WO2024005553A1 - 양극 활물질, 이의 제조방법, 및 이를 포함하는 양극 및 리튬 이차전지 - Google Patents

양극 활물질, 이의 제조방법, 및 이를 포함하는 양극 및 리튬 이차전지 Download PDF

Info

Publication number
WO2024005553A1
WO2024005553A1 PCT/KR2023/009069 KR2023009069W WO2024005553A1 WO 2024005553 A1 WO2024005553 A1 WO 2024005553A1 KR 2023009069 W KR2023009069 W KR 2023009069W WO 2024005553 A1 WO2024005553 A1 WO 2024005553A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
lithium
transition metal
Prior art date
Application number
PCT/KR2023/009069
Other languages
English (en)
French (fr)
Inventor
정진후
정명기
주진욱
우상원
황주경
정진희
구예현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202380017230.6A priority Critical patent/CN118661291A/zh
Priority to EP23831912.3A priority patent/EP4451387A1/en
Publication of WO2024005553A1 publication Critical patent/WO2024005553A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material containing a lithium composite transition metal oxide in the form of a single particle, a method of manufacturing the same, and a positive electrode and lithium secondary battery containing the same.
  • the development of single particle cathode materials is accelerating.
  • the cathode material in the form of secondary particles generates a lot of gas when applied to a lithium secondary battery, causing the problem of expanding the volume of the battery, and increasing the nickel content in the cathode material for high capacity also increases the risk of fire.
  • the demand for the development of single particle type cathode materials is increasing.
  • single-particle cathode materials have a problem of poor resistance characteristics due to their low specific surface area.
  • the present invention is an invention to solve the above problems, and provides a positive electrode active material containing a lithium composite transition metal oxide in the form of a single particle that has excellent structural stability and can improve the initial efficiency and resistance characteristics of the battery when applied to the battery.
  • the purpose is to
  • the present invention aims to provide a manufacturing method for manufacturing the positive electrode active material.
  • the present invention aims to provide a lithium secondary battery with improved initial efficiency, resistance characteristics, etc., including the positive electrode active material.
  • the present invention provides a positive electrode active material, a method for manufacturing a positive electrode active material, a positive electrode, and a lithium secondary battery.
  • the present invention provides a positive electrode active material comprising a lithium composite transition metal oxide in the form of a single particle, wherein the lithium composite transition metal oxide includes Al, Y, and Zr.
  • the present invention provides the positive electrode active material according to (1) above, wherein the lithium composite transition metal oxide has an average particle diameter (D 50 ) of 2.5 ⁇ m to 5.5 ⁇ m.
  • the present invention provides the positive electrode active material according to (1) or (2) above, wherein Al is contained in an amount of 500 ppm to 3,000 ppm based on the total weight of the lithium composite transition metal oxide.
  • the present invention provides the positive electrode active material according to any one of (1) to (3) above, wherein Y is contained in an amount of 100 ppm to 2,000 ppm based on the total weight of the lithium composite transition metal oxide.
  • the present invention provides the positive electrode active material according to any one of (1) to (4) above, wherein Zr is contained in an amount of 500 ppm to 5,000 ppm based on the total weight of the lithium composite transition metal oxide.
  • the present invention provides a positive electrode active material according to any one of (1) to (5) above, wherein the lithium composite transition metal oxide contains 60 mol% or more of nickel relative to the total number of moles of metals excluding lithium. do.
  • the present invention provides the positive electrode active material according to any one of (1) to (6) above, wherein the lithium composite transition metal oxide has a composition represented by the following formula (1).
  • M1 is one or more selected from B, Ti, W, Nb, Sr, Mo, Mg, P, V, Ta, Ga and Ca,
  • A is one or more selected from F, Cl, Br, I and S,
  • the present invention provides the positive electrode active material according to any one of (1) to (7) above, further comprising a coating portion containing Co formed on the single particle lithium composite transition metal oxide.
  • the present invention provides the positive electrode active material according to (8) above, wherein the coating portion further includes Al, Zr, or a combination thereof.
  • the present invention provides (A) a positive electrode active material precursor that is a composite transition metal hydroxide, a composite transition metal oxyhydroxide, or a combination thereof, a first lithium-containing raw material, an aluminum-containing raw material, a yttrium-containing raw material, and a zirconium-containing raw material. Preparing a mixture by mixing; (B) producing a first fired product by first firing the mixture at a temperature of 820°C to 950°C; and (C) selectively mixing a second lithium-containing raw material with the first sintered product and then performing secondary sintering at a temperature of 700°C to 850°C to produce a second sintered product. Provides a manufacturing method.
  • the present invention provides a method for producing a positive electrode active material in (10), further comprising the step (B') of pulverizing the primary fired product before the step (C).
  • the present invention provides a method for producing a positive electrode active material according to (10) or (11), further comprising (C') pulverizing the secondary fired product.
  • the present invention relates to the production of a positive electrode active material according to any one of (10) to (12) above, further comprising the step of (D) mixing the secondary fired product and the cobalt-containing coating material and then heat treating. Provides a method.
  • the present invention provides a method for producing a positive electrode active material according to (14) above, wherein the aluminum-containing coating material is mixed in an amount of 0.03 parts by weight to 0.10 parts by weight based on 100 parts by weight of the secondary fired product. .
  • the present invention provides a method for producing a positive electrode active material according to any one of (13) to (16) above, wherein the heat treatment is performed under an oxygen atmosphere.
  • the present invention provides a method for producing a positive electrode active material according to any one of (13) to (17) above, wherein the heat treatment is performed at a temperature of 600°C to 800°C.
  • the present invention provides a positive electrode containing the positive electrode active material according to any one of (1) to (9) above.
  • the present invention provides an anode according to (19) above; cathode; a separator disposed between the anode and the cathode; It provides a lithium secondary battery including; and an electrolyte.
  • the positive electrode active material of the present invention includes a lithium composite transition metal oxide in the form of a single particle, and the lithium composite transition metal oxide includes Al, Y, and Zr, and provides initial efficiency, resistance characteristics, capacity characteristics, and lifespan characteristics of a lithium secondary battery. etc. can be improved.
  • the above-described positive active material can be effectively produced.
  • Figure 1 shows TEM EDX-Mapping data of the positive electrode active material of Example 1.
  • the term 'on' means not only the case where a certain component is formed directly on top of another component, but also the case where a third component is interposed between these components.
  • 'single particle type positive electrode active material' is a concept in contrast to the positive electrode active material in the form of spherical secondary particles formed by agglomerating tens to hundreds of primary particles manufactured by conventional methods, and is composed of 10 or less particles. It refers to a positive electrode active material composed of primary particles.
  • the positive electrode active material in the form of a single particle may be a single particle composed of one primary particle, or may be a secondary particle in which several primary particles are aggregated.
  • 'Primary particle' refers to the minimum unit of particle recognized when observing a positive electrode active material through a scanning electron microscope
  • 'secondary particle' refers to a secondary structure formed by aggregating a plurality of primary particles.
  • the term 'average particle diameter (D 50 )' refers to the particle size at 50% of the cumulative volume distribution according to particle size.
  • the average particle size is determined by dispersing the powder to be measured in a dispersion medium and then introducing it into a commercially available laser diffraction particle size measurement device (for example, Microtrac's S3500) to measure the difference in diffraction patterns depending on the particle size when the particles pass through the laser beam.
  • D 50 can be measured by calculating the particle size distribution and calculating the particle diameter at a point that is 50% of the volume cumulative distribution according to the particle size in the measuring device.
  • the present invention provides a positive electrode active material comprising a lithium composite transition metal oxide in the form of a single particle, wherein the lithium composite transition metal oxide includes Al, Y, and Zr.
  • the lithium composite transition metal oxide may have a layered structure.
  • the present inventors have found that when the positive electrode active material includes a lithium composite transition metal oxide in the form of a single particle, and the lithium composite transition metal oxide includes Al, Y, and Zr as dopants, the structural stability of the positive electrode active material increases, and cation mixing (
  • the present invention was completed by finding that the initial efficiency, resistance characteristics, capacity characteristics, lifespan characteristics, etc. of lithium secondary batteries can be improved by reducing cation mixing and having a large grain size of about 500nm to 4 ⁇ m.
  • the present inventors included Zr and Al as dopants to ensure the structural stability of the single-particle positive active material with a small average particle diameter.
  • Al is included as a dopant, there is a problem in which the grain size cannot be increased, which is to be solved. For this reason, the present invention was completed by simultaneously including Y.
  • the single particle lithium composite transition metal oxide may have an average particle diameter (D 50 ) of 2.5 ⁇ m to 5.5 ⁇ m, specifically 2.5 ⁇ m, 3.0 ⁇ m or more, 4.5 ⁇ m, 5.5 ⁇ m or less.
  • the average particle diameter (D 50 ) of the lithium composite transition metal oxide is within the above range, electrochemical performance can be optimized.
  • the average particle diameter (D 50 ) of the lithium composite transition metal oxide is less than 2.5 ⁇ m, there is a problem that the lifespan characteristics of the battery decreases and the amount of gas generation increases, and when it exceeds 5.5 ⁇ m, the capacity characteristics and resistance of the battery decrease. There is a problem with the characteristics deteriorating.
  • the Al may be included in an amount of 500 ppm to 3,000 ppm based on the total weight of the lithium composite transition metal oxide.
  • the internal crystal structure of the positive electrode active material is stabilized, and the capacity and resistance characteristics of the battery can be improved.
  • Y may be included in an amount of 100 ppm to 2,000 ppm based on the total weight of the lithium composite transition metal oxide.
  • the grain size contained in one particle satisfies the range of 500 nm to 4 ⁇ m, so the capacity characteristics and life characteristics of the battery can be improved.
  • the Zr may be included in an amount of 500 ppm to 5,000 ppm based on the total weight of the lithium composite transition metal oxide.
  • Zr is stably doped into the lithium layer, thereby improving structural stability during insertion and detachment of lithium, and thus the lifespan characteristics and resistance characteristics of the battery can be improved.
  • the lithium composite transition metal oxide may contain 60 mol% or more, specifically, 80 mol% or more, and more specifically, 85 mol% or more of nickel based on the total number of moles of metals excluding lithium. That is, the lithium composite transition metal oxide may be a high-nickel (High Ni)-based lithium composite transition metal oxide. In this case, the energy density of the lithium secondary battery can be improved.
  • the lithium composite transition metal oxide may have a composition represented by the following Chemical Formula 1.
  • the lithium composite transition metal oxide has a layered structure.
  • M1 is one or more selected from B, Ti, W, Nb, Sr, Mo, Mg, P, V, Ta, Ga and Ca,
  • A is one or more selected from F, Cl, Br, I and S,
  • the a refers to the atomic fraction of nickel among the metal elements in the lithium composite transition metal oxide, and may be 0.6 ⁇ a ⁇ 1, 0.8 ⁇ a ⁇ 0.98, or 0.85 ⁇ a ⁇ 0.95.
  • the b refers to the atomic fraction of cobalt among the metal elements in the lithium composite transition metal oxide, and may be 0 ⁇ b ⁇ 0.4, 0.01 ⁇ b ⁇ 0.2, or 0.01 ⁇ b ⁇ 0.15.
  • the c refers to the atomic fraction of manganese among the metal elements in the lithium composite transition metal oxide, and may be 0 ⁇ c ⁇ 0.4, 0.01 ⁇ c ⁇ 0.2, or 0.01 ⁇ c ⁇ 0.15.
  • the d refers to the atomic fraction of aluminum among the metal elements in the lithium composite transition metal oxide, and may be 0 ⁇ d ⁇ 0.01, 0.002 ⁇ d ⁇ 0.008, or 0.003 ⁇ d ⁇ 0.006.
  • the e refers to the atomic fraction of yttrium among metal elements in the lithium composite transition metal oxide, and may be 0 ⁇ e ⁇ 0.0006, 0.0001 ⁇ e ⁇ 0.0005, or 0.0002 ⁇ e ⁇ 0.0003.
  • the f refers to the atomic fraction of zirconium among the metal elements in the lithium composite transition metal oxide, and may be 0 ⁇ f ⁇ 0.005, 0.001 ⁇ f ⁇ 0.003, or 0.001 ⁇ f ⁇ 0.002.
  • the g refers to the atomic fraction of the M1 element among the metal elements in the lithium composite transition metal oxide, and may be 0 ⁇ g ⁇ 0.2, 0 ⁇ g ⁇ 0.1, or 0 ⁇ g ⁇ 0.05.
  • the positive electrode active material may further include a coating portion containing Co formed on the single particle lithium composite transition metal oxide.
  • the coating part may further include Al, Zr, or a combination thereof.
  • the coating part may have the form of a thin film, and may be formed entirely or locally on the lithium composite transition metal oxide.
  • Co present in the coating portion may be contained in an amount of 0.5 mol% to 3 mol% based on the total number of moles of metals excluding lithium included in the lithium composite transition metal oxide. In this case, residual lithium by-products can be further reduced, and lifespan and resistance characteristics can be further improved.
  • Al present in the coating portion may be included in an amount of 300 ppm to 10,000 ppm based on the total weight of the lithium composite transition metal oxide. In this case, structural stability can be further increased, and life characteristics, resistance characteristics, etc. can be further improved.
  • the present invention provides a method for manufacturing the above-described positive electrode active material. That is, the positive electrode active material according to the present invention is manufactured by the positive electrode active material manufacturing method below.
  • the method for producing a positive electrode active material according to the present invention is (A) a positive electrode active material precursor that is a composite transition metal hydroxide, a composite transition metal oxyhydroxide, or a combination thereof, a first lithium-containing raw material, an aluminum-containing raw material, a yttrium-containing raw material, and a zirconium Preparing a mixture by mixing the containing raw materials; (B) producing a first fired product by first firing the mixture at a temperature of 820°C to 950°C; and (C) selectively mixing a second lithium-containing raw material with the first fired product and performing secondary firing at a temperature of 700°C to 850°C to produce a second fired product.
  • A a positive electrode active material precursor that is a composite transition metal hydroxide, a composite transition metal oxyhydroxide, or a combination thereof, a first lithium-containing raw material, an aluminum-containing raw material, a yttrium-containing raw material, and a zirconium Preparing
  • the aluminum-containing raw material may be one or more selected from Al(OH) 3 , Al 2 O 3 , AlCl 3 , Al(NO) 3 , AlSO 4 and Al 2 S 3 , and specifically, Al(OH) 3 , Al 2 O 3 and Al(NO) 3 , and more specifically, Al(OH) 3 .
  • the aluminum-containing raw material may be added in an amount of 500 ppm to 3,000 ppm based on the total weight of the positive electrode active material precursor.
  • the yttrium-containing raw material may be one or more selected from YCl 3 , Y 2 O 3 , Y(NO 3 ) 3 , Y(OH) 3 , YSZ, Y 2 (SO4) 3, and Y 2 S 3 , and may be specifically It may be one or more selected from Y 2 O 3 and Y (OH) 3 , more specifically Y 2 O 3 .
  • the yttrium-containing raw material may be added in an amount of 100 ppm to 2000 ppm based on the total weight of the positive electrode active material precursor.
  • the zirconium-containing raw material may be one or more selected from Zr(OH) 4 , ZrO 2 , Zr(NO 3 ) 4 , ZrCl 4 , ZrS 2 , Zr(SO 4 ) 2 and C 8 H 12 O 8 Zr. , specifically, it may be one or more types selected from Zr(OH) 4 and ZrO 2 , and more specifically, ZrO 2 .
  • the zirconium-containing raw material may be added in an amount of 500ppm to 5000ppm based on the total weight of the positive electrode active material precursor.
  • the primary particles of the positive electrode active material precursor are aggregated to produce a primary fired product in the form of single particles.
  • the primary particles of the positive electrode active material precursor are aggregated to form a structurally stable primary calcination product in the form of single particles, and when the primary calcination temperature is less than 820°C, the primary particles
  • the problem of insufficient cohesion is that, when the temperature exceeds 950°C, a structurally unstable fired product with low crystallinity is produced.
  • the first calcination may be performed under an oxygen atmosphere in order to prevent the lithium transition metal oxide from degenerating into a rock salt structure.
  • the primary firing is performed for 3 hours to 12 hours, specifically 6 hours to 12 hours, and more specifically 9 hours, in order to agglomerate the primary particles and improve the crystallinity of the primary fired product. It may be performed for up to 12 hours.
  • the first fired product is second fired at a temperature of 700°C to 850°C
