WO2024007204A1 - 超临界光气化法结合管道化法制备异氰酸酯的方法 - Google Patents

超临界光气化法结合管道化法制备异氰酸酯的方法 Download PDF

Info

Publication number
WO2024007204A1
WO2024007204A1 PCT/CN2022/104181 CN2022104181W WO2024007204A1 WO 2024007204 A1 WO2024007204 A1 WO 2024007204A1 CN 2022104181 W CN2022104181 W CN 2022104181W WO 2024007204 A1 WO2024007204 A1 WO 2024007204A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosgene
isocyanate
reaction
reactor
temperature
Prior art date
Application number
PCT/CN2022/104181
Other languages
English (en)
French (fr)
Inventor
薛永和
陆成樑
刘文杰
袁海新
刘佳特
邱贵森
Original Assignee
摩珈(上海)生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 摩珈(上海)生物科技有限公司 filed Critical 摩珈(上海)生物科技有限公司
Priority to PCT/CN2022/104181 priority Critical patent/WO2024007204A1/zh
Publication of WO2024007204A1 publication Critical patent/WO2024007204A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/04Preparation of derivatives of isocyanic acid from or via carbamates or carbamoyl halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/18Separation; Purification; Stabilisation; Use of additives
    • C07C263/20Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/14Derivatives of isocyanic acid containing at least two isocyanate groups bound to the same carbon skeleton

