WO2024005460A1 - 자가-희생기를 포함하는 화합물 및 이를 포함하는 리간드-약물 접합체 - Google Patents

자가-희생기를 포함하는 화합물 및 이를 포함하는 리간드-약물 접합체 Download PDF

Info

Publication number
WO2024005460A1
WO2024005460A1 PCT/KR2023/008742 KR2023008742W WO2024005460A1 WO 2024005460 A1 WO2024005460 A1 WO 2024005460A1 KR 2023008742 W KR2023008742 W KR 2023008742W WO 2024005460 A1 WO2024005460 A1 WO 2024005460A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
mmol
formula
alkyl
Prior art date
Application number
PCT/KR2023/008742
Other languages
English (en)
French (fr)
Inventor
우성호
박수호
조종운
윤상현
민경욱
박옥구
이현미
Original Assignee
주식회사 트리오어
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 트리오어 filed Critical 주식회사 트리오어
Publication of WO2024005460A1 publication Critical patent/WO2024005460A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6889Conjugates wherein the antibody being the modifying agent and wherein the linker, binder or spacer confers particular properties to the conjugates, e.g. peptidic enzyme-labile linkers or acid-labile linkers, providing for an acid-labile immuno conjugate wherein the drug may be released from its antibody conjugated part in an acidic, e.g. tumoural or environment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0052Small organic molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0058Antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/26Acyclic or carbocyclic radicals, substituted by hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/02Heterocyclic radicals containing only nitrogen as ring hetero atoms

Definitions

  • the present invention relates to a compound containing a novel self-sacrificial group and a ligand-drug conjugate containing the same, and specifically to a compound containing a self-sacrificial group of Formula 1 and a ligand-drug conjugate of Formula 2.
  • Bioactive substances such as drugs and diagnostic substances have target-specific activity in vivo.
  • drugs have an inhibitory or therapeutic effect on specific target cells, and diagnostic substances react with specific proteins in the body to perform diagnosis.
  • bioactive substances can be toxic to biomaterials other than the target
  • technologies have been proposed to suppress the side effects of the drug while allowing the drug effect to selectively appear on target cells.
  • ADC antibody-drug conjugates
  • ADC bind a drug or toxin to an antibody that binds to an in vivo receptor and then selectively release the drug or toxin from target cells to achieve the desired drug effect. It is a target-oriented technology that indicates. Because it releases drugs or toxins only under specific conditions and selectively delivers them to target cells while minimizing side effects on normal cells, it has better efficacy than antibody treatments and can greatly reduce the risk of side effects.
  • antibody-drug conjugates consist of a general “antibody-linker-drug (toxin)” structure.
  • the linker not only serves to simply connect the antibody and the drug, but also dissociates the antibody-drug from the target cell after the antibody-drug conjugate stably reaches the target cell when circulating in the body (e.g., as a result of hydrolysis by enzymes).
  • the drug is separated and selectively exerts its effect on target cells. Therefore, the stability of the linker has a significant impact on the efficacy and systemic toxicity of the antibody-drug conjugate (Discovery Medicine 2010, 10(53): 329-39).
  • Linkers of antibody-drug conjugates can generally be classified into non-cleavable and cleavable types.
  • thioether is mainly used. Instead of the bond between the drug and the linker dissociating within the cell, the bond between the linker and the antibody is dissociated, and the drug bound to the linker is separated from the antibody.
  • Thiol-maleimide linkers are mainly used, but have the disadvantages of low chemical and plasma stability and low efficacy.
  • Cleavable linkers are mainly those that are separated by chemical methods or hydrolyzed by enzymatic reactions.
  • linker with a chemical separation mechanism a linker consisting of a disulfide, hydrazone, or oxime bond is typically used.
  • chemically separated linkers may dissociate the drug at a location unrelated to the target location depending on conditions in the blood or cells, resulting in toxic side effects.
  • linkers that are selectively hydrolyzed within target cells by enzymatic reactions are being developed.
  • a linker that is hydrolyzed by an enzymatic reaction is not directly connected to the drug, but is connected through a self-immolative group (SIG) interposed between the drug and the linker, and after hydrolysis by an enzymatic reaction, 1,6 -Dissociates the drug through mechanisms such as 1,6-elimination or cyclization (Clinical Cancer Res. 2005, 11, 843-852).
  • SIG self-immolative group
  • One object of the present invention is to provide a compound containing a self-immolative group of Formula 1 or Formula 1-1 and a ligand-drug conjugate of Formula 2 or Formula 2-1.
  • Another object of the present invention is to provide a pharmaceutical composition, an imaging composition, or a detection composition comprising a compound of Formula 1 or Formula 1-1, or a ligand-drug conjugate of Formula 2 or Formula 2-1.
  • ligand-drug conjugate represented by the following formula (2) or a pharmaceutically acceptable salt thereof:
  • L 1 is a divalent or multivalent linking group
  • k is 0 or 1
  • j is 1 to 10.
  • A is absent, H, or a binding functional group
  • A' is a divalent linking group derived from the binding functional group of A.
  • W is an optional substituent on the benzene ring
  • Z 1 and Z 3 is selected from the group consisting of N, NR 3 , O, S and Se, and the other one of Z 1 and Z 3 and Z 2 are each independently CH or N, -(L 1 ) k -A, and -(V) h when present each independently replace H of NH or CH;
  • V is an electron withdrawing or electron donating group
  • T is a triggering group that, upon cleavage, can initiate the release of PL and, if present, L 2 by a 1,6-elimination reaction;
  • L 3 is an optional self-immolative spacer group that, when present, is cleaved sequentially upon cleavage of T;
  • X and Y are each independently selected from -O-, -NH-, and S;
  • L 1 when L 1 is a divalent linking group, one side of L 1 is bonded to A and the other side is bonded to U. In this case, one U is combined with L 1 .
  • L 1 comprises a branched or dendrimeric structure (i.e., when L 1 is a multivalent linking group)
  • multiple U may bind to L 1 .
  • the number (j) of U bound to L 1 may be 1 to 10. In one embodiment, j is 1 to 5. In one embodiment, j is 1.
  • one of Z 1 and Z 3 is selected from the group consisting of N, NR 3 , O, S and Se, and the other one of Z 1 and Z 3 and Z 2 are each independently CH or N .
  • -(L 1 ) k -A, and -(V) h when present each independently replace H of NH or CH.
  • R 3 is H or C 1-8 hydrocarbyl.
  • one of Z 1 and Z 3 is selected from the group consisting of N, NR 3 , O, S and Se in combination with L 1 or A, and the other one of Z 1 and Z 3 and Z 2 are Each independently may be H, V, L 1 , or C combined with A, or N.
  • the R 3 is H or C 1-8 alkyl. In one embodiment, R 3 may be H, C 1-4 alkyl, or C 1-3 alkyl.
  • any one of Z 1 to Z 3 may include a heteroatom selected from the group consisting of N, O, S, and Se. In one embodiment, two or more of Z 1 to Z 3 may each independently include a heteroatom selected from the group consisting of N, O, S, and Se.
  • one of Z 1 and Z 3 may be N combined with A or L 1 , and the other one and Z 2 may be CH.
  • one of Z 1 and Z 3 may be selected from the group consisting of NR 3 , O, S, and Se, and the other one and Z 2 may be CH, or C combined with A or L 1 .
  • one of Z 1 and Z 3 is selected from the group consisting of NR 3 , O and S, the other one and Z 2 are N, and the other one of Z 1 to Z 3 is CH or A Or it may be C combined with L 1 .
  • the compound represented by Formula 1 may be a derivative of indole, benzothiophene, benzofuran, benzoselenophen, indazole, benzimidazole, benzoxazole, benzisoxazole, or benzothiazole.
  • the ring may be selected from the following group:
  • the benzene ring in the fused ring structure of Formula A may be substituted with any substituent W as long as it does not have an undesirable effect on the 1,6-elimination reaction initiated from the triggering group T.
  • the substituent W on the benzene ring is H, C 1-12 saturated or unsaturated hydrocarbyl, halogen, halo-C 1-8 alkyl, CN, NO 2 , OH, C 1-8 alkoxy, hydroxy-C 1-8 alkyl, C 1-8 alkoxy-C 1-8 alkyl, SH, C 1-8 alkylthio, mercapto-C 1-8 alkyl, amino, mono -C 1-8 alkylamino, di-C 1-8 alkylamino, amino-C 1-8 alkyl, C 1-8 monoalkylamino-C 1-8 alkyl, C 1-8 dialkylamino -C 1- 8 Alkyl, carboxy, C 1-8 alkoxycarbonyl, C 1-8 alkoxycarbonyl
  • the 5-membered ring containing Z 1 , Z 2 and Z 3 may be optionally substituted with an electron-withdrawing group or an electron-donating group V.
  • h is 0 or 1.
  • V can be absent (h is 0).
  • V is halogen, CN, NO 2 , formyl, C 1-8 alkylcarbonyl, carboxy, C 1-8 alkoxycarbonyl, carboxy-C 1-8 alkyl, carbamoyl, mono-C 1-8 alkylcarbamoyl, di- C 1-8 alkylcarbamoyl, C 1-8 alkyl, C 1-8 alkenyl, OH, C 1-8 alkoxy, SH, C 1-8 alkylsulfanyl, NH 2 , mono-C 1-8 alkylamino, di-C 1-8 alkylamino, and C 6-18 aryl.
  • V may be carboxy, carboxy-C 1-8 alkyl, or C 1-8 alkoxycarbonyl.
  • V may be carboxy, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, carboxymethyl, carboxyethyl, or carboxypropyl.
  • R 1 and R 2 are each independently H or C 1-8 saturated or unsaturated hydrocarbyl.
  • R 1 and R 2 can each independently be H or C 1-8 alkyl or C 3-8 cycloalkyl.
  • R 1 and R 2 may each independently be a saturated or fully or partially unsaturated hydrocarbyl of H or C 1-4 .
  • R 1 and R 2 may each be H.
  • the unsaturated hydrocarbyl may include partially unsaturated or fully unsaturated hydrocarbyl.
  • the hydrocarbyl may be a straight-chain, branched, or cyclic hydrocarbyl.
  • L 2 is a self-eliminating linker selected so that cleavage of the bond between the carbon atom to which R 1 and R 2 are bonded and L 2 promotes cleavage of the bond between L 2 and PL. linker).
  • l may be 0 or 1. When l is 0, the PL may be directly bonded to the carbon atom to which R 1 and R 2 are connected.
  • the L 2 group is cleaved from the carbon atom to which R 1 and R 2 are bonded by a 1,6-elimination reaction triggered by the trigger T. And PL - or PL-H may be released from L 2 .
  • R 10 to R 12 are each independently H, C 1-8 alkyl, amino-C 1-8 alkyl, C 1-8 alkyl substituted with mono- or di-(C 1-8 alkyl)amino, Or -(CH 2 CH 2 O) g R 13 .
  • R 13 is H or C 1-4 alkyl
  • g may be an integer of 1 to 10.
  • the C 1-8 alkyl may be C 1-6 alkyl, C 1-4 alkyl, or C 1-3 alkyl.
  • R 10 to R 12 are each independently H, methyl, ethyl, propyl, 2-aminoethyl, 2-(N-methylamino)ethyl, 2-(N,N-dimethylamino)ethyl, 2- It may include (N-ethylamino)ethyl or 2-(N,N-diethylamino)ethyl.
  • PL is an active agent that exhibits the desired biological activity in target cells, and is connected to the carbon atom to which L 2 or R 1 and R 2 are bonded by a heteroatom selected from N, O and S in the active agent. . PL is released from the compound of formula 1 by a 1,6-elimination reaction when T is cleaved by an enzymatic or chemical reaction.
  • the PL may be at least one active agent selected from the group consisting of drugs, toxins, fluorophores, affinity ligands, diagnostic agents, and detection probes.
  • active agent selected from the group consisting of drugs, toxins, fluorophores, affinity ligands, diagnostic agents, and detection probes.
  • heteroatoms selected from N, O and S contained in the drugs, toxins, fluorescent substances, affinity ligands, diagnostic substances and detection probes may be bonded to the carbon atom to which R 1 and R 2 are bonded or L 2 .
  • R 1 and R 2 contain a bonded carbon atom or (if L 2 is present) a heteroatom selected from N, O and S capable of bonding to L 2 , or add a functional group containing such a heteroatom.
  • the PL of the present invention can be used as the PL of the present invention as long as it can be introduced, and it should be noted that the PL of the present invention is not limited to the specific active agent exemplified herein.
  • the PL is a functional group from which H of the primary or secondary amine group, H of the hydroxy group, and H of the carboxyl group are removed, a functional group from which the lone pair of electrons of the nitrogen atom of the tertiary amine group is donated, or an imine ( It may contain a functional group connected to a nitrogen atom through an addition reaction of an imine group.
  • thiotepa or CYTOXAN® cyclophosphamide
  • alkyl sulfonates e.g. busulfan, improsulfan or piposulfan
  • aziridine e.g. benzodopa, carboquone, meturedopa or uredopa
  • Ethyleneimine e.g. benzodopa, carboquone, meturedopa or uredopa
  • Ethyleneimine methylmelamine, altretamine, triethylenemelamine, triethylenephosphoramide, triethylenethiophosphoramide, trimethylolmelamine
  • acetogenins e.g.
  • camptothecin including the synthetic analogue topotecan; bryostatin; calllistatin; CC-1065 (including its adozelesin, carzelesin or bizelesin synthetic analogues); cryptophycins (e.g. cryptophycin 1) or cryptophycin 8); dolastatin; duocarmycin (including synthetic analogs, KW-2189 and CB1-TM1); eleutherobin; pancratistatin; sarcodictyin; spongistatin; Nitrogen mustard (e.g.
  • enediyne antibiotics such as calicheamycin, selected from calicheamycin gamma1 I and calicheamycin omegaI1) or dynemicin, including dynemicin A; bisphosphonates (e.g. clodronate); esperamicin, neocarzinostatin chromophore or related chromoprotein enediyne antibiotic chromophores, alacinomysins, actinomycin, anthramycin (antrmycin), azaserine, bleomycins, cactinomycin, carabicin, carninomycin, carzinophilin, chromomycins, doc dactinomycin, daunorubicin, detorubucin, 6-diazo-5-oxo-L-norleucine, ADRLIMYCIN; ADRLIMYCIN (doxorubicin) (e.g., morpholino-doxorubicin, cyanomorph
  • mitomycin C mycophenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rhoduru rodorubicin, streptomigrin, streptozocin, tubercidin, ubenimex, zinostatin or zorubicin); anti-metabolites (e.g. 5-fluorouracil (5-FU)); folic acid analogues (e.g., denopterin, methotrexate, pteropterin, or trimetrexate); Purine analogs (e.g. fludarabine, 6-mercaptopurine, thiamiprine or thiguanine); Pyrimidine analogs (e.g.
  • ancitabine azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuri
  • dideoxyuridine doxifluridine, enocitabine or floxuridine
  • androgens e.g. calusterone, dromostanolone propionate, epitiostanol, mepitiostane or testolactone
  • anti-adrenals e.g. aminoglutethimide, mitotane or trilostane
  • folic acid replenishers e.g.
  • folinic acid folinic acid
  • aceglatone aldophosphamide glycoside
  • aminolevulinic acid eniluracil; amsacrine; bestrabucil
  • bisantrene edatraxate
  • defofamine demecolcine
  • diaziquone elfornithine
  • elliptinium acetate epothilone
  • etoglucid gallium nitrate
  • hydroxyurea lentinan
  • lonidainine maytansinoids (e.g.
  • trichothecenes include T-2 toxin, verracurin A, and roridin A A) or anguidine); mitoguazone; mitoxantrone; mopidanmol; nitraerine; pentostatin; phenamet; pirarubicin; losoxantrone; 2-ethylhydrazide; procarbazine; PSK®; polysaccharide complex; razoxane; rhizoxin; sizofiran; Spirogermanium; tenuazonic acid; triaziquone; 2,2',2"-trichlorotriethylamine (2,2',2"-trichlorotriethylamine); trichothecenes (especially T-2 toxin, veraculin A, loridin A, and anguidin); urethane; vindesine; dacarbazine; mannomustine; mitobronitol; mitolacto
  • cisplatin or carboplatin vinblastine; platinum; etoposide, ifosfamide (ifosfamide); mitoxantrone; vincristine; vinorelbine (NAVELBINE); novantrone; teniposide; edatrexate; daunomycin ); aminopterin; xeloda; ibandronate; CPT-11; topoisomerase inhibitor RFS 2000; difluorometlhylornithine (DFMO); Retinoids (e.g., retinoic acid); capecitabine; and pharmaceutically acceptable salts, solvates, acids or derivatives thereof, but are not limited thereto.
  • DFMO difluorometlhylornithine
  • Retinoids e.g., retinoic acid
  • capecitabine and pharmaceutically acceptable salts, solvates, acids or derivatives thereof, but are not limited thereto.
  • Additional drugs include, but are not limited to: (i) tamoxifen (NOLVADEX; including tamoxifen), raloxifene, droxyfen, 4-hydroxytamoxifen, trioxifen, keoxifene, LY117018, onapristone, and FAREATON.
  • Anti-hormonal agents that act to modulate or inhibit the action of hormones on tumors such as anti-estrogens and selective estrogen receptor modulators (SERMs), including toremifene;
  • SERMs selective estrogen receptor modulators
  • aromatase inhibitors that inhibit the aromatase enzyme, which regulates estrogen production in the adrenal glands, such as 4(5)-imidazole, aminoglutethimide, MEGASE; Megestrol acetate, AROMASIN; Exemestane, FEMARA; Letrozole and ARIMIDEX; Anastrozole;
  • anti-androgens such as flutamide, nilutamide, bicalutamide, leuprolide and goserelin; as well as troxacitabine (a 1,3-dioxolane nucleoside cytosine analogue);
  • aromatase inhibitors such as flutamide, nilutamide, bicalutamide, leuprolide and gose
  • the drug may be selected from cytokines, immunomodulatory compounds, anticancer agents, antiviral agents, antibacterial agents, antifungal agents, anthelmintic agents, or combinations thereof.
  • the cytokine is a small cell-signaling protein molecule secreted by multiple cells, and may be a signaling molecule widely used in intracellular information exchange.
  • the cytokines include monokines, lymphokines, traditional polypeptide hormones, etc.
  • cytokines include, but are not limited to, growth hormone (e.g., human growth hormone, N-methionyl human growth hormone, or bovine growth hormone ( bovine growth hormone)); parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones (e.g., folliclestimulating hormone (FSH), thyroid stimulating hormone (TSH), or luteinizing hormone (LH)); hepatic growth factor; fibroblast growth factor; prolactin; placental lactogen; tumor necrosis factor- ⁇ , tumor necrosis factor- ⁇ ; mullerian-inhibiting substance; mouse gonadotropin-associated peptide; inhibin; activin; vascularendothelialgrowth factor; integrin, thrombopoietin (TPO); nerve growth factor (e.g.
  • growth hormone e.g., human growth hormone, N-methionyl human growth hormone, or bovine growth hormone ( bovine growth hormone)
  • NGF- ⁇ platelet-growth factor
  • TGF transforming growth factor
  • TGF- ⁇ or TGF- ⁇ Insulin-like growth factor-I, insulin-like growth factor-II; erythropoietin (EPO); osteoinductive factor
  • Interferon e.g., interferon- ⁇ , interferon- ⁇ , or interferon- ⁇
  • Colony stimulating factor (CSF) e.g. macrophage-CSF (M-CSF), granulocyte-macrophage-CSF (GM-CSF), or granulocyte-CSF (GM-CSF) -CSF, G-CSF
  • ILs Interleukins
  • the immunomodulatory compounds include aminocaproic acid, azathioprine, bromocriptine, chloroquine, chlorambucil, cyclosporine, and cyclosporine A. ), danazol, DHEA (dehydroepiandrosterone), dexamethasone, etanercept, hydroxychloroquine, hydrocortisone, infliximab, meloxicam, It can be selected from the group consisting of methotrexate, cyclophosphamide, mycophenylate mofetil, prednisone, sirolimus, and tacrolimus.
  • the viral agents include pencicyclovir, valacyclovir, gancicyclovir, foscarnet, ribavirin, idoxuridine, vidarabine, and triple. trifluridine, acyclovir, famcicyclovir, amantadine, rimantadine, cidofovir, antisense oligonucleotide, immunoglobulin and It can be selected from the group consisting of interferon.
  • the antibacterial agents include chloramphenicol, vancomycin, metronidazole, trimethoprin, sulfamethazole, quinupristin, dalfopristin, and rifampin ( It can be selected from the group consisting of rifampin, spectinomycin, and nitrofurantoin.
  • the antifungal agents include amphotericin B, candicidin, filipin, hamycin, natamycin, nystatin, rimocidin, and bifo.
  • the anthelmintics include mebendazole, pyrantel pamoate, thiabendazole, diethylcarbamazine, ivermectin, niclosamide, and praziquantel. (praziquantel), albendazole, rifampin, amphotericin B, melarsoprol, eflornithine, metronidazole, tinidazole and miltefosine.
  • the toxin may include toxic substances produced within living cells or organisms.
  • a toxin may be a biological macromolecule, such as a small molecule, peptide or protein that can cause disease upon contact with or absorption by body tissue that interacts with an enzyme or cellular receptor.
  • toxins include plant toxins and animal toxins. Examples of animal toxins include, but are not limited to, diphtheria toxin, botulium toxin, tetanus toxin, dysentery toxin, cholera toxin, and tetrodotoxin. Includes tetrodotoxin, brevetoxin, and ciguatoxin.
  • plant toxins include, but are not limited to, ricin and AM-toxin.
  • small molecule toxins include, but are not limited to, auristatin, tubulysin, geldanamycin (Kerr et al., 1997, Bioconjugate Chem. 8(6):781-784), maytansinoid (EP 1391213, ACR 2008, 41, 98-107), calicheamycin (US 2009105461, Cancer Res. 1993, 53, 3336-3342), daunomycin, doxorubicin (doxorubicin), methotrexate, vindesine, SG2285 (Cancer Res.
  • Toxins can exhibit cytotoxic and cell growth inhibitory activities through tubulin binding, DNA binding, topoisomerase inhibition, etc.
  • the affinity ligand may include a molecule capable of forming a complex with a target biomolecule.
  • the affinity ligand may be a molecule that transmits a signal by binding to a predetermined position on the target protein.
  • the affinity ligand may be a substrate, inhibitor, stimulant, neurotransmitter, or radioisotope.
  • Detection probe may mean a substance or portion of a substance that can be detected by spectroscopic, photochemical, biochemical, immunochemical, radioactive or chemical means.
  • useful detection probes include 32 P, 35 S, fluorescent dyes, electron-dense reagents, enzymes (e.g., those commonly used in ELISA), and biotin.
  • Detection probes are often capable of generating a measurable signal, such as a radioactive, chromogenic or fluorescent signal, which can be used to quantify the amount of bound detectable moiety in a sample. Quantification of the signal can be achieved, for example, by scintillation counting, densitometry, flow cytometry, ELISA, or direct analysis by mass spectrometry of intact or subsequently digested peptides (more than one peptide may be assayed). there is.
  • a measurable signal such as a radioactive, chromogenic or fluorescent signal
  • the detection probe may (i) provide a detectable signal, or (ii) detectable signal provided by the first or second probe, such as fluorescence resonance energy transfer (FRET) by reacting the first or second probe with each other. altering the signal, (iii) stabilizing the interaction with the antigen or ligand or increasing the binding affinity, or (iv) influencing the electrophoretic mobility or cell-invasion behavior by physical parameters such as charge, hydrophobicity, etc. or (v) may include a substance capable of controlling ligand affinity, antigen-antibody binding, or ion complex formation.
  • FRET fluorescence resonance energy transfer
  • the PL is MMAF (Monomethyl auristatin F), auristatin F, MMAE (Monomethyl auristatin E), SN-38, p-nitrophenol, xanthenecarboxylic acid, abiraterone, gefitinib, and PBD dimer. , ⁇ -amanitin, seco-DUBA, doxorubicin, lapatinib, imatinib, erlotinib, exatecan, belotecan and a compound represented by one of the following formulas:
  • the PL may be selected from the group consisting of residues represented by the following formula:
  • T is a triggering group capable of initiating the release of PL and, if present, L 2 by a 1,6-elimination reaction upon cleavage.
  • T can be selectively cleaved in vivo by chemical or enzymatic reactions.
  • T (the bond between Y and T when Y is present) is selectively cleaved under specific conditions in vivo, thereby stably delivering PL to the target site and selectively releasing PL from the target site.
  • T may be connected to the benzene ring through a heteroatom such as an oxygen atom, a sulfur atom, or a nitrogen atom. That is, in Formula A, Y connecting the trigger group T to the compound residue may be -O-, -NH-, and S.
  • -(Y) y- T is - ⁇ -galactoside, - ⁇ -glucuronide, -O-SO 3 - , -NO 2 , -valine-citrulline derivative, -valine-alanine derivative.
  • -OC(O)(CH 2 ) r COR t1 -O(CH 2 )-Ar 1 -NO 2
  • -SC(O)(CH 2 ) s COR t2
  • -S(CH 2 )-Ar 2 - It may be selected from the group consisting of NO 2 and -BR t3 R t4 .
  • the ⁇ -galactoside and ⁇ -glucuronide may be connected to the benzene ring through the oxygen atom bonded to carbon atom 1 of the ⁇ -galactoside residue and the ⁇ -glucuronide residue.
  • the valine-citrulline derivative and valine-alanine derivative may be linked to the benzene ring through the nitrogen atom of the valine residue. That is, the - ⁇ -galactoside, - ⁇ -glucuronide, -valine-citrulline derivative, and -valine-alanine derivative herein may be residues having the structure below.
  • R t1 and R t2 are each C 1 -C 8 alkyl
  • Ar 1 and Ar 2 are each C 5 -C 20 arylene or heteroarylene
  • R t3 and R t4 are each independently hydrogen, C 1 -C 8 alkoxy or hydroxy
  • r and s may each be integers of 1 to 5.
  • the arylene may be phenyl or naphthyl.
  • the heteroarylene may include 1 to 3 heteroatoms (N, O, or S).
  • the heteroarylene may be furanyl, thiophenyl, or pyrrolyl.
  • R t5 is OH, mono-C 1-8 alkylamino, di-C 1-8 alkylamino or -NH(CH 2 CH 2 O) f R t6 , where R t6 is H or C 1-4 It is alkyl, and f may be an integer from 1 to 10.
  • -(Y) y -T is Sugars such as; peptides such as; and -O-SO 3 - functional groups, which can be selectively hydrolyzed by specific enzymes in lysosomes.
  • the saccharide may have its -OH protected with a protecting group (eg, acetyl) or substituted with an arbitrary substituent.
  • -SC(O)(CH 2 ) s COR t2 , -S(CH 2 )-Ar 2 -NO 2, -OC(O)(CH 2 ) r COR t1 and -O(CH 2 )-Ar 1 In the case of -NO 2 , it can be cleaved under reducing conditions.
  • L 3 is an optional self-immolative spacer group that, when present, is cleaved sequentially upon cleavage of T.
  • the 1,6-elimination reaction triggered by the cleavage of T under specific conditions in vivo separates L 3 from the residue of the compound. Therefore, L 3 has a structure that can transfer electrons generated upon cleavage of T to the benzene ring of Chemical Formula A and PL.
  • -(X) x -L 3 - is It can be.
  • R 8 and R 9 are each independently selected from the group consisting of H, halogen, C 1-8 alkyl, CN, and NO 2 , and o may be an integer of 0 to 2.
  • -(X)xL 3 - can be derived from benzylhydroxide (PhCH 2 OH) and its derivatives.
  • one of Z 1 and Z 3 is O, and -(X) x -L 3 - is It can be.
  • i may be 0 or 1. In one embodiment, when i is 0, the self-immolative spacer group is absent, and -(Y) y -T can be directly connected to the benzene ring.
  • A is absent, H, or a binding functional group.
  • A is H or a binding functional group
  • A is also absent.
  • the binding functional group may be combined with a functional group included in a ligand or protein (E of Formula 2) or a functional group included in a linker precursor forming L 1 of Formula 1 through reactions such as addition or substitution. It may mean a functional group. That is, the binding functional group is any functional group that can provide a bond between the ligand or protein (E) and L 1 of Formula 1, or (if L 1 does not exist) U of Formula 1 and another linker. In the field of ligand-drug conjugates, various functional groups for binding between ligands and linkers are known in the art.
  • the binding functional group of the present invention is not limited to the specific functional groups exemplified herein. do.
  • the binding functional group may bind to a ligand or protein (E) or linker precursor having receptor binding properties through a click chemistry reaction.
  • L 1 in Formula 1 is absent (i.e., k is 0)
  • the binding functional group is further combined with the linker precursor and then formed into a ligand or protein having receptor binding properties through the functional group included in the linker precursor ( E) can be combined.
  • the compound of Formula 1 has the structure of “AU”, and the ligand-drug conjugate of Formula 2 has the structure of “E-linker-AU”.
  • L 1 in Formula 1 is present (i.e., k is 1)
  • the binding functional group is combined with an additional linker precursor to form an extended linker, and then the functional group included in the additional linker precursor is combined. It can bind to a ligand that has receptor binding properties.
  • the compound according to Formula 1 of the present invention when A is a binding functional group, is intended to bind to a ligand or protein (E) having additional linker precursor or receptor binding properties, for example, providing a ligand-drug conjugate. It may be an intermediate for:
  • the compound according to Formula 1 of the present invention when A is absent or H, may be a complex containing an activator (PL) that is not assumed to bind to a ligand having receptor binding properties.
  • the complex can be used for various purposes, such as changing the properties (eg, water solubility) of the active agent, targeting, etc.
  • the binding functional group is halogen, OH, C 1-8 alkoxy, hydroxylamino, COH, C 1-8 alkylcarbonyl, carboxy, C 1-8 alkoxycarbonyl, tosyl, tosylate, amino , mono-C 1-8 alkylamino, di-C 1-8 alkylamino, NHNH 2 , N 3 , haloacetamide, maleimidyl, succinimidyl, SH, SO 3 H, C 1-8 alkylsulfonyl , , C 1-8 alkoxysulfonyl, 2-pyridyl disulfide, PO 3 H 2 , OPO 3 H 2 , -N ⁇ C, -NCS, C 4-10 dienyl, C 2-8 alkenyl, C 2- It may contain a functional group selected from the group consisting of 8 alkynyl, C 4-10 cycloalkynyl, and C 2-8 alkynylcarbonyl, or may contain a
  • the R f may each independently be H or C 1-8 alkyl.
  • A is maleimidyl, hydroxylamino, carboxy, amino, N 3 , C 2-8 alkynyl, or It can be.
  • maleimidyl may refer to a monovalent functional group in which the nitrogen atom of maleimide is connected to L 1 or U of Chemical Formula 1.
  • the C 1-8 alkyl may be C 1-6 alkyl, C 1-4 alkyl, or C 1-3 alkyl.
  • C 2-8 alkynyl can be ethyneyl, propyneyl (proparzyl), or butyneyl.
  • L 1 is a linking group connecting A to a 5-membered ring including Z 1 to Z 3 of Formula A, and k is 0 or 1.
  • L 1 when k in Formula A is 1 and Z 1 or Z 3 includes a nitrogen atom, L 1 may be bonded to the nitrogen atom of Z 1 or Z 3 . In one embodiment, when k in Formula A is 1 and at least one of Z 1 to Z 3 includes a carbon atom, L 1 may be bonded to the carbon atom. For example, when Z 2 includes a carbon atom, L 1 may be bonded to the carbon atom of Z 2 .
  • precursors of A include hydroxy, amino, azido, alkynyl, conjugated dienyl, alkenyl, cyclooctynyl, maleimidyl, SO 2 N 3 , alkoxysulfinyl, oxiranyl, aziri. It may contain at least one functional group selected from the group consisting of dinyl, oxo, hydrazinyl, hydroxyamino, mercapto, and 1,3-dicarbonyl. Additionally, the precursor of L 1 may contain a functional group that chemically reacts with the precursor of A to form an AL 1 bond. Alternatively, a linker precursor having the structure AL 1 can be coupled to the remaining residues of the compound of Formula 1.
  • the L 1 is optionally in the middle of the chain selected from the group consisting of amides, sulfonamides, aminos, ethers, carbonyls, triazoles, tetrazoles, sugar-derived groups, sulfo esters and dendrimers. It may be C 1-200 alkylene containing a divalent or multivalent functional group.
  • the C 1-200 alkylene group is a C 1-150 alkylene group, a C 1-100 alkylene group, a C 1-80 alkylene group, a C 1-60 alkylene group, a C 1-50 alkylene group, a C 1-40 alkylene group, It may be a C 1-30 alkylene group, a C 1-20 alkylene group, or a C 1-10 alkylene group.
  • the sugar-derived group refers to any chemical structure formed by a covalent bond between a sugar molecule and another group.
  • sugar-derived groups may include glycosidic linkages.
  • the dendrimer refers to a well-ordered three-dimensional molecular structure with a branching unit centered on the core.
  • linkers of various dendrimer structures are known (e.g. Lee, et al, Nat. Biotechnol. 2005, 23, 1517-26; Almutairi, et al; Proc. Natl. Acad. Sci. 2009, 106, 685-90), which may be advantageous, for example, to increase the ratio of ligand to drug.
  • L 1 when L 1 includes a multivalent functional group, that is, when L 1 includes a branched structure or a dendrimer structure, a plurality of U may be bound to L 1 .
  • the number of U bound to L 1 may be 1 to 10.
  • j can be 1 to 5.
  • j may be 1.
  • L 1 may be bonded to the nitrogen atom when Z 1 or Z 3 of Formula A includes a nitrogen atom.
  • L 1 may be bonded to any carbon atom among Z 1 to Z 3 .
  • Z 2 is a carbon atom
  • L 1 may be bonded to the carbon atom of Z 2 .
  • a functional group for bonding L 1 -U eg, carboxyl group, aminocarbonyl group, amino group, etc.
  • L 1 -U may be required as a substituent for the carbon atom.
  • L 1 may include C 1-10 alkylene, oxyethylene, amide, triazole ring, tetrazole ring, ether, carbonyl, or a combination thereof.
  • R a1 , R b1 , R c1 , R c2 and R d1 to R d5 may each independently be H or C 1-8 alkyl.
  • n1 to n15 and m1 to m11 may each independently be an integer of 0 to 10. In one embodiment, n1 to n15 and m1 to m11 may each independently be an integer from 0 to 8, an integer from 0 to 6, or an integer from 0 to 5. In one embodiment, n1 to n15 and m1 to m11 may each independently be an integer of 1 to 8, an integer of 1 to 6, or an integer of 1 to 5.
  • A, L 1 , k, V, R 1 , R 2 , R 3 , R 11 , R 12 and PL are as described above with respect to Formula 1.
  • the compound represented by Formula 1 of the present invention can carry one PL.
  • the compound represented by Formula 1 may be selected from the group consisting of the compounds shown in the attached Table A.
  • a DAR2 type compound may contain a functional group capable of forming a bond with a ligand, such as an antibody, for the preparation of a ligand-drug conjugate, such as a maleimide functional group. Examples of these compounds are listed in Table B attached.
  • the linking group L 1 of Formula 1 according to the present invention has a branched structure or a dendrimer structure (i.e., when L 1 is a multivalent linking group)
  • a compound of Formula 1 in which two or more active agents are bound is provided. You can.
  • the compound represented by Formula 1 may be a compound represented by Formula 1-1 below.
  • A has the same meaning as in Formula 1.
  • U 1 and U 2 each have the same meaning as U in Formula 1, but U 1 and U 2 may be the same or different from each other.
  • L 11 and L 12 each have the same meaning as L 1 in Formula 1, but L 11 and L 12 may be the same or different from each other.
  • j is 1 to 10. In one embodiment, j is 1 to 5. For example, j is 1.
  • L 1a and L 1b are each independently directly bonded; ; can be selected from In this case, R e may be H or C 1-8 alkyl.
  • q1, q2, and q3 may each independently be an integer from 0 to 10.
  • q4 may be an integer from 1 to 10. However, L 1a or If q2 is not 0 and L 1b is or If q3 is not 0.
  • linker structures of L 11 and L 12 such as amide, sulfonamide, amino, ether, carbonyl optionally in the middle of the chain, C 1-200 alkylene containing a divalent or multivalent functional group selected from , triazole, tetrazole, sugar-derived group, sulfoester and dendrimer can be directly bonded to the central N atom.
  • q1 can be an integer from 0 to 8, an integer from 1 to 8, or an integer from 1 to 6.
  • q2 and q3 may each independently be an integer from 0 to 8, an integer from 0 to 6, or an integer from 0 to 4.
  • q4 can be an integer from 1 to 8, an integer from 1 to 6, or an integer from 1 to 4.
  • the formula 1-1 may be selected from the following structures: (The definitions of q2 and q3 are as described above.)
  • A is halogen, OH, C 1-8 alkoxy, hydroxylamino, COH, C 1-8 alkylcarbonyl, carboxy, C 1-8 alkoxycarbonyl, tosyl, tosyl.
  • Late amino, mono-C 1-8 alkylamino, di-C 1-8 alkylamino, NHNH 2 , N 3 , haloacetamide, maleimidyl, succinimidyl, SH, SO 3 H, C 1-8 alkylsulfonyl, , C 1-8 alkoxysulfonyl, 2-pyridyl disulfide, PO 3 H 2 , OPO 3 H 2 , -N ⁇ C, -NCS, C 4-10 dienyl, C 2-8 alkenyl, C 2- It may contain a functional group selected from the group consisting of 8 alkynyl, C 4-10 cycloalkynyl, and C 2-8 alkynylcarbonyl, or may be composed of a functional group selected from the group.
  • the R f may each independently be H or C 1-8 alkyl.
  • A is maleimidyl, hydroxylamino, carboxy, amino, N 3 , alkynyl
  • L 11 and L 12 are each independently The middle of the chain optionally contains a divalent or multivalent functional group selected from the group consisting of amides, sulfonamides, aminos, ethers, carbonyls, triazoles, tetrazoles, sugar-derived groups, sulfo esters and dendrimers. It may be C 1-200 alkylene.
  • the C 1-200 alkylene group is a C 1-150 alkylene group, a C 1-100 alkylene group, a C 1-80 alkylene group, a C 1-60 alkylene group, a C 1-50 alkylene group, a C 1-40 alkylene group, It may be a C 1-30 alkylene group, a C 1-20 alkylene group, or a C 1-10 alkylene group.
  • R d , na, ma to mc are as described above with respect to Formula 1.