  • lithium is inserted into the first fired product to produce a second fired product.
  • the secondary fired product is a lithium complex transition metal oxide in the form of a single particle.
  • the secondary firing temperature When the secondary firing temperature is within the above range, lithium is inserted into the rock salt structure that may be formed on the surface of the primary fired product due to the high temperature during primary firing, restoring the layered structure and reducing lithium by-products. .
  • the secondary firing temperature is less than 700°C, the temperature is low and the lithium insertion speed is slow. If it is over 850°C, the temperature is high and the surface of the primary firing product degenerates into a rock salt structure and lithium by-products remain. There is.
  • the secondary calcination may be performed under an oxygen atmosphere in order to prevent the lithium transition metal oxide from degenerating into a rock salt structure.
  • the secondary firing may be performed for 3 hours to 12 hours, specifically 6 hours to 12 hours, and more specifically 9 hours to 12 hours in terms of increasing the crystallinity of the internal crystal structure of the positive electrode active material. there is.
  • the method for producing a positive electrode active material according to the present invention may further include the step (B') of pulverizing the first fired product before the step (C).
  • the step (B') may be pulverizing the primary fired product so that the average particle diameter (D 50 ) is 2.5 ⁇ m to 5.5 ⁇ m.
  • the method for producing a positive electrode active material according to the present invention may further include (C') pulverizing the secondary fired product.
  • the step (C') may be pulverizing the primary fired product so that the average particle diameter (D 50 ) is 2.5 ⁇ m to 5.5 ⁇ m.
  • the grinding in steps (B') and (C') can be performed using a pin mill, ACM, jet mill, etc. Meanwhile, the pin mill is performed at 18,000 rpm, the ACM is performed at 6,000 rpm for classification and 12,000 rpm for main milling using a device from Hosokawa, and the jet mill is performed at a grinding pressure of 6 bar and 3,500 rpm for classification using a device from ZM solutions. You can.
  • the positive electrode active material according to the present invention may be manufactured by a process in which the lithium-containing raw material is added in two separate steps, or it can be manufactured by a process in which the lithium-containing raw material is added all at once. That is, the lithium-containing raw materials may all be added before the first firing, or they may be separately added before the first firing and before the second firing.
  • the positive electrode active material according to the present invention is, for example, first fired by first firing the mixture prepared in step (A) at a temperature of 820°C to 950°C. After obtaining the properties and pulverizing the primary fired product at room temperature so that the average particle diameter (D 50 ) is 2.5 ⁇ m to 5.5 ⁇ m, a second lithium-containing raw material is mixed with the pulverized primary fired product, and the primary fired product is heated at 700° C. to 700° C. A secondary fired product can be obtained by secondary firing at a temperature of 850°C, and the secondary fired product can be manufactured by grinding the secondary fired product at room temperature so that the average particle diameter (D 50 ) is 2.5 ⁇ m to 5.5 ⁇ m.
  • the first lithium-containing raw material is the ratio of the total number of moles (M) of the transition metal contained in the positive electrode active material precursor and the number of moles of lithium (Li) contained in the first lithium-containing raw material.
  • M:Li may be mixed to 1:0.95 to 1:1.02
  • the second lithium-containing raw material in step (C) is the total mole of transition metal contained in the positive electrode active material precursor in step (A).
  • the ratio (M:Li) of the number (M) and the number of moles (Li) of lithium contained in the second lithium-containing raw material may be mixed such that the ratio (M:Li) is 1:0.01 to 1:1.10.
  • the positive electrode active material according to the present invention is, for example, first fired at a temperature of 820 °C to 950 °C of the mixture prepared in step (A), and then immediately calcinated at 700 °C to 950 °C. Lower the temperature to 850°C (do not lower the temperature to room temperature), and perform secondary firing at a temperature of 700°C to 850°C to obtain a secondary fired product.
  • the secondary fired product is obtained at room temperature with an average particle diameter (D 50 ) of 2.5 ⁇ m to 2.5 ⁇ m. It can be manufactured by grinding to 5.5 ⁇ m.
  • the first lithium-containing raw material is the ratio of the total number of moles (M) of the transition metal contained in the positive electrode active material precursor and the number of moles of lithium (Li) contained in the first lithium-containing raw material.
  • M:Li may be mixed to be 1:1.00 to 1:1.10.
  • the first sintering temperature may be higher than the second sintering temperature.
  • the method for producing a positive electrode active material according to the present invention may further include the step of (D) mixing the secondary fired product and a cobalt-containing coating material, and then heat treating.
  • a coating containing Co is formed on the secondary fired product (lithium complex transition metal oxide in the form of a single particle).
  • an aluminum-containing coating material, a zirconium-containing coating material, or a combination thereof may be further mixed.
  • the coating part may further include Al, Zr, or a combination thereof in addition to Co.
  • the cobalt-containing coating material has a ratio (B/A) of the mole number of cobalt contained in the cobalt-containing coating material to the total mole number (A) of metals excluding lithium contained in the secondary fired product. ) may be mixed in an amount such that it is 0.01 to 0.03. In this case, there is an advantage that lithium by-products can be controlled in a positive electrode active material manufacturing process that does not include a water washing process.
  • the cobalt-containing coating material may be one or more selected from Co(OH) 2 , Co 3 O 4 , CoO, (CH 3 CO 2 ) 2 Co, CoCl 2 and CoSO4 ⁇ xH 2 O, and specifically, Co( OH) may be 2 .
  • the aluminum-containing coating material may be mixed in an amount of 0.03 to 0.10 parts by weight based on 100 parts by weight of the secondary fired product. In this case, lifespan, resistance, and gas generation can be improved by ensuring structural stability.
  • the aluminum-containing coating materials include Al(OH) 3 , Al 2 (SO 4 ) 3 ⁇ xH 2 O, Al 2 O 3 , Al(NO 3 ) 3 ⁇ 9H 2 O, AlCl 3 and C 2 H 5 O 4 Al It may be one or more types selected from among, and specifically, it may be Al(OH) 3 .
  • the zirconium-containing coating material may be one or more selected from Zr(OH) 4 , ZrO 2 , Zr(NO 3 ) 4 , ZrCl 4 , ZrS 2 , Zr(SO 4 ) 2, and C 8 H 12 O 8 Zr. .
  • the heat treatment may be performed under an oxygen atmosphere to prevent the lithium transition metal oxide from degenerating into a rock salt structure.
  • the heat treatment may be performed at a temperature of 600°C to 800°C, specifically 650°C to 780°C, and more specifically 680°C to 720°C, in order to form the coating portion to an appropriate thickness.
  • the heat treatment may be performed for 1 hour to 10 hours, specifically 2 hours to 8 hours, and more specifically 3 hours to 6 hours in order to increase the crystallinity of the coating portion.
  • the present invention provides a positive electrode containing the above positive electrode active material.
  • the positive electrode may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector, and the positive electrode active material layer may include the positive electrode active material.
  • the positive electrode current collector may contain a highly conductive metal, and the positive electrode active material layer is easily adhered, but is not particularly limited as long as it is non-reactive within the voltage range of the battery.
  • the positive electrode current collector may be, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or an aluminum or stainless steel surface treated with carbon, nickel, titanium, silver, etc. Additionally, the positive electrode current collector may typically have a thickness of 3 ⁇ m to 500 ⁇ m, and fine irregularities may be formed on the surface of the current collector to increase the adhesion of the positive electrode active material. For example, it can be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven materials.
  • the positive electrode active material layer may optionally include a conductive material and a binder as needed, along with the positive electrode active material.
  • the positive electrode active material may be included in an amount of 80% to 99% by weight, more specifically 85% to 98.5% by weight, based on the total weight of the positive electrode active material layer, and can exhibit excellent capacity characteristics within this range.
  • the conductive material is used to provide conductivity to the electrode, and can be used without particular limitation as long as it does not cause chemical change and has electronic conductivity in the battery being constructed.
  • Specific examples include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black, and carbon fiber; Metal powders or metal fibers such as copper, nickel, aluminum, and silver; Conductive tubes such as carbon nanotubes; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Alternatively, conductive polymers such as polyphenylene derivatives may be used, and one of these may be used alone or a mixture of two or more may be used.
  • the conductive material may be included in an amount of 0.1% to 15% by weight based on the total weight of the positive electrode active material layer.
  • the binder serves to improve adhesion between positive electrode active material particles and adhesion between the positive active material and the current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylalcohol, polyacrylonitrile, and polymethylmethane.
  • Crylate polymethymethaxrylate
  • carboxymethylcellulose CMC
  • starch hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene- Diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluoroelastomer, polyacrylic acid, and polymers whose hydrogens are substituted with Li, Na, or Ca, or various copolymers thereof Combinations, etc. may be mentioned, and one type of these may be used alone or a mixture of two or more types may be used.
  • the binder may be included in an amount of 0.1% by weight to 15% by weight based on the total weight of the positive electrode active material layer.
  • the positive electrode can be manufactured according to a conventional positive electrode manufacturing method except for using the positive electrode active material described above. Specifically, the positive electrode is prepared by dissolving or dispersing the positive electrode active material and optionally a binder, a conductive material, and a dispersant in a solvent, and the composition for forming a positive active material layer is applied to the positive electrode current collector and then dried. and rolling, or by casting the composition for forming the positive electrode active material layer on a separate support and then peeling from this support and laminating the film obtained on the positive electrode current collector.
  • the solvent may be a solvent commonly used in the art, such as dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), and dimethylformamide. , DMF), acetone, or water, among which one type alone or a mixture of two or more types may be used.
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • acetone or water, among which one type alone or a mixture of two or more types may be used.
  • the amount of the solvent used is to dissolve or disperse the positive electrode active material, conductive material, binder, and dispersant in consideration of the application thickness and manufacturing yield of the slurry, and to have a viscosity capable of exhibiting excellent thickness uniformity when applied for subsequent positive electrode production. That's enough.
  • the present invention relates to the anode; cathode; A lithium secondary battery comprising a separator and an electrolyte disposed between the positive electrode and the negative electrode is provided.
  • the lithium secondary battery may optionally further include a battery container that accommodates the electrode assembly of the positive electrode, negative electrode, and separator, and a sealing member that seals the battery container.
  • the negative electrode may include a negative electrode current collector and a negative electrode active material layer located on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • it can be used on the surface of copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel. Surface treatment with carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. can be used.
  • the negative electrode current collector may typically have a thickness of 3 ⁇ m to 500 ⁇ m, and like the positive electrode current collector, fine irregularities may be formed on the surface of the current collector to strengthen the bonding force of the negative electrode active material.
  • it can be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven materials.
  • the negative electrode active material layer may optionally include a binder and a conductive material along with the negative electrode active material.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used as the negative electrode active material.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon;
  • Metallic compounds that can be alloyed with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy;
  • a composite containing the above-described metallic compound and a carbonaceous material such as a Si-C composite or Sn-C composite, may be used, and any one or a mixture of two or more of these may be used.
  • a metallic lithium thin film may be used as the negative electrode active material.
  • the carbon material may include both low-crystalline carbon and high-crystalline carbon.
  • Representative examples of low-crystalline carbon include soft carbon and hard carbon
  • high-crystalline carbon includes amorphous, plate-shaped, flaky, spherical, or fibrous natural graphite, artificial graphite, and Kish graphite.
  • graphite, pyrolytic carbon, mesophase pitch based carbonfiber, meso-carbon microbeads, mesophase pitches, and petroleum or coal tar pitch derived High-temperature calcined carbon such as cokes is a representative example.
  • the negative electrode active material may be included in an amount of 80% to 99% by weight based on the total weight of the negative electrode active material layer.
  • the binder of the negative electrode active material layer is a component that assists bonding between the conductive material, the active material, and the current collector, and is typically added in an amount of 0.1% to 10% by weight based on the total weight of the negative electrode active material layer.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, and polytetra.
  • Examples include fluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, nitrile-butadiene rubber, fluorine rubber, and various copolymers thereof.
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • nitrile-butadiene rubber fluorine rubber
  • the conductive material of the negative electrode active material layer is a component to further improve the conductivity of the negative electrode active material, and may be added in an amount of 10% by weight or less, preferably 5% by weight or less, based on the total weight of the negative electrode active material layer.
  • These conductive materials are not particularly limited as long as they have conductivity without causing chemical changes in the battery, and examples include graphite such as natural graphite or artificial graphite; Carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; fluorinated carbon; Metal powders such as aluminum and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • graphite such as natural graphite or artificial graphite
  • Carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black
  • Conductive fibers such as carbon fiber and metal fiber
  • Fluorinated carbon such as aluminum and nickel powder
  • Conductive whiskers such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the negative electrode is manufactured by applying and drying a composition for forming a negative electrode active material layer prepared by dissolving or dispersing a negative electrode active material, and optionally a binder and a conductive material in a solvent, onto a negative electrode current collector and drying the negative electrode active material layer, or by applying the composition for forming the negative electrode active material layer. It can be manufactured by casting on a separate support and then peeling from this support and laminating the obtained film onto the negative electrode current collector.
  • the separator separates the cathode from the anode and provides a passage for lithium ions to move. It can be used without particular restrictions as long as it is normally used as a separator in lithium secondary batteries. In particular, it has low resistance to ion movement in the electrolyte and has an electrolyte moisturizing ability. Excellent is desirable.
  • porous polymer films for example, porous polymer films made of polyolefin polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these. A laminated structure of two or more layers may be used.
  • porous nonwoven fabrics for example, nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers, etc.
  • a coated separator containing ceramic components or polymer materials may be used to ensure heat resistance or mechanical strength, and may optionally be used in a single-layer or multi-layer structure.
  • the electrolyte includes, but is not limited to, an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte that can be used in the manufacture of a lithium secondary battery.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent includes ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, and ⁇ -caprolactone; Ether-based solvents such as dibutyl ether or tetrahydrofuran; Ketone-based solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Carbonate-based solvents such as dimethylcarbonate (DMC), diethylcarbonate (DEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), and propylene carbonate (PC); Alcohol-based solvents such as ethyl alcohol and isopropyl alcohol; nitriles such as R-CN (R is a straight-chain, branched or ring-structured hydrocarbon group having 2 to 20 carbon atoms
  • carbonate-based solvents are preferable, and cyclic carbonates (e.g., ethylene carbonate or propylene carbonate, etc.) with high ionic conductivity and high dielectric constant that can improve the charging and discharging performance of the battery, and low-viscosity linear carbonate-based compounds ( For example, ethylmethyl carbonate, dimethyl carbonate, diethyl carbonate, etc.) are more preferable.
  • cyclic carbonates e.g., ethylene carbonate or propylene carbonate, etc.
  • low-viscosity linear carbonate-based compounds For example, ethylmethyl carbonate, dimethyl carbonate, diethyl carbonate, etc.
