with a through hole 14a at a position corresponding to the liquid outlet hole 1211, and the boss 1212 is disposed in the through hole 14a.
  • the sealing member 14 includes a top wall (not labeled in the figure) and an annular side wall (not labeled in the figure).
  • the top wall of the sealing member 14 is located on the top surface of the top base 121 .
  • the annular side wall of the sealing member 14 is located on the top base. 121 side; the top wall of the seal 14 is provided with a through hole 14a corresponding to the liquid outlet hole 1211, so that the boss 1212 passes through the through hole 14a.
  • the surface of the aerosol-generating substrate in the space formed by the boss 1212 is more easily disconnected from the surface of the aerosol-generating substrate in the housing 11 , that is, the liquid is discharged.
  • the surface of the aerosol-generating substrate in the hole 1211 and the surface of the aerosol-generating substrate in the sub-liquid storage chamber 101 are more likely to be disconnected. This is because a continuous liquid cannot be formed between the inner surface of the housing 11 and the port of the boss 1212. film to prevent the surface tension of the liquid film formed by the port of the boss 1212 from being destroyed.
  • the boss 1212 and the top base 121 are integrally formed.
  • the boss 1212 and the top base 121 are made of plastic.
  • the boss 1212 is provided along the entire circumference of the liquid outlet hole 1211, the boss 1212 is annular, and the inner surface of the boss 1212 is flush with the inner surface of the liquid outlet hole 1211.
  • the outer surface of the boss 1212 is spaced apart from the side wall of the top base 121 and the mist outlet 1210 .
  • Figure 10a is a partial structural schematic diagram of the third embodiment of the atomizer provided by this application.
  • Figure 10b is an exploded schematic diagram of the seal and top seat of the atomizer provided in Figure 10a.
  • the structure of the third embodiment of the atomizer 1 is basically the same as that of the first embodiment of the atomizer 1 , except that the sealing member 14 has a first protruding portion 142 extending away from the top seat 121 .
  • the seal 14 includes a seal body portion 141 and a first protruding portion 142 .
  • the sealing body part 141 is sleeved on the surface of the top base 121.
  • the sealing body part 141 is provided with a through hole 14a at a position corresponding to the liquid outlet hole 1211.
  • the first protruding part 142 surrounds the through hole 14a and extends in a direction away from the top base 121. , that is, the first protruding portion 142 extends into the sub-liquid storage chamber 101 .
  • the sealing body part 141 includes a top wall (not labeled in the figure) and an annular side wall (not labeled in the figure).
  • the annular side wall of the sealing body part 141 is provided on the side of the top base 121.
  • the top wall of the sealing body part 141 is provided on the top.
  • the top surface of the seat 121 and the top wall of the sealing body part 141 are provided with a through hole 14a corresponding to the position
  • the surface of the aerosol-generating substrate in the space formed by the first protrusion 142 is more easily disconnected from the surface of the aerosol-generating substrate in the housing 11. That is, the surface of the aerosol-generating substrate in the first protruding part 142 and the surface of the aerosol-generating substrate in the sub-liquid storage chamber 101 are easier to disconnect, because the inner surface of the housing 11 and the surface of the first protruding part 142 are more easily disconnected. A continuous liquid film cannot be formed between the ports, preventing the surface tension of the liquid film formed by the ports of the first protruding part 142 from being destroyed.
  • the surface tension of the liquid film formed by the port of the first protrusion 142 can lock the liquid outlet 1211 and
  • the aerosol in the liquid lock chamber 130 generates a matrix.
  • the first protruding part 142 is a convex ring that completely surrounds the through hole 14a, and the inner surface of the first protruding part 142 is flush with the inner surface of the liquid outlet hole 1211.
  • the outer surface of the first protrusion 142 is spaced apart from the side wall of the top base 121 and the mist outlet 1210 .
  • the sealing member 14 is made of silicone.
  • the atomizer seat 12 is made of plastic. Since the surface contact angle between silicone and the aerosol-generating matrix is greater than the contact angle between plastic and the aerosol-generating matrix, the seal 14 has a first protruding portion 142 (the third embodiment of the atomizer 1 ) relative to the top base 121 A boss 1212 is provided on the top surface (the second embodiment of the atomizer 1). When the atomizer 1 is tilted or turned over, it is more conducive to forming a continuous liquid film between the barrier and the housing 11, making it easier to generate aerosol. The matrix is disconnected from the inner surface of the housing 11 .
  • Figure 11a is a partial structural schematic diagram of the fourth embodiment of the atomizer provided by the present application.
  • Figure 11b is an exploded schematic diagram of the seal and top seat of the atomizer provided in Figure 11a.
  • the structure of the fourth embodiment of the atomizer 1 is basically the same as that of the first embodiment of the atomizer 1. The difference lies in that a liquid repellent structure 1213 is provided on the wall of the liquid outlet hole 1211 close to the liquid storage chamber 10. There is a sudden change in the contact angle with the aerosol-generating matrix at the connection between the liquid outlet hole 1211 and the sub-liquid storage chamber 101.
  • the inner surface of the housing 11 and the lyophobic structure 1213 cannot form a continuous liquid film near the liquid storage chamber 10, so that When the atomizer is tilted or turned over, the surface of the aerosol-generating matrix in the liquid outlet hole 1211 is more likely to be disconnected from the surface of the aerosol-generating matrix in the housing 11 , so that the liquid-repellent structure 1213 is formed close to the liquid storage chamber 10
  • the surface tension of the liquid film can achieve the liquid locking function.
  • the lyophobic structure 1213 is disposed along the entire circumference of the hole wall of the liquid outlet hole 1211 .
  • the contact angle between the inner wall surface of the liquid outlet hole 1211 near the sub-liquid storage chamber 101 and the aerosol-generating matrix is greater than the contact angle between the inner wall surface of the liquid outlet hole 1211 near the liquid lock chamber 130 side and the aerosol-generating matrix;
  • the liquid-repellent structure 1213 is located on the inner wall of the liquid outlet hole 1211 close to the sub-liquid storage chamber 101 .
  • the liquid-repellent structure 1213 is a coating disposed on the hole wall of the liquid outlet hole 1211, and the coating has the property of repelling the aerosol-generating matrix.
  • the liquid-repellent structure 1213 is a microstructure formed by modifying the hole wall of the liquid outlet hole 1211, and the microstructure has the property of aerosol-generating matrix.
  • the sealing member 14 is provided on the side and top surface of the top base 121 , and the portion of the sealing member 14 located on the top surface of the top base 121 extends to the hole wall of the liquid outlet hole 1211 to form a lyophobic structure 1213 (such as shown in Figures 11a and 11b).
  • the seal 14 includes a sealing body part 141 and a second protruding part 143.
  • the sealing body part 141 is sleeved on the surface of the top base 121.
  • the sealing body part 141 is provided with a through hole 14a at a position corresponding to the liquid outlet hole 1211.
  • the second protruding portion 143 surrounds the through hole 14a and extends along the hole wall of the liquid outlet hole 1211 into the liquid outlet hole 1211 to form a lyophobic structure 1213.
  • the length of the second protruding portion 143 is less than the depth of the liquid outlet hole 1211; wherein , the sealing body part 141 includes a top wall (not labeled in the figure) and an annular side wall (not labeled in the figure), the annular side wall of the sealing body part 141 is provided on the side of the top base 121, and the top wall of the sealing body part 141 is provided on the top base On the top surface of 121, the top wall of the sealing body part 141 is provided with a through hole 14a corresponding to the position of the liquid outlet hole 1211.
  • the second protruding portion 143 is a convex ring provided around the entire circumference of the through hole 14a.
  • the height of the second protrusion 143 is less than half the length of the liquid outlet hole 1211 .
  • the height of the second protrusion 143 is one-fifth to one-quarter of the length of the liquid outlet hole 1211 .
  • the hole wall of the liquid outlet hole 1211 has a plurality of fins 1214, and the plurality of fins 1214 are arranged at intervals along the circumferential direction of the hole wall of the liquid outlet hole 1211.
  • the length direction of the fins 1214 is parallel to the axis of the liquid outlet hole 1211 .
  • the end surface of each fin 1214 close to the liquid storage chamber 10 is flat.
  • Each fin 1214 and the port of the liquid outlet 1211 close to the liquid storage chamber 10 are spaced apart; the distance between the end surfaces of the plurality of fins 1214 close to the liquid storage cavity 10 and the port of the liquid outlet 1211 close to the liquid storage cavity 10 are the same. .
  • the end surface of each fin 1214 away from the hole wall of the liquid outlet hole 1211 is flat.
  • the bottom ends of the plurality of fins 1214 can be directly disposed on the bottom wall of the liquid outlet hole 1211 .
  • the end surface of the second protruding portion 143 of the seal 14 is spaced apart or in contact with the end surface of the fin 1214 close to the liquid storage chamber 10 .
  • the aerosol-generating matrix can flow to the heating element 13 through the capillary force of the gaps formed between the fins 1214, further improving the liquid locking ability.
  • Figure 12 is a simple structural diagram of the liquid storage chamber, liquid outlet hole and liquid lock chamber of the fifth embodiment of the atomizer provided by this application.
  • Figure 13 is a simplified structural diagram of the liquid storage chamber provided in Figure 12. Schematic diagram of the flow of gas and liquid during the tilting process of the structure after the cavity, liquid outlet hole and liquid lock cavity are connected.
  • the structure of the fifth embodiment of the atomizer 1 is basically the same as that of the first embodiment of the atomizer 1. The difference is that in addition to the communication between the two sub-liquid storage chambers 101 through the liquid lock chamber 130, they can also be connected through a or Multiple microchannels 102 are connected. By setting the microchannel 102 between the two sub-liquid storage chambers 101, the two sub-liquid storage chambers 101 are fluidly connected. The liquid level of the aerosol-generating matrix on one side of the two adjacent sub-liquid storage chambers 101 is lower than the micro channel.
  • the gas in the sub-liquid storage chamber 101 on the low liquid level side can enter the sub-liquid storage chamber 101 on the other side through the micro-channel 102, so that the air pressure in each sub-liquid storage chamber 101 is the same, so that ultimately So that the liquid level in each sub-liquid storage chamber 101 is the same.
  • the aerosol-generating matrix in the liquid chamber 101 is consumed, causing the atomizer 1 to dry out.
  • the liquid level difference of the aerosol-generating matrix in each sub-liquid storage chamber 101 is eliminated, thereby improving the atomization performance of the atomizer 1, thereby improving the user experience.
  • the equivalent diameter size of the microchannel 102 is less than or equal to 5 mm, so that the microchannel 102 forms a strong capillary force to achieve liquid sealing.
  • the strong capillary force of the microchannel 102 is achieved.
  • the liquid seal prevents the mutual flow of gas between the two sub-liquid storage chambers 101 from causing changes in air pressure in the sub-liquid storage chambers 101, so that it has the same liquid-locking effect as the complete U-shaped structure (as shown in Figure 13). That is to say, without destroying the liquid-locking function of the U-shaped structure, the two sub-liquid storage chambers 101 are connected through the microchannel 102.