  • L 11 and L 12 are each independently -(CH 2 ) n1 -; -(CH 2 CH 2 O) m1 -(CH 2 ) n2 -; -(CH 2 CH 2 O) m2 -(CH 2 ) n3 -NR d1 CO-(CH 2 ) n4 -; -(CH 2 CH 2 O) m10 -(CH 2 ) n15 -CONR d5 -(CH 2 ) n14 -; and can be selected from
  • n1, n2, n3, n4, n8, n14, and n15, and m1, m2, m8, and m10 may each independently be an integer of 1 to 8, an integer of 1 to 6, or an integer of 1 to 5.
  • R d1 and R d5 are each independently H or C 1-8 alkyl.
  • the compound represented by Formula 1-1 (when j is 1) may be a compound represented by the following formula:
  • q1 to q4, U 1 , U 2 , n1, n3, n4, n8, n14 and n15, and m2, m8 and m10 are as described above with respect to Formula 1-1.
  • R d1 , R d5 and R e are each independently H or C 1-8 alkyl.
  • the compound represented by Formula 1-1 may be a compound represented by the following formula:
  • PL has the same meaning as PL in formula (1).
  • Z 1 is a heteroatom selected from NR 3 , O, S and Se.
  • R 3 is H or C 1-8 hydrocarbyl.
  • the compound represented by Formula 1-1 may be selected from the compounds shown in the attached Table C.
  • the compound containing the self-sacrificial group of Formula 1 according to the present invention can be easily prepared by selecting appropriate solvents, starting materials, intermediates, reaction conditions, etc. based on the examples herein and the technical knowledge of those skilled in the art of organic synthesis. will be.
  • a compound of Formula 1 having an indole core and a ⁇ -galactoside triggering group can be prepared according to Scheme 1 below.
  • Step 1 of Scheme 1 prepare an indole-based starting material in which COH and OBn are substituted at the para position of the benzene ring, and react with AL 1 -X (X is halogen: Cl, Br, etc.) to convert AL 1 - into indole. It can be introduced into the nitrogen atom.
  • additives such as potassium carbonate may be used. Step 1 may be performed under temperature conditions of 40°C to 100°C, 60°C to 100°C, or 60°C to 90°C.
  • OBn can be converted to OH using boron trichloride.
  • Stage 2 is for example -90°C to 0°C, -90°C to -10°C, -90°C to -20°C, -80°C to 0°C, -80°C to -10°C or -80°C to -20°C. It can be performed at low temperature conditions of °C.
  • galactose can be introduced where the hydroxyl group is protected with a protecting group (-PG).
  • a protected galactoside group such as an acetogalactoside group can be introduced through reaction with galactose into which a protecting group such as acetylated galactose or acetobromo-alpha-D-galactose has been introduced.
  • additives such as benzyltributylammonium chloride, HOBt, pyridine, DIPEA, etc. may be used. Additionally, additives such as silver oxide and molecular sieve may be used.
  • Step 3 can be performed at temperature conditions of -40°C to 40°C, -40°C to 30°C, -20°C to 40°C, -20°C to 30°C, -10°C to 40°C, or -10°C to 30°C. there is.
  • step 4 the COH linked to the benzene ring can be reduced.
  • the reduction reaction is -40°C to 10°C, -40°C to 0 °C, -30°C to 10°C, -30°C to 0°C, -20°C to 10°C or It can be performed at low temperature conditions of -20°C to 0°C.
  • step 5 the -OCO- self-elimination linker structure can be introduced.
  • a precursor for the -OCO- linking group bis(4-nitrophenyl) carbonate, 4-nitrophenyl chloroformate, etc. can be used.
  • additives such as DIPEA, pyridine, etc. may be used.
  • Step 5 is performed at low temperature conditions of -40°C to 10°C, -40°C to 0°C, -30°C to 10°C, -30°C to 0°C, -20°C to 10°C, or -20°C to 0°C. You can.
  • PL can be introduced.
  • PL can be introduced by substituting a precursor such as PL-H with a leaving group (eg, p-nitrophenyl) linked to -OCO-.
  • a leaving group eg, p-nitrophenyl
  • additives such as HOBt, pyridine, and DIPEA may be used depending on the type of PL.
  • Step 6 is performed at low temperature conditions of -40°C to 10°C, -40°C to 0°C, -30°C to 10°C, -30°C to 0°C, -20°C to 10°C, or -20°C to 0°C. You can.
  • step 7 the protecting group of the protected galactoside can be deprotected through hydrolysis, thereby converting it to galactoside.
  • Hydrolysis can be performed with an acid such as hydrochloric acid or a base such as potassium carbonate, sodium hydroxide, or lithium hydroxide.
  • Step 7 can be performed at temperature conditions of -40°C to 40°C, -40°C to 30°C, -20°C to 40°C, -20°C to 30°C, -10°C to 40°C, or -10°C to 30°C. there is.
  • Each step in Scheme 1 can be performed in an appropriate solvent selected from the group consisting of organic solvents such as methanol, DMF, MC, ACN, THF, EA, and distilled water. Additionally, after completion of each step of the reaction, the product can be purified through dilution with the appropriate solvent, extraction, and chromatography. In one embodiment, each step of Scheme 1 can be performed under a nitrogen atmosphere.
  • step 5 can be omitted.
  • One aspect of the present invention provides a ligand-drug conjugate represented by the following formula (2) or a pharmaceutically acceptable salt thereof:
  • E is a ligand or protein with receptor binding properties.
  • the compound of Formula 1 according to the present invention can be combined with a ligand or protein (E) having receptor binding properties to provide a ligand-drug complex of Formula 2.
  • the ligand or protein (E) may be arbitrarily modified for binding to the binding functional group of the compound of Formula 1.
  • Ligand E is an antibody
  • -SH of cysteine, -NH 2 of lysine, -C( O)NH 2 of glutamine, -C 6 H 4 -OH of tyrosine present at a specific position of the antibody.
  • -SeH of selenocysteine, and -N 3 of unnatural amino acids and
  • the residues such as these and the binding functional group of the compound of Formula 1 may be bonded to each other.
  • the types and modifications of functional groups of a ligand for binding a linker-drug moiety to a ligand or protein are known in the art.
  • the ligands include peptides, tumor cell-specific peptides, tumor cell-specific aptamers, tumor cell-specific carbohydrates, and tumor cell-specific single It may be selected from the group consisting of clonal antibodies or polyclonal antibodies (tumor cell-specific monoclonal or polyclonal antibodies) and antibody fragments.
  • the protein may be selected from the group consisting of C 1-20 hydrocarbyl, oligopeptide, polypeptide, antibody, fragment of antigenic polypeptide, and artificial antibody (Repebody).
  • the C-terminus of the protein may be the light or heavy chain of an antibody.
  • the antibody is an intact polyclonal antibody, an intact monoclonal antibody, an antibody fragment, or a single chain Fv (scFv) mutant.
  • scFv single chain Fv
  • multispecific antibody bispecific antibody, chimeric antibody, humanized antibody, human antibody, fusion protein containing the antigenic determining portion of the antibody. protein comprising an antigen determination portion of an antibody), and other modified immunoglobulin molecules comprising an antigen recognition site.
  • the antibody is Muromonab-CD3 Abciximab, Rituximab, Daclizumab, Palivizumab, Infliximab (Infliximab), Trastuzumab, herceptin, Etanercept, Basiliximab, Gemtuzumab, Alemtuzumab, Ibritumomab, Adalimumab, Alefacept, Omalizumab, Efalizumab, Tositumomob-I131, Cetuximab, Bevacizumab (Bevacizumab), Natalizumab, Ranibizumab, Panitumumab, Eculizumab, Rilonacept, Certolizumab pegol, Romiflo Steam (Romiplostim), AMG-531 (Romiplostim), CNTO-148 (Golimumab), CNTO-1275 (Ustekinumab), ABT874
  • the antibody may be a monoclonal antibody (mAb).
  • mAb monoclonal antibody
  • A' is a divalent linking group derived from the binding functional group (A) of Formula 1.
  • A' may include a functional group formed by an addition reaction of a double bond included in the binding functional group.
  • A' when the binding functional group is maleimidyl, A' may be a functional group formed by participating in an addition reaction of a double bond in the 5-membered ring of the maleimidyl. Matters regarding the binding functional group (A) of Chemical Formula 1 described above may be equally applied to A', if applicable.
  • Ligand E can be an antibody.
  • the antibody may include a functional group that binds to A in Formula 1 to form an E-A' binding structure in Formula 2. If necessary, functional groups for the above binding can be introduced into the antibody, and the types and methods of introducing such functional groups are known in the art.
  • the binding structure of ligands E and A' may be represented by residues represented by one of the following formulas.
  • * may be the remaining residue of the antibody.
  • n may be a real number from 1 to 10.
  • n may be a real number from 1 to 6, a real number from 1 to 4, or a real number from 1 to 2.
  • U, L 1 , k and j may be the same as U, L 1 , k and j in Formula 1.
  • the matters regarding U, L 1 , k and j of Formula 1 described above may be equally applied to U, L 1 , k and j of Formula 2, if applicable.
  • E of Formula 2 is an antibody and PL of U is a drug
  • the compound represented by Formula 2 may be provided as an antibody-drug conjugate.
  • the conjugate represented by Formula 2 may be selected from the group consisting of conjugates represented by the following formula:
  • mAb refers to the residue of an antibody.
  • m5, m6, m9, m10, n9, n10, n13, n14, and n15 may each independently be an integer from 1 to 10.
  • m5, m6, m9, m10, n9, n10, n13, n14, and n15 are each independently an integer of 1 to 8, an integer of 1 to 6, an integer of 1 to 5, or an integer of 1 to 4. , or it may be an integer of 1 to 3.
  • R d3 and R d5 are each independently H or C 1-8 alkyl.
  • Z 1 is a heteroatom selected from NR 3 , O, S and Se.
  • R 3 is H or C 1-8 hydrocarbyl.
  • PL has the same meaning as PL in formula (1).
  • R 10 to R 12 are each independently substituted with H, C 1-8 alkyl, amino-C 1-8 alkyl, mono- or di-(C 1-8 alkyl) amino.
  • n is a real number from 1 to 10.
  • n can be a real number from 1 to 8, a real number from 1 to 6, a real number from 1 to 4, or a real number from 1 to 2.
  • the conjugate represented by Formula 2 may be selected from the group consisting of conjugates represented by the following formula:
  • n is a real number from 1 to 10. In one embodiment, n can be a real number from 1 to 8, a real number from 1 to 6, a real number from 1 to 4, or a real number from 1 to 2.
  • the compound represented by Formula 2 may be selected from the compounds listed in Table D attached.
  • the specific n values listed in Table D can vary in the real number range of 1 to 10.
  • n may be a real number from 1 to 8, a real number from 1 to 6, a real number from 1 to 4, or a real number from 1 to 2.
  • the linking group L 1 of Chemical Formula 2 according to the present invention has a branched structure or a dendrimer structure (i.e., when L 1 is a multivalent linking group)
  • the ligand-drug conjugate of Chemical Formula 2 to which multiple active agents are bound is prepared.
  • the compound represented by Formula 2 may be a ligand-drug conjugate represented by Formula 2-1 below:
  • E is a ligand or protein with receptor binding properties
  • A' is a divalent linking group derived from the binding functional group (A) of Formula 1.
  • the matters described in Formula 2 regarding E and A' can be equally applied to Formula 2-1.
  • U 1 and U 2 each have the same meaning as U in Formula 1, but U 1 and U 2 may be the same or different from each other.
  • L 11 and L 12 each have the same meaning as L 1 in Formula 1, but L 11 and L 12 may be the same or different from each other.
  • j is 1 to 10. In one embodiment, j is 1 to 5. For example, j is 1.
  • L 1a and L 1b are each independently directly bonded; ; can be selected from In this case, R e may be H or C 1-8 alkyl.
  • q1, q2, and q3 may each independently be an integer from 0 to 10.
  • q4 may be an integer from 1 to 10. However, L 1a or If q2 is not 0, L 1b is or If q3 is not 0.
  • q1 can be an integer from 0 to 8, an integer from 1 to 8, or an integer from 1 to 6.
  • q2 and q3 may each independently be an integer from 0 to 8, an integer from 0 to 6, or an integer from 0 to 4.
  • q4 can be an integer from 1 to 8, an integer from 1 to 6, or an integer from 1 to 4.
  • n is a real number from 1 to 10. In one embodiment, n can be a real number from 1 to 6, a real number from 1 to 4, or a real number from 1 to 2.
  • the ligand-drug conjugate represented by Formula 2-1 may be a conjugate represented by the following formula:
  • mAb is the residue of an antibody.
  • q1 to q4, n, U 1 and U 2 , R d1 , R d5 , Re , n1, n3, n4, n8, n14 and n15, m2 , m8 and m10 are as described above with respect to Formula 1-1 or Formula 2-1.
  • the ligand-drug conjugate represented by Formula 2-1 may be a conjugate represented by the following formula:
  • mAb is the residue of an antibody.
  • q1 to q4, n1, n3, n4, n14 and n15, m2 and m10, R d1 , R d5 and Re are as described above with respect to Formula 1-1.
  • PL has the same meaning as PL in formula (1).
  • Z 1 is a heteroatom selected from N, O, S and Se.
  • the -O-CO- group of the -O-CO-PL groups is either absent as a selective self-immolative spacer group (i.e., the -PL group is directly connected to the -CH 2 -group), or is a “selective self-immolative spacer group.” Can be replaced with the functional groups described above.
  • the ligand-drug conjugate represented by Formula 2-1 may be selected from the compounds listed in the attached Table E.
  • the specific n values listed in Table E can vary in the real number range of 1 to 10.
  • n may be a real number from 1 to 6, a real number from 1 to 4, or a real number from 1 to 2.
  • hydrocarbyl refers to a functional group consisting of carbon and hydrogen, and refers to a straight-chain, branched, or cyclic hydrocarbon that is saturated, partially unsaturated, or fully unsaturated.
  • the hydrocarbyl may include alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, etc.
  • Non-limiting examples of the hydrocarbyl include methyl, ethyl, propyl, butyl, ethenyl, propenyl, butenyl, ethyneyl, propynyl, butynyl, and the like.
  • alkyl refers to a fully saturated branched or unbranched (or straight-chain or linear) hydrocarbon.
  • the alkyl may be substituted or unsubstituted alkyl.
  • the C 1-8 alkyl may be C 1 to C 6 , C 1 to C 5 , C 1 to C 4 , C 1 to C 3 , or C 1 to C 2 alkyl.
  • Non-limiting examples of the alkyl may be methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, n-pentyl, isopentyl, neopentyl, iso-amyl, or n-hexyl. there is.
  • alkenyl includes straight-chain or branched alkenyl having 2 to 6 carbon atoms, 2 to 5 carbon atoms, or 2 to 4 carbon atoms with one or more double bonds at any position.
  • alkenyl includes straight-chain or branched alkenyl having 2 to 6 carbon atoms, 2 to 5 carbon atoms, or 2 to 4 carbon atoms with one or more double bonds at any position.
  • alkynyl refers to a straight or branched hydrocarbon chain having at least one triple bond.
  • Preferred alkynyls are straight or branched chains having 2 to 8 carbon atoms, such as 2-propynyl, 3-butynyl, 2-butynyl, 4-pentynyl, 3-pentynyl, 2-hexynyl. , 3-hexinyl group, 2-heptinyl group, 3-heptinyl group, 4-heptinyl group, 3-octinyl group, etc.
  • alkoxy refers to alkyl bonded to an oxygen atom.
  • the C 1 to C 8 alkoxy may be C 1 to C 6 , C 1 to C 5 , C 1 to C 4 , C 1 to C 3 , or C 1 to C 2 alkoxy.
  • the alkoxy may be methoxy, ethoxy, or propoxy.
  • cycloalkyl includes mono- or polycyclic saturated carbocycles containing 3 to 8 carbon atoms. Examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.
  • cycloalkenyl includes non-aromatic single or polycyclic rings of 3 to 8 carbon atoms containing at least one carbon-carbon double bond. Examples include cyclopentenyl, cyclohexenyl, cycloheptenyl, and cyclooctenyl.
  • cycloalkynyl refers to a single or polycyclic unsaturated hydrocarbon ring having 4 to 10 carbon atoms and having at least one triple bond. Examples include monocyclic alkynyl groups, such as cyclooctinyl group and cyclodecynyl group. “Cycloalkynyl” in its broadest sense includes structures in which one or more carbon atoms of a hydrocarbon ring containing a triple bond between at least one carbon are replaced by a heteroatom, such as N.
  • dienyl refers to an unsaturated branched or unbranched C 4-10 aliphatic substituent having two double bonds between two adjacent carbon atoms. Examples include, but are not limited to, 2,4-pentadienyl, 2,4-hexadienyl, 4-methyl-2,4-pentadienyl, and the like.
  • halogen refers to an atom belonging to group 17 of the periodic table. Halogen atoms include fluorine, chlorine, bromine, and iodine.
  • haloalkyl means alkyl substituted with one or more halogen atoms.
  • hydroxy refers to the OH functional group (hydroxyl group).
  • mercapto refers to the SH functional group.
  • nitro refers to NO 2 .
  • amino refers to -NH 2 .
  • alkylamino refers to a functional group in which one or two hydrogen atoms of amino (-NH 2 ) are replaced by one or two of the alkyls mentioned above, and includes both mono-alkylamino and di-alkylamino,
  • the two alkyls in di-alkylamino can be the same or different.
  • mono-C 1-8 alkylamino has one hydrogen atom of the amino (-NH 2 ) group replaced with C 1-8 alkyl
  • di-C 1-8 alkylamino has the amino (-NH 2 ) group replaced with C 1-8 alkyl.
  • Two hydrogen atoms may be substituted with the same or different C 1-8 alkyl.
  • mono-C 1-8 alkylamino (-NH(C 1-8 alkyl)) is methylamino, ethylamino, propylamino, isopropylamino, butylamino, isobutylamino, sec-butylamino, tertiary. - May include butylamino, pentylamino, hexylamino, etc.
  • Di-C 1-8 alkylamino (-N(C 1-8 alkyl) 2 ) is, for example, dimethylamino, diethylamino, dipropylamino, methylethylamino, methylpropylamino, methylisopropylamino, methylbutylamino. , methyl isobutylamino, ethyl propylamino, ethyl isopropylamino, ethyl isobutylamino, isopropyl isobutylamino, methylhexylamino, ethylhexylamino, etc.
  • N-mono-C 1-8 alkylcarbamoyl and “N,N-di-C 1-8 alkylcarbamoyl” refer to one or two hydrogen atoms bonded to the nitrogen atom of carbamoyl (-CONH 2 ). It means that the hydrogen atom of is substituted with C 1-8 alkyl. In N,N-di-C 1-8 alkylcarbamoyl, the two C 1-8 alkyls can be the same or different.
  • alkanoyls include methanoyl (formyl: -COH), ethanoyl (acetyl: -COCH 3 ), propanoyl (-COCH 2 CH 3 ), butanoyl (-CO(CH 2 ) 2 CH 3 ), etc.
  • the nitrogen atom of the alkanoylamino may have further substituents, for example an alkyl group.
  • alkanoylamino is formylamino (-NHCOH), acetylamino (-NHCOCH 3 ), propanoylamino (-NHCOCH 2 CH 3 ), butanoylamino (-NHCO(CH 2 ) 2 CH 3 ) Includes etc.
  • cyano-C 1-8 alkyl “halo-C 1-8 alkyl”, “hydroxy-C 1-8 alkyl”, “C 1-8 alkoxy-C 1-8 alkyl”, “C 1 -8 alkoxy-C 1-8 alkoxy-C 1-8 alkyl”, “carboxy-C 1-8 alkyl”, “amino-C 1-8 alkyl”, “carbamoyl-C 1-8 alkyl”, “N -Mono-C 1-8 alkylcarbamoyl-C 1-8 alkyl” and "N,N-di-C 1-8 alkylcarbamoyl-C 1-8 alkyl” are added at the end or middle of C 1-8 alkyl.
  • Cyano, halogen, hydroxy, alkoxy, carboxy, amino, carbamoyl refers to substituted N-mono-C 1-8 alkylcarbamoyl and N,N-di-C 1-8 alkylcarbamoyl.
  • glycosidyl refers to a functional group formed by the condensation reaction of sugar molecules.
  • heterocyclyl refers to a saturated or partially unsaturated cyclic hydrocarbon containing at least one heteroatom.
  • Heterocyclyl ring groups can be monocyclic or bicyclic.
  • the bicyclic heterocyclyl may be a spiro, bridged, or fused ring group.
  • Heterocyclyl has 3 to 20, 3 to 10, 3 to 8, 3 to 7, 3 to 6, 4 to 9, 4 to 8, 4 to 7, It may contain 4 to 6 ring atoms.
  • the heteroatom may be any one or more selected from the group consisting of N, O, and S.
  • the heteroatoms may be 1 to 3, 1, or 2 heteroatoms selected from the group consisting of N, O, and S.
  • heterocyclyls include aziridinyl, azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, dihydropyridinyl, tetrahydropyridinyl, oxetanyl, tetrahydrofuranyl, tetrahydropyran. yl, dihydrofuranyl, dihydropyranyl, tetrahydrothiophenyl, morpholinyl, thiomorpholinyl, azepanyl, diazepanyl, oxazepanyl, thiazepanyl, etc.
  • heterocyclyloxy refers to a functional group in which an oxygen atom is directly connected to the ring of the heterocycle.
  • heteroaryl refers to a monocyclic or bicyclic aromatic group containing one or more heteroatoms selected from the group consisting of N, O, and S, and the remaining ring atom is carbon. means residue.
  • the heteroaryl group may include, for example, 1 to 4 heteroatoms, 1 to 3 heteroatoms, or 1 or 2 heteroatoms.
  • the heteroaryl group may contain 5 to 10, 5 to 7, or 5 or 6 ring elements.
  • the heteroaryl may be a 5-6 membered heteroaryl containing one or two N, O or S.
  • the heteroaryl group may be a one-ring group, a two-ring group, or a three-ring group.
  • the two ring groups may be a spiro-ring group, a bridged-ring group, and a fused-ring group.
  • heteroaryl examples include pyrrolyl, imidazolyl, pyrazolyl, pyridazinyl, furanyl, pyranyl, thienyl, thiophenyl, 1,2,3-oxadiazolyl, 1, 2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl group, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1 ,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl, oxazol-2-yl, Oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, 1,2,4-triazol-3-yl , 1,2,4-tri
  • binding functional group refers to a functional group that can form a covalent bond through addition, substitution, condensation reactions, etc. with a functional group included in a ligand or protein, or a functional group included in a linker precursor.
  • the term “moiety” refers to the portion of the compound that corresponds to the parent compound of the moiety when the parent compound is bound to the compound of Formula 1 or the conjugate of Formula 2. Even when a part of an entire compound is referred to herein as a compound or an active agent, it will be understood from the context that it refers to a “residue” of the compound or active agent.
  • precursor refers to a compound as a reactant that ultimately provides the desired residue through a chemical reaction.
  • linker precursor refers to a compound that forms the desired linker structure or part thereof through a chemical reaction.
  • PEG linker various substances such as hydroxy-PEG linker, alkynyl-PEG linker, bromo-PEG linker, DBCO-PEG linker, azido-PEG linker, amino-PEG linker, maleimide-PEG linker, etc. This is known.
  • aminooxy-PEG linker tetrazine-PEG linker, tosylate-PEG linker, thiol-PEG linker, aldehyde-PEG linker, phosphonate-PEG linker, hydrazide-PEG linker, iodo-PEG linker, Linker compounds such as carboxyl-PEG linkers are also widely used in related fields.
  • a linker having a DBCO (Dibenzocyclooctyne) group amine reactive DBCO (DBCO-NHS, DBCO-sulfo-NHS ester, DBCO-PEG-NHS ester, DBCO-NHCO-PEG-NHS ester, etc.), carboxyl/carbohydrate Nyl-reactive DBCO (DBCO-amine, DBCO-PEG-amine, etc.), -SH group-reactive DBCO (DBCO-maleimide, DBCO-PEG-maleimide, etc.), DBCO-PEG-t-butyl ester, DBCO-alcohol, DBCO Various substances such as -PEG-alcohol, DBCO-PEG-DBCO, and Bis-DBCO-PEG are known.
  • Linker precursors of the present invention include a variety of linkers known in the field of ligand-conjugates and are not limited to the linker structures exemplified herein. Available linker precursors, preparation methods, reaction conditions, etc. are well known in the related art.
  • dendrimer refers to a well-ordered three-dimensional molecular structure with branching units centered on a core.
  • 1,6-elimination reaction refers to a reaction in which covalent bond cleavage occurs at a specific position in the molecular structure of a compound, resulting in covalent bond cleavage at a position 5 atoms away (1,6-position relationship).
  • the compound of Formula 1 having an indole core and a ⁇ -galactoside trigger group releases PL - or PL-H through a 1,6-elimination reaction when ⁇ -galactose is separated by galactosidase. You can.
  • the compound of Formula 1 contains a self-eliminating linker, such as -OCO-, ⁇ -galactose and CO 2 are formed, for example, by a 1,6-elimination reaction as shown in Scheme C below. When separated, PL - or PL-H may be released.
  • a self-eliminating linker such as -OCO-, ⁇ -galactose and CO 2
  • Click Chemistry reaction is a general term for molecular assembly reactions using modular reactants that react specifically with each other even under mild conditions such as room temperature and pressure.
  • Types of click chemistry reactions and functional groups involved in them is generally well known.
  • click chemistry reactions include [3+2] cycloadditions, thiol-ene reaction, Diels-Alder reaction, and inverse electron demand. Includes, but is not limited to, Diels-Alder reaction, [4+1] cycloadditions, etc.
  • click chemistry reactions include copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), strain-promoted azide-alkyne cycloaddition (SPAAC), and strain-promoted alkyne-nitrone.
  • cycloaddition [3+2] cycloaddition reaction of alkenes and azides, inverse-demand Diels-Alder of alkenes and tetrazines, photoclick reaction of alkenes and tetrazoles, and azides and alkynes.
  • cycloaddition [3+2] cycloaddition reaction of alkenes and azides
  • inverse-demand Diels-Alder of alkenes and tetrazines inverse-demand Diels-Alder of alkenes and tetrazines
  • photoclick reaction of alkenes and tetrazoles
  • azides and alkynes Including
  • Click chemistry groups include alkynes, alkyne, cyclooctyne, and cyclononyne (e.g., bicyclo[6.1.0]-non-4-yn-9-yl methanol).
  • [6.1.0] cycloalkyne such as non-4-yn-9-ylmethanol), trans-cyclooctene, nitrone, nitrile oxide, azide (azide), Conjugated Diene, dienophile, and cyclooctyne, cyclononyne, dibenzocyclooctyne (DIBO), BARAC (biarylazacyclooctynone), ALO (aryl- cycloalkynes such as less octyne), difluorinated cyclooctyne (DIFO), monofluorinated (MOFO), dibenzo-aza-cyclooctyne (DIBAC), and dimethoxy
  • click chemical functional groups include acetylene, transcyclooctene, cyclooctyne, dyarylcyclooctyne, methyl ester phosphine, and norbornene. , tetrazine, methylcyclopropene, azetine, cyanide, azide, dibenzocyclooctyne, etc.
  • the compound of Formula 1 or the ligand-drug conjugate of Formula 2 of the present invention can have excellent stability in various blood environments.
  • the active agent can maintain a stable binding state in the plasma environment of mice, rats, dogs, and humans, thereby minimizing blood toxicity.
  • the compound of Formula 1 or the ligand-drug conjugate of Formula 2 of the present invention can exhibit excellent target cell selectivity and excellent active agent release characteristics.
  • the compounds and conjugates of the present invention can rapidly dissociate and release the active agent by reacting with enzymes such as galactosidase and glucuronidase under pH 4 to 5 conditions. Accordingly, the compounds of the present invention can effectively release the active agent in the environment within target cells (eg, tumor lysosomes).
  • a compound comprising a self-immolative group of Formula 1 or Formula 1-1 or a ligand-drug conjugate of Formula 2 or Formula 2-1, or a pharmaceutically acceptable salt thereof, and pharmaceutically Pharmaceutical compositions comprising an acceptable carrier or excipient are provided.
  • an imaging composition comprising a compound comprising a self-immolative group of Formula 1 or Formula 1-1, or a ligand-drug conjugate of Formula 2 or Formula 2-1, or a pharmaceutically acceptable salt thereof.
  • a composition for detection is provided.
  • the compound containing a self-immolative group of Formula 1 or Formula 1-1 and the ligand-drug conjugate of Formula 2 or Formula 2-1 according to the present invention may be mixed with a solvent and provided as a composition.
  • the composition may be prepared in injectable form as a liquid solution or as a suspension. Additionally, the composition may be prepared in a solid form suitable for injection as an emulsion or a polypeptide encapsulated in liposomes.
  • the compound or ligand-drug conjugate of the present invention can be combined with a pharmaceutically acceptable carrier, including any carrier that does not induce the production of antibodies harmful to the subject receiving the carrier. Suitable carriers may include commonly slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acid, polyglycolic acid, polymeric amino acids, amino acid copolymers, lipid aggregates, etc. Proteins can be formulated into vaccines in neutral or salt form.
  • the composition may contain a diluent such as water, saline, glycerol, ethanol, etc.
  • a diluent such as water, saline, glycerol, ethanol, etc.
  • auxiliary substances such as wetting or emulsifying agents, pH buffers, etc. may be added to the composition.
  • the composition can be administered parenterally by injection, subcutaneously or intramuscularly. Additional formulations may be presented, for example, as suppositories or oral tablets.
  • Oral compositions may be provided as solutions, suspensions, tablets, pills, capsules, or sustained-release formulations.
  • the composition may be administered in a manner that is compatible with the dosage form.
  • the composition comprises a therapeutically effective amount of a compound or ligand-drug conjugate according to the invention.
  • Therapeutically effective amount refers to a single dose or a dose in a multiple dose schedule that is effective in treating or preventing a disease or disorder.
  • the administered dose will be determined depending on the type of active agent included in the compound or ligand-drug conjugate of the present invention, and/or the type of ligand or protein that binds to the receptor. Additionally, the administered dose may vary depending on the health and physical condition of the subject being treated, the desired degree of protection, and other related factors.
  • a therapeutically effective amount of a compound or ligand-drug conjugate of the present invention or a pharmaceutical composition containing the same can be used for the treatment or prevention of proliferative diseases, autoimmune diseases, or infectious diseases.
  • the composition can be used for the treatment of cancer or tumors.
  • the composition can be administered to a patient to treat or prevent infection by pathogens (eg, viruses, bacteria, fungi, parasites, etc.).
  • pathogens eg, viruses, bacteria, fungi, parasites, etc.
  • These methods include administering to the mammal a therapeutic or prophylactic amount of a compound or conjugate sufficient to treat the disease or disorder or symptoms thereof, under conditions such that the disease or disorder is prevented or treated.
  • the compound or conjugate of the present invention may be administered in the form of a pharmaceutically acceptable salt, hydrate, or solvate thereof. In one embodiment, it may be administered with a pharmaceutically acceptable carrier, pharmaceutically acceptable excipient, and/or pharmaceutically acceptable excipient.
  • Pharmaceutically effective amounts and types of pharmaceutically acceptable salts or solvates, excipients and additives can be determined using standard methods (Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, PA, 18th edition, 1990).
  • the term “pharmaceutically acceptable salt” includes organic salts and inorganic salts. Examples include, but are not limited to, hydrochloride, hydrobromide, hydroiodide, sulfate, citrate, acetate, oxalate, chloride, bromide, iodide, nitrate, bisulfate, phosphate, acid phosphate, isonicoti Nate, lactate, salicylate, acid citrate, tartrate, oleate, tannate, pantonate, bitartrate, ascorbate, succinate, maleate, genticinate, fumarate, gluconate, gluconate.
  • Pharmaceutically acceptable salts may contain another molecule (e.g., acetate ion, succinate ion, and other counterions) and may also contain one or more charged atoms or one or more counter ions. .
  • Exemplary solvates that can be used for pharmaceutically acceptable solvates of the above compounds include, but are not limited to, solvates of water, isopropanol, ethanol, methanol, DMSO, ethyl acetate, acetic acid, or ethanol amine. there is.
  • the compound or ligand-drug conjugate of the present invention can stably transport active agents such as drugs, toxins, fluorescent substances, affinity ligands, diagnostic substances, and detection probes to the target site, and can deliver the active agent in a specific environment of the target site. It can be released at a rapid rate.
  • active agents such as drugs, toxins, fluorescent substances, affinity ligands, diagnostic substances, and detection probes
  • the compounds or ligand-drug conjugates of the present invention can have excellent stability at blood temperature and neutral conditions, and can rapidly release the active agent under acidic conditions, for example, under the tumor microenvironment.
  • Figures 1 to 4 show the results of enzyme cleavage rate measurements using E. coli-beta-galactosidase or E. coli beta-glucuronidase for compounds A-15, A-23, A-36, and A-69, respectively. indicates.
  • Figure 5 shows the chemical stability and plasma stability measurement results for compound A-69.
  • Figures 6 to 8 show the results of in vivo activity analysis for ADC-1 to ADC-7 and ADC-11 to ADC-15.
  • DIPEA diisopropylethylamine
  • Boc tert-butyloxycarbonyl (tert-butyloxycarbonyl)
  • MMAF-OMe monomethyl auristatin F methyl ester
  • PPTS pyridinium p-toluenesulfonate
  • Linker P-4 in the form of a colorless oil (7.8 g, 86.3 %).
  • Linker P-1 (3.36 g, 13.19 mmol) was dissolved in 1,4-dioxane (44 mL) at 0 o C under nitrogen atmosphere, and then sodium bicarbonate (2.21 g, 26.38 mmol) was dissolved in distilled water (22 mL). and di-tert-butyl dicarbonate (Boc anhydride, 3.45 g, 15.83 mmol) were added and stirred at room temperature for 5 hours. After completing the reaction, EA (350 mL) and distilled water (300 mL) were added to extract the organic layer. The obtained organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography to obtain compound P-5a in the form of a colorless liquid (3.68 g, 87%).
  • THF 70 mL was added dropwise to sodium hydride (60% dispersion in mineral oil, 924 mg, 23.10 mmol) at 0 o C under nitrogen atmosphere, and compound P-5a (3.68 mL) was dissolved in THF (30 mL). g, 11.55 mmol) was slowly added to the reaction solution and stirred at 0 o C for 30 minutes. Iodomethane (7.19 mL, 115.52 mmol) was slowly added to the reaction solution and stirred for 30 minutes, and then stirred for an additional 16 hours while slowly raising the temperature to room temperature.
  • the compound MMAF-OMe (CAS NO. 863971-12-4, 1 g, 1.34 mmol) was dissolved in DMF (7 mL) at room temperature under a nitrogen atmosphere and then dissolved in 37% formaldehyde aqueous solution (37 wt.% in H 2 O, 299 ⁇ L, 4.02 mmol) and acetic acid (1.53 mL, 26.81 mmol) were sequentially added and stirred at room temperature for 30 minutes.
  • Sodium cyanoborohydride NaCNBH 3 , 168.5 mg, 2.68 mmol
  • reaction solution was diluted with EA (100 mL), filtered using Celite, and the resulting residue was concentrated under reduced pressure and subjected to column chromatography to obtain compound L3-1b as a white solid (951 mg, 86%). ).
  • reaction solution was diluted with EA (100 mL) and extracted by adding 2N-hydrochloric acid aqueous solution (100 mL) to the filtered solution.
  • the obtained organic layer was extracted once more by adding 2N-aqueous sodium hydroxide solution (100 mL) and then washed by adding saturated aqueous sodium chloride solution (100 mL).
  • the obtained organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure.
  • the resulting residue was subjected to column chromatography to obtain compound PL-1d in the form of a colorless oil (429 mg, 53%).
  • KO tBu (15.35 g, 136.82 mmol) was dissolved in THF (100 mL) and diethyl ether (300 mL) at room temperature under nitrogen atmosphere and added to diethyl oxalate (Merck, CAS NO. 95-92-1, 19.46 mL). , 143.34 mmol) was added and stirred for 15 minutes.
  • Compound C-2c (31.7 g, 31.7 mmol) dissolved in THF (50 mL) was slowly added to the above reaction solution, stirred at room temperature for 19 hours, and further stirred at 80 o C for 3 hours.
  • reaction solution was extracted twice using EA (500 mL), and the obtained organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography to obtain compound C-6c as a white solid (14.5 g, 85%).
  • Compound C-9a (2-iodoresorcinol, CAS NO. 41046-67-7, TCI, 1 g, 4.23 mmol) was dissolved in ACN (150 mL) at 0 o C under nitrogen atmosphere, and then dissolved in methyl 5-hexinoate. (CAS NO. 77758-51-1, Thermoscientific, 600 ⁇ L), PdCl 2 (TPP) 2 (100 mg), CuI (40 mg), and TEA (5.9 mL, 42.3 mmol) were added sequentially and incubated at room temperature for 1 hour. It was stirred for a while.
  • Core C-9 (200.2 mg, 0.76 mmol) was dissolved in ethanol (5 mL) and THF (5 mL) at room temperature under nitrogen atmosphere, and then lithium hydroxide monohydrate (64 mg, 1.53 mmol) was dissolved in distilled water (2.5 mL). ) was slowly added dropwise and stirred at room temperature for 2.5 hours. After completion of the reaction, EA (150 mL) and 2N-hydrochloric acid aqueous solution (150 mL) were added and the organic layer was extracted twice. The obtained organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure to obtain Core C-11 as a black solid (210 mg, 99%).
  • Step 4-1 Preparation of Compound C-12g (Method 1)
  • Step 4-2 Preparation of Compound C-12g (Method 2)
  • Linker P-2 (172 mg, 0.64 mmol) was dissolved in saturated aqueous sodium bicarbonate solution (3.5 mL) at 0 o C under nitrogen atmosphere and stirred at 0 o C for 15 minutes.
  • Q-1a N-Methoxycarbonylmaleimide, TCI, CAS No. 55750-48-6, 100 mg, 0.64 mmol was slowly added to the mixture and stirred at the same temperature for 1.5 hours.
  • EA 50 mL
  • distilled water 50 mL
  • the obtained organic layer was dried with anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure at a temperature of 20 o C or less. The residue thus obtained was subjected to column chromatography to obtain Linker Q-1 in the form of a colorless oil (137.3 mg, 68 %).
  • Compound Q-3a (Diethanolamine, Daejeong Chemical Co., Ltd., CAS No. 111-42-2, 10 g, 95.12 mmol) was dissolved in 1,4-dioxane (320 mL) at 0 o C under nitrogen atmosphere and then dissolved in distilled water ( Sodium bicarbonate (16 g, 190.24 mmol) and di-tert-butyl dicarbonate (Boc anhydride, 25 g, 114.14 mmol) dissolved in 160 mL) were sequentially added and the temperature was gradually raised from 0 o C to room temperature for 48 hours. It was stirred for a while.
  • reaction was terminated by adding saturated aqueous sodium chloride solution (20 mL), and the reaction organic solvent was removed by concentration under reduced pressure.