  • the lithium salt can be used without particular limitations as long as it is a compound that can provide lithium ions used in lithium secondary batteries.
  • the anions of the lithium salt include F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , BF 4 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3 C - , (CF 3 SO 2 ) 3 C - , CF 3 (CF 2 ) 7 SO 3 - , CF 3 CO 2 - , CH 3 CO 2 - , SCN - , and (CF 3 CF 2 SO 2 ) 2 N - It may be at least one selected from the group consisting of,
  • the lithium salt is LiPF 6 , LiClO
  • the concentration of the lithium salt is preferably used within the range of 0.1 M to 2.0 M.
  • the electrolyte has appropriate conductivity and viscosity, so excellent electrolyte performance can be achieved and lithium ions can move effectively.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and trifluoroethylene for the purpose of improving battery life characteristics, suppressing battery capacity reduction, and improving battery discharge capacity.
  • haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and trifluoroethylene
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, or aluminum trichloride may be further included. At this time, the additive may be included in an amount of 0.1% to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery containing the positive electrode active material according to the present invention has excellent initial efficiency, resistance characteristics, capacity characteristics, and lifespan characteristics, and is therefore used in portable devices such as mobile phones, laptop computers, and digital cameras, and hybrid electric vehicles. , HEV), and electric vehicles (EV) are useful in the field of electric vehicles.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape using a can, a square shape, a pouch shape, or a coin shape.
  • the lithium secondary battery according to the present invention can not only be used in battery cells used as a power source for small devices, but can also be preferably used as a unit cell in medium to large-sized battery modules containing a plurality of battery cells.
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack is a power tool; Electric vehicles, including electric vehicles (EV), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEV); Alternatively, it can be used as a power source for one or more mid- to large-sized devices among power storage systems.
  • Electric vehicles including electric vehicles (EV), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEV);
  • PHEV plug-in hybrid electric vehicles
  • the mixture was first fired at 830°C for 6 hours to obtain a primary fired product, and the primary fired product was pulverized at room temperature so that the average particle diameter (D 50 ) was 3.8 ⁇ m.
  • the pulverized primary fired product and LiOH are mixed with the ratio of the total number of moles of transition metals contained in the composite transition metal hydroxide (Ni+Co+Mn) and the number of moles of lithium contained in LiOH (Li) ((Ni+Co+ Mix so that Mn):Li) is 1:0.04, perform secondary firing at 760°C for 9 hours to obtain a secondary fired product, and grind the secondary fired product at room temperature to obtain an average particle diameter (D 50 ) of 3.8 ⁇ m.
  • a lithium composite transition metal oxide in the form of a phosphorus single particle composition: LiNi 0.87836 Co 0.03493 Mn 0.07985 Al 0.00499 Y 0.00027 Zr 0.0016 O 2 ) was obtained.
  • the single particle lithium composite transition metal oxide After uniformly mixing the single particle lithium composite transition metal oxide with Co(OH) 2 (Huayou) and Al(OH) 3 (KC Daeju), heat treatment was performed for 5 hours in an oxygen atmosphere at a temperature of 700°C.
  • a positive electrode active material composition: LiNi 0.85761 Co 0.05489 Mn 0.07978 Al 0.00586 Y 0.00027 Zr 0.00159 O 2 ) in which a coating containing Co and Al was formed on the single particle lithium composite transition metal oxide was prepared.
  • the Co(OH) 2 is the ratio of the number of moles (B) of cobalt contained in the cobalt-containing coating material to the total number of moles (A) of metals excluding lithium contained in the single particle lithium composite transition metal oxide.
  • B/A was mixed in an amount of 0.02
  • Al(OH) 3 was mixed in an amount of 0.05 parts by weight based on 100 parts by weight of the single particle lithium complex transition metal oxide.
  • the mixture was first fired at 830°C for 6 hours to obtain a primary fired product, and the primary fired product was pulverized at room temperature so that the average particle diameter (D 50 ) was 3.8 ⁇ m.
  • the pulverized primary fired product and LiOH are mixed with the ratio of the total number of moles of transition metals contained in the composite transition metal hydroxide (Ni+Co+Mn) and the number of moles of lithium contained in LiOH (Li) ((Ni+Co+ Mix so that Mn):Li) is 1:0.04, perform secondary firing at 760°C for 9 hours to obtain a secondary fired product, and grind the secondary fired product at room temperature to obtain an average particle diameter (D 50 ) of 3.8 ⁇ m.
  • a lithium complex transition metal oxide in the form of a phosphorus single particle composition: LiNi 0.87813 Co 0.03492 Mn 0.07983 Al 0.00499 Y 0.00054 Zr 0.00159 O 2 ) was obtained.
  • the single particle lithium composite transition metal oxide After uniformly mixing the single particle lithium composite transition metal oxide with Co(OH) 2 (Huayou) and Al(OH) 3 (KC Daeju), heat treatment was performed for 5 hours in an oxygen atmosphere at a temperature of 700°C.
  • a positive electrode active material composition: LiNi 0.85738 Co 0.05487 Mn 0.07976 Al 0.00586 Y 0.00054 Zr 0.00159 O 2 ) in which a coating portion containing Co and Al was formed on the single particle lithium composite transition metal oxide was prepared.
  • the Co(OH) 2 is the ratio of the number of moles (B) of cobalt contained in the cobalt-containing coating material to the total number of moles (A) of metals excluding lithium contained in the single particle lithium composite transition metal oxide.
  • B/A was mixed in an amount of 0.02
  • Al(OH) 3 was mixed in an amount of 0.05 parts by weight based on 100 parts by weight of the single particle lithium composite transition metal oxide.
  • Al(OH) 3 (KC Daeju Co., Ltd.) is 2800 ppm based on the total weight of the composite transition metal hydroxide
  • Y 2 O 3 (Neo performance Co., Ltd.) is 1000 ppm relative to the total weight of the composite transition metal hydroxide
  • ZrO 2 (R&F Co., Ltd.) A mixture was prepared by adding 1500 ppm based on the total weight of the complex transition metal hydroxide and mixing.
  • the mixture was first fired at 830°C for 6 hours to obtain a primary fired product, and the primary fired product was pulverized at room temperature so that the average particle diameter (D 50 ) was 3.8 ⁇ m.
  • the pulverized primary fired product and LiOH are mixed with the ratio of the total number of moles of transition metals contained in the composite transition metal hydroxide (Ni+Co+Mn) and the number of moles of lithium contained in LiOH (Li) ((Ni+Co+ Mix so that Mn):Li) is 1:0.04, perform secondary firing at 760°C for 9 hours to obtain a secondary fired product, and grind the secondary fired product at room temperature to obtain an average particle diameter (D 50 ) of 3.8 ⁇ m.
  • a lithium complex transition metal oxide in the form of a phosphorus single particle composition: LiNi 0.87338 Co 0.03493 Mn 0.07985 Al 0.00998 Y 0.00027 Zr 0.00159 O 2 ) was obtained.
  • the single particle lithium composite transition metal oxide After uniformly mixing the single particle lithium composite transition metal oxide with Co(OH) 2 (Huayou) and Al(OH) 3 (KC Daeju), heat treatment was performed for 5 hours in an oxygen atmosphere at a temperature of 700°C.
  • a positive electrode active material composition: LiNi 0.85262 Co 0.05489 Mn 0.07978 Al 0.01085 Y 0.00027 Zr 0.00159 O 2 ) in which a coating portion containing Co and Al was formed on the single particle lithium composite transition metal oxide was prepared.
  • the Co(OH) 2 is the ratio of the number of moles (B) of cobalt contained in the cobalt-containing coating material to the total number of moles (A) of metals excluding lithium contained in the single particle lithium composite transition metal oxide.
  • B/A was mixed in an amount of 0.02
  • Al(OH) 3 was mixed in an amount of 0.05 parts by weight based on 100 parts by weight of the single particle lithium composite transition metal oxide.
  • the mixture was first fired at 830°C for 6 hours to obtain a primary fired product, and the primary fired product was pulverized at room temperature so that the average particle diameter (D 50 ) was 3.8 ⁇ m.
  • the pulverized primary fired product and LiOH are mixed with the ratio of the total number of moles of transition metals contained in the composite transition metal hydroxide (Ni+Co+Mn) and the number of moles of lithium contained in LiOH (Li) ((Ni+Co+ Mix so that Mn):Li) is 1:0.04, perform secondary firing at 760°C for 9 hours to obtain a secondary fired product, and grind the secondary fired product at room temperature to obtain an average particle diameter (D 50 ) of 3.8 ⁇ m.
  • a lithium composite transition metal oxide in the form of a phosphorus single particle composition: LiNi 0.87651 Co 0.03486 Mn 0.07968 Al 0.00498 Y 0.00027 Zr 0.0037 O 2 ) was obtained.
  • the Co(OH) 2 is the ratio of the number of moles (B) of cobalt contained in the cobalt-containing coating material to the total number of moles (A) of metals excluding lithium contained in the single particle lithium composite transition metal oxide.
  • B/A was mixed in an amount of 0.02
  • Al(OH) 3 was mixed in an amount of 0.05 parts by weight based on 100 parts by weight of the single particle lithium composite transition metal oxide.
  • a mixture was prepared by adding 1400 ppm of Al(OH) 3 (KC Daeju) based on the total weight of the composite transition metal hydroxide and 1500 ppm of ZrO 2 (R&F) based on the total weight of the composite transition metal hydroxide and mixing.
  • KC Daeju Al(OH) 3
  • R&F ZrO 2
  • the mixture was first fired at 830°C for 6 hours to obtain a primary fired product, and the primary fired product was pulverized at room temperature so that the average particle diameter (D 50 ) was 3.8 ⁇ m.
  • the pulverized primary fired product and LiOH are mixed with the ratio of the total number of moles of transition metals contained in the composite transition metal hydroxide (Ni+Co+Mn) and the number of moles of lithium contained in LiOH (Li) ((Ni+Co+ Mix so that Mn):Li) is 1:0.04, perform secondary firing at 760°C for 9 hours to obtain a secondary fired product, and grind the secondary fired product at room temperature to obtain an average particle diameter (D 50 ) of 3.8 ⁇ m.
  • a lithium composite transition metal oxide in the form of a phosphorus single particle composition: LiNi 0.8786 Co 0.03494 Mn 0.07987 Al 0.00499 Zr 0.0016 O 2 ) was obtained.
  • the single particle lithium composite transition metal oxide After uniformly mixing the single particle lithium composite transition metal oxide with Co(OH) 2 (Huayou) and Al(OH) 3 (KC Daeju), heat treatment was performed for 5 hours in an oxygen atmosphere at a temperature of 700°C.
  • a positive electrode active material composition: LiNi 0.85784 Co 0.0549 Mn 0.0798 Al 0.00586 Zr 0.0016 O 2
  • the Co(OH) 2 is the ratio of the number of moles (B) of cobalt contained in the cobalt-containing coating material to the total number of moles (A) of metals excluding lithium contained in the single particle lithium composite transition metal oxide.
  • B/A) was mixed in an amount of 0.02
  • Al(OH) 3 was mixed in an amount of 0.05 parts by weight based on 100 parts by weight of the single particle lithium composite transition metal oxide.
  • the mixture was first fired at 830°C for 6 hours to obtain a primary fired product, and the primary fired product was pulverized at room temperature so that the average particle diameter (D 50 ) was 3.8 ⁇ m.
  • the pulverized primary fired product and LiOH are mixed with the ratio of the total number of moles of transition metals contained in the composite transition metal hydroxide (Ni+Co+Mn) and the number of moles of lithium contained in LiOH (Li) ((Ni+Co+ Mix so that Mn):Li) is 1:0.04, perform secondary firing at 760°C for 9 hours to obtain a secondary fired product, and grind the secondary fired product at room temperature to obtain an average particle diameter (D 50 ) of 3.8 ⁇ m.
  • a lithium composite transition metal oxide in the form of a phosphorus single particle composition: LiNi 0.88336 Co 0.03493 Mn 0.07985 Y 0.00027 Zr 0.00159 O 2 ) was obtained.
  • the single particle lithium composite transition metal oxide After uniformly mixing the single particle lithium composite transition metal oxide with Co(OH) 2 (Huayou) and Al(OH) 3 (KC Daeju), heat treatment was performed for 5 hours in an oxygen atmosphere at a temperature of 700°C.
  • a positive electrode active material composition: LiNi 0.86259 Co 0.05489 Mn 0.07978 Al 0.00088 Y 0.00027 Zr 0.00159 O 2 ) in which a coating portion containing Co and Al was formed on the single particle lithium composite transition metal oxide was prepared.
  • the Co(OH) 2 is the ratio of the number of moles (B) of cobalt contained in the cobalt-containing coating material to the total number of moles (A) of metals excluding lithium contained in the single particle lithium composite transition metal oxide.
  • B/A was mixed in an amount of 0.02
  • Al(OH) 3 was mixed in an amount of 0.05 parts by weight based on 100 parts by weight of the single particle lithium complex transition metal oxide.
  • the mixture was first fired at 830°C for 6 hours to obtain a primary fired product, and the primary fired product was pulverized at room temperature so that the average particle diameter (D 50 ) was 3.8 ⁇ m.
  • the pulverized primary fired product and LiOH are mixed with the ratio of the total number of moles of transition metals contained in the composite transition metal hydroxide (Ni+Co+Mn) and the number of moles of lithium contained in LiOH (Li) ((Ni+Co+ Mix so that Mn):Li) is 1:0.04, perform secondary firing at 760°C for 9 hours to obtain a secondary fired product, and grind the secondary fired product at room temperature to obtain an average particle diameter (D 50 ) of 3.8 ⁇ m.
  • a lithium composite transition metal oxide in the form of a phosphorus single particle composition: LiNi 0.87976 Co 0.03499 Mn 0.07998 Al 0.005 Y 0.00027 O 2 ) was obtained.
  • the single particle lithium composite transition metal oxide After uniformly mixing the single particle lithium composite transition metal oxide with Co(OH) 2 (Huayou) and Al(OH) 3 (KC Daeju), heat treatment was performed for 5 hours in an oxygen atmosphere at a temperature of 700°C.
  • a positive electrode active material composition: LiNi 0.85901 Co 0.05494 Mn 0.07991 Al 0.00587 Y 0.00027 O 2 ) in which a coating portion containing Co and Al was formed on the single particle lithium composite transition metal oxide was prepared.
  • the Co(OH) 2 is the ratio of the number of moles (B) of cobalt contained in the cobalt-containing coating material to the total number of moles (A) of metals excluding lithium contained in the single particle lithium composite transition metal oxide.
  • B/A was mixed in an amount of 0.02
  • Al(OH) 3 was mixed in an amount of 0.05 parts by weight based on 100 parts by weight of the single particle lithium complex transition metal oxide.
  • TEM Transmission Electron Microscope
  • the dopants Al, Y, and Zr do not have a concentration gradient within the particle and are uniformly distributed, and the coating containing Co and Al It can be seen that an additional thin film is formed on the surface of the particle.
  • Each of the positive electrode active materials, carbon black conductive material, and polyvinylidene fluoride (PVDF) binder prepared in Examples 1 to 4 and Comparative Examples 1 to 3 were dissolved in N-methylpyrrolidone (NMP) solvent at 96:2:2.
  • NMP N-methylpyrrolidone
  • a positive electrode slurry was prepared by mixing at a ratio of. The positive electrode slurry was applied to one side of an aluminum current collector, dried at 150°C, and rolled to prepare a positive electrode.
  • a lithium metal electrode was used as the negative electrode, an electrode assembly was manufactured with a porous polyethylene separator between the positive electrode and the negative electrode, the electrode assembly was placed inside the battery case, and the electrolyte solution was injected into the case to form a half battery ( half-cell) was prepared.
  • the electrolyte solution was prepared by dissolving 1.0M LiPF 6 in an organic solvent mixed with ethylene carbonate (EC):ethylmethyl carbonate (EMC):diethyl carbonate (DEC) in a volume ratio of 3:4:3.
  • the initial charge capacity and initial discharge capacity were measured while charging at 0.1C until 4.3V in CC-CV mode at 25°C and discharging to 3.0V at a constant current of 0.1C.
  • the initial efficiency and direct current internal resistance (DCIR) were calculated and shown in Table 2 below.
  • the initial efficiency value is a percentage value of the initial discharge capacity to the initial charge capacity
  • the DCIR value is calculated by dividing the difference between the voltage at 60 seconds and the initial voltage while discharging with a constant current of 0.1C by the applied current. It is a value.
  • the capacity of the lithium secondary battery was measured by repeating charge and discharge cycles 50 times at 0.33C constant current in the range of 3.0 to 4.25V at 45°C, and the percentage of the 50th cycle discharge capacity to the 1st cycle discharge capacity was calculated as the capacity retention rate. This is shown in Table 2 below.
  • the percentage of DICR obtained by dividing the voltage drop ( ⁇ V) for 60 seconds in the 50th discharge cycle by the current for DCIR, obtained by dividing the voltage drop ( ⁇ V) for 60 seconds in the 1st discharge cycle by the current is calculated as the resistance increase rate. This is shown in Table 2 below.
  • Example 1 229.5 203.4 88.6 16.3 92.9 32.3
  • Example 2 230.7 204.8 88.7 16.2 92.3 40.1
  • Example 3 229.8 204.5 89.0 15.9 92.2 38.9
  • Example 4 227.1 201.7 88.8 14.7 93.1 31.6 Comparative Example 1 227.5 200.2 88.0 16.2 91.9 38.9 Comparative Example 2 228.6 201.9 88.3 15.7 91.1 34.7 Comparative Example 3 229.7 204.4 89.0 16.6 92.2 40.4
  • the positive electrode active material of Comparative Example 1 does not contain Y and has problems with grain growth, so it can be seen that the initial efficiency and capacity maintenance characteristics of the battery containing it are reduced.
  • the positive electrode active material of Comparative Example 2 does not contain Al and thus has a high binding (defect) and increased cation mixing, it can be confirmed that the initial efficiency and capacity maintenance characteristics of the battery containing it are reduced.
  • the positive electrode active material of Comparative Example 3 does not contain Zr, which maintains structural stability, and thus has high initial resistance and resistance increase rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 단입자 형태의 양극 활물질에 관한 발명으로, 단입자 형태의 리튬 복합 전이금속 산화물을 포함하고, 상기 리튬 복합 전이금속 산화물은 Al, Y 및 Zr를 포함하는 것인 양극 활물질, 이의 제조방법 및 이를 포함하는 양극 및 리튬 이차전지에 관한 것이다.