Definitions

  • the present application relates to a method for preparing isocyanate, and more specifically, to a method for preparing isocyanate by combining a supercritical phosgenation method with a pipeline method.
  • Isocyanates are a class of compounds containing one or more isocyanate groups. Including aliphatic isocyanates, aromatic isocyanates, unsaturated isocyanates, halogenated isocyanates, thioisocyanates, phosphorus-containing isocyanates, inorganic isocyanates and blocked isocyanates, etc. Because it contains highly unsaturated isocyanate groups, it has high chemical activity and can undergo important chemical reactions with a variety of substances. Therefore, it is widely used in polyurethane, polyurethaneurea and polyurea, polymer modification, and organic synthesis. Reagents, agriculture, medicine and other fields.
  • the purpose of this application is to provide a method for preparing isocyanate, more specifically, a method for preparing isocyanate through a supercritical phosgenation method combined with a pipeline method.
  • the present application provides a method for preparing isocyanate, characterized in that the method includes the following steps:
  • step (b) Adjust the temperature of the mixture obtained in step (a) to 182°C to 205°C, so that the phosgene is in a supercritical state, and perform the reaction in a supercritical reactor for at least 15 minutes;
  • step (c) The reaction product mixture obtained in step (b) is reacted under reduced pressure, and the reaction time does not exceed 30 seconds.
  • step (c) is performed in a pressure reducer.
  • step (c) is to introduce the reaction product mixture in the supercritical reactor of step (b) into a reduced pressure reactor for reaction.
  • the method further includes step (d) collecting the product.
  • step (d) includes: setting up a quenching zone at the outlet of the decompression reactor, so that the reaction product mixture obtained in step (c) and the quenching medium material passed into the quenching zone The temperature of the reaction product mixture obtained in step (c) is reduced to below 170°C through flow contact.
  • step (e) further includes step (e) purifying the product.
  • step (e) includes:
  • step (c) Pass the reaction product mixture obtained in step (c) or step (d) into a degassing tower, wherein the hydrogen chloride and phosgene in the reaction product mixture overflow from the top of the degassing tower and enter the hydrogen chloride/phosgene separation Tower, wherein the hydrogen chloride overflowing from the top of the separation tower is refined through a tail gas treatment unit to form hydrochloric acid as a by-product;
  • step (a) Recover phosgene from the bottom of the separation tower in sub-step 1) for recycling to form the phosgene stream described in step (a);
  • the light component by-product in sub-step 3) above is selected from the group consisting of piperidines, polyhydropyridines and combinations thereof.
  • the heavy component by-product in sub-step 4) above is selected from the group consisting of tar, PDI polymer, by-product urea, and any combination thereof.
  • step (a) occurs before step (b) and step (c).
  • step (a) the reactant amine stream and the phosgene stream are mixed in a supercritical reactor.
  • the reactant amine stream and the phosgene stream are mixed and then sheared and emulsified to form suspended particles.
  • the shear emulsification is performed in a supercritical reactor.
  • the diameter of the suspended particles is less than or equal to 100 ⁇ m. In certain embodiments, the diameter of the suspended particles is less than or equal to 50 ⁇ m. In certain embodiments, the diameter of the suspended particles is less than or equal to 20 ⁇ m.
  • step (a) the reactant amine stream and the phosgene stream are sheared and emulsified uniformly by a homogenizing pump.
  • the shear emulsification is uniform by controlling the head, rotation speed, torque, suction and/or shear homogenization time of the homogenization pump.
  • the circulation output volume of the homogeneous pump is controlled to be greater than or equal to 10 times the liquid holding capacity of the supercritical reactor.
  • the phosgene stream in step (a) is in stoichiometric excess based on the amino group of the reactant amine stream.
  • the ratio of the feed amounts (in moles) of the phosgene stream and the reactant amine stream in step (a) is from 7:1 to 25:1. In certain embodiments, the ratio of the feed amounts (in moles) of the phosgene stream and the reactant amine stream in step (a) is from 10:1 to 20:1. In certain embodiments, the ratio of the feed amounts (in moles) of the phosgene stream and the reactant amine stream in step (a) is 12:1.
  • the phosgene stream in step (a) is in liquid form.
  • the reaction temperature of step (c) is from 150°C to 450°C. In certain embodiments, the reaction temperature of step (c) is from 200°C to 400°C. In certain embodiments, the reaction temperature of step (c) is 250°C to 350°C.
  • the reaction pressure of step (c) is 15 KPa to 500 KPa. In certain embodiments, the reaction pressure of step (c) is 50 KPa to 300 KPa. In certain embodiments, the reaction pressure of step (c) is 50 KPa to 110 KPa. In some embodiments, the reaction pressure of step (c) is 80KPa to 100KPa.
  • the reaction residence time of step (c) is from 0.5 seconds to 30 seconds. In certain embodiments, the reaction residence time of step (c) is from 1.5 seconds to 20 seconds. In certain embodiments, the reaction residence time of step (c) is from 2.5 seconds to 10 seconds.
  • the product collection temperature of step (d) is below 170°C. In certain embodiments, the product collection temperature of step (d) is from 80°C to 150°C. In certain embodiments, the product collection temperature of step (d) is from 110°C to 140°C.
  • the latent heat of vaporization of the quenching medium is utilized to rapidly reduce the temperature of the reaction product mixture obtained in step (c).
  • the quench medium described in step (d) is selected from the group consisting of organic solvents, isocyanates, phosgene, hydrogen chloride, inert carrier gases, and any combination thereof.
  • the organic solvent is selected from the group consisting of dichloromethane, chlorobenzene, o-dichlorobenzene, benzene, toluene, xylene, hexane, tetrahydrofuran, chloronaphthalene, and any combination thereof.
  • the quench medium described in step (d) is liquid.
  • the quenching medium in step (d) is liquid phosgene.
  • the reduced pressure reactor is a pipeline reactor.
  • the inner diameter of the pipeline of the decompression reactor is 4 to 9 mm.
  • the isocyanate is a diisocyanate. In certain embodiments, the isocyanate is an aliphatic diisocyanate or an aromatic diisocyanate. In certain embodiments, the isocyanate is selected from the group consisting of diphenylmethylene diisocyanate as a pure isomer or as a mixture of isomers, toluene diisocyanate as a pure isomer or a mixture of isomers , 2,6-xylene isocyanate, 1,5-naphthalene diisocyanate, methyl isocyanate, ethyl isocyanate, propyl isocyanate, isopropyl isocyanate, butyl isocyanate, isobutyl isocyanate, tert-butyl isocyanate, amyl isocyanate isocyanate (e.g., pentamethylene diisocyanate), tert-amyl isocyanate, isopentyl
  • the isocyanate is pentamethylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI) or methylcyclohexane diisocyanate (HTDI). ).
  • the reactant amine has a structural formula of R(NH 2 ) n , where n is 1, 2, or 3, and R is an aliphatic or aromatic hydrocarbon group. In certain embodiments, n is 2 and R is an aliphatic hydrocarbon group. In certain embodiments, n is 2 and R is an aliphatic hydrocarbon group having 2-10 carbon atoms. In certain embodiments, n is 2, and R is a linear or cyclic aliphatic hydrocarbon group having 3-10 carbon atoms.
  • the reactant amine is present in the free form.
  • the reactant amine is in the form of an amine salt.
  • the amine salt is selected from the group consisting of hydrochloride, sulfate, bisulfate, nitrate, and carbonate.
  • the reactant amine is selected from one or more of the following group: ethylamine, butylamine, pentyldiamine, hexamethylenediamine, 1,4-diaminobutane, 1,8 - Diaminoctane, aniline, p-phenylenediamine, m-phenylenediamine, toluenediamine, 1,5-naphthylenediamine, diphenylmethanediamine, dicyclohexylmethanediamine, m-cyclohexyldiamine Methyldiamine, isophoronediamine, methylcyclohexanediamine, trans-1,4-cyclohexanediamine.
  • the reactant amine is selected from the group consisting of PDA, PDA hydrochloride, HDA, HDA hydrochloride, IPDA, IPDA hydrochloride, HTDA, and HTDA hydrochloride.
  • Figure 1 shows a schematic flow chart of a method for preparing isocyanate according to an embodiment of the present application; wherein: 01 is a supercritical reactor, 02 is a decompression reactor, 03 is a quencher, 04 is a degassing tower, 05 It is a phosgene/hydrogen chloride separation tower, 06 is a light component removal tower, and 07 is a product refining tower.
  • the application provides a method for preparing isocyanate, the method comprising the following steps:
  • step (b) Adjust the temperature of the mixture obtained in step (a) to 182°C to 205°C, so that the phosgene is in a supercritical state, and perform the reaction in a supercritical reactor for at least 15 minutes;
  • step (c) The reaction product mixture obtained in step (b) is reacted under reduced pressure, and the reaction time does not exceed 30 seconds.
  • the isocyanate in this application is a diisocyanate.
  • the isocyanate in this application is an aliphatic diisocyanate or an aromatic diisocyanate.
  • isocyanates in the present application include aromatic isocyanates, aliphatic isocyanates, for example, aromatic isocyanates include diphenylmethylene diisocyanate as pure isomers or as a mixture of isomers, as pure Isomers or isomer mixtures of toluene diisocyanate, 2,6-xylene isocyanate, 1,5-naphthalene diisocyanate, etc.
  • Aliphatic isocyanates include methyl isocyanate, ethyl isocyanate, propyl isocyanate, isopropyl isocyanate, butyl isocyanate, isobutyl isocyanate, tert-butyl isocyanate, amyl isocyanate, tert-amyl isocyanate, isopentyl isocyanate, Neopentyl isocyanate, hexyl isocyanate, cyclopentyl isocyanate, cyclohexyl isocyanate, phenyl isocyanate, etc.
  • the isocyanate in this application is selected from the group consisting of pentamethylene diisocyanate, hexamethylene diisocyanate, terephthalene diisocyanate, and toluene diisocyanate.
  • the isocyanate in this application is pentamethylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), or methylcyclohexane diisocyanate (HTDI).
  • Step (a), step (b) and step (c), as well as optional step (d) and step (e) of the method for preparing isocyanate described in the present application are described in detail below respectively.
  • step (a) of the present application the reactant amine stream and the phosgene stream are mixed at a temperature of -5 to 5°C to obtain a mixture of the reactant amine and phosgene.
  • reactant amine refers to a compound containing an amino (-NH2) group as a starting material for the preparation of isocyanates.
  • the reactant amine has a structural formula of R(NH 2 ) n , where n is 1, 2, or 3, and R is an aliphatic or aromatic hydrocarbon group.
  • n is 2 and R is an aliphatic hydrocarbon group.
  • R has 2-10 carbon atoms (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 carbon atom) aliphatic, alicyclic or aromatic hydrocarbon group.
  • n is 2 and R has 3-10 carbon atoms (e.g., 3, 4, 5, 6, 7, 8, 9, 10 carbon atoms) Linear or cyclic aliphatic hydrocarbon groups.
  • the reactant amine is a primary amine, i.e., contains an NH2 group. In certain embodiments, the reactant amine is a diamine, i.e., contains 2 NH2 groups. In certain embodiments, the reactant amine is selected from one or more of the following group: ethylamine, butylamine, pentyldiamine, hexamethylenediamine, 1,4-diaminobutane, 1,8 - Diaminoctane, aniline, p-phenylenediamine, m-phenylenediamine, toluenediamine, 1,5-naphthylenediamine, diphenylmethanediamine, dicyclohexylmethanediamine, m-cyclohexyldiamine Methyldiamine, isophoronediamine, methylcyclohexanediamine, trans-1,4-cyclohexanediamine.
  • the reactant amine is selected from one or more of the group consisting of: pentanediamine (e.g., 1,5-dipentylamine), hexamethylenediamine (e.g., 1,6-hexanediamine) diamine), p-phenylenediamine, isophoronediamine, methylcyclohexanediamine, toluenediamine.
  • the reactant amine is pentanediamine (PDA).
  • the reactant amine is present in the free form.
  • free form refers to the non-salt form of the amine compound. Free amine compounds may differ from their various salt forms in certain physical and/or chemical properties, for example, solubility in polar solvents. The free amine compounds may also have certain physical and/or chemical properties that are the same or similar to those of their various salt forms.
  • the reactant amine is in the form of an amine salt.
  • the amine salt is selected from the group consisting of hydrochloride, sulfate, bisulfate, nitrate, and carbonate.
  • the reactant amine is selected from one or more of the following group: pentylenediamine (PDA), PDA hydrochloride, hexamethylenediamine (HDA), HDA hydrochloride, isophoride Errone diamine (IPDA), IPDA hydrochloride, methylcyclohexanediamine (HTDA) and HTDA hydrochloride.
  • PDA pentylenediamine
  • HDA hexamethylenediamine
  • HDA hydrochloride isophoride Errone diamine
  • IPDA hydrochloride IPDA hydrochloride
  • HTDA methylcyclohexanediamine
  • HTDA hydrochloride methylcyclohexanediamine
  • organic solvents are usually used to disperse the reactant amine, or an inert carrier gas (for example, nitrogen, carbon dioxide, carbon monoxide, helium or argon) is used to assist the gasification of the reactant amine and achieve a more suitable Dispersion effect.
  • an inert carrier gas for example, nitrogen, carbon dioxide, carbon monoxide, helium or argon
  • the inventor unexpectedly discovered that no organic solvent or inert carrier gas can be used when mixing the reactants amine and phosgene in step (a).
  • the mixing of the reactant amine stream and the phosgene stream is performed in a supercritical reactor (eg, the two are introduced into the supercritical reactor for mixing).
  • the reactant amine stream and the phosgene stream are conducted outside the supercritical reactor, that is, the two are mixed in other vessels or pipelines before being introduced into the supercritical reactor.
  • the reactant amine stream and the phosgene stream can be sheared and emulsified to form a suspension after being mixed. Particles.
  • the diameter of the suspended particles is, for example, less than or equal to 100 ⁇ m, or less than or equal to 50 ⁇ m, or less than or equal to 20 ⁇ m.
  • the diameter of the suspended particles is 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m, 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m , 19 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, or 100 ⁇ m, or a range between any two of the above values. Without being limited by any theory, it is believed that the smaller the diameter of the suspended particles formed, the more conducive it is to the subsequent reaction of the reactants amine and phosgene.
  • step (a) after mixing of the reactant amine stream and the phosgene stream, shear emulsification can be carried out using any method known in the art.
  • high-speed shear emulsifiers, super-gravity mixing equipment, homogeneous pumps, etc. can be used to achieve uniform shear emulsification of the reactants amine and phosgene through mechanical shearing.
  • the reactant amine stream and the phosgene stream are mixed and sheared and emulsified uniformly by a homogenizing pump.
  • the shear emulsification is performed in the supercritical reactor.
  • the homogenizing pump used in this application can be commercially available, such as the DHX type homogenizing pump purchased from Ningbo Delisi Pump Industry Co., Ltd.
  • the homogenization pump can be installed inside the supercritical reactor (in this case, it is called a "built-in homogenization pump"), or it can be installed outside the supercritical reactor (in this case, it is called an "external homogenization pump”).
  • the homogenizing pump is a built-in homogenizing pump.
  • a built-in homogenizing pump those skilled in the art can preferably achieve uniform shear emulsification by controlling the lift, rotation speed, torque, suction and/or shear homogenization time of the homogenization pump.
  • the specific values can be based on ultra The size of the critical reactor is determined by the experience of the person skilled in the art and/or.
  • the rotation speed of the built-in homogenizing pump is set to 1000 to 3000r/min (for example, 1000r/min, 1100r/min, 1200r/min, 1300r/min, 1400r/min, 1500r/min, 1600r /min, 1700r/min, 1800r/min, 1900r/min, 2000r/min, 2100r/min, 2200r/min, 2300r/min, 2400r/min, 2500r/min, 2600r/min, 2700r/min, 2800r/min , 2900r/min, 3000r/min or the value or range between any two values above).
  • 1000r/min, 1100r/min, 1200r/min, 1300r/min, 1400r/min 1500r/min, 1600r /min, 1700r/min, 1800r/min, 1900r/min, 2000r/min, 2100r/min, 2200r/min, 2300r/min, 2400r/min, 2500r/min, 2600r/
  • the flow rate of the built-in homogenizing pump is set to 120 to 250m 3 /h (for example, 120m 3 /h, 130m 3 /h, 140m 3 /h, 150m 3 /h, 160m 3 /h , 170m 3 /h, 180m 3 /h, 190m 3 /h, 200m 3 /h, 210m 3 /h, 220m 3 /h, 230m 3 /h, 240m 3 /h, 250m 3 /h or any two of the above numeric value or range between values).
  • the pressure of the built-in homogeneous pump is set to 0.1 to 1.2MPa (for example, 0.1MPa, 0.2MPa, 0.3MPa, 0.4MPa, 0.5MPa, 0.6MPa, 0.7MPa, 0.8MPa, 0.9MPa , 1MPa, 1.1MPa, 1.2MPa or the value or range between any two values above).
  • the inlet of the built-in homogenizing pump is set to 80mm to 110mm (for example, 85mm, 90mm, 95mm, 96mm, 97mm, 98mm, 99mm, 100mm, 105mm, 110mm or between any two of the above values) value or range).
  • the outlet of the built-in homogenizing pump is set to 60mm to 90mm (for example, 65mm, 70mm, 75mm, 76mm, 77mm, 78mm, 79mm, 80mm, 81mm, 82mm, 83mm, 84mm, 85mm, 90mm or a value or range between any two values above).
  • the built-in homogeneous pump when the circulation output volume of the built-in homogeneous pump is n times the volume of the liquid holding capacity in the supercritical reactor, the built-in homogeneous pump has already processed the reactants amine and phosgene therein. At least n times of shear emulsification. For example: when the circulation output volume of the built-in homogenizing pump is 10 times the liquid holding volume of the supercritical reactor, the built-in homogenizing pump has sheared and emulsified the reactants amine and phosgene 10 times. .
  • whether the shear emulsification has been uniform is determined based on the fact that the circulation output volume of the built-in homogenizing pump is greater than or equal to 10 times the liquid holding capacity in the supercritical reactor. For example, when the circulation output volume of the built-in homogenization pump is greater than or equal to 10 times the liquid holding capacity of the supercritical reactor (for example, the circulation output volume of the built-in homogenization pump is 11 times the liquid holding capacity of the supercritical reactor, 12 times, 13 times, 14 times, 15 times, 16 times, 17 times, 18 times, 19 times, 20 times, 25 times, 30 times, 35 times, 40 times, 45 times, 50 times or more), then Make sure that the mixing of the reactants amine and phosgene has achieved uniform shear emulsification.
  • the homogenization pump is an external homogenization pump.
  • the homogenization pump is placed outside the supercritical reactor, and the sheared emulsified mixture is directly transported from the outlet of the homogenization pump to the supercritical reactor. in the reactor.
  • an external homogenizing pump those skilled in the art can ensure uniform shear emulsification by controlling the selection, rotation speed, and residence time of the material in the external homogenizing pump.
  • the rotation speed of the external homogenizing pump is set to 1000 to 3000r/min (for example, 1000r/min, 1100r/min, 1200r/min, 1300r/min, 1400r/min, 1500r/min, 1600r/min, 1700r/min, 1800r/min, 1900r/min, 2000r/min, 2100r/min, 2200r/min, 2300r/min, 2400r/min, 2500r/min, 2600r/min, 2700r/min, 2800r/ min, 2900r/min, 3000r/min or the value or range between any two values above).
  • 1000r/min, 1100r/min, 1200r/min, 1300r/min, 1400r/min 1500r/min, 1600r/min, 1700r/min, 1800r/min, 1900r/min, 2000r/min, 2100r/min, 2200r/min, 2300r/min, 2400r/min, 2500r/min, 2600r/min, 2700r
  • the flow rate of the external homogenizing pump is set to 120 to 250m 3 /h (for example, 120m 3 /h, 130m 3 /h, 140m 3 /h, 150m 3 /h, 160m 3 / h h, 170m 3 /h, 180m 3 /h, 190m 3 /h, 200m 3 /h, 210m 3 /h, 220m 3 /h, 230m 3 /h, 240m 3 /h, 250m 3 /h or any two of the above value or range between values).
  • the pressure of the external homogenizing pump is set to 0.1 to 1.2MPa (for example, 0.1MPa, 0.2MPa, 0.3MPa, 0.4MPa, 0.5MPa, 0.6MPa, 0.7MPa, 0.8MPa, 0.9 MPa, 1MPa, 1.1MPa, 1.2MPa or a value or range between any two of the above values).
  • the inlet of the external homogenizing pump is set to 80mm to 110mm (for example, 85mm, 90mm, 95mm, 96mm, 97mm, 98mm, 99mm, 100mm, 105mm, 110mm or any two of the above values) value or range).
  • the outlet of the external homogenizing pump is set to 60mm to 90mm (for example, 65mm, 70mm, 75mm, 76mm, 77mm, 78mm, 79mm, 80mm, 81mm, 82mm, 83mm, 84mm, 85mm, 90mm or the value or range between any two values).
  • the "supercritical reactor” in this application refers to a reactor that can keep reactants in a supercritical state or react in a supercritical medium. The pressure, Temperature and other parameters are adjusted to ensure the progress of supercritical reaction.
  • the supercritical reactor used in the present invention can be any commercially available supercritical reactor, such as the L series high-temperature and high-pressure supercritical reactor purchased from Shanghai Laibei Scientific Instrument Co., Ltd.
  • the reactant amine stream described in step (a) can enter the supercritical reactor through a single reactant amine-containing sub-stream, or through multiple (e.g., 2, 3, 4, 5 or more) a reactant amine-containing substream enters the supercritical reactor.
  • the phosgene stream described in step (a) can enter the supercritical reactor through a single phosgene-containing sub-stream, or through multiple (for example, 2, 3, 4, 5 or more) phosgene-containing substreams enter the supercritical reactor.
  • step (a) When the reactant amine stream (or phosgene stream) described in step (a) enters the supercritical reactor through multiple sub-streams containing reactant amine (or phosgene), the multiple sub-streams can be It enters the supercritical reactor at the same position, or it can enter the supercritical reactor at different positions.