  • one end of the two sub-liquid storage chambers 101 close to the heating element 13 is connected through a microchannel 102 .
  • the atomizer 1 is provided with two independent ventilation structures.
  • One ventilation structure is arranged corresponding to one sub-liquid storage chamber 101, and the other ventilation structure is arranged corresponding to another sub-liquid storage chamber 101.
  • the atomizer 1 is provided with two independent ventilation structures.
  • the ends of the two sub-liquid storage chambers 101 close to the heating element 13 are passed through the microchannel 102.
  • the aerosol-generating matrix in the high-liquid-level sub-liquid storage chamber 101 can enter the low-liquid-level sub-liquid storage chamber 101 through the microchannel 102, and the gas in the low-liquid-level sub-liquid storage chamber 101 can pass through the microchannel 102.
  • Flows to the sub-liquid storage chamber 101 with a high liquid level preventing the gas from flowing through the surface of the heating element 13 close to the liquid storage chamber 10 when the sub-liquid storage chamber 101 with a high liquid level is ventilated, and preventing bubbles from adhering to the heating element 13 close to the storage chamber 10
  • the surface of the liquid chamber 10 is conducive to ensuring sufficient liquid supply.
  • the microchannel 102 is a through hole or notch provided at one end of the spacer 112 close to the top base 121, and the port size of the through hole or notch is less than or equal to 5 mm.
  • the end surface of the spacer 112 close to the end of the top seat 121 is spaced apart from the seal 14 to form two independent sub-liquid storage chambers 101 and at the same time form the microchannel 102 (as shown in Figure 14, Figure 14 is Structural diagram of the fifth embodiment of the atomizer provided in this application).
  • the distance between the sealing member 14 and the spacer 112 is less than or equal to 5 mm.
  • the distance between the seal 14 and the spacer 112 is 1 mm.
  • Figure 15 is a schematic structural diagram of the sixth embodiment of the atomizer provided by this application.
  • Figure 16 is a schematic structural diagram of the top seat of the atomizer provided in Figure 15.
  • Figure 17 is a schematic structural diagram of the atomizer provided in Figure 16 A partial enlarged structural diagram of the top base.
  • the structure of the sixth embodiment of the atomizer 1 is basically the same as that of the first embodiment of the atomizer 1, except that a ventilation slot 1215 is provided adjacent to the two sub-liquid storage chambers 101, and the ventilation slots 1215 are respectively It is connected with the two sub-liquid storage chambers 101 to ventilate the two sub-liquid storage chambers 101.
  • the top base 121 is provided with a ventilation groove 1215 and an air guide groove 1216 that communicate with each other.
  • the air guide groove 1216 is connected to the outside air or the atomization chamber 120;
  • the ventilation groove 1215 is located adjacent to the two sub-liquid storage chambers 101. , and are connected to the two sub-liquid storage chambers 101 respectively, so that the ventilation bubbles can enter the two sub-liquid storage chambers 101 relatively randomly, ensuring that both sides can be ventilated, rather than only one side can be ventilated. , so that liquid can be discharged from both sides to ensure sufficient liquid supply.
  • the ventilation groove 1215 and the air guide groove 1216 are both provided on the side of the top base 121 , and the ventilation groove 1215 is provided on the side of the air guide groove 1216 close to the liquid storage chamber 10 .
  • the ventilation groove 1215 extends along the axial direction of the atomizer 1 .
  • the ventilation groove 1215 is a groove on the side of the air guide groove 1216 close to the liquid storage chamber 10 .
  • the air guide groove 1216 includes a plurality of sub-air guide grooves 1216a arranged at intervals and extending along the circumferential direction of the atomizer 1.
  • the plurality of sub-air guide grooves 1216a are connected with each other or in sequence.
  • the ventilation groove 1215 is connected to the air guide groove 1216 through an opening (not labeled) on the side wall of the air guide groove 1216.
  • the sealing member 14 is provided on the surface and side of the top base 121 , and the part of the sealing member 14 located on the side of the top base 121 covers the openings of the ventilation groove 1215 and the air guide groove 1216 , that is, the sealing member 14
  • the ventilation groove 1215 cooperates to form a ventilation hole (not labeled)
  • the seal 14 cooperates with the air guide groove 1216 to form a ventilation channel (not labeled)
  • the ventilation hole and ventilation channel are combined to form a ventilation hole of the atomizer 1 air structure.
  • the ventilation groove 1215 and the air guide groove 1216 are connected with each other, the ventilation holes and ventilation channels formed by the seal 14 and the ventilation groove 1215 and the air guide groove 1216 are connected with each other; the air guide groove 1216 is connected with the outside gas or the atomization chamber. 120 is connected, and the ventilation channel formed by the cooperation of the seal 14 and the air guide groove 1216 is connected with the outside air or the atomization chamber 120 .
  • the ventilation groove 1215 is located at the projection of the partition 112 on the top base 121, so that the ventilation groove 1215 is located adjacent to the two sub-liquid storage chambers 101; part of the ventilation groove 1215 is exposed on both sides of the partition 112 , so that the ventilation tank 1215 is directly connected to the two sub-liquid storage chambers 101 respectively.
  • the top base 121 is provided with two symmetrical ventilation slots 1215, and the two ventilation slots 1215 are arranged in one-to-one correspondence with the two partitions 112; that is, one partition 112 is provided at the projection of the top base 121.
  • the spacer 112 Since the spacer 112 is in contact with the seal 14 and is located above the ventilation groove 1215, the spacer 112 will block the ventilation bubbles entering the ventilation groove 1215 to slow down or slow down the ventilation bubbles. Stuck in the ventilation tank 1215, the stuck or slowed-down bubbles randomly enter the two sub-liquid storage chambers 101 by utilizing the random flow characteristics of the bubbles, thereby achieving random ventilation of the two sub-liquid storage chambers 101. Among them, the open space formed by the ventilation slot 1215 and the cavity formed by the partition 112 can effectively slow down the ventilation bubbles.
  • the ventilation groove 1215 is a groove extending along the axial direction of the atomizer 1 , and the spacer 112 is arranged perpendicular to the width direction of the ventilation groove 1215 .
  • the projection of the partition 112 on the top base 121 divides the ventilation slot 1215 into two sub-ventilation slots 1215a.
  • One sub-ventilation tank 1215a corresponds to a sub-liquid storage chamber 101, and the sub-liquid storage chamber 101 is ventilated; the other sub-ventilation tank 1215a corresponds to another sub-liquid storage chamber 101, and the sub-liquid storage chamber 101 is ventilated. Ventilate.
  • the width W1 of the ventilation groove 1215 is greater than 0.2 mm, so that it has sufficient width to communicate with the two sub-liquid storage chambers 101 respectively.
  • the width W1 of the ventilation groove 1215 is greater than the width W2 of the air guide groove 1216; and/or, the depth of the ventilation groove 1215 is greater than or equal to the depth of the air guide groove 1216, so as to directly communicate with the two sub-liquid storage chambers 101
  • the ventilation slot 1215 forms an open space relative to the air guide slot 1216 to slow down the ventilation bubbles.
  • the slowed-down bubbles can enter the two sub-liquid storage chambers 101 relatively randomly to ensure that both sides can be ventilated. , instead of only one side being able to ventilate, both sides can be filled with liquid, ensuring sufficient liquid supply.
  • the width W1 of the ventilation slot 1215 is 4 times to 10 times the width W2 of the air guide slot 1216 to form an open space relative to the air guide slot 1216.
  • the ventilation tank 1215 includes a first tank section 1215b and a second tank section 1215c.
  • the first tank section 1215b is located on the side of the second tank section 1215c close to the liquid storage chamber 10.
  • the width of the first tank section 1215b is greater than that of the second tank section 1215c.
  • a dividing column 1217 is provided in the middle of the ventilation tank 1215.
  • the dividing column 1217 is provided in the first tank section 1215b.
  • the dividing column 1217 divides the ventilation tank 1215 into two sub-ventilation tanks 1215a and one sub-ventilation tank 1215a.
  • the width of the sub-ventilation groove 1215a is greater than the width of the air guide groove 1216. It should be noted that the projection of the spacer 112 on the top base 121 coincides with the separation column 1217. By setting the separation column 1217, in addition to blocking the bubbles, it can also play a role in dividing the bubbles, randomly blocking the bubbles, and avoiding unilateral ventilation all the time.
  • the open space formed by the ventilation slot 1215 and the cavity formed by the partition 112 can effectively slow down the ventilation bubbles and prevent them from randomly getting stuck. Avoid unilateral ventilation all the time; and a separation column 1217 is provided in the middle of the ventilation slot 1215 to further slow down the ventilation bubbles and divide the bubbles, which can better avoid unilateral ventilation.
  • the dividing column 1217 is an optional structure and can be designed according to needs.
  • Figure 18 is a simple structural diagram of the liquid storage chamber, liquid outlet hole and liquid lock chamber in the seventh embodiment of the atomizer provided by this application.
  • the structure of the seventh embodiment of the atomizer 1 is basically the same as that of the first embodiment of the atomizer 1, except that there is only one sub-liquid storage chamber 101, and the same parts will not be described again.
  • a cross-section mutation structure is formed at the connection between the sub-liquid storage chamber 101 and the liquid outlet hole 1211.
  • the cross-section mutation structure causes the aerosol-generating matrix in the liquid outlet hole 1211 to form a liquid film, sealing the aerosol-generating matrix in the liquid lock chamber 130 in the lock chamber. inside the liquid chamber 130.
  • the liquid outlet hole 1211 is contracted relative to both the sub-liquid storage chamber 101 and the liquid lock chamber 130 .
  • the liquid outlet hole 1211 may only shrink relative to the sub-liquid storage chamber 101 and have the same cross-sectional shape and size as the liquid lock chamber 130 .
  • Figure 19 is a simple structural diagram of the liquid storage chamber, liquid outlet hole and liquid lock chamber in the eighth embodiment of the atomizer provided by this application.
  • the structure of the seventh embodiment of the atomizer 1 is basically the same as that of the first embodiment of the atomizer 1.
  • the liquid storage chamber 10 includes more than two sub-liquid storage chambers 101, and the plurality of sub-liquid storage chambers 101 and The liquid outlets 1211 are in a one-to-one correspondence, and the plurality of liquid outlets 1211 are in fluid communication with the liquid lock chamber 130 respectively.
  • the same parts will not be described again.
  • a cross-sectional mutation structure is formed at the connection between each sub-liquid storage chamber 101 and the liquid outlet hole 1211.
  • the cross-sectional mutation structure causes the aerosol-generating matrix in the liquid outlet hole 1211 to form a liquid film, blocking the aerosol-generating matrix in the liquid lock chamber 130. in the liquid lock chamber 130.
  • the plurality of sub-liquid storage chambers 101 are located below the liquid-locking chamber 130, there is no cross-flow of gas and/or aerosol-generating matrix between the plurality of sub-liquid storage chambers 101.
  • the cross-sectional mutation structures of the liquid outlets 1211 of the multiple sub-liquid storage chambers 101 are at the same height position on the central axis of the atomizer 1 .
  • For the specific arrangement method of the cross-section mutation structure please refer to the detailed introduction in the first embodiment of the atomizer 1 to achieve the same technical effect and will not be described again.