  • MC 60 mL was added to the remaining aqueous sodium chloride solution, the organic layer was extracted, the obtained organic layer was dried over anhydrous magnesium sulfate, filtered, and the residue concentrated under reduced pressure was subjected to column chromatography to obtain compound Q-4a in the form of a pink oil. (1.39 g, 42%).
  • Linker P-1 (164 mg, 0.64 mmol) was dissolved in saturated aqueous sodium bicarbonate solution (3.5 mL) at 0°C under nitrogen atmosphere and stirred at 0°C for 20 minutes.
  • Q-1a N -Methoxycarbonylmaleimide, TCI, CAS No. 55750-48-6, 100 mg, 0.64 mmol was slowly added to the mixture and stirred at the same temperature for 1.5 hours.
  • the organic layer was extracted three times by adding EA (50 mL) and distilled water (50 mL). The obtained organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure at a temperature of 10°C or lower. The residue thus obtained was subjected to column chromatography to obtain Linker Q-5 in the form of a colorless oil (77 mg, 40%).
  • Linker Q-2 (70 mg, 0.198 mmol) was dissolved in THF (3 mL) at 0°C under nitrogen atmosphere and then dissolved in 3,3'-Iminodipropionic acid (TCI, CAS No. 505-47-5, 28.6 mg, 0.177). mmol), distilled water (300 ⁇ L), and DIPEA (41.3 ⁇ L) were sequentially added dropwise and stirred at room temperature for 12 hours.
  • reaction solution was diluted with ACN (1 mL) containing 0.1% formic acid and distilled water (1 mL), separated and purified using Preparative-HPLC, and freeze-dried to obtain compound Q-6a (3 mg , 4 %); MS m/z: 401[M+H] + .
  • Triphenylphosphine (65.6 mg, 0.24 mmol) and carbon tetrabromide (CBr 4 , 173 mg, 0.50 mmol) were dissolved in MC (5 mL) at 0 o C under a nitrogen atmosphere and stirred for 30 minutes.
  • Compound A-1d (160 mg, 0.20 mmol) prepared in step 4 of Example I-1 was dissolved in MC (2 mL) and added to the above reaction solution and stirred for 1 hour. After completion of the reaction, EA (100 mL) and distilled water (100 mL) were added to extract the organic layer. The obtained organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography to obtain compound A-3a. (30 mg, 17%); EI-MS m/z: 761[M+H] + .
  • Lithium hydroxide monohydrate (15.2 mg, 0.36 mmol) was slowly added dropwise to the above reaction solution and stirred for 3 hours. After completion of the reaction, 2N-hydrochloric acid aqueous solution (0.1 mL) was slowly added dropwise to terminate the reaction, diluted with ACN (1 mL) and distilled water (1 mL), separated and purified using Preparative-HPLC, and freeze-dried to produce Compound A- 3 was obtained as a white solid (7.9 mg, 16%); EI-MS m/z: 1299[M+H] + .
  • reaction solution containing compound A-6b obtained in step 2 was cooled to room temperature and methanol (1 mL) was added.
  • 6N-Sodium hydroxide aqueous solution (0.1 mL) and distilled water (1 mL) were sequentially added at 0 o C and stirred for 30 minutes, then stirred at room temperature for an additional 2 hours.
  • the reaction was terminated by slowly adding 2N-hydrochloric acid aqueous solution (0.1 mL) dropwise, diluted with ACN (1 mL) and distilled water (1 mL), separated and purified using Preparative-HPLC, and freeze-dried to obtain Compound A-6. (2 mg, 2%); EI-MS m/z: 1405[M+H] + .
  • the obtained organic layer was extracted by adding 1N-sodium hydroxide aqueous solution (5 mL) and distilled water (300 mL), dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The residue obtained was subjected to column chromatography to obtain compound A-8a. Obtained in the form of a light yellow oil (2.57 g, 65 %).
  • Compound A-8 was obtained as a white solid using Compound A-8a as a starting material in the same manner as steps 2 to 7 of Example I-1 (3.1 mg, 39%); EI-MS m/z: 1341[M+H] + .
  • Compound A-9 was obtained as an ivory solid in the same manner as in Example I-3 using Compound A-8b as a starting material (21.5 mg, 72%).
  • Compound A-11 was obtained in the form of a white solid in the same manner as Example I-9, except that MMAF-OMe was used instead of compound PL-1 in step 4 of Example I-9 (10.4 mg, 65 %); EI-MS m/z: 1101[M+H] + .
  • Compound A-12 was prepared as a white solid in the same manner as in Example I-9 using core C-5 as a starting material, except that MMAF-OMe was used instead of compound PL-1 in step 4 of Example I-9. Obtained in the form (11.7 mg, 64%); EI-MS m/z: 1145[M+H] + .
  • the organic layer was extracted using EA (100 mL) and 2N-hydrochloric acid aqueous solution (100 mL).
  • the organic layer was extracted by adding 2N-sodium hydroxide aqueous solution (5 mL) and distilled water (50 mL) to the obtained organic layer.
  • the obtained organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure.
  • the resulting residue was subjected to column chromatography to obtain compound A-13a in the form of a brown oil (184.9 mg, 54%).
  • Compound A-13 was obtained in the form of a white solid in the same manner as Example I-9, except that MMAF-OMe was used instead of compound PL-1 in step 4 of Example I-9 (25.7 mg, 66 %); EI-MS m/z: 1389[M+H] + .
  • Compound A-14 was obtained in the form of a white solid in the same manner as Example I-12, except that linker P-5 was used instead of linker P-4 in step 1 of Example I-12 (22.4 mg, 67%); EI-MS m/z: 1358[M+H] + .
  • Compound A-16 was prepared as a white solid in the same manner as in Example I-9 using core C-8 as a starting material, except that MMAF-OMe was used instead of compound PL-1 in step 4 of Example I-9. Obtained in the form (7.7 mg, 60%); EI-MS m/z: 1172[M+H] + .
  • Core C-4 (174 mg, 0.976 mmol) was dissolved in MC (30 mL) at room temperature under a nitrogen atmosphere, and then acetobromo-alpha-D-galactose (440 mg, 1.07 mmol) and benzyltributylammonium chloride (Sigma) were dissolved in MC (30 mL) at room temperature.
  • -Aldrich, CAS NO. 23616-79-7, 304 mg, 0.976 mmol) were added sequentially.
  • 5N-sodium hydroxide aqueous solution (586 ⁇ L, 2.93 mmol) was added to this reaction solution and stirred for 5 hours.
  • A-17d (230 mg, 0.42 mmol) was dissolved in MC (15 mL) at -78 o C under nitrogen atmosphere, then dichloromethyl methyl ether (116 ⁇ L, 1.26 mmol) and titanium tetrachloride solution (1M-TiCl 4 in MC). , 1.28 mL, 1.26 mmol) were slowly added sequentially and stirred while maintaining the temperature for 1 hour. After completion of the reaction, cooled distilled water (100 mL) was slowly added dropwise to terminate the reaction, and EA (100 mL) was added to extract the organic layer. The obtained organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was subjected to column chromatography to obtain compound A-17e as a white solid (130 mg, 53.7%).
  • Example I-16 Compound was prepared in the same manner as Example I-16, except that MMAF-OMe was used instead of compound PL-1 in step 8 of Example I-16, and lithium hydroxide monohydrate was used instead of potassium carbonate in step 9. A-18 was obtained as a white solid (22 mg, 71%); EI-MS m/z: 1156[M+H] + .
  • Compound A-23 was prepared as a white solid in the same manner as in Example I-9 using Compound A-23a as a starting material, except that MMAF-OMe was used instead of Compound PL-1 in step 4 of Example I-9. Obtained in the form (16.8 mg, 69%); EI-MS m/z: 1371[M+H] + .
  • step 8 of Example I-16 MMAF-OMe was used instead of compound PL-1, and in step 9, lithium hydroxide monohydrate was used instead of potassium carbonate, except that core C-14 was used as a starting material.
  • Compound A-26 was obtained as a white solid in the same manner as Example I-16 (21.3 mg, 61%); EI-MS m/z: 1140[M+H] + .
  • step 2 of Example I-9 Except that in step 2 of Example I-9, IPA and chloroform were used as solvents instead of THF, silica gel was added with sodium borohydride, and MMAF-OMe was used instead of compound PL-1 in step 4.
  • Compound A-29 was obtained as a white solid using core C-15 as a starting material in the same manner as Example I-9 (15.9 mg, 64%); EI-MS m/z: 1192[M+H] + .
  • N-chlorosuccinimide 120 mg, 0.88 mmol was added to a mixed solution of 2N-hydrochloric acid aqueous solution (60 ⁇ L) and ACN (300 ⁇ L) at 0 o C under nitrogen atmosphere, and then compound A-34a (140 ⁇ L) mg, 0.22 mmol) was dissolved in ACN (100 ⁇ L) and added.
  • the reaction solution was stirred at 0 o C for 3 hours, and after completion of the reaction, diethyl ether (100 mL) and distilled water (100 mL) were added to extract the organic layer.
  • the obtained organic layer was dried over anhydrous magnesium sulfate, filtered, and then concentrated under reduced pressure.
  • Compound A-34b in the form of a white solid obtained was used in the next reaction without further purification (35 mg, 24%).
  • the obtained compound A-34c was dissolved by adding methanol (2 mL) and THF (1 mL), and then lithium hydroxide hydrate (22.5 mg, 0.53 mmol) was dissolved in distilled water (0.5 mL) and slowly added at 0 o C for 30 minutes. Stirred for minutes. Additionally, after stirring at room temperature for 30 minutes, 2N-hydrochloric acid aqueous solution (0.3 mL) was slowly added dropwise to terminate the reaction. The reaction solution was diluted with ACN (1 mL) and distilled water (1 mL), separated and purified using Preparative-HPLC, and freeze-dried to obtain compound A-34 (0.4 mg, 1%); EI-MS m/z: 825[M+H] + .
  • reaction solution was diluted with EA (50 mL) and extracted by adding distilled water (50 mL) and 2N-hydrochloric acid aqueous solution (0.7 mL) to the solution filtered through Celite.
  • the obtained organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure.
  • the resulting residue was subjected to column chromatography to obtain compound A-35c as a white solid (167 mg, 82.6%).

Abstract

본 발명은 자가-희생기를 포함하는 화합물 및 이를 포함하는 리간드-약물 접합체를 제공한다. 이에 의하면, 활성 물질을 안정적으로 표적 부위까지 운반할 수 있으며, 표적 부위에서 활성 물질을 신속히 방출시켜, 활성 물질의 효력을 증가시키고, 활성 물질이 표적 위치 외의 위치에서 부작용을 일으키는 것을 억제할 수 있다.

Description

자가-희생기를 포함하는 화합물 및 이를 포함하는 리간드-약물 접합체
본 발명은 신규한 자가-희생기를 포함하는 화합물 및 이를 포함하는 리간드-약물 접합체에 관한 것으로서, 구체적으로 화학식 1의 자가-희생기를 포함하는 화합물 및 화학식 2의 리간드-약물 접합체에 관한 것이다.
약물, 진단 물질 등의 생체 활성 물질은 생체 내에서 표적 특이적 활성을 갖는다. 예를 들면, 약물은 특정 표적 세포에 대하여 억제 또는 치료 효과를 가지며, 진단 물질은 생체 내의 특정 단백질과 반응하여 진단을 수행한다.
한편, 생체 활성 물질은 표적 외 생체 물질에 대하여 독성을 가질 수 있으므로, 약물의 부작용을 억제하면서 약효가 표적 세포에 선택적으로 나타날 수 있도록 하는 기술들이 제안되고 있다.
예를 들면, 항체-약물 접합체(ADC, antibody-drug conjugates)는 생체 내 수용체와 결합하는 항체에 약물(drug) 또는 독소(toxin)를 결합한 후 표적 세포에서 선택적으로 약물 또는 독소를 방출시켜서 원하는 약효를 나타내게 하는 표적지향성 기술이다. 정상 세포에 대한 부작용을 최소화하면서 약물 또는 독소를 특정한 조건 하에서만 방출시켜서 선택적으로 표적 세포에 전달하므로, 항체 치료제보다 효능이 우수하고 부작용의 위험성을 크게 낮출 수 있다.
이러한 항체-약물 접합체는 일반적인 “항체-링커-약물(독소)” 구조로 이루어진다. 링커는 단순히 항체와 약물을 연결시켜 주는 역할뿐만 아니라, 체내 순환 시 항체-약물 접합체가 안정하게 표적 세포까지 도달한 후 표적 세포에서 항체-약물의 해리(예컨대, 효소에 의한 가수분해에 의한 결과)에 의해 약물이 분리되어 표적 세포에 선택적으로 약효를 나타내도록 한다. 따라서, 링커의 안정성이 항체-약물 접합체의 효능 및 전신 독성 등에 큰 영향을 미친다(Discovery Medicine 2010, 10(53): 329-39).
항체-약물 접합체의 링커는 일반적으로 비절단성(non-cleavable)과 절단성(cleavable) 타입으로 분류될 수 있다.
비절단성 링커로는 주로 티오에테르(thioether)를 사용하며, 세포 내에서 약물과 링커의 결합이 해리되는 것이 아니라, 링커와 항체의 결합이 해리되어 링커가 결합된 약물이 항체로부터 분리된다. 티올-말레이미드(thiol-maleimide) 링커가 주로 사용되는데, 화학적 안정성 및 혈장 안정성이 낮고 효력이 낮은 단점이 있다.
절단성 링커(Cleavable linker)로는 크게 화학적인 방법에 의해 분리되거나, 효소반응에 의해 가수분해 되는 링커가 주로 사용된다.
화학적으로 분리되는 메커니즘을 갖는 링커로는 다이설파이드, 히드라존 또는 옥심 결합으로 이루어진 링커가 대표적으로 사용된다. 그러나, 화학적으로 분리되는 링커는 혈액 또는 세포 내의 조건에 따라 표적 위치와 무관한 위치에서 약물이 해리되어 독성을 유발하는 부작용을 초래할 수 있다.
이러한 문제를 해결하기 위해 효소 반응에 의해 표적 세포 내에서 선택적으로 가수분해 되는 링커가 개발되고 있다. 예컨대, 효소반응에 의해 가수분해되는 링커는 약물에 직접 연결되지 않고 약물과 링커 사이에 개재되는 자가-희생기(SIG, self-immolative group)을 통해 연결되어 효소반응에 의해 가수분해 후 1,6-제거(1,6-elimination)혹은 고리화(cyclization) 등의 메커니즘을 통해 약물을 해리시킨다(Clinical Cancer Res. 2005, 11, 843-852).
그러나, 여전히 당업계에서는 혈장 안정성 및 화학적 안정성이 우수하고, 표적 세포 내에서 선택적으로 약물을 신속하게 방출할 수 있으며, 다양한 항체 및 약물과 접합체를 형성할 수 있는 우수한 범용성을 갖는 링커의 개발이 요구되고 있다.
본 발명의 일 목적은 화학식 1 또는 화학식 1-1의 자가-희생기를 포함하는 화합물 및 화학식 2 또는 화학식 2-1의 리간드-약물 접합체를 제공하는 것이다.
본 발명의 다른 목적은 화학식 1 또는 화학식 1-1의 화합물, 또는 화학식 2 또는 화학식 2-1의 리간드-약물 접합체를 포함하는 약학적 조성물, 이미징 조성물 또는 검출용 조성물을 제공하는 것이다.
본 출원에 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다.
본 발명의 일 양상은 하기 화학식 1로 표시되는 자가-희생기를 포함하는 화합물 또는 이의 약학적으로 허용가능한 염을 제공한다:
[화학식 1]
Figure PCTKR2023008742-appb-img-000001
또한, 본 발명의 다른 양상은 하기 화학식 2로 표시되는 리간드-약물 접합체 또는 이의 약학적으로 허용가능한 염을 제공한다:
[화학식 2]
Figure PCTKR2023008742-appb-img-000002
본 발명의 화학식 1 또는 화학식 2에서, L1은 2가 또는 다가 연결기이고, k는 0 또는 1이고, j는 1 내지 10이다.
본 발명의 화학식 1 또는 2에서, A는 부재, H 또는 결합성 작용기이고, A'은 A의 결합성 작용기로부터 유래된 2가 연결기이다.
본 발명의 화학식 2에서, n은 1 내지 10의 실수이고, E는 수용체 결합 특성을 갖는 리간드 또는 단백질이다.
본 발명의 화학식 1 또는 2에서, U는 하기 화학식 A로 표시되는 잔기이다:
[화학식 A]
Figure PCTKR2023008742-appb-img-000003
상기 화학식 A에서,
R1 및 R2는 각각 독립적으로 H 또는 C1-8의 포화 또는 불포화 하이드로카빌이고;
PL은 N, O 및 S로부터 선택된 헤테로원자에 의해 L2 또는 R1 및 R2가 결합된 탄소원자에 연결된 활성제이고;
L2는 R1 및 R2가 결합된 탄소원자와 L2 사이의 결합의 절단이 L2와 PL 사이의 결합의 절단을 촉진하도록 선택된 자가-제거 링커(self-eliminating linker)이고;
W는 벤젠 고리 상의 임의의 치환기이고;
Z1 및 Z3 중 하나는 N, NR3, O, S 및 Se로 구성되는 군에서 선택되고, Z1 및 Z3 중 나머지 하나와 Z2는 각각 독립적으로 CH 또는 N이되, -(L1)k-A, 및 존재하는 경우 -(V)h는 각각 독립적으로 NH 또는 CH의 H를 대체하고;
Figure PCTKR2023008742-appb-img-000004
는 A-(L1)k-와의 결합을 의미하고;
R3는 H 또는 C1-8 하이드로카빌이고;
V는 전자끄는기 또는 전자주는기이고;
T는 절단시 1,6-제거 반응에 의해 PL 및 존재하는 경우 L2의 방출을 개시할 수 있는 촉발기(triggering group)이고;
L3는 존재하는 경우 T의 절단시 순차적으로 절단되는 선택적 자가-희생 스페이서기이고;
X 및 Y는 각각 독립적으로 -O-, -NH-, 및 S로부터 선택되고;
h, i, l, x 및 y는 각각 독립적으로 0 또는 1이고, p는 0 내지 2의 정수이다.
화학식 1의 자가-희생기를 포함하는 화합물
융합 고리를 포함하는 코어 유닛 (Fused-ring Containing Core Unit)
화학식 1(A-(L1)k-Uj) 중의 U는 하기 화학식 A로 표시된다:
[화학식 A]
Figure PCTKR2023008742-appb-img-000005
화학식 1에서, L1이 2가의 연결기인 경우, L1의 일측은 A에 결합하고, 다른 한측은 U에 결합한다. 이 경우, L1에 1개의 U가 결합된다. 대안적으로, L1이 분지된 구조 또는 덴드리머 구조를 포함하는 경우(즉, L1이 다가 연결기인 경우), L1에 다수의 U가 결합할 수 있다. 이 경우, L1에 결합되는 U의 개수(j)는 1 내지 10일 수 있다. 일 실시태양에서 j는 1 내지 5이다. 일 실시태양에서 j는 1이다.
상기 화학식 A에서, Z1 및 Z3 중 하나는 N, NR3, O, S 및 Se로 구성되는 군에서 선택되고, Z1 및 Z3 중 나머지 하나와 Z2는 각각 독립적으로 CH 또는 N이다. -(L1)k-A, 및 존재하는 경우 -(V)h는 각각 독립적으로 NH 또는 CH의 H를 대체한다. 이 경우, R3는 H 또는 C1-8 하이드로카빌이다.
상기 화학식 A에서, Z1 내지 Z3을 포함하는 5원 고리에 연결된
Figure PCTKR2023008742-appb-img-000006
는 화학식 1의 A-(L1)k-와의 결합을 의미한다.
일 실시태양에서, Z1 및 Z3 중 하나는 L1 또는 A와 결합되는 N, NR3, O, S 및 Se로 구성되는 군에서 선택되고, Z1 및 Z3 중 나머지 하나와 Z2는 각각 독립적으로 H, V, L1, 또는 A와 결합되는 C, 또는 N일 수 있다. 상기 R3는 H 또는 C1-8 알킬이다. 일 실시태양에서, 상기 R3는 H, C1-4 알킬 또는 C1-3 알킬일 수 있다.
일 실시태양에서, Z1 내지 Z3 중 어느 하나는 N, O, S 및 Se로 구성되는 군에서 선택되는 헤테로원자를 포함할 수 있다. 일 실시태양에서, Z1 내지 Z3 중 둘 이상은 각각 독립적으로 N, O, S 및 Se로 구성되는 군에서 선택되는 헤테로원자를 포함할 수 있다.
일 실시태양에서, 상기 Z1 및 Z3 중 하나는 A 또는 L1과 결합되는 N이고, 나머지 하나와 Z2는 CH일 수 있다. 대안적으로, 상기 Z1 및 Z3 중 하나는 NR3, O, S 및 Se로 구성되는 군에서 선택되고, 나머지 하나와 Z2는 CH, 또는 A 또는 L1과 결합되는 C일 수 있다. 대안적으로, 상기 Z1 및 Z3 중 하나는 NR3, O 및 S로 구성되는 군에서 선택되고, 나머지 하나와 Z2 중 하나는 N이고, Z1 내지 Z3 중 나머지 하나는 CH 또는 A 또는 L1과 결합되는 C일 수 있다.
일 실시태양에서, V는 Z1 내지 Z3 중 어느 하나 이상이 CH일 경우, CH의 탄소 원자에 치환될 수 있다. 예를 들면, Z2가 CH일 경우, V는 Z2에 치환될 수 있다.
일 실시태양에서, 화학식 1로 표시되는 화합물은 인돌, 벤조티오펜, 벤조퓨란, 벤조셀레노펜, 인다졸, 벤즈이미다졸, 벤즈옥사졸, 벤즈이속사졸 또는 벤조티아졸의 유도체일 수 있다.
일 실시태양에서, 화학식 A의
Figure PCTKR2023008742-appb-img-000007
고리는 하기 군으로부터 선택될 수 있다:
Figure PCTKR2023008742-appb-img-000008
Figure PCTKR2023008742-appb-img-000009
상기 화학식 A의 융합 고리 구조 중 벤젠 고리는 촉발기 T로부터 개시된 1,6-제거반응에 바람직하지 않는 영향을 미치지 않는 한 임의의 치환기 W로 치환될 수 있다. 일 실시태양에서, 벤젠 고리의 치환기 W는 H, C1-12 포화 또는 불포화 하이드로카빌, 할로겐, 할로-C1-8 알킬, CN, NO2, OH, C1-8 알콕시, 하이드록시-C1-8 알킬, C1-8 알콕시-C1-8 알킬, SH, C1-8 알킬티오, 머캅토-C1-8 알킬, 아미노, 모노-C1-8 알킬아미노, 디-C1-8 알킬아미노, 아미노-C1-8 알킬, C1-8 모노알킬아미노-C1-8 알킬, C1-8 디알킬아미노-C1-8 알킬, 카복시, C1-8 알콕시카보닐, C1-8 알콕시카보닐옥시, 카복시-C1-8 알킬, C1-8 알콕시카보닐-C1-8 알킬, 카바모일, 모노-C1-8 알킬카바모일, 디-C1-8 알킬카바모일, 카바모일-C1-8 알킬, 모노-C1-8 알킬카바모일-C1-8 알킬 및 디-C1-8 알킬카바모일-C1-8 알킬로 구성되는 군에서 선택될 수 있다. 화학식 1에서 p는 0 내지 2의 정수일 수 있다. 일 실시태양에서, p는 0일 수 있다.
또한, 상기 화학식 A의 융합 고리 중 Z1, Z2 및 Z3를 포함하는 5원환 고리는 전자끄는기 또는 전자주는기 V로 임의로 치환될 수 있다. 화학식 A에서, h는 0 또는 1이다. 일 실시태양에서, A-(L1)k-가 Z2에 결합될 경우, V는 부재(h는 0)일 수 있다.
일부 실시태양에서, 상기 V는 할로겐, CN, NO2, 포르밀, C1-8 알킬카보닐, 카복시, C1-8 알콕시카보닐, 카복시-C1-8 알킬, 카바모일, 모노-C1-8 알킬카바모일, 디-C1-8 알킬카바모일, C1-8 알킬, C1-8 알켄일, OH, C1-8 알콕시, SH, C1-8 알킬설파닐, NH2, 모노-C1-8 알킬아미노, 디-C1-8 알킬아미노 및 C6-18 아릴으로 구성되는 군에서 선택될 수 있다. 일부 실시태양에서, 상기 V는 카복시, 카복시-C1-8 알킬 또는 C1-8 알콕시카보닐일 수 있다. 예를 들면, 상기 V는 카복시, 메톡시카보닐, 에톡시카보닐, 프로폭시카보닐, 카복시메틸, 카복시에틸 또는 카복시프로필일 수 있다.
본 발명의 화학식 A에서, R1 및 R2는 각각 독립적으로 H 또는 C1-8의 포화 또는 불포화 하이드로카빌이다.
일 실시태양에서, R1 및 R2는 각각 독립적으로 H 또는 C1-8 알킬 또는 C3-8 사이클로알킬일 수 있다. 일 실시태양에서, R1 및 R2는 각각 독립적으로 H 또는 C1-4의 포화 또는 완전 또는 부분 불포화 하이드로카빌일 수 있다. 예컨대, R1 및 R2는 각각 H일 수 있다. 상기 불포화 하이드로카빌은 부분 불포화 또는 완전 불포화 하이드로카빌을 포함할 수 있다. 상기 하이드로카빌은 직쇄형, 분지형 또는 고리형 하이드로카빌일 수 있다.
자가-제거 링커(Self-eliminating Linker)
본 발명의 화학식 1에서, L2는 R1 및 R2가 결합된 탄소원자와 L2 사이의 결합의 절단이 L2와 PL 사이의 결합의 절단을 촉진하도록 선택된 자가-제거 링커(self-eliminating linker)이다. l은 0 또는 1일 수 있다. 상기 l이 0인 경우, 상기 PL은 상기 R1 및 R2이 연결된 탄소 원자에 직접 결합될 수 있다.
화학식 1의 화합물이 자가-제거 링커(self-eliminating linker)를 포함하는 경우, 촉발기 T에 의해 촉발된 1,6-제거 반응에 의하여 L2 기가 R1 및 R2가 결합된 탄소원자로부터 절단되고, L2로부터 PL- 또는 PL-H이 방출될 수 있다.
일 실시태양에서, 상기 L2는 -OC(=O)-, -S(=O)2-,
Figure PCTKR2023008742-appb-img-000010
Figure PCTKR2023008742-appb-img-000011
로 구성되는 군에서 선택되는 적어도 하나의 링커이다. 이 경우, R10 내지 R12는 각각 독립적으로 H, C1-8 알킬, 아미노-C1-8 알킬, 모노- 또는 디-(C1-8 알킬)아미노로 치환된 C1-8 알킬, 또는 -(CH2CH2O)gR13일 수 있다. 이 경우, R13은 H 또는 C1-4 알킬이고, g는 1 내지 10의 정수일 수 있다. 일 실시태양에서, 상기 C1-8 알킬은 C1-6 알킬, C1-4 알킬 또는 C1-3 알킬일 수 있다. 예를 들면, R10 내지 R12는 각각 독립적으로 H, 메틸, 에틸, 프로필, 2-아미노에틸, 2-(N-메틸아미노)에틸, 2-(N,N-디메틸아미노)에틸, 2-(N-에틸아미노)에틸 또는 2-(N,N-디에틸아미노)에틸을 포함할 수 있다. 일 실시태양에서, 화학식 A의 잔기는 L2로서 -OC(=O)-를 포함할 수 있다.
활성제(PL)
본 발명의 화학식 A에서, PL은 표적 세포에서 목적하는 생물학적 활성을 나타내는 활성제로서, 활성제 중의 N, O 및 S로부터 선택된 헤테로원자에 의해 L2 또는 R1 및 R2가 결합된 탄소원자에 연결된다. PL은 효소 반응 또는 화학 반응에 의해 T가 절단되는 경우 1,6-제거 반응에 의해 화학식 1의 화합물로부터 방출된다.
일 실시태양에서, PL은 약물, 독소, 형광체, 친화성 리간드, 진단 물질 및 검출용 탐침으로 구성되는 군에서 선택되는 적어도 하나의 활성제일 수 있다. 구체적으로, 상기 약물, 독소, 형광체, 친화성 리간드, 진단 물질 및 검출용 탐침에 포함된 N, O 및 S로부터 선택된 헤테로원자가 R1 및 R2가 결합된 탄소 원자 또는 L2와 결합될 수 있다. 따라서, R1 및 R2가 결합된 탄소 원자 또는 (L2가 존재하는 경우) L2와 결합할 수 있는 N, O 및 S로부터 선택된 헤테로원자를 포함하거나, 이러한 헤테로원자를 포함하는 작용기를 추가로 도입할 수 있는 한 본 발명의 PL로 사용할 수 있으며, 본 발명의 PL은 본원에 예시된 특정 활성제로 제한되지 않음을 유의하여야 한다. 예를 들면, 상기 PL은 1차 또는 2차 아민기의 H, 하이드록시기의 H 및 카복시기의 H가 제거된 작용기, 3차 아민기의 질소 원자의 비공유 전자쌍이 공여되는 작용기, 또는 이민(imine)기의 첨가 반응에 의해 질소 원자와 연결되는 작용기를 포함할 수 있다.
상기 약물은 엘로티니브(erlotinib, TARCEVA; Genentech/OSI Pharm.); 보어테조미브(bortezomib, VELCADE; MilleniumPharm.); 풀베스트란트(fulvestrant, FASLODEX; AstraZeneca); 수텐트(sutent, SU11248; Pfizer); 레트로졸(letrozole, FEMARA; Novartis); 이매티니브 메실레이트(imatinib mesylate, GLEEVEC; Novartis); PTK787/ZK 222584(Novartis); 옥살리플라틴(oxaliplatin, Eloxatin; Sanofi); 5-플루오로우라실(5-fluorouracil, 5-FU); 류코보린(leucovorin); 라파마이신(rapamycin, Sirolimus, RAPAMUNE; Wyeth); 라파티니브(lapatinib, TYKERB, GSK572016; GlaxoSmithKline); 로나파니브(lonafarnib, SCH 66336); 소라페니브(sorafenib, BAY43-9006; Bayer Labs.); 게피티니브(gefitinib, IRESSA; Astrazeneca); AG1478, AG1571 (SU 5271; Sugen); 알킬화제(alkylating agent) (예: 티오테파(thiotepa) 또는 CYTOXAN®; 사이클로포스파미드(cyclophosphamide)); 알킬 설포네이트(alkyl sulfonate) (예:부설판(busulfan), 임프로설판(improsulfan)또는 피포설판(piposulfan)); 아지리딘(aziridine) (예:벤조도파(benzodopa), 카보쿠온(carboquone), 메투레도파(meturedopa) 또는 우레도파(uredopa)); 에틸렌이민(ethylenimine), 메틸멜라민(methylmelamine), 알트레타민(altretamine), 트리에틸렌멜라민(triethylenemelamine), 트리에틸렌포스포라미드(triethylenephosphoramide), 트리에틸렌티오포스포라미드(triethylenethiophosphoramide), 트리메틸올멜라민(trimethylolmelamine); 아세토게닌스(acetogenins) (예: 불라탁신(bullatacin) 또는 불라탁시논(bullatacinone)); 합성 유사체 토포테칸(synthetic analogue topotecan)을포함하는 캄프토테신(camptothecin); 브리오스타틴(bryostatin); 칼리스타틴(callystatin); CC-1065 (이의 아도젤레신(adozelesin), 카젤레신(carzelesin) 또는 비젤레신(bizelesin) 합성 유사체(synthetic analogues)를 포함);크립토파이신(cryptophycins) (예: 크립토파이신 1(cryptophycin 1) 또는 크립토파이신 8(cryptophycin 8)); 돌라스타틴(dolastatin); 두오카마이신(duocarmycin) (합성 유사체, KW-2189 및 CB1-TM1를 포함); 엘레우테로빈(eleutherobin); 판크라티스타틴(pancratistatin); 사코딕틴(sarcodictyin); 스폰기스타틴(spongistatin); 질소 머스타드(nitrogen mustard) (예: 클로람부실(chlorambucil), 클로르나파진(chlornaphazine), 클로로포스파미드(cholophosphamide), 에스트라무스틴(estramustine), 이포스파미드(ifosfamide), 메클로레타민(mechlorethamine), 메클로레타민 옥사이드 하이드로클로라이드(mechlorethamine oxide hydrochloride), 멜팔란(melphalan), 노벰비킨(novembichin), 페네스터린(phenesterine), 프레드니무스틴(prednimustine), 트로포스파미드(trofosfamide) 또는 우라실 머스타드(uracil mustard)); 아질산우레아(nitrousurea) (예: 카무스틴(carmustine), 클로로조톡신(chlorozotocin), 포테무스틴(fotemustine), 로무스틴(lomustine), 니무스틴(nimustine) 또는 라님누스틴(ranimnustine)); 항생 물질(antibiotics) (예: 에네디인 항생 물질(enediyne antibiotics)로, 칼리케아마이신 감마 1 I(calicheamycin gamma1 I) 및 칼리케아마이신 오메가 I 1(calicheamycin omegaI1)로부터 선택되는 칼리케아마이신(calicheamycin) 또는 다이네미신 A(dynemicin A)를 포함하는다이네미신(dynemicin)); 비스포스포네이트(bisphosphonate) (예: 클로드로네이트(clodronate)); 에스페라미신(esperamicin), 니오카지노스타틴 발색단(neocarzinostatin chromophore) 또는 관련 크로모단백질 에넨디인 항생 발색단(related chromoprotein enediyne antibiotic chromophores), 아클라시노마이신(aclacinomysins), 악티노마이신(actinomycin), 안트라마이신(antrmycin), 아자세린(azaserine), 블레오마이신(bleomycins), 칵티노마이신(cactinomycin), 카라비신(carabicin), 카니노마이신(carninomycin), 카지노필린(carzinophilin), 크로모마이신(chromomycins), 닥티노마이신(dactinomycin), 다우노루비신(daunorubicin), 데토루부신(detorubucin), 6-디아조-5-옥소-L-노르류신(6-diazo-5-oxo-L-norleucine), ADRLIMYCIN; 독소루비신(ADRLIMYCIN; doxorubicin) (예: 모르폴리노-독소루비신(morpholino-doxorubicin), 시아노모르폴리노-독소루비신(cyanomorpholino-doxorubicin), 2-피롤리노-독소루비신(2-pyrrolino-doxorubucin), 리포솜 독소루비신(liposomal doxorubicin) 또는 데옥시독소루비신(deoxydoxorubicin)), 에피루비신(epirubicin), 에소루비신(esorubicin), 마셀로마이신(marcellomycin), 미토마이신(mitomycins) (예: 미토마이신 C(mitomycin C), 마이코페놀산(mycophenolic acid), 노갈라마이신(nogalamycin), 올리보마이신(olivomycins), 페플로마이신(peplomycin), 포트피로마이신(potfiromycin), 푸로마이신(puromycin), 쿠엘라마이신(quelamycin), 로두루비신(rodorubicin), 스트렙토미그린(streptomigrin), 스트렙토조신(streptozocin), 투베르시딘(tubercidin), 우베니멕스(ubenimex), 지노스타틴(zinostatin) 또는 조루비신(zorubicin)); 항-대사산물(anti-metabolites) (예: 5-플루오로우라실(5-fluorouracil, 5-FU)); 폴산 유사체(folic acid analogues) (예: 데노프테린(denopterin), 메토트렉세이트(methotrexate), 프테로프테린(pteropterin) 또는 트리메트렉세이트(trimetrexate)); 푸린 유사체(purine analogs) (예: 플루다라빈(fludarabine), 6-머캅토푸린(6-mercaptopurine), 티아미프린(thiamiprine) 또는 티구아닌(thiguanine)); 피리미딘 유사체(pyrimidine analogs) (예: 아시타빈(ancitabine), 아자시티딘(azacitidine), 6-아자우리딘(6-azauridine), 카모푸르(carmofur), 사이타라빈(cytarabine), 디데옥시우리딘(dideoxyuridine), 독시플루리딘(doxifluridine), 에노시타빈(enocitabine) 또는 플록수리딘(floxuridine)); 안드로겐(androgens)(예: 칼루스테론(calusterone), 드로모스타놀론 프로피오네이트(dromostanolone propiona te), 에피티오스타놀(epitiostanol), 메피티오스탄(mepitiostane) 또는 테스토락톤(testolactone)); 항-아드레날(anti-adrenals) (예: 아미노글루테티미드(aminoglutethimide), 미토탄(mitotane) 또는 트리로스탄(trilostane)); 폴산 보충제(folic acid replenisher) (예: 폴린산(folinic acid)); 아세글라톤(aceglatone); 알도포스파미드 글리코사이드(aldophosphamide glycoside); 아미노레불린산(aminolevulinic acid); 에닐우라실(eniluracil); 암사크린(amsacrine); 베스트라부실(bestrabucil); 비산트렌(bisantrene); 에다트락세이트(edatraxate); 데포파민(defofamine); 데메콜신(demecolcine); 디아지쿠온(diaziquone); 엘포르니틴(elfornithine); 엘립티늄 아세테이트(elliptinium acetate); 에포틸론(epothilone); 에토글루시드(etoglucid); 갈륨 니트레이트(gallium nitrate); 하이드록시우레아(hydroxyurea); 렌티난(lentinan); 로니다이닌(lonidainine); 마이탄시노이드(maytansinoids) (예: 마이탄신(maytansine)또는 안사미톡신(ansamitocins); 트리코테센은 T-2 독소(T-2 toxin), 베라쿠린 A(verracurin A), 로리딘 A(roridin A) 또는 안구이딘(anguidine)); 미토구아존(mitoguazone); 미톡산트론(mitoxantrone); 모피단몰(mopidanmol); 니트라에린(nitraerine); 펜토스타틴(pentostatin); 페나메트(phenamet); 피라루비신(pirarubicin); 로속사트론(losoxantrone); 2-에틸하이드라지드(2-ethylhydrazide); 프로카바진(procarbazine); PSK®; 다당류 착체(polysaccharide); 라족산(razoxane); 리족신(rhizoxin); 시조피란(sizofiran); 스피로게르마늄(spirogermanium); 테누아존산(tenuazonic acid); 트리아지쿠온(triaziquone); 2,2',2"-트리클로로트리에틸아민(2,2',2"-trichlorotriethylamine); 트리코테센(trichothecenes)(특히 T-2 독소, 베라쿠린 A, 로리딘 A 및 안구이딘); 우레탄(urethane); 빈데신(vindesine); 다카바진(dacarbazine); 만노무스틴(mannomustine); 미토브로니톨(mitobronitol); 미토락톨(mitolactol); 피포브로만(pipobroman); 가시토신(gacytosine); 아라비노시드(arabinoside, 'Ara-C'); 사이클로포스파미드(cyclophosphamide); 티오테파(thiotepa); 탁소이드(taxoids) (예: TAXOL; 파클리탁셀(TAXOL;paclitaxel) (Bristol-Myers Squibb Oncology, Princeton, N. J.), ABRAXANE 크레모포 부재(ABRAXANETM cremophor-free), 파클리탁셀의 알부민 가공 나노입자 제형(albumin-engineered nanoparticle formulation of paclitaxel, American Pharmaceutical Partners, Schaumber, I11.) 또는 TAXOTERE; 독세탁셀(TAXOTERE; doxetaxel); 클로란부실(chloranbucil); 겜시타빈(gemcitabine); 6-티오구아닌(6-thioguanine); 머캅토푸린(mercaptopurine); 백금 유사체(platinum analog)(예: 시스플라틴(cisplatin) 또는 카보플라틴(carboplatin)); 빈블라스틴(vinblastine); 백금(platinum); 에토포시드(etoposide), 이포스파미드(ifosfamide); 미톡산트론(mitoxantrone); 빈크리스틴(vincristine); 비노렐빈(NAVELBINE; vinorelbine); 노반트론(novantrone); 테니포시드(teniposide); 에다트렉세이트(edatrexate); 다우노마이신(daunomycin); 아미노프테린(aminopterin); 젤로다(xeloda); 이반드로네이트(ibandronate); CPT-11; 토포이소머라제 억제제(topoisomerase inhibitor) RFS 2000; 디플루오로메틸로르니틴(difluorometlhylornithine, DFMO); 레티노이드(retinoid) (예: 레틴산(retinoic acid)); 카페시타빈(capecitabine); 및 이의 약학적으로 허용되는 염, 용매화물, 산 또는 유도체로 이루어진 군으로부터 선택되나, 이에 제한되는 것은 아니다.