  • the preparation process of isocyanate often requires the input of a large amount of excess phosgene, because when the phosgene concentration is insufficient, the isocyanate formed and the excess amine instead form urea or other high-viscosity solid by-products. Therefore, in order to prevent the formation of by-products, it is preferable to provide phosgene in excess.
  • the phosgene stream described in step (a) is in stoichiometric excess based on the amino groups of the reactant amine stream.
  • the molar ratio of phosgene to the amino group of the reactant amine is usually 1.1:1-50:1 (for example, 1.5:1, 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5 ⁇ 1, 5:1, 5.5:1, 6:1, 6.5:1, 7:1, 7.5:1, 8:1, 8.5:1, 9:1, 9.5:1, 10:1, 11:1 , 15:1, 20:1, 25:1, 30:1, 35:1, 40:1, 45:1, 50:1 and the range between any of the above values).
  • the phosgene in the supercritical reactor, is present in an amount exceeding the theoretical value of 0% to 250% (e.g., 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 110%, 120%, 130%, 140%, 150%, 160%, 170%, 180%, 190%, 200% , 210%, 220%, 230%, 240%, 250%, etc.) used in stoichiometric excess.
  • 0% to 250% e.g., 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 110%, 120%, 130%, 140%, 150%, 160%, 170%, 180%, 190%, 200% , 210%, 220%, 230%, 240%, 250%, etc.
  • step (a) When the reactant amine stream (and/or phosgene stream) described in step (a) enters the supercritical reactor through multiple sub-streams containing reactant amines (and/or phosgene), multiple The sum of the plurality of phosgene-containing substreams produces a total phosgene stream that is in stoichiometric excess based on the amino basis of the total reactant amine stream produced by the summation of the plurality of reactant amine-containing substreams.
  • the ratio (in moles) of the phosgene stream and the reactant amine stream described in step (a) is from 7:1 to 25:1 (e.g., 8:1, 9:1, 10:1, 11:1, 12:1, 13:1, 14:1, 15:1, 16:1, 17:1, 18:1, 19:1, 20:1, 21: 1, 22:1, 23:1, 24:1, 25:1 or any value between any two of the above ratios).
  • the ratio of the feed amounts (in moles) of the phosgene stream and the reactant amine stream described in step (a) is 10:1 to 20:1.
  • the phosgene contained in the phosgene stream described in step (a) may be fresh phosgene or recycled phosgene.
  • fresh phosgene refers to a phosgene-containing stream that has not been recycled from the phosgenation process and has not yet passed through any reaction stage involving a phosgene reaction after the synthesis of phosgene, usually from chlorine and carbon monoxide.
  • recycled phosgene refers to the collection of the phosgene-containing stream produced in the off-gas from the reaction process for the preparation of isocyanate by the phosgenation process.
  • the reaction tail gas will contain a large amount of phosgene. Recycling of phosgene in the tail gas can reduce production costs.
  • the phosgene stream described in step (a) is in liquid form.
  • the reactant amine stream and the phosgene stream described in step (a) are mixed at a low temperature, for example, at any temperature between -5 and 5°C, for example -5 °C, -4°C, -3°C, -2°C, -1°C, 0°C, 1°C, 2°C, 3°C, 4°C, 5°C or any value between any two of the above values.
  • the mixing can be carried out at any constant temperature between -5 and 5°C, or at a varying temperature between -5 and 5°C. In a certain embodiment, the mixing is performed at a constant temperature of 0°C.
  • step (a) is performed before steps (b) and (c), that is, the reactants amine and phosgene are mixed before they react, and then the reaction is heated together.
  • the reactant amine eg, amine salt
  • step (b) of the present application the temperature of the mixture obtained in step (a) is adjusted to 182°C to 205°C, so that the phosgene is in a supercritical state, and the reaction is carried out in a supercritical reactor for at least 15 minutes.
  • step (b) Taking pentamethylene diamine hydrochloride and phosgene as the starting reaction raw materials as an example, the main reactions in step (b) are as follows:
  • step (b) the temperature of the supercritical reactor is adjusted to 182-205°C, so that the phosgene is in a supercritical state, and the reactant amine and the phosgene The reaction takes no less than 15 minutes.
  • the "supercritical state” in this application refers to a state in which the fluid is in a state between a gas and a liquid by increasing the temperature and pressure of the fluid so that the temperature is above the critical temperature and the pressure is above the critical pressure.
  • Many physical and chemical properties of substances in the supercritical state are between those of gases and liquids, and have the advantages of both, such as strong solubility, good diffusion performance, easy control, etc.
  • the heat transfer coefficient also has a viscosity coefficient and diffusion coefficient similar to those of gas.
  • the critical temperature of phosgene is 182°C and the critical pressure is 5.674MPa.
  • the temperature of phosgene is 182°C or above and the pressure is 5.674MPa or above, phosgene is in a supercritical state.
  • amine salts are almost insoluble in any commonly used organic solvents and can only be dispersed in solvents.
  • the inventor of the present application unexpectedly discovered that phosgene in the supercritical state can dissolve the reactant amine (especially the amine salt), allowing the phosgene in the supercritical state to react with the reactant amine.
  • the phosgene in the supercritical state can both As a solvent for the reactant amine and as a starting material for the reaction, it not only eliminates the need to use other solvents to dissolve the reactant amine alone, but can also greatly increase the reaction rate.
  • the reactant amine is an amine salt (for example, PDA hydrochloride)
  • it can also effectively avoid the cyclization reaction deterioration of the amine salt during the separate heating process.
  • no organic solvent is used in step (b) of the present application.
  • step (b) is performed at a pressure ⁇ 5MPa (e.g., 5.1MPa, 5.2MPa, 5.3MPa, 5.4MPa, 5.5MPa, 5.6MPa, 5.7MPa, 5.8MPa, 5.9MPa, 6MPa, 6.1MPa , 6.2MPa, 6.3MPa, 6.4MPa, 6.5MPa, 6.6MPa, 6.7MPa, 6.8MPa, 6.9MPa, 7MPa, 7.5MPa, 8MPa, 8.1MPa, 8.2MPa, 8.3MPa, 8.4MPa, 8.5MPa, 8.6MPa, 8.7MPa, 8.8MPa, 8.9MPa, 9MPa, 9.1MPa, 9.2MPa, 9.3MPa, 9.4MPa, 9.5MPa, 9.6MPa, 9.7MPa, 9.8MPa, 9.9MPa, 10MPa, 11MPa, 12MPa or above), the temperature is 182 Between °C and 205°
  • the reaction pressure of step (b) is 5.2MPa, and the reaction temperature is 182°C. In certain embodiments, the reaction pressure of step (b) is 6.2MPa, and the reaction temperature is 182°C. In certain embodiments, the reaction pressure of step (b) is 6.3MPa, and the reaction temperature is 182°C. In certain embodiments, the reaction pressure of step (b) is 6.4MPa, and the reaction temperature is 182°C. In certain embodiments, the reaction pressure of step (b) is 6.5MPa, and the reaction temperature is 182°C. In certain embodiments, the reaction pressure of step (b) is 6.6MPa, and the reaction temperature is 182°C.
  • the reaction pressure of step (b) is 6.7MPa, and the reaction temperature is 182°C. In certain embodiments, the reaction pressure of step (b) is 6.9MPa, and the reaction temperature is 182°C. In certain embodiments, the reaction pressure of step (b) is 7MPa, and the reaction temperature is 182°C. In certain embodiments, the reaction pressure of step (b) is 7.8MPa, and the reaction temperature is 182°C. In certain embodiments, the reaction pressure of step (b) is 8.4MPa, and the reaction temperature is 182°C.
  • the reaction time between the two should be no less than 15 minutes, such as 16 minutes, 17 minutes, 18 minutes, 19 minutes , 20 minutes, 21 minutes, 22 minutes, 23 minutes, 24 minutes, 25 minutes, 26 minutes, 27 minutes, 28 minutes, 29 minutes or any value between any two of the above values.
  • the reaction time of the reactants amine and phosgene is 20 minutes.
  • the reaction time between the two should be no less than 30 minutes, such as 30 minutes, 31 minutes, 32 minutes, 33 minutes, 34 minutes, 35 minutes, 36 minutes, 37 minutes minutes, 38 minutes, 39 minutes, 40 minutes, or any value in between.
  • step (c) of the present application the reaction product mixture obtained in step (b) is reacted under reduced pressure, and the reaction time does not exceed 30 seconds.
  • step (c) Taking pentamethylene diamine hydrochloride and phosgene as the starting reaction raw materials as an example, the main reactions in step (c) are as follows:
  • the reaction product mixture produced after step (b) includes acid chloride intermediate, unreacted reactant amine and phosgene.
  • Step (c) is a step of decomposing the acid chloride intermediate to form isocyanate.
  • the preparation time of isocyanate can be shortened to less than 30 minutes.
  • the pressure can also be reduced to 6-8MPa.
  • the reaction pressure of step (c) is 15KPa to 500KPa, for example, 15KPa, 50KPa, 60KPa, 70KPa, 80KPa, 90KPa, 100KPa, 110KPa, 120KPa, 130KPa, 140KPa, 150KPa, 200KPa, 210KPa, 220KPa , 230KPa, 240KPa, 250KPa, 260KPa, 270KPa, 280KPa, 290KPa, 300KPa, 310KPa, 320KPa, 330KPa, 340KPa, 350KPa, 400KPa, 450KPa, 500KPa or any value between any two of the above ranges.
  • the reaction pressure of step (c) is 50 KPa to 300 KPa. In certain embodiments, the reaction pressure of step (c) is 50 KPa to 140 KPa. In certain embodiments, the reaction pressure of step (c) is 50 KPa to 110 KPa. In certain embodiments, the reaction pressure of step (c) is 70KPa to 150KPa.
  • step (c) is to introduce the reaction product mixture in the supercritical reactor of step (b) into a reduced pressure reactor for reaction.
  • the valve between the supercritical reactor and the reduced pressure reactor is opened, thereby introducing the reaction product mixture of step (b) into the reduced pressure reactor for reaction.
  • the pressure reduction reactor is a pipeline reactor (eg, a pipeline pressure reduction reactor).
  • the pipeline reactor is a continuously operating reactor with a tubular shape and a large length-to-diameter ratio. The length of the pipeline reactor is flexible, and its characteristic is that it can be continuous and the reaction will not be back-mixed.
  • the inner diameter of the pipeline of the decompression reactor is 4 to 9mm (for example, 4mm, 4.5mm, 5mm, 5.5mm, 6mm, 6.5mm, 7mm, 7.5mm, 8mm, 8.5mm, 9mm or any value between any two values above).
  • the reduced pressure reactor before introducing the reaction product mixture into the reduced pressure reactor, the reduced pressure reactor is preheated to the temperature required for the reaction of this step (ie, the acid chloride decomposition reaction).
  • the reaction temperature of step (c) is 150°C to 450°C, for example, 150°C, 160°C, 170°C, 180°C, 190°C, 200°C, 210°C, 220°C, 230°C, 240°C, 250°C, 260°C, 270°C, 280°C, 290°C, 300°C, 310°C, 320°C, 330°C, 340°C, 350°C, 360°C, 370°C, 380°C, 390°C, 400°C , 410°C, 420°C, 430°C, 440°C, 450°C or any value between any two of the above values.
  • the reaction temperature of step (c) is 200°C to 400°C. More
  • the reaction residence time of step (c) is 0.5 seconds to 30 seconds, for example, 30 seconds, 25 seconds, 20 seconds, 15 seconds, 10 seconds, 9 seconds, 8 seconds, 7 seconds, 6 seconds , 5 seconds, 4.5 seconds, 4 seconds, 3.5 seconds, 3 seconds, 2.5 seconds, 2 seconds, 1.5 seconds, 1 second, 0.5 seconds or any value between any two of the above values.
  • the reaction residence time of step (c) is 1.5 seconds to 20 seconds. More preferably, the reaction residence time of (c) is 2.5 seconds to 10 seconds.
  • the reaction residence time of step (c) can be controlled by a variety of methods, for example, by controlling the flow rate of the reaction product mixture of step (b) and/or the inner diameter of the pipeline reactor to control the reaction residence time of step (c). .
  • no organic solvent is used in step (c).
  • the preparation method of the present application further includes step (d) collecting the product.
  • step (d) of the present application includes: setting a quenching zone at the outlet of the decompression reactor, so that the reaction product mixture obtained in step (c) is mixed with the quenching zone passed into the quenching zone.
  • the cold medium stream is contacted to reduce the temperature of the reaction product mixture obtained in step (c) to below 170°C.
  • the product collection temperature of step (d) is below 170°C, for example, 170°C, 165°C, 160°C, 155°C, 150°C, 145°C, 140°C, 135°C, 130°C, 125°C °C, 120°C, 115°C, 110°C, 105°C, 100°C, 95°C, 90°C, 85°C, 80°C, 75°C, 70°C or any value between any two of the above numerical ranges.
  • the product collection temperature of step (d) is from 80°C to 150°C.
  • the product collection temperature of step (d) is from 110°C to 140°C.
  • step (d) the latent heat of vaporization of the quenching medium is utilized to rapidly reduce the temperature of the reaction product mixture obtained in step (c).
  • organic solvents eg, toluene, chlorobenzene, chloronaphthalene
  • isocyanates or mixtures of solvents and isocyanates are often used as quenching media to reduce the temperature of supercritical reactors.
  • the quench medium described in step (d) is selected from the group consisting of organic solvents, isocyanates, phosgene, hydrogen chloride, inert carrier gases, and any combination thereof.
  • the organic solvent is selected from the group consisting of dichloromethane, chlorobenzene, o-dichlorobenzene, benzene, toluene, xylene, hexane, tetrahydrofuran, chloronaphthalene, and any combination thereof.
  • the quench medium is liquid (eg, liquid phosgene).
  • the temperature of the reaction product mixture obtained in step (c) is rapidly reduced by using phosgene or a mixture of phosgene and isocyanate as the quenching medium.
  • phosgene or a mixture of phosgene and isocyanate as the quenching medium is more effective than using an organic solvent as the quenching medium.
  • using phosgene or a mixture of phosgene and isocyanate as the quenching medium can avoid the use of organic solvents in the entire reaction system, and can also avoid the problem of inlet blockage caused by solid walls, making the entire process without solvent recovery and precision. Distillation, recycling and refining links, the preparation process is simpler, the energy consumption is lower, and the cost is lower.
  • the high-temperature residence time of the reaction product isocyanate is greatly shortened, the self-polymerization reaction is reduced, and the product yield is higher.
  • the preparation method of the present application further includes step (e) purifying the product.
  • step (e) includes the following sub-steps:
  • step (c) Pass the reaction product mixture obtained in step (c) or step (d) into a degassing tower, wherein the hydrogen chloride and phosgene in the reaction product mixture overflow from the top of the degassing tower and enter the hydrogen chloride/phosgene separation Tower, wherein the hydrogen chloride overflowing from the top of the separation tower is refined through a tail gas treatment unit to form hydrochloric acid as a by-product;
  • step (a) Recover phosgene from the bottom of the separation tower in sub-step 1) for recycling to form the phosgene stream described in step (a);
  • the reaction product mixture obtained in step (c) or step (d) is passed into the degassing tower 04, where the hydrogen chloride and phosgene in the reaction product mixture are removed from the degassing tower 04.
  • the top of the gas tower 04 overflows and enters the hydrogen chloride/phosgene separation tower 05, where the hydrogen chloride overflowing from the top of the separation tower 05 is refined through a tail gas removal treatment unit to form hydrochloric acid as a by-product.
  • phosgene is recovered from the bottom of the hydrogen chloride/phosgene separation tower 05 to form a phosgene stream that enters the supercritical reactor 01 for recycling.
  • the isocyanate and by-products in the reaction product mixture are collected from the bottom of the degassing tower 04 and passed through the light component removal tower 06 to remove the light component by-products. product.
  • the light component by-product may be conventional in the art; in certain embodiments, the light component by-product is selected from the following group: piperidine, polyhydropyridine or a combination thereof.
  • isocyanate and heavy component by-products are collected from the bottom of the light component removal tower 06 and passed through the refining tower 07. The isocyanate is collected from the refining tower and the recombinant components are removed. By-products.
  • the heavy component by-product may be conventional in the art.
  • the heavy component by-product is selected from the following group: tar, PDI self-polymerization, by-product urea, or any combination thereof.
  • combining the supercritical phosgenation reaction with the pressure reduction reaction can produce a synergistic effect. For example, it avoids the problems that the simple supercritical reaction rate is not fast enough and the pressure is too high; It also avoids problems such as high impurity content and insufficient reaction in simple pipeline reactions.
  • using phosgene or a mixture of phosgene and isocyanate as the quenching medium during the reaction avoids the use of organic solvents and can also avoid the problem of inlet blockage caused by solid walls, making the entire process without solvent recovery and precision. Distillation, circulation and refining links, the preparation process is simpler, the energy consumption is lower, and the cost is lower.
  • the quenching medium of Examples 1A-1T is phosgene, and the quenching medium of Example 1U is phosgene + PDI mixed liquid)
  • Example 1B Preparation of PDI from PDA hydrochloride (do not mix PDA hydrochloride and phosgene, preheat separately)
  • PDA hydrochloride and liquid phosgene were heated to 182°C in two high-pressure pipelines.
  • Example 1C Preparation of PDI (heterogeneous shearing) from PDA hydrochloride
  • reaction solution is not sheared and homogenized, and then heat the 10L autoclave so that the temperature in the autoclave slowly rises to 182°C (supercritical temperature of phosgene). Observe the pressure. If it is less than 10MPa, continue the subsequent operation. If it is greater than 10MPa, stop heating. , when the temperature reaches 182°C, the recorded pressure is 6.9MPa, and the temperature is maintained under this condition for 20 minutes.
  • Example 1D Preparation of PDI from PDA hydrochloride (3mm reaction tube inner diameter)
  • reaction solution is not sheared and homogenized, and then heat the 10L autoclave so that the temperature in the autoclave slowly rises to 182°C (supercritical temperature of phosgene). Observe the pressure. If it is less than 10MPa, continue the subsequent operation. If it is greater than 10MPa, stop heating. , when the temperature reaches 182°C, record the pressure as 7.0MPa, and keep it warm under this condition for 20 minutes.
  • reaction solution is not sheared and homogenized, and then heat the 10L autoclave so that the temperature in the autoclave slowly rises to 182°C (supercritical temperature of phosgene). Observe the pressure. If it is less than 10MPa, continue the subsequent operation. If it is greater than 10MPa, stop heating. , when the temperature reaches 182°C, record the pressure as 6.5MPa, and keep it warm under this condition for 20 minutes.
  • the hydrogen chloride gas was separated from the collected liquid and phosgene was recovered. The residue was then weighed to obtain 165.0g. Gas phase quantitative analysis was performed. The results showed that the content was 82.9% and the yield was 89.4%.
  • the reaction solution is not sheared and homogenized, and then heat the 10L autoclave so that the temperature in the autoclave slowly rises to 182°C (supercritical temperature of phosgene). Observe the pressure. If it is less than 10MPa, continue the subsequent operation. If it is greater than 10MPa, stop heating. , when the temperature reaches 182°C, the recorded pressure is 6.6MPa, and the temperature is maintained under this condition for 20 minutes.
  • the reaction solution is not sheared and homogenized, and then heat the 10L autoclave so that the temperature in the autoclave slowly rises to 182°C (supercritical temperature of phosgene). Observe the pressure. If it is less than 10MPa, continue the subsequent operation. If it is greater than 10MPa, stop heating. , when the temperature reaches 182°C, the recorded pressure is 6.6MPa, and the temperature is maintained under this condition for 20 minutes.
  • the hydrogen chloride gas was separated from the collected liquid and phosgene was recovered. The residue was then weighed to obtain 142.4g. Gas phase quantitative analysis was performed. The results showed that the content was 43.4% and the yield was 40.4%.
  • the hydrogen chloride gas was separated from the collected liquid and phosgene was recovered. The residue was then weighed to obtain 129.2g. Gas phase quantitative analysis was performed. The results showed that the content was 63.0% and the yield was 53.2%.
  • the hydrogen chloride gas was separated from the collected liquid and phosgene was recovered. The residue was then weighed to obtain 158.7g. Gas phase quantitative analysis was performed. The results showed that the content was 89.2% and the yield was 92.5%.
  • Example 1N Preparation of PDI from PDA hydrochloride (residence time 1 s)
  • the hydrogen chloride gas was separated from the collected liquid and phosgene was recovered. The residue was then weighed to obtain 167.5g. Gas phase quantitative analysis was performed. The results showed that the content was 55.0% and the yield was 60.2%.
  • Example 1P Preparation of PDI from PDA hydrochloride (residence time 10 s)
  • Example 1Q Preparation of PDI from PDA hydrochloride (residence time 20 s)
  • the hydrogen chloride gas was separated from the collected liquid and phosgene was recovered. The residue was then weighed to obtain 160.9g. Gas phase quantitative analysis was performed. The results showed that the content was 81.9% and the yield was 85.6%.
  • the hydrogen chloride gas was separated from the collected liquid and phosgene was recovered. The residue was then weighed to obtain 152.3g. Gas phase quantitative analysis was performed. The results showed that the content was 74.3% and the yield was 73.5%.
  • Example 1T Preparation of PDI from PDA hydrochloride (pipeline pressure 140KPa)
  • Example 1U Preparation of PDI from PDA hydrochloride (phosgene + PDI quenching and trapping)
  • the hydrogen chloride gas was separated from the collection liquid and phosgene was recovered. The residue was then weighed to obtain 380.6g, and gas phase quantitative analysis was performed. The result showed that the content was 88.4%. After deducting 220g of PDI used for quenching and trapping, the reaction yield was 92.1%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本申请涉及一种制备异氰酸酯的方法。具体地,本申请提供了一种使用超临界光气化法结合管道化法制备异氰酸酯的方法。