Abstract

一种雾化器(1)及电子雾化装置(100),雾化器(1)包括储液腔(10)、锁液腔(130)和雾化芯(13);储液腔(10)具有出液口(1211a);锁液腔(130)通过出液口(1211a)与储液腔(10)连通;雾化芯(13)与锁液腔(130)流体连通;当储液腔(10)位于锁液腔(130)上方时,储液腔(10)内的气溶胶生成基质经出液口(1211a)进入锁液腔(130);当储液腔(10)位于锁液腔(130)下方时,气溶胶生成基质在出液口(1211a)形成液膜,液膜将锁液腔(130)和出液孔(1211)内的气溶胶生成基质封锁在锁液腔(130)和出液孔(1211)内,保证倒抽时供液充足。

Description

雾化器及电子雾化装置 技术领域
本申请涉及雾化技术领域,尤其涉及一种雾化器及电子雾化装置。
背景技术
电子雾化装置一般包括雾化器、电池和控制电路,雾化器用于存储和雾化气溶胶生成基质,控制电路用于控制电池给雾化器输出能量。其中,雾化器包括储液腔和发热体,储液腔用于存储气溶胶生成基质,发热体用于雾化气溶胶生成基质,储液腔与发热体流体连通。发热体一般设置在储液腔下方,正常抽吸时,气溶胶生成基质在重力的作用下流向发热体。
在雾化器相对于正常抽吸时倾斜或翻转的过程中,储液腔内的气溶胶生成基质向远离发热体的方向流动,无法维持发热体正常的供液,导致发热体干烧。
发明内容
本申请提供的雾化器和电子雾化装置,解决现有技术中雾化器在倾斜或翻转过程中,发热体供液不足导致干烧的问题。
为了解决上述技术问题,本申请提供的第一个技术方案为:储液腔,包括至少一子储液腔、锁液腔、出液孔和雾化芯;所述储液腔具有出液口;所述锁液腔通过所述出液口与所述储液腔连通;所述雾化芯与所述锁液腔流体连通;当所述储液腔位于所述锁液腔上方时,所述储液腔内的气溶胶生成基质经所述出液口进入所述锁液腔;当所述储液腔位于所述锁液腔下方时,所述气溶胶生成基质在所述出液口形成液膜,所述液膜将所述锁液腔和所述出液孔内的气溶胶生成基质封锁在所述锁液腔和所述出液孔内。
在一实施方式中,还包括出液孔,所述出液孔位于所述锁液腔与所述储液腔之间,并流体连通所述锁液腔与所述储液腔;所述出液孔靠近所述储液腔的端口为所述出液口。
在一实施方式中,所述出液孔的壁面与所述出液口周边的壁面形成的角度不小于240°,且所述出液口的孔径r满足公式r<2σcosθ/ρgh,其中,σ为所述气溶胶生成基质的表面张力系数,ρ为所述气溶胶生成基质的密度,g为重力加速度,θ为所述气溶胶生成基质与所述出液孔靠近所述出液口处的壁面的接触角,h为所述液膜上方的所述气溶胶生成基质的高度。
在一实施方式中,所述储液腔的数量为多个,多个所述储液腔之间相互独立。
在一实施方式中,多个所述储液腔之间彼此物理隔离,仅通过所述出液孔和所述锁液腔连通;或
多个所述储液腔之间彼此物理隔离,除通过所述出液孔和所述锁液腔连通之外,仅通过具有锁液功能的微通道连通。
在一实施方式中,所述储液腔的数量为多个,当所述多个储液腔位于所述锁液腔下方时,多个所述储液腔彼此之间不串流气体和/或气溶胶生成基质。
在一实施方式中,多个所述储液腔与同一个所述锁液腔流体连通;每个所述储液腔与所述锁液腔之间仅通过一个所述出液孔流体连通。
在一实施方式中,多个所述出液口在所述雾化器的中轴线上的同一高度位置。
在一实施方式中,所述出液口的当量直径为1mm-6mm。
在一实施方式中,所述储液腔靠近所述出液口处的截面积与所述出液口的面积的比大于1.2。
在一实施方式中,所述储液腔靠近所述出液口处的壁面与所述气溶胶生成基质的接触角小于所述出液孔靠近所述出液口处的壁面与所述气溶胶生成基质的接触角。
在一实施方式中,所述出液孔在靠近所述储液腔侧的壁面与所述气溶胶生成基质的接触角大于所述出液孔在靠近所述锁液腔侧的壁面与所述气溶胶生成基质的接触角。
在一实施方式中,所述储液腔的数量为两个,两个所述储液腔及其对应的所述出液孔、以及所述锁液腔构成U型结构。
在一实施方式中,当所述储液腔位于所述锁液腔下方时,所述液膜的表面张力与其对应 的所述储液腔的气体压力之和为第一值,所述出液孔和所述锁液腔内的气溶胶生成基质在所述出液口的压力为第二值,所述第一值大于所述第二值。
在一实施方式中,所述出液孔的横截面相对其对应的所述储液腔靠近所述出液孔的端口的横截面收窄;和/或
所述出液孔的横截面形状不同于其对应的所述储液腔靠近所述出液孔的端口的横截面形状。
在一实施方式中,还包括:
壳体,一端具有抽吸口;所述抽吸口和所述储液腔位于所述锁液腔的同一侧;
雾化座,设于所述壳体内;所述雾化座与所述壳体配合形成所述储液腔;所述雾化座上设有所述出液孔;
雾化芯,设于所述雾化座,并与所述雾化座配合形成所述锁液腔。
在一实施方式中,所述雾化器还包括密封件,所述密封件设于所述雾化座的表面,所述密封件对应于所述出液孔处设有贯穿孔,所述密封件与所述气溶胶生成基质的接触角大于所述储液腔的壁面与所述气溶胶生成基质的接触角。
在一实施方式中,所述雾化座的顶面上设有凸台,所述凸台沿着所述出液孔的周缘设置;所述凸台穿设于所述贯穿孔内。
在一实施方式中,所述密封件包括密封本体部和第一凸起部;所述密封本体部套设于所述雾化座的表面,所述密封本体部对应于所述出液孔的位置设有所述贯穿孔,所述第一凸起部环绕所述贯穿孔且向远离所述雾化座的方向向所述储液腔内延伸。
在一实施方式中,所述密封件位于所述雾化座的顶面的部分延伸至所述出液孔的孔壁,且所述密封件延伸至所述出液孔孔壁的长度小于所述出液孔的深度。
在一实施方式中,所述出液孔的孔壁上具有多个翅片,多个所述翅片沿着所述出液孔的孔壁的周向间隔设置,所述翅片的长度方向与所述出液孔的轴线平行;相邻的两个翅片之间形成的间隙具有毛细作用力;所述密封件与所述翅片间隔设置或抵接。
在一实施方式中,所述出液孔的孔壁靠近所述储液腔的部分设有涂层,或所述出液孔的孔壁靠近所述储子液腔的部分进行改性处理形成微结构。
在一实施方式中,两个所述储液腔通过微通道连通,所述微通道的当量直径小于5mm。
在一实施方式中,所述储液腔靠近所述雾化芯的一端通过所述微通道连通。
在一实施方式中,所述储液腔的数量为多个;所述壳体具有隔片,所述隔片使多个所述储液腔之间彼此独立。
在一实施方式中,所述壳体包括一体成型的外壳、中心出气管及所述隔片;所述隔片连接所述外壳和所述中心出气管。
在一实施方式中,所述储液腔的数量为两个,所述雾化座上设有相互连通的换气槽和导气槽,所述导气槽与外界气体或雾化腔连通;其中,所述换气槽位于两个所述储液腔的相邻处,所述换气槽分别与两个所述储液腔连通。
为了解决上述技术问题,本申请提供的第二个技术方案为:提供一种电子雾化装置,包括雾化器和主机;所述雾化器用于存储和雾化气溶胶生成基质;所述雾化器为上述任一项所述的雾化器;所述主机用于为所述雾化器工作提供能量。
本申请的有益效果:区别于现有技术,本申请公开了一种雾化器及电子雾化装置,雾化器包括储液腔、锁液腔和雾化芯;储液腔具有出液口;锁液腔通过出液口与储液腔连通;雾化芯与锁液腔流体连通;当储液腔位于锁液腔上方时,储液腔内的气溶胶生成基质经出液口进入锁液腔;当子储液腔位于锁液腔下方时,气溶胶生成基质在出液口形成液膜,液膜将锁液腔和出液孔内的气溶胶生成基质封锁在锁液腔和出液孔内,保证倒抽时供液充足。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的电子雾化装置的结构示意;
图2是本申请提供的雾化器第一实施例的结构示意图;
图3是图2提供的雾化器的壳体的仰视结构示意图;
图4是图2提供的雾化器另一角度的结构示意图;
图5是图2提供的雾化器的储液腔、出液孔以及锁液腔连接后的简易结构示意图;
图6是现有技术中雾化器的储液腔、出液孔以及锁液腔连接后的简易结构示意图;
图7是现有技术中雾化器的储液腔、出液孔以及锁液腔连接后的结构在倾斜过程中气液流动示意图;
图8是图2提供的雾化器的储液腔、出液孔以及锁液腔连接后的结构在倾斜过程中气液流动示意图;
图9a是本申请提供的雾化器第二实施例的局部结构示意图;
图9b是图9a提供的雾化器的密封件与顶座的分解示意图;
图10a是本申请提供的雾化器第三实施例的局部结构示意图;
图10b是图10a提供的雾化器的密封件与顶座的分解示意图;
图11a是本申请提供的雾化器第四实施例的局部结构示意图;
图11b是图11a提供的雾化器的密封件与顶座的分解示意图;
图12是本申请提供的雾化器第五实施例的储液腔、出液孔以及锁液腔连接后的简易结构示意图;
图13是图12提供的储液腔、出液孔以及锁液腔连接后的结构在倾斜过程中气液流动示意图;
图14是本申请提供的雾化器第五实施例的结构示意图;
图15是本申请提供的雾化器第六实施例的结构示意图;
图16是图15提供的雾化器的顶座的结构示意图;
图17是图16提供的顶座的局部放大结构示意图;
图18是本申请提供的雾化器第七实施例中储液腔、出液孔及锁液腔的简易结构示意图;
图19是本申请提供的雾化器第八实施例中储液腔、出液孔及锁液腔的简易结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本申请。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个所述特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果所述特定姿态发生改变时,则所述方向性指示也相应地随之改变。本申请实施例中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或组件。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现所述短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面结合附图和实施例对本申请进行详细的说明。
请参阅图1,图1是本申请实施例提供的电子雾化装置的结构示意。
在本实施例中,提供一种电子雾化装置100。该电子雾化装置100可用于气溶胶生成基质的雾化。电子雾化装置100包括相互电连接的雾化器1和主机2。
其中,雾化器1用于存储气溶胶生成基质并雾化气溶胶生成基质以形成可供用户吸食的气溶胶。该雾化器1具体可用于不同的领域,比如,医疗、美容、休闲吸食等。在一具体实 施例中,该雾化器1可用于电子气溶胶化装置,用于雾化气溶胶生成基质并产生气溶胶,以供抽吸者抽吸,以下实施例均以此休闲吸食为例。
雾化器1的具体结构与功能可参见以下实施例所涉及的雾化器1的具体结构与功能,且可实现相同或相似的技术效果,在此不再赘述。
主机2包括电池(图未示)和控制器(图未示)。电池用于为雾化器1的工作提供电能,以使得雾化器1能够雾化气溶胶生成基质形成气溶胶;控制器用于控制雾化器1工作。主机2还包括电池支架、气流传感器等其他元件。
雾化器1与主机2可以是一体设置,也可以是可拆卸连接,可以根据具体需要进行设计。
请参阅图2,图2是本申请提供的雾化器第一实施例的结构示意图。
雾化器1包括壳体11、雾化座12和发热体13。壳体11的一端为敞口端,雾化座12设于壳体11内且封堵该敞口端,雾化座12与壳体11配合形成储液腔10,储液腔10用于存储气溶胶生成基质。储液腔10包括一个或多个子储液腔101。雾化座12包括顶座121和底座122,底座122将壳体11的敞口端封堵,即壳体11与顶座121配合形成储液腔10;顶座121和底座122配合形成安装腔(图未标),安装腔用于安装发热体13。即,发热体13设于安装腔内,发热体13同雾化座12一起设于壳体11内。顶座121上设有出液孔1211,发热体13通过出液孔1211与储液腔10流体连通,发热体13用于雾化气溶胶生成基质生成气溶胶。其中,每个子储液腔101具有对应的出液孔1211;即,一个或多个子储液腔101与出液孔1211为一一对应关系,一个子储液腔101与一个出液孔1211连通,多个子储液腔101与多个出液孔1211一一对应设置。