Description

양극 활물질, 이의 제조방법, 및 이를 포함하는 양극 및 리튬 이차전지
관련 출원과의 상호 인용
본 출원은 2022년 06월 30일자 한국특허출원 제10-2022-0080870호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원이 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 단입자 형태의 리튬 복합 전이금속 산화물을 포함하는 양극 활물질, 이의 제조방법 및 이를 포함하는 양극 및 리튬 이차전지에 관한 것이다.
최근 2차 입자 형태 양극재 자체의 구조 및 열 안정성 문제를 해결하기 위하여, 단입자 형태의 양극재 개발이 가속화되고 있다. 구체적으로, 2차 입자 형태의 양극재는 이를 리튬 이차전지에 적용했을 때 기체가 많이 발생되어, 전지의 부피가 팽창하는 문제가 있고, 고용량을 위해 양극재 내 니켈의 함량을 증가시키는 경우 화재 위험성도 높아지는 문제가 있으며, 이에 따라, 단입자 형태의 양극재 개발에 대한 수요가 높아지고 있다. 그러나, 단입자 형태의 양극재는 비표면적이 낮아 저항 특성이 좋지 않은 문제가 있다.
따라서, 안정성이 우수하면서도 전지에 적용 시 전지의 초기 효율, 저항 특성 등을 개선할 수 있는 단입자 형태의 양극재에 대한 개발이 필요한 실정이다.
본 발명은 상기 문제점들을 해결하기 위한 발명으로, 구조 안정성이 우수하면서도 전지에 적용 시 전지의 초기 효율, 저항 특성 등을 개선할 수 있는 단입자 형태의 리튬 복합 전이금속 산화물을 포함하는 양극 활물질을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 양극 활물질을 제조하기 위한 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 양극 활물질을 포함하여, 초기 효율, 저항 특성 등이 개선된 리튬 이차전지를 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위하여, 본 발명은 양극 활물질, 양극 활물질 제조방법, 양극 및 리튬 이차전지를 제공한다.
(1) 본 발명은 단입자 형태의 리튬 복합 전이금속 산화물을 포함하고, 상기 리튬 복합 전이금속 산화물은 Al, Y 및 Zr를 포함하는 것인 양극 활물질을 제공한다.
(2) 본 발명은 상기 (1)에 있어서, 상기 리튬 복합 전이금속 산화물은 평균 입경(D50)이 2.5㎛ 내지 5.5㎛인 것인 양극 활물질을 제공한다.
(3) 본 발명은 상기 (1) 또는 (2)에 있어서, 상기 Al은 상기 리튬 복합 전이금속 산화물 총 중량에 대하여 500ppm 내지 3,000ppm의 함량으로 포함되는 것인 양극 활물질을 제공한다.
(4) 본 발명은 상기 (1) 내지 (3) 중 어느 하나에 있어서, 상기 Y는 상기 리튬 복합 전이금속 산화물 총 중량에 대하여 100ppm 내지 2,000ppm의 함량으로 포함되는 것인 양극 활물질을 제공한다.
(5) 본 발명은 상기 (1) 내지 (4) 중 어느 하나에 있어서, 상기 Zr은 상기 리튬 복합 전이금속 산화물 총 중량에 대하여 500ppm 내지 5,000ppm의 함량으로 포함되는 것인 양극 활물질을 제공한다.
(6) 본 발명은 상기 (1) 내지 (5) 중 어느 하나에 있어서, 상기 리튬 복합 전이금속 산화물은 리튬을 제외한 금속의 총 몰수에 대하여 니켈을 60몰% 이상 포함하는 것인 양극 활물질을 제공한다.
(7) 본 발명은 상기 (1) 내지 (6) 중 어느 하나에 있어서, 상기 리튬 복합 전이금속 산화물은 하기 화학식 1로 표시되는 조성을 가지는 것인 양극 활물질을 제공한다.
[화학식 1]
Lix[NiaCobMncAldYeZrfM1g]O2-yAy
상기 화학식 1에 있어서,
M1은 B, Ti, W, Nb, Sr, Mo, Mg, P, V, Ta, Ga 및 Ca 중에서 선택되는 1종 이상이고,
A는 F, Cl, Br, I 및 S 중에서 선택되는 1종 이상이며,
0.9≤x≤1.2, 0.6≤a<1, 0≤b≤0.4, 0≤c≤0.4, 0<d≤0.01, 0<e≤0.0006, 0<f≤0.005, 0≤g≤0.2, a+b+c+d+e+f+g=1, 0≤y≤0.2이다.
(8) 본 발명은 상기 (1) 내지 (7) 중 어느 하나에 있어서, 상기 단입자 형태의 리튬 복합 전이금속 산화물 상에 형성된 Co를 포함하는 코팅부를 더 포함하는 양극 활물질을 제공한다.
(9) 본 발명은 상기 (8)에 있어서, 상기 코팅부는 Al, Zr 또는 이들의 조합을 더 포함하는 것인 양극 활물질을 제공한다.
(10) 본 발명은 (A) 복합 전이금속 수산화물, 복합 전이금속 옥시수산화물 또는 이들의 조합인 양극 활물질 전구체, 제1 리튬 함유 원료 물질, 알루미늄 함유 원료 물질, 이트륨 함유 원료 물질 및 지르코늄 함유 원료 물질을 혼합하여 혼합물을 제조하는 단계; (B) 상기 혼합물을 820℃ 내지 950℃의 온도 하에서 1차 소성하여 1차 소성품을 제조하는 단계; 및 (C) 상기 1차 소성품에 선택적으로 제2 리튬 함유 원료 물질을 혼합한 후, 700℃ 내지 850℃의 온도 하에서 2차 소성하여 2차 소성품을 제조하는 단계;를 포함하는 상기 양극 활물질의 제조방법을 제공한다.
(11) 본 발명은 상기 (10)에 있어서, 상기 (C) 단계 이전에, (B') 상기 1차 소성품을 분쇄하는 단계를 더 포함하는 양극 활물질의 제조방법을 제공한다.
(12) 본 발명은 상기 (10) 또는 (11)에 있어서, (C') 상기 2차 소성품을 분쇄하는 단계를 더 포함하는 양극 활물질의 제조방법을 제공한다.
(13) 본 발명은 상기 (10) 내지 (12) 중 어느 하나에 있어서, (D) 상기 2차 소성품과 코발트 함유 코팅 재료를 혼합한 후, 열처리하는 단계;를 더 포함하는 양극 활물질의 제조방법을 제공한다.
(14) 본 발명은 상기 (13)에 있어서, 상기 (D) 단계에서 상기 2차 소성품과 코발트 함유 코팅 재료를 혼합할 때, 알루미늄 함유 코팅 재료, 지르코늄 함유 코팅 재료 또는 이들의 조합을 더 혼합하는 것인 양극 활물질의 제조방법을 제공한다.
(15) 본 발명은 상기 (13) 또는 (14)에 있어서, 상기 코발트 함유 코팅 재료는 상기 2차 소성품에 포함되는 리튬을 제외한 금속의 총 몰수(A)에 대한 상기 코발트 함유 코팅 재료에 포함되는 코발트의 몰수(B) 비(B/A)가 0.01 내지 0.03이 되도록 하는 양으로 혼합되는 것인 양극 활물질의 제조방법을 제공한다.
(16) 본 발명은 상기 (14)에 있어서, 상기 알루미늄 함유 코팅 재료는 상기 2차 소성품 100중량부에 대하여 0.03중량부 내지 0.10중량부의 양으로 혼합되는 것인 양극 활물질의 제조방법을 제공한다.
(17) 본 발명은 상기 (13) 내지 (16) 중 어느 하나에 있어서, 상기 열처리는 산소 분위기 하에서 수행하는 것인 양극 활물질의 제조방법을 제공한다.
(18) 본 발명은 상기 (13) 내지 (17) 중 어느 하나에 있어서, 상기 열처리는 600℃ 내지 800℃의 온도 하에서 수행하는 것인 양극 활물질의 제조방법을 제공한다.
(19) 본 발명은 상기 (1) 내지 (9) 중 어느 하나에 따른 양극 활물질을 포함하는 양극을 제공한다.
(20) 본 발명은 상기 (19)에 따른 양극; 음극; 상기 양극과 상기 음극 사이에 개재된 분리막; 및 전해질;을 포함하는 리튬 이차전지를 제공한다.
본 발명의 양극 활물질은 단입자 형태의 리튬 복합 전이금속 산화물을 포함하고, 상기 리튬 복합 전이금속 산화물은 Al, Y 및 Zr를 포함하여, 리튬 이차전지의 초기 효율, 저항 특성, 용량 특성, 수명 특성 등을 개선할 수 있다.
또한, 본 발명의 양극 활물질 제조방법에 따르면 상술한 양극 활물질을 효과적으로 제조할 수 있다.
도 1은 실시예 1의 양극 활물질의 TEM EDX-Mapping 데이터이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
본 명세서에서 '포함하다', '구비하다' 또는 '가지다' 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 '상에'라는 용어는 어떤 구성이 다른 구성의 바로 상면에 형성되는 경우뿐만 아니라 이들 구성들 사이에 제3의 구성이 개재되는 경우까지 포함하는 것을 의미한다.
본 명세서에서, '단입자 형태의 양극 활물질'은 종래의 방법으로 제조된 수십 ~ 수백 개의 1차 입자들이 응집되어 형성되는 구형의 2차 입자 형태의 양극 활물질과 대비되는 개념으로, 10개 이하의 1차 입자로 이루어진 양극 활물질을 의미한다. 구체적으로는 본 발명에서 단입자 형태의 양극 활물질은 1개의 1차 입자로 이루어진 단일 입자일 수도 있고, 수개의 1차 입자들이 응집된 2차 입자 형태일 수도 있다.
'1차 입자'는 주사전자현미경을 통해 양극 활물질을 관측하였을 때 인식되는 입자의 최소 단위를 의미하며, '2차 입자'는 복수 개의 1차 입자들이 응집되어 형성된 2차 구조체를 의미한다.
본 명세서에서, 용어 '평균 입경(D50)'은 입경에 따른 체적 누적 분포의 50 % 지점에서의 입경을 의미한다. 상기 평균 입경은 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac社의 S3500)에 도입하여 입자들이 레이저 빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출하고, 측정 장치에 있어서의 입경에 따른 체적 누적 분포의 50%가 되는 지점에서의 입자 직경을 산출함으로써, D50을 측정할 수 있다.
양극 활물질
본 발명은 단입자 형태의 리튬 복합 전이금속 산화물을 포함하고, 상기 리튬 복합 전이금속 산화물은 Al, Y 및 Zr를 포함하는 것인 양극 활물질을 제공한다. 상기 리튬 복합 전이금속 산화물은 층상 구조를 가지는 것일 수 있다.
본 발명자들은 양극 활물질이 단입자 형태의 리튬 복합 전이금속 산화물을 포함하고, 상기 리튬 복합 전이금속 산화물이 도펀트로 Al, Y 및 Zr를 포함하는 경우, 양극 활물질의 구조 안정성이 증가하고, 양이온 혼합(cation mixing)이 감소하며, 그레인(grain) 사이즈가 500nm 내지 4㎛ 정도로 커서, 리튬 이차전지의 초기 효율, 저항 특성, 용량 특성, 수명 특성 등을 개선할 수 있다는 것을 알아내고 본 발명을 완성하였다. 구체적으로, 본 발명자들은 평균 입경이 작은 단입자 형태의 양극 활물질의 구조적 안정성을 위해 도펀트로 Zr, Al을 포함시켰으며, Al이 도펀트로 포함되는 경우 그레인 사이즈가 커지지 못하는 문제가 있는데, 이를 해결하기 위해 Y를 동시에 포함시켜 본 발명을 완성하였다.
본 발명에 따르면, 상기 단입자 형태의 리튬 복합 전이금속 산화물은 평균 입경(D50)이 2.5㎛ 내지 5.5㎛, 구체적으로 2.5㎛, 3.0㎛ 이상, 4.5㎛, 5.5㎛ 이하일 수 있다. 상기 리튬 복합 전이금속 산화물의 평균 입경(D50)이 상기 범위 내인 경우, 전기 화학적 성능이 최적화될 수 있다. 한편, 상기 리튬 복합 전이금속 산화물의 평균 입경(D50)이 2.5㎛ 미만인 경우에는 전지의 수명 특성이 저하되고, 가스 발생량이 증가되는 문제가 있으며, 5.5㎛ 초과인 경우에는 전지의 용량 특성 및 저항 특성이 저하되는 문제가 있다.
본 발명에 따르면, 상기 Al은 상기 리튬 복합 전이금속 산화물 총 중량에 대하여 500ppm 내지 3,000ppm의 함량으로 포함되는 것일 수 있다. 이 경우, 양극 활물질 내부 결정 구조가 안정화되어, 전지의 용량 특성 및 저항 특성이 개선될 수 있다.
본 발명에 따르면, 상기 Y는 상기 리튬 복합 전이금속 산화물 총 중량에 대하여 100ppm 내지 2,000ppm의 함량으로 포함되는 것일 수 있다. 이 경우, 입자 하나에 포함되는 그레인 사이즈가 500nm 내지 4㎛ 정도를 만족하여, 전지의 용량 특성 및 수명 특성이 개선될 수 있다.
본 발명에 따르면, 상기 Zr은 상기 리튬 복합 전이금속 산화물 총 중량에 대하여 500ppm 내지 5,000ppm의 함량으로 포함되는 것일 수 있다. 이 경우, Zr이 리튬층에 안정적으로 도핑되어, 리튬의 삽입 및 탈리 시 구조 안정성이 개선되므로, 전지의 수명 특성 및 저항 특성이 개선될 수 있다.
본 발명에 따르면, 상기 리튬 복합 전이금속 산화물은 리튬을 제외한 금속의 총 몰수에 대하여 니켈을 60몰% 이상, 구체적으로, 80몰% 이상, 더욱 구체적으로 85몰% 이상 포함하는 것일 수 있다. 즉, 상기 리튬 복합 전이금속 산화물은 하이-니켈(High Ni)계 리튬 복합 전이금속 산화물일 수 있다. 이 경우, 리튬 이차전지의 에너지 밀도를 향상시킬 수 있다.
본 발명에 따르면, 상기 리튬 복합 전이금속 산화물은 하기 화학식 1로 표시되는 조성을 가지는 것일 수 있다. 이 경우, 상기 리튬 복합 전이금속 산화물은 층상 구조를 가진다.
[화학식 1]
Lix[NiaCobMncAldYeZrfM1g]O2-yAy
상기 화학식 1에 있어서,
M1은 B, Ti, W, Nb, Sr, Mo, Mg, P, V, Ta, Ga 및 Ca 중에서 선택되는 1종 이상이고,
A는 F, Cl, Br, I 및 S 중에서 선택되는 1종 이상이며,
0.9≤x≤1.2, 0.6≤a<1, 0≤b≤0.4, 0≤c≤0.4, 0<d≤0.01, 0<e≤0.0006, 0<f≤0.005, 0≤g≤0.2, a+b+c+d+e+f+g=1, 0≤y≤0.2이다.
상기 a는 상기 리튬 복합 전이금속 산화물 내 금속 원소 중 니켈의 원자 분율을 의미하는 것으로, 0.6≤a<1, 0.8≤a≤0.98, 또는 0.85≤a≤0.95일 수 있다.
상기 b는 상기 리튬 복합 전이금속 산화물 내 금속 원소 중 코발트의 원자 분율을 의미하는 것으로, 0≤b≤0.4, 0.01≤b≤0.2 또는 0.01≤b≤0.15일 수 있다.
상기 c는 상기 리튬 복합 전이금속 산화물 내 금속 원소 중 망간의 원자 분율을 의미하는 것으로, 0≤c≤0.4, 0.01≤c≤0.2 또는 0.01≤c≤0.15일 수 있다.
상기 d는 상기 리튬 복합 전이금속 산화물 내 금속 원소 중 알루미늄의 원자 분율을 의미하는 것으로, 0<d≤0.01, 0.002≤d≤0.008 또는 0.003≤d≤0.006일 수 있다.