Description

超临界光气化法结合管道化法制备异氰酸酯的方法 技术领域
本申请涉及一种制备异氰酸酯的方法,更具体地,涉及超临界光气化法结合管道化法制备异氰酸酯的方法。
背景技术
异氰酸酯是一类含有一个或多个异氰酸酯基团的化合物。包括脂肪族异氰酸酯、芳香族异氰酸酯、不饱和异氰酸酯、卤代异氰酸酯、硫代异氰酸酯、含磷异氰酸酯、无机异氰酸酯及封闭异氰酸酯等。由于其含有高度不饱和的异氰酸酯基团,使其具有很高的化学活性,能与多种物质发生重要的化学反应,因而广泛应用于聚氨酯、聚氨酯脲和聚脲、高分子改性、有机合成试剂、农业、医学等领域。
现有技术中,采用光气与胺制备异氰酸酯的原理已为人熟知。由于胺(特别是脂肪族二元胺)的反应活性较高,在光气化反应过程中,暂未参与反应的胺可能与反应产物和中间体进行反应,从而产生副产物,例如胺基盐酸盐、脲、缩二脲等。为了避免副产物的产生,可以选择一个封端试剂(例如HCl)将胺的胺基(-NH2)保护起来形成胺盐。但是,胺盐的反应活性相比游离胺低了很多,而且胺盐几乎不溶于任何常用的有机溶剂,只能分散在溶剂中。实践证明,以胺盐为原材料的光气化反应通常需要使用大量的溶剂作为分散剂,而胺盐在溶剂中的含量往往不足10%,而光气化反应的停留时间动辄几个小时甚至十几个小时。
因此,仍需要一种优化的异氰酸酯制备方法。
发明内容
本申请的目的在于提供一种制备异氰酸酯的方法,更具体地,通过超临界光气化法结合管道化法制备异氰酸酯的方法。
一方面,本申请提供了一种制备异氰酸酯的方法,其特征在于,所述方法包括以下步骤:
(a)将反应物胺料流和光气料流在-5至5℃的温度下进行混合,得到反应物胺和光气的 混合物;
(b)将步骤(a)得到的混合物的温度调节为182℃~205℃,使得所述光气处于超临界状态,在超临界反应器中进行反应至少15分钟;
(c)使步骤(b)得到的反应产物混合物在减压的条件下进行反应,并且反应时间不超过30秒。
在某些实施方式中,步骤(c)中的所述减压在减压器中进行。例如,步骤(c)是将步骤(b)的所述超临界反应器中的反应产物混合物引入减压反应器中进行反应。
在某些实施方式中,所述方法进一步包括步骤(d)收集产物。在某些实施方式中,步骤(d)包括:在所述减压反应器的出口设置骤冷区,使得步骤(c)获得的反应产物混合物与通入所述骤冷区的骤冷介质料流接触,将步骤(c)获得的所述反应产物混合物温度降低至170℃以下。
在某些实施方式中,所述方法进一步包括步骤(e)提纯产物。在某些实施方式中,所述步骤(e)包括:
1)将步骤(c)或步骤(d)获得的反应产物混合物通入脱气塔,其中所述反应产物混合物中的氯化氢和光气从所述脱气塔的顶部溢出并进入氯化氢/光气分离塔,其中从所述分离塔的顶部溢出的氯化氢经去尾气处理单元进行精制,形成副产物盐酸;
2)从子步骤1)的所述分离塔的底部回收光气循环利用,形成步骤(a)中所述的光气料流;
3)从子步骤1)的所述脱气塔的底部收集所述反应产物混合物中的异氰酸酯和副产物,使其经过轻组分脱除塔,除去轻组分副产物;
4)从子步骤3)的所述轻组分脱除塔的底部收集异氰酸酯和重组分副产物,使其经过精制塔,从所述精制塔中收集异氰酸酯,并除去重组分副产物。
在某些实施方式中,以上子步骤3)中的所述轻组分副产物选自下组:哌啶、多氢吡啶及其组合。在某些实施方式中,以上子步骤4)中的所述重组分副产物选自下组:焦油、PDI聚合物、副产物脲及其任何组合。
在某些实施方式中,步骤(a)在步骤(b)和步骤(c)之前进行。
在某些实施方式中,在步骤(a)、步骤(b)和步骤(c)中均不使用有机溶剂。
在某些实施方式中,在步骤(a)中,在超临界反应器中混合所述反应物胺料流和所述光气料流。
在某些实施方式中,所述反应物胺料流和所述光气料流混合后经剪切乳化形成悬浮颗粒。在某些实施方式中,所述剪切乳化在超临界反应器中进行。
在某些实施方式中,所述悬浮颗粒的直径小于或等于100μm。在某些实施方式中,所述悬浮颗粒的直径小于或等于50μm。在某些实施方式中,所述悬浮颗粒的直径小于或等于20μm。
在某些实施方式中,在步骤(a)中,所述反应物胺料流和所述光气料流经均质泵剪切乳化均匀。在某些实施方式中,通过控制所述均质泵的扬程、转速、扭矩、吸力和/或剪切均质时间实现所述剪切乳化均匀。在某些实施方式中,将所述均质泵的循环输出体积控制在大于或等于所述超临界反应器内持液量的10倍体积。
在某些实施方式中,步骤(a)中的所述光气料流基于所述反应物胺料流的氨基计是化学计算过量的。
在某些实施方式中,步骤(a)中的所述光气料流和反应物胺料流的进料量(按摩尔计)之比为7∶1至25∶1。在某些实施方式中,步骤(a)中的所述光气料流和反应物胺料流的进料量(按摩尔计)之比为10∶1至20∶1。在某些实施方式中,步骤(a)中的所述光气料流和反应物胺料流的进料量(按摩尔计)之比为12∶1。
在某些实施方式中,步骤(a)中的所述光气料流以液态的形式存在。
在某些实施方式中,步骤(c)的反应温度为150℃至450℃。在某些实施方式中,步骤(c)的反应温度为200℃至400℃。在某些实施方式中,步骤(c)的反应温度为250℃至350℃。
在某些实施方式中,步骤(c)的反应压力为15KPa至500KPa。在某些实施方式中,步骤(c)的反应压力为50KPa至300KPa。在某些实施方式中,步骤(c)的反应压力为50KPa至110KPa。某些实施方式中,步骤(c)的反应压力为80KPa至100KPa。
在某些实施方式中,步骤(c)的反应停留时间为0.5秒至30秒。在某些实施方式中,步骤(c)的反应停留时间为1.5秒至20秒。在某些实施方式中,步骤(c)的反应停留时间为2.5秒至10秒。
在某些实施方式中,步骤(d)的产物收集温度为170℃以下。在某些实施方式中,步骤 (d)的产物收集温度为80℃至150℃。在某些实施方式中,步骤(d)的产物收集温度为110℃至140℃。
在某些实施方式中,在步骤(d)中,利用所述骤冷介质的汽化潜热将步骤(c)中获得的反应产物混合物温度迅速降低。在某些实施方式中,步骤(d)中所述的骤冷介质选自下组:有机溶剂、异氰酸酯、光气、氯化氢、惰性载气及其任何组合。在某些实施方式中,所述有机溶剂选自下组:二氯甲烷、氯苯、邻二氯苯、苯、甲苯、二甲苯、己烷、四氢呋喃、氯萘及其任何组合。在某些实施方式中,步骤(d)中所述的骤冷介质为液态。在某些实施方式中,步骤(d)中所述的骤冷介质为液态光气。
在某些实施方式中,所述减压反应器为管道反应器。在某些实施方式中,所述减压反应器的管路内径为4~9mm。
在某些实施方式中,所述异氰酸酯是二异氰酸酯。在某些实施方式中,所述异氰酸酯是脂肪族二异氰酸酯或芳香族二异氰酸酯。在某些实施方式中,所述异氰酸酯选自下组:作为纯异构体或作为异构体混合物的二苯基亚甲基二异氰酸酯、作为纯异构体或异构体混合物的甲苯二异氰酸酯、2,6-二甲苯异氰酸酯、1,5-萘二异氰酸酯、甲基异氰酸酯、乙基异氰酸酯、丙基异氰酸酯酯、异丙基异氰酸酯、丁基异氰酸酯、异丁基异氰酸酯、叔丁基异氰酸酯、戊基异氰酸酯(例如,戊二异氰酸酯)、叔戊基异氰酸酯、异戊基异氰酸酯、新戊基异氰酸酯、己基异氰酸酯(例如,己二异氰酸酯)、环戊基异氰酸酯、环己基异氰酸酯、苯基异氰酸酯(例如,对苯二异氰酸酯)。
在某些实施方式中,所述异氰酸酯为五亚甲基二异氰酸酯(PDI)、六亚甲基二异氰酸酯(HDI)、异氟尔酮二异氰酸酯(IPDI)或甲基环己烷二异氰酸酯(HTDI)。在某些实施方式中,所述反应物胺的结构式为R(NH 2) n,其中n为1、2或3,R为脂肪族或芳香族烃基。在某些实施方式中,n为2,并且R为脂肪族烃基。在某些实施方式中,n为2,并且R为具有2-10个碳原子的脂肪族烃基。在某些实施方式中,n为2,并且R为具有3-10个碳原子的直链或环状脂肪族烃基。
在某些实施方式中,所述反应物胺以游离态的形式存在。
在某些实施方式中,所述反应物胺以胺盐的形式存在。在某些实施方式中,所述胺盐选自下组:盐酸盐、硫酸盐、硫酸氢盐、硝酸盐和碳酸盐。
在某些实施方式中,所述反应物胺选自下组中的一种或多种:乙胺、丁胺、戊二胺、 己二胺、1,4-二氨基丁烷、1,8-二氨基辛烷、苯胺、对苯二胺、间苯二甲胺、甲苯二胺、1,5-萘二胺、二苯基甲烷二胺、二环己基甲烷二胺、间环己基二亚甲基二胺、异佛尔酮二胺、甲基环己二胺、反式-1,4-环己二胺。
在某些实施方式中,所述反应物胺选自下组:PDA、PDA盐酸盐、HDA、HDA盐酸盐、IPDA、IPDA盐酸盐、HTDA和HTDA盐酸盐。
附图说明
通过下面说明书和所附的权利要求书并与附图结合,将会更加充分地清楚理解本申请内容的上述和其他特征。可以理解,这些附图仅描绘了本申请内容的若干实施方式,因此不应认为是对本申请内容范围的限定。通过参考附图,本申请的内容将会得到更加明确和详细的说明。
图1示出了根据本申请一个实施方式的制备异氰酸酯的方法的示意流程图;其中:01为超临界反应器,02为减压反应器,03为淬冷器,04为脱气塔,05为光气/氯化氢分离塔,06为轻组分脱除塔,07为产品精制塔。
具体实施方式
详细描述、附图和权利要求书中描述的说明性实施方式并非旨在限定。在不偏离本申请的主题的精神或范围的情况下,可以采用其他实施方式,并且可以做出其他变化。可以理解,可以对本申请中一般性描述的、在附图中图解说明的本申请内容的各个方面进行多种不同构成的配置、替换、组合、设计,而所有这些都明确地构成本申请内容的一部分。
在一个方面,本申请提供了一种制备异氰酸酯的方法,所述方法包括以下步骤:
(a)将反应物胺料流和光气料流在-5至5℃的温度下进行混合,得到反应物胺和光气的混合物;
(b)将步骤(a)得到的混合物的温度调节为182℃~205℃,使得所述光气处于超临界状态,在超临界反应器中进行反应至少15分钟;
(c)使步骤(b)得到的反应产物混合物在减压的条件下进行反应,并且反应时间不超过30秒。
在本申请中,“异氰酸酯”指的是一类含有一个或多个(例如,二个、三个、四个、五 个、六个、七个、八个、九个、十个或更多个)异氰酸酯基团(R-N=C=O)的化合物,包括脂肪族异氰酸酯、芳香族异氰酸酯、不饱和异氰酸酯、卤代异氰酸酯、硫代异氰酸酯、含磷异氰酸酯、无机异氰酸酯及封闭异氰酸酯等。在某些实施方式中,本申请中的异氰酸酯是二异氰酸酯。在某些实施方式中,本申请中的异氰酸酯是脂肪族二异氰酸酯或芳香族二异氰酸酯。在某些实施方式中,本申请中的异氰酸酯包括芳香族异氰酸酯、脂肪族异氰酸酯,例如,芳香族异氰酸酯包括作为纯异构体或作为异构体混合物的二苯基亚甲基二异氰酸酯、作为纯异构体或异构体混合物的甲苯二异氰酸酯、2,6-二甲苯异氰酸酯、1,5-萘二异氰酸酯等。脂肪族异氰酸酯包括甲基异氰酸酯、乙基异氰酸酯、丙基异氰酸酯酯、异丙基异氰酸酯、丁基异氰酸酯、异丁基异氰酸酯、叔丁基异氰酸酯、戊基异氰酸酯、叔戊基异氰酸酯、异戊基异氰酸酯、新戊基异氰酸酯、己基异氰酸酯、环戊基异氰酸酯、环己基异氰酸酯、苯基异氰酸酯等。在某些实施方式中,本申请中的异氰酸酯选自下组:戊二异氰酸酯、己二异氰酸酯、对苯二异氰酸酯、甲苯二异氰酸酯。在某些实施方式中,本申请中的异氰酸酯是五亚甲基二异氰酸酯(PDI)、六亚甲基二异氰酸酯(HDI)、异氟尔酮二异氰酸酯(IPDI)或甲基环己烷二异氰酸酯(HTDI)。
以下分别详细描述本申请所述的制备异氰酸酯的方法的步骤(a)、步骤(b)和步骤(c),以及可选地步骤(d)和步骤(e)。
1. 步骤(a)
在本申请的步骤(a)中,将反应物胺料流和光气料流在-5至5℃的温度下进行混合,得到反应物胺和光气的混合物。
在本申请中,“反应物胺”指的是制备异氰酸酯的起始原料含有氨基(-NH2)基团的化合物。例如,在某些实施方式中,所述反应物胺的结构式为R(NH 2) n,其中n为1、2或3,R为脂肪族或芳香族烃基。在某些实施方式中,n为2,并且R为脂肪族烃基。在某些实施方式中,n为2,并且R为具有2-10个碳原子(例如,2个、3个、4个、5个、6个、7个、8个、9个、10个碳原子)的脂肪族、脂环族或芳香族烃基。在某些实施方式中,n为2,并且R为具有3-10个碳原子(例如,3个、4个、5个、6个、7个、8个、9个、10个碳原子)的直链或环状脂肪族烃基。
在某些实施方式中,所述反应物胺为伯胺,即,含有NH2基团。在某些实施方式中,所述反应物胺为二胺,即,含有2个NH2基团。在某些实施方式中,所述反应物胺选自下 组中的一种或多种:乙胺、丁胺、戊二胺、己二胺、1,4-二氨基丁烷、1,8-二氨基辛烷、苯胺、对苯二胺、间苯二甲胺、甲苯二胺、1,5-萘二胺、二苯基甲烷二胺、二环己基甲烷二胺、间环己基二亚甲基二胺、异佛尔酮二胺、甲基环己二胺、反式-1,4-环己二胺。在某些实施方式中,所述反应物胺选自下组中的一种或多种:戊二胺(例如,1,5-二戊胺)、己二胺(例如,1,6-己二胺)、对苯二胺、异佛尔酮二胺、甲基环己二胺、甲苯二胺。在某些实施方式中,所述反应物胺为戊二胺(PDA)。
在某些实施方式中,所述反应物胺以游离态的形式存在。术语“游离态”是指非盐形式的胺化合物。游离态的胺化合物可以与它们的各种盐形式在某些物理和/或化学性质上有所不同,例如,在极性溶剂中的溶解性不同。游离态的胺化合物也可以与它们的各种盐形式在某些物理和/或化学性质上相同或相似。
在某些实施方式中,所述反应物胺以胺盐的形式存在。在某些实施方式中,所述胺盐选自下组:盐酸盐、硫酸盐、硫酸氢盐、硝酸盐和碳酸盐。
在某些实施方式中,所述反应物胺选自下组中的一种或多种:戊二胺(PDA)、PDA盐酸盐、己二胺(HDA)、HDA盐酸盐、异佛尔酮二胺(IPDA)、IPDA盐酸盐、甲基环己二胺(HTDA)和HTDA盐酸盐。
在异氰酸酯的常规制备方法中,通常使用有机溶剂分散反应物胺,或者使用惰性载气(例如,氮气、二氧化碳、一氧化碳、氦气或氩气),以便辅助反应物胺气化以及达到更合适的分散效果。然而,在本发明中,发明人意想不到地发现步骤(a)中混合反应物胺和光气时可以不使用有机溶剂,也不使用惰性载气。在某些实施方式中,所述反应物胺料流和所述光气料流的混合在超临界反应器中进行(例如将两者引入超临界反应器中进行混合)。在某些实施方式中,所述反应物胺料流和所述光气料流在超临界反应器之外进行,即:将两者在其他容器或管道混合好之后再引入超临界反应器。为了便于将反应物胺料流和光气料流混匀以利于后续反应的进行,步骤(a)中,所述反应物胺料流和所述光气料流混合后可经剪切乳化形成悬浮颗粒。在某些实施方式中,所述悬浮颗粒的直径为,例如小于或等于100μm,或者小于或等于50μm,或者小于或等于20μm。在某些具体实施方式中,所述悬浮颗粒的直径为1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、11μm、12μm、13μm、14μm、15μm、16μm、17μm、18μm、19μm、20μm、25μm、30μm、35μm、40μm、45μm、50μm、55μm、60μm、65μm、70μm、75μm、80μm、85μm、90μm、95μm、或者100μm,或上述任何两个数值之间的范围。不受任何理论的限 制,但是认为形成的悬浮颗粒的直径越小,越有利于反应物胺和光气的后续反应的进行。