需要说明的是,当储液腔10包括一个子储液腔101时,子储液腔101即为储液腔10。当雾化器1包括多个储液腔10时,即包括多个子储液腔101,子储液腔101即为储液腔10,定义出子储液腔101只是为了便于描述,没有实质性限定。
发热体13与安装腔的底壁之间间隔设置形成雾化腔120,即发热体13远离储液腔10的表面与安装腔的腔壁配合形成雾化腔120;发热体13雾化产生的气溶胶释放于雾化腔120内。壳体11具有出雾通道111,顶座121上设有出雾孔1210,出雾孔1210将雾化腔120与出雾通道111连通。底座122上设有进气通道1221,进气通道1221将外界气体与雾化腔120连通。出雾通道111的端口为抽吸口1111。外界气体通过进气通道1221进入雾化腔120内,携带雾化腔120内的气溶胶经出雾孔1210流至出雾通道111,用户通过抽吸口1111吸食气溶胶。
需要说明的是,本申请定义子储液腔101位于发热体13的上方的状态为雾化器1为正置,子储液腔101位于发热体13的下方的状态为雾化器1为倒置。本实施例中,抽吸口1111朝上时,雾化器1为正置,子储液腔101位于发热体13的上方;抽吸口1111朝下时,雾化器1为倒置,子储液腔101位于发热体13的下方。
在本实施例中,发热体13为片状,发热体13包括导液基体(图未标)和发热元件(图未标),发热元件设于导液基体的表面,导液基体用于导引气溶胶生成基质,发热元件用于雾化气溶胶生成基质。导液基体的材料可以为多孔陶瓷,也可以为致密材料;当导液基体的材料为致密材料,可以为石英、玻璃、致密陶瓷或硅。在其他实施例中,发热体13可以为现有的多孔陶瓷发热体或棉芯发热体,具体根据需要进行设计。发热体13实际用作雾化器1的雾化芯。可以理解,除了采用发热体作为雾化芯,雾化器1也可以采用其他类型的雾化芯,例如超声振动雾化片等,在此不做限定。
可以理解,在本实施例中,雾化座12由顶座121和底座122上下装配形成;在其他实施例中,雾化座12也可以由两个结构件左右装配形成,具体根据需要进行设计。也就是说,本申请并不限定雾化座12的结构,仅以顶座121和底座122形成的雾化座12为例对出液孔1211的具体设置进行详细介绍。
请参阅图3-图5,图3是图2提供的雾化器的壳体的仰视结构示意图,图4是图2提供的雾化器另一角度的结构示意图,图5是图2提供的雾化器的储液腔、出液孔以及锁液腔连接后的简易结构示意图。
壳体11的内部具有隔片112,隔片112的长度方向与雾化器1的轴向方向相同,隔片112将储液腔10分隔为多个子储液腔101。在本实施例中,多个子储液腔101的数量为两个,隔片112将储液腔10分隔为两个子储液腔101;具体地,壳体11具有两个隔片112,两个隔片112分别设置于出雾通道111的相对两侧,隔片112的一侧与出雾通道111的外表面连 接,隔片112的另一侧与壳体11的内表面连接,隔片112将壳体11与顶座121围设形成的空间分隔成相互独立的两个子储液腔101。顶座121上设有两个出液孔1211,一个出液孔1211与一个子储液腔101连通,另一个出液孔1211与另一个子储液腔101连通;即,两个出液孔1211与两个子储液腔101一一对应连通。可选的,壳体11一体成型有外壳(图未标)、中心出气管(图未标)及隔片112,隔片112连接外壳和中心出气管,起到加强肋的作用;其中,外壳用于与雾化座12配合形成储液腔10,中心出气管形成出雾通道111。
本实施例中,两个隔片112共面设置且两个隔片112所在的平面垂直于雾化器1的宽度方向。在其他实施例中,也可以不设置隔片112,将壳体11的内表面与出雾通道111的外表面相切并连接,从而将壳体11与顶座121围设形成的空间分隔成相互独立的两个子储液腔101。
雾化器1还包括密封件14,密封件14套设于顶座121的表面,用于防止漏液。密封件14设于顶座121的顶面和侧面,隔片112与密封件14位于顶座121的顶面的部分抵接,以将两个子储液腔101完全分隔开来,即,两个子储液腔101为相互独立的空腔。可以理解,当顶座121上并未设置用于密封的密封件14时,隔片112与顶座121抵接,以将两个子储液腔101完全分隔开来。密封件14位于顶座121的顶面的部分设有第一贯穿孔(图未标),第一贯穿孔对应于顶座121上的出液孔1211和出雾孔1210设置,以使出液孔1211和出雾孔1210露出,实现出液孔1211与储液腔10连通,出雾孔1210与出雾通道111连通。
发热体13与顶座121配合形成锁液腔130,两个出液孔1211分别与锁液腔130连通。也就是说,两个子储液腔101位于锁液腔130的上方,发热体13直接与锁液腔130导液连通。其中,顶座121靠近底座122的一端具有台阶槽(图未标),台阶槽包括靠近出液孔1211的第一凹槽(图未标)和远离出液孔1211的第二凹槽(图未标);第二凹槽的尺寸大于第一凹槽的尺寸;发热体13设置于第二凹槽内并覆盖第一凹槽,发热体13与第一凹槽配合形成锁液腔130。抽吸口1111和所有子储液腔101位于锁液腔130的同一侧。
本申请的出液孔1211位于锁液腔130与子储液腔101之间,并流体连通锁液腔130与子储液腔101。出液孔1211靠近子储液腔101的端口为出液口1211a。需要说明的是,当出液孔1211的长度很短的情况下,可以认为出液孔1211即为出液口1211a。
当子储液腔101位于锁液腔130上方时,子储液腔101内的气溶胶生成基质经出液孔1211进入锁液腔130;当子储液腔101位于锁液腔130下方时,气溶胶生成基质在出液口1211a形成液膜,液膜将锁液腔130和出液孔1211内的气溶胶生成基质封锁在锁液腔130和出液孔1211内。可以理解,本申请中,形成子储液腔101、出液孔1211和锁液腔130的方式不限于上述方式。
具体地,每个子储液腔101与锁液腔130之间仅通过一个出液孔1211流体连通。一个出液孔可以为单一的通孔,也可以包括多个当量直径总和与该单一的通孔的当量直径相同的子通孔。
为了在雾化器1倒置过程中,使气溶胶生成基质在出液口1211a容易形成液膜,且液膜能够保持稳定并将锁液腔130和出液孔1211内的气溶胶生成基质封锁在锁液腔130和出液孔1211内,本申请中,出液孔1211的壁面与出液口1211a周边的壁面形成的角度β不小于240°,且出液口1211a的孔径r满足公式:r<2σcosθ/ρgh,其中,σ为气溶胶生成基质的表面张力系数,ρ为气溶胶生成基质的密度,g为重力加速度,θ为气溶胶生成基质与出液孔1211靠近出液口1211a处的壁面的接触角,h为液膜上方的气溶胶生成基质的高度。对于非圆形出液口1211a,出液口1211a的孔径r为出液口1211a的当量半径。
可以理解,如果出液孔1211的壁面与出液口1211a周边的壁面形成的角度β小于240°,子储液腔101位于锁液腔130上方时,子储液腔101内的气溶胶生成基质更容易浸润到出液孔1211内,同理,当子储液腔101位于锁液腔130下方时,出液孔1211内的气溶胶生成基质也更容易浸润到子储液腔101内。因此,在雾化器1倒置的过程中,出液孔1211内的气溶胶生成基质不容易与子储液腔101内的气溶胶生成基质断开,即,出液孔1211内的气溶胶生成基质不容易形成液膜。优选,出液孔1211的壁面与出液口1211a周边的壁面形成的角度β大于270°,有利于出液孔1211内的气溶胶生成基质与子储液腔101内的气溶胶生成基质在出液口1211a处断开,从而将出液孔1211内的气溶胶生成基质液膜封在出液孔1211内。如果出液口1211a的孔径r太大,气溶胶生成基质在出液口1211a形成的液膜的表面张力会太小,该表面张力不足以将锁液腔130和出液孔1211内的气溶胶生成基质封锁在 锁液腔130和出液孔1211内。
当雾化器1仅有一个子储液腔101和一个锁液腔130时,出液口1211a的孔径r满足公式r<2σcosθ/ρgh,即可将锁液腔130和出液孔1211内的气溶胶生成基质封锁在锁液腔130和出液孔1211内。
当雾化器1包括多个子储液腔101且多个子储液腔101流体连通到同一个锁液腔130时,为了确保锁液腔130和出液孔1211内的气溶胶生成基质不会突破液膜,需要确保多个子储液腔101内的气压基本稳定,即多个子储液腔101位于锁液腔130下方时,多个子储液腔101内的气体和/或气溶胶生成基质不串流。因此,多个子储液腔101之间相互独立设置。
具体地,多个子储液腔101之间相互独立设置可以为:多个子储液腔101之间彼此物理隔离,仅通过出液孔1211和锁液腔130连通(如图5所示);或多个子储液腔101之间彼此物理隔离,除通过出液孔1211和锁液腔130连通之外,仅通过具有锁液功能的微通道102连通(如图12所示)。
具体地,如图5中所示的N区域,出液孔1211与子储液腔101的连接处形成截面突变结构。通过突变结构使得出液孔1211的壁面与出液口1211a周边的壁面形成的角度β不小于240°,且出液口1211a的孔径r满足公式:r<2σcosθ/ρgh。
当雾化器1倾斜倒置,使得两个子储液腔101位于锁液腔130的下方时,截面突变结构使出液孔1211内的气溶胶生成基质形成液膜,将锁液腔130的气溶胶生成基质封锁在锁液腔130内。换句话说,在出液孔1211靠近子储液腔101的出液口1211a形成液膜,该液膜具有的表面张力封锁出液孔1211和锁液腔130内的气溶胶生成基质;截面突变结构在出液孔1211侧形成的液膜的表面张力与其对应的子储液腔101的气体压力之和为第一值,出液孔1211和锁液腔130内的气溶胶生成基质在出液孔1211靠近子储液腔101的端口的压力为第二值,第一值大于第二值,实现锁液。可以理解,由于锁液腔130是由发热体13与顶座121配合形成的,两个子储液腔101位于锁液腔130的下方,两个子储液腔101也就位于发热体13的下方,雾化器1为倒置的。
本实施例中,两个子储液腔101、两个出液孔1211以及锁液腔130形成U型结构。具体地,两个子储液腔101分别为第一子储液腔101、第二子储液腔101;两个出液孔1211分别为第一出液孔1211和第二出液孔1211,第一子储液腔101、第一出液孔1211、锁液腔130、第二出液孔1211以及第二子储液腔101依次连接形成U形结构。两个子储液腔101位于锁液腔130下方时,两个子储液腔101之间的气体和/或气溶胶生成基质不串流。
继续参见图5和图2,两个子储液腔101的出液孔1211的截面突变结构在雾化器1的中轴线上的同一高度位置,即两个子储液腔101的出液口1211a在雾化器1的中轴线上的同一高度位置,使得两个子储液腔101内的气压基本相同,利于保持锁液后的平衡。
请参阅图6和图7,图6是现有技术中雾化器的储液腔、出液孔以及锁液腔连接后的简易结构示意图,图7是现有技术中雾化器的储液腔、出液孔以及锁液腔连接后的结构在倾斜过程中气液流动示意图。
现有的储液腔包括两个子储液腔201以及连通两个子储液腔201的连通储液腔202。两个出液孔203的一端分别与连通储液腔202连通,两个出液孔203的另一端分别与锁液腔204连通。锁液腔204直接与发热体205流体连通。
现有雾化器在初始状态下,即雾化器朝上,且发热体205位于子储液腔201下方,两个子储液腔201内的空气压力分别为P A、P B,在雾化器倾斜或翻转时,子储液腔201内的气溶胶生成基质在重力作用下会流向相对位置更低的区域,从而导致两个子储液腔201之间的气压平衡被破坏,失衡的气体压力通过连通储液腔202进行流通,如此往复,最终在雾化器倒置状态下,即雾化器朝下,发热体205位于子储液腔201上方,气溶胶生成基质将全部汇聚到下方区域,发热体205所在的上方区域无法存储气溶胶生成基质,从而造成发热体205干烧。