상기 e는 상기 리튬 복합 전이금속 산화물 내 금속 원소 중 이트륨의 원자 분율을 의미하는 것으로, 0<e≤0.0006, 0.0001≤e≤0.0005 또는 0.0002≤e≤0.0003일 수 있다.
상기 f는 상기 리튬 복합 전이금속 산화물 내 금속 원소 중 지르코늄의 원자 분율을 의미하는 것으로, 0<f≤0.005, 0.001≤f≤0.003 또는 0.001≤f≤0.002일 수 있다.
상기 g는 상기 리튬 복합 전이금속 산화물 내 금속 원소 중 M1 원소의 원자 분율을 의미하는 것으로, 0≤g≤0.2, 0≤g≤0.1 또는 0≤g≤0.05일 수 있다.
본 발명에 따르면, 상기 양극 활물질은 상기 단입자 형태의 리튬 복합 전이금속 산화물 상에 형성된 Co를 포함하는 코팅부를 더 포함하는 것일 수 있다. 상기 코팅부는 Al, Zr 또는 이들의 조합을 더 포함할 수 있다. 상기 양극 활물질이 상기 코팅부를 더 포함하는 경우, 잔류 리튬 부산물의 양이 줄어들 수 있고, 구조 안정성이 증가하여 전지의 수명 특성, 저항 특성이 개선될 수 있으며, 가스 발생량도 감소할 수 있다. 이 때, 상기 코팅부는 얇은 막 형태를 가질 수 있고, 상기 리튬 복합 전이금속 산화물 상의 전체에 형성될 수도 있고, 국부적으로 형성될 수도 있다.
상기 코팅부에 존재하는 Co는 상기 리튬 복합 전이금속 산화물에 포함되는 리튬을 제외한 금속의 총 몰수에 대하여 0.5mol% 내지 3mol%의 함량으로 포함되는 것일 수 있다. 이 경우, 잔류 리튬 부산물이 더 저감될 수 있으며, 수명 및 저항 특성이 보다 더 개선될 수 있다.
상기 코팅부에 존재하는 Al은 상기 리튬 복합 전이금속 산화물의 총 중량에 대하여 300ppm 내지 10,000ppm의 함량으로 포함되는 것일 수 있다. 이 경우, 구조 안정성이 보다 높아져서, 수명 특성, 저항 특성 등이 보다 더 개선될 수 있다.
양극 활물질 제조방법
본 발명은 상술한 양극 활물질의 제조방법을 제공한다. 즉, 본 발명에 따른 양극 활물질은 아래의 양극 활물질의 제조방법에 의해 제조된다.
본 발명에 따른 양극 활물질의 제조 방법은 (A) 복합 전이금속 수산화물, 복합 전이금속 옥시수산화물 또는 이들의 조합인 양극 활물질 전구체, 제1 리튬 함유 원료 물질, 알루미늄 함유 원료 물질, 이트륨 함유 원료 물질 및 지르코늄 함유 원료 물질을 혼합하여 혼합물을 제조하는 단계; (B) 상기 혼합물을 820℃ 내지 950℃의 온도 하에서 1차 소성하여 1차 소성품을 제조하는 단계; 및 (C) 상기 1차 소성품에 선택적으로 제2 리튬 함유 원료 물질을 혼합한 후, 700℃ 내지 850℃의 온도 하에서 2차 소성하여 2차 소성품을 제조하는 단계;를 포함한다.
상기 알루미늄 함유 원료 물질은 Al(OH)3, Al2O3, AlCl3, Al(NO)3, AlSO4 및 Al2S3 중에서 선택되는 1종 이상일 수 있고, 구체적으로는 Al(OH)3, Al2O3 및 Al(NO)3 중에서 선택되는 1종 이상, 더욱 구체적으로는 Al(OH)3일 수 있다. 상기 알루미늄 함유 원료 물질은 상기 양극 활물질 전구체 총 중량에 대하여 500ppm 내지 3,000ppm의 함량으로 첨가될 수 있다.
상기 이트륨 함유 원료 물질은 YCl3, Y2O3, Y(NO3)3, Y(OH)3, YSZ, Y2(SO4)3 및 Y2S3 중에서 선택되는 1종 이상일 수 있고, 구체적으로는 Y2O3 및 Y(OH)3 중에서 선택되는 1종 이상, 더욱 구체적으로는 Y2O3일 수 있다. 상기 이트륨 함유 원료 물질은 상기 양극 활물질 전구체 총 중량에 대하여 100ppm 내지 2000ppm의 함량으로 첨가될 수 있다.
상기 지르코늄 함유 원료 물질은 Zr(OH)4, ZrO2, Zr(NO3)4, ZrCl4, ZrS2, Zr(SO4)2 및 C8H12O8Zr 중에서 선택되는 1종 이상일 수 있고, 구체적으로는 Zr(OH)4 및 ZrO2 중에서 선택되는 1종 이상, 더욱 구체적으로는 ZrO2일 수 있다. 상기 지르코늄 함유 원료 물질은 상기 양극 활물질 전구체 총 중량에 대하여 500ppm 내지 5000ppm의 함량으로 첨가될 수 있다.
상기 혼합물을 820℃ 내지 950℃의 온도 하에서 1차 소성하면, 상기 양극 활물질 전구체의 1차 입자들이 응집되면서 단입자 형태의 1차 소성품이 제조된다.
1차 소성 온도가 상기 범위 내인 경우, 상기 양극 활물질 전구체의 1차 입자들이 응집되면서 구조적으로 안정한 단입자 형태의 1차 소성품이 형성되며, 1차 소성 온도가 820℃ 미만인 경우, 1차 입자들이 충분히 응집되지 않는 문제가, 950℃ 초과인 경우, 구조적으로 불안정하고, 결정화도가 낮은 소성품이 제조되는 문제가 있다.
본 발명에 따르면, 상기 1차 소성은 리튬 전이금속 산화물이 암염(rock salt) 구조로 퇴화되는 것을 방지하기 위한 측면에서, 산소 분위기 하에서 수행하는 것일 수 있다.
본 발명에 따르면, 상기 1차 소성은 1차 입자들을 응집시키고, 1차 소성품의 결정성을 향상시키기 위한 측면에서, 3시간 내지 12시간, 구체적으로 6시간 내지 12시간, 더욱 구체적으로 9시간 내지 12시간 동안 수행하는 것일 수 있다.
상기 1차 소성품을 700℃ 내지 850℃의 온도 하에서 2차 소성하면, 1차 소성품에 리튬이 삽입되면서 2차 소성품이 제조된다. 이 때, 상기 2차 소성품은 단입자 형태의 리튬 복합 전이금속 산화물이다.
2차 소성 온도가 상기 범위 내인 경우, 1차 소성 시 높은 온도로 인해 1차 소성품의 표면에 형성될 수 있는 암염 구조에 리튬이 삽입되면서 층상형 구조로 회복되고, 리튬 부산물이 줄어드는 이점이 있다. 한편, 2차 소성 온도가 700℃ 미만인 경우에는 온도가 낮아 리튬 삽입 속도가 느린 문제가, 850℃ 초과인 경우에는 온도가 높아 1차 소성품 표면이 암염 구조로 퇴화되고, 리튬 부산물이 잔존하는 문제가 있다.
본 발명에 따르면, 상기 2차 소성은 리튬 전이금속 산화물이 암염(rock salt) 구조로 퇴화되는 것을 방지하기 위한 측면에서, 산소 분위기 하에서 수행하는 것일 수 있다.
본 발명에 따르면, 상기 2차 소성은 양극 활물질 내부 결정 구조의 결정화도를 높이기 위한 측면에서, 3시간 내지 12시간, 구체적으로 6시간 내지 12시간, 더욱 구체적으로 9시간 내지 12시간 동안 수행하는 것일 수 있다.
본 발명에 따른 양극 활물질의 제조 방법은 상기 (C) 단계 이전에, (B') 상기 1차 소성품을 분쇄하는 단계를 더 포함할 수 있다. 상기 (B') 단계는 상기 1차 소성품을 평균 입경(D50)이 2.5㎛ 내지 5.5㎛가 되도록 분쇄하는 것일 수 있다.
본 발명에 따른 양극 활물질의 제조 방법은 (C') 상기 2차 소성품을 분쇄하는 단계를 더 포함할 수 있다. 상기 (C') 단계는 상기 1차 소성품을 평균 입경(D50)이 2.5㎛ 내지 5.5㎛가 되도록 분쇄하는 것일 수 있다.
상기 (B') 단계와 (C') 단계의 분쇄는 핀밀(Pinmill), ACM, 제트밀(Jetmill) 등을 이용하여 수행할 수 있다. 한편, 핀밀은 18,000rpm 조건에서, ACM은 Hosokawa社의 기기를 이용하여 분급 6,000rpm, 본쇄 12,000rpm 조건에서, 제트밀은 ZM solution社의 기기를 이용하여 분쇄압 6bar, 분급 3,500rpm 조건에서 수행할 수 있다.
본 발명에 따른 양극 활물질은 리튬 함유 원료 물질을 두 번에 나누어 투입하는 공정에 의해 제조되거나, 한번에 투입하는 공정에 의해 제조될 수 있다. 즉, 리튬 함유 원료 물질이 1차 소성 전에 모두 투입될 수도 있고, 1차 소성 전과 2차 소성 전에 각각 나누어 투입될 수도 있다.
상기 리튬 함유 원료 물질을 두 번에 나누어 투입하는 경우, 본 발명에 따른 양극 활물질은 예를 들어, 상기 (A) 단계에서 제조한 혼합물을 820℃ 내지 950℃의 온도 하에서 1차 소성하여 1차 소성품을 얻고, 상온에서 상기 1차 소성품을 평균 입경(D50)이 2.5㎛ 내지 5.5㎛가 되도록 분쇄한 후, 분쇄된 1차 소성품에 제2 리튬 함유 원료 물질을 혼합하고, 700℃ 내지 850℃의 온도 하에서 2차 소성하여 2차 소성품을 얻고, 상온에서 상기 2차 소성품을 평균 입경(D50)이 2.5㎛ 내지 5.5㎛가 되도록 분쇄하여 제조할 수 있다. 이 때, 상기 (A) 단계에서 제1 리튬 함유 원료 물질은 양극 활물질 전구체에 포함되는 전이금속의 총 몰 수(M)와 제1 리튬 함유 원료 물질에 포함되는 리튬의 몰 수(Li)의 비(M:Li)가 1:0.95 내지 1:1.02가 되도록 혼합될 수 있으며, 상기 (C) 단계에서 제2 리튬 함유 원료 물질은 상기 (A) 단계의 양극 활물질 전구체에 포함되는 전이금속의 총 몰 수(M)와 제2 리튬 함유 원료 물질에 포함되는 리튬의 몰 수(Li)의 비(M:Li)가 1:0.01 내지 1:1.10이 되도록 혼합될 수 있다.
상기 리튬 함유 원료 물질을 한번에 투입하는 경우, 본 발명에 따른 양극 활물질은 예를 들어, 상기 (A) 단계에서 제조한 혼합물을 820℃ 내지 950℃의 온도 하에서 1차 소성한 후, 바로 700℃ 내지 850℃까지 하온하고(상온까지 하온하지 않음), 700℃ 내지 850℃의 온도 하에서 2차 소성하여 2차 소성품을 얻고, 상온에서 상기 2차 소성품을 평균 입경(D50)이 2.5㎛ 내지 5.5㎛가 되도록 분쇄하여 제조할 수 있다. 이 때, 상기 (A) 단계에서 제1 리튬 함유 원료 물질은 양극 활물질 전구체에 포함되는 전이금속의 총 몰 수(M)와 제1 리튬 함유 원료 물질에 포함되는 리튬의 몰 수(Li)의 비(M:Li)가 1:1.00 내지 1:1.10이 되도록 혼합될 수 있다. 그리고, 상기 1차 소성 온도는 상기 2차 소성 온도보다 높을 수 있다.
본 발명에 따른 양극 활물질의 제조 방법은 (D) 상기 2차 소성품과 코발트 함유 코팅 재료를 혼합한 후, 열처리하는 단계;를 더 포함할 수 있다. 이 경우, 상기 2차 소성품(단입자 형태의 리튬 복합 전이금속 산화물) 상에 Co를 포함하는 코팅부가 형성된다.
본 발명에 따르면, 상기 (D) 단계에서 상기 2차 소성품과 코발트 함유 코팅 재료를 혼합할 때, 알루미늄 함유 코팅 재료, 지르코늄 함유 코팅 재료 또는 이들의 조합을 더 혼합할 수 있다. 이 경우, 상기 코팅부는 Co 이외에, Al, Zr 또는 이들의 조합을 더 포함할 수 있다.
본 발명에 따르면, 상기 코발트 함유 코팅 재료는 상기 2차 소성품에 포함되는 리튬을 제외한 금속의 총 몰수(A)에 대한 상기 코발트 함유 코팅 재료에 포함되는 코발트의 몰수(B) 비(B/A)가 0.01 내지 0.03이 되도록 하는 양으로 혼합되는 것일 수 있다. 이 경우, 수세 공정을 포함하지 않는 양극 활물질 제조 공정에서 리튬 부산물을 제어할 수 있다는 이점이 있다.
상기 코발트 함유 코팅 재료는 Co(OH)2, Co3O4, CoO, (CH3CO2)2Co, CoCl2 및 CoSO4·xH2O 중에서 선택되는 1종 이상일 수 있고, 구체적으로는 Co(OH)2일 수 있다.
본 발명에 따르면, 상기 알루미늄 함유 코팅 재료는 상기 2차 소성품 100중량부에 대하여 0.03중량부 내지 0.10중량부의 양으로 혼합되는 것일 수 있다. 이 경우, 구조 안정성 확보를 통해 수명, 저항 및 가스 발생량을 개선시킬 수 있다.
상기 알루미늄 함유 코팅 재료는 Al(OH)3, Al2(SO4)3·xH2O, Al2O3, Al(NO3)3·9H2O, AlCl3 및 C2H5O4Al 중에서 선택되는 1종 이상일 수 있고, 구체적으로는 Al(OH)3일 수 있다.
상기 지르코늄 함유 코팅 재료는 Zr(OH)4, ZrO2, Zr(NO3)4, ZrCl4, ZrS2, Zr(SO4)2 및 C8H12O8Zr 중에서 선택되는 1종 이상일 수 있다.
본 발명에 따르면, 상기 열처리는 리튬 전이금속 산화물이 암염(rock salt) 구조로 퇴화하는 것을 방지하기 위하여, 산소 분위기 하에서 수행하는 것일 수 있다.
본 발명에 따르면, 상기 열처리는 코팅부가 적절한 두께로 형성되도록 하기 위해, 600℃ 내지 800℃, 구체적으로 650℃ 내지 780℃, 더욱 구체적으로 680℃ 내지 720℃의 온도 하에서 수행하는 것일 수 있다.
본 발명에 따르면, 상기 열처리는 코팅부의 결정화도를 높이기 위하여, 1시간 내지 10시간, 구체적으로 2시간 내지 8시간, 더욱 구체적으로 3시간 내지 6시간 동안 수행하는 것일 수 있다.
양극
본 발명은 상기 양극 활물질을 포함하는 양극을 제공한다.
상기 양극은 양극 집전체, 상기 양극 집전체 상에 형성된 양극 활물질층을 포함하는 것일 수 있고, 상기 양극 활물질층은 상기 양극 활물질을 포함하는 것일 수 있다.
상기 양극 집전체는 전도성이 높은 금속을 포함할 수 있으며, 양극 활물질층이 용이하게 접착하되, 전지의 전압 범위에서 반응성이 없는 것이라면 특별히 제한되는 것은 아니다. 상기 양극 집전체는 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또한, 상기 양극 집전체는 통상적으로 3 ㎛ 내지 500 ㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 상기 양극 활물질과 함께, 필요에 따라 선택적으로 도전재, 및 바인더를 포함할 수 있다. 이때 상기 양극 활물질은 양극 활물질층 총 중량에 대하여 80 중량% 내지 99 중량%, 보다 구체적으로는 85 중량% 내지 98.5중량%의 햠량으로 포함될 수 있으며, 이 범위 내에서 우수한 용량 특성을 나타낼 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 탄소나노튜브 등의 도전성 튜브; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량에 대하여 0.1 중량% 내지 15 중량%로 포함될 수 있다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플루오라이드(PVDF), 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올(polyvinylalcohol), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethymethaxrylate), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리아크릴산(poly acrylic acid), 및 이들의 수소를 Li, Na, 또는 Ca로 치환된 고분자, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 0.1 중량% 내지 15 중량%로 포함될 수 있다.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기 양극은, 상기한 양극 활물질 및 필요에 따라 선택적으로 바인더, 도전재, 및 분산제를 용매 중에 용해 또는 분산시켜 제조한 양극 활물질층 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조하거나, 상기 양극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조할 수 있다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 디메틸포름아미드(dimethylformamide, DMF), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재, 바인더, 및 분산제를 용해 또는 분산시키고, 이후 양극 제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