在步骤(a)中,反应物胺料流和光气料流混合之后,可以使用现有技术中任何已知的方法进行剪切乳化。例如,可以使用高速剪切乳化机、超重力混合设备、均质泵等,通过机械剪切的方法,使得反应物胺和光气剪切乳化均匀。在某些实施方式中,所述反应物胺料流和所述光气料流混合后经均质泵剪切乳化均匀。在某些实施方式中,在所述超临界反应器中进行所述剪切乳化。本申请中使用的均质泵可以是商购的,例如购自宁波得利时泵业有限公司的DHX型均质泵。
均质泵可以设置在超临界反应器的内部(此时称为“内置均质泵”),也可以设置在超临界反应器的外部(此时称为“外置均质泵”)。在本申请的某些实施方式中,所述的均质泵为内置均质泵。当使用内置均质泵时,本领域技术人员可优选通过控制所述均质泵的扬程、转速、扭矩、吸力和/或剪切均质时间实现所述剪切乳化均匀,具体数值可根据超临界反应器的大小和/或本领域技术人员的经验决定。在某些实施方式中,设置所述内置均质泵的转速为1000至3000r/min(例如,1000r/min、1100r/min、1200r/min、1300r/min、1400r/min、1500r/min、1600r/min、1700r/min、1800r/min、1900r/min、2000r/min、2100r/min、2200r/min、2300r/min、2400r/min、2500r/min、2600r/min、2700r/min、2800r/min、2900r/min、3000r/min或以上任何两个数值之间的数值或范围)。在某些实施方式中,设置所述内置均质泵的流量为120至250m 3/h(例如,120m 3/h、130m 3/h、140m 3/h、150m 3/h、160m 3/h、170m 3/h、180m 3/h、190m 3/h、200m 3/h、210m 3/h、220m 3/h、230m 3/h、240m 3/h、250m 3/h或以上任何两个数值之间的数值或范围)。在某些实施方式中,设置所述内置均质泵的压力为0.1至1.2MPa(例如,0.1MPa、0.2MPa、0.3MPa、0.4MPa、0.5MPa、0.6MPa、0.7MPa、0.8MPa、0.9MPa、1MPa、1.1MPa、1.2MPa或以上任何两个数值之间的数值或范围)。在某些实施方式中,设置所述内置均质泵的进口为80mm至110mm(例如,85mm、90mm、95mm、96mm、97mm、98mm、99mm、100mm、105mm、110mm或以上任何两个数值之间的数值或范围)。在某些实施方式中,设置所述内置均质泵的出口为60mm至90mm(例如,65mm、70mm、75mm、76mm、77mm、78mm、79mm、80mm、81mm、82mm、83mm、84mm、85mm、90mm或以上任何两个数值之间的数值或范围)。
不受任何理论的限制,但是认为当内置均质泵循环输出体积为所述超临界反应器内持液量的n倍体积时,所述内置均质泵已经对其中的反应物胺和光气进行了至少n次的剪切乳化。例如:当内置均质泵循环输出体积为所述超临界反应器内持液量的10倍体积时,所 述内置均质泵已经对其中的反应物胺和光气进行了10次的剪切乳化。在某些实施方式中,以所述内置均质泵循环输出体积大于或者等于所述超临界反应器内持液量的10倍体积为准来判断是否已经实现剪切乳化均匀。例如,当内置均质泵循环输出体积大于或等于所述超临界反应器内持液量的10倍体积(例如,内置均质泵循环输出体积是超临界反应器内持液量的11倍、12倍、13倍、14倍、15倍、16倍、17倍、18倍、19倍、20倍、25倍、30倍、35倍、40倍、45倍、50倍或以上)时,则确定反应物胺和光气的混合已经实现剪切乳化均匀。
在某些实施方式中,所述的均质泵为外置均质泵,将均质泵置于超临界反应器之外,从均质泵出口直接将剪切乳化后的混合物输送到超临界反应器中。当使用外置均质泵时,本领域技术人员可通过控制外置均质泵的选型、转速以及物料在均质泵内的停留时间来确保实现剪切乳化均匀。在某些实施方式中,设置所述外置均质泵的转速为1000至3000r/min(例如,1000r/min、1100r/min、1200r/min、1300r/min、1400r/min、1500r/min、1600r/min、1700r/min、1800r/min、1900r/min、2000r/min、2100r/min、2200r/min、2300r/min、2400r/min、2500r/min、2600r/min、2700r/min、2800r/min、2900r/min、3000r/min或以上任何两个数值之间的数值或范围)。在某些实施方式中,设置所述外置均质泵的流量为120至250m 3/h(例如,120m 3/h、130m 3/h、140m 3/h、150m 3/h、160m 3/h、170m 3/h、180m 3/h、190m 3/h、200m 3/h、210m 3/h、220m 3/h、230m 3/h、240m 3/h、250m 3/h或以上任何两个数值之间的数值或范围)。在某些实施方式中,设置所述外置均质泵的压力为0.1至1.2MPa(例如,0.1MPa、0.2MPa、0.3MPa、0.4MPa、0.5MPa、0.6MPa、0.7MPa、0.8MPa、0.9MPa、1MPa、1.1MPa、1.2MPa或以上任何两个数值之间的数值或范围)。在某些实施方式中,设置所述外置均质泵的进口为80mm至110mm(例如,85mm、90mm、95mm、96mm、97mm、98mm、99mm、100mm、105mm、110mm或以上任何两个数值之间的数值或范围)。在某些实施方式中,设置所述外置均质泵的出口为60mm至90mm(例如,65mm、70mm、75mm、76mm、77mm、78mm、79mm、80mm、81mm、82mm、83mm、84mm、85mm、90mm或以上任何两个数值之间的数值或范围)。
本申请中的“超临界反应器”是指能够使反应物处于超临界状态或者反应在超临界介质中进行的反应器,可根据反应需求(例如反应物的种类和性质等)对其压力、温度等参数进行调节以确保超临界反应的进行。本发明中使用的超临界反应器可以是任何可商购的超临界反应器,例如购自上海莱北科学仪器有限公司的L系列高温高压超临界反应釜。
步骤(a)中所述的反应物胺料流可以通过单个含反应物胺的子流进入所述超临界反应器,也可以通过多个(例如,2个、3个、4个、5个或更多个)含反应物胺的子流进入所述超临界反应器。同样地,步骤(a)中所述的光气料流可通过单个含光气的子流进入所述超临界反应器,也可以通过多个(例如,2个、3个、4个、5个或更多个)含光气的子流进入所述超临界反应器。当步骤(a)中所述的反应物胺料流(或光气料流)通过多个含反应物胺(或光气)的子流进入所述超临界反应器时,多个子流可以在相同的位置进入所述超临界反应器,也可以在不同的位置进入所述超临界反应器。
异氰酸酯的制备过程中往往需要投入大量过量的光气,因为在光气浓度不足时,形成的异氰酸酯与过量的胺反而形成脲或其他高粘度的固体副产物。因此,为了防止副产物的形成,优选地以过量的形式提供光气。例如,在某些实施方式中,步骤(a)中所述的光气料流基于所述反应物胺料流的氨基计是化学计算过量的。例如,光气相对于反应物胺的氨基的摩尔比通常为1.1∶1-50∶1(例如,1.5∶1、2∶1、2.5∶1、3∶1、3.5∶1、4∶1、4.5∶1、5∶1、5.5∶1、6∶1、6.5∶1、7∶1、7.5∶1、8∶1、8.5∶1、9∶1、9.5∶1、10∶1、11∶1、15∶1、20∶1、25∶1、30∶1、35∶1、40∶1、45∶1、50∶1以及上述任何数值之间的范围)。在某些实施方式中,在所述超临界反应器中,以所述反应物胺的氨基计,光气以超过理论值的0%至250%(例如,10%、20%、30%、40%、50%、60%、70%、80%、90%、100%、110%、120%、130%、140%、150%、160%、170%、180%、190%、200%、210%、220%、230%、240%、250%等)的化学计量过量使用。当步骤(a)中所述的反应物胺料流(和/或光气料流)通过多个含反应物胺(和/或光气)的子流进入所述超临界反应器时,多个含光气的子流加和产生的总光气料流基于多个含反应物胺的子流加和产生的总反应物胺料流的氨基计是化学计算过量的。
在某些实施方式中,步骤(a)中所述的光气料流和反应物胺料流的进料量(按摩尔计)之比为7∶1至25∶1(例如8∶1、9∶1、10∶1、11∶1、12∶1、13∶1、14∶1、15∶1、16∶1、17∶1、18∶1、19∶1、20∶1、21∶1、22∶1、23∶1、24∶1、25∶1或者以上任何两个比值之间的任何数值)。优选地,步骤(a)中所述的光气料流和反应物胺料流的进料量(按摩尔计)之比为10∶1至20∶1。
步骤(a)中所述的光气料流中含有的光气可以是新鲜光气,也可以是循环光气。术语“新鲜光气”是指尚未从光气化方法中再循环,且在通常由氯气和一氧化碳合成光气之后尚未经过任何涉及光气反应的反应阶段的含光气的料流。术语“循环光气”是指从光气化方法制备异氰酸酯的反应过程中收集尾气中产生的含光气的料流。如上所述,在气相法制备异氰酸酯的过程中,往往需要使用过量的光气,因此反应尾气中会含有大量的光气,循环利用 尾气中的光气可以达到降低生产成本的目的。在某些实施方式中,步骤(a)中所述的光气料流以液态的形式存在。
在某些实施方式中,步骤(a)中所述的反应物胺料流和光气料流在低温下进行混合,例如,在-5至5℃之间的任意温度下进行混合,例如-5℃、-4℃、-3℃、-2℃、-1℃、0℃、1℃、2℃、3℃、4℃、5℃或者以上任何两个数值之间的任何数值。所述混合可以在-5至5℃之间的任一恒定温度下进行,也可以在-5至5℃之间的变化温度下进行。在某一实施方式中,所述混合在0℃的恒定温度下进行。
在某些实施方式中,步骤(a)在步骤(b)和步骤(c)之前进行,即,在反应物胺和光气进行反应之前先将它们进行混合,然后再共同升温反应。这样操作的优势之一是可以避免反应物胺(例如,胺盐)在高温下分解,或者自身环化产生副产物。
2. 步骤(b)
在本申请的步骤(b)中,将步骤(a)得到的混合物的温度调节为182℃~205℃,使得所述光气处于超临界状态,在超临界反应器中进行反应至少15分钟。
以戊二胺盐酸盐和光气作为起始反应原料为例,在步骤(b)中主要进行的反应如下所示:
Figure PCTCN2022104181-appb-000001
在某些实施方式中,步骤(b)中,将所述超临界反应器的温度调节至182~205℃,使得所述光气处于超临界状态,并且所述反应物胺和所述光气反应不少于15分钟。
本申请中的“超临界状态”是指通过提高流体的温度和压力而使其温度处于临界温度以上、压力处于临界压力以上,从而使流体处于介于气体和液体之间的状态。处于超临界状态下的物质的许多物理化学性质介于气体和液体之间,并具有两者的优点,例如,溶解性强、扩散性能好、易于控制等,既具有与液体相近的溶解能力和传热系数,又具有与气体相近的黏度系数和扩散系数。例如,光气的临界温度为182℃,临界压力为5.674MPa。当 光气的温度处于182℃或以上并且压力处于5.674MPa或以上时,光气就处于超临界状态。
一般而言,胺盐几乎不溶于任何常用的有机溶剂,只能分散在溶剂中。本申请的发明人意想不到地发现,处于超临界状态的光气能够溶解反应物胺(特别是胺盐),使处于超临界状态的光气和反应物胺进行反应,超临界状态的光气既作为反应物胺的溶剂,又作为反应的起始物,不仅无需单独使用其他的溶剂对反应物胺进行溶解,还能够极大提高反应速率。另外,当反应物胺是胺盐(例如,PDA盐酸盐)时,还可以有效避免胺盐单独升温过程中发生环化反应变质。在某些实施方式中,本申请的步骤(b)中不使用有机溶剂。
在某些实施方式中,步骤(b)是在压力≥5MPa(例如,5.1MPa、5.2MPa、5.3MPa、5.4MPa、5.5MPa、5.6MPa、5.7MPa、5.8MPa、5.9MPa、6MPa、6.1MPa、6.2MPa、6.3MPa、6.4MPa、6.5MPa、6.6MPa、6.7MPa、6.8MPa、6.9MPa、7MPa、7.5MPa、8MPa、8.1MPa、8.2MPa、8.3MPa、8.4MPa、8.5MPa、8.6MPa、8.7MPa、8.8MPa、8.9MPa、9MPa、9.1MPa、9.2MPa、9.3MPa、9.4MPa、9.5MPa、9.6MPa、9.7MPa、9.8MPa、9.9MPa、10MPa、11MPa、12MPa或以上)、温度在182℃~205℃之间(例如,182℃、183℃、184℃、185℃、186℃、187℃、188℃、189℃、190℃、191℃、192℃、193℃、194℃、195℃、196℃、197℃、198℃、199℃、200℃、201℃、202℃、203℃、204℃、205℃或者以上任何两个数值之间的任何数值)的超临界光气化反应条件下反应。在某些实施方式中,步骤(b)的反应压力为5.2MPa,反应温度为182℃。在某些实施方式中,步骤(b)的反应压力为6.2MPa,反应温度为182℃。在某些实施方式中,步骤(b)的反应压力为6.3MPa,反应温度为182℃。在某些实施方式中,步骤(b)的反应压力为6.4MPa,反应温度为182℃。在某些实施方式中,步骤(b)的反应压力为6.5MPa,反应温度为182℃。在某些实施方式中,步骤(b)的反应压力为6.6MPa,反应温度为182℃。在某些实施方式中,步骤(b)的反应压力为6.7MPa,反应温度为182℃。在某些实施方式中,步骤(b)的反应压力为6.9MPa,反应温度为182℃。在某些实施方式中,步骤(b)的反应压力为7MPa,反应温度为182℃。在某些实施方式中,步骤(b)的反应压力为7.8MPa,反应温度为182℃。在某些实施方式中,步骤(b)的反应压力为8.4MPa,反应温度为182℃。
在某些实施方式中,为确保反应物胺和光气的充分反应,在步骤(b)中,两者的反应时间应不少于15分钟,例如为16分钟、17分钟、18分钟、19分钟、20分钟、21分钟、22分钟、23分钟、24分钟、25分钟、26分钟、27分钟、28分钟、29分钟或者以上任何两个数值之间的任何数值。在某些实施方式中,在步骤(b)中,反应物胺和光气的反应时间为 20分钟。在某些实施方式中,在步骤(b)中,两者的反应时间应不少于30分钟,例如为30分钟、31分钟、32分钟、33分钟、34分钟、35分钟、36分钟、37分钟、38分钟、39分钟、40分钟或者以上任何两个数值之间的任何数值。
3. 步骤(c)
在本申请的步骤(c)中,使步骤(b)得到的反应产物混合物在减压的条件下进行反应,并且反应时间不超过30秒。
以戊二胺盐酸盐和光气作为起始反应原料为例,在步骤(c)中主要进行的反应如下所示:
Figure PCTCN2022104181-appb-000002