请参阅图8,图8是图2提供的雾化器的储液腔、出液孔以及锁液腔连接后的结构在倾斜过程中气液流动示意图。
而本申请通过将第一子储液腔101、第一出液孔1211、锁液腔130、第二出液孔1211以及第二子储液腔101依次连接形成U形结构,雾化器1在倾斜或翻转的过程中,两个子储液腔101内的气体无法突破出液孔1211靠近子储液腔101的端口形成的液膜的表面张力,无法实现两个子储液腔101之间的气体流通,两个子储液腔101内的液位产生的压力差通过 两个子储液腔101内的气体的膨胀和压缩来平衡。雾化器1倾斜或翻转时,两个子储液腔101内的气溶胶生成基质在重力作用下向远离发热体13的方向流动,即流动至储液腔10的下方;由于两个子储液腔101之间无法实现气体流通,两个子储液腔101内的气溶胶生成基质和气体只能在各自区域内进行流动;也就是说,两个子储液腔101内的气体被气溶胶生成基质隔离,雾化器1倾斜或翻转过程中,两个子储液腔101内的气压基本保持不变。而其整体若要向某一侧流动,则必然受到两侧气体的阻力,因此在两个子储液腔101内气体压力的作用下,锁液腔130内的气溶胶生成基质只能滞留在锁液腔130内,以及出液孔1211内的气溶胶生成基质只能滞留在出液孔1211内,从而达到实现倾斜和倒置后在锁液腔130和出液孔1211内储液的效果,保证倒抽时的供液充足,短时间内不会出现发热体13烧焦或烧断的现象。
本申请还对U形结构的锁液能力进行了实验。实验证明,U形结构倒置放最长两天没问题,如无强烈外力震荡不会导致液体垮掉,具有较好的锁液能力。
当锁液腔130的气溶胶生成基质将U型结构的底部封堵时,在雾化器1倾斜倒置使得两个子储液腔101位于锁液腔130下方的过程中,多个子储液腔101彼此之间不串流气体和/或气溶胶生成基质。可以理解,本申请中雾化器1的倾斜倒置是指用户一般速度的倾斜倒置过程,通常1秒内完成,而不包括非常缓慢的倾斜倒置过程。
可以理解,沿着雾化器1的轴向,子储液腔101的横截面积相同;由于子储液腔101的横截面积较大,在子储液腔101内形成的液膜的表面张力较小,且整体液位高度较大,子储液腔101内形成的液膜的表面张力易突破,子储液腔101内的气溶胶生成基质可以顺畅的流至出液孔1211。由于子储液腔101内形成的液膜的表面张力较小,雾化器1旋转时,子储液腔101内形成的液膜的表面张力不足以支撑子储液腔101内的气溶胶生成基质,所以两个子储液腔101内的气溶胶生成基质在各自区域内可随意流动。
出液孔1211靠近子储液腔101的端口的截面积要小于子储液腔101的横截面积,在出液孔1211靠近子储液腔101的端口形成的液膜的表面张力较大,且出液孔1211内的气溶胶生成基质要远小于子储液腔101内的气溶胶生成基质,因此,雾化器1倒置时,出液孔1211靠近子储液腔101的端口形成的液膜的表面张力可以锁住出液孔1211和锁液腔130内的气溶胶生成基质。
在一实施方式中,截面突变结构在出液孔1211侧的当量直径为1mm-6mm,在保证下液顺畅的同时具有一定的表面张力,以使雾化器1倒置时可以通过液膜的表面张力锁住出液孔1211、锁液腔130内的气溶胶生成基质,进一步提高了锁液能力。截面突变结构在出液孔1211侧的当量直径小于1mm,从出液孔1211进入锁液腔130的下液量较少,易造成发热体13供液不足;截面突变结构在出液孔1211侧的当量直径大于6mm,在出液孔1211侧形成的液膜的表面张力太小,无法实现较好的锁液效果。示例性的,截面突变结构在出液孔1211侧的当量直径为4mm。
在一实施方式中,截面突变结构在子储液腔101侧的截面积与截面突变结构在出液孔1211侧的截面积的比大于1.2,即子储液腔101靠近出液孔1211的端口的截面积与出液孔1211靠近子储液腔101的端口的截面积的比大于1.2。可选的,截面突变结构在子储液腔101侧的截面积与截面突变结构在出液孔1211侧的截面积的比大于1.5。
在一实施方式中,出液孔1211靠近子储液腔101的端口的横截面相对其对应的子储液腔101靠近出液孔1211的端口的横截面收窄,以在出液孔1211与子储液腔101的连接处形成截面突变结构;和/或,出液孔1211靠近子储液腔101的端口的横截面形状不同于其对应的子储液腔101靠近出液孔1211的端口的横截面形状,以在出液孔1211与子储液腔101的连接处形成截面突变结构,以使出液孔1211与储液腔10的连接处存在流动状态变化。其中,出液孔1211靠近子储液腔101的端口为图4中所示A区域,子储液腔101靠近出液孔1211的端口为图4中所示B区域。
在一实施方式中,截面突变结构在子储液腔101侧与气溶胶生成基质的接触角小于截面突变结构在出液孔1211侧与气溶胶生成基质的接触角,即子储液腔101靠近出液口1211a处的壁面与气溶胶生成基质的接触角小于出液孔1211靠近出液口1211a处的壁面与气溶胶生成基质的接触角,气溶胶生成基质易在出液孔1211靠近子储液腔101的端口断开,利于在出液孔1211靠近子储液腔101的端口形成液膜,实现较好的锁液效果。
具体实施中,密封件14的材料与壳体11的材料具有不同亲液性,且密封件14设于截 面突变结构的子储液腔101侧,即,密封件14与气溶胶生成基质的表面接触角大于子储液腔101的内壁与气溶胶生成基质的表面接触角,以使在出液孔1211与子储液腔101的连接处具有与气溶胶生成基质接触角突变,气溶胶生成基质易在出液孔1211靠近子储液腔101的端口断开,利于在出液孔1211靠近子储液腔101的端口形成液膜,实现较好的锁液效果。示例性的,密封件14的材料为硅胶,壳体11的材料为塑胶;其中,硅胶与气溶胶生成基质的表面接触角大于塑胶与气溶胶生成基质的接触角。
请参阅图9a,图9a是本申请提供的雾化器第二实施例的局部结构示意图,图9b是图9a提供的雾化器的密封件与顶座的分解示意图。
雾化器1的第二实施例与雾化器1第一实施例的结构基本相同,不同之处在于:顶座121的顶面上还设有凸台1212,凸台1212沿着出液孔1211的周缘设置。
密封件14对应于出液孔1211的位置设有贯穿孔14a,凸台1212穿设于贯穿孔14a内。具体地,密封件14包括顶壁(图未标)和环形侧壁(图未标),密封件14的顶壁设于顶座121的顶面,密封件14的环形侧壁设于顶座121的侧面;密封件14的顶壁对应于出液孔1211处设有贯穿孔14a,以使凸台1212穿过贯穿孔14a。通过上述设置,在雾化器1倾斜或翻转过程中,凸台1212围设形成的空间内的气溶胶生成基质的表面更易与壳体11内的气溶胶生成基质的表面断开,即出液孔1211内的气溶胶生成基质的表面与子储液腔101内的气溶胶生成基质的表面更易断开,这是因为壳体11的内表面与凸台1212的端口之间无法形成连续的液膜,防止凸台1212的端口形成的液膜的表面张力被破坏。可以理解,由于出液孔1211靠近储液腔的一侧的周缘设有凸台1212,通过凸台1212的端口形成的液膜的表面张力可以锁住出液孔1211和锁液腔130内的气溶胶生成基质。
可选的,凸台1212与顶座121一体成型。例如,凸台1212与顶座121的材质为塑胶。
可选的,凸台1212沿着出液孔1211的周缘一整周设置,凸台1212为环形的,凸台1212的内表面与出液孔1211的内表面齐平。凸台1212的外表面与顶座121的侧壁以及出雾孔1210均间隔设置。
请参阅图10a和图10b,图10a是本申请提供的雾化器第三实施例的局部结构示意图,图10b是图10a提供的雾化器的密封件与顶座的分解示意图。
雾化器1的第三实施例与雾化器1第一实施例的结构基本相同,不同之处在于:密封件14具有向远离顶座121方向延伸的第一凸起部142。
密封件14包括密封本体部141和第一凸起部142。密封本体部141套设于顶座121的表面,密封本体部141对应于出液孔1211的位置设有贯穿孔14a,第一凸起部142环绕贯穿孔14a且向远离顶座121的方向延伸,即,第一凸起部142向子储液腔101内延伸。其中,密封本体部141包括顶壁(图未标)和环形侧壁(图未标),密封本体部141的环形侧壁设于顶座121的侧面,密封本体部141的顶壁设于顶座121的顶面,密封本体部141的顶壁对应于出液孔1211的位置设有贯穿孔14a。
通过上述设置,在雾化器1倾斜或翻转过程中,第一凸起部142围设形成的空间内的气溶胶生成基质的表面更易与壳体11内的气溶胶生成基质的表面断开,即第一凸起部142内的气溶胶生成基质的表面与子储液腔101内的气溶胶生成基质的表面更易断开,这是因为壳体11的内表面与第一凸起部142的端口之间无法形成连续的液膜,防止第一凸起部142的端口形成的液膜的表面张力被破坏。可以理解,由于出液孔1211靠近储液腔的一侧的周缘设有第一凸起部142,通过第一凸起部142的端口形成的液膜的表面张力可以锁住出液孔1211和锁液腔130内的气溶胶生成基质。
可选的,第一凸起部142为环绕贯穿孔14a一整周的凸环,第一凸起部142的内表面与出液孔1211的内表面齐平。第一凸起部142的外表面与顶座121的侧壁以及出雾孔1210均间隔设置。
可选的,密封件14的材质为硅胶。
需要说明的是,雾化座12的材质为塑胶。由于硅胶与气溶胶生成基质的表面接触角大于塑胶与气溶胶生成基质的接触角,使密封件14具有第一凸起部142(雾化器1的第三实施例)相对于顶座121的顶面上设置凸台1212(雾化器1的第二实施例),雾化器1倾斜或翻转过程中,更利于阻碍与壳体11之间形成连续的液膜,更易于使气溶胶生成基质与壳体11的内表面断开。
请参阅图11a和图11b,图11a是本申请提供的雾化器第四实施例的局部结构示意图, 图11b是图11a提供的雾化器的密封件与顶座的分解示意图。
雾化器1的第四实施例与雾化器1第一实施例的结构基本相同,不同之处在于:出液孔1211的孔壁靠近储液腔10的部分设有疏液结构1213,以在出液孔1211与子储液腔101的连接处具有与气溶胶生成基质接触角突变,壳体11的内表面与疏液结构1213靠近储液腔10处无法形成连续的液膜,以使雾化器在倾斜或翻转过程中,出液孔1211内的气溶胶生成基质的表面更易与壳体11内的气溶胶生成基质的表面断开,使得疏液结构1213靠近储液腔10处形成的液膜具有的表面张力能够实现锁液功能。可选的,疏液结构1213沿着出液孔1211的孔壁的周向整周设置。也就是说,出液孔1211在靠近子储液腔101侧的内壁面与气溶胶生成基质的接触角大于出液孔1211靠近锁液腔130侧的内壁面与气溶胶生成基质的接触角;其中,疏液结构1213位于出液孔1211在靠近子储液腔101侧的内壁。
在一实施方式中,疏液结构1213为设置于出液孔1211的孔壁的涂层,涂层具有疏气溶胶生成基质的性能。
在另一实施方式中,疏液结构1213为通过对出液孔1211的孔壁进行改性处理的微结构,该微结构具有疏气溶胶生成基质的性能。
在又一实施方式中,密封件14设于顶座121的侧面和顶面,且密封件14位于顶座121的顶面的部分延伸至出液孔1211的孔壁形成疏液结构1213(如图11a和11b所示)。具体地,密封件14包括密封本体部141和第二凸起部143,密封本体部141套设于顶座121的表面,密封本体部141对应于出液孔1211的位置设有贯穿孔14a,第二凸起部143环绕贯穿孔14a且沿着出液孔1211的孔壁延伸至出液孔1211内形成疏液结构1213,第二凸起部143的长度小于出液孔1211的深度;其中,密封本体部141包括顶壁(图未标)和环形侧壁(图未标),密封本体部141的环形侧壁设于顶座121的侧面,密封本体部141的顶壁设于顶座121的顶面,密封本体部141的顶壁对应于出液孔1211的位置设有贯穿孔14a。
可选地,第二凸起部143为环绕贯穿孔14a一整周设置的凸环。第二凸起部143的高度小于出液孔1211长度的一半。例如,第二凸起部143的高度为出液孔1211长度的五分之一到四分之一。