리튬 이차전지
본 발명은 상기 양극; 음극; 상기 양극과 음극 사이에 개재된 분리막 및 전해질;을 포함하는 리튬 이차전지를 제공한다.
상기 리튬 이차전지는 상기 양극, 음극, 분리막의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함하는 것일 수 있다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 ㎛ 내지 500 ㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함하는 것일 수 있다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0<β<2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또한, 탄소재료는 저결정성 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시 흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정 피치계 탄소섬유 (mesophase pitch based carbonfiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다. 상기 음극 활물질은 음극 활물질층의 전체 중량을 기준으로 80 중량% 내지 99 중량%로 포함될 수 있다.
상기 음극 활물질층의 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 활물질층의 전체 중량을 기준으로 0.1 중량% 내지 10 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 음극 활물질층의 도전재는 음극활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 활물질층의 전체 중량을 기준으로 10 중량% 이하, 바람직하게는 5 중량% 이하로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본 블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 음극은 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 활물질층 형성용 조성물을 도포하고 건조함으로써 제조되거나, 또는 상기 음극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수 있다.
상기 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또한 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또한, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
상기 전해질로는 리튬 이차 전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다. 구체적인 예로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylenecarbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다.
상기 리튬염은 리튬 이차 전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있고, 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2, LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 M 내지 2.0 M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 중량% 내지 5 중량%로 포함될 수 있다.
본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 초기 효율, 저항 특성, 용량 특성, 수명 특성이 우수하기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 하이브리드 전기자동차(hybrid electric vehicle, HEV), 전기자동차(electric vehicle, EV) 등의 전기 자동차 분야 등에 유용하다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
이에 따라, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 및 비교예
실시예 1
수십 ~ 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태의 복합 전이금속 수산화물(조성: Ni0.885Co0.035Mn0.08(OH)2, 평균 입경(D50): 4.19㎛)과 LiOH를 복합 전이금속 수산화물에 포함되는 전이금속의 총 몰 수(Ni+Co+Mn)와 LiOH에 포함되는 리튬의 몰 수(Li)의 비((Ni+Co+Mn):Li)가 1:0.98이 되도록 혼합하고, 여기에 Al(OH)3(KC대주社)를 상기 복합 전이금속 수산화물 총 중량 대비 1400ppm, Y2O3(Neo performance社)를 상기 복합 전이금속 수산화물 총 중량 대비 1000ppm, ZrO2(R&F社)를 상기 복합 전이금속 수산화물 총 중량 대비 1500ppm 첨가하고 혼합하여 혼합물을 제조하였다.
상기 혼합물을 830℃에서 6시간 동안 1차 소성하여 1차 소성품을 얻고, 상온에서 상기 1차 소성품을 평균 입경(D50)이 3.8㎛가 되도록 분쇄하였다.
분쇄된 1차 소성품과 LiOH를 상기 복합 전이금속 수산화물에 포함되는 전이금속의 총 몰 수(Ni+Co+Mn)와 LiOH에 포함되는 리튬의 몰 수(Li)의 비((Ni+Co+Mn):Li)가 1:0.04가 되도록 혼합하고, 760℃에서 9시간 동안 2차 소성하여 2차 소성품을 얻고, 상온에서 상기 2차 소성품을 분쇄하여 평균 입경(D50)이 3.8㎛인 단입자 형태의 리튬 복합 전이금속 산화물(조성: LiNi0.87836Co0.03493Mn0.07985Al0.00499Y0.00027Zr0.0016O2)을 얻었다.
상기 단입자 형태의 리튬 복합 전이금속 산화물과 Co(OH)2(Huayou社) 및 Al(OH)3(KC대주社)을 균일하게 혼합한 후, 산소 분위기, 700℃의 온도 하에서 5시간 동안 열처리하여, 상기 단입자 형태의 리튬 복합 전이금속 산화물 상에 Co 및 Al을 포함하는 코팅부가 형성된 양극 활물질(조성: LiNi0.85761Co0.05489Mn0.07978Al0.00586Y0.00027Zr0.00159O2)을 제조하였다. 이 때, 상기 Co(OH)2는 상기 단입자 형태의 리튬 복합 전이금속 산화물에 포함되는 리튬을 제외한 금속의 총 몰수(A)에 대한 상기 코발트 함유 코팅 재료에 포함되는 코발트의 몰수(B) 비(B/A)가 0.02가 되도록 하는 양으로 혼합되었으며, 상기 Al(OH)3는 상기 단입자 형태의 리튬 복합 전이금속 산화물 100중량부에 대하여 0.05중량부의 양으로 혼합되었다.
실시예 2
수십 ~ 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태의 복합 전이금속 수산화물(조성: Ni0.885Co0.035Mn0.08(OH)2, 평균 입경(D50): 4.19㎛)과 LiOH를 복합 전이금속 수산화물에 포함되는 전이금속의 총 몰 수(Ni+Co+Mn)와 LiOH에 포함되는 리튬의 몰 수(Li)의 비((Ni+Co+Mn):Li)가 1:0.98이 되도록 혼합하고, 여기에 Al(OH)3(KC대주社)를 상기 복합 전이금속 수산화물 총 중량 대비 1400ppm, Y2O3(Neo performance社)를 상기 복합 전이금속 수산화물 총 중량 대비 2000ppm, ZrO2(R&F社)를 상기 복합 전이금속 수산화물 총 중량 대비 1500ppm 첨가하고 혼합하여 혼합물을 제조하였다.
상기 혼합물을 830℃에서 6시간 동안 1차 소성하여 1차 소성품을 얻고, 상온에서 상기 1차 소성품을 평균 입경(D50)이 3.8㎛가 되도록 분쇄하였다.
분쇄된 1차 소성품과 LiOH를 상기 복합 전이금속 수산화물에 포함되는 전이금속의 총 몰 수(Ni+Co+Mn)와 LiOH에 포함되는 리튬의 몰 수(Li)의 비((Ni+Co+Mn):Li)가 1:0.04가 되도록 혼합하고, 760℃에서 9시간 동안 2차 소성하여 2차 소성품을 얻고, 상온에서 상기 2차 소성품을 분쇄하여 평균 입경(D50)이 3.8㎛인 단입자 형태의 리튬 복합 전이금속 산화물(조성: LiNi0.87813Co0.03492Mn0.07983Al0.00499Y0.00054Zr0.00159O2)을 얻었다.
상기 단입자 형태의 리튬 복합 전이금속 산화물과 Co(OH)2(Huayou社) 및 Al(OH)3(KC대주社)을 균일하게 혼합한 후, 산소 분위기, 700℃의 온도 하에서 5시간 동안 열처리하여, 상기 단입자 형태의 리튬 복합 전이금속 산화물 상에 Co 및 Al을 포함하는 코팅부가 형성된 양극 활물질(조성: LiNi0.85738Co0.05487Mn0.07976Al0.00586Y0.00054Zr0.00159O2)을 제조하였다. 이 때, 상기 Co(OH)2는 상기 단입자 형태의 리튬 복합 전이금속 산화물에 포함되는 리튬을 제외한 금속의 총 몰수(A)에 대한 상기 코발트 함유 코팅 재료에 포함되는 코발트의 몰수(B) 비(B/A)가 0.02가 되도록 하는 양으로 혼합되었으며, 상기 Al(OH)3는 상기 단입자 형태의 리튬 복합 전이금속 산화물 100중량부에 대하여 0.05중량부의 양으로 혼합되었다.
실시예 3
수십 ~ 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태의 복합 전이금속 수산화물(조성: Ni0.885Co0.035Mn0.08(OH)2, 평균 입경(D50): 4.19㎛)과 LiOH를 복합 전이금속 수산화물에 포함되는 전이금속의 총 몰 수(Ni+Co+Mn)와 LiOH에 포함되는 리튬의 몰 수(Li)의 비((Ni+Co+Mn):Li)가 1:0.98이 되도록 혼합하고, 여기에 Al(OH)3(KC대주社)를 상기 복합 전이금속 수산화물 총 중량 대비 2800ppm, Y2O3(Neo performance社)를 상기 복합 전이금속 수산화물 총 중량 대비 1000ppm, ZrO2(R&F社)를 상기 복합 전이금속 수산화물 총 중량 대비 1500ppm 첨가하고 혼합하여 혼합물을 제조하였다.
상기 혼합물을 830℃에서 6시간 동안 1차 소성하여 1차 소성품을 얻고, 상온에서 상기 1차 소성품을 평균 입경(D50)이 3.8㎛가 되도록 분쇄하였다.
분쇄된 1차 소성품과 LiOH를 상기 복합 전이금속 수산화물에 포함되는 전이금속의 총 몰 수(Ni+Co+Mn)와 LiOH에 포함되는 리튬의 몰 수(Li)의 비((Ni+Co+Mn):Li)가 1:0.04가 되도록 혼합하고, 760℃에서 9시간 동안 2차 소성하여 2차 소성품을 얻고, 상온에서 상기 2차 소성품을 분쇄하여 평균 입경(D50)이 3.8㎛인 단입자 형태의 리튬 복합 전이금속 산화물(조성: LiNi0.87338Co0.03493Mn0.07985Al0.00998Y0.00027Zr0.00159O2)을 얻었다.
상기 단입자 형태의 리튬 복합 전이금속 산화물과 Co(OH)2(Huayou社) 및 Al(OH)3(KC대주社)을 균일하게 혼합한 후, 산소 분위기, 700℃의 온도 하에서 5시간 동안 열처리하여, 상기 단입자 형태의 리튬 복합 전이금속 산화물 상에 Co 및 Al을 포함하는 코팅부가 형성된 양극 활물질(조성: LiNi0.85262Co0.05489Mn0.07978Al0.01085Y0.00027Zr0.00159O2)을 제조하였다. 이 때, 상기 Co(OH)2는 상기 단입자 형태의 리튬 복합 전이금속 산화물에 포함되는 리튬을 제외한 금속의 총 몰수(A)에 대한 상기 코발트 함유 코팅 재료에 포함되는 코발트의 몰수(B) 비(B/A)가 0.02가 되도록 하는 양으로 혼합되었으며, 상기 Al(OH)3는 상기 단입자 형태의 리튬 복합 전이금속 산화물 100중량부에 대하여 0.05중량부의 양으로 혼합되었다.
실시예 4
수십 ~ 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태의 복합 전이금속 수산화물(조성: Ni0.885Co0.035Mn0.08(OH)2, 평균 입경(D50): 4.19㎛)과 LiOH를 복합 전이금속 수산화물에 포함되는 전이금속의 총 몰 수(Ni+Co+Mn)와 LiOH에 포함되는 리튬의 몰 수(Li)의 비((Ni+Co+Mn):Li)가 1:0.98이 되도록 혼합하고, 여기에 Al(OH)3(KC대주社)를 상기 복합 전이금속 수산화물 총 중량 대비 1400ppm, Y2O3(Neo performance社)를 상기 복합 전이금속 수산화물 총 중량 대비 1000ppm, ZrO2(R&F社)를 상기 복합 전이금속 수산화물 총 중량 대비 3500ppm 첨가하고 혼합하여 혼합물을 제조하였다.