步骤(b)之后产生的反应产物混合物中包括酰氯中间体、未反应完全的反应物胺和光气。步骤(c)是将酰氯中间体分解形成异氰酸酯的步骤。申请人意想不到地发现,在减压条件下进行酰氯分解反应可以显著缩短异氰酸酯的制备时间,而且可以解决超临界反应压力过高的问题。在常规的使用光气制备异氰酸酯的方法中,光气化反应的停留时间需要几个小时甚至十几个小时,压力可达9-10MPa。而在本申请的方法中,通过将超临界光气化反应(即,步骤(b))与减压反应(即,步骤(c))结合,可以把异氰酸酯的制备时间缩短至30分钟以内,压力也可以降至6-8MPa。
在某些实施方式中,步骤(c)的反应压力为15KPa至500KPa,例如,15KPa、50KPa、60KPa、70KPa、80KPa、90KPa、100KPa、110KPa、120KPa、130KPa、140KPa、150KPa、200KPa、210KPa、220KPa、230KPa、240KPa、250KPa、260KPa、270KPa、280KPa、290KPa、300KPa、310KPa、320KPa、330KPa、340KPa、350KPa、400KPa、450KPa、500KPa或以上任何两个数值范围之间的任何数值。在某些实施方式中,步骤(c)的反应压力为50KPa至300KPa。在某些实施方式中,步骤(c)的反应压力为50KPa至140KPa。在某些实施方式中,步骤(c)的反应压力为50KPa至110KPa。在某些实施方式中,步骤(c)的反应压力为70KPa至150KPa。
有多种途径可以实现步骤(c)在减压条件下进行。在某些实施方式中,步骤(c)是将步骤(b)的超临界反应器中的反应产物混合物引入减压反应器中进行反应。例如,在步骤(b)完成 之后,开启超临界反应器与减压反应器之间的阀门,从而将步骤(b)的反应产物混合物引入减压反应器中进行反应。在某些实施方式中,所述减压反应器为管道反应器(例如,管道减压反应器)。管道反应器是一种呈管状、长径比较大的连续操作反应器。管道反应器的长度灵活,其特点是可实现连续化,且反应不会反混。在某些实施方式中,所述减压反应器的管路内径为4~9mm(例如,4mm、4.5mm、5mm、5.5mm、6mm、6.5mm、7mm、7.5mm、8mm、8.5mm、9mm或上述任何两个数值之间的任何数值)。
在某些实施方式中,在将所述的反应产物混合物引入减压反应器之前,先将减压反应器预热至该步骤的反应(即,酰氯分解反应)所需的温度。在某些实施方式中,步骤(c)的反应温度为150℃至450℃,例如,150℃、160℃、170℃、180℃、190℃、200℃、210℃、220℃、230℃、240℃、250℃、260℃、270℃、280℃、290℃、300℃、310℃、320℃、330℃、340℃、350℃、360℃、370℃、380℃、390℃、400℃、410℃、420℃、430℃、440℃、450℃或者以上任何两个数值之间的任何数值。优选地,步骤(c)的反应温度为200℃至400℃。更优选地,步骤(c)的反应温度为250℃至350℃。在某些实施方式中,步骤(c)的反应温度为300℃。
在某些实施方式中,步骤(c)的反应停留时间为0.5秒至30秒,例如,30秒、25秒、20秒、15秒、10秒、9秒、8秒、7秒、6秒、5秒、4.5秒、4秒、3.5秒、3秒、2.5秒、2秒、1.5秒、1秒、0.5秒或者以上任何两个数值之间的任何数值。优选地,步骤(c)的反应停留时间为1.5秒至20秒。更优选地,(c)的反应停留时间为2.5秒至10秒。可以通过多种方法来控制步骤(c)的反应停留时间,例如,通过控制步骤(b)的反应产物混合物的流量和/或管道反应器的管路内径来控制步骤(c)的反应停留时间。
在某些实施方式中,步骤(c)中不使用有机溶剂。
4. 步骤(d)
在某些实施方式中,本申请的制备方法还包括步骤(d)收集产物。
在某些实施方式中,本申请的步骤(d)包括:在所述减压反应器的出口设置骤冷区,使得步骤(c)获得的反应产物混合物与通入所述骤冷区的骤冷介质料流接触,将步骤(c)获得的所述反应产物混合物温度降低至170℃以下。
在某些实施方式中,步骤(d)的产物收集温度为170℃以下,例如,170℃、165℃、160℃、155℃、150℃、145℃、140℃、135℃、130℃、125℃、120℃、115℃、110℃、105℃、100℃、 95℃、90℃、85℃、80℃、75℃、70℃或以上任何两个数值范围之间的任何数值。在某些实施方式中,步骤(d)的产物收集温度为80℃至150℃。在某些实施方式中,步骤(d)的产物收集温度为110℃至140℃。
在某些实施方式中,在步骤(d)中,利用所述骤冷介质的汽化潜热将步骤(c)中获得的反应产物混合物温度迅速降低。现有技术中通常使用有机溶剂(例如,甲苯、氯苯、氯萘)、异氰酸酯或者由溶剂和异氰酸酯组成的混合物作为骤冷介质来降低超临界反应器的温度。在某些实施方式中,步骤(d)中所述的骤冷介质选自下组:有机溶剂、异氰酸酯、光气、氯化氢、惰性载气及其任何组合。在某些实施方式中,所述有机溶剂选自下组:二氯甲烷、氯苯、邻二氯苯、苯、甲苯、二甲苯、己烷、四氢呋喃、氯萘及其任何组合。在某些实施方式中,所述骤冷介质为液态(例如,液态光气)。在某些实施方式中,通过使用光气或者光气与异氰酸酯的混合物作为骤冷介质将步骤(c)中获得的反应产物混合物温度迅速降低。不受任何理论的限制,但是认为使用光气或者光气与异氰酸酯的混合物作为骤冷介质比使用有机溶剂作为骤冷介质的效果更好。例如,使用光气或者光气与异氰酸酯的混合物作为骤冷介质可以使得整个反应系统中避免使用有机溶剂,也可以避免固体附壁导致入口堵塞的问题,使得整个工艺过程中没有了溶剂回收、精馏、循环精制环节,制备工艺更为简便,能耗更低,成本更少。同时,由于高温精制过程缩短,反应产物异氰酸酯的高温停留时间大幅度缩短,自聚反应减少,产品收率更高。
5. 步骤(e)
在某些实施方式中,本申请的制备方法还包括步骤(e)提纯产物。
在某些实施方式中,步骤(e)包括以下子步骤:
1)将步骤(c)或步骤(d)获得的反应产物混合物通入脱气塔,其中所述反应产物混合物中的氯化氢和光气从所述脱气塔的顶部溢出并进入氯化氢/光气分离塔,其中从所述分离塔的顶部溢出的氯化氢经去尾气处理单元进行精制,形成副产物盐酸;
2)从子步骤1)的所述分离塔的底部回收光气循环利用,形成步骤(a)中所述的光气料流;
3)从子步骤1)的所述脱气塔的底部收集所述反应产物混合物中的异氰酸酯和副产物,使其经过轻组分脱除塔,除去轻组分副产物;
4)从子步骤3)的所述轻组分脱除塔的底部收集异氰酸酯和重组分副产物,使其经过精 制塔,从所述精制塔中收集异氰酸酯,并除去重组分副产物。
以图1为例,在子步骤1)中,将步骤(c)或步骤(d)获得的反应产物混合物通入脱气塔04,其中所述反应产物混合物中的氯化氢和光气从所述脱气塔04的顶部溢出并进入氯化氢/光气分离塔05,其中从所述分离塔05的顶部溢出的氯化氢经去尾气处理单元进行精制,形成副产物盐酸。
以图1为例,在子步骤2)中,从氯化氢/光气分离塔05的底部回收光气,形成光气料流进入超临界反应器01进行循环利用。
以图1为例,在子步骤3)中,从脱气塔04的底部收集所述反应产物混合物中的异氰酸酯和副产物,并使其通过轻组分脱除塔06,除去轻组分副产物。其中,所述的轻组分副产物可为本领域常规;在某些实施方式中,所述轻组分副产物选自下组:哌啶、多氢吡啶或其组合。以图1为例,在子步骤4)中,从轻组分脱除塔06的底部收集异氰酸酯和重组分副产物,使其经过精制塔07,从所述精制塔中收集异氰酸酯,并除去重组分副产物。其中,所述的重组分副产物可为本领域常规,在某些实施方式中,所述的重组分副产物选自下组:焦油、PDI自聚合、副产脲或其任何组合。当反应物胺为胺盐时,本申请中异氰酸酯的制备方法和常规的气相或液相光气化工艺相比,避免了将胺盐转化为胺的步骤;和现有的成盐光气化工艺相比,本申请中使用的超临界状态的光气既可以作为反应物胺的溶剂,又作为反应的起始物,避免了使用大量的溶剂。此外,使用本申请的方法制备异氰酸酯的过程中,将超临界光气化反应与减压反应结合,可以产生协同作用,例如,既避免了单纯超临界反应速率不够快、压力过高的问题;又避免了单纯管道反应杂质含量较高、反应不够彻底等问题。而且,使用光气或者光气与异氰酸酯的混合物作为反应过程中的骤冷介质,避免了使用有机溶剂,也可以避免固体附壁导致入口堵塞的问题,使得整个工艺过程中没有了溶剂回收、精馏、循环精制环节,制备工艺更为简便,能耗更低,成本更少。
以上为本申请的概述,可能有简化、概括和省略细节的情况,因此本领域的技术人员应该认识到,该部分仅是示例说明性的,而非旨在以任何方式限定本申请范围。本概述部分既非旨在确定所要求保护主题的关键特征或必要特征,也非旨在用作为确定所要求保护主题的范围的辅助手段。
实施例
为了可以更充分地理解本发明,示出了以下实施例。应当理解,这些实施例仅出于说 明性目的,而不以任何方式解释为是限制性的。
实施例中提到的一些名词缩写如表1所示。
表1:名词缩写
英文缩写 中文名称
PDI 五亚甲基二异氰酸酯
PDA 戊二胺
以下各个实施例中使用的物料比、反应条件以及最终收率等的总结如表2所示。
表2:由PDA盐酸盐制备PDI
(实施例1A-1T骤冷介质为光气,实施例1U骤冷介质为光气+PDI混合液)
Figure PCTCN2022104181-appb-000003
Figure PCTCN2022104181-appb-000004
Figure PCTCN2022104181-appb-000005
Figure PCTCN2022104181-appb-000006
实施例1A:PDA盐酸盐制备PDI
将175g(1mol)PDA盐酸盐与1188g(12mol)液态光气于0℃搅拌混合均匀,送入10L高压釜中(超临界反应器),高压釜内置均质装置。
开启搅拌同时开启内置均质泵,剪切混匀后加热10L高压釜,使釜内温度缓慢升至182℃(光气超临界温度),观察压力,小于10MPa则继续后续操作,如大于10MPa则停止加热,当温度到达182℃,记录压力为6.6MPa,在该条件下保温20min。
预热4mm内径管式反应器(减压反应器),使其温度达到300℃,随后缓慢打开高压釜阀门,通过调节阀控制反应液流出速度,使反应液通过管式反应器的时间为5s,(即停留时间为5s),同时控制管道压力为80KPa,流出气(液)通过-20℃光气极冷捕汲,获得产品收集液。
收集液分离出氯化氢气体后回收光气,随后将剩余物称重得159.4g,做气相定量分析,结果显示含量为88.6%,收率为92.3%。
实施例1B:PDA盐酸盐制备PDI(不混合PDA盐酸盐和光气,分别预热)
将PDA盐酸盐与液态光气于两个高压管路中分别加热至182℃。
预热4mm内径管式反应器(减压反应器),使其温度达到300℃,将加热至182℃的光气和PDA盐酸盐按照摩尔比12∶1通入管式反应器,控制通过时间为5s,同时控制管道压力为80KPa,流出气(液)通过-20℃光气极冷捕汲,获得产品收集液。
收集液分离出氯化氢气体后回收光气,随后剩余物气相分析,发现有大量杂质,将杂质分离后通过分析为多氢吡啶类杂质。
实施例1C:PDA盐酸盐制备PDI(不均质剪切)
将175g(1mol)PDA盐酸盐与1188g(12mol)液态光气于0℃搅拌混合均匀,送入10L高压釜中(超临界反应器),高压釜不带内置均质装置。
开启搅拌,反应液没有剪切均质,后加热10L高压釜,使釜内温度缓慢升至182℃(光气超临界温度),观察压力,小于10MPa则继续后续操作,如大于10MPa则停止加热,当温度到达182℃,记录压力为6.9MPa,在该条件下保温20min。
预热4mm内径管式反应器(减压反应器),使其温度达到300℃,随后缓慢打开高压釜阀门,通过调节阀控制反应液流出速度,使反应液通过管式反应器的时间为5s,(即停留时间为5s),同时控制管道压力为80KPa,流出气(液)通过-20℃光气极冷捕汲,获得产 品收集液,通至约一半反应液后发现管路堵塞,无法继续进行反应。
收集液分离出氯化氢气体后回收光气,随后将剩余物称重得76.1g,做气相定量分析,结果显示含量为87.9%,收率为43.7%。
实施例1D:PDA盐酸盐制备PDI(3mm反应管内径)
将175g(1mol)PDA盐酸盐与1188g(12mol)液态光气于0℃搅拌混合均匀,送入10L高压釜中(超临界反应器),高压釜不带内置均质装置。
开启搅拌,反应液没有剪切均质,后加热10L高压釜,使釜内温度缓慢升至182℃(光气超临界温度),观察压力,小于10MPa则继续后续操作,如大于10MPa则停止加热,当温度到达182℃,记录压力为7.0MPa,在该条件下保温20min。
预热3mm内径管式反应器(减压反应器),使其温度达到300℃,随后缓慢打开高压釜阀门,通过调节阀控制反应液流出速度,使反应液通过管式反应器的时间为5s,(即停留时间为5s),同时控制管道压力为80KPa,流出气(液)通过-20℃光气极冷捕汲,获得产品收集液,通至约一半反应液后发现管路堵塞,无法继续进行反应。
收集液分离出氯化氢气体后回收光气,随后将剩余物称重得44.6g,做气相定量分析,结果显示含量为88.2%,收率为25.7%。
实施例1E:PDA盐酸盐制备PDI(5mm反应管内径)
将175g(1mol)PDA盐酸盐与1188g(12mol)液态光气于0℃搅拌混合均匀,送入10L高压釜中(超临界反应器),高压釜不带内置均质装置。
开启搅拌,反应液没有剪切均质,后加热10L高压釜,使釜内温度缓慢升至182℃(光气超临界温度),观察压力,小于10MPa则继续后续操作,如大于10MPa则停止加热,当温度到达182℃,记录压力为6.5MPa,在该条件下保温20min。
预热5mm内径管式反应器(减压反应器),使其温度达到300℃,随后缓慢打开高压釜阀门,通过调节阀控制反应液流出速度,使反应液通过管式反应器的时间为5s,(即停留时间为5s),同时控制管道压力为80KPa,流出气(液)通过-20℃光气极冷捕汲,获得产品收集液。
收集液分离出氯化氢气体后回收光气,随后将剩余物称重得165.0g,做气相定量分析,结果显示含量为82.9%,收率为89.4%。
实施例1F:PDA盐酸盐制备PDI(8mm反应管内径)
将175g(1mol)PDA盐酸盐与1188g(12mol)液态光气于0℃搅拌混合均匀,送入10L高压釜中(超临界反应器),高压釜不带内置均质装置。
开启搅拌,反应液没有剪切均质,后加热10L高压釜,使釜内温度缓慢升至182℃(光气超临界温度),观察压力,小于10MPa则继续后续操作,如大于10MPa则停止加热,当温度到达182℃,记录压力为6.6MPa,在该条件下保温20min。
预热8mm内径管式反应器(减压反应器),使其温度达到300℃,随后缓慢打开高压釜阀门,通过调节阀控制反应液流出速度,使反应液通过管式反应器的时间为5s,(即停留时间为5s),同时控制管道压力为80KPa,流出气(液)通过-20℃光气极冷捕汲,获得产品收集液。
收集液分离出氯化氢气体后回收光气,随后将剩余物称重得157.1g,做气相定量分析,结果显示含量为79.3%,收率为81.4%。