出液孔1211的孔壁具有多个翅片1214,多个翅片1214沿着出液孔1211的孔壁的周向间隔设置。翅片1214的长度方向与出液孔1211的轴线平行设置。每个翅片1214靠近储液腔10的端面为平面。每个翅片1214与出液孔1211靠近储液腔10的端口均间隔设置;多个翅片1214靠近储液腔10的端面与出液孔1211靠近储液腔10的端口之间的距离相同。每个翅片1214远离出液孔1211的孔壁的端面为平面。多个翅片1214的底端可以均直接设置于出液孔1211的底壁上。密封件14的第二凸起部143的端面与翅片1214靠近储液腔10的端面间隔设置或抵接。
可以理解,由于多个翅片1214之间是间隔设置的,气溶胶生成基质可以通过翅片1214之间形成的间隙具有的毛细作用力流至发热体13,进一步提高了锁液能力。
请参阅图12和图13,图12是本申请提供的雾化器第五实施例的储液腔、出液孔以及锁液腔连接后的简易结构示意图,图13是图12提供的储液腔、出液孔以及锁液腔连接后的结构在倾斜过程中气液流动示意图。
雾化器1的第五实施例与雾化器1第一实施例的结构基本相同,不同之处在于:两个子储液腔101之间除了可以通过锁液腔130连通,还可以通过一个或多个微通道102连通。通过在两个子储液腔101之间设置微通道102,将两个子储液腔101之间进行流体连通,相邻两个子储液腔101中一侧的气溶胶生成基质的液面低于微通道102时,低液位一侧的子储液腔101内的气体可以通过微通道102进入到另一侧的子储液腔101内,使得各子储液腔101内的气压相同,从而最终使得各子储液腔101内的液位高度相同。即使由于气溶胶生成基质消耗不均匀或单侧换气等原因导致了两个子储液腔101之间的液位不平衡,当相邻两个子储液腔101中有一侧的气溶胶生成基质的液面低于微通道102时,低液位一侧的子储液腔101内的气体可以突破微通道102的表面张力并进入到高液位一侧的子储液腔101内,以此可以对两个子储液腔101内的气压进行平衡,进而消除两个子储液腔101中的液位差,防止两个子储液腔101内的液位差一直增加导致低液位一侧的子储液腔101内的气溶胶生成基质被消耗完而造成雾化器1干烧。通过设置微通道102来消除各子储液腔101内气溶胶生成基质的液位差,提升雾化器1的雾化性能,进而提升用户使用体验。
可选的,微通道102的当量直径尺寸小于等于5mm,以使微通道102形成较强的毛细 作用力以实现液封。具体地,在雾化器1倾斜或翻转过程中,子储液腔101内气溶胶生成基质的液位低于微通道102的一侧或两侧时,微通道102较强的毛细作用力实现液封,避免两个子储液腔101之间的气体相互流动造成子储液腔101内的气压变化,使其与完整的U形结构具有相同的锁液效果(如图13所示)。也就是说,在不破坏U形结构的锁液功能的前提下,两个子储液腔101之间通过微通道102连通。
可选的,两个子储液腔101靠近发热体13的一端通过微通道102连通。
U型的储液结构中两个子储液腔101的两侧下液并不同步,通常是一侧的液面低至出液孔1211的底端,另一侧才开始下液;其原因主要为雾化器1设有两个独立的换气结构,一个换气结构对应一个子储液腔101设置,另一个换气结构对应另一个子储液腔101设置,以上述的两个换气结构进行换气时,气体一旦开通从一侧换气结构换气后,就习惯于从这一侧换气结构换气,另一侧基本不会换气,并且在另一侧下液的时候,依然是这一侧换气结构换气,气泡会从发热体13靠近储液腔10的表面去到另一侧通道,增大了气泡附着在发热体靠近储液腔表面的概率,易导致供液不足。由于单侧换气,导致单侧子储液腔101内的气溶胶生成基质消耗至其液位低于微通道102的出口,将两个子储液腔101靠近发热体13的一端通过微通道102连通,高液位的子储液腔101内的气溶胶生成基质可以通过微通道102进入低液位的子储液腔101,低液位的子储液腔101内的气体可以通过微通道102流向高液位的子储液腔101,防止高液位的子储液腔101进行换气时气体流经发热体13靠近储液腔10的表面,避免了气泡粘附在发热体13靠近储液腔10的表面,利于保证供液充足。
可选的,微通道102为设置在隔片112靠近顶座121一端的通孔或者缺口,通孔或者缺口的端口尺寸小于等于5mm。
可选的,隔片112靠近顶座121一端的端面与密封件14之间间隔设置,在形成相互独立的两个子储液腔101的同时形成微通道102(如图14所示,图14是本申请提供的雾化器第五实施例的结构示意图)。密封件14与隔片112之间的间隔距离小于等于5mm。示例性的,密封件14与隔片112之间的间隔距离为1mm。
请参阅图15-图17,图15是本申请提供的雾化器第六实施例的结构示意图,图16是图15提供的雾化器的顶座的结构示意图,图17是图16提供的顶座的局部放大结构示意图。
雾化器1的第六实施例与雾化器1第一实施例的结构基本相同,不同之处在于:在两个子储液腔101的相邻处设置换气槽1215,换气槽1215分别与两个子储液腔101连通,以对两个子储液腔101进行换气。
具体地,顶座121上设有相互连通的换气槽1215和导气槽1216,导气槽1216与外界气体或雾化腔120连通;换气槽1215位于两个子储液腔101的相邻处,且分别与两个子储液腔101连通,以使换气气泡可以较为随机的进入两个子储液腔101中,保证两侧均能够进行换气,而不是仅有单侧能够进行换气,使得两侧均能够下液,保证供液充足。
具体地,换气槽1215和导气槽1216均设置于顶座121的侧面,换气槽1215设于导气槽1216靠近储液腔10的一侧。换气槽1215沿雾化器1的轴向方向延伸,换气槽1215为导气槽1216靠近储液腔10一侧的凹槽。导气槽1216包括多个间隔设置且沿雾化器1的周向延伸的子导气槽1216a,多个子导气槽1216a之间相互连通或依次连通。换气槽1215通过导气槽1216的侧壁上的开口(图未标)与导气槽1216连通。
在本实施例中,密封件14设于顶座121的表面和侧面,密封件14位于顶座121的侧面的部分盖设于换气槽1215和导气槽1216的开口,即,密封件14与换气槽1215配合形成换气孔(图未标),密封件14与导气槽1216配合形成换气通道(图未标),换气孔和换气通道组合形成雾化器1的换气结构。由于换气槽1215与导气槽1216相互连通,密封件14与换气槽1215、导气槽1216配合形成的换气孔和换气通道相互连通;导气槽1216与外界气体或雾化腔120连通,密封件14和导气槽1216配合形成的换气通道与外界气体或雾化腔120连通。
换气槽1215设于隔片112在顶座121上的投影处,以使换气槽1215位于两个子储液腔101的相邻处;隔片112的两侧均有部分换气槽1215暴露,以使换气槽1215分别与两个子储液腔101直接连通。具体地,顶座121上设有两个对称的换气槽1215,两个换气槽1215与两个隔片112一一对应设置;即,一个隔片112在顶座121上的投影处设有一个换气槽1215。
由于隔片112与密封件14抵接,隔片112位于换气槽1215的上方,隔片112会对进入 换气槽1215的换气气泡起到阻挡作用,以对换气气泡进行缓速或卡在换气槽1215内,利用气泡随机流动的特性,卡住或缓速的气泡随机进入两个子储液腔101,实现对两个子储液腔101的随机换气。其中,换气槽1215形成的开阔空间与隔片112配合形成的腔体可以有效的对换气气泡进行缓速。
可以理解,在电子雾化装置加热雾化的开始阶段,若出现气泡只往两个子储液腔101中一侧运动的情况,在抽吸几口后,气泡会卡在换气这一侧对应的子换气槽1215a中,从而使得换气气泡向另一侧运动,实现两侧换气的目的,整体呈现处“伪随机”状态。在雾化器1倒置(发热体13位于储液腔10上方),换气槽1215处于液封状态,不会影响上述所述的U型结构的储液功能。
在本实施例中,换气槽1215为沿雾化器1轴向延伸的凹槽,隔片112垂直于换气槽1215的宽度方向设置。隔片112在顶座121上的投影将换气槽1215分隔为两个子换气槽1215a。一个子换气槽1215a对应于一个子储液腔101,对该子储液腔101进行换气;另一个子换气槽1215a对应于另一个子储液腔101,对该子储液腔101进行换气。
可选的,换气槽1215的宽度W1大于0.2mm,以使其具有足够的宽度能够与两个子储液腔101分别连通。
可选的,换气槽1215的宽度W1大于导气槽1216的宽度W2;和/或,换气槽1215的深度大于等于导气槽1216的深度,以使与两个子储液腔101直接连通的换气槽1215形成相对于导气槽1216的开阔空间,实现对换气气泡的缓速,缓速的气泡可以较为随机的进入两个子储液腔101中,保证两侧均能够进行换气,而不是仅有单侧能够进行换气,使得两侧均能够下液,保证供液充足。在一实施方式中,换气槽1215的宽度W1为4倍-10倍导气槽1216的宽度W2,以形成相对于导气槽1216的开阔空间。
参阅图17,换气槽1215包括第一槽段1215b和第二槽段1215c,第一槽段1215b位于第二槽段1215c靠近储液腔10的一侧,第一槽段1215b的宽度大于第二槽段1215c的宽度。进一步,在换气槽1215的中间位置设有分隔柱1217,分隔柱1217设于第一槽段1215b,分隔柱1217将换气槽1215分隔为两个子换气槽1215a,一个子换气槽1215a与一个子储液腔101连通,另一个子换气槽1215a与另一个子储液腔101连通;子换气槽1215a的宽度大于导气槽1216的宽度。需要说明的是,隔片112在顶座121上的投影与分隔柱1217重合。通过设置分隔柱1217,除了能对气泡起到阻挡作用,还可以起到分割气泡的作用,随机卡泡,避免一直单侧换气。
可以理解,换气槽1215的中间位置是否设置分隔柱1217,均可以通过换气槽1215形成的开阔空间与隔片112配合形成的腔体有效的对换气气泡进行缓速,随机卡泡,避免一直单侧换气;而在换气槽1215的中间位置设置分隔柱1217,进一步对换气气泡进行缓速,且可以分割气泡,能够更好的避免单侧换气。分隔柱1217为可选结构,根据需要进行设计。
请参阅图18,图18是本申请提供的雾化器第七实施例中储液腔、出液孔及锁液腔的简易结构示意图。
雾化器1的第七实施例与雾化器1第一实施例的结构基本相同,不同之处在于:只有一个子储液腔101,相同部分不再赘述。
在子储液腔101与出液孔1211的连接处形成截面突变结构,截面突变结构使出液孔1211内的气溶胶生成基质形成液膜,将锁液腔130的气溶胶生成基质封锁在锁液腔130内。截面突变结构的具体设置方式可参见雾化器1第一实施例中的具体介绍,实现相同的技术效果,不再赘述。本实施例中,出液孔1211相对于子储液腔101和锁液腔130均形成收缩。在其他实施例中,出液孔1211可以仅相对于子储液腔101形成收缩,而与锁液腔130的截面形状和尺寸相同。
请参阅图19,图19是本申请提供的雾化器第八实施例中储液腔、出液孔及锁液腔的简易结构示意图。
雾化器1的第七实施例与雾化器1第一实施例的结构基本相同,不同之处在于:储液腔10包括两个以上的子储液腔101,多个子储液腔101与出液孔1211为一一对应关系,多个出液孔1211分别与锁液腔130流体连通,相同部分不再赘述。
在每个子储液腔101与出液孔1211的连接处均形成截面突变结构,截面突变结构使出液孔1211内的气溶胶生成基质形成液膜,将锁液腔130的气溶胶生成基质封锁在锁液腔130内。多个子储液腔101位于锁液腔130下方时,多个子储液腔101彼此之间不串流气体和/ 或气溶胶生成基质。多个子储液腔101的出液孔1211的截面突变结构在雾化器1的中轴线上的同一高度位置。截面突变结构的具体设置方式可参见雾化器1第一实施例中的具体介绍,实现相同的技术效果,不再赘述。
需要说明的是,本申请提供的上述雾化器1的实施例,可以根据需要进行任意组合,均属于本申请的保护范围。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (28)