상기 약물 이외의 추가 약물은 비제한적으로, (i) 타목시펜(NOLVADEX; 타목시펜 포함), 라록시펜, 드로록시펜, 4-하이드록시타목시펜, 트리옥시펜, 케옥시펜, LY117018, 오나프리스톤 및 FAREATON; 토레미펜을 포함하는, 항-에스트로겐 및 선택적 에스트로겐 수용체 조절제(SERM)와 같은 종양에 대한 호르몬 작용을 조절하거나 억제하는 작용을 하는 항-호르몬제; (ii) 부신내 에스트로겐 생성을 조절하는, 아로마타제 효소를 억제하는 아로마타제 억제제, 예를 들면, 4(5)-이미다졸, 아미노글루테티미드, MEGASE; 메게스트롤 아세테이트, AROMASIN; 엑세메스탄, FEMARA; 레트로졸 및 ARIMIDEX; 아나스트로졸; (iii) 항-안드로겐, 예를 들면, 플루타미드, 닐루타미드, 비칼루타미드, 레우프롤리드 및 고세렐린; 뿐만 아니라 트록사시타빈(1,3-디옥솔란 뉴클레오시드 시토신 유사체); (iv) 아로마타제 억제제; (v) 단백질 키나제 억제제; (vi) 지질 키나제 억제제; (vii) 안티센스 올리고뉴클레오티드, 특히 부착 세포에 연관된 시그널링 통로 내 유전자 발현을 억제하는 것, 예를 들면, PKC-알파, Raf, H-Ras; (viii) 리보자임, 예를 들면, VEGF 억제제, 예를 들면, ANGIOZYME 리보자임 및 HER2 발현 억제제; (ix) 백신, 예를 들면, 유전자 치료 백신; ALLOVECTIN; 백신, LEUVECTIN 백신 및 VAXID 백신; PROLEUKIN; rlL-2; LURTOTECAN; 토포이소머라제 1 억제제; ABARELIX; rmRH; (x) 항-맥관발생제, 예를 들면, 베박시주마브(AVASTIN, Genentech); 및 (xi) 약학적으로 허용되는 이의 염, 용매화물, 산 또는 유도체를 포함한다.
일 실시태양에서, 상기 약물은 시토카인(cytokine), 면역조절 화합물, 항암제, 항바이러스제, 항박테리아제, 항진균제, 구충제 또는 이들의 조합으로부터 선택될 수 있다.
상기 시토카인은 다수의 세포에 의하여 분비되는 소세포-시그널링 단백질 분자로서, 세포 내 정보교환에 광범위하게 사용되는 시그널링 분자일 수 있다. 상기 시토카인은 모노카인(monokine), 림포카인(lympokine), 전통적인 폴리펩타이드 호르몬(traditional polypeptidehormone) 등을 포함한다. 시토카인의 예는, 이들로 제한되지는 않지만, 성장 호르몬(growth hormone) (예: 사람 성장 호르몬(human growth hormone), N-메티오닐 사람 성장 호르몬(N-methionyl humangrowth hormone) 또는 보바인 성장 호르몬(bovinegrowth hormone)); 부갑상선 호르몬(parathyroid hormone); 티록신(thyroxine); 인슐린(insulin); 프로인슐린(proinsulin); 레락신(relaxin); 프로레락신(prorelaxin); 당단백질 호르몬(glycoprotein hormone) (예: 소포 자극 호르몬(folliclestimulating hormone, FSH), 갑상선 자극 호르몬(thyroid stimulatinghormone, TSH) 또는 황체형성 호르몬(luteinizinghormone, LH)); 간 성장 인자(hepatic growth factor); 섬유아세포 성장 인자(fibroblast growth factor); 프로락틴(prolactin); 태반 락토겐(placental lactogen); 종양 괴사 인자-α(tumornecrosis factor-α), 종양 괴사 인자-β(tumornecrosis factor-β); 뮬러-억제 물질(mullerian-inhibitingsubstance); 마우스 고나도트로핀 결합 펩타이드(mousegonadotropin-associated peptide); 인히빈(inhibin); 악티빈(activin); 혈관 내피 성장 인자(vascularendothelialgrowth factor); 인테그린(integrin), 트롬보포이에틴(thrombopoietin, TPO); 신경 성장 인자(nervegrowth factor) (예: NGF-β); 혈소판-성장 인자(platelet-growth factor); 변환 성장 인자(transforming growth factor, TGF) (예: TGF-α 또는TGF-β); 인슐린 유사 성장 인자-I(insulin-likegrowth factor-I), 인슐린 유사 성장 인자-II(insulin-like growth factor-II);에리트로포이에틴(erythropoietin, EPO);골유도 인자(osteoinductive factor); 인터페론(interferon) (예: 인터페론-α(interferon-α), 인터페론-β(interferon-β) 또는 인터페론-γ(interferon-γ)); 집락 자극 인자(colony stimulating factor, CSF) (예: 대식 세포-CSF(macrophage-CSF, M-CSF), 과립구-대식 세포-CSF(granulocyte-macrophage-CSF, GM-CSF) 또는 과립구-CSF(granulocyte-CSF, G-CSF)); 인터류킨(interleukin, IL) (예: IL-1, IL-1α, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11 또는 IL-12); 종양 괴사 인자(tumor necrosis factor) (예: TNF-α 또는 TNF-β); 및 폴리펩타이드 인자(polypeptide factor) (예: LIF 또는키트 리간드(kit ligand, KL))를 포함한다. 또한 용어 시토카인은 천연 공급원으로부터 또는 기본 서열 시토카인의 재조합 세포 배양물 및 생물학적 활성 동등물(biologically active equivalents of a cytokine)을 포함할 수 있다.
상기 면역조절 화합물은 아미노카프론산(aminocaproic acid), 아자티오프린(azathioprine), 브로모크립틴(bromocriptine), 클로로퀸(chloroquine), 클로로람부실(chlorambucil), 사이클로스포린(cyclosporine), 사이클로스포린A(cyclosporine A), 다나졸(danazol), DHEA(dehydroepiandrosterone), 덱사메타손(dexamethasone), 에타너셉트(etanercept), 하이드록시클로로퀸(hydroxychloroquine), 하이드로코르티손(hydrocortisone), 인플릭시맙(infliximab), 멜록시캄(meloxicam), 메토트렉세이트(methotrexate), 사이클로포스파미드(cyclophosphamide), 미코페놀산모페틸(mycophenylate mofetil), 프리드니손(prednisone), 시롤리무스(sirolimus) 및 타크로리무스(tacrolimus)로 이루어진 군으로부터 선택가능하다.
상기 항암제는 메토트렉세이트(methotrexate), 탁솔(taxol), L-아스파라기나제(L-asparaginase), 머캡토퓨린(mercaptopurine), 티오구아닌(thioguanine), 하이드록시우레아(hydroxyurea), 시타라빈(cytarabine), 사이클로포스파미드(cyclophosphamide), 이포스파미드(ifosfamide), 니트로소우레아(nitrosourea), 시스플라틴(cisplatin), 카보플라틴(carboplatin), 미토마이신(mitomycin), 다카바진(dacarbazine), 프로카바진(procarbazine), 토포테칸(topotecan), 질소 머스터드(nitrogen mustard), 사이톡산(cytoxan), 에토포시드(etoposide),5-플루오로우라실(5-fluorouracil), BCNU(bis-chloroethylnitrosourea), 이리노테칸(irinotecan), 캄포토테신(camptothecin), 엑사테칸(exatecan), 벨로테칸(belotecan), 블레오마이신(bleomycin), 독소루비신(doxorubicin), 이다루비신(idarubicin), 다우노루비신(daunorubicin), 닥티노마이신(dactinomycin), 플리카마이신(plicamycin), 미톡산트론(mitoxantrone), 아스파라기나제(asparaginase), 빈블라스틴(vinblastine), 빈크리스틴(vincristine), 비노렐빈(vinorelbine), 파클리탁셀(paclitaxel), 도세탁셀(docetaxel), 클로로람부실(chlorambucil), 멜파란(melphalan), 카르무스틴(carmustine), 로무스틴(lomustine), 부설판(busulfan), 트레오설판(treosulfan), 데카바진(decarbazine), 에토포시드(etoposide), 테니포시드(teniposide), 토포테칸(topotecan), 9-아미노캠프토테신(9-aminocamptothecin), 크리스나톨(crisnatol), 미토마이신 C(mitomycin C), 트리메트렉세이트(trimetrexate), 마이코페놀산(mycophenolic acid), 티아조퓨린(tiazofurin), 리바비린(ribavirin), EICAR(5-ethynyl-1-beta-D-ribofuranosylimidazole-4-carboxamide), 하이드록시우레아(hydroxyurea), 데프록사민(deferoxamine), 플룩수리딘(floxuridine), 독시플루리딘(doxifluridine), 랄티트렉세드(raltitrexed), 시타라빈(cytarabine(ara C)), 시토신 아라비노시드(cytosine arabinoside), 플루다라빈(fludarabine), 타목시펜(tamoxifen), 라록시펜(raloxifene), 메게스트롤(megestrol), 고세렐린(goserelin), 류프롤리드 아세테이트(leuprolide acetate), 플루타미드(flutamide), 바이칼루타마이드(bicalutamide), EB1089, CB1093, KH1060, 베르테포르핀(verteporfin), 프탈로시아닌(phthalocyanine), 광감작제 Pe4(photosensitizer Pe4), 데메톡시-하이포크레린 A(demethoxy-hypocrellin A), 인터페론-α(Interferon-α), 인터페론-γ(Interferon-γ), 종양 괴사 인자(tumor necrosis factor), 겜사이타빈(Gemcitabine), 벨케이드(velcade), 레발미드(revamid), 탈라미드(thalamid), 로바스타틴(lovastatin), 1-메틸-4-페닐피리디늄 이온(1-methyl-4-phenylpyridinium ion), 스타우로스포린(staurosporine), 악티노마이신 D(actinomycin D), 닥티노마이신(dactinomycin), 블레오마이신 A2(bleomycin A2), 블레오마이신 B2(bleomycin B2), 페플로마이신(peplomycin), 에피루비신(epirubicin), 피라루비신(pirarubicin), 조루비신(zorubicin), 마이토산트론(mitoxantrone), 베라파밀(verapamil) 및 탑시가르긴(thapsigargin)으로 이루어진 군으로부터 선택가능하다.
상기 바이러스제는 펜시시클로버(pencicyclovir), 발라시클로버(valacyclovir), 간시시클로버(gancicyclovir), 포스카르네트(foscarnet), 리바비린(rivavirin), 이독수리딘(idoxuridine), 비다라빈(vidarabine), 트리플루리딘(trifluridine), 아시클로버(acyclovir), 팜시시클로버(famcicyclovir), 아만타딘(amantadine), 리만타딘(rimantadine), 시도포비어(cidofovir), 안티센스 올리고뉴클레오티드(antisense oligonucleotide), 면역글로불린(immunoglobulin) 및 인터페론(interferon)으로 이루어진 군으로부터 선택가능하다.
상기 항박테리아제는 클로람페니콜(chloramphenicol), 반코마이신(vancomycin), 메트로니아졸(metronidazole), 트리메소프린(trimethoprin), 설파메타졸(sulfamethazole), 퀴누프리스틴(quinupristin), 달도프리스틴(dalfopristin), 리팜핀(rifampin), 스펙티노마이신(spectinomycin) 및 니트로퓨란토인(nitrofurantoin)으로 이루어진 군으로부터 선택가능하다.
상기 항진균제는 암포테리신 B(amphotericin B), 캔디사이딘(Candicidin), 필리핀(filipin), 하마이신(hamycin), 나타마이신(natamycin), 니스타틴(nystatin), 리모시딘(rimocidin), 비포나졸(Bifonazole), 부토코나졸(Butoconazole), 클로트리마졸(Clotrimazole), 에코나졸(Econazole), 펜티코나졸(Fenticonazole), 이소코나졸(Isoconazole), 케토코나졸(Ketoconazole), 룰리코나졸(Luliconazole), 미코나졸(Miconazole), 오모코나졸(Omoconazole), 옥시코나졸(Oxiconazole), 세르타코나졸(Sertaconazole), 설코나졸(Sulconazole), 티오코나졸(Tioconazole), 알바코나졸(Albaconazole), 플루코나졸(Fluconazole), 이사부코나졸(Isavuconazole), 이트라코나졸(Itraconazole), 포사코나졸(Posaconazole), 라부코나졸(Ravuconazole), 테르코나졸(Terconazole), 보리코나졸(Voriconazole), 아바펀진(Abafungin), 아모롤핀(Amorolfin), 부테나핀(Butenafine), 나프티핀(Naftifine), 터비나핀(Terbinafine), 아니둘라펀진(Anidulafungin), 카스포펀진(Caspofungin), 미카펀진(Micafungin), 벤조산(benzoic acid), 시클로피록스(ciclopirox), 플루사이토신(flucytosine), 그리세오풀빈(griseofulvin), 할로프로긴(haloprogin), 톨나프테이트(tolnaftate), 운데실렌산(undecylenic acid), 크리스탈 바이올렛(crystal violet), 페루 발삼(balsam of peru), 서클로피록솔라민(Ciclopirox olamine), 피록톤올아민(Piroctone olamine), 징크 피리치온(Zinc pyrithione) 및 셀레늄 설파이드(Selenium sulfide)로 이루어진 군으로부터 선택가능하다. 상기 구충제는 메벤다졸(mebendazole), 피란텔 파모에이트(pyrantel pamoate), 티아벤다졸(thiabendazole), 디에틸카바마진(diethylcarbamazine), 이버멕틴(ivermectin), 니클로사마이드(niclosamide), 프라지콴텔(praziquantel), 알벤다졸(albendazole), 리팜핀(rifampin), 암포테리신 B(amphotericin B), 멜라소프롤(melarsoprol), 에플로니틴(eflornithine), 메트로니다졸(metronidazole), 티니다졸(tinidazole) 및 밀테포신(miltefosine)으로 이루어진 군으로부터 선택될 수 있다.
상기 독소는 살아있는 세포 또는 유기체 내에서 생성되는 독성 물질을 포함할 수 있다. 독소는 생물학적 거대분자, 예를 들면, 효소 또는 세포 수용체와 상호 작용하는 체조직과 접촉 또는 이에 의하여 흡수 시 질환을 유발할 수 있는 소분자, 펩타이드 또는 단백질일 수 있다. 또한, 독소는 식물 독소 및 동물 독소를 포함한다. 동물 독소의 예는, 이들로 제한되지는 않지만, 디프테리아 항독소(diphtheria toxin), 보툴리움 독소(botulium toxin), 파상풍 항독소(tetanus toxin), 이질 독소(dysentery toxin), 콜레라 독소(cholera toxin), 테트로도톡신(tetrodotoxin), 브레베톡신(brevetoxin), 시구아톡신(ciguatoxin)을 포함한다. 식물 독소의 예는, 이들로 제한되지는 않지만, 리신(ricin) 및 AM-독소(AM-toxin)를 포함한다.
예들 들면, 소분자 독소는 비제한적으로 아우리스타틴(auristatin), 툴부리신(tubulysin), 겔다나마이신(geldanamycin)(Kerr et al., 1997, Bioconjugate Chem. 8(6):781-784), 마이타시노이드(maytansinoid)(EP 1391213, ACR 2008, 41, 98-107), 칼리케아마이신(calicheamycin)(US 2009105461, Cancer Res. 1993, 53, 3336-3342), 다우노마이신(daunomycin), 독소루비신(doxorubicin), 메토트렉세이트(methotrexate), 빈데신(vindesine), SG2285(Cancer Res. 2010, 70(17), 6849-6858), 돌라스타틴(dolastatin), 돌라스타틴 유사체의 아우리스타틴(dolastatin analog's auristatin)(US563548603), 크립토파이신(cryptophycin), 캄프토테신(camptothecin), 리족신 유도체(rhizoxin derivative), CC-1065 유사체 또는 유도체(CC-1065 analogue or derivative), 두오카마이신(duocarmycin), 엔디인 항생 물질(enediyne antibiotic), 에스페라미신(esperamicin), 에포틸론(epothilone), PBD(pyrrolobenzodiazepine) 유도체, α-아마니틴(α-amanitin) 및 톡소이드(toxoid)를 포함할 수 있다. 독소는 튜불린 결합, DNA 결합, 토포이소머라제 억제 등에 의하여 세포독성 및 세포 성장 억제 활성을 나타낼 수 있다.
상기 친화성 리간드는 표적 생체분자와 착체를 형성할 수 있는 분자를 포함할 수 있다. 상기 친화성 리간드의 표적 단백질의 소정 위치에 결합하여 신호를 전송하는 분자일 수 있다. 상기 친화성 리간드는 기질, 억제제, 자극제, 신경전달 물질 또는 방사성 동위원소일 수 있다.
"검출용 탐침(detection probe)"는 분광, 광화학, 생화학, 면역화학, 방사성 또는 화학적 수단에 의하여 검출 가능한 물질 또는 물질의 일부분을 의미할 수 있다. 예를 들면, 유용한 검출용 탐침은 32P, 35S, 형광성 염료(fluorescent dyes), 전자-밀집 시약(electron-dense reagents), 효소(enzymes)(예: ELISA에 통상적으로 사용되는 것), 비오틴-스트렙타비딘(biotin-streptavidin), 디옥시게닌(dioxigenin), 합텐(haptens), 및 항혈청 또는 단일클론 항체가 사용 가능한 단백질(proteins for which antisera or monoclonal antibodies are available), 또는 표적에 상보적인 서열을 갖는 핵산 분자(nucleic acid molecules with a sequence complementary to a target)를 포함할 수 있다. 검출용 탐침은 종종 샘플내 결합된 검출 가능한 잔기의 양을 정량하는 데 사용될 수 있는, 측정 가능한 신호, 예를 들면, 방사성, 발색성 또는 형광 신호를 발생시킬 수 있다. 신호의 정량은 예를 들면, 신틸레이션 카운팅, 밀도계, 유동 세포분석, ELISA 또는 원형 또는 후속적으로 다이제스트된 펩타이드의 질량 분광법에 의한 직접 분석(하나 이상의 펩타이드가 검정될 수 있다)에 의하여 달성될 수 있다.
상기 검출용 탐침은 (i) 검출 가능한 신호를 제공하거나, (ii) 제1 탐침 또는 제2 탐침을 상호 반응시켜 형광 공명 에너지 전달(FRET)과 같은, 제1 또는 제2 탐침에 의하여 제공된 검출 가능한 신호를 변경시키거나, (iii) 항원 또는 리간드와의 상호 작용을 안정화시키거나 결합 친화도를 증가시키거나, (iv) 전하, 소수성 등과 같은 물리적 파라미터에 의하여 전기 이동도 또는 세포-침입 작용에 영향을 미치거나, (v) 리간드 친화도, 항원-항체 결합 또는 이온 착체 형성을 조절할 수 있는 물질을 포함할 수 있다.
일 실시태양에서, 상기 PL은 MMAF(Monomethyl auristatin F), 오리스타틴 F, MMAE(Monomethyl auristatin E), SN-38, p-니트로페놀, 크산텐카복시산, 아비라테론, 게피티니브, PBD 다이머, α-아마니틴, seco-DUBA, 독소루비신, 라파티니브, 이매티니브, 엘로티니브, 엑사테칸, 벨로테칸 및 하기 화학식 중 하나로 표시되는 화합물로 구성된 군으로부터 선택된 활성제의 잔기일 수 있다:
Figure PCTKR2023008742-appb-img-000012
일 실시태양에서, 상기 PL은 하기 화학식으로 표현되는 잔기로 구성되는 군으로부터 선택될 수 있다:
Figure PCTKR2023008742-appb-img-000013
Figure PCTKR2023008742-appb-img-000014
Figure PCTKR2023008742-appb-img-000015
Figure PCTKR2023008742-appb-img-000016
Figure PCTKR2023008742-appb-img-000017
Figure PCTKR2023008742-appb-img-000018
촉발 유닛(Triggering Unit)
본 발명의 화학식 A에서, T는 절단시 1,6-제거 반응에 의해 PL 및 존재하는 경우 L2의 방출을 개시할 수 있는 촉발기(triggering group)이다.
T는 생체 내에서 화학적 반응 또는 효소적 반응에 의해 선택적으로 절단될 수 있다. 즉, T(Y가 존재하는 경우 Y와 T 사이의 결합)가 생체내 특정 조건하에서 선택적으로 절단됨으로써, 안정적으로 PL을 표적 위치에 전달하여 표적 위치에서 PL을 선택적으로 방출시킬 수 있다.
일 실시태양에서, T는 산소 원자, 황 원자 또는 질소 원자 등의 헤테로원자를 통해 벤젠 고리에 연결될 수 있다. 즉, 화학식 A에서 촉발기 T를 화합물 잔기에 연결하는 Y는 -O-, -NH-, 및 S일 수 있다.
일 실시태양에서, -(Y)y-T는 -β-갈락토사이드, -β-글루쿠로나이드, -O-SO3 -, -NO2, -발린-시트룰린 유도체, -발린-알라닌 유도체, -OC(O)(CH2)rCORt1, -O(CH2)-Ar1-NO2, -S-C(O)(CH2)sCORt2, -S(CH2)-Ar2-NO2 및 -BRt3Rt4로 구성된 군에서 선택될 수 있다.
상기 β-갈락토사이드 및 β-글루쿠로나이드는 β-갈락토사이드 잔기 및 β-글루쿠로나이드 잔기의 1번 탄소 원자에 결합된 산소 원자를 통해 벤젠 고리에 연결될 수 있다. 상기 발린-시트룰린 유도체 및 발린-알라닌 유도체는 발린 잔기의 질소 원자를 통해 벤젠 고리에 연결될 수 있다. 즉, 본원에서 -β-갈락토사이드, -β-글루쿠로나이드, -발린-시트룰린 유도체 및 -발린-알라닌 유도체는 하기의 구조를 갖는 잔기일 수 있다.
Figure PCTKR2023008742-appb-img-000019
상기 Rt1 및 Rt2는 각각 C1-C8 알킬이고, 상기 Ar1 및 Ar2는 각각 C5-C20 아릴렌 또는 헤테로아릴렌이고, 상기 Rt3 및 Rt4는 각각 독립적으로 수소, C1-C8 알콕시 또는 하이드록시이고, r 및 s는 각각 1 내지 5의 정수일 수 있다. 일 실시태양에서 상기 아릴렌은 페닐 또는 나프틸일 수 있다. 일 실시태양에서, 상기 헤테로아릴렌은 1~3개의 헤테로원자(N, O 또는 S)를 포함할 수 있다. 예컨대, 상기 헤테로아릴렌은 퓨란일, 티오펜일 또는 피롤일일 수 있다.
상기 Rt5는 OH, 모노-C1-8 알킬아미노, 디-C1-8 알킬아미노 또는 -NH(CH2CH2O)fRt6이되, Rt6은 H 또는 C1-4 알킬이고, f는 1 내지 10의 정수일 수 있다.
일 실시태양에서, -(Y)y-T는
Figure PCTKR2023008742-appb-img-000020
등의 당류;
Figure PCTKR2023008742-appb-img-000021
등의 펩타이드; 및 -O-SO3 -작용기를 포함하며, 이는 리소좀내의 특정 효소에 의해 선택적으로 가수분해될 수 있다. 상기 당류는 이의 -OH가 보호기(예컨대, 아세틸)로 보호되거나 임의의 치환기로 치환된 것을 포함할 수 있다. 추가적으로, -SC(O)(CH2)sCORt2, -S(CH2)-Ar2-NO2, -OC(O)(CH2)rCORt1 및 -O(CH2)-Ar1-NO2의 경우에는 환원 조건하에서 절단될 수 있다.
예컨대, Y가 부재(y = 0)이고 T는 -NO2 또는 -BRt3Rt4인 경우, 이는 각각 환원 조건 및 가양성자 분해 조건하에서 절단될 수 있다.
선택적 자가-희생 스페이서 유닛(Optional self-immolative spacer unit)
본 발명의 화학식 A에서, L3는 존재하는 경우 T의 절단시 순차적으로 절단되는 선택적 자가-희생 스페이서기이다. 상기 T가 생체 내 특정 조건 하에서 절단됨으로서 촉발된 1,6-제거 반응은 L3를 화합물의 잔기로부터 분리시킨다. 따라서, L3는 T의 절단시 발생하는 전자를 화학식 A의 벤젠 고리 및 PL까지 전달할 수 있는 구조를 갖는다.
일 실시태양에서, -(X)x-L3-은
Figure PCTKR2023008742-appb-img-000022
일 수 있다. 여기서, R8 및 R9는 각각 독립적으로 H, 할로겐, C1-8 알킬, CN 및 NO2로 구성되는 군에서 선택되고, o는 0 내지 2의 정수일 수 있다. 예컨대, -(X)x-L3-는 벤질하이드록사이드(PhCH2OH) 및 이의 유도체로부터 유래될 수 있다.
일 실시태양에서, Z1 및 Z3 중 하나는 O이고, -(X)x-L3-은
Figure PCTKR2023008742-appb-img-000023
일 수 있다.
본 발명의 화학식 A에서, i는 0 또는 1일 수 있다. 일 실시태양에서, i가 0일 경우, 상기 자가-희생 스페이서기는 부재이고, -(Y)y-T는 상기 벤젠 고리와 직접 연결될 수 있다.
결합 유닛 (Binding Unit)
본 발명의 화학식 1에서, A는 부재, H 또는 결합성 작용기(binding functional group)이다. L1이 존재하는 경우(k=1) A는 H 또는 결합성 작용기이며, L1이 부재인 경우(k=0) A도 부재이다.
상기 결합성 작용기는 예를 들면, 리간드 또는 단백질(화학식 2의 E)에 포함된 작용기 또는 화학식 1의 L1을 형성하는 링커 전구체에 포함된 작용기와 첨가, 치환 등의 반응에 의해 결합될 수 있는 작용기를 의미할 수 있다. 즉, 결합성 작용기는 리간드 또는 단백질(E)과 화학식 1의 L1, (L1이 존재하지 않는 경우) 화학식 1의 U와 다른 링커 간의 결합을 제공할 수 있는 임의의 작용기이다. 리간드-약물 접합체 분야에서 리간드와 링커 간의 결합을 위한 다양한 작용기가 관련 분야에 공지되어 있다. 따라서, 관련 분야의 통상의 기술자는 리간드 및 링커의 구조 및 특성 등을 고려하여 적절한 결합성 작용기를 선택할 수 있을 것이며, 본 발명의 결합성 작용기는 본원에 예시된 특정 작용기로 제한되지 않음에 유의해야 한다. 예컨대, 결합성 작용기는 클릭 화학(Click chemistry) 반응에 의해 수용체 결합 특성을 갖는 리간드 또는 단백질(E) 또는 링커 전구체와 결합할 수 있다. 일 실시태양에서, 화학식 1 중 L1이 부재인 경우(즉, k가 0), 결합성 작용기는 추가로 링커 전구체와 결합한 다음 링커 전구체에 포함된 작용기를 통하여 수용체 결합 특성을 갖는 리간드 또는 단백질(E)와 결합할 수 있다. 이 경우, 화학식 1의 화합물은 "A-U"의 구조를 갖고, 화학식 2의 리간드-약물 접합체는 "E-링커-A-U"의 구조를 갖는다. 다른 실시태양에서, 화학식 1 중 L1이 존재하는 경우(즉, k가 1)에도, 결합성 작용기는 추가의 링커 전구체와 결합하여 연장된 링커를 형성한 다음 추가의 링커 전구체에 포함된 작용기를 통하여 수용체 결합 특성을 갖는 리간드와 결합할 수 있다.
따라서, 본 발명의 화학식 1에 따른 화합물은 A가 결합성 작용기인 경우, 추가의 링커 전구체 또는 수용체 결합 특성을 갖는 리간드 또는 단백질(E)와의 결합을 예정한 것으로서, 예컨대, 리간드-약물 접합체를 제공하기 위한 중간체일 수 있다. 반면에, A가 부재 또는 H인 경우, 본 발명의 화학식 1에 따른 화합물은 수용체 결합 특성을 갖는 리간드와의 결합을 상정하지 않은 활성제(PL)를 포함하는 복합체일 수 있다. 상기 복합체는 활성제의 특성(예컨대, 수용성) 변경, 표적화 등을 위해 다양한 용도로 활용될 수 있다.
일 실시태양에서, 상기 결합성 작용기는 할로겐, OH, C1-8 알콕시, 하이드록실아미노, COH, C1-8 알킬카보닐, 카복시, C1-8 알콕시카보닐, 토실, 토실레이트, 아미노, 모노-C1-8 알킬아미노, 디-C1-8 알킬아미노, NHNH2, N3, 할로아세트아마이드, 말레이미딜, 석신이미딜, SH, SO3H, C1-8 알킬설포닐,
Figure PCTKR2023008742-appb-img-000024
, C1-8 알콕시설포닐, 2-피리딜 디설파이드, PO3H2, OPO3H2, -N≡C, -NCS, C4-10 디엔일, C2-8 알켄일, C2-8 알카인일, C4-10 사이클로알카인일 및 C2-8 알카인일카보닐로 구성되는 군에서 선택되는 작용기를 포함하거나 상기 군에서 선택되는 작용기로 구성될 수 있다. 상기 Rf는 각각 독립적으로 H 또는 C1-8 알킬일 수 있다. 일 실시태양에서, A는 말레이미딜, 하이드록실아미노, 카복시, 아미노, N3, C2-8 알카인일, 또는
Figure PCTKR2023008742-appb-img-000025
일 수 있다. 예컨대, 말레이미딜은 말레이미드의 질소 원자가 화학식 1의 L1 또는 U와 연결되는 1가의 작용기를 의미할 수 있다. 일 실시태양에서, 상기 C1-8 알킬은 C1-6 알킬, C1-4 알킬 또는 C1-3 알킬일 수 있다. 일 실시태양에서, C2-8 알카인일은 에타인일, 프로파인일(프로파질) 또는 부타인일일 수 있다.
본 발명의 화학식 1에서, L1은 화학식 A의 Z1 내지 Z3를 포함하는 5원 고리와 A를 연결하는 연결기이고, k는 0 또는 1이다.
일 실시태양에서, 화학식 A의 k가 1이고 Z1 또는 Z3가 질소 원자를 포함할 경우, L1은 상기 Z1 또는 Z3의 질소 원자에 결합될 수 있다. 일 실시태양에서, 화학식 A의 k가 1이고 Z1 내지 Z3 중 적어도 하나가 탄소 원자를 포함할 경우, 상기 L1은 상기 탄소 원자에 결합될 수 있다. 예를 들면, Z2가 탄소 원자를 포함할 경우, L1은 Z2의 탄소 원자에 결합될 수 있다.
일 실시태양에서, 화학식 1의 A-L1은 A의 전구체 및 L1의 전구체의 결합에 의해 형성될 수 있다. A의 전구체 및 L1의 전구체의 결합은 비제한적으로, 클릭 화학 반응을 통한 결합, 아마이드 결합, 우레아 결합, 에스테르 결합, 카바메이트 결합, 디설파이드 결합, 말레이미드 결합을 통해 이루어질 수 있다.
예를 들면, A의 전구체는 하이드록시, 아미노, 아지도, 알카인일, 공액 디엔일, 알켄일, 사이클로옥타인일, 말레이미딜, SO2N3, 알콕시설피닐, 옥시란일, 아지리딘일, 옥소, 하이드라진일, 하이드록시아미노, 머캅토 및 1,3-디카보닐로 구성된 군에서 선택되는 적어도 하나의 작용기를 포함할 수 있다. 또한, L1의 전구체는 상기 A의 전구체와 화학 반응하여 A-L1 결합을 형성하는 작용기를 포함할 수 있다. 대안적으로, A-L1의 구조를 갖는 링커 전구체를 화학식 1의 화합물의 나머지 잔기와 결합시킬 수 있다.
일 실시태양에서, 상기 L1은 사슬의 중간에 임의로 아마이드, 설폰아마이드, 아미노, 에테르, 카보닐, 트리아졸, 테트라졸, 당(sugar)-유래 기, 설포 에스테르 및 덴드리머로 구성되는 군에서 선택되는 2가 또는 다가의 관능기를 포함하는 C1-200 알킬렌일 수 있다. 상기 C1-200 알킬렌기는 C1-150 알킬렌기, C1-100 알킬렌기, C1-80 알킬렌기, C1-60 알킬렌기, C1-50 알킬렌기, C1-40 알킬렌기, C1-30 알킬렌기, C1-20 알킬렌기 또는 C1-10 알킬렌기일 수 있다. 상기 당(sugar)-유래 기는 당 분자와 다른 기와의 공유결합에 의해 형성된 임의의 화학 구조를 의미한다. 예컨대, 당(sugar)-유래 기는 글리코시드 결합을 포함할 수 있다. 상기 덴드리머(dendrimer)는 코어를 중심으로 분지 단위(branching unit)을 갖는 잘 정렬된 3차원 분자 구조를 지칭한다. 리간드-약물 접합체 분야에서 다양한 덴드리머 구조의 링커가 공지되어 있으며(예컨대, Lee, et al, Nat. Biotechnol. 2005, 23, 1517-26; Almutairi, et al; Proc. Natl. Acad. Sci. 2009, 106, 685-90 참조), 이들은 예컨대 리간드 대 약물의 비율을 증가시키는 데 유리할 수 있다.
일 실시태양에서, L1이 다가의 관능기를 포함하는 경우, 즉 L1이 분지된 구조 또는 덴드리머 구조를 포함하는 경우, L1에 다수의 U가 결합할 수 있다. 이 경우, L1에 결합되는 U의 개수는 1 내지 10일 수 있다. 일 실시태양에서, j는 1 내지 5일 수 있다. 예컨대, j는 1일 수 있다.
일 실시태양에서, 상기 L1은 화학식 A의 Z1 또는 Z3가 질소 원자를 포함할 경우, 상기 질소 원자에 결합될 수 있다.
일 실시태양에서, 상기 L1은 Z1 내지 Z3 중 임의의 탄소 원자에 결합될 수 있다. 예를 들면, Z2가 탄소 원자인 경우, L1은 Z2의 탄소 원자에 결합될 수 있다. 일 실시태양에서, 탄소 원자의 치환기로서 L1-U의 결합을 위한 작용기(예컨대, 카복실기, 아미노카보닐기, 아미노기 등)가 요구될 수 있다.
일 실시태양에서, 상기 L1은 C1-10 알킬렌, 옥시에틸렌, 아마이드, 트리아졸 고리, 테트라졸 고리, 에테르, 카보닐 또는 이들의 조합을 포함할 수 있다.
일 실시태양에서, 상기 L1은 -(CH2)na-; -(CH2CH2O)ma-; -(CH2OCH2)mb-; -(OCH2CH2)mc-; -C(=O)-;
Figure PCTKR2023008742-appb-img-000026
로 구성되는 군에서 선택되는 어느 하나 또는 이들의 조합을 포함할 수 있다. 여기서, Rd는 H 또는 C1-8 알킬이고, na 및 ma 내지 mc는 각각 독립적으로 0 내지 10의 정수일 수 있다. 일 실시태양에서, na 및 ma 내지 mc는 각각 독립적으로 1 내지 8의 정수, 1 내지 6의 정수 또는 1 내지 4의 정수일 수 있다. 상술한 2종 이상의 관능기들이 서로 조합될 경우, 관능기들의 순서는 제한되지 않는다.
일 실시태양에서, 화학식 1에서 k는 1이고, A-L1-은 N3-(CH2)n1-; N3-(CH2CH2O)m1-(CH2)n2-; HO-(CH2CH2O)m1-(CH2)n2-; H2N-(CH2CH2O)m1-(CH2)n2-; H2N-O-(CH2CH2O)m1-(CH2)n2-; N3-(CH2CH2O)m2-(CH2)n3-NRd1CO-(CH2)n4-; Ra1NH-(CH2)n5-; Rb1OC(=O)-(CH2)n6-; Rc1C≡C-(CH2OCH2)m3-CONRd2-(CH2)n7-;
Figure PCTKR2023008742-appb-img-000027
;
Figure PCTKR2023008742-appb-img-000028
Figure PCTKR2023008742-appb-img-000029
Figure PCTKR2023008742-appb-img-000030
Figure PCTKR2023008742-appb-img-000031
Figure PCTKR2023008742-appb-img-000032
로 구성되는 군에서 선택될 수 있다. 이 경우, Ra1, Rb1, Rc1, Rc2 및 Rd1 내지 Rd5는 각각 독립적으로 H 또는 C1-8 알킬일 수 있다. 또한, n1 내지 n15 및 m1 내지 m11은 각각 독립적으로 0 내지 10의 정수일 수 있다. 일 실시태양에서, n1 내지 n15 및 m1 내지 m11은 각각 독립적으로 0 내지 8의 정수, 0 내지 6의 정수 또는 0 내지 5의 정수일 수 있다. 일 실시태양에서, n1 내지 n15 및 m1 내지 m11은 각각 독립적으로 1 내지 8의 정수, 1 내지 6의 정수 또는 1 내지 5의 정수일 수 있다.