实施例1G:PDA盐酸盐制备PDI(10mm反应管内径)
将175g(1mol)PDA盐酸盐与1188g(12mol)液态光气于0℃搅拌混合均匀,送入10L高压釜中(超临界反应器),高压釜不带内置均质装置。
开启搅拌,反应液没有剪切均质,后加热10L高压釜,使釜内温度缓慢升至182℃(光气超临界温度),观察压力,小于10MPa则继续后续操作,如大于10MPa则停止加热,当温度到达182℃,记录压力为6.6MPa,在该条件下保温20min。
预热10mm内径管式反应器(减压反应器),使其温度达到300℃,随后缓慢打开高压釜阀门,通过调节阀控制反应液流出速度,使反应液通过管式反应器的时间为5s,(即停留时间为5s),同时控制管道压力为80KPa,流出气(液)通过-20℃光气极冷捕汲,获得产品收集液,收集液有较多黄白色固体,检测为原料。
收集液分离出氯化氢气体后回收光气,随后将剩余物称重得142.4g,做气相定量分析,结果显示含量为43.4%,收率为40.4%。
实施例1H:PDA盐酸盐制备PDI(350℃反应)
将175g(1mol)PDA盐酸盐与1188g(12mol)液态光气于0℃搅拌混合均匀,送入10L高压釜中(超临界反应器),高压釜内置均质装置。
开启搅拌同时开启内置均质泵,剪切混匀后加热10L高压釜,使釜内温度缓慢升至182℃(光气超临界温度),观察压力,小于10MPa则继续后续操作,如大于10MPa则停止加热,当温度到达182℃,记录压力为7.0MPa,在该条件下保温20min。
预热4mm内径管式反应器(减压反应器),使其温度达到350℃,随后缓慢打开高压釜阀门,通过调节阀控制反应液流出速度,使反应液通过管式反应器的时间为5s,(即停留时间为5s),同时控制管道压力为80KPa,流出气(液)通过-20℃光气极冷捕汲,获得产品收集液。
收集液分离出氯化氢气体后回收光气,随后将剩余物称重得151.3g,做气相定量分析,结果显示含量为82.2%,收率为81.3%。
实施例1I:PDA盐酸盐制备PDI(400℃反应)
将175g(1mol)PDA盐酸盐与1188g(12mol)液态光气于0℃搅拌混合均匀,送入10L高压釜中(超临界反应器),高压釜内置均质装置。
开启搅拌同时开启内置均质泵,剪切混匀后加热10L高压釜,使釜内温度缓慢升至182℃(光气超临界温度),观察压力,小于10MPa则继续后续操作,如大于10MPa则停止加热,当温度到达182℃,记录压力为6.7MPa,在该条件下保温20min。
预热4mm内径管式反应器(减压反应器),使其温度达到400℃,随后缓慢打开高压釜阀门,通过调节阀控制反应液流出速度,使反应液通过管式反应器的时间为5s,(即停留时间为5s),同时控制管道压力为80KPa,流出气(液)通过-20℃光气极冷捕汲,获得产品收集液,收集液含有较多焦油和碳渣。
收集液分离出氯化氢气体后回收光气,随后将剩余物称重得129.2g,做气相定量分析,结果显示含量为63.0%,收率为53.2%。
实施例1J:PDA盐酸盐制备PDI(250℃反应)
将175g(1mol)PDA盐酸盐与1188g(12mol)液态光气于0℃搅拌混合均匀,送入10L高压釜中(超临界反应器),高压釜内置均质装置。
开启搅拌同时开启内置均质泵,剪切混匀后加热10L高压釜,使釜内温度缓慢升至182℃(光气超临界温度),观察压力,小于10MPa则继续后续操作,如大于10MPa则停止加热,当温度到达182℃,记录压力为6.4MPa,在该条件下保温20min。
预热4mm内径管式反应器(减压反应器),使其温度达到250℃,随后缓慢打开高压釜阀门,通过调节阀控制反应液流出速度,使反应液通过管式反应器的时间为5s,(即停留时间为5s),同时控制管道压力为80KPa,流出气(液)通过-20℃光气极冷捕汲,获得产品收集液,该收集液发现有白色固体,经分析为原料PDA盐酸盐。
收集液分离出氯化氢气体后回收光气,随后将剩余物称重得173.3g,做气相定量分析,结果显示含量为70.0%,收率为79.3%。
实施例1K:PDA盐酸盐制备PDI(PDA盐酸盐∶光气=1∶10摩尔比)
将175g(1mol)PDA盐酸盐与990g(10mol)光气于0℃搅拌混合均匀,送入10L高压釜中(超临界反应器),高压釜内置均质装置。
开启搅拌同时开启内置均质泵,剪切混匀后加热10L高压釜,使釜内温度缓慢升至182℃(光气超临界温度),观察压力,小于10MPa则继续后续操作,如大于10MPa则停止加热,当温度到达182℃,记录压力为5.7MPa,在该条件下保温20min。
预热4mm内径管式反应器(减压反应器),使其温度达到300℃,随后缓慢打开高压釜阀门,通过调节阀控制反应液流出速度,使反应液通过管式反应器的时间为5s,(即停留时间为5s),同时控制管道压力为80KPa,流出气(液)通过-20℃光气极冷捕汲,获得产品收集液。
收集液分离出氯化氢气体后回收光气,随后将剩余物称重得153.8g,做气相定量分析,结果显示含量为87.7%,收率为88.2%。
实施例1L:PDA盐酸盐制备PDI(PDA盐酸盐∶光气=1∶16摩尔比)
将175g(1mol)PDA盐酸盐与1584g(16mol)光气于0℃搅拌混合均匀,送入10L高压釜中(超临界反应器),高压釜内置均质装置。
开启搅拌同时开启内置均质泵,剪切混匀后加热10L高压釜,使釜内温度缓慢升至182℃(光气超临界温度),观察压力,小于10MPa则继续后续操作,如大于10MPa则停止加热,当温度到达182℃,记录压力为7.8MPa,在该条件下保温20min。
预热4mm内径管式反应器(减压反应器),使其温度达到300℃,随后缓慢打开高压釜阀门,通过调节阀控制反应液流出速度,使反应液通过管式反应器的时间为5s,(即停留时间为5s),同时控制管道压力为80KPa,流出气(液)通过-20℃光气极冷捕汲,获得产 品收集液。
收集液分离出氯化氢气体后回收光气,随后将剩余物称重得156.9g,做气相定量分析,结果显示含量为88.9%,收率为91.2%。
实施例1M:PDA盐酸盐制备PDI(PDA盐酸盐∶光气=1∶20摩尔比)
将175g(1mol)PDA盐酸盐与1977.5g(20mol)光气于0℃搅拌混合均匀,送入10L高压釜中(超临界反应器),高压釜内置均质装置。
开启搅拌同时开启内置均质泵,剪切混匀后加热10L高压釜,使釜内温度缓慢升至182℃(光气超临界温度),观察压力,小于10MPa则继续后续操作,如大于10MPa则停止加热,当温度到达182℃,记录压力为8.4MPa,在该条件下保温20min。
预热4mm内径管式反应器(减压反应器),使其温度达到300℃,随后缓慢打开高压釜阀门,通过调节阀控制反应液流出速度,使反应液通过管式反应器的时间为5s,(即停留时间为5s),同时控制管道压力为80KPa,流出气(液)通过-20℃光气极冷捕汲,获得产品收集液。
收集液分离出氯化氢气体后回收光气,随后将剩余物称重得158.7g,做气相定量分析,结果显示含量为89.2%,收率为92.5%。
实施例1N:PDA盐酸盐制备PDI(停留时间1s)
将175g(1mol)PDA盐酸盐与1188g(12mol)液态光气于0℃搅拌混合均匀,送入10L高压釜中(超临界反应器),高压釜内置均质装置。
开启搅拌同时开启内置均质泵,剪切混匀后加热10L高压釜,使釜内温度缓慢升至182℃(光气超临界温度),观察压力,小于10MPa则继续后续操作,如大于10MPa则停止加热,当温度到达182℃,记录压力为6.3MPa,在该条件下保温20min。
预热4mm内径管式反应器(减压反应器),使其温度达到300℃,随后缓慢打开高压釜阀门,通过调节阀控制反应液流出速度,使反应液通过管式反应器的时间为1s,(即停留时间为1s),同时控制管道压力为80KPa,流出气(液)通过-20℃光气极冷捕汲,获得产品收集液,该收集液发现有白色固体,经分析为原料PDA盐酸盐。
收集液分离出氯化氢气体后回收光气,随后将剩余物称重得167.5g,做气相定量分析,结果显示含量为55.0%,收率为60.2%。
实施例1O:PDA盐酸盐制备PDI(停留时间2.5s)
将175g(1mol)PDA盐酸盐与1188g(12mol)液态光气于0℃搅拌混合均匀,送入10L高压釜中(超临界反应器),高压釜内置均质装置。
开启搅拌同时开启内置均质泵,剪切混匀后加热10L高压釜,使釜内温度缓慢升至182℃(光气超临界温度),观察压力,小于10MPa则继续后续操作,如大于10MPa则停止加热,当温度到达182℃,记录压力为6.2MPa,在该条件下保温20min。
预热4mm内径管式反应器(减压反应器),使其温度达到300℃,随后缓慢打开高压釜阀门,通过调节阀控制反应液流出速度,使反应液通过管式反应器的时间为2.5s,(即停留时间为2.5s),同时控制管道压力为80KPa,流出气(液)通过-20℃光气极冷捕汲,获得产品收集液,该收集液发现有白色固体,经分析为原料PDA盐酸盐。
收集液分离出氯化氢气体后回收光气,随后将剩余物称重得156.1g,做气相定量分析,结果显示含量为69.8%,收率为71.2%。
实施例1P:PDA盐酸盐制备PDI(停留时间10s)
将175g(1mol)PDA盐酸盐与1188g(12mol)液态光气于0℃搅拌混合均匀,送入10L高压釜中(超临界反应器),高压釜内置均质装置。
开启搅拌同时开启内置均质泵,剪切混匀后加热10L高压釜,使釜内温度缓慢升至182℃(光气超临界温度),观察压力,小于10MPa则继续后续操作,如大于10MPa则停止加热,当温度到达182℃,记录压力为6.5MPa,在该条件下保温20min。
预热4mm内径管式反应器(减压反应器),使其温度达到300℃,随后缓慢打开高压釜阀门,通过调节阀控制反应液流出速度,使反应液通过管式反应器的时间为10s,(即停留时间为10s),同时控制管道压力为80KPa,流出气(液)通过-20℃光气极冷捕汲,获得产品收集液。
收集液分离出氯化氢气体后回收光气,随后将剩余物称重得155.3g,做气相定量分析,结果显示含量为88.0%,收率为89.3%。
实施例1Q:PDA盐酸盐制备PDI(停留时间20s)
将175g(1mol)PDA盐酸盐与1188g(12mol)液态光气于0℃搅拌混合均匀,送入10L高压釜中(超临界反应器),高压釜内置均质装置。
开启搅拌同时开启内置均质泵,剪切混匀后加热10L高压釜,使釜内温度缓慢升至182℃(光气超临界温度),观察压力,小于10MPa则继续后续操作,如大于10MPa则停止加热,当温度到达182℃,记录压力为6.4MPa,在该条件下保温20min。
预热4mm内径管式反应器(减压反应器),使其温度达到300℃,随后缓慢打开高压釜阀门,通过调节阀控制反应液流出速度,使反应液通过管式反应器的时间为20s,(即停留时间为20s),同时控制管道压力为80KPa,流出气(液)通过-20℃光气极冷捕汲,获得产品收集液,该收集液含有较多焦油和碳渣。
收集液分离出氯化氢气体后回收光气,随后将剩余物称重得176.7g,做气相定量分析,结果显示含量为54.2%,收率为62.6%。
实施例1R:PDA盐酸盐制备PDI(管道压力50KPa)
将175g(1mol)PDA盐酸盐与1188g(12mol)液态光气于0℃搅拌混合均匀,送入10L高压釜中(超临界反应器),高压釜内置均质装置。
开启搅拌同时开启内置均质泵,剪切混匀后加热10L高压釜,使釜内温度缓慢升至182℃(光气超临界温度),观察压力,小于10MPa则继续后续操作,如大于10MPa则停止加热,当温度到达182℃,记录压力为6.6MPa,在该条件下保温20min。
预热4mm内径管式反应器(减压反应器),使其温度达到300℃,随后缓慢打开高压釜阀门,通过调节阀控制反应液流出速度,使反应液通过管式反应器的时间为5s,(即停留时间为5s),同时控制管道压力为50KPa,流出气(液)通过-20℃光气极冷捕汲,获得产品收集液。
收集液分离出氯化氢气体后回收光气,随后将剩余物称重得160.9g,做气相定量分析,结果显示含量为81.9%,收率为85.6%。
实施例1S:PDA盐酸盐制备PDI(管道压力110KPa)
将175g(1mol)PDA盐酸盐与1188g(12mol)液态光气于0℃搅拌混合均匀,送入10L高压釜中(超临界反应器),高压釜内置均质装置。
开启搅拌同时开启内置均质泵,剪切混匀后加热10L高压釜,使釜内温度缓慢升至182℃(光气超临界温度),观察压力,小于10MPa则继续后续操作,如大于10MPa则停止加热,当温度到达182℃,记录压力为6.6MPa,在该条件下保温20min。
预热4mm内径管式反应器(减压反应器),使其温度达到300℃,随后缓慢打开高压釜阀门,通过调节阀控制反应液流出速度,使反应液通过管式反应器的时间为5s,(即停留时间为5s),同时控制管道压力为110KPa,流出气(液)通过-20℃光气极冷捕汲,获得产品收集液。
收集液分离出氯化氢气体后回收光气,随后将剩余物称重得152.3g,做气相定量分析,结果显示含量为74.3%,收率为73.5%。
实施例1T:PDA盐酸盐制备PDI(管道压力140KPa)
将175g(1mol)PDA盐酸盐与1188g(12mol)液态光气于0℃搅拌混合均匀,送入10L高压釜中(超临界反应器),高压釜内置均质装置。
开启搅拌同时开启内置均质泵,剪切混匀后加热10L高压釜,使釜内温度缓慢升至182℃(光气超临界温度),观察压力,小于10MPa则继续后续操作,如大于10MPa则停止加热,当温度到达182℃,记录压力为6.6MPa,在该条件下保温20min。
预热4mm内径管式反应器(减压反应器),使其温度达到300℃,随后缓慢打开高压釜阀门,通过调节阀控制反应液流出速度,使反应液通过管式反应器的时间为5s,(即停留时间为5s),同时控制管道压力为140KPa,流出气(液)通过-20℃光气极冷捕汲,获得产品收集液。
收集液分离出氯化氢气体后回收光气,随后将剩余物称重得162.3g,做气相定量分析,结果显示含量为68.6%,收率为72.3%。
实施例1U:PDA盐酸盐制备PDI(光气+PDI骤冷捕汲)
将175g(1mol)PDA盐酸盐与1188g(12mol)液态光气于0℃搅拌混合均匀,送入10L高压釜中(超临界反应器),高压釜内置均质装置。
开启搅拌同时开启内置均质泵,剪切混匀后加热10L高压釜,使釜内温度缓慢升至182℃(光气超临界温度),观察压力,小于10MPa则继续后续操作,如大于10MPa则停止加热,当温度到达182℃,记录压力为6.6MPa,在该条件下保温20min。
预热4mm内径管式反应器(减压反应器),使其温度达到300℃,随后缓慢打开高压釜阀门,通过调节阀控制反应液流出速度,使反应液通过管式反应器的时间为5s,(即停留时间为5s),同时控制管道压力为80KPa,流出气(液)通过-20℃光气+PDI(总用量光气 6000g+PDI 220g)极冷捕汲,获得产品收集液。
收集液分离出氯化氢气体后回收光气,随后将剩余物称重得380.6g,做气相定量分析,结果显示含量为88.4%,扣除220g骤冷捕汲用的PDI,反应收率为92.1%。