  1. 一种雾化器,其中,包括:
    储液腔,具有出液口;
    锁液腔,通过所述出液口与所述储液腔连通;
    雾化芯,与所述锁液腔流体连通;
    当所述储液腔位于所述锁液腔上方时,所述储液腔内的气溶胶生成基质经所述出液口进入所述锁液腔;当所述储液腔位于所述锁液腔下方时,所述气溶胶生成基质在所述出液口形成液膜,所述液膜将所述锁液腔和所述出液孔内的气溶胶生成基质封锁在所述锁液腔和所述出液孔内。
  2. 根据权利要求1所述的雾化器,其中,还包括出液孔,所述出液孔位于所述锁液腔与所述储液腔之间,并流体连通所述锁液腔与所述储液腔;所述出液孔靠近所述储液腔的端口为所述出液口。
  3. 根据权利要求2所述的雾化器,其中,所述出液孔的壁面与所述出液口周边的壁面形成的角度不小于240°,且所述出液口的孔径r满足公式r<2σcosθ/ρgh,其中,σ为所述气溶胶生成基质的表面张力系数,ρ为所述气溶胶生成基质的密度,g为重力加速度,θ为所述气溶胶生成基质与所述出液孔靠近所述出液口处的壁面的接触角,h为所述液膜上方的所述气溶胶生成基质的高度。
  4. 根据权利要求3所述的雾化器,其中,所述储液腔的数量为多个,多个所述储液腔之间相互独立。
  5. 根据权利要求4所述的雾化器,其中,多个所述储液腔之间彼此物理隔离,仅通过所述出液孔和所述锁液腔连通;或
    多个所述储液腔之间彼此物理隔离,除通过所述出液孔和所述锁液腔连通之外,仅通过具有锁液功能的微通道连通。
  6. 根据权利要求3所述的雾化器,其中,所述储液腔的数量为多个,当所述多个储液腔位于所述锁液腔下方时,多个所述储液腔彼此之间不串流气体和/或气溶胶生成基质。
  7. 根据权利要求4所述的雾化器,其中,多个所述储液腔与同一个所述锁液腔流体连通;每个所述储液腔与所述锁液腔之间仅通过一个所述出液孔流体连通。
  8. 根据权利要求4所述的雾化器,其中,多个所述出液口在所述雾化器的中轴线上的同一高度位置。
  9. 根据权利要求2所述的雾化器,其中,所述出液口的当量直径为1mm-6mm。
  10. 根据权利要求2所述的雾化器,其中,所述储液腔靠近所述出液口处的截面积与所述出液口的面积的比大于1.2。
  11. 根据权利要求2所述的雾化器,其中,所述储液腔靠近所述出液口处的壁面与所述气溶胶生成基质的接触角小于所述出液孔靠近所述出液口处的壁面与所述气溶胶生成基质的接触角。
  12. 根据权利要求11所述的雾化器,其中,所述出液孔在靠近所述储液腔侧的壁面与所述气溶胶生成基质的接触角大于所述出液孔在靠近所述锁液腔侧的壁面与所述气溶胶生成基质的接触角。
  13. 根据权利要求4所述的雾化器,其中,所述储液腔的数量为两个,两个所述储液腔及其对应的所述出液孔、以及所述锁液腔构成U型结构。
  14. 根据权利要求2所述的雾化器,其中,当所述储液腔位于所述锁液腔下方时,所述液膜的表面张力与其对应的所述储液腔的气体压力之和为第一值,所述出液孔和所述锁液腔内的气溶胶生成基质在所述出液口的压力为第二值,所述第一值大于所述第二值。
  15. 根据权利要求2所述的雾化器,其中,所述出液孔的横截面相对其对应的所述储液腔靠近所述出液孔的端口的横截面收窄;和/或
    所述出液孔的横截面形状不同于其对应的所述储液腔靠近所述出液孔的端口的横截面形状。
  16. 根据权利要求2所述的雾化器,其中,还包括:
    壳体,一端具有抽吸口;所述抽吸口和所述储液腔位于所述锁液腔的同一侧;
    雾化座,设于所述壳体内;所述雾化座与所述壳体配合形成所述储液腔;所述雾化座上设有所述出液孔;
    雾化芯,设于所述雾化座,并与所述雾化座配合形成所述锁液腔。
  17. 根据权利要求16所述的雾化器,其中,所述雾化器还包括密封件,所述密封件设于所述雾化座的表面,所述密封件对应于所述出液孔处设有贯穿孔,所述密封件与所述气溶胶生成基质的接触角大于所述储液腔的壁面与所述气溶胶生成基质的接触角。
  18. 根据权利要求17所述的雾化器,其中,所述雾化座的顶面上设有凸台,所述凸台沿着所述出液孔的周缘设置;所述凸台穿设于所述贯穿孔内。
  19. 根据权利要求17所述的雾化器,其中,所述密封件包括密封本体部和第一凸起部;所述密封本体部套设于所述雾化座的表面,所述密封本体部对应于所述出液孔的位置设有所述贯穿孔,所述第一凸起部环绕所述贯穿孔且向远离所述雾化座的方向向所述储液腔内延伸。
  20. 根据权利要求17所述的雾化器,其中,所述密封件位于所述雾化座的顶面的部分延伸至所述出液孔的孔壁,且所述密封件延伸至所述出液孔孔壁的长度小于所述出液孔的深度。
  21. 根据权利要求20所述的雾化器,其中,所述出液孔的孔壁上具有多个翅片,多个所述翅片沿着所述出液孔的孔壁的周向间隔设置,所述翅片的长度方向与所述出液孔的轴线平行;相邻的两个翅片之间形成的间隙具有毛细作用力;所述密封件与所述翅片间隔设置或抵接。
  22. 根据权利要求2所述的雾化器,其中,所述出液孔的孔壁靠近所述储液腔的部分设有涂层,或所述出液孔的孔壁靠近所述储子液腔的部分进行改性处理形成微结构。
  23. 根据权利要求2所述的雾化器,其中,两个所述储液腔通过微通道连通,所述微通道的当量直径小于5mm。
  24. 根据权利要求23所述的雾化器,其中,所述储液腔靠近所述雾化芯的一端通过所述微通道连通。
  25. 根据权利要求16所述的雾化器,其中,所述储液腔的数量为多个;所述壳体具有隔片,所述隔片使多个所述储液腔之间彼此独立。
  26. 根据权利要求25所述的雾化器,其中,所述壳体包括一体成型的外壳、中心出气管及所述隔片;所述隔片连接所述外壳和所述中心出气管。
  27. 根据权利要求16所述的雾化器,其中,所述储液腔的数量为两个,所述雾化座上设有相互连通的换气槽和导气槽,所述导气槽与外界气体或雾化腔连通;其中,所述换气槽位于两个所述储液腔的相邻处,所述换气槽分别与两个所述储液腔连通。
  28. 一种电子雾化装置,其中,包括:
    雾化器,用于存储和雾化气溶胶生成基质;所述雾化器为权利要求1-27任一项所述的雾化器;
    主机,用于为所述雾化器工作提供能量。
PCT/CN2022/104752 2022-07-08 2022-07-08 雾化器及电子雾化装置 WO2024007341A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/104752 WO2024007341A1 (zh) 2022-07-08 2022-07-08 雾化器及电子雾化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/104752 WO2024007341A1 (zh) 2022-07-08 2022-07-08 雾化器及电子雾化装置