화학식 1의 화합물의 예시
일 실시태양에서, 본 발명의 화학식 1로 표시되는 화합물은 하기 화학식으로 표시되는 화합물일 수 있다.
Figure PCTKR2023008742-appb-img-000033
Figure PCTKR2023008742-appb-img-000034
Figure PCTKR2023008742-appb-img-000035
상기 화학식에서 A, L1, k, V, R1, R2, R3, R11, R12 및 PL은 화학식 1에 관하여 전술한 바와 같다.
상기 화학식에서 나타난 A-(L1)k-, V, L2, -(X)x-L3- 및 -(Y)y-T- 구조의 조합은 단지 예시적인 것일 뿐이며, 이외의 다양한 조합을 갖는 화학식 1의 화합물을 이하 기술된 실시예 및 본원 개시내용에 기초하여 용이하게 제조할 수 있을 것이다. 이러한 화합물들은 모두 본원의 권리범위에 속하는 것으로 이해되어야 한다.
일 실시태양에서, 본 발명의 화학식 1로 표시되는 화합물은 1개의 PL을 운반할 수 있다. 이 경우, 예를 들면, 화학식 1로 표시되는 화합물은 첨부의 표 A에 제시된 화합물들로 구성되는 군에서 선택될 수 있다.
일 실시태양에서, DAR2 유형의 화합물은 리간드-약물 접합체의 제조를 위하여 리간드, 예컨대 항체와의 결합을 형성할 수 있는 작용기, 예컨대 말레이미드 작용기를 포함할 수 있다. 이러한 화합물들의 예시는 첨부의 표 B에 기재되어 있다.
DAR4 유형의 화합물(화학식 1-1)
일 실시태양에서, 본 발명에 따른 화학식 1의 연결기 L1이 분지된 구조 또는 덴드리머 구조를 갖는 경우(즉, L1이 다가 연결기인 경우) 2개 이상의 활성제가 결합된 화학식 1의 화합물을 제공할 수 있다. 일 실시태양에서, 화학식 1로 표시되는 화합물은 하기 화학식 1-1로 표시되는 화합물일 수 있다.
[화학식 1-1]
Figure PCTKR2023008742-appb-img-000036
화학식 1-1에서, A는 화학식 1에서와 동일한 의미를 갖는다.
화학식 1-1에서, U1 및 U2는 각각 화학식 1에서의 U와 동일한 의미를 가지되, U1 및 U2는 서로 동일하거나 상이할 수 있다.
화학식 1-1에서, L11 및 L12는 각각 화학식 1에서의 L1과 동일한 의미를 가지되, L11 및 L12는 서로 동일하거나 상이할 수 있다.
화학식 1-1에서, j는 1 내지 10이다. 일 실시태양에서, j는 1 내지 5이다. 예컨대, j는 1이다.
화학식 A, L1 및 U에 관하여 화학식 1에서 기술한 사항은 적용가능한 경우 화학식 1-1에서 A, U1 및 U2, 및 L11 및 L12에 각각 동일하게 적용될 수 있다.
화학식 1-1에서, L1a 및 L1b는 각각 독립적으로 직접 결합;
Figure PCTKR2023008742-appb-img-000037
;
Figure PCTKR2023008742-appb-img-000038
로부터 선택될 수 있다. 이 경우, Re는 H 또는 C1-8 알킬일 수 있다.
화학식 1-1에서, q1, q2 및 q3는 각각 독립적으로 0 내지 10의 정수일 수 있다. 화학식 1-1에서 q4는 1 내지 10의 정수일 수 있다. 단, L1a
Figure PCTKR2023008742-appb-img-000039
또는
Figure PCTKR2023008742-appb-img-000040
인 경우 q2는 0이 아니고, L1b
Figure PCTKR2023008742-appb-img-000041
또는
Figure PCTKR2023008742-appb-img-000042
인 경우 q3는 0이 아니다. 일 실시태양에서, L1a 및/또는 L1b가 직접 결합이고 q2 및 q3가 0인 경우, L11 및 L12의 링커 구조, 예컨대 사슬의 중간에 임의로 아마이드, 설폰아마이드, 아미노, 에테르, 카보닐, 트리아졸, 테트라졸, 당-유래기, 설포에스테르 및 덴드리머로부터 선택되는 2가 또는 다가의 관능기를 포함하는 C1-200 알킬렌이 직접 중심의 N 원자에 결합할 수 있다.
일 실시태양에서, q1은 0 내지 8의 정수, 1 내지 8의 정수, 또는 1 내지 6의 정수일 수 있다. 일 실시태양에서, q2 및 q3는 각각 독립적으로 0 내지 8의 정수, 0 내지 6의 정수 또는 0 내지 4의 정수일 수 있다. 일 실시태양에서, q4는 1 내지 8의 정수, 1 내지 6의 정수 또는 1 내지 4의 정수일 수 있다.
일 실시태양에서, 상기 화학식 1-1의
Figure PCTKR2023008742-appb-img-000043
은 하기 구조로부터 선택되는 것일 수 있다:
Figure PCTKR2023008742-appb-img-000044
(q2 및 q3의 정의는 상기한 바와 같다.)
일 실시태양에서, 상기 화학식 1-1에서 A는 할로겐, OH, C1-8 알콕시, 하이드록실아미노, COH, C1-8 알킬카보닐, 카복시, C1-8 알콕시카보닐, 토실, 토실레이트, 아미노, 모노-C1-8 알킬아미노, 디-C1-8 알킬아미노, NHNH2, N3, 할로아세트아마이드, 말레이미딜, 석신이미딜, SH, SO3H, C1-8 알킬설포닐,
Figure PCTKR2023008742-appb-img-000045
, C1-8 알콕시설포닐, 2-피리딜 디설파이드, PO3H2, OPO3H2, -N≡C, -NCS, C4-10 디엔일, C2-8 알켄일, C2-8 알카인일, C4-10 사이클로알카인일 및 C2-8 알카인일카보닐로 구성되는 군에서 선택되는 작용기를 포함하거나 상기 군에서 선택되는 작용기로 구성될 수 있다. 상기 Rf는 각각 독립적으로 H 또는 C1-8 알킬일 수 있다. 예를 들면, 화학식 1-1에서 A는 말레이미딜, 하이드록실아미노, 카복시, 아미노, N3, 알카인일, 또는
Figure PCTKR2023008742-appb-img-000046
일 수 있다.
일 실시태양에서, L11 및 L12는 각각 독립적으로 사슬의 중간에 임의로 아마이드, 설폰아마이드, 아미노, 에테르, 카보닐, 트리아졸, 테트라졸, 당(sugar)-유래 기, 설포 에스테르 및 덴드리머로 구성되는 군에서 선택되는 2가 또는 다가의 관능기를 포함하는 C1-200 알킬렌일 수 있다. 상기 C1-200 알킬렌기는 C1-150 알킬렌기, C1-100 알킬렌기, C1-80 알킬렌기, C1-60 알킬렌기, C1-50 알킬렌기, C1-40 알킬렌기, C1-30 알킬렌기, C1-20 알킬렌기 또는 C1-10 알킬렌기일 수 있다.
일 실시태양에서, L11 및 L12는 각각 독립적으로 -(CH2)na-; -(CH2CH2O)ma-; -(CH2OCH2)mb-; -(OCH2CH2)mc-; -C(=O)-;
Figure PCTKR2023008742-appb-img-000047
로 구성되는 군에서 선택되는 어느 하나 또는 이들의 조합을 포함할 수 있다. 여기서, Rd, na, ma 내지 mc는 화학식 1에 관하여 전술한 바와 같다.
일 실시태양에서, L11 및 L12는 각각 독립적으로 -(CH2)n1-; -(CH2CH2O)m1-(CH2)n2-; -(CH2CH2O)m2-(CH2)n3-NRd1CO-(CH2)n4-; -(CH2CH2O)m10-(CH2)n15-CONRd5-(CH2)n14-; 및
Figure PCTKR2023008742-appb-img-000048
로부터 선택될 수 있다. 여기서, n1, n2, n3, n4, n8, n14 및 n15, 및 m1, m2, m8 및 m10은 각각 독립적으로 1 내지 8의 정수, 1 내지 6의 정수 또는 1 내지 5의 정수일 수 있다. 또한, Rd1 및 Rd5는 각각 독립적으로 H 또는 C1-8 알킬이다.
일 실시태양에서, 상기 화학식 1-1로 표시되는 화합물(j가 1인 경우)은 하기 화학식으로 표시되는 화합물일 수 있다:
Figure PCTKR2023008742-appb-img-000049
Figure PCTKR2023008742-appb-img-000050
(상기 화학식에서 q1 내지 q4, U1, U2, n1, n3, n4, n8, n14 및 n15, 및 m2, m8 및 m10은 앞서 화학식 1-1에 관하여 상술한 바와 같다. 또한, Rd1, Rd5 및 Re는 각각 독립적으로 H 또는 C1-8 알킬이다.)
일 실시태양에서, 상기 화학식 1-1로 표시되는 화합물은 하기 화학식으로 표시되는 화합물일 수 있다:
Figure PCTKR2023008742-appb-img-000051
Figure PCTKR2023008742-appb-img-000052
상기 화학식에서 q1 내지 q4, n1, n3, n4, n14 및 n15, m2 및 m10, Rd1, Rd5 및 Re는 전술한 바와 같다. 상기 화학식에서, PL은 화학식 1에서의 PL과 동일한 의미를 갖는다. 상기 화학식에서, Z1은 NR3, O, S 및 Se로부터 선택된 헤테로원자이다. R3는 H 또는 C1-8 하이드로카빌이다. 상기 화학식에서, -O-CO-PL기 중 -O-CO-기는 선택적 자가-희생 스페이서기로서 부재하거나(즉, -PL기가 직접 -CH2-기에 연결됨), “선택적 자가-희생 스페이서기”에 관하여 전술한 작용기들로 대체될 수 있다.
일 실시태양에서, 상기 화학식 1-1로 표시되는 화합물은 첨부의 표 C에 제시된 화합물들로부터 선택될 수 있다.
화학식 1의 화합물의 제조방법
본 발명에 따른 화학식 1의 자가-희생기를 포함하는 화합물은 본원 실시예 및 유기 합성 분야의 당업자의 기술상식을 기초로 적절한 용매, 출발물질, 중간체, 반응 조건 등을 선택하여 용이하게 제조할 수 있을 것이다.
일 실시태양에서, 인돌 코어 및 β-갈락토사이드 촉발기를 갖는 화학식 1의 화합물은 하기 반응식 1에 따라 제조될 수 있다.
[반응식 1]
Figure PCTKR2023008742-appb-img-000053
반응식 1의 단계 1에서, 벤젠 고리의 파라 위치에 COH와 OBn이 치환된 인돌계 출발 물질을 준비하고, A-L1-X(X는 할로겐: Cl, Br 등)과 반응시켜 A-L1-을 인돌의 질소 원자에 도입할 수 있다. 단계 1의 반응에서 탄산칼륨 등의 첨가제가 사용될 수 있다. 단계 1은 40℃ 내지 100℃, 60℃ 내지 100℃ 또는 60℃ 내지 90℃ 온도 조건에서 수행될 수 있다.
단계 2에서, 보론 트리클로라이드를 이용하여 OBn을 OH로 변환할 수 있다. 단계 2는 예를 들면 -90℃ 내지 0℃, -90℃ 내지 -10℃, -90℃ 내지 -20℃, -80℃ 내지 0℃, -80℃ 내지 -10℃ 또는 -80℃ 내지 -20℃의 저온 조건에서 수행될 수 있다.
단계 3에서, 하이드록시기가 보호기(-PG)로 보호된 갈락토스를 도입할 수 있다. 예를 들면, 아세틸화된 갈락토스, 아세토브로모-알파-디-갈락토스 등의 보호기가 도입된 갈락토스와의 반응을 통해 아세토갈락토사이드기 등의 보호된 갈락토사이드기를 도입할 수 있다. 단계 3의 반응에서, 벤질트리부틸암모늄 클로라이드, HOBt, 피리딘, DIPEA 등의 첨가제가 사용될 수 있다. 또한, 산화은, 몰레큘러 시브 등의 첨가제가 사용될 수도 있다. 단계 3은 -40℃ 내지 40℃, -40℃ 내지 30℃, -20℃ 내지 40℃, -20℃ 내지 30℃, -10℃ 내지 40℃ 또는 -10℃ 내지 30℃ 온도 조건에서 수행될 수 있다.
단계 4에서, 벤젠 고리에 연결된 COH를 환원시킬 수 있다. 환원 반응은 수소화 붕소 나트륨(NaBH4) 등의 환원제를 통해 -40℃ 내지 10℃, -40℃ 내지 0℃, -30℃ 내지 10℃, -30℃ 내지 0℃, -20℃ 내지 10℃ 또는 -20℃ 내지 0℃의 저온 조건에서 수행될 수 있다.
단계 5에서, -OCO- 자가-제거 링커 구조를 도입할 수 있다. -OCO- 연결기의 전구체로는 비스(4-니트로페닐) 카보네이트, 4-니트로페닐 클로로포르메이트 등을 사용할 수 있다. 단계 5의 반응에서, DIPEA, 피리딘 등의 첨가제가 사용될 수 있다. 단계 5는 -40℃ 내지 10℃, -40℃ 내지 0℃, -30℃ 내지 10℃, -30℃ 내지 0℃, -20℃ 내지 10℃ 또는 -20℃ 내지 0℃의 저온 조건에서 수행될 수 있다.
단계 6에서, PL을 도입할 수 있다. 예를 들면, PL-H 등의 전구체를 -OCO-에 연결된 이탈기(예를 들면, p-니트로페닐)와 치환하여 PL을 도입할 수 있다. 단계 6의 반응에서, PL의 종류에 따라 HOBt, 피리딘, DIPEA 등의 첨가제가 사용될 수 있다. 단계 6은 -40℃ 내지 10℃, -40℃ 내지 0℃, -30℃ 내지 10℃, -30℃ 내지 0℃, -20℃ 내지 10℃ 또는 -20℃ 내지 0℃의 저온 조건에서 수행될 수 있다.
단계 7에서, 보호된 갈락토사이드의 보호기를 가수분해를 통해 탈보호함으로써 갈락토사이드로 전환할 수 있다. 가수분해는 염산 등의 산이나 탄산칼륨, 수산화나트륨, 수산화리튬 등의 염기에 의해 수행될 수 있다. 단계 7는 -40℃ 내지 40℃, -40℃ 내지 30℃, -20℃ 내지 40℃, -20℃ 내지 30℃, -10℃ 내지 40℃ 또는 -10℃ 내지 30℃ 온도 조건에서 수행될 수 있다.
반응식 1의 각 단계는 메탄올, DMF, MC, ACN, THF, EA 등의 유기 용매와 증류수로 구성된 군에서 선택되는 적절한 용매 하에서 수행될 수 있다. 또한, 각 단계의 반응 종료 후 상기 적절한 용매를 통한 희석, 추출 및 크로마토그래피를 통해 생성물을 정제할 수 있다. 일 실시태양에서, 반응식 1의 각 단계는 질소 대기 하에서 수행될 수 있다.
일 실시태양에서, PL, A, L1 및 V에 따라, 반응식 1의 일부 단계가 생략될 수 있다. 예를 들면, PL이 -OCO- 없이도 벤젠 고리에 직접 연결된 하이드록시메틸기와 반응하거나 메틸기에 결합될 수 있는 경우, 단계 5는 생략될 수 있다.
화학식 2로 표시되는 리간드-약물 접합체
본 발명의 일 양상은 하기 화학식 2로 표시되는 리간드-약물 접합체 또는 이의 약학적으로 허용가능한 염을 제공한다:
[화학식 2]
Figure PCTKR2023008742-appb-img-000054
상기 화학식 2에서, E는 수용체 결합 특성을 갖는 리간드 또는 단백질이다.
본 발명에 따른 화학식 1의 화합물을 수용체 결합 특성을 갖는 리간드 또는 단백질(E)와 결합하여 화학식 2의 리간드-약물 복합체를 제공할 수 있다. 리간드 또는 단백질(E)는 화학식 1의 화합물이 갖는 결합성 작용기와의 결합을 위하여 임의로 변형될 수 있다. 일 실시태양에서, 리간드 E가 항체인 경우, 항체의 특정 위치에 존재하는 시스테인의 -SH, 라이신의 -NH2, 글루타민의 -C(=O)NH2, 타이로신의 -C6H4-OH, 셀레노시스테인의 -SeH, 및 비자연적 아미노산의 -N3
Figure PCTKR2023008742-appb-img-000055
등의 잔기와 화학식 1의 화합물이 갖는 결합성 작용기가 서로 결합될 수 있다. 리간드-약물 복합체 분야에서 리간드 또는 단백질에 링커-약물 잔기를 결합시키기 위한 리간드의 작용기의 종류 및 변형은 당업계에 공지되어 있다.
상기 리간드는 펩타이드, 종양세포 특이적 펩타이드(tumor cell-specific peptides), 종양세포 특이적 앱타머(tumor cell-specific aptamers), 종양세포 특이적 탄수화물(tumor cell-specific carbohydrates), 종양세포 특이적 단일클론 항체 또는 다종클론 항체(tumor cell-specific monoclonal or polyclonal antibodies) 및 항체 단편으로 이루어진 군으로부터 선택될 수 있다.
일 실시태양에서, 상기 단백질은 C1-20 하이드로카빌, 올리고펩타이드, 폴리펩타이드, 항체, 항원성 폴리펩타이드의 단편 및 인공항체(Repebody)로부터 구성된 군으로부터 선택될 수 있다. 일 실시태양에서, 상기 단백질의 C-말단은 항체의 경쇄 또는 중쇄일 수 있다.
일 실시태양에서, 상기 항체는 원형 다클론 항체(intact polyclonal antibody), 원형 단일클론 항체(intact monoclonal antibody), 항체 단편(antibody fragment), 단쇄 Fv (scFv) 돌연변이(single chain Fv(scFv) mutant), 다중특이 항체(multispecific antibody), 이중특이 항체(bispecific antibody), 키메라 항체(chimeric antibody), 인간화 항체(humanized antibody), 인간 항체(human antibody), 항체의 항원 결정 부분을 포함하는 융합 단백질(fusion protein comprising an antigen determination portion of an antibody), 및 항원 인식 부위를 포함하는 기타 변형된 면역글로불린 분자(modified immunoglobulin molecule comprising an antigen recognition site)로 이루어진 군으로부터 선택될 수 있다.
일 실시태양에서, 상기 항체는 뮤로모나브-CD3 아브식시마브(Muromonab-CD3 Abciximab), 리툭시마브(Rituximab), 다클리주마브(Daclizumab), 팔리비주마브(Palivizumab), 인플릭시마브(Infliximab), 트라스투주마브(Trastuzumab, herceptin), 에타너셉트(Etanercept), 바실릭시마브(Basiliximab), 겜투주마브(Gemtuzumab), 알렘투주마브(Alemtuzumab), 이브리투모마브(Ibritumomab), 아달리무마브(Adalimumab), 알레파셉트(Alefacept), 오말리주마브(Omalizumab), 에팔리주마브(Efalizumab), 토시투모모브-I131(Tositumomob-I131), 세툭시마브(Cetuximab), 베박시주마브(Bevacizumab), 나탈리주마브(Natalizumab), 라니비주마브(Ranibizumab), 파니투무마브(Panitumumab), 에콜리주마브(Eculizumab), 리로나셉트(Rilonacept), 서톨리주마브 페골(Certolizumab pegol), 로미플로스팀(Romiplostim), AMG-531(Romiplostim), CNTO-148(Golimumab), CNTO-1275(Ustekinumab), ABT874(Briakinumab), LEA-29Y(Belatacept), 벨리무마브(Belimumab), TACI-Ig(Transmembrane activator and calcium modulator and cyclophilin ligand interactor-immunoglobulin), 2세대 항-CD20(Second generation anti-CD20), ACZ-885(Canakinumab), 토실리주마브(Tocilizumab), 아틀리주마브(Atlizumab), 메폴리주마브(Mepolizumab), 퍼투주마브(Pertuzumab), 휴막스 CD20(Humax CD20; Ofatumumab), 트레멜리무마브(Tremelimumab,CP-675 206), 티실리무마브(Ticilimumab), MDX-010(Ipilimumab), IDEC-114(Galiximab), 이노투주마브(Inotuzumab), 휴막스 EGFR(HuMax EGFR; Zalutumumab), 알리버셉트(Aflibercept; VEGF Trap-Eye), 휴막스-CD4(HuMax-CD4; Zanolimumab), Ala-Ala(hOKT3gamma1), 오테릭시주맙(Otelixizumab; ChAglyCD3; TRX4), 카투막소마브(Catumaxomab), MT-201(Adecatumumab), 프레고보마브(Pregovomab), CH-14.18(Dinutuximab), WXG250(Girentuximab), AMG-162(Denosumab), AAB-001(Bapineuzumab), 모타비주마브(Motavizumab), MEDI524(Motavizumab), 에푸마구마브(Efumgumab), 아우로그라브®(Aurograb®), 락시바쿠마브(Raxibacumab), 3세대항-CD20(Third generation anti-CD20), LY2469298(Ocaratuzumab), 및 벨투주마브(Veltuzumab)로 이루어진 군으로부터 선택될 수 있다.
일 실시태양에서, 상기 항체는 단일클론 항체(mAb)일 수 있다.
상기 화학식 2에서, A'은 화학식 1의 결합성 작용기(A)로부터 유래되는 2가 연결기이다. 예를 들면, 상기 A'은 상기 결합성 작용기에 포함된 이중 결합의 첨가 반응에 의해 형성되는 작용기를 포함할 수 있다. 일 실시태양에서, 상기 결합성 작용기가 말레이미딜일 경우, 상기 A'은 상기 말레이미딜의 5원 고리 내 이중결합이 첨가 반응에 참여하여 형성되는 작용기일 수 있다. 전술한 화학식 1의 결합성 작용기(A)에 관한 사항은 적용가능한 경우 A'에 동일하게 적용될 수 있다.
일 실시태양에서, 리간드 E는 항체일 수 있다. 상기 항체는 예를 들어, 화학식 1의 A와 결합하여 화학식 2의 E-A' 결합 구조를 형성하는 작용기를 포함할 수 있다. 필요한 경우, 상기 결합을 위한 작용기를 항체에 도입할 수 있으며, 이러한 작용기의 종류 및 도입 방법은 당업계에 공지되어 있다.
일 실시태양에서, 리간드 E와 A'의 결합 구조는 하기 화학식 중 하나로 표시되는 잔기로 나타날 수 있다. 하기 화학식에서, *는 항체의 나머지 잔기일 수 있다. 하기 화학식에서 *에 직접 연결된 S, NH, CONH, C6H3-OH, Se 및 트리아졸 고리 잔기는 리간드 E의 특정 위치에 존재하는 시스테인의 -SH, 라이신의 -NH2, 글루타민의 -C(=O)NH2, 타이로신의 -C6H4-OH, 셀레노시스테인의 -SeH, 및 비자연적 아미노산의 -N3
Figure PCTKR2023008742-appb-img-000056
등의 잔기로부터 유래될 수 있다.
Figure PCTKR2023008742-appb-img-000057
Figure PCTKR2023008742-appb-img-000058
Figure PCTKR2023008742-appb-img-000059
화학식 2에서, n은 1 내지 10의 실수일 수 있다. 예컨대, n은 1 내지 6의 실수, 1 내지 4의 실수 또는 1 내지 2의 실수일 수 있다.
화학식 2에서, U, L1, k 및 j는 화학식 1의 U, L1, k 및 j와 동일할 수 있다. 전술한 화학식 1의 U, L1, k 및 j에 관한 사항은 적용가능한 경우 화학식 2의 U, L1, k 및 j에 동일하게 적용될 수 있다. 일 실시태양에서, 상기 화학식 2의 E가 항체이고 U의 PL이 약물인 경우, 상기 화학식 2로 표시되는 화합물은 항체-약물 접합체로 제공될 수 있다.
일 실시태양에서, 화학식 2로 표시되는 접합체는 하기 화학식으로 표시되는 접합체들로 구성된 군으로부터 선택될 수 있다:
Figure PCTKR2023008742-appb-img-000060
상기 식에서, mAb는 항체의 잔기를 의미한다. 상기 식에서, m5, m6, m9, m10, n9, n10, n13, n14 및 n15은 각각 독립적으로 1 내지 10의 정수일 수 있다. 일 실시태양에서, m5, m6, m9, m10, n9, n10, n13, n14, 및 n15은 각각 독립적으로 1 내지 8의 정수, 1 내지 6의 정수, 1 내지 5의 정수, 1 내지 4의 정수, 또는 1 내지 3의 정수일 수 있다. 상기 식에서, Rd3 및 Rd5은 각각 독립적으로 H 또는 C1-8 알킬이다.
상기 식에서, Z1은 NR3, O, S 및 Se로부터 선택된 헤테로원자이다. R3는 H 또는 C1-8 하이드로카빌이다. 상기 화학식에서, PL은 화학식 1에서의 PL과 동일한 의미를 갖는다. 상기 화학식에서, -O-CO-PL기 중 -O-CO-기는 선택적 자가-희생 스페이서기로서 부재하거나(즉, -PL기가 직접 -CH2-기에 연결됨), -S(=O)2-,
Figure PCTKR2023008742-appb-img-000061
또는
Figure PCTKR2023008742-appb-img-000062
로 대체될 수 있다 (상기 식에서, R10 내지 R12는 각각 독립적으로 H, C1-8 알킬, 아미노-C1-8 알킬, 모노- 또는 디-(C1-8 알킬)아미노로 치환된 C1-8 알킬, 또는 -(CH2CH2O)gR13이고, R13은 H 또는 C1-4 알킬이고, g는 1 내지 10의 정수이다.)
상기 식에서, n은 1 내지 10의 실수이다. 일 실시태양에서, n은 1 내지 8의 실수, 1 내지 6의 실수, 1 내지 4의 실수 또는 1 내지 2의 실수일 수 있다.
일 실시태양에서, 화학식 2로 표시되는 접합체는 하기 화학식으로 표시되는 접합체들로 구성된 군으로부터 선택될 수 있다:
Figure PCTKR2023008742-appb-img-000063
Figure PCTKR2023008742-appb-img-000064
Figure PCTKR2023008742-appb-img-000065
Figure PCTKR2023008742-appb-img-000066
Figure PCTKR2023008742-appb-img-000067
Figure PCTKR2023008742-appb-img-000068
Figure PCTKR2023008742-appb-img-000069
Figure PCTKR2023008742-appb-img-000070
Figure PCTKR2023008742-appb-img-000071
Figure PCTKR2023008742-appb-img-000072
Figure PCTKR2023008742-appb-img-000073
Figure PCTKR2023008742-appb-img-000074
상기 식에서, mAb는 항체의 잔기를 의미한다. 상기 식에서, n은 1 내지 10의 실수이다. 일 실시태양에서, n은 1 내지 8의 실수, 1 내지 6의 실수, 1 내지 4의 실수 또는 1 내지 2의 실수일 수 있다.
DAR2 유형의 리간드-약물 접합체의 예시
일 실시태양에서, 상기 화학식 2로 표시되는 화합물은 첨부의 표 D에 기재된 화합물들로부터 선택될 수 있다. 표 D에 기재된 특정 n값은 1 내지 10의 실수 범위에서 변화될 수 있다. 예컨대, n은 n은 1 내지 8의 실수, 1 내지 6의 실수, 1 내지 4의 실수 또는 1 내지 2의 실수일 수 있다.
DAR4 유형의 리간드-약물 접합체(화학식 2-1)
일 실시태양에서, 본 발명에 따른 화학식 2의 연결기 L1이 분지된 구조 또는 덴드리머 구조를 갖는 경우(즉, L1이 다가 연결기인 경우) 다수의 활성제가 결합된 화학식 2의 리간드-약물 접합체를 제공할 수 있다. 일 실시태양에서, 상기 화학식 2로 표시되는 화합물은 하기 화학식 2-1로 표시되는 리간드-약물 접합체일 수 있다:
[화학식 2-1]
Figure PCTKR2023008742-appb-img-000075
화학식 2-1에서, E는 수용체 결합 특성을 갖는 리간드 또는 단백질이고, A'은 화학식 1의 결합성 작용기(A)로부터 유래된 2가 연결기이다. E 및 A'에 관하여 화학식 2에서 기술한 사항은 화학식 2-1에도 동일하게 적용될 수 있다.
화학식 2-1에서, U1 및 U2는 각각 화학식 1에서의 U와 동일한 의미를 가지되, U1 및 U2는 서로 동일하거나 상이할 수 있다. 또한, L11 및 L12는 각각 화학식 1에서의 L1과 동일한 의미를 가지되, L11 및 L12는 서로 동일하거나 상이할 수 있다.
화학식 2-1에서, j는 1 내지 10이다. 일 실시태양에서, j는 1 내지 5이다. 예컨대, j는 1이다.
화학식 A, L1 및 U에 관하여 화학식 1에서 기술한 사항은 화학식 2-1에서 A, U1 및 U2, 및 L11 및 L12에 각각 동일하게 적용될 수 있다. 또한, U1 및 U2, 및 L11 및 L12에 관하여 화학식 1-1에서 기술한 사항은 화학식 2-1에서 각각 동일하게 적용될 수 있다.
화학식 2-1에서, L1a 및 L1b는 각각 독립적으로 직접 결합;
Figure PCTKR2023008742-appb-img-000076
;
Figure PCTKR2023008742-appb-img-000077
로부터 선택될 수 있다. 이 경우, Re는 H 또는 C1-8 알킬일 수 있다.
화학식 2-1에서, q1, q2 및 q3는 각각 독립적으로 0 내지 10의 정수일 수 있다. 화학식 2-1에서, q4는 1 내지 10의 정수일 수 있다. 단, L1a
Figure PCTKR2023008742-appb-img-000078
또는
Figure PCTKR2023008742-appb-img-000079
인 경우 q2는 0이 아니고, L1b
Figure PCTKR2023008742-appb-img-000080
또는
Figure PCTKR2023008742-appb-img-000081
인 경우 q3는 0이 아니다.
일 실시태양에서, q1은 0 내지 8의 정수, 1 내지 8의 정수, 또는 1 내지 6의 정수일 수 있다. 일 실시태양에서, q2 및 q3는 각각 독립적으로 0 내지 8의 정수, 0 내지 6의 정수 또는 0 내지 4의 정수일 수 있다. 일 실시태양에서, q4는 1 내지 8의 정수, 1 내지 6의 정수 또는 1 내지 4의 정수일 수 있다.
L1a 및 L1b, q1, q2, q3, q4,에 관하여 화학식 1-1에서 기술한 사항은 화학식 2-1에서 각각 동일하게 적용될 수 있다.
화학식 2-1에서 n은 1 내지 10의 실수이다. 일 실시태양에서, n은 1 내지 6의 실수, 1 내지 4의 실수 또는 1 내지 2의 실수일 수 있다.
일 실시태양에서, 상기 화학식 2-1로 표시되는 리간드-약물 접합체는 하기 식으로 표시되는 접합체일 수 있다:
Figure PCTKR2023008742-appb-img-000082
(상기 화학식에서, mAb는 항체의 잔기이다. 상기 화학식에서, q1 내지 q4, n, U1 및 U2, Rd1, Rd5, Re, n1, n3, n4, n8, n14 및 n15, m2, m8 및 m10은 화학식 1-1 또는 화학식 2-1에 관하여 전술한 바와 같다.)
일 실시태양에서, 상기 화학식 2-1로 표시되는 리간드-약물 접합체는 하기 식으로 표시되는 접합체일 수 있다:
Figure PCTKR2023008742-appb-img-000083
Figure PCTKR2023008742-appb-img-000084
상기 화학식에서, mAb는 항체의 잔기이다. 상기 화학식에서, q1 내지 q4, n1, n3, n4, n14 및 n15, m2 및 m10, Rd1, Rd5 및 Re는 화학식 1-1에 관하여 전술한 바와 같다. 상기 화학식에서, PL은 화학식 1에서의 PL과 동일한 의미를 갖는다. 상기 화학식에서, Z1은 N, O, S 및 Se로부터 선택된 헤테로원자이다. 상기 화학식에서, -O-CO-PL기 중 -O-CO-기는 선택적 자가-희생 스페이서기로서 부재하거나(즉, -PL기가 직접 -CH2-기에 연결됨), “선택적 자가-희생 스페이서기”에 관하여 전술한 작용기들로 대체될 수 있다.
일 실시태양에서, 상기 화학식 2-1로 표시되는 리간드-약물 접합체는 첨부의 표 E에 기재된 화합물들로부터 선택될 수 있다. 표 E에 기재된 특정 n값은 1 내지 10의 실수 범위에서 변화될 수 있다. 예컨대, n은 1 내지 6의 실수, 1 내지 4의 실수 또는 1 내지 2의 실수일 수 있다.
정의
본 명세서에서 사용된 용어 "하이드로카빌"은 탄소와 수소로 구성된 작용기로서, 포화, 부분 불포화 또는 완전 불포화된 직쇄형, 분지형 또는 고리형 탄화수소를 말한다. 상기 하이드로카빌은 알킬, 알켄일, 알카인일, 사이클로알킬, 사이클로알켄일, 사이클로알카인일 등을 포함할 수 있다. 상기 하이드로카빌의 비제한적인 예로는, 메틸, 에틸, 프로필, 부틸, 에텐일, 프로펜일, 부텐일, 에타인일, 프로파인일, 부타인일 등을 들 수 있다.
용어 "알킬"은 완전 포화된 분지형 또는 비분지형 (또는, 직쇄 또는 선형) 탄화수소를 말한다. 상기 알킬은 치환 또는 비치환된 알킬일 수 있다. 상기 C1-8 알킬은 C1 내지 C6, C1 내지 C5, C1 내지 C4, C1 내지 C3, 또는 C1 내지 C2인 알킬일 수 있다. 상기 알킬의 비제한적인 예로는 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, n-펜틸, 이소펜틸, 네오펜틸, iso-아밀, 또는 n-헥실일 수 있다.
용어 "알켄일"은 임의의 위치에 1 이상의 2중 결합을 갖는 탄소수 2 내지 6, 탄소수 2 내지 5, 탄소수 2 내지 4의 직쇄 또는 분지상의 알켄일을 포함한다. 예컨대, 비닐, 프로펜일, 이소프로펜일, 부텐일, 이소부텐일, 프렌일, 부타다이엔일, 펜텐일, 이소펜텐일, 펜타다이엔일, 헥센일, 이소헥센일, 헥사다이엔일 등을 들 수 있다.
용어 "알카인일"은 적어도 하나의 삼중 결합을 갖는 직쇄 또는 분지쇄 탄화수소 사슬을 의미한다. 바람직한 알카인일은 2 내지 8개의 탄소 원자를 갖는 직쇄 또는 분지쇄이며, 그 예로는 2-프로피닐기, 3-부티닐기, 2-부티닐기, 4-펜티닐기, 3-펜티닐기, 2-헥시닐기, 3-헥시닐기, 2-헵티닐기, 3-헵티닐기, 4-헵티닐기, 3-옥티닐기 등이 있다.
용어 "알콕시"는 산소 원자에 결합된 알킬을 말한다. 상기 C1 내지 C8의 알콕시는 예를 들면, C1 내지 C6, C1 내지 C5, C1 내지 C4, C1 내지 C3, 또는 C1 내지 C2인 알콕시일 수 있다. 상기 알콕시는 메톡시, 에톡시, 또는 프로폭시일 수 있다.
용어 "사이클로알킬"은 탄소수가 3 내지 8의 단일 또는 다환식 포화 탄소환을 포함한다. 예컨대, 사이클로프로필, 사이클로부틸, 사이클로펜틸, 사이클로헥실, 사이클로헵틸, 사이클로옥틸 등을 들 수 있다.
용어 "사이클로알켄일"은 적어도 1개의 탄소-탄소 2중 결합을 포함하는 탄소수 3 내지 8의 비-방향족 단일 또는 다환식 고리를 포함한다. 예컨대, 사이클로펜텐일, 사이클로헥센일, 사이클로헵텐일, 사이클로옥텐일 등을 들 수 있다.
용어 "사이클로알카인일"는 4 내지 10개의 탄소 원자를 가지며 적어도 하나의 삼중 결합을 갖는 단일 또는 다환식 불포화 탄화수소 고리를 의미한다. 그 예로는 단환식 알카이닐기, 예를 들어, 사이클로옥티닐기, 사이클로데시닐기가 있다. 최광의의 의미로서 "사이클로알카인일"은 적어도 하나의 탄소 간의 삼중 결합을 포함하는 탄화수소 고리의 하나 이상의 탄소 원자가 헤테로원자, 예컨대 N으로 대체된 구조를 포함한다.
용어 "디엔일"은 2개의 인접한 탄소 원자 사이에 2개의 이중 결합을 갖는 불포화 분지형 또는 비분지형 C4-10 지방족 치환기를 의미한다. 그 예로는 2,4-펜타디엔일, 2,4-헥사디엔일, 4-메틸-2,4-펜타디엔일 등을 비제한적으로 포함한다.
용어 "할로겐" 원자는 주기율표의 17족에 속하는 원자를 말한다. 할로겐 원자는 불소, 염소, 브롬, 및 요오드 등을 포함한다.
용어 "할로알킬"은 하나 이상의 할로겐 원자로 치환된 알킬을 의미한다.
용어 "하이드록시"는 OH 기능기(수산기)를 말한다.
용어 "머캅토"는 SH 기능기를 말한다.
용어 "시아노(cyano)"는 CN으로서, 탄소 원자와 질소 원자 사이에 삼중결합으로 이루어진 작용기를 말한다.
용어 "옥소(oxo)"는 =O를 지칭하며, "옥소로 치환된"은 탄소 원자가 -C(=O)-의 형태로 =O 치환기를 갖는 것을 의미한다.
용어 "니트로(nitro)"는 NO2를 말한다.
용어 "아미노(amino)"는 -NH2를 말한다.
용어 "알킬아미노"는 아미노(-NH2)의 1개 또는 2개의 수소 원자가 상기 언급된 알킬 중 어느 하나 또는 둘로 치환된 작용기를 의미하며, 모노-알킬아미노와 디-알킬아미노를 모두 포함하고, 디-알킬아미노에서 2개의 알킬은 동일하거나 상이할 수 있다. 구체적으로, 모노-C1-8 알킬아미노는 아미노(-NH2)기의 1개의 수소 원자가 C1-8 알킬로 치환되고, 디-C1-8 알킬아미노는 아미노(-NH2)기의 2개의 수소 원자가 동일하거나 상이한 C1-8 알킬로 치환될 수 있다. 예컨대, 모노-C1-8 알킬아미노(-NH(C1-8 알킬))는 메틸아미노, 에틸아미노, 프로필아미노, 이소프로필아미노, 부틸아미노, 이소부틸아미노, 2급-부틸아미노, 3급-부틸아미노, 펜틸아미노, 헥실아미노 등을 포함할 수 있다. 디-C1-8 알킬아미노(-N(C1-8 알킬)2)는 예컨대, 디메틸아미노, 디에틸아미노, 디프로필아미노, 메틸에틸아미노, 메틸프로필아미노, 메틸이소프로필아미노, 메틸부틸아미노, 메틸이소부틸아미노, 에틸프로필아미노, 에틸이소프로필아미노, 에틸이소부틸아미노, 이소프로필이소부틸아미노, 메틸헥실아미노, 에틸헥실아미노 등을 포함할 수 있다.