상기 혼합물을 830℃에서 6시간 동안 1차 소성하여 1차 소성품을 얻고, 상온에서 상기 1차 소성품을 평균 입경(D50)이 3.8㎛가 되도록 분쇄하였다.
분쇄된 1차 소성품과 LiOH를 상기 복합 전이금속 수산화물에 포함되는 전이금속의 총 몰 수(Ni+Co+Mn)와 LiOH에 포함되는 리튬의 몰 수(Li)의 비((Ni+Co+Mn):Li)가 1:0.04가 되도록 혼합하고, 760℃에서 9시간 동안 2차 소성하여 2차 소성품을 얻고, 상온에서 상기 2차 소성품을 분쇄하여 평균 입경(D50)이 3.8㎛인 단입자 형태의 리튬 복합 전이금속 산화물(조성: LiNi0.87651Co0.03486Mn0.07968Al0.00498Y0.00027Zr0.0037O2)을 얻었다.
상기 단입자 형태의 리튬 복합 전이금속 산화물과 Co(OH)2(Huayou社) 및 Al(OH)3(KC대주社)을 균일하게 혼합한 후, 산소 분위기, 700℃의 온도 하에서 5시간 동안 열처리하여, 상기 단입자 형태의 리튬 복합 전이금속 산화물 상에 Co 및 Al을 포함하는 코팅부가 형성된 양극 활물질(조성: LiNi0.85576Co0.05481Mn0.07961Al0.00585Y0.00027Zr0.0037O2)을 제조하였다. 이 때, 상기 Co(OH)2는 상기 단입자 형태의 리튬 복합 전이금속 산화물에 포함되는 리튬을 제외한 금속의 총 몰수(A)에 대한 상기 코발트 함유 코팅 재료에 포함되는 코발트의 몰수(B) 비(B/A)가 0.02가 되도록 하는 양으로 혼합되었으며, 상기 Al(OH)3는 상기 단입자 형태의 리튬 복합 전이금속 산화물 100중량부에 대하여 0.05중량부의 양으로 혼합되었다.
비교예 1
수십 ~ 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태의 복합 전이금속 수산화물(조성: Ni0.885Co0.035Mn0.08(OH)2, 평균 입경(D50): 4.19㎛)과 LiOH를 복합 전이금속 수산화물에 포함되는 전이금속의 총 몰 수(Ni+Co+Mn)와 LiOH에 포함되는 리튬의 몰 수(Li)의 비((Ni+Co+Mn):Li)가 1:0.98이 되도록 혼합하고, 여기에 Al(OH)3(KC대주社)를 상기 복합 전이금속 수산화물 총 중량 대비 1400ppm, ZrO2(R&F社)를 상기 복합 전이금속 수산화물 총 중량 대비 1500ppm 첨가하고 혼합하여 혼합물을 제조하였다.
상기 혼합물을 830℃에서 6시간 동안 1차 소성하여 1차 소성품을 얻고, 상온에서 상기 1차 소성품을 평균 입경(D50)이 3.8㎛가 되도록 분쇄하였다.
분쇄된 1차 소성품과 LiOH를 상기 복합 전이금속 수산화물에 포함되는 전이금속의 총 몰 수(Ni+Co+Mn)와 LiOH에 포함되는 리튬의 몰 수(Li)의 비((Ni+Co+Mn):Li)가 1:0.04가 되도록 혼합하고, 760℃에서 9시간 동안 2차 소성하여 2차 소성품을 얻고, 상온에서 상기 2차 소성품을 분쇄하여 평균 입경(D50)이 3.8㎛인 단입자 형태의 리튬 복합 전이금속 산화물(조성: LiNi0.8786Co0.03494Mn0.07987Al0.00499Zr0.0016O2)을 얻었다.
상기 단입자 형태의 리튬 복합 전이금속 산화물과 Co(OH)2(Huayou社) 및 Al(OH)3(KC대주社)을 균일하게 혼합한 후, 산소 분위기, 700℃의 온도 하에서 5시간 동안 열처리하여, 상기 단입자 형태의 리튬 복합 전이금속 산화물 상에 Co 및 Al을 포함하는 코팅부가 형성된 양극 활물질(조성: LiNi0.85784Co0.0549Mn0.0798Al0.00586Zr0.0016O2)을 제조하였다. 이 때, 상기 Co(OH)2는 상기 단입자 형태의 리튬 복합 전이금속 산화물에 포함되는 리튬을 제외한 금속의 총 몰수(A)에 대한 상기 코발트 함유 코팅 재료에 포함되는 코발트의 몰수(B) 비(B/A)가 0.02가 되도록 하는 양으로 혼합되었으며, 상기 Al(OH)3는 상기 단입자 형태의 리튬 복합 전이금속 산화물 100중량부에 대하여 0.05중량부의 양으로 혼합되었다.
비교예 2
수십 ~ 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태의 복합 전이금속 수산화물(조성: Ni0.885Co0.035Mn0.08(OH)2, 평균 입경(D50): 4.19㎛)과 LiOH를 복합 전이금속 수산화물에 포함되는 전이금속의 총 몰 수(Ni+Co+Mn)와 LiOH에 포함되는 리튬의 몰 수(Li)의 비((Ni+Co+Mn):Li)가 1:0.98이 되도록 혼합하고, 여기에 Y2O3(Neo performance社)를 상기 복합 전이금속 수산화물 총 중량 대비 1000ppm, ZrO2(R&F社)를 상기 복합 전이금속 수산화물 총 중량 대비 1500ppm 첨가하고 혼합하여 혼합물을 제조하였다.
상기 혼합물을 830℃에서 6시간 동안 1차 소성하여 1차 소성품을 얻고, 상온에서 상기 1차 소성품을 평균 입경(D50)이 3.8㎛가 되도록 분쇄하였다.
분쇄된 1차 소성품과 LiOH를 상기 복합 전이금속 수산화물에 포함되는 전이금속의 총 몰 수(Ni+Co+Mn)와 LiOH에 포함되는 리튬의 몰 수(Li)의 비((Ni+Co+Mn):Li)가 1:0.04가 되도록 혼합하고, 760℃에서 9시간 동안 2차 소성하여 2차 소성품을 얻고, 상온에서 상기 2차 소성품을 분쇄하여 평균 입경(D50)이 3.8㎛인 단입자 형태의 리튬 복합 전이금속 산화물(조성: LiNi0.88336Co0.03493Mn0.07985Y0.00027Zr0.00159O2)을 얻었다.
상기 단입자 형태의 리튬 복합 전이금속 산화물과 Co(OH)2(Huayou社) 및 Al(OH)3(KC대주社)을 균일하게 혼합한 후, 산소 분위기, 700℃의 온도 하에서 5시간 동안 열처리하여, 상기 단입자 형태의 리튬 복합 전이금속 산화물 상에 Co 및 Al을 포함하는 코팅부가 형성된 양극 활물질(조성: LiNi0.86259Co0.05489Mn0.07978Al0.00088Y0.00027Zr0.00159O2)을 제조하였다. 이 때, 상기 Co(OH)2는 상기 단입자 형태의 리튬 복합 전이금속 산화물에 포함되는 리튬을 제외한 금속의 총 몰수(A)에 대한 상기 코발트 함유 코팅 재료에 포함되는 코발트의 몰수(B) 비(B/A)가 0.02가 되도록 하는 양으로 혼합되었으며, 상기 Al(OH)3는 상기 단입자 형태의 리튬 복합 전이금속 산화물 100중량부에 대하여 0.05중량부의 양으로 혼합되었다.
비교예 3
수십 ~ 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태의 복합 전이금속 수산화물(조성: Ni0.885Co0.035Mn0.08(OH)2, 평균 입경(D50): 4.19㎛)과 LiOH를 복합 전이금속 수산화물에 포함되는 전이금속의 총 몰 수(Ni+Co+Mn)와 LiOH에 포함되는 리튬의 몰 수(Li)의 비((Ni+Co+Mn):Li)가 1:0.98이 되도록 혼합하고, 여기에 Al(OH)3(KC대주社)를 상기 복합 전이금속 수산화물 총 중량 대비 1400ppm, Y2O3(Neo performance社)를 상기 복합 전이금속 수산화물 총 중량 대비 1000ppm 첨가하고 혼합하여 혼합물을 제조하였다.
상기 혼합물을 830℃에서 6시간 동안 1차 소성하여 1차 소성품을 얻고, 상온에서 상기 1차 소성품을 평균 입경(D50)이 3.8㎛가 되도록 분쇄하였다.
분쇄된 1차 소성품과 LiOH를 상기 복합 전이금속 수산화물에 포함되는 전이금속의 총 몰 수(Ni+Co+Mn)와 LiOH에 포함되는 리튬의 몰 수(Li)의 비((Ni+Co+Mn):Li)가 1:0.04가 되도록 혼합하고, 760℃에서 9시간 동안 2차 소성하여 2차 소성품을 얻고, 상온에서 상기 2차 소성품을 분쇄하여 평균 입경(D50)이 3.8㎛인 단입자 형태의 리튬 복합 전이금속 산화물(조성: LiNi0.87976Co0.03499Mn0.07998Al0.005Y0.00027O2)을 얻었다.
상기 단입자 형태의 리튬 복합 전이금속 산화물과 Co(OH)2(Huayou社) 및 Al(OH)3(KC대주社)을 균일하게 혼합한 후, 산소 분위기, 700℃의 온도 하에서 5시간 동안 열처리하여, 상기 단입자 형태의 리튬 복합 전이금속 산화물 상에 Co 및 Al을 포함하는 코팅부가 형성된 양극 활물질(조성: LiNi0.85901Co0.05494Mn0.07991Al0.00587Y0.00027O2)을 제조하였다. 이 때, 상기 Co(OH)2는 상기 단입자 형태의 리튬 복합 전이금속 산화물에 포함되는 리튬을 제외한 금속의 총 몰수(A)에 대한 상기 코발트 함유 코팅 재료에 포함되는 코발트의 몰수(B) 비(B/A)가 0.02가 되도록 하는 양으로 혼합되었으며, 상기 Al(OH)3는 상기 단입자 형태의 리튬 복합 전이금속 산화물 100중량부에 대하여 0.05중량부의 양으로 혼합되었다.
실험예
실험예 1: 양극 활물질 분석
실시예 1에서 제조한 양극 활물질에 도펀트인 Al, Y 및 Zr가 어떻게 존재하는지와, Co 및 Al을 포함하는 코팅부가 어떻게 형성되었는지를 확인하기 위해, TEM(Transmission Electron Microscope)(Titan Buved G2 600-300) EDX-Mapping을 이용하여 분석하였고, TEM EDX-Mapping 데이터를 도 1에 나타내었다.
도 1을 참조하면, 실시예 1에서 제조한 양극 활물질의 경우, 도펀트인 Al, Y 및 Zr가 입자 내에서 농도 구배를 가지지 않으며, 균일하게 분포하는 것을 확인할 수 있고, Co 및 Al을 포함하는 코팅부가 얇은 막 형태로 입자 표면에 형성된 것을 확인할 수 있다.
실험예 2: 2차 소성품에 존재하는 잔류 리튬량 확인
실시예 1 내지 4 및 비교예 1 내지 3에서 제조한 각각의 2차 소성품에 존재하는 잔류 리튬량, 즉, Li2CO3 및 LiOH의 함량을 아래와 같은 방법으로 확인하였다.
구체적으로, 실시예 1 내지 4 및 비교예 1 내지 3에서 제조한 각각의 2차 소성품 5g을 증류수 100g에 넣고 5분 동안 혼합한 후, 필터링을 진행하였다. 필터링 후, pH 미터를 이용하여 적정법(0.1N HCl 이용)으로 증류수에 녹아있는 Li2CO3 및 LiOH의 양을 측정하였고, 이를 표 1에 나타내었다.
Li2CO3
(중량%)
LiOH
(중량%)
Total
(중량%)
실시예 1 0.237 0.459 0.696
실시예 2 0.180 0.458 0.638
실시예 3 0.185 0.465 0.650
실시예 4 0.357 0.441 0.798
비교예 1 0.318 0.452 0.770
비교예 2 0.332 0.412 0.744
비교예 3 0.237 0.442 0.679
실험예 3: 전지 특성 평가
실시예 1 내지 4 및 비교예 1 내지 3에서 제조한 각각의 양극 활물질, 카본 블랙 도전재, 폴리비닐리덴플루오라이드(PVDF) 바인더를 N-메틸피롤리돈(NMP) 용매 중에서 96:2:2의 비율로 혼합하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 알루미늄 집전체의 일면에 도포한 후, 150℃에서 건조하고 압연하여 양극을 제조하였다.
음극으로는 리튬 금속 전극을 사용하였고, 상기 양극과 음극 사이에 다공성 폴리에틸렌 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 전지 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 반쪽 전지(half-cell)를 제조하였다. 이 때, 상기 전해액은 에틸렌카보네이트(EC):에틸메틸카보네이트(EMC):디에틸카보네이트(DEC)를 3:4:3의 부피비로 혼합한 유기 용매에 1.0M의 LiPF6를 용해시켜 제조하였다.
이와 같이 제조한 각 반쪽 전지에 대해, 25℃에서 CC-CV 모드로 0.1C로 4.3V가 될 때까지 충전하고, 0.1C의 정전류로 3.0V까지 방전하면서, 초기 충전 용량, 초기 방전 용량을 측정하고, 초기 효율 및 직류내부저항(DCIR)을 계산하여 하기 표 2에 나타내었다. 참고로, 초기 효율 값은 초기 충전 용량에 대한 초기 방전 용량의 백분율 값이며, DCIR 값은 0.1C의 정전류로 방전하면서 60초가 될 때의 전압과 초기 전압의 차이를, 인가한 전류로 나누어 계산한 값이다.
그리고, 45℃, 3.0~4.25V 범위에서 0.33C 정전류로 충방전 사이클을 50회 반복 실시하여 리튬 이차전지의 용량을 측정하였고, 1번째 사이클 방전 용량에 대한 50번째 사이클 방전 용량의 백분율을 용량 유지율로하여 이를 하기 표 2에 나타내었다. 또한, 1번째 방전 사이클에서 60초 동안의 전압 강하(△V)를 전류로 나누어 구한 DCIR에 대한 50번째 방전 사이클에서 60초 동안 전압 강하(△V)를 전류로 나누어 구한 DICR의 백분율을 저항 증가율로 하여 이를 하기 표 2에 나타내었다.
초기 충전 용량
(mAh/g)
초기 방전 용량
(mAh/g)
초기 효율
(%)
DCIR
(Ω)
용량 유지율
(%)
저항 증가율
(%)
실시예 1 229.5 203.4 88.6 16.3 92.9 32.3
실시예 2 230.7 204.8 88.7 16.2 92.3 40.1
실시예 3 229.8 204.5 89.0 15.9 92.2 38.9
실시예 4 227.1 201.7 88.8 14.7 93.1 31.6
비교예 1 227.5 200.2 88.0 16.2 91.9 38.9
비교예 2 228.6 201.9 88.3 15.7 91.1 34.7
비교예 3 229.7 204.4 89.0 16.6 92.2 40.4
표 2를 참조하면, 실시예 1 내지 4의 양극 활물질을 포함하는 전지의 경우, 초기 효율과 용량 유지율이 높고, 초기 저항과 저항 증가율이 낮은 것을 확인할 수 있다.
이에 비해, 비교예 1의 양극 활물질은 Y를 포함하지 않아 그레인의 성장에 문제가 있으므로, 이를 포함하는 전지의 초기 효율 및 용량 유지율 특성이 저하되는 것을 확인할 수 있다. 그리고, 비교예 2의 양극 활물질은 Al을 포함하지 않아 결합(defect)이 높아서 양이온 혼합이 증가된 형태이기 때문에, 이를 포함하는 전지의 초기 효율 및 용량 유지율 특성이 저하되는 것을 확인할 수 있다. 또한, 비교예 3의 양극 활물질은 구조 안정성을 유지시켜주는 Zr을 포함하지 않아, 초기 저항과 저항 증가율이 높은 것을 확인할 수 있다.