Claims (42)

  1. 一种制备异氰酸酯的方法,其特征在于,所述方法包括以下步骤:
    (a)将反应物胺料流和光气料流在-5至5℃的温度下进行混合,得到反应物胺和光气的混合物;
    (b)将步骤(a)得到的混合物的温度调节为182℃~205℃,使得所述光气处于超临界状态,在超临界反应器中进行反应至少15分钟;
    (c)使步骤(b)得到的反应产物混合物在减压的条件下进行反应,并且反应时间不超过30秒。
  2. 根据权利要求1所述的方法,其特征在于,步骤(c)中的所述减压在减压反应器中进行。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法进一步包括步骤(d)收集产物。
  4. 根据权利要求3所述的方法,其特征在于,步骤(d)包括:在所述减压反应器的出口设置骤冷区,使得步骤(c)获得的反应产物混合物与通入所述骤冷区的骤冷介质料流接触,将步骤(c)获得的所述反应产物混合物温度降低至170℃以下。
  5. 根据权利要求3或4所述的方法,其特征在于,所述方法进一步包括步骤(e)提纯产物。
  6. 根据权利要求5所述的方法,其特征在于,步骤(e)包括:
    1)将步骤(c)或步骤(d)获得的反应产物混合物通入脱气塔,其中所述反应产物混合物中的氯化氢和光气从所述脱气塔的顶部溢出并进入氯化氢/光气分离塔,其中从所述分离塔的顶部溢出的氯化氢经去尾气处理单元进行精制,形成副产物盐酸;
    2)从子步骤1)的所述分离塔的底部回收光气循环利用,形成步骤(a)中所述的光气料流;
    3)从子步骤1)的所述脱气塔的底部收集所述反应产物混合物中的异氰酸酯和副产物,使其经过轻组分脱除塔,除去轻组分副产物;
    4)从子步骤3)的所述轻组分脱除塔的底部收集异氰酸酯和重组分副产物,使其经过精制塔,从所述精制塔中收集异氰酸酯,并除去重组分副产物。
  7. 根据前述权利要求中任一项所述的方法,其特征在于,步骤(a)在步骤(b)和步骤(c)之前进行。
  8. 根据前述权利要求中任一项所述的方法,其特征在于,在步骤(a)、步骤(b)和步骤(c)中均不使用有机溶剂。
  9. 根据前述权利要求中任一项所述的方法,其特征在于,在步骤(a)中,将所述反应物胺料流和所述光气料流引入超临界反应器中进行所述混合。
  10. 根据前述权利要求中任一项所述的方法,其特征在于,在步骤(a)中,所述反应物胺料流和所述光气料流混合后经剪切乳化形成悬浮颗粒。
  11. 根据权利要求10所述的方法,其特征在于,在所述超临界反应器中进行所述剪切乳化。
  12. 根据权利要求10或11所述的方法,其特征在于,所述悬浮颗粒的直径小于或等于100μm;优选小于或等于50μm,更优选小于或等于20μm。
  13. 根据前述权利要求中任一项所述的方法,其特征在于,在步骤(a)中,所述反应物胺料流和所述光气料流经均质泵剪切乳化均匀。
  14. 根据权利要求13所述的方法,其特征在于,通过控制所述均质泵的扬程、转速、扭矩、吸力和/或剪切均质时间实现所述剪切乳化均匀。
  15. 根据权利要求14所述的方法,其特征在于,将所述均质泵的循环输出体积控制在大于或等于所述超临界反应器内持液量的10倍体积。
  16. 根据前述权利要求中任一项所述的方法,其特征在于,步骤(a)中的所述光气料流基于所述反应物胺料流的氨基计是化学计算过量的。
  17. 根据前述权利要求中任一项所述的方法,其特征在于,步骤(a)中的所述光气料流和反应物胺料流的进料量(按摩尔计)之比为7∶1至25∶1(优选12∶1)。
  18. 根据前述权利要求中任一项所述的方法,其特征在于,步骤(a)中的所述光气料流以液态的形式存在。
  19. 根据前述权利要求中任一项所述的方法,其特征在于,步骤(c)的反应温度为150℃至450℃,优选为200℃至400℃,更优选为250℃至350℃。
  20. 根据前述权利要求中任一项所述的方法,其特征在于,步骤(c)的反应压力为15KPa至500KPa,优选为50KPa至300KPa,更优选为50KPa至110KPa。
  21. 根据前述权利要求中任一项所述的方法,其特征在于,步骤(c)的反应停留时间为0.5秒至30秒,优选为1.5秒至20秒,更优选为2.5秒至10秒。
  22. 根据权利要求2-21中任一项所述的方法,其特征在于,步骤(d)的产物收集温度为170℃以下,优选为80℃至150℃,更优选为110℃至140℃。
  23. 根据权利要求3-22中任一项所述的方法,其特征在于,在步骤(d)中,利用所述骤冷介质的汽化潜热将步骤(c)中获得的反应产物混合物温度迅速降低。
  24. 根据权利要求3-23中任一项所述的方法,其特征在于,步骤(d)中所述的骤冷介质选自下组:有机溶剂、异氰酸酯、光气、氯化氢、惰性载气及其任何组合。
  25. 根据权利要求24所述的方法,其特征在于,所述有机溶剂选自下组:二氯甲烷、氯苯、邻二氯苯、苯、甲苯、二甲苯、己烷、四氢呋喃、氯萘及其任何组合。
  26. 根据权利要求3-25中任一项所述的方法,其特征在于,步骤(d)中所述的骤冷介质为液态。
  27. 根据权利要求26所述的方法,其特征在于,步骤(d)中所述的骤冷介质为液态光气。
  28. 根据前述权利要求中任一项所述的方法,其特征在于,所述减压反应器为管道反应器。
  29. 根据前述权利要求中任一项所述的方法,其特征在于,所述减压反应器的管路内径为4~9mm。
  30. 根据前述权利要求中任一项所述的方法,其特征在于,所述异氰酸酯是二异氰酸酯。
  31. 根据前述权利要求中任一项所述的方法,其特征在于,所述异氰酸酯是脂肪族二异氰酸酯或芳香族二异氰酸酯。
  32. 根据前述权利要求中任一项所述的方法,其特征在于,所述异氰酸酯选自下组:作为纯异构体或作为异构体混合物的二苯基亚甲基二异氰酸酯、作为纯异构体或异构体混合物的甲苯二异氰酸酯、2,6-二甲苯异氰酸酯、1,5-萘二异氰酸酯、甲基异氰酸酯、乙基异氰酸酯、丙基异氰酸酯酯、异丙基异氰酸酯、丁基异氰酸酯、异丁基异氰酸酯、叔丁基异氰酸酯、戊基异氰酸酯(例如,戊二异氰酸酯)、叔戊基异氰酸酯、异戊基异氰酸酯、新戊基异氰酸酯、己基异氰酸酯(例如,己二异氰酸酯)、环戊基异氰酸酯、环己基异氰酸酯、苯基异氰酸酯(例如,对苯二异氰酸酯)。
  33. 根据前述权利要求中任一项所述的方法,其特征在于,所述异氰酸酯为PDI、HDI、IPDI或HTDI。
  34. 根据前述权利要求中任一项所述的方法,其特征在于,所述反应物胺的结构式为 R(NH 2) n,其中n为1、2或3,R为脂肪族或芳香族烃基。
  35. 根据权利要求34所述的方法,其特征在于,n为2,并且R为脂肪族烃基。
  36. 根据权利要求35所述的方法,其特征在于,n为2,并且R为具有2-10个碳原子的脂肪族烃基。
  37. 根据权利要求36所述的方法,其特征在于,n为2,并且R为具有3-10个碳原子的直链或环状脂肪族烃基。
  38. 根据前述权利要求中任一项所述的方法,其特征在于,所述反应物胺以游离态的形式存在。
  39. 根据前述权利要求中任一项所述的方法,其特征在于,所述反应物胺以胺盐的形式存在。
  40. 根据权利要求39所述的方法,其特征在于,所述胺盐选自下组:盐酸盐、硫酸盐、硫酸氢盐、硝酸盐和碳酸盐。
  41. 根据前述权利要求中任一项所述的方法,其特征在于,所述反应物胺选自下组中的一种或多种:乙胺、丁胺、戊二胺、己二胺、1,4-二氨基丁烷、1,8-二氨基辛烷、苯胺、对苯二胺、间苯二甲胺、甲苯二胺、1,5-萘二胺、二苯基甲烷二胺、二环己基甲烷二胺、间环己基二亚甲基二胺、异佛尔酮二胺、甲基环己二胺、反式-1,4-环己二胺。
  42. 根据前述权利要求中任一项所述的方法,其特征在于,所述反应物胺选自下组:PDA、PDA盐酸盐、HDA、HDA盐酸盐、IPDA、IPDA盐酸盐、HTDA和HTDA盐酸盐。
PCT/CN2022/104181 2022-07-06 2022-07-06 超临界光气化法结合管道化法制备异氰酸酯的方法 WO2024007204A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/104181 WO2024007204A1 (zh) 2022-07-06 2022-07-06 超临界光气化法结合管道化法制备异氰酸酯的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/104181 WO2024007204A1 (zh) 2022-07-06 2022-07-06 超临界光气化法结合管道化法制备异氰酸酯的方法

Publications (1)

Publication Number Publication Date
WO2024007204A1 true WO2024007204A1 (zh) 2024-01-11

Family

ID=89454786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104181 WO2024007204A1 (zh) 2022-07-06 2022-07-06 超临界光气化法结合管道化法制备异氰酸酯的方法

Country Status (1)

Country Link
WO (1) WO2024007204A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101205197A (zh) * 2006-12-13 2008-06-25 拜尔材料科学股份公司 在气相中制备异氰酸酯的方法
CN101429138A (zh) * 2008-12-18 2009-05-13 宁波万华聚氨酯有限公司 一种在气相中制备异氰酸酯的方法
CN101489996A (zh) * 2006-07-13 2009-07-22 巴斯夫欧洲公司 生产异氰酸酯的方法
CN101805272A (zh) * 2010-04-21 2010-08-18 烟台万华聚氨酯股份有限公司 一种通过界面光气化反应制备异氰酸酯的方法
CN102070491A (zh) * 2010-11-26 2011-05-25 烟台万华聚氨酯股份有限公司 基于成盐光气化反应制备苯二亚甲基二异氰酸酯的方法
CN107935889A (zh) * 2017-11-29 2018-04-20 万华化学集团股份有限公司 一种单异氰酸酯的制备方法及系统
CN111825572A (zh) * 2019-04-15 2020-10-27 万华化学集团股份有限公司 一种成盐-雾化光气化法制备异氰酸酯的方法
CN113105364A (zh) * 2021-04-08 2021-07-13 广安摩珈生物科技有限公司 制备异氰酸酯的方法和系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101489996A (zh) * 2006-07-13 2009-07-22 巴斯夫欧洲公司 生产异氰酸酯的方法
CN101205197A (zh) * 2006-12-13 2008-06-25 拜尔材料科学股份公司 在气相中制备异氰酸酯的方法
CN101429138A (zh) * 2008-12-18 2009-05-13 宁波万华聚氨酯有限公司 一种在气相中制备异氰酸酯的方法
CN101805272A (zh) * 2010-04-21 2010-08-18 烟台万华聚氨酯股份有限公司 一种通过界面光气化反应制备异氰酸酯的方法
CN102070491A (zh) * 2010-11-26 2011-05-25 烟台万华聚氨酯股份有限公司 基于成盐光气化反应制备苯二亚甲基二异氰酸酯的方法
CN107935889A (zh) * 2017-11-29 2018-04-20 万华化学集团股份有限公司 一种单异氰酸酯的制备方法及系统
CN111825572A (zh) * 2019-04-15 2020-10-27 万华化学集团股份有限公司 一种成盐-雾化光气化法制备异氰酸酯的方法
CN113105364A (zh) * 2021-04-08 2021-07-13 广安摩珈生物科技有限公司 制备异氰酸酯的方法和系统

Similar Documents

Publication Publication Date Title
US4851570A (en) Process for the continuous production of mono- and polyisocyanates
CA1317306C (en) Process for the continuous preparation of monoisocyanates or polyisocyanates
US5391683A (en) Preparation of aromatic polyisocyanates
US5516935A (en) Process for the production of diisocyanates
US11939280B2 (en) Method for preparing isophorone diisocyanate
US8026387B2 (en) Method for producing isocyanates
JPH0641046A (ja) 芳香族ジイソシアネートの製造方法
CN101429139B (zh) 二环己基甲烷二异氰酸酯及其中间体的制备方法
SK58597A3 (en) Process for preparing isocyanates
JP2008503532A (ja) イソシアネートの製造方法
CN106715385B (zh) 在气相中制备异氰酸酯的方法
US8748655B2 (en) Process for preparing light-coloured isocyanates of the diphenylmethane series
KR101685699B1 (ko) 이소시아네이트의 기상 제조 방법
US10851048B2 (en) Process for preparing an isocyanate by partly adiabatically operated phosgenation of the corresponding amine
WO2019245192A1 (ko) 지방족 이소시아네이트의 제조방법
WO2024007204A1 (zh) 超临界光气化法结合管道化法制备异氰酸酯的方法
US5599968A (en) Continuous process for the preparation of organic isocyanates
JP2013505280A (ja) イソシアナートの製造方法
CN115043758B (zh) 超临界光气化法结合管道化法制备异氰酸酯的方法
JP7093183B2 (ja) 気相中におけるジイソシアネートの製造方法
WO2007134521A1 (fr) Appareil et procédé permettant la préparation de décyclohexanol, de cyclohexanone et d'acide adipique par oxydation à l'air de cyclohexane
CN115108942B (zh) 超临界光气化反应制备异氰酸酯的方法
US10858311B2 (en) Method for producing isocyanates
CN115093348B (zh) 管道光气法制备异氰酸酯的方法
US20090112018A1 (en) Method for producing polyisocyanates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949791

Country of ref document: EP

Kind code of ref document: A1