용어 "카복시"는 -COOH를 말한다.
용어 "카바모일"은 -CONH2를 말한다.
용어 "N-모노-C1-8 알킬카바모일" 및 "N,N-디-C1-8 알킬카바모일"은 카바모일(-CONH2)의 질소 원자에 결합된 하나의 수소 원자 또는 두개의 수소 원자가 C1-8 알킬로 치환된 것을 말한다. N,N-디-C1-8 알킬카바모일에서, 두개의 C1-8 알킬은 서로 같거나 상이할 수 있다.
용어 "알카노일"은 카보닐 가교를 통하여 부착되어 있는 탄소 원자들을 지정된 수만큼 가지는, 상기 정의된 바와 같은 알킬(즉, -(C=O)-알킬)을 지칭한다. 예를 들면, 알카노일은 메타노일(포르밀: -COH), 에타노일(아세틸: -COCH3), 프로파노일(-COCH2CH3), 부타노일(-CO(CH2)2CH3) 등을 포함한다.
용어 "알카노일아미노"는 알카노일기로 치환된 아미노(즉, -NH(C=O)-알킬)를 지칭한다. 알카노일아미노의 질소 원자는 예를 들어 알킬기와 같은 추가의 치환기를 가질 수 있다. 예를 들면, 알카노일아미노는 포르밀아미노(-NHCOH), 아세틸아미노(-NHCOCH3), 프로파노일아미노(-NHCOCH2CH3), 부타노일아미노(-NHCO(CH2)2CH3) 등을 포함한다.
용어 "시아노-C1-8 알킬", "할로-C1-8 알킬", "하이드록시-C1-8 알킬", "C1-8 알콕시-C1-8 알킬", "C1-8 알콕시-C1-8 알콕시-C1-8 알킬", "카복시-C1-8 알킬", "아미노-C1-8 알킬", "카바모일-C1-8 알킬", "N-모노-C1-8 알킬카바모일-C1-8 알킬" 및 "N,N-디-C1-8 알킬카바모일-C1-8 알킬"은 C1-8 알킬의 말단 또는 중간에 시아노, 할로겐, 하이드록시, 알콕시, 카복시, 아미노, 카바모일. N-모노-C1-8 알킬카바모일 및 N,N-디-C1-8 알킬카바모일이 치환된 것을 말한다.
용어 "글라이코시딜"은 당 분자의 축합 반응에 의해 형성되는 작용기를 말한다.
용어 "헤테로사이클릴"은 적어도 하나의 헤테로원자를 포함하는 포화 또는 부분 불포화 고리식 탄화수소를 말한다. 헤테로사이클릴 고리기는 모노사이클릭 또는 바이사이클릭일 수 있다. 상기 바이사이클릭 헤테로사이클릴은 스피로(spiro), 가교(bridged) 및 융합(fused) 고리기일 수 있다. 헤테로사이클릴은 3 내지 20개, 3 내지 10개, 3개 내지 8개, 3개 내지 7개, 3개 내지 6개, 4개 내지 9개, 4개 내지 8개, 4개 내지 7개, 4개 내지 6개의 고리 원자를 함유할 수 있다. 상기 헤테로원자는 N, O 및 S로 이루어진 군으로부터 선택된 어느 하나 이상일 수 있다. 상기 헤테로원자는 N, O, 및 S로 이루어진 군으로부터 선택된 1개 내지 3개, 1개 또는 2개의 헤테로원자일 수 있다.
헤테로사이클릴의 비제한적인 예로는 아지리딘일, 아제티딘일, 피롤리딘일, 피페리딘일, 피페라진일, 디하이드로피리딘일, 테트라하이드로피리딘일, 옥세탄일, 테트라하이드로퓨란일, 테트라하이드로피란일, 디하이드로퓨란일, 디하이드로피란일, 테트라하이드로티오펜일, 모르폴린일, 티오모르폴린일, 아제판일, 디아제판일, 옥사제판일, 티아제판일 등을 들 수 있다.
용어 "헤테로사이클릴옥시"는 헤테로사이클의 고리에 직접 산소 원자가 연결된 작용기를 말한다.
용어 "헤테로아릴" 또는 "헤테로아릴렌"은 N, O, 및 S로 이루어진 군으로부터 선택된 하나 이상의 헤테로원자를 포함하고, 나머지 고리원자가 탄소인 모노사이클릭(monocyclic) 또는 바이사이클릭(bicyclic) 방향족 잔기를 의미한다. 상기 헤테로아릴기는 예를 들어 1 내지 4개, 1 내지 3개 또는 1 또는 2개의 헤테로원자를 포함할 수 있다. 상기 헤테로아릴기는 5 내지 10개, 5 내지 7개, 또는 5 또는 6개의 고리 원소를 포함할 수 있다. 상기 헤테로아릴은 1개 또는 2개의 N, O 또는 S를 함유하는 5-6원 헤테로아릴일 수 있다. 상기 헤테로아릴기는 하나의 고리기, 두개의 고리기, 또는 세개의 고리기일 수 있다. 상기 두개의 고리기는 스피로 고리기(spiro-ring), 브릿지 고리기(briged-ring), 및 융합 고리기(fused-ring)일 수 있다.
"헤테로아릴"의 비제한적인 예로는, 피롤릴, 이미다졸릴, 피라졸릴, 피리다진일, 퓨란일, 피란일, 티에닐, 티오펜일, 1,2,3-옥사디아졸릴, 1,2,4-옥사디아졸릴, 1,2,5-옥사디아졸릴, 1,3,4-옥사디아졸릴기, 1,2,3-티아디아졸릴, 1,2,4-티아디아졸릴, 1,2,5-티아디아졸릴, 1,3,4-티아디아졸릴, 이소티아졸-3-일, 이소티아졸-4-일, 이소티아졸-5-일, 옥사졸-2-일, 옥사졸-4-일, 옥사졸-5-일, 이소옥사졸-3-일, 이소옥사졸-4-일, 이소옥사졸-5-일, 1,2,4-트리아졸-3-일, 1,2,4-트리아졸-5-일, 1,2,3-트리아졸-4-일, 1,2,3-트리아졸-5-일, 테트라졸릴, 피리드-2-일, 피리드-3-일, 2-피라진-2일, 피라진-4-일, 피라진-5-일, 2-피리미딘-2-일, 4-피리미딘-2-일, 5-피리미딘-2-일, 인돌릴 등을 들 수 있다.
용어 "결합성 작용기"는 리간드 또는 단백질에 포함된 작용기 또는 링커 전구체에 포함된 작용기와 첨가, 치환, 축합 반응 등을 통해 공유 결합을 형성할 수 있는 작용기를 말한다.
본원에서 용어 "잔기(moiety)"는 해당 잔기의 모 화합물이 화학식 1의 화합물 또는 화학식 2의 접합체에 결합한 상태에서 모 화합물에 해당되는 화합물의 부분을 지칭한다. 본원에서 전체 화합물의 일부를 화합물 또는 활성제 등으로 지칭하는 경우에도, 문맥상 해당 화합물 또는 활성제의 "잔기"를 지칭함을 이해할 수 있을 것이다.
본 발명에서 "전구체(precursor)"는 화학반응 등을 통하여 최종적으로 목적하는 잔기를 제공하는 반응물로서의 화합물을 지칭한다.
본 발명에서 "링커 전구체(linker precursor)"는 화학 반응을 거쳐서 목적하는 링커 구조 또는 이의 일부를 형성하는 화합물을 지칭한다. 예컨대, PEG 링커로서, 하이드록시-PEG 링커, 알카인일-PEG 링커, 브로모-PEG 링커, DBCO-PEG 링커, 아지도-PEG 링커, 아미노-PEG 링커, 말레이미드-PEG 링커 등의 다양한 물질이 공지되어 있다. 또한, 아미노옥시-PEG 링커, 테트라진-PEG 링커, 토실레이트-PEG 링커, 티올-PEG 링커, 알데히드-PEG 링커, 포스포네이트-PEG 링커, 하이드라자이드-PEG 링커, 요오도-PEG 링커, 카복실-PEG 링커 등의 링커 화합물도 관련 분야에서 널리 사용되고 있다. 또 다른 예로서, DBCO(Dibenzocyclooctyne)기를 갖는 링커로서, 아민 반응성 DBCO (DBCO-NHS, DBCO-sulfo-NHS 에스테르, DBCO-PEG-NHS 에스테르, DBCO-NHCO-PEG-NHS 에스테르 등), 카복실/카보닐 반응성 DBCO(DBCO-아민, DBCO-PEG-아민 등), -SH기 반응성 DBCO(DBCO-말레이미드, DBCO-PEG-말레이미드 등), DBCO-PEG-t-부틸 에스테르, DBCO-알코올, DBCO-PEG-알코올, DBCO-PEG-DBCO, Bis-DBCO-PEG 등의 다양한 물질들이 공지되어 있다. 본 발명의 링커 전구체는 리간드-접합체 분야에 공지된 다양한 링커들을 포함하며, 본원에 예시된 링커 구조에 한정되지 않는다. 이용가능한 링커 전구체, 제법 및 반응 조건 등은 관련 기술분야에 널리 공지되어 있다.
용어 덴드리머(dendrimer)는 코어를 중심으로 분지 단위(branching unit)을 갖는 잘 정렬된 3차원 분자 구조를 지칭한다.
용어 "1,6-제거 반응"은 화합물 분자 구조의 특정 위치에서 공유 결합의 절단이 일어남에 따라, 이로부터 5개 원자 떨어진 위치(1,6-위치 관계)에서도 공유 결합의 절단이 유도되는 반응을 말한다.
일 실시태양에서, 인돌 코어 및 β-갈락토사이드 촉발기를 갖는 화학식 1의 화합물은 갈락토시다제에 의하여 β-갈락토스가 분리되면서 1,6-제거반응에 의해 PL- 또는 PL-H를 방출할 수 있다.
[반응식 A]
Figure PCTKR2023008742-appb-img-000085
또한, 화학식 1의 화합물이 선택적 자가-희생기 T를 포함하는 경우, 예컨대 하기 반응식 B에 도시된 바와 같은 1,6-제거 반응에 의하여 β-갈락토스 및 4-하이드록시 벤질알코올이 분리되면서 PL- 또는 PL-H를 방출할 수 있다.
[반응식 B]
Figure PCTKR2023008742-appb-img-000086
또한, 화학식 1의 화합물이 자가-제거 링커(self-eliminating linker), 예컨대 -OCO-를 포함하는 경우, 예컨대 하기 반응식 C에 도시된 바와 같은 1,6-제거 반응에 의하여 β-갈락토스 및 CO2가 분리되면서 PL- 또는 PL-H를 방출할 수 있다.
[반응식 C]
Figure PCTKR2023008742-appb-img-000087
본원에서 "클릭 화학(Click Chemistry) 반응"은 상온 및 상압과 같은 온화한 조건 하에서도 서로 특이적으로 반응하는 모듈식 반응물을 이용한 분자 조립 반응을 총칭하는 것으로서, 클릭 화학 반응의 종류 및 이에 관여하는 작용기는 통상적으로 잘 알려져 있다. 예컨데, 클릭 화학 반응은 [3+2] 고리화 첨가 반응 ([3+2] cycloadditions), 티올-엔 반응 (thiol-ene reaction), 디엘스-알더 반응 (Diels-Alder reaction), inverse electron demand Diels-Alder reaction, [4+1] 고리화 첨가 반응 ([4+1] cycloadditions) 등을 포함하나, 이에 한정되지 않는다. 보다 구체적으로, 클릭 화학 반응은 구리(I)-촉매 고리화 첨가 반응 (Copper(I)-catalyzed azide-alkyne cycloaddition; CuAAC), Strain-promoted azide-alkyne cycloaddition (SPAAC), Strain-promoted alkyne-nitrone cycloaddition (SPANC), 알켄과 아자이드의 [3+2] 고리화 첨가반응, 알켄과 테트라진의 inverse-demand Diels-Alder, 알켄과 테트라졸의 포토클릭 반응 (photoclick reaction), 및 아지드와 알킨의 Huisgen cycloaddition을 포함하나 이에 한정되는 것은 아니다. 클릭 화학 작용기는 알카인, 사이클로알카인(alkyne), 사이클로옥타인(cyclooctyne) 및 사이클로노나인(cyclononyne) (예로, 바이사이클로[6.1.0]-논-4-인-9-일 메탄올(bicyclo[6.1.0]non-4-yn-9-ylmethanol) 과 같은 사이클로알카인(cycloalkyne)), 트랜스-사이클로옥텐(trans-cyclooctene), 니트론(nitrone), 니트릴 옥사이드(nitrile oxide), 아자이드(azide), 공액다이엔(Conjugated Diene), 친-다이엔체(dienophile), 및 사이클로옥타인(cyclooctyne), 사이클로노나인(cyclononyne), dibenzocyclooctyne(DIBO), BARAC(biarylazacyclooctynone), ALO(aryl-less octyne), DIFO(difluorinated cyclooctyne), MOFO(monofluorinated), DIBAC(dibenzo-aza-cyclooctyne) 및 DIMAC(dimethoxyazacylooctyne) 등의 사이클로알킨을 포함하나, 이에 제한되는 것은 아니다. 예컨대, 클릭 화학 작용기는 아세틸렌(Acetylene), 트랜스사이클로옥텐(transcyclooctene), 사이클로옥타인(cyclooctyne), 다이아릴사이클로옥타인(dyarylcyclooctyne), 메틸 에스터 포스핀(methyl ester phosphine), 노르보레인(norbornene), 테트라진(tetrazine), 메틸사이클로프로펜(methylcyclopropene), 아제틴(azetine), 사이아나이드(cyanide), 아자이드(azide), 다이벤조사이클로옥틴(dibenzocyclooctyne) 등을 포함할 수 있다.
의약 용도 및 약학적 조성물
본 발명의 화학식 1의 화합물 또는 화학식 2의 리간드-약물 접합체는 다양한 혈중 환경에서 우수한 안정성을 가질 수 있다. 즉, 마우스, 렛, 개, 인간의 혈장 환경에서 활성제가 안정한 결합 상태를 유지할 수 있는 바, 혈중 독성을 최소화할 수 있다.
또한, 본 발명의 화학식 1의 화합물 또는 화학식 2의 리간드-약물 접합체는 우수한 표적 세포 선택성, 우수한 활성제 방출 특성을 나타낼 수 있다. 본 발명의 화합물 및 접합체는 pH 4 내지 5 조건에서 갈락토시다제, 글루쿠로니다제 등의 효소와 반응하여 활성제를 빠르게 해리 및 방출시킬 수 있다. 따라서, 본 발명의 화합물은 표적 세포(예를 들면, 종양 리소좀) 내 환경에서 활성제를 효과적으로 방출할 수 있다.
본 발명의 일 양상에서, 화학식 1 또는 화학식 1-1의 자가-희생기를 포함하는 화합물 또는 화학식 2 또는 화학식 2-1의 리간드-약물 접합체, 또는 이들의 약학적으로 허용가능한 염, 및 약학적으로 허용가능한 담체 또는 부형제를 포함하는 약학적 조성물이 제공된다.
본 발명의 다른 양상에서, 화학식 1 또는 화학식 1-1의 자가-희생기를 포함하는 화합물 또는 화학식 2 또는 화학식 2-1의 리간드-약물 접합체, 또는 이들의 약학적으로 허용가능한 염을 포함하는 이미징 조성물 또는 검출용 조성물이 제공된다.
본 발명에 따른 화학식 1 또는 화학식 1-1의 자가-희생기를 포함하는 화합물 및 화학식 2 또는 화학식 2-1의 리간드-약물 접합체는 용제와 혼합되어 조성물로 제공될 수 있다.
상기 조성물은 액체 용액으로서 또는 현탁액으로서 주사 가능한 형태로 제조될 수 있다. 또한, 상기 조성물은 에멀젼 또는 리포솜에 캡슐화된 폴리펩타이드로서 주사에 적합한 고체 형태로 제조될 수도 있다. 본 발명의 화합물 또는 리간드-약물 접합체는 담체를 수용하는 피검체에 해로운 항체의 생성을 유도하지 않는 어떠한 담체라도 포함하는, 약학적으로 허용되는 담체와 배합할 수 있다. 적합한 담체는 통상적으로 서서히 대사되는 거대분자, 예를 들면, 단백질, 다당류, 폴리락트산, 폴리글리콜산, 중합체성 아미노산, 아미노산 공중합체, 지질 응집물 등을 포함할 수 있다. 단백질은 중성 또는 염 형태로서 백신으로 제형화될 수 있다.
상기의 조성물은 희석제, 예를 들면, 물, 염수, 글리세롤, 에탄올 등을 함유할 수 있다. 상기 조성물에 보조 물질, 예를 들면, 습윤제 또는 유화제, pH 버퍼 등이 첨가될 수 있다. 조성물은 주사에 의하여 비경구로 투여될 수 있으며, 피하 또는 근육 주사를 통해 투여될 수 있다. 추가의 제형은 예를 들면, 좌제 또는 경구제로 제공될 수 있다. 경구용 조성물은 용제, 현탁제, 정제, 환제, 캡슐 또는 서방성 제형으로 제공될 수 있다.
상기의 조성물은 투여 제형과 혼화성인 방식으로 투여될 수 있다. 조성물은 치료학적 유효량의 본 발명에 따른 화합물 또는 리간드-약물 접합체를 포함한다. 치료학적 유효량이란, 질환 또는 장애의 치료 또는 예방에 유효한 단일 용량, 또는 다중 용량 스케쥴에서의 용량을 의미한다. 투여 용량은 본 발명의 화합물 또는 리간드-약물 접합체에 포함되는 활성제의 종류, 및/또는 수용체와 결합하는 리간드 또는 단백질의 종류에 따라 결정될 것이다. 또한, 투여 용량은 치료되는 피검체의 건강 및 신체 상태, 목적하는 보호도 및 기타 관련 인자에 따라 변화할 수 있다.
예를 들면, 치료학적 유효량의 본 발명의 화합물 또는 리간드-약물 접합체 또는 이를 포함하는 약학적 조성물은 증식성 질환, 자가면역질환 또는 감염성 질환의 치료 또는 예방을 위해 사용될 수 있다.
예컨대, 상기 조성물은 암 또는 종양의 치료를 위하여 사용할 수 있다. 예컨대, 상기 조성물은 환자에게 투여하여 병원체(예: 바이러스, 박테리아, 진균, 기생충 등)에 의한 감염을 치료 또는 예방할 수 있다. 이러한 방법은 질환 또는 장애가 예방되거나 치료되도록 하는 조건하에, 포유동물에게 질환 또는 장애 또는 이의 증상을 치료하기에 충분한 치료학적 또는 예방적 양의 화합물 또는 접합체를 투여하는 단계를 포함한다.
상기 조성물에서 본 발명의 화합물 또는 접합체는 약학적으로 허용되는 이의 염, 수화물 또는 용매화물의 형태로 투여될 수 있다. 일 실시태양에서, 약학적으로 허용되는 담체, 약학적으로 허용되는 부형제 및/또는 약학적으로 허용되는 첨가제와 함께 투여될 수 있다. 약제학적 유효량 및 약학적으로 허용되는 염 또는 용매화물, 부형제 및 첨가제의 유형은 표준 방법(참조: Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, PA, 18th edition, 1990)을 사용하여 결정될 수 있다.
본원에서 사용된 용어 "약학적으로 허용되는 염"은 유기 염 및 무기 염을 포함한다. 예를 들면, 비제한적으로 하이드로클로라이드, 하이드로브로마이드, 하이드로요오다이드, 설페이트, 시트레이트, 아세테이트, 옥살레이트, 클로라이드, 브로마이드, 요오다이드, 니트레이트, 비설페이트, 포스페이트, 산 포스페이트, 이소니코티네이트, 락테이트, 살리실레이트, 산 시트레이트, 타르트레이트, 올레에이트, 탄네이트, 판토네이트, 비타르트레이트, 아스코르베이트, 석시네이트, 말레에이트, 겐티시네이트, 푸마레이트, 글루코네이트, 글루코로네이트, 사카레이트, 포르메이트, 벤조에이트, 글루타메이트, 메탄 설포네이트, 에탄 설포네이트, 벤젠 설포네이트, p-톨루엔 설포네이트 및 파모에이트(즉, 1,1'-메틸렌비스-(2-하이드록시-3-나프토에이트))를 포함할 수 있다. 약학적으로 허용되는 염은 또 다른 분자(예: 아세테이트 이온, 석시네이트 이온 및 기타 대이온 등)를 포함할 수 있으며, 하나 이상의 하전된 원자 또는 하나 이상의 카운터 이온(counter ion)을 포함할 수도 있다.
상기 화합물의 약학적으로 허용되는 용매화물에 사용될 수 있는 예시적인 용매화물은 이들로 제한되지는 않지만, 물, 이소프로판올, 에탄올, 메탄올, DMSO, 에틸아세테이트, 아세트산 또는 에탄올 아민의 용매화물을 포함할 수 있다.
본 발명의 화합물 또는 리간드-약물 접합체는 약물, 독소, 형광체, 친화성 리간드, 진단 물질, 검출용 탐침 등의 활성제를 안정적으로 표적 부위까지 운반할 수 있으며, 상기 표적 부위의 특정 환경에서 상기 활성제를 빠른 속도로 방출시킬 수 있다.
본 발명의 화합물 또는 리간드-약물 접합체는 혈중 온도 및 중성 조건에서 우수한 안정성을 가질 수 있으며, 예컨대, 종양 미세환경 하에 산성 조건에서 신속하게 활성제를 방출할 수 있다.
도 1 내지 도 4는 각각 화합물 A-15, A-23, A-36 및 A-69에 대하여 대장균-베타-갈락토시다제 또는 대장균 베타-글루쿠로니다제를 이용한 효소 절단 속도 측정 결과를 나타낸다.
도 5는 화합물 A-69에 대한 화학적 안정성 및 혈장 안정성 측정 결과를 나타낸다.
도 6 내지 도 8은 ADC-1 내지 ADC-7 및 ADC-11 내지 ADC-15에 대한 생체 내 활성 분석 결과를 나타낸다.
이하 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
본 명세서에서 사용되는 약어는 하기와 같고, 하기 약어 리스트에 기재되지 아니한 약어는 유기합성 분야에서 관용적으로 사용되는 의미를 갖는다:
AcO : 아세틸 (acetyl)
AcOH : 아세트산 (acetic acid)
EA : 에틸 아세테이트 (ethyl acetate)
MC : 메틸렌 클로라이드 (methylene chloride)
DMF : 디메틸포름아미드 (dimethylformamide)
EDCI : 1-에틸-3-(3-디메틸아미노프로필)카보디이미드 (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide)
EDC : N-(3-디메틸아미노프로필)-N'-에틸카보디이미드 하이드로클로라이드 (N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride)
HOBt : 1-하이드록시벤조트리아졸 수화물 (1-hydroxybenzotriazole hydrate)
ACN : 아세토니트릴 (acetonitrile)
THF : 테트라하이드로퓨란 (tetrahydrofuran)
DCC : N,N'-디사이클로헥실카보디이미드 (N,N'-dicyclohexylcarbodiimide)
DMAP : 4-디메틸아미노피리딘 (4-dimethylaminopyridine)
NHS : N-하이드록시석신이미드 (N-hydroxysuccinimide)
DIPEA : 디이소프로필에틸아민(diisopropylethylamine)
TEA : 트리에틸아민 (triethylamine)
Boc : tert-부틸옥시카보닐 (tert-butyloxycarbonyl)
LAH : 리튬 알루미늄 하이드라이드(lithium aluminium hydride)
TFA : 트리플루오로아세트산 (trifluoroacetic acid)
AgOTf : 은 트리플루오로메탄술폰산염 (silver trifluoromethanesulfonate)
KOtBu : 칼륨 tert-부톡사이드(potassium tert-butoxide)
MMAF-OMe : 모노메틸 오리스타틴 F 메틸 에스테르 (monomethyl auristatin F methyl ester)
PPTS : 피리디늄 p-톨루엔설포네이트(pyridinium p-toluenesulfonate)
TBAI : 테트라부틸암모늄 요오다이드(tetrabutylammonium iodide)
제조예 1: 링커 P-1의 제조
Figure PCTKR2023008742-appb-img-000088
단계 1: 화합물 P-1b 및 P-1c의 제조
질소 대기 하 0oC에서 화합물 P-1a (Tetraethylene glycol, 대정화금, CAS NO. 112-60-7, 30 g, 154.46 mmol)를 MC (300 mL)에 용해시킨 후, 4-메틸벤젠술포닐 염화물 (14.7 g, 77.23 mmol)과 수산화칼륨 (4.3 g, 77.23 mmol)을 첨가하고 상온에서 16시간 동안 교반하였다. 반응을 완료한 후 MC (500 mL)와 증류수 (500 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피(column chromatography)시켜 화합물 P-1b와 P-1c를 각각 무색 오일형태로 수득하였다(P-1b: 4.4 g, 11 %, P-1c: 15.1 g, 56 %).
P-1b: 1H-NMR (400 MHz, CDCl3) δ 7.79 (d, J = 8.4 Hz, 4H), 7.34 (d, J = 8.0 Hz, 4H), 4.16 - 4.14 (m, 4H), 3.69 - 3.66 (m, 4H), 3.57 - 3.55 (m, 8H), 2.44 (s, 6H).
P-1c: 1H-NMR (400 MHz, CDCl3) δ 7.80 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 4.18 - 4.15 (m, 2H), 3.72 - 3.59 (m, 14H), 2.45 (s, 3H).
단계 2: 화합물 P-1d의 제조
질소 대기 하 상온에서 화합물 P-1b (8.78 g, 17.48 mmol)를 DMF (50 mL)에 용해시킨 후 아지드화 나트륨 (3.41 g, 52.44 mmol)을 첨가하고 60oC에서 16시간 동안 교반하였다. 반응을 완료한 후 상온으로 냉각시키고 EA (500 mL)와 탄산수소나트륨 포화 수용액 (500 mL)을 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 P-1d를 무색 액체형태로 수득하였다(4.17 g, 97 %).
1H-NMR (400 MHz, CDCl3) δ 3.69 - 3.66 (m, 12H), 3.40 - 3.37 (m, 4H).
단계 3: 링커 P-1의 제조
질소 대기 하 0oC에서 화합물 P-1d (4.17 g, 17.06 mmol)을 EA (32 mL), 디에틸 에테르 (32 mL) 및 5% 염산 수용액 (64 mL)에 용해시킨 후 트리페닐포스핀 (4.47 g, 17.06 mmol)을 첨가하고 상온에서 16시간 동안 교반하였다. 반응을 완료한 후 감압 농축하여 유기층을 제거한 뒤 물층에 MC (100 mL)을 첨가하여 물층을 세척하는 과정을 3회 반복하였다. 수득한 물층을 감압 농축하여 링커 P-1을 무색 액체 형태로 수득하였다(4.12 g, 95 %).
1H-NMR (400 MHz, CDCl3) δ 8.27 (brs, 2H), 3.86 - 3.83 (m, 2H), 3.72 - 3.68 (m, 10H), 3.47 - 3.45 (m, 2H), 3.26 - 3.24 (m, 2H).
제조예 2: 링커 P-2의 제조
Figure PCTKR2023008742-appb-img-000089
단계 1: 화합물 P-2a의 제조
질소 대기 하 상온에서 제조예 1의 단계 1에서 제조된 화합물 P-1c (15.1 g, 43.34 mmol)를 DMF (100 mL)에 용해시킨 후 아지드화 나트륨 (4.2 g, 65.01 mmol)을 첨가하고 60oC에서 16시간 동안 교반하였다. 반응을 완료한 후 상온으로 냉각시키고 EA (800 mL)와 증류수 (800 mL)를 첨가하여 유기층을 5회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 P-2a를 무색 액체형태로 수득하였다(6.11 g, 64 %).
1H-NMR (400 MHz, CDCl3) δ 3.73 - 3.66 (m, 12H), 3.62 - 3.60 (m, 2H), 3.41 - 3.39 (m, 2H).
단계 2: 화합물 P-2b의 제조
질소 대기 하 0oC에서 화합물 P-2a (3.82 g, 17.44 mmol)를 THF (50 mL)에 용해시킨 후 KOtBu (2.93 g, 26.16 mmol)을 첨가하고 0oC에서 20분 동안 교반하였다. 이어서 프로파질 브로마이드 (5.2 g, 34.88 mmol)을 첨가하고 0oC에서 상온으로 천천히 승온하면서 16시간 동안 교반하였다. 반응을 완료한 후 EA (200 mL)로 반응용액을 희석하고 셀라이트 필터를 이용하여 여과한 용액에 증류수 (250 mL)를 첨가하여 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 P-2b를 주황색 액체형태로 수득하였다(2.97 g, 66 %).
1H-NMR (400 MHz, CDCl3) δ 4.21 (d, J = 2.4 Hz, 2H), 3.70 - 3.67 (m, 14H), 3.40 - 3.38 (m, 2H), 2.43 (t, J = 2.4 Hz, 1H).
단계 3: 링커 P-2의 제조
질소 대기 하 0oC에서 화합물 P-2b (2.97 g, 11.54 mmol)를 EA (24 mL), 디에틸 에테르 (24 mL) 및 5% 염산 수용액 (48 mL)에 용해시킨 후 트리페닐포스핀 (3.03 g, 11.54 mmol)을 첨가하고 0oC에서 상온으로 천천히 승온하면서 16시간 동안 교반하였다. 반응 완료 후 반응 용액을 감압 농축하여 유기용매를 제거한 뒤 남은 수용액에 MC (100 mL)를 첨가하여 유기층을 추출하여 제거하고 수득한 물층을 감압 농축하여 링커 P-2을 노란색 액체 형태로 수득하였다(2.66 g, 86 %).
1H-NMR (400 MHz, DMSO-d6) δ 7.93 (brs, 2H), 4.14 (d, J = 2.4 Hz, 2H), 3.62 - 3.52 (m, 14H), 3.44 (t, J = 2.4 Hz, 1H), 2.96 - 2.95 (m, 2H).
제조예 3: 링커 P-3의 제조
Figure PCTKR2023008742-appb-img-000090
단계 1: 화합물 P-3a의 제조
질소 대기 하 상온에서 제조예 2의 단계 1에서 제조된 화합물 P-2a (2.27 g, 10.35 mmol)를 MC (52 mL)에 용해시킨 후 TEA (4.3 mL, 31.06 mmol)과 4-메틸벤젠술포닐 염화물 (3.95 g, 20.71 mmol)을 첨가하고 상온에서 16시간 동안 교반하였다. 반응을 완료한 후 MC (100 mL)와 증류수 (100 mL)를 첨가하여 유기층을 3회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 P-3a를 노란색 액체형태로 수득하였다(2.52 g, 65 %).
1H-NMR (400 MHz, CDCl3) δ 7.80 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 4.16 (t, J = 4.8 Hz, 2H), 3.70 - 3.59 (m, 12H), 3.37 (t, J = 4.8 Hz, 2H), 2.45 (s, 3H).
단계 2: 링커 P-3의 제조
질소 대기 하 상온에서 화합물 P-3a (2.52 g, 6.76 mmol)를 THF (33 mL)에 용해시킨 후 브롬화 리튬 (1.76 g, 20.29 mmol)을 첨가하고 3시간 동안 환류 교반하였다. 반응을 완료한 후 상온으로 냉각시키고 EA (150 mL)와 탄산수소나트륨 수용액 (150 mL)을 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 P-3를 노란색 액체형태로 수득하였다(1.8 g, 94 %).
1H-NMR (400 MHz, CDCl3) δ 3.81 (t, J = 6.4 Hz, 2H), 3.69-3.67 (m, 10H), 3.47 (t, J = 6.4 Hz, 2H), 3.39 (m, 2H).
제조예 4: 링커 P-4의 제조
Figure PCTKR2023008742-appb-img-000091
단계 1: 화합물 P-4b의 제조
질소 대기 하 0oC에서 화합물 P-4a (Pentaethylene glycol, Merck, CAS NO. 4792-15-8, 10 g, 41.97 mmol)를 MC (60 mL)에 용해시킨 후 4-메틸벤젠술포닐 염화물 (17.60 g, 92.33 mmol)과 수산화 리튬 일수화물 (8.80g, 209.85 mmol)을 첨가하고 상온에서 12시간 동안 교반하였다. 반응을 완료한 후 MC (200 mL)와 증류수 (200 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 P-4b를 무색 오일형태로 수득하였다(22.5 g, 98 %).
1H-NMR (400 MHz, CDCl3) δ 7.79 (d, J = 8.0 Hz, 4H), 7.34 (d, J = 8.0 Hz, 4H), 4.14 (t, J = 4.8 Hz, 4H), 3.68 (t, J = 4.8 Hz, 4H), 3.60 (s, 4H), 3.58 (s, 8H), 2.44 (s, 6H).
단계 2: 화합물 P-4c의 제조
질소 대기 하 상온에서 화합물 P-4b (22.5 g, 41.16 mmol)를 ACN (200 mL)에 용해시킨 후 아지드화 나트륨 (6.69 g, 102.89 mmol)을 첨가하고 80oC에서 15시간 동안 교반하였다. 반응을 완료한 후 상온으로 냉각하고 침전물을 디에틸 에테르 (100 mL)를 이용하여 여과하여 제거하고 남은 여액을 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 P-4c를 무색 액체형태로 수득하였다(8.72 g, 73.5 %).
1H-NMR (400 MHz, CDCl3) δ 3.69-3.66 (m, 16H), 3.39 (t, J = 4.8 Hz, 4H).
단계 3: 링커 P-4의 제조
질소 대기 하 0oC에서 화합물 P-4c (8.72 g, 30.25 mmol)를 EA (48 mL)와 디에틸 에테르 (48 mL)에 용해시킨 후 5% 염산 수용액 (96 mL)과 트리페닐포스핀 (8.73 g, 33.28 mmol)을 순차적으로 천천히 적가하였다. 상기 반응 용액을 0oC에서 상온으로 천천히 승온하면서 15시간 동안 교반하였다. 반응을 완료한 유기층을 제거하고 남은 물층을 다시한번 EA (50 mL)를 이용해 세척하고 수득한 물층을 감압 농축하여 링커 P-4를 무색의 오일 형태로 수득하였다(7.8 g, 86.3 %).
1H-NMR (400 MHz, CDCl3) 8.21 (brs, 2H), 3.90 (t, J = 4.8 Hz, 2H), 3.74-3.66 (m, 14H), 3.51 (t, J = 4.8 Hz, 2H), 3.21 (m, 2H).
제조예 5: 링커 P-5의 제조
Figure PCTKR2023008742-appb-img-000092
단계 1: 화합물 P-5a의 제조
질소 대기 하 0oC에서 링커 P-1 (3.36 g, 13.19 mmol)을 1,4-디옥산 (44 mL)에 용해시킨 후 증류수 (22 mL)에 녹인 탄산수소나트륨 (2.21 g, 26.38 mmol)과 디-tert-부틸 디카보네이트 (Boc anhydride, 3.45 g, 15.83 mmol)를 첨가하고 상온에서 5시간 동안 교반하였다. 반응을 완료한 후 EA (350 mL)와 증류수 (300 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 P-5a를 무색 액체형태로 수득하였다(3.68 g, 87 %).
1H-NMR (400 MHz, CDCl3) δ 5.02 (brs, 1H), 3.70 - 3.60 (m, 10H), 3.54 (t, J = 5.2 Hz, 2H), 3.39 (t, J = 5.2 Hz, 2H), 3.32 - 3.31 (m, 2H), 1.44 (s, 9H).
단계 2: 화합물 P-5b의 제조
질소 대기 하 0oC에서 수소화 나트륨 (sodium hydride, 60% dispersion in mineral oil, 924 mg, 23.10 mmol)에 THF (70 mL)를 적가하고, THF (30 mL)에 용해시킨 화합물 P-5a (3.68 g, 11.55 mmol)을 천천히 반응용액에 첨가 후 0oC에서 30분동안 교반하였다. 요오도메탄 (7.19 mL, 115.52 mmol)을 상기 반응 용액에 천천히 첨가하고 30분 동안 교반한 후 상온으로 천천히 승온하면서 16시간 동안 추가적으로 교반하였다. 반응 완료 후, 0oC로 냉각하고 증류수 (350 mL)와 EA (350 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 P-5b를 노란색 액체형태로 수득하였다(3.74 g, 97 %).
1H-NMR (400 MHz, CDCl3) δ 3.69 - 3.62 (m, 12H), 3.41 - 3.38 (m, 4H), 2.91 (s, 3H), 1.45 (s, 9H).
단계 3: 링커 P-5의 제조
질소 대기 하 0oC에서 화합물 P-5b (3.74 g, 11.27 mmol)를 MC (20 mL)에 용해시킨 후 4M-염산 용액 (4M HCl in 1,4-Dioxane, 40 mL)을 첨가하고 상온에서 1.5시간 동안 교반하였다. 반응을 완료한 후 감압 농축하여 링커 P-5를 노란색 액체형태로 수득하였다(3.33 g, 99 %).
1H-NMR (400 MHz, CDCl3) δ 9.45 (brs, 1H), 3.91 (t, J = 5.2 Hz, 2H), 3.72 - 3.68 (m, 10H), 3.44 (t, J = 5.2 Hz, 2H), 3.20 - 3.17 (m, 2H), 2.76 (t, J = 5.2 Hz, 3H).
제조예 6: 링커 P-6의 제조
Figure PCTKR2023008742-appb-img-000093
질소 대기 하 0oC에서 화합물 P-6a (Triethylene Glycol Monomethyl Ether, TCI, CAS No. 112-35-6, 1 g, 6.09 mmol)를 THF (10 mL)에 용해시킨 후 KOtBu (1 g, 9.13 mmol)을 첨가하고 0oC에서 20분동안 교반하였다. 상기 반응 용액에 프로파질 브로마이드 (1.3 mL, 12.18 mmol)를 첨가하고 0oC에서 상온으로 천천히 승온하면서 16시간 동안 교반하였다. 반응을 완료한 후 EA (200 mL)로 반응용액을 희석하고 셀라이트를 이용하여 여과한 용액에 증류수 (250 mL)를 첨가하여 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 링커 P-6을 수득하였다(820 mg, 66 %).