Publications (1)

Publication Number Publication Date
WO2024007341A1 true WO2024007341A1 (zh) 2024-01-11

Family

ID=89454642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104752 WO2024007341A1 (zh) 2022-07-08 2022-07-08 雾化器及电子雾化装置

Country Status (1)

Country Link
WO (1) WO2024007341A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200229499A1 (en) * 2017-09-19 2020-07-23 Hauni Maschinenbau Gmbh Component part and base part for an inhaler, and method for making same
CN211091889U (zh) * 2019-09-30 2020-07-28 深圳麦克韦尔科技有限公司 一种雾化器及电子雾化装置
CN112772994A (zh) * 2019-10-23 2021-05-11 常州市派腾电子技术服务有限公司 雾化器及气溶胶发生装置
CN112956746A (zh) * 2021-03-22 2021-06-15 浙江嘉信自动化设备有限公司 一种可diy口味的电子烟
CN113712270A (zh) * 2021-08-20 2021-11-30 深圳麦克韦尔科技有限公司 一种电子雾化装置及其雾化器
CN113925218A (zh) * 2021-10-28 2022-01-14 深圳市你我网络科技有限公司 雾化器及电子雾化装置
CN216019110U (zh) * 2021-07-08 2022-03-15 江门摩尔科技有限公司 一种注液组件、雾化器及电子雾化装置
CN216416032U (zh) * 2021-05-31 2022-05-03 深圳市合元科技有限公司 雾化器及电子雾化装置、雾化组件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200229499A1 (en) * 2017-09-19 2020-07-23 Hauni Maschinenbau Gmbh Component part and base part for an inhaler, and method for making same
CN211091889U (zh) * 2019-09-30 2020-07-28 深圳麦克韦尔科技有限公司 一种雾化器及电子雾化装置
CN112772994A (zh) * 2019-10-23 2021-05-11 常州市派腾电子技术服务有限公司 雾化器及气溶胶发生装置
CN112956746A (zh) * 2021-03-22 2021-06-15 浙江嘉信自动化设备有限公司 一种可diy口味的电子烟
CN216416032U (zh) * 2021-05-31 2022-05-03 深圳市合元科技有限公司 雾化器及电子雾化装置、雾化组件
CN216019110U (zh) * 2021-07-08 2022-03-15 江门摩尔科技有限公司 一种注液组件、雾化器及电子雾化装置
CN113712270A (zh) * 2021-08-20 2021-11-30 深圳麦克韦尔科技有限公司 一种电子雾化装置及其雾化器
CN113925218A (zh) * 2021-10-28 2022-01-14 深圳市你我网络科技有限公司 雾化器及电子雾化装置

Similar Documents

Publication Publication Date Title
WO2020252647A1 (zh) 电子雾化装置及其雾化器
JP7377356B2 (ja) 電子霧化装置及びそのアトマイザー
WO2023130767A1 (zh) 电子雾化装置及其雾化器
WO2023124515A1 (zh) 发热组件、雾化器及电子雾化装置
WO2024007341A1 (zh) 雾化器及电子雾化装置
CN114794578A (zh) 发热组件、雾化器及电子雾化装置
WO2022179300A9 (zh) 发热组件、雾化器及电子雾化装置
WO2022179233A1 (zh) 发热体组件、雾化器及电子雾化装置
WO2024051168A1 (zh) 一种雾化组件及雾化装置
WO2024021925A1 (zh) 雾化组件、雾化器及电子雾化装置
CN218588222U (zh) 雾化器及电子雾化装置
CN117397880A (zh) 雾化器及电子雾化装置
WO2024007342A1 (zh) 雾化器及电子雾化装置
WO2024007340A1 (zh) 雾化器及电子雾化装置
WO2024007343A1 (zh) 雾化器及电子雾化装置
WO2022040866A1 (zh) 电子雾化装置及其雾化器
WO2023070322A1 (zh) 一种电子雾化装置及其雾化器、雾化芯
WO2023150945A1 (zh) 电子雾化装置
CN218551323U (zh) 电子雾化装置及其雾化器
WO2020252646A1 (zh) 电子雾化装置及其雾化器
CN218588221U (zh) 雾化器及电子雾化装置
CN218588220U (zh) 雾化器及电子雾化装置
WO2023005029A1 (zh) 电子雾化装置、雾化器及其雾化组件
CN117397881A (zh) 雾化器及电子雾化装置
WO2022179643A2 (zh) 发热组件、雾化器及电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949921

Country of ref document: EP

Kind code of ref document: A1