Claims (20)

  1. 단입자 형태의 리튬 복합 전이금속 산화물을 포함하고,
    상기 리튬 복합 전이금속 산화물은 Al, Y 및 Zr를 포함하는 것인 양극 활물질.
  2. 청구항 1에 있어서,
    상기 리튬 복합 전이금속 산화물은 평균 입경(D50)이 2.5㎛ 내지 5.5㎛인 것인 양극 활물질.
  3. 청구항 1에 있어서,
    상기 Al은 상기 리튬 복합 전이금속 산화물 총 중량에 대하여 500ppm 내지 3,000ppm의 함량으로 포함되는 것인 양극 활물질.
  4. 청구항 1에 있어서,
    상기 Y는 상기 리튬 복합 전이금속 산화물 총 중량에 대하여 100ppm 내지 2,000ppm의 함량으로 포함되는 것인 양극 활물질.
  5. 청구항 1에 있어서,
    상기 Zr은 상기 리튬 복합 전이금속 산화물 총 중량에 대하여 500ppm 내지 5,000ppm의 함량으로 포함되는 것인 양극 활물질.
  6. 청구항 1에 있어서,
    상기 리튬 복합 전이금속 산화물은 리튬을 제외한 금속의 총 몰수에 대하여 니켈을 60몰% 이상 포함하는 것인 양극 활물질.
  7. 청구항 1에 있어서,
    상기 리튬 복합 전이금속 산화물은 하기 화학식 1로 표시되는 조성을 가지는 것인 양극 활물질:
    [화학식 1]
    Lix[NiaCobMncAldYeZrfM1g]O2-yAy
    상기 화학식 1에 있어서,
    M1은 B, Ti, W, Nb, Sr, Mo, Mg, P, V, Ta, Ga 및 Ca 중에서 선택되는 1종 이상이고,
    A는 F, Cl, Br, I 및 S 중에서 선택되는 1종 이상이며,
    0.9≤x≤1.2, 0.6≤a<1, 0≤b≤0.4, 0≤c≤0.4, 0<d≤0.01, 0<e≤0.0006, 0<f≤0.005, 0≤g≤0.2, a+b+c+d+e+f+g=1, 0≤y≤0.2이다.
  8. 청구항 1에 있어서,
    상기 단입자 형태의 리튬 복합 전이금속 산화물 상에 형성된 Co를 포함하는 코팅부를 더 포함하는 양극 활물질.
  9. 청구항 8에 있어서,
    상기 코팅부는 Al, Zr 또는 이들의 조합을 더 포함하는 것인 양극 활물질.
  10. (A) 복합 전이금속 수산화물, 복합 전이금속 옥시수산화물 또는 이들의 조합인 양극 활물질 전구체, 제1 리튬 함유 원료 물질, 알루미늄 함유 원료 물질, 이트륨 함유 원료 물질 및 지르코늄 함유 원료 물질을 혼합하여 혼합물을 제조하는 단계;
    (B) 상기 혼합물을 820℃ 내지 950℃의 온도 하에서 1차 소성하여 1차 소성품을 제조하는 단계; 및
    (C) 상기 1차 소성품에 선택적으로 제2 리튬 함유 원료 물질을 혼합한 후, 700℃ 내지 850℃의 온도 하에서 2차 소성하여 2차 소성품을 제조하는 단계;를 포함하는 청구항 1에 따른 양극 활물질의 제조방법.
  11. 청구항 10에 있어서,
    상기 (C) 단계 이전에, (B') 상기 1차 소성품을 분쇄하는 단계를 더 포함하는 양극 활물질의 제조방법.
  12. 청구항 10에 있어서,
    (C') 상기 2차 소성품을 분쇄하는 단계를 더 포함하는 양극 활물질의 제조방법.
  13. 청구항 10에 있어서,
    (D) 상기 2차 소성품과 코발트 함유 코팅 재료를 혼합한 후, 열처리하는 단계;를 더 포함하는 양극 활물질의 제조방법.
  14. 청구항 13에 있어서,
    상기 (D) 단계에서 상기 2차 소성품과 코발트 함유 코팅 재료를 혼합할 때, 알루미늄 함유 코팅 재료, 지르코늄 함유 코팅 재료 또는 이들의 조합을 더 혼합하는 것인 양극 활물질의 제조방법.
  15. 청구항 13에 있어서,
    상기 코발트 함유 코팅 재료는 상기 2차 소성품에 포함되는 리튬을 제외한 금속의 총 몰수(A)에 대한 상기 코발트 함유 코팅 재료에 포함되는 코발트의 몰수(B) 비(B/A)가 0.01 내지 0.03이 되도록 하는 양으로 혼합되는 것인 양극 활물질의 제조방법.
  16. 청구항 14에 있어서,
    상기 알루미늄 함유 코팅 재료는 상기 2차 소성품 100중량부에 대하여 0.03중량부 내지 0.10중량부의 양으로 혼합되는 것인 양극 활물질의 제조방법.
  17. 청구항 13에 있어서,
    상기 열처리는 산소 분위기 하에서 수행하는 것인 양극 활물질의 제조방법.
  18. 청구항 13에 있어서,
    상기 열처리는 600℃ 내지 800℃의 온도 하에서 수행하는 것인 양극 활물질의 제조방법.
  19. 청구항 1 내지 청구항 9 중 어느 한 항에 따른 양극 활물질을 포함하는 양극.
  20. 청구항 19에 따른 양극;
    음극;
    상기 양극과 상기 음극 사이에 개재된 분리막; 및
    전해질;을 포함하는 리튬 이차전지.
PCT/KR2023/009069 2022-06-30 2023-06-28 양극 활물질, 이의 제조방법, 및 이를 포함하는 양극 및 리튬 이차전지 WO2024005553A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202380017230.6A CN118661291A (zh) 2022-06-30 2023-06-28 正极活性材料、其制备方法以及包含其的正极和锂二次电池
EP23831912.3A EP4451387A1 (en) 2022-06-30 2023-06-28 Cathode active material, preparation method therefor, and cathode and lithium secondary battery, which comprise same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220080870A KR20240002815A (ko) 2022-06-30 2022-06-30 양극 활물질, 이의 제조방법, 및 이를 포함하는 양극 및 리튬 이차전지
KR10-2022-0080870 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024005553A1 true WO2024005553A1 (ko) 2024-01-04

Family

ID=89381109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009069 WO2024005553A1 (ko) 2022-06-30 2023-06-28 양극 활물질, 이의 제조방법, 및 이를 포함하는 양극 및 리튬 이차전지

Country Status (4)

Country Link
EP (1) EP4451387A1 (ko)
KR (1) KR20240002815A (ko)
CN (1) CN118661291A (ko)
WO (1) WO2024005553A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190059241A (ko) * 2017-11-22 2019-05-30 주식회사 엘지화학 리튬 이차전지용 양극활물질 및 그 제조방법
KR20210031324A (ko) * 2019-09-11 2021-03-19 주식회사 엘지화학 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
CN111682170B (zh) * 2020-05-20 2022-05-17 广东邦普循环科技有限公司 一种单晶三元正极材料及其制备方法和应用
KR20220089183A (ko) * 2020-12-21 2022-06-28 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190059241A (ko) * 2017-11-22 2019-05-30 주식회사 엘지화학 리튬 이차전지용 양극활물질 및 그 제조방법
KR20210031324A (ko) * 2019-09-11 2021-03-19 주식회사 엘지화학 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
CN111682170B (zh) * 2020-05-20 2022-05-17 广东邦普循环科技有限公司 一种单晶三元正极材料及其制备方法和应用
KR20220089183A (ko) * 2020-12-21 2022-06-28 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU GUISHU, WEI YANWEI, LI HANWEN, WANG CHANGYAO, HUANG XIANWU, YANG DONG: "Al 2 O 3 ‐Coated, Single Crystal Zr/Y co‐Doped High‐Ni NCM Cathode Materials for High‐Performance Lithium‐Ion Batteries", PARTICLE AND PARTICLE SYSTEMS CHARACTERIZATION, VCH, WEINHEIM., DE, vol. 39, no. 7, 1 July 2022 (2022-07-01), DE , XP093124602, ISSN: 0934-0866, DOI: 10.1002/ppsc.202200061 *

Also Published As

Publication number Publication date
CN118661291A (zh) 2024-09-17
KR20240002815A (ko) 2024-01-08
EP4451387A1 (en) 2024-10-23

Similar Documents

Publication Publication Date Title
WO2018143753A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021049918A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2016053056A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2021107684A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 방법에 의해 제조된 리튬 이차전지용 양극 활물질
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021112606A1 (ko) 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법
WO2020180160A1 (ko) 리튬 이차전지
WO2020180125A1 (ko) 리튬 이차전지
WO2022169271A1 (ko) 양극 활물질 및 이의 제조방법
WO2021080384A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2024005553A1 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 양극 및 리튬 이차전지
WO2023191604A1 (ko) 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2024215048A1 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 양극 및 리튬 이차전지
WO2024147548A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2024053995A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬이차전지
WO2024147547A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2024147544A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2024049200A1 (ko) 양극 활물질 전구체, 이의 제조 방법, 이를 이용한 양극 활물질의 제조 방법 및 양극 활물질
WO2024147542A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2023224447A1 (ko) 양극 활물질 전구체, 이를 이용한 양극 활물질의 제조방법 및 양극 활물질
WO2023063778A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조방법
WO2023038473A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차 전지
WO2023224445A1 (ko) 양극 활물질 및 이의 제조 방법
WO2023224442A1 (ko) 양극 활물질, 이의 제조 방법 및 이를 포함하는 양극
WO2023224449A1 (ko) 양극 활물질 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831912

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023831912

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023831912

Country of ref document: EP

Effective date: 20240716