1H-NMR (400 MHz, CDCl3) δ 4.21 (d, J = 2.4 Hz, 2H), 3.71 - 3.63 (m, 10H), 3.56 - 3.54 (m, 2H), 3.38 (s, 3H), 2.42 (t, J = 2.4 Hz, 1H).
제조예 7: 링커 P-7의 제조
Figure PCTKR2023008742-appb-img-000094
단계 1: 화합물 P-7b의 제조
질소 대기 하 0oC에서 수소화나트륨 (sodium hydride 60 % dispersion in mineral oil, 411 mg, 10.29 mmol)을 THF (10 mL)에 첨가하고 화합물 P-7a (tetraethylene glycol, Merck, CAS NO. 112-60-7, 6.0 g, 30.89 mmol)을 THF (20 mL)에 녹여 천천히 적가한 후 5분 동안 교반하였다. 프로파질 브로마이드 (Propargyl bromide 80 % in toluene, 1.146 mL, 10.29 mmol)를 상기 반응 용액에 첨가하고 0oC에서 추가적으로 2시간 동안 교반하였다. 반응 완료 후 MC (200 mL)와 증류수 (100 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 P-7b를 오일 형태로 수득하였다(1.9 g, 79.8 %).
1H-NMR (400 MHz, CDCl3) δ 4.21 (d, J = 2.4 Hz, 2H), 3.72-3.67 (m, 14H), 3.61 (t, J = 4.4 Hz, 2H), 2.61 (brs, 1H), 2.43 (t, J = 2.4 Hz, 1H).
단계 2: 화합물 P-7c의 제조
화합물 P-7b (1.0 g, 4.3 mmol)를 아세톤 (30 mL)에 용해시킨 후 -5oC에서 존스 시약 (Jones reagent, Merck, CAS NO. 65272-70-0, 3 mL)을 천천히 첨가하고 상온에서 3시간 동안 교반하였다. 반응 완료 후 녹색의 무기염을 여과하여 제거하고 남은 여과액을 MC (100 mL)와 증류수 (50 mL)를 이용하여 추출하고 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 P-7c를 수득하였다(630 mg, 59.4 %).
1H-NMR (400 MHz, DMSO-d6) δ 4.20 (d, J = 2.4 Hz, 2H), 4.12 (s, 2H), 3.73-3.67 (m, 14H), 2.44 (t, J = 2.4 Hz, 1H); EI-MS m/z: 246[M+H]+ .
단계 3: 링커 P-7의 제조
질소 대기 하 0oC에서 화합물 P-7c (90 mg, 0.365 mmol)를 MC (5 mL)에 용해시킨 후 NHS (46.2 mg, 0.40 mmol) 및 DCC (83 mg, 0.40 mmol)를 첨가하고 16시간 동안 교반하였다. 반응 완료 후 EA/n-펜탄 (1 : 1 부피비, 20 mL)을 첨가하고 생성된 침전물을 여과하여 제거하였다. 여과액을 농축한 후 다시 한번 EA/n-펜탄 (1:1 부피비, 20 mL)용액을 첨가하여 생성된 침전물을 제거하고 여과액을 감압 농축하여 얻은 링커 P-7을 다음 반응에 추가 정제과정 없이 이용하였다(100 mg, 80 %).
1H-NMR (400 MHz, CDCl3) δ 4.53 (s, 2H), 4.20 (d, J = 2.4 Hz, 2H), 3.81-3.79 (m, 2H), 3.75-3.67 (m, 10H), 2.85 (s, 4H), 2.43 (t, J = 2.4 Hz, 1H); EI-MS m/z: 366[M+Na]+.
제조예 8: 링커 P-8의 제조
Figure PCTKR2023008742-appb-img-000095
질소 대기 하 0oC에서 P-8a (2-[2-(2-아미노에톡시)에톡시]아세트산, TCI, CAS No. 134978-97-5, 1.28 g, 7.87 mmol)을 1,4-디옥산 (30 mL)에 용해시킨 후 증류수 (15 mL)에 용해시킨 탄산수소나트륨 (1.32 g, 15.74 mmol)과 디-tert-부틸 디카보네이트 (Boc anhydride, 2.06 g, 9.44 mmol)를 순차적으로 첨가하고 0oC에서 상온으로 서서히 승온하면서 16시간 동안 교반하였다. 반응을 완료한 후 EA (200 mL)와 증류수 (150 mL), 2N-염산 수용액 (50 mL)을 첨가하여 유기층을 5회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 링커 P-8을 무색 액체형태로 수득하였다(2.32 g, 정량 수득).
1H-NMR (400 MHz, CDCl3) δ 4.93 (brs, 1H), 4.17 (s, 2H), 3.78 - 3.76 (m, 2H), 3.68 - 3.65 (m, 2H), 3.62 - 3.56 (m, 2H), 3.38 - 3.32 (m, 2H), 1.45 (s, 9H).
제조예 9: 오리스타틴F-OMe (AuristatinF-OMe)의 제조
Figure PCTKR2023008742-appb-img-000096
질소 대기 하 상온에서 화합물 MMAF-OMe (CAS NO. 863971-12-4, 1 g, 1.34 mmol)을 DMF (7 mL)에 용해시킨 후 37% 포름알데히드 수용액 (37 wt.% in H2O, 299 μL, 4.02 mmol)과 아세트산 (1.53 mL, 26.81 mmol)을 순차적으로 첨가하고 상온에서 30분 동안 교반하였다. 소듐 시아노보로하이드라이드 (NaCNBH3, 168.5 mg, 2.68 mmol)를 상기 반응 용액에 첨가하고 2.5시간 동안 상온에서 교반하였다. 반응 완료 후 반응용액의 pH가 9가 될 때까지 탄산수소나트륨 포화 수용액을 천천히 적가하고 EA (100 mL)를 첨가해 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 오리스타틴F-OMe를 백색 고체 형태로 수득하였다(892 mg, 88 %); EI-MS m/z: 7610[M+H]+.
제조예 10: 화합물 L3-1의 제조
Figure PCTKR2023008742-appb-img-000097
단계 1: 화합물 L3-1b의 제조
질소 대기 하 0oC에서 화합물 L3-1a (4-Hydroxybenzaldehyde, CAS NO. 123-08-0, 300 mg, 2.46 mmol)를 ACN (10 mL)에 용해시킨 후 아세토브로모-알파-디-갈락토스 (Merck, CAS No. 3068-32-4, 1.1 g, 2.70 mmol), Molecular sieve (100 mg) 및 산화은 (I) (1.42 g, 6.14 mmol)을 순차적으로 첨가하고 상온에서 3시간 동안 교반하였다. 반응 완료 후 EA (100 mL)로 반응용액을 희석하고 셀라이트를 이용하여 여과한 용액을 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 L3-1b를 백색 고체형태로 수득하였다(951 mg, 86 %).
1H-NMR (400 MHz, CDCl3) δ 9.93 (s, 1H), 7.86 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 5.47 (m, 2H), 5.15 (m, 2H), 4.17 (m, 3H), 2.19 (s, 3H), 2.07 (s, 6H), 2.02 (s, 3H).
단계 2: 화합물 L3-1c의 제조
질소 대기 하 0oC에서 화합물 L3-1b (951 mg, 2.1 mmol)를 THF (20 mL)에 용해시킨 후 수소화 붕소 나트륨(159 mg, 4.2 mmol)을 첨가하고 상온에서 3시간 동안 교반하였다. 반응 완료 후 증류수 (100 mL)를 첨가하여 반응을 종결시키고 EA (100 mL)를 첨가하여 유기층을 3회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 L3-1c를 백색 고체형태로 수득하였다(695 mg, 73 %).
1H-NMR (400 MHz, CDCl3) 7.31 (d, J = 8.8 Hz, 2H), 7.00 (d, J = 8.8 Hz, 2H), 5.46 (m, 2H), 5.04 (m, 2H), 4.66 (s, 2H), 4.17 (m, 3H), 2.19 (s, 3H), 2.07 (s, 6H), 2.01 (s, 3H).
단계 3: 화합물 L3-1의 제조
질소 대기 하 0oC에서 화합물 L3-1c (800 mg, 1.76 mmol)를 MC (10 mL)에 용해시킨 후 염화티오닐 (Thionyl chloride, 191 μL, 2.64 mmol)을 첨가하고 0oC에서 상온으로 승온하면서 2시간 동안 교반하였다. 반응 완료 후 MC (10 mL)를 첨가하여 희석시킨 후 감압 농축하였다. 감압 농축하여 얻은 잔사를 EA (50 mL)와 증류수 (50 mL)를 이용하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 화합물 L3-1을 무색 끈적한 오일 형태로 수득하였다(831 mg, 99%).
1H-NMR (400 MHz, CDCl3) 7.32 (d, J = 8.8 Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H), 5.51 - 5.45 (m, 2H), 5.11 (dd, J = 10.4, 3.6 Hz, 1H), 5.04 (d, J = 7.6 Hz, 1H), 4.56 (s, 2H), 4.25 - 4.14 (m, 3H), 2.18 (s, 3H), 2.06 (s, 6H), 2.01 (s, 3H).
제조예 11: 화합물 PL-1의 제조
Figure PCTKR2023008742-appb-img-000098
단계 1: 화합물 PL-1b의 제조
질소 대기 하 0oC에서 60% 수소화나트륨 (Sodium hydride 60% dispersion in mineral oil, 3.4 g, 85.56 mmol)에 THF (50 mL)를 첨가한 반응용액에 화합물 PL-1a (Carbobenzyloxy-L-valine, Z-Val-OH, Merck, CAS No. 1149-26-4, 5 g, 19.9 mmol)를 THF (20 mL)에 녹인 용액을 천천히 첨가하고 0oC에서 20분 동안 교반하였다. 그리고, 요오도메탄 (12.38 mL, 198.98 mmol)을 천천히 첨가하고 상온에서 20시간 동안 교반하였다. 상기 반응 용액을 0oC로 냉각한 후 증류수 (150 mL)를 첨가하여 반응을 종결시키고 EA (200 mL)와 2N-염산 수용액 (50 mL)을 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 PL-1b를 수득하였다(3.7 g, 70 %).
1H-NMR (400 MHz, DMSO-d6) δ 7.36-7.30 (m, 5H), 5.11 (s, 2H), 4.22-412 (m, 1H), 2.84-81 (m, 3H), 2.11 (m, 1H), 0.95 (m, 3H), 0.82 (m, 3H).
단계 2: 화합물 PL-1d의 제조
질소 대기 하 0oC에서 화합물 PL-1b (600 mg, 2.26 mmol)와 화합물 PL-1c (N-Methylaniline, Merck, CAS No. 100-61-8, 361 mg, 3.39 mmol)를 MC (12 mL)에 용해시킨 후 DCC (700 mg, 3.39 mmol), DMAP (55.2 mg, 0.46 mmol) 및 DIPEA (0.78 mL, 4.52 mmol)를 순차적으로 첨가하고 0oC에서 20분 동안 교반하였다. 상기 반응 혼합물을 추가적으로 16시간 동안 교반하였다. 반응 완료 후 EA (100 mL)로 반응용액을 희석하고 여과한 용액에 2N-염산 수용액 (100 mL)을 첨가하여 추출하였다. 수득한 유기층을 2N-수산화 나트륨 수용액 (100 mL)을 첨가하여 한번 더 추출한 후 염화나트륨 포화 수용액 (100 mL)을 첨가하여 세척하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 PL-1d를 무색 오일형태로 수득하였다(429 mg, 53 %).
1H-NMR (400 MHz, CDCl3) δ 7.41 - 7.24 (m, 6H), 7.09 - 7.02 (m, 4H), 5.01-4.96 (m, 2H), 4.40-4.28 (m, 1H), 3.25 (s, 3H), 2.91-2.87 (m, 3H), 2.33 (m, 1H), 0.90 (d, J = 6.8 Hz, 3H), 0.74-0.65 (m, 3H).
단계 3: 화합물 PL-1의 제조
질소 대기 하 상온에서 화합물 PL-1d (429 mg, 1.21 mmol)를 메탄올 (50 mL)에 용해시킨 후 5% 팔라듐 차콜 (5% Pd/C, 150 mg)을 첨가하고 수소환경 하에서 2시간 동안 교반하였다. 반응 완료 후 EA (100 mL)로 반응용액을 희석하고 셀라이트 필터를 이용하여 여과한 용액을 감압 농축하여 화합물 PL-1을 무색 오일형태로 수득하였다(264.3 mg, 99 %).
1H-NMR (400 MHz, CDCl3) δ 7.45 - 4.41 (m, 2H), 7.37 - 7.34 (m, 1H), 7.02 - 7.18 (m, 2H), 3.31 (s, 3H), 2.85 (d, J = 6.4 Hz, 1H), 2.31 (s, 3H), 1.71 (m, 1H), 0.85 (d, J = 6.8 Hz, 3H), 0.80 (d, J = 6.8 Hz, 3H).
제조예 12: 화합물 PL-2의 제조
Figure PCTKR2023008742-appb-img-000099
질소 대기 하에서 화합물 PL-2a (SN-38, 7-Ethyl-10-hydroxycamptothecin, ASTATECH, CAS No. 86639-52-3, 30.0 mg, 0.076 mmol)을 MC (6.0 mL)에 용해시킨 후 4-니트로페닐 클로로포르메이트 (23.1 mg, 0.114 mmol)와 DIPEA (13.3 μL, 0.076 mmol) 및 피리딘 (18.4 μL, 0.229 mmol)을 순차적으로 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1.0 mL)을 첨가하여 반응을 종결시키고 ACN (1.0 mL)과 증류수 (1.0 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 PL-2를 백색 고체형태로 수득하였다(7.5 mg, 17 %); EI-MS m/z: 558[M+H]+.
제조예 13: 화합물 PL-3의 제조
Figure PCTKR2023008742-appb-img-000100
질소 대기 하에서 화합물 PL-3a (Abiraterone, TCI, CAS No. 154229-19-3, 30.0 mg, 0.086 mmol)를 THF (3.0 mL)에 용해시킨 후 카보닐디이미다졸 (CDI, Alfa Aesar, CAS No. 530-62-1, 17.2 mg, 0.105 mmol)을 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 EA (10 mL)와 증류수 (10 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 PL-3를 백색 고체형태로 수득하였다(16.0 mg, 42 %).
1H-NMR (400 MHz, CDCl3) δ 8.62 (s, 1H), 8.46 (d, J = 4.8 Hz, 1H), 8.13 (s, 1H), 8.13 (s, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.42 (s, 1H), 7.22 (dd, J = 8.0 Hz, J = 4.8 Hz, 1H), 7.06 (s, 1H), 6.00 (s, 1H), 5.49 (d, J = 4.8 Hz, 1H), 4.85 - 4.83 (m, 1H), 2.54 - 2.52 (m, 2H), 2.29 - 2.25 (m, 1H), 2.08 - 2.04 (m, 4H), 1.97 - 1.81 (m, 1H), 1.80 - 1.48 (m, 9H), 1.26 - 1.22 (m, 1H), 1.13 (s, 3H), 1.06 (s, 3H).
제조예 14: 코어 C-1의 제조
Figure PCTKR2023008742-appb-img-000101
단계 1: 화합물 C-1b의 제조
질소 대기 하 -30oC에서 화합물 C-1a (2-benzyloxybenzaldehyde, CAS NO. 5896-17-3, 5.48g, 25.8 mmol)를 메탄올 (55 mL)에 용해시킨 후 에틸 아지도아세테이트(CAS NO. 637-81-0, TCI, 28.2 mL, 258.20 mmol)와 나트륨 메톡사이드 (25 wt% in MeOH, 44.6 mL, 206.4 mmol)를 천천히 첨가하였다. -30oC에서 3시간 동안 교반한 후 증류수 (100 mL)를 천천히 적가하여 반응을 종결시키고 EA (100 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축시켜 화합물 C-1b를 수득하였다(7.74 g, 97 %). 수득한 화합물 C-1b를 추가 정제없이 다음 반응에 사용하였다.
단계 2: 화합물 C-1c의 제조
질소 대기 하 상온에서 화합물 C-1b (7.74g, 25.02 mmol)을 자일렌 (200 mL)에 용해시킨 후 150oC에서 3시간 동안 교반하였다. 반응 완료 후 상온으로 냉각시키고 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 C-1c를 수득하였다(510.8 mg, 22.7 %).
1H-NMR (400 MHz, CDCl3) δ 8.82 (brs, 1H), 7.51-7.49 (m, 2H), 7.42-7.33 (m, 4H), 7.22 (t, J = 8 Hz, 1H), 7.02 (d, J = 8 Hz, 1H), 6.58 (d, J = 8 Hz, 1H), 5.22 (s, 2H), 3.92 (s, 3H).
단계 3: 화합물 C-1d의 제조
질소 대기 하 상온에서 화합물 C-1c (1.14g, 4.05 mmol)를 DMF (35 mL)에 용해시킨 후 탄산칼륨 (1.68 g, 12.15 mmol)과 요오도메탄(0.65 mL, 10.53 mmol)을 순차적으로 첨가하고 12시간 동안 교반하였다. 반응 완료 후 EA (100 mL)와 증류수 (100 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층에 증류수 (300 mL)를 첨가해 다시 한번 추출하고 유기층을 무수 황산마그네슘으로 건조 및 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 C-1d를 수득하였다(912.7 mg, 76 %)
1H-NMR (400 MHz, CDCl3) δ 7.50-7.47 (m, 3H), 7.42-7.33 (m, 3H), 7.25 (m, 1H), 6.99 (d, J = 8 Hz, 1H), 6.57 (d, J = 8 Hz, 1H), 5.22 (s, 2H), 4.06 (s, 3H), 3.89 (s, 3H).
단계 4: 화합물 C-1e의 제조
질소 대기 하 -50oC에서 C-1d (800 mg, 2.70 mmol)를 MC (40 mL)에 용해시킨 후 디클로로메틸 메틸 에테르(735 μL, 8.10 mmol)와 사염화 티타늄 용액(1M-TiCl4 in MC, 8.1 mL, 8.1 mmol)을 순차적으로 천천히 첨가하고 2시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 냉각된 증류수 (100 mL)를 천천히 적가하여 반응을 종결시키고 EA (100 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 C-1e를 수득하였다(392 mg, 44.8 %).
1H-NMR (400 MHz, CDCl3) δ 10.10 (s, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.44 (s, 1H), 7.49-7.47 (m, 2H), 7.44-7.36 (m, 3H), 6.69 (d, J = 8.4 Hz, 1H), 5.39 (s, 2H), 4.36 (s, 3H), 3.90 (s, 3H).
단계 5: 코어 C-1의 제조
질소 대기 하 -50oC에서 화합물 C-1e (393.2 mg, 1.22 mmol)를 MC (20 mL)에 용해시킨 후 보론 트리클로라이드 용액 (1M-BCl3 in MC, 6 mL, 6.08 mmol)을 천천히 첨가하고 -30oC까지 서서히 승온하면서 1.5시간 동안 교반하였다. 반응 완료 후 증류수 (100 mL)를 천천히 적가하여 반응을 종결시키고 0oC에서 2N-수산화 나트륨 수용액을 첨가하여 중화시켰다. 상기 혼합물에 MC (100 mL)를 첨가하여 유기층을 4회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 코어 C-1을 옅은 주황색 고체형태로 수득하였다(239.7 mg, 84 %).
1H-NMR (400 MHz, DMSO-d6) δ 9.99 (s, 1H), 7.79 (m, 1H), 7.43 (s, 1H), 6.55 (m, 1H), 4.22 (s, 3H), 3.84 (s, 3H).
제조예 15: 코어 C-2의 제조
Figure PCTKR2023008742-appb-img-000102
단계 1: 화합물 C-2b의 제조
질소 대기 하 0oC에서 화합물 C-2a (2-nitro-m-cresol, TCI, CAS NO. 4920-77-8, 20 g, 130.59 mmol)를 ACN (250 mL)에 용해시킨 후 염화벤질 (15.78 mL, 137.12 mmol)과 탄산칼륨(22.56 g, 163.24 mmol)을 첨가하고 80oC에서 16시간 동안 교반하였다. 반응을 완료한 후 EA (200 mL)와 증류수 (300 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 C-2b를 밝은 노란색 오일 형태로 수득하였다(31.76 g, 99 %).
1H-NMR (400 MHz, CDCl3) δ 7.37-7.31 (m, 5H), 7.24 (m, 1H), 6.89-6.83 (m, 2H), 5.15 (s, 2H), 2.31 (s, 3H).
단계 2: 화합물 C-2c의 제조
질소 대기 하 상온에서 KOtBu (15.35 g, 136.82 mmol)를 THF (100 mL)와 디에틸 에테르 (300 mL)에 용해시키고 디에틸 옥살레이트 (Merck, CAS NO. 95-92-1, 19.46 mL, 143.34 mmol)를 첨가한 후 15분 동안 교반하였다. 위 반응 용액에 화합물 C-2c (31.7 g, 31.7 mmol)를 THF (50 mL)에 녹여 천천히 첨가한 후 상온에서 19시간 동안 교반하고 추가적으로 80oC에서 3시간 동안 교반하였다. 반응 완료 후 상온으로 반응용액을 냉각시키고 디에틸 에테르 (200 mL)를 적가하여 생성된 침전물을 여과하고 디에틸 에테르 (100 mL)를 이용해 세척한 후 건조하여 화합물 C-2c를 밝은 주황색의 고체형태로 수득하였다(41.5g, 83 %).
1H-NMR (400 MHz, DMSO-d6) δ 8.66 (d, J = 8 Hz, 1H), 7.40-7.30 (m, 5H), 7.04 (t, J = 8 Hz, 1H), 6.50 (d, J = 8 Hz, 1H), 5.15 (s, 1H), 5.10 (s, 2H), 3.99 (q, J = 7.2 Hz, 2H), 1.17 (t, J = 7.2 Hz, 3H).
단계 3: 화합물 C-2d의 제조
질소 대기 하 상온에서 아세트산 (200 mL)에 철 분말(Iron powder, 57.1 g, 1.02 mol)을 천천히 첨가하여 교반 중인 상태에서 화합물 C-2c (39 g, 102.24 mmol)를 초산 (150 mL)에 용해시켜 첨가하고 80oC에서 6시간 동안 교반하였다. 반응 완료 후 반응 용액의 온도를 45oC로 낮추고 EA (500 mL)를 적가한 후 30분 동안 추가적으로 교반하고 셀라이트 여과를 통해 얻어진 여과액을 감압 농축하였다. 이렇게 수득한 농축액에 EA (300 mL)를 첨가하여 생성된 침전물을 다시 한번 여과하였다. 여과액을 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 C-2d를 밝은 노란색 고체형태로 수득하였다(22.18 g, 73 %).
1H-NMR (400 MHz, CD3OD-d4) 7.57-7.55 (m, 2H), 7.43-7.39 (m, 2H), 7.36-7.32 (m, 1H), 7.23 (d, J = 8 Hz, 1H), 7.15 (s, 1H), 6.98 (t, J = 8 Hz, 1H), 6.83 (d, J = 7.6 Hz, 1H), 5.29 (s, 2H), 4.39 (q, J = 7.2 Hz, 2H), 1.42 (t, J = 7.2 Hz, 3H).
단계 4: 화합물 C-2e의 제조
질소 대기 하 0oC에서 화합물 C-2d (6 g, 20.31 mmol)를 DMF (30 mL)에 용해시킨 후 탄산칼륨(4.21 g, 30.46 mmol)과 요오도메탄 (1.64 mL, 26.40 mmol)을 순차적으로 첨가하고 0oC에서 1시간 교반하였다. 반응 온도를 상온으로 올리고 12시간 동안 교반한 후 추가적으로 3시간 동안 60oC에서 교반하여 반응을 완료하였다. 반응용액의 온도를 상온으로 냉각시키고 EA (200 mL)와 증류수 (400 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층에 증류수 (300 mL)를 첨가해 다시 한번 추출하고 추출된 유기층을 무수 황산마그네슘으로 건조 및 여과한 후 감압 농축하여 수득한 C-2e를 추가 정제없이 다음 반응에 이용하였다(6.28 g, 99 %).
1H-NMR (400 MHz, CDCl3) δ 7.49-7.47 (m, 2H), 7.42-7.39 (m, 2H), 7.37-7.33 (m, 1H), 7.25-7.23 (m, 2H), 6.99 (t, J = 8 Hz, 1H), 6.77 (d, J = 7.6 Hz, 1H), 5.18 (s, 2H), 4.37 (s, 3H), 4.35 (q, J = 7.2 Hz, 2H), 1.40 (t, J = 7.2 Hz, 3H).
단계 5: 화합물 C-2f의 제조
질소 대기 하 -30oC에서 화합물 C-2e (500 mg, 1.61 mmol)를 MC (20 mL)에 용해시킨 후 디클로로메틸 메틸 에테르(Merck, CAS NO. 4885-02-3, 438 μL, 4.83 mmol)와 사염화 티타늄 용액(1M-TiCl4 in MC, 4.85 mL, 4.83 mmol)을 순차적으로 천천히 첨가하고 1시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 냉각된 증류수 (100 mL)를 천천히 적가하여 반응을 종결시키고 EA (100 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 C-2f를 수득하였다(495 mg, 94 %).
1H-NMR (400 MHz, CD3OD-d4) δ 9.96 (s, 1H), 7.91 (s, 1H), 7.67 (d, J = 8 Hz, 1H), 7.57-7.55 (m, 2H), 7.47-7.37 (m, 3H), 7.08 (d, J = 8 Hz, 1H), 5.37 (s, 2H), 4.39-4.36 (m, 5H), 1.42 (t, J = 7.2 Hz, 3H).
단계 6: 코어 C-2의 제조
상온에서 화합물 C-2f (300 mg, 0.89 mmol)를 에탄올 (8 mL)과 THF (4 mL)에 용해시킨 후 증류수 (3 mL)에 용해시킨 수산화 리튬 일수화물 (75 mg, 1.78 mmol)을 서서히 적가하고 50oC에서 30분 동안 교반하였다. 반응 용액을 냉각시킨 후 1N-염산 수용액 (10 mL)와 증류수 (50 mL) 및 EA (100 mL)를 첨가하여 유기층을 추출하고 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 코어 C-2를 수득하였고 추가 정제 과정 없이 다음 반응에 이용하였다(275 mg, 99 %).
1H-NMR (400 MHz, Aceton-d4) δ 10.06 (s, 1H), 8.03 (s, 1H), 7.71 (d, J = 8 Hz, 1H), 7.65-7.63 (m, 2H), 7.49-7.38 (m, 3H), 7.15 (d, J = 8 Hz, 1H), 5.45 (s, 2H), 4.41 (s, 3H).
제조예 16: 코어 C-3의 제조
Figure PCTKR2023008742-appb-img-000103
단계 1: 화합물 C-3b의 제조
질소 대기 하 0oC에서 화합물 C-3a (benzo[b]thiophene-4-ol, Ambeed, CAS NO. 3610-02-4, 500 mg, 3.35 mmol)를 10% 수산화칼륨 수용액 (410 mg in 4 mL H2O)에 용해시킨 후 글리옥실산 일수화물 (300 mg)을 첨가하고 7시간 동안 교반하였다. 반응 완료 후 증류수 (2 mL)를 첨가하여 희석시키고 2N-염산 수용액을 천천히 적가하여 반응용액의 pH를 7로 맞추었다. 디에틸 에테르 (10 mL)를 이용하여 유기층을 추출하여 제거하고 물층에 2N-염산 수용액을 천천히 적가하여 pH를 2로 맞추고 디에틸 에테르 (100 mL)를 이용하여 3회 추출하였다. 유기층을 모아 무수 황산마그네슘으로 건조 및 여과한 후 감압 농축하여 화합물 C-3b (460 mg, 61.6 %)을 수득하였다.
1H-NMR (400 MHz, CDCl3) δ 7.51 (d, J = 5.6 Hz, 1H), 7.36 (d, J = 5.6 Hz, 1H), 7.24 (d, J = 8 Hz, 1H), 6.72 (d, J = 8 Hz, 1H), 5.41 (s, 1H).
단계 2: 코어 C-3의 제조
질소 대기 하 상온에서 화합물 C-3b (450 mg, 2.0 mmol)를 에탄올 (0.8 mL)에 용해시킨 후 황산제2철 수화물(923 mg, 2.3 mmol)과 0.4N-황산 수용액 (3.8 mL)을 순차적으로 첨가하고 60oC에서 1시간 동안 교반하였다. 반응 완료 후 상온으로 반응 온도를 낮추고 EA (100 mL)를 이용하여 반응 용액을 여과하였다. 여과액에 증류수 (100 mL)를 첨가하여 유기층을 추출하고 유기층을 무수 황산마그네슘으로 건조 및 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 코어 C-3을 수득하였다(210 mg, 58 %).
1H-NMR (400 MHz, CDCl3) δ 10.01 (s, 1H), 7.74 (d, J = 8 Hz, 1H), 7.60 (d, J = 5.6 Hz, 1H), 7.52 (d, J = 5.6 Hz, 1H), 6.88 (d, J = 8 Hz, 1H).
제조예 17: 코어 C-4의 제조
Figure PCTKR2023008742-appb-img-000104
단계 1: 화합물 C-4b의 제조
질소 대기 하 0oC에서 화합물 C-4a (Benzo[b]thiophene-4-ol, Ambeed, CAS NO. 3610-02-4, 1.14 g, 7.63 mmol)를 ACN (50 mL)에 용해시킨 후 탄산칼륨 (2.63 g, 19.07 mmol)과 브롬화벤질 (1 mL, 8.39 mmol)을 천천히 첨가하고 0oC에서 30분 동안 교반하였다. 반응 온도를 상온으로 올리고 16시간 동안 추가적으로 교반하였다. 반응을 완료한 후 EA (350 mL)와 증류수 (350 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 C-4b를 밝은 주황색 오일형태로 수득하였다(1.87 g, 99 %).
1H-NMR (400 MHz, CDCl3) δ 7.57 (d, J = 5.6 Hz, 1H), 7.50 - 7.47 (m, 3H), 7.42 - 7.38 (m, 2H), 7.35 - 7.32 (m, 2H), 7.27 - 7.23 (m, 1H), 6.81 (d, J = 8 Hz, 1H), 5.22 (s, 2H).
단계 2: 화합물 C-4c의 제조
질소 대기 하 상온에서 화합물 C-4b(1.87 g, 7.8 mmol)를 THF (60 mL)에 용해시켰다. 상기 용액을 -78oC로 냉각한 후 n-부틸리튬 용액 (2.5M n-BuLi in Hexane, 1.42 mL, 3.56 mmol)을 천천히 적가하고 같은 온도에서 30분 동안 교반하였다. 상기 혼합물에 DMF (0.78 mL)을 천천히 첨가하고 같은 온도에서 30분 동안 추가로 교반하였다. 같은 온도에서 상기 혼합물에 증류수 (300 mL)를 투입하여 반응을 종결시킨 후 EA (300 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과 후 감압 농축하였다. 잔사를 컬럼 크로마토그래피시켜 화합물 C-4c를 밝은 노란색 오일형태로 수득하였다(1.36 g, 65 %).
1H-NMR (400 MHz, CDCl3) δ 10.06 (s, 1H), 8.25 (s, 1H), 7.50 - 7.37 (m, 7H), 6.85 (d, J = 7.6 Hz, 1H), 5.24 (s, 2H).
단계 3: 코어 C-4의 제조
질소 대기 하 -78oC에서 화합물 C-4c (300 mg, 1.11 mmol)를 MC (20 mL)에 용해시킨 후 보론 트리클로라이드 용액 (1M-BCl3 in MC, 2.2 mL, 2.20 mmol)을 천천히 첨가하고 30분 동안 교반하였다. 반응 완료 후 EA (10 mL)와 증류수 (10 mL)를 -50oC에서 천천히 적가하여 반응을 종결시키고 상온에서 EA (100 mL)와 증류수 (100 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 코어 C-4를 밝은 황토색 고체형태로 수득하였다(174 mg, 87.4 %).
1H-NMR (400 MHz, DMSO-d6) δ 10.62 (brs, 1H), 8.41 (s, 1H), 7.46 (d, J = 8 Hz, 1H), 7.39 (t, J = 8 Hz, 1H), 6.82 (d, J = 8 Hz, 1H).
제조예 18: 코어 C-5의 제조
Figure PCTKR2023008742-appb-img-000105
단계 1: 화합물 C-5a의 제조
질소 대기 하 0oC에서 제조예 17의 단계 2에서 제조된 화합물 C-4c (1.36 g, 5.09 mmol)를 메탄올 (65 mL)에 용해시킨 후, 메탄올 (15 mL)에 용해시킨 수산화 칼륨 (713 mg, 12.72 mmol)과 메탄올 (15 mL)에 용해시킨 요오드 (1.67 g, 6.61 mmol)를 순차적으로 천천히 첨가한 후 상온에서 1시간 동안 교반하였다. 반응을 완료한 후 EA (500 mL)와 증류수 (500 mL)를 이용하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 C-5a를 아이보리색 고체형태로 수득하였다(1.43 g, 94 %).
1H-NMR (400 MHz, CDCl3) δ 8.28 (s, 1H), 7.49 - 7.47 (m, 2H), 7.44 - 7.34 (m, 5H), 6.82 (d, J = 7.6 Hz, 1H), 5.21 (s, 2H), 3.93 (s, 3H).
단계 2: 화합물 C-5b의 제조
질소 대기 하 -78oC에서 화합물 C-5a (240 mg, 0.80 mmol)를 MC (15 mL)에 용해시킨 후 디클로로메틸 메틸 에테르(218 μL, 2.41 mmol)와 사염화 티타늄 용액 (1M-TiCl4 in MC, 2.41 mL, 2.41 mmol)을 순차적으로 천천히 첨가하고 1시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 증류수 (100 mL)를 천천히 적가하여 반응을 종결시키고 EA (100 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 C-5b를 수득하였다(206.7 mg, 79 %).
1H-NMR (400 MHz, CDCl3) δ 10.07 (s, 1H), 8.34 (s, 1H), 7.93 (d, J = 8 Hz, 1H), 7.50 - 7.39 (m, 5H), 7.00 (d, J = 8 Hz, 1H), 5.34 (s, 2H), 3.95 (s, 3H).
단계 3: 코어 C-5의 제조
질소 대기 하 -78oC에서 화합물 C-5b (82.5 mg, 0.25 mmol)를 MC (5 mL)에 용해시킨 후 보론 트리클로라이드 용액 (1M-BCl3 in MC, 2.78 mL, 2.78 mmol)을 천천히 첨가하고 -30oC까지 서서히 승온하면서 5시간 동안 교반하였다. 반응 완료 후 증류수 (50 mL)를 천천히 적가하여 반응을 종결시키고 0oC에서 2N-수산화 나트륨 수용액을 첨가하여 중화시켰다. 상기 혼합물에 MC (50 mL)를 첨가하여 유기층을 3회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 코어 C-5를 아이보리색 고체형태로 수득하였다(32.8 mg, 55 %).
1H-NMR (400 MHz, DMSO-d6) δ 10.01 (s, 1H), 8.23 (s, 1H), 8.12 (d, J = 8 Hz, 1H), 7.02 (d, J = 8 Hz, 1H), 3.90 (s, 3H).
제조예 19: 코어 C-6의 제조
Figure PCTKR2023008742-appb-img-000106
단계 1: 화합물 C-6b의 제조
질소 대기 하 0oC에서 화합물 C-6a (3-fluorophenol, TCI, CAS NO. 372-20-3, 10 g, 89.2 mmol)를 무수 ACN (200 mL)에 용해시킨 후 브롬화벤질 (12.7 mL, 107 mmol)과 탄산칼륨(18.5 g, 7.98 mmol)을 첨가하고 상온에서 20시간 동안 교반하였다. 반응을 완료한 후 EA (350 mL)와 증류수 (350 mL)를 이용하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 C-6b를 백색 고체형태로 수득하였다(15 g, 83 %).
1H-NMR (400 MHz, CDCl3) δ 7.43 - 7.37 (m, 4H), 7.35 - 7.32 (m, 1H), 7.25 - 7.19 (m, 1H), 6.75 (dd, J = 8.4, 2.4 Hz, 1H), 6.71 - 6.64 (m, 2H), 5.04 (s, 2H).
단계 2: 화합물 C-6c의 제조
질소 대기 하 상온에서 화합물 C-6b (15 g, 74.1 mmol)를 THF (495 mL)에 첨가하고 -78oC로 냉각한 후 n-부틸리튬 용액 (2.5M n-BuLi in Hexane, 35.6 mL, 89.0 mmol)을 천천히 적가하였다. 상기 혼합물을 -78oC를 유지하며 30분 동안 교반한 후 DMF (17.2 mL)를 천천히 적가하고 30분간 추가 교반하였다. 30분 후 천천히 승온시킨 뒤 0oC에서 1시간 교반하였다. 반응을 완료한 후 다시 -20oC로 냉각하고 증류수 (300 mL)를 적가하여 반응을 종결시켰다. 상기 반응 용액에 EA (500 mL)를 이용하여 2회 추출하고 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과 후 감압 농축하였다. 잔사를 컬럼 크로마토그래피시켜 화합물 C-6c를 백색 고체형태로 수득하였다(14.5 g, 85 %).
1H-NMR (400 MHz, CDCl3) δ 10.51 (s, 1H), 7.44 - 7.40 (m, 6H), 6.83 (d, J = 8.4 Hz, 1H), 6.74 (t, J = 8.4 Hz, 1H), 5.20 (s, 2H).
단계 3: 화합물 C-6d의 제조
질소 대기 하 상온에서 화합물 C-6c (14.5 g, 62.9 mmol)를 DMF (150 mL)에 용해시킨 후 메틸 티오글리콜레이트 (Merck, CAS NO. 2365-48-2, 8.44 mL, 94.4 mmol) 및 트리에틸아민 (22.1 mL, 157.4 mmol)을 첨가하고 100 oC에서 16시간 동안 교반하였다. 반응 완료 후 반응용액의 온도를 상온으로 냉각시킨 후 EA (400 mL)와 증류수 (400 mL)를 이용하여 유기층을 2회 추출하였다. 수득한 유기층에 염화나트륨 수용액을 첨가하여 세척하였다. 세척한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하였다. 잔사를 컬럼 크로마토그래피시켜 화합물 C-6d를 백색 고체형태로 수득하였다(7.2 g, 38 %).
1H-NMR (400 MHz, CDCl3) δ 8.28 (s, 1H), 7.49 - 7.47 (m, 2H), 7.45 - 7.29 (m, 5H), 6.81 (d, J = 7.6 Hz, 1H), 5.21 (s, 2H), 3.92 (s, 3H).
단계 4: 화합물 C-6e의 제조
질소 대기 하 -78oC에서 화합물 C-6d (1 g, 3.35 mmol)를 MC (65 mL)에 용해시킨 후 디클로로메틸 메틸 에테르(Merck, CAS NO. 4885-02-3, 910 μL, 10.05 mmol)와 사염화 티타늄 용액 (1M-TiCl4 in MC, 10.05 mL, 10.05 mmol)을 순차적으로 천천히 첨가하고 3시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 증류수 (250 mL)를 천천히 적가하여 반응을 종결시키고 MC (250 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 C-6e를 수득하였다(733 mg, 67 %).
1H-NMR (400 MHz, CDCl3) δ 10.07 (s, 1H), 8.34 (s, 1H), 7.93 (d, J = 8 Hz, 1H), 7.50 - 7.39 (m, 5H), 7.00 (d, J = 8 Hz, 1H), 5.34 (s, 2H), 3.95 (s, 3H).
단계 5: 코어 C-6의 제조
질소 대기 하 상온에서 화합물 C-6e (1.37 g, 4.19 mmol)를 에탄올 (45 mL)과 THF (45 mL)에 용해시킨 후 증류수 (17 mL)에 용해시킨 수산화 리튬 일수화물 (352.2 mg, 8.39 mmol)을 서서히 적가하고 상온에서 1시간 동안 교반하였다. 상기 혼합물을 60oC에서 3시간 동안 추가로 교반하였다. 반응 완료 후 EA (300 mL)와 2N-염산 수용액 (250 mL)을 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축시켜 코어 C-6을 수득하였다(1.3 g, 99 %).
1H-NMR (400 MHz, DMSO-d6) δ 10.08 (s, 1H), 8.26 (d, J = 8.4 Hz, 1H), 8.09 (s, 1H), 7.56 (m, 2H), 7.46 - 7.35 (m, 4H), 5.47 (s, 2H).
제조예 20: 코어 C-7의 제조
Figure PCTKR2023008742-appb-img-000107
단계 1: 화합물 C-7a의 제조
질소 대기 하 상온에서 제조예 17의 단계 2에서 제조된 화합물 C-4c (2.1 g, 7.82 mmol)을 MC (40 mL)에 용해시킨 후 에틸 (트리페닐포스포라닐리덴)아세테이트 (5.45 g, 15.6 mmol)를 첨가하고 상온에서 16시간 교반하였다. 반응을 완료한 후 MC (100 mL)와 증류수 (100 mL)를 이용하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하였다. 잔사를 컬럼 크로마토그래피시켜 화합물 C-7a를 백색 고체형태로 수득하였다(2.5 g, 95 %).
1H-NMR (400 MHz, CDCl3) δ 7.85 (d, J = 15.6 Hz, 1H), 7.69 (s, 1H), 7.48 - 7.46 (m, 2H), 7.43 - 7.35 (m, 4H), 7.31 - 7.27 (m, 1H), 6.79 (d, J = 7.6 Hz, 1H), 6.25 (d, J = 15.6 Hz, 1H), 5.21 (s, 2H), 4.26 (q, J = 7.2 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H).
단계 2: 화합물 C-7b의 제조
질소 대기 하 상온에서 화합물 C-7a (4.7 g 13.3 mmol)를 THF (150 mL) 및 메탄올(500 mL)에 용해시키고 5% 팔라듐차콜 (5% Pd/C, 5.67 g)을 첨가한 후 수소 대기 하에서 1시간 반응시켰다. 반응 완료 후 셀라이트를 이용하여 여과한 용액을 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 C-7b를 백색 고체 형태로 수득하였다(4.3 g, 91 %).
1H-NMR (400 MHz, CDCl3) δ 7.48 - 7.41 (m, 1H), 7.42 - 7.34 (m, 4H), 7.26 - 7.25 (m, 1H), 7.18 (t, J = 8 Hz, 1H), 6.77 (d, J = 7.6 Hz, 1H), 5.19 (s, 2H), 4.15 (q, J = 7.2 Hz, 2H), 3.22 (t, J = 8.0 Hz, 2H), 2.74 (t, J = 8.0 Hz, 2H), 1.25 (t, J = 7.2 Hz, 3H).
단계 3: 화합물 C-7c의 제조
질소 대기 하 -78oC에서 화합물 C-7b (485 mg, 1.42 mmol)를 MC (30 mL)에 용해시킨 후 디클로로메틸 메틸 에테르(Merck, CAS NO. 4885-02-3, 400 μL, 4.27 mmol)와 사염화 티타늄 용액(1M-TiCl4 in MC, 4.3 mL, 4.27 mmol)을 순차적으로 천천히 첨가하고 2시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 증류수 (250 mL)를 천천히 적가하여 반응을 종결시키고 MC (250 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 C-7c를 수득하였다(290 mg, 55 %).
1H-NMR (400 MHz, CDCl3) δ 10.03 (s, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.49 - 7.35 (m, 6H), 6.94 (d, J = 8.4 Hz, 1H), 5.30 (s, 2H), 4.15 (q, J = 7.2 Hz, 2H), 3.27 (t, J = 7.6 Hz, 2H), 2.78 (t, J = 7.6 Hz, 2H), 1.24 (t, J = 7.2 Hz, 3H).
단계 4: 코어 C-7의 제조
질소 대기 하 상온에서 화합물 C-7c (290 mg, 0.79 mmol)를 에탄올 (5 mL)과 THF (5 mL)에 용해시킨 후 증류수 (2.5 mL)에 용해시킨 수산화 리튬 일수화물 (66 mg, 1.57 mmol)을 서서히 적가하고 상온에서 2시간 동안 교반하였다. 반응 완료 후 EA (300 mL)와 2N-염산 수용액 (250 mL)을 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축시켜 코어 C-7을 수득하였다(278 mg, 99 %).
1H-NMR (400 MHz, CDCl3) δ 10.03 (s, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.49 - 7.35 (m, 6H), 6.94 (d, J = 8.4 Hz, 1H), 5.31 (s, 2H), 3.28 (t, J = 7.6 Hz, 2H), 2.85 (t, J = 7.6 Hz, 2H); EI-MS m/z: 341(M+).
제조예 21: 코어 C-8의 제조
Figure PCTKR2023008742-appb-img-000108
질소 대기 하 -78oC에서 화합물 C-7c (279 mg, 0.81 mmol)를 MC (16 mL)에 용해시킨 후 보론 트리클로라이드 용액 (1M-BCl3 in MC, 2.44 mL, 2.44 mmol)을 천천히 첨가하고 1.5시간 동안 교반하였다. 반응 완료 후 -50oC로 승온 후 증류수 (15 mL)를 적가하여 반응을 종결시키고 0oC로 승온하여 2N-수산화나트륨 수용액 (5 mL)를 적가하였다. 혼합물에 MC (30 mL)를 이용하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 코어 C-8을 백색 고체형태로 수득하였다(150 mg, 66 %).
1H-NMR (400 MHz, CDCl3) δ 10.02 (s, 1H), 7.67 (d, J = 7.6 Hz, 1H), 6.84 (d, J = 8 Hz, 1H), 5.94 (s, 1H), 4.16 (q, J = 6.8 Hz, 2H), 3.29 (t, J = 7.6 Hz, 2H), 2.79 (t, J = 7.6 Hz, 2H), 1.26 (t, J = 7.2 Hz, 3H).
제조예 22: 코어 C-9의 제조
Figure PCTKR2023008742-appb-img-000109
질소 대기 하 0oC에서 화합물 C-9a (2-iodoresorcinol, CAS NO. 41046-67-7, TCI, 1 g, 4.23 mmol)를 ACN (150 mL)에 용해시킨 후, 메틸 5-헥시노에이트 (CAS NO. 77758-51-1, Thermoscientific, 600 μL), PdCl2(TPP)2 (100 mg), CuI (40 mg) 및 TEA (5.9 mL, 42.3 mmol)을 순차적으로 첨가하고 상온에서 1시간 동안 교반하였다. 60oC에서 추가적으로 16시간 동안 교반한 후 EA (100 mL)와 2N-염산 수용액 (100 mL)을 첨가하여 유기층을 추출하고 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 코어 C-9를 수득 하였다(340 mg, 34.2 %).
1H-NMR (400 MHz, CDCl3) δ 7.08-7.01 (m, 2H), 6.59 (m, 1H), 6.47 (s, 1H), 5.15 (s, 1H), 3.67 (s, 3H), 2.82 (t, J = 7.2 Hz, 2H), 2.41 (t, J = 7.2 Hz, 2H), 2.08 (m, 2H).
제조예 23: 코어 C-10의 제조
Figure PCTKR2023008742-appb-img-000110
단계 1: 화합물 C-10a의 제조
질소 대기 하 0oC에서 코어 C-9 (690 mg, 2.94 mmol)를 ACN (20 mL)에 용해시킨 후 탄산칼륨 (1.01 g, 7.36 mmol)과 브롬화벤질 (420 μL, 3.53 mmol)을 천천히 첨가하고 0oC에서 30분 동안 교반한 후 상온에서 16시간 동안 교반하였다. 반응을 완료한 후 EA (300 mL)와 증류수 (300 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 C-10a를 노란색 오일형태로 수득하였다(894 mg, 93 %).
1H-NMR (400 MHz, CDCl3) δ 7.48 - 7.46 (m, 2H), 7.41 - 7.32 (m, 3H), 7.13 - 7.04 (m, 2H), 6.69 (d, J = 8 Hz, 1H), 6.55 (s, 1H), 5.18 (s, 2H), 3.66 (s, 3H), 2.81 (t, J = 7.2 Hz, 2H), 2.41 (t, J = 7.2 Hz, 2H), 2.07 (p, J = 7.2 Hz, 2H).
단계 2: 화합물 C-10b의 제조
질소 대기 하 -78oC에서 화합물 C-10a (894 mg, 2.75 mmol)를 MC (50 mL)에 용해시킨 후 디클로로메틸 메틸 에테르(748 μL, 8.27 mmol)와 사염화 티타늄 용액(1M-TiCl4 in MC, 8.27 mL, 8.27 mmol)을 순차적으로 천천히 첨가하고 1.5시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 증류수 (250 mL)를 천천히 적가하여 반응을 종결시키고 MC (250 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 C-10b를 노란색 오일형태로 수득하였다(511 mg, 53 %).
1H-NMR (400 MHz, CDCl3) δ 10.25 (s, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.47 - 2.27 (m, 5H), 6.81 (d, J = 8.4 Hz, 1H), 6.61 (s, 1H), 5.27 (s, 2H), 3.67 (s, 3H), 2.89 (t, J = 7.2 Hz, 2H), 2.43 (t, J = 7.2 Hz, 2H), 2.11 (p, J = 7.2 Hz, 2H).
단계 3: 코어 C-10의 제조
질소 대기 하 -78oC에서 화합물 C-10b (511 mg, 1.45 mmol)를 MC (30 mL)에 용해시킨 후 보론 트리클로라이드 용액 (1M-BCl3 in MC, 4.35 mL, 4.35 mmol)을 천천히 첨가하고 1.5시간 동안 교반하였다. 반응 완료 후 증류수 (150 mL)를 천천히 적가하여 반응을 종결시키고 0oC에서 2N-수산화 나트륨 수용액을 첨가하여 중화시켰다. 상기 혼합물에 MC (150 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 코어 C-10을 백색 고체형태로 수득하였다(200.2 mg, 5 2%).
1H-NMR (400 MHz, DMSO-d6) δ 10.04 (s, 1H), 7.61 (d, J = 8.4 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 6.71 (s, 1H), 3.58 (s, 3H), 2.82 (t, J = 7.2 Hz, 2H), 2.43 (t, J = 7.2 Hz, 2H), 1.95 (p, J = 7.2 Hz, 2H).
제조예 24: 코어 C-11의 제조
Figure PCTKR2023008742-appb-img-000111
질소 대기 하 상온에서 코어 C-9 (200.2 mg, 0.76 mmol)를 에탄올 (5 mL)과 THF (5 mL)에 용해시킨 후 증류수 (2.5 mL)에 용해시킨 수산화 리튬 일수화물 (64 mg, 1.53 mmol)을 서서히 적가하고 상온에서 2.5시간 동안 교반하였다. 반응 완료 후 EA (150 mL)와 2N-염산 수용액 (150 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축시켜 코어 C-11을 검정색 고체형태로 수득하였다(210 mg, 99 %).
1H-NMR (400 MHz, DMSO-d6) δ 11.08 (s, 1H), 10.05 (s, 1H), 7.61 (d, J = 8.4 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 6.71 (s, 1H), 2.82 (t, J = 7.2 Hz, 2H), 2.33 (t, J = 7.2 Hz, 2H), 1.90 (p, J = 7.2 Hz, 2H).
제조예 25: 코어 C-12의 제조
Figure PCTKR2023008742-appb-img-000112
단계 1: 화합물 C-12b의 제조
질소 대기 하 상온에서 화합물 C-12a (10 g, 90.8 mmol)를 ACN (200 mL)에 용해시킨 후 브롬화벤질 (7.18 mL, 60.5 mmol)을 첨가한 뒤 0oC로 냉각시켰다. 탄산칼륨 (20.9 g, 151.2 mmol)을 첨가하고 상온에서 20시간 동안 교반하였다. 반응을 완료한 후 EA (400 mL)와 증류수 (500 mL)를 이용하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 C-12b를 노란색 고체형태로 수득하였다(6.6 g, 54 %).
1H-NMR (400 MHz, CDCl3) δ 7.43 - 7.36 (m, 4H), 7.34 - 7.32 (m, 1H), 7.13 (t, J = 8.4 Hz, 1H), 6.56 (dd, J = 2.4, 0.8 Hz, 1H), 6.48 (t, J = 2.4 Hz, 1H), 6.43 (dd, J = 2.4, 0.8 Hz, 1H), 5.03 (s, 2H), 4.97 (s, 1H).
단계 2-1: 화합물 C-12c의 제조
질소 대기 하 상온에서 화합물 C-12b (1.0 g, 4.99 mmol)를 ACN (25 mL)에 용해시킨 후 클로로메틸 메틸 에테르 (CAS NO. 107-30-2, 7.18 mL, 5.99 mmol) 및 탄산칼륨 (1.37 g, 9.98 mmol)을 첨가하고 상온에서 16시간 동안 교반하였다. 반응을 완료한 후 EA (100 mL)와 증류수 (100 mL)를 이용하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 C-12c를 백색 고체형태로 수득하였다(908 mg, 74 %).
1H-NMR (400 MHz, CDCl3) δ 7.44 - 7.42 (m, 2H), 7.39 - 7.36 (m, 2H), 7.33 - 7.31 (m, 1H), 7.18 (t, J = 8.4 Hz, 1H), 6.70 - 6.69 (m, 1H), 6.66 - 6.62 (m, 2H), 5.15 (s, 2H), 5.04 (s, 2H), 3.47 (s, 3H).
단계 3-1: 화합물 C-12d의 제조
질소 대기 하 상온에서 화합물 C-12c (900 mg, 3.68 mmol)를 THF (30 mL)에 첨가하고 -40oC로 냉각한 후 n-부틸리튬 용액 (2.5M n-BuLi in Hexane, 1.76 mL, 4.42 mmol)을 천천히 적가하였다. 상기 혼합물을 -20oC로 승온 후 DMF (0.85 mL)를 천천히 적가하고 상온으로 천천히 승온시킨 뒤 1시간 동안 교반하였다. 반응을 완료한 후 증류수 (30 mL)를 적가하여 반응을 종결시켰다. 상기 반응 용액에 EA (30 mL)를 이용하여 유기층을 2회 추출하고 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과 후 감압 농축하였다. 잔사를 컬럼 크로마토그래피시켜 화합물 C-12d를 백색 고체형태로 수득하였다(300 mg, 30 %).
1H-NMR (400 MHz, CDCl3) δ 10.60 (s, 1H), 7.46 - 7.45 (m, 2H), 7.41 - 7.34 (m, 3H), 7.32 - 7.30 (m, 1H), 6.80 (d, J = 8.4 Hz, 1H), 6.67 (d, J = 8.4 Hz, 1H), 5.26 (s, 2H), 5.18 (s, 2H), 3.50 (s, 3H).
단계 4-1: 화합물 C-12g의 제조 (방법 1)
질소 대기 하 상온에서 화합물 C-12d (300 mg, 1.10 mmol)를 에탄올 (10 mL)에 용해시킨 후 2N-염산 수용액 (1.1 mL)을 첨가하고 16시간 교반하였다. 반응을 완료한 후 증류수 (50 mL)를 적가하여 반응을 종결시키고 EA (50 mL)를 이용하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과 후 감압 농축하였다. 잔사를 컬럼 크로마토그래피시켜 화합물 C-12g를 백색 고체형태로 수득하였다(150 mg, 60 %).
1H-NMR (400 MHz, CDCl3) δ 11.95 (s, 1H), 10.41 (s, 1H), 7.41 - 7.35 (m, 6H), 6.54 (d, J = 8.4 Hz, 1H), 6.45 (d, J = 8.4 Hz, 1H), 5.14 (s, 2H), 3.88 (td, J = 10.8, 3.2 Hz, 1H), 3.63 - 3.60 (m, 1H), 2.05 - 1.98 (m, 1H), 1.97 - 1.86 (m, 2H), 1.73 - 1.60 (m, 3H).
단계 2-2: 화합물 C-12e의 제조
질소 대기 하 상온에서 화합물 C-12b (22 g, 109.8 mmol)를 MC (200 mL)에 용해시킨 후 3,4-디하이드로-2H-피란 (CAS NO. 110-87-2, 12.0 mL, 131.8 mmol) 및 PPTS (2.76 g, 10.9 mmol)를 첨가하고 상온에서 16시간 동안 교반하였다. 반응을 완료한 후 MC (500 mL)와 증류수 (500 mL)를 이용하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 A-24e를 백색 고체형태로 수득하였다(23.9 g, 76 %).
1H-NMR (400 MHz, CDCl3) δ 7.44 - 7.42 (m, 2H), 7.40 - 7.36 (m, 2H), 7.33 - 7.29 (m, 1H), 7.17 (t, J = 8.4 Hz, 1H), 6.72 (t, J = 2.4 Hz, 1H), 6.66 (dd, J = 2.4, 0.8 Hz, 1H), 6.61 (dd, J = 2.4, 0.8 Hz, 1H), 5.39 (t, J = 3.6 Hz, 1H), 5.04 (s, 2H), 3.94 - 3.88 (m, 1H), 3.62 - 3.57 (m, 1H), 2.04 - 1.95 (m, 1H), 1.86 - 1.82 (m, 2H), 1.69 - 1.53 (m, 3H).
단계 3-2: 화합물 C-12f의 제조
질소 대기 하 상온에서 화합물 C-12e (7.7 g, 27.0 mmol)를 THF (200 mL)에 용해시킨 후 0oC로 냉각한 후 n-부틸리튬 용액 (2.5M n-BuLi in Hexane, 13.0 mL, 32.4 mmol)을 천천히 적가하였다. 상기 반응용액을 30분간 교반 후 DMF (6.3 mL)를 천천히 적가하고 상온으로 천천히 승온시킨 뒤 1시간 동안 추가 교반하였다. 반응을 완료한 후 증류수 (500 mL)를 적가하여 반응을 종결시켰다. 상기 반응 용액에 EA (500 mL)를 이용하여 유기층을 2회 추출하고 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과 후 감압 농축하였다. 잔사를 컬럼 크로마토그래피시켜 화합물 C-12f를 백색 고체형태로 수득하였다(2.5 g, 27 %).
1H-NMR (400 MHz, CDCl3) δ 10.62 (s, 1H), 7.47 - 7.46 (m, 2H), 7.40 - 7.36 (m, 3H), 7.35 - 7.31 (m, 1H), 6.82 (d, J = 8.4 Hz, 1H), 6.64 (d, J = 8.4 Hz, 1H), 3.88 (td, J = 10.8, 3.2 Hz, 1H), 3.63 - 3.60 (m, 1H), 2.05 - 1.98 (m, 1H), 1.97 - 1.86 (m, 2H), 1.73 - 1.60 (m, 3H).
단계 4-2: 화합물 C-12g의 제조 (방법 2)
질소 대기 하 상온에서 화합물 C-12f (3.98 g, 12.7 mmol)를 에탄올 (80 mL)에 용해시킨 후 PPTS (2.76 g, 10.9 mmol)를 첨가하였다. 상기 혼합물을 60oC에서 2시간 교반하였다. 반응을 완료한 후 증류수 (300 mL)를 적가하여 반응을 종결시켰다. 상기 반응 용액에 EA (300 mL)를 첨가하여 유기층을 2회 추출하고 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과 후 감압 농축하였다. 잔사를 컬럼 크로마토그래피시켜 화합물 C-12g를 백색 고체형태로 수득하였다(2.6 g, 89 %).
1H-NMR (400 MHz, CDCl3) δ 11.97 (s, 1H), 10.41 (s, 1H), 7.42 - 7.38 (m, 6H), 6.54 (d, J = 8.4 Hz, 1H), 6.45 (d, J = 8.4 Hz, 1H), 5.14 (s, 2H), 3.88 (td, J = 10.8, 3.2 Hz, 1H), 3.63 - 3.60 (m, 1H), 2.05 - 1.98 (m, 1H), 1.97 - 1.86 (m, 2H), 1.73 - 1.60 (m, 3H).
단계 5: 화합물 C-12h의 제조
질소 대기 하 상온에서 화합물 C-12g (2.5 g, 10.9 mmol)를 DMF (50 mL)에 용해시킨 후 에틸 클로로아세테이트 (1.40 mL, 13.1 mmol) 및 탄산칼륨 (3.02 g, 21.9 mmol)을 첨가하고 80oC에서 2시간 동안 교반하였다. 반응을 완료한 후 증류수 (300 mL)를 적가하여 반응을 종결시켰다. 상기 반응 용액에 EA (300 mL)를 첨가하여 유기층을 2회 추출하고 수득한 유기층에 염화나트륨 수용액을 첨가하여 다시 한번 유기층을 추출하였다. 세척한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하였다. 잔사를 컬럼 크로마토그래피시켜 화합물 C-12h를 백색 고체형태로 수득하였다(2.7g mg, 77 %).
1H-NMR (400 MHz, CDCl3) δ 10.63 (s, 1H), 7.46 - 7.45 (m, 2H), 7.40 - 7.36 (m, 3H), 7.33 - 7.32 (m, 1H), 6.68 (d, J = 8.4 Hz, 1H), 6.45 (d, J = 8.4 Hz, 1H), 5.18 (s, 2H), 4.72 (s, 2H), 4.26 (q, J = 7.2 Hz, 2H), 1.28 (d, J = 7.2 Hz, 3H).
단계 6: 화합물 C-12i의 제조
질소 대기 하 상온에서 화합물 C-12h (2.7 g, 8.59 mmol)를 DMF (50 mL)에 용해시킨 후 탄산칼륨 (1.78 g, 12.9 mmol)을 첨가하고 100oC에서 2시간 동안 교반하였다. 반응을 완료한 후 증류수 (200 mL)를 적가하여 반응을 종결시켰다. 상기 반응 용액에 EA (300 mL)를 이용하여 유기층을 2회 추출하고 수득한 유기층에 염화나트륨 수용액을 첨가하여 세척하였다. 세척한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하였다. 잔사를 컬럼 크로마토그래피시켜 화합물 C-12i를 백색 고체형태로 수득하였다(2.1g mg, 82 %).
1H-NMR (400 MHz, CDCl3) δ 7.67 (s, 1H), 7.48 - 7.46 (m, 2H), 7.43 - 7.39 (m, 2H), 7.37 - 7.32 (m, 2H), 7.20 (d, J = 8.4 Hz, 1H), 6.75 (d, J = 8.4 Hz, 1H), 5.21 (s, 2H), 4.42 (q, J = 7.2 Hz, 2H), 1.42 (t, J = 7.2 Hz, 3H).
단계 7: 화합물 C-12j의 제조
질소 대기 하 -78oC에서 화합물 C-12i (910 mg, 3.07 mmol)를 MC (60 mL)에 용해시킨 후 디클로로메틸 메틸 에테르(833 μL, 9.21 mmol)와 사염화 티타늄 용액(1M-TiCl4 in MC, 9.2 mL, 9.21 mmol)을 순차적으로 천천히 첨가하고 2시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 증류수 (100 mL)를 천천히 적가하여 반응을 종결시키고 EA (100 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 C-12j를 수득하였다(270 mg, 26.7 %).
1H-NMR (400 MHz, CDCl3) δ 10.43 (s, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.71 (s, 1H), 7.47-7.38 (m, 5H), 6.88 (d, J = 8.4 Hz, 1H), 5.30 (s, 2H), 4.44 (q, J = 7.2 Hz, 2H), 1.42 (t, J = 7.2 Hz, 3H).
단계 8: 코어 C-12의 제조
질소 대기 하 -78oC에서 화합물 C-12j (250 mg, 0.77 mmol)를 MC (15 mL)에 용해시킨 후 보론 트리클로라이드 용액 (1M-BCl3 in MC, 4.3 mL, 4.3 mmol)을 천천히 첨가하고 1시간 동안 교반하였다. 반응 완료 후 증류수 (50 mL)를 -50oC에서 천천히 적가하여 반응을 종결시키고 상온에서 EA (100 mL)와 증류수 (100 mL)를 추가로 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 코어 C-12를 백색 고체형태로 수득하였다(150 mg, 83 %).
1H-NMR (400 MHz, CDCl3) δ 10.37 (s, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.76 (s, 1H), 6.81 (d, J = 8.4 Hz, 1H), 4.44 (q, J = 7.2 Hz, 2H), 1.43 (t, J = 7.2 Hz, 3H).
제조예 26: 코어 C-13의 제조
Figure PCTKR2023008742-appb-img-000113
단계 1: 화합물 C-13a의 제조
질소 대기 하 0oC에서 THF (350 mL)에 LAH (2.65 g, 69.77 mmol)을 첨가한 후, 제조예 25의 단계 6에서 제조된 화합물 C-12i (8.27 g, 27.91 mmol)을 THF (50 mL)에 용해시켜서 천천히 첨가하고 0oC에서 1시간 동안 교반하였다. 반응 완료 후 증류수 (300 mL)를 첨가하여 반응을 종결시키고 EA (300 mL)로 반응용액을 희석하고 셀라이트를 이용하여 여과하였다. 수득한 용액을 감압 농축하여 유기층을 제거한 후 EA (500 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 C-13a를 백색 고체형태로 수득하였다(6.99 g, 98 %).
1H-NMR (400 MHz, CDCl3) δ 7.47 - 7.45 (m, 2H), 7.41 - 7.37 (m, 2H), 7.35 (m, 1H), 7.18 (t, J = 8 Hz, 1H), 7.10 (d, J = 8 Hz, 1H), 6.80 (s, 1H), 6.71 (d, J = 8 Hz, 1H), 5.19 (s, 2H), 4.73 (d, J = 6 Hz, 2H), 1.88 (t, J = 6 Hz, 1H).
단계 2: 화합물 C-13b의 제조
질소 대기 하 0oC에서 MC (25 mL)에 데스-마틴 페리오디난 (Dess-Martin Periodinane, CAS NO. 87413-09-0, 7.02 g, 16.56 mmol)를 첨가한 후 MC (10 mL)에 용해시킨 화합물 C-13a (3.5 g, 13.80 mmol)를 천천히 첨가하고 0oC에서 30분 동안 교반하였다. 상기 혼합물을 상온으로 승온하여 3시간 동안 추가로 교반하였다. 반응 완료 후 MC (200 mL)로 반응용액을 희석하고 셀라이트를 이용하여 여과한 후 증류수 (200 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 C-13b를 연황색 고체형태로 수득하였다(3.31 g, 95 %).
1H-NMR (400 MHz, CDCl3) δ 9.80 (s, 1H), 7.71 (s, 1H), 7.48 - 7.36 (m, 6H), 7.20 (d, J = 8 Hz, 1H), 6.77 (d, J = 8 Hz, 1H), 5.22 (s, 2H).
단계 3: 화합물 C-13c의 제조
질소 대기 하 상온에서 화합물 C-13b (3.31 g, 13.12 mmol)를 MC (65 mL)에 용해시킨 후 (카베톡시메틸렌)트리페닐포스포란 (Merck, CAS No. 1099-45-2, 9.14 g, 26.24 mmol)을 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 반응 용액을 감압 농축시켜 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 C-13c를 백색 고체형태로 수득하였다(4.24 g, 99 %).
Cis-form: 1H-NMR (400 MHz, CDCl3) δ 8.03 (s, 1H), 7.48 - 7.46 (m, 2H), 7.41 - 7.33 (m, 3H), 7.23 (m, 1H), 7.07 (d, J = 8 Hz, 1H), 6.85 (d, J = 13.2 Hz, 1H), 6.68 (d, J = 8 Hz, 1H), 5.92 (d, J = 13.2 Hz, 1H), 5.21 (s, 2H), 4.28 (q, J = 7.2 Hz, 2H), 1.34 (t, J = 7.2 Hz, 3H); EI-MS m/z: 323[M+H]+.
Trans-form: 1H-NMR (400 MHz, CDCl3) δ 7.52 (d, J = 15.6 Hz, 1H), 7.48 - 7.45 (m, 2H), 7.42 - 7.35 (m, 3H), 7.24 (m, 1H), 7.10 (d, J = 8 Hz, 1H), 7.07 (s, 1H), 6.71 (d, J = 8 Hz, 1H), 6.53 (d, J = 15.6 Hz, 1H), 5.20 (s, 2H), 4.27 (q, J = 7.2 Hz, 2H), 1.34 (t, J = 7.2 Hz, 3H); EI-MS m/z: 323[M+H]+.
단계 4: 화합물 C-13d의 제조
질소 대기 하 상온에서 화합물 C-13c (4.24 g, 13.15 mmol)를 THF (160 mL)와 메탄올 (480 mL)에 용해시킨 후 5% 팔라듐 차콜 (5% Pd/C, 2.1 g)을 첨가하고 수소환경 하에서 3시간 동안 교반하였다. 반응 완료 후 EA (350 mL)로 반응용액을 희석하고 셀라이트를 이용하여 여과하였다. 여과된 용액을 감압 농축 후 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 C-13d를 백색 고체형태로 수득하였다(2.93 g, 95 %).
1H-NMR (400 MHz, CDCl3) δ 7.08 - 7.00 (m, 2H), 6.59 (dd, J = 7.6, 0.8 Hz, 1H), 6.49 (d, J = 0.8 Hz, 1H), 5.41 (s, 1H), 4.16 (q, J = 7.2 Hz, 2H), 3.10 (t, J = 7.2 Hz, 2H), 2.75 (t, J = 7.2 Hz, 2H), 1.26 (t, J = 7.2 Hz, 3H); EI-MS m/z: 235[M+H]+.
단계 5: 화합물 C-13e의 제조
질소 대기 하 상온에서 화합물 C-13d (2.93 g, 12.51 mmol)를 ACN (100 mL)에 용해시킨 후 탄산칼륨(4.3 g, 31.27 mmol)과 브롬화벤질 (1.9 mL, 16.26 mmol)을 첨가하고 80oC에서 16시간 동안 교반하였다. 반응을 완료한 후 EA (500 mL)와 증류수 (450 mL) 및 2N-염산 수용액 (50 mL)을 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 C-13e를 무색 오일형태로 수득하였다(3.99 g, 98 %).
1H-NMR (400 MHz, CDCl3) δ 7.47 - 7.45 (m, 2H), 7.41 - 7.37 (m, 2H), 7.33 (m, 1H), 7.12 (t, J = 8 Hz, 1H), 7.05 (d, J = 8 Hz, 1H), 7.68 (d, J = 8 Hz, 1H), 6.57 (s, 1H), 5.18 (s, 2H), 4.16 (q, J = 7.2 Hz, 2H), 3.10 (t, J = 7.2 Hz, 2H), 2.74 (t, J = 7.2 Hz, 2H), 1.25 (t, J = 7.2 Hz, 3H); EI-MS m/z: 325[M+H]+.
단계 6: 화합물 C-13f의 제조
질소 대기 하 -78oC에서 화합물 C-13e (3.99 g, 12.3 mmol)를 MC (240 mL)에 용해시킨 후 디클로로메틸 메틸 에테르(3.3 mL, 36.9 mmol)와 사염화 티타늄 용액(1M-TiCl4 in MC, 36.9 mL, 36.9 mmol)을 순차적으로 천천히 첨가하고 1.5시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 증류수 (500 mL)를 천천히 적가하여 반응을 종결시키고 MC (350 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 C-13f를 노란색 고체형태로 수득하였다(2.3 g, 53 %).
1H-NMR (400 MHz, CDCl3) δ 10.24 (s, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.46 - 7.34 (m, 5H), 6.80 (d, J = 8.4 Hz, 1H), 6.62 (s, 1H), 5.26 (s, 2H), 4.17 (q, J = 7.2 Hz, 2H), 3.18 (t, J = 7.2 Hz, 2H), 2.78 (t, J = 7.2 Hz, 2H), 1.25 (t, J = 7.2 Hz, 3H).
단계 7: 코어 C-13의 제조
질소 대기 하 0oC에서 화합물 C-13f (2.3 g, 6.53 mmol)를 에탄올 (40 mL)과 THF (40 mL)에 용해시킨 후 증류수 (20 mL)에 용해시킨 수산화 리튬 일수화물 (821 mg, 19.58 mmol)을 서서히 적가하고 상온에서 1.5시간 동안 교반하였다. 반응 완료 후 EA (300 mL)와 2N-염산 수용액 (200 mL)을 이용하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키코 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 코어 C-13을 녹색 고체형태로 수득하였다(2.4 g, 99 %).
1H-NMR (400 MHz, DMSO-d6) δ 10.11 (s, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.53 - 7.51 (m, 2H), 7.44 - 7.36 (m, 3H), 7.08 (d, J = 8.4 Hz, 1H), 6.74 (s, 1H), 5.37 (s, 2H), 3.04 (t, J = 7.2 Hz, 2H), 2.71 (t, J = 7.2 Hz, 2H).
제조예 27: 코어 C-14의 제조
Figure PCTKR2023008742-appb-img-000114
질소 대기 하 -78oC에서 제조예 26의 단계 2에서 제조된 화합물 C-13b (1 g, 3.96 mmol)를 MC (80 mL)에 용해시킨 후 보론 트리클로라이드 용액 (1M-BCl3 in MC, 11.89 mL, 11.89 mmol)을 천천히 첨가하고 -78oC에서 2시간 동안 교반하였다. 반응 완료 후 증류수 (250 mL)를 천천히 적가하여 반응을 종결시키고 0oC에서 2N-수산화 나트륨 수용액을 첨가하여 중화시켰다. 상기 혼합물에 MC (250 mL)를 첨가하여 유기층을 3회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 코어 C-14을 노란색 고체형태로 수득하였다(580 mg, 90 %).
1H-NMR (400 MHz, DMSO-d6) δ 10.61 (brs, 1H), 9.78 (s, 1H), 7.97 (s, 1H), 7.38 (t, J = 8.4 Hz, 1H), 7.12 (d, J = 8.4 Hz, 1H), 6.71 (d, J = 8.4 Hz, 1H).
제조예 28: 코어 C-15의 제조
Figure PCTKR2023008742-appb-img-000115
단계 1: 화합물 C-15b의 제조
질소 대기 하 0oC에서 화합물 C-15a (2-chloro-6-hydroxybenzaldehdye, Merck, CAS NO. 18362-30-6, 500 mg, 3.19 mmol)를 ACN (10 mL)에 용해시킨 후 브롬화벤질 (400 μL, 3.35 mmol)과 탄산칼륨(1.1 g, 7.98 mmol)을 첨가하고 상온에서 16시간 동안 교반하였다. 반응을 완료한 후 EA (100 mL)와 증류수 (100 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 C-15b를 백색 고체형태로 수득하였다(750 mg, 95 %).
1H-NMR (400 MHz, CDCl3) δ 10.57 (s, 1H), 7.45 - 7.34 (m, 6H), 7.04 (d, J = 8 Hz, 1H), 6.96 (d, J = 8.8 Hz, 1H), 5.19 (s, 2H).
단계 2: 화합물 C-15c의 제조
질소 대기 하 상온에서 셀레늄 분말 (256 mg, 3.24 mmol)을 THF (10 mL)에 첨가하고 0oC로 냉각한 후 n-부틸리튬 용액 (2.5M n-BuLi in Hexane, 1.42 mL, 3.56 mmol)을 천천히 적가하였다. 상기 혼합물을 0oC 하에서 40분 동안 교반한 후 화합물 C-15b(800 mg, 3.24 mmol)를 DMF (2 mL)에 용해시켜 첨가하고 12시간 동안 상온에서 교반하였다. 반응완료 후 0oC로 냉각하고 증류수 (100 mL)를 천천히 적가하여 반응을 종결시켰다. 상기 반응 용액에 EA (100 mL)를 첨가한 후 추출하고 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과 후 감압 농축하였다. 잔사를 컬럼 크로마토그래피시켜 화합물 C-15c를 밝은 노란색 고체형태로 수득하였다(900 mg, 80 %).
1H-NMR (400 MHz, CDCl3) δ 10.70 (s, 1H), 7.42-7.33 (m, 6H), 7.04 (d, J = 8 Hz, 1H), 6.81 (d, J = 8.8 Hz, 1H), 5.18 (s, 2H), 2.85 (t, J = 7.6 Hz, 2H), 1.75 (qui, J = 7.6 Hz, 2H), 1.51 (m, 2H), 0.95 (t, J = 7.6 Hz, 3H).
단계 3: 화합물 C-15d의 제조
질소 대기 하 상온에서 화합물 C-15c (900 mg, 2.59 mmol)를 DMF (10 mL)에 용해시킨 후 에틸 브로모아세테이트(574 μL, 6.48 mmol)를 첨가하고 120 oC에서 12시간 동안 교반하였다. 반응 완료 후 반응용액의 온도를 상온으로 냉각시킨 후 추가적인 정제과정 없이 다음 반응에 이용하였다.
단계 4: 화합물 C-15e의 제조
질소 대기 하에서 상기 반응 용액에 탄산칼륨 (716 mg, 6.48 mmol)을 첨가하고 120 oC에서 2.5시간 동안 교반하였다. 반응을 완료한 후 EA (100 mL)와 증류수 (200 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층에 다시한번 증류수 (200 mL)를 첨가하여 추가 세척한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하였다. 잔사를 컬럼 크로마토그래피시켜 화합물 C-15e를 백색 고체형태로 수득하였다(840 mg, 90 %).
1H-NMR (400 MHz, CDCl3) δ 8.55 (s, 1H), 7.49-7.47 (m, 3H), 7.43-7.29 (m, 4H), 6.84 (d, J = 8 Hz, 1H), 5.21 (s, 2H), 4.37 (q, J = 7.2 Hz, 2H), 1.39 (t, J = 7.2 Hz, 3H); EI-MS m/z: 361[M+H]+.
단계 5: 화합물 C-15f의 제조
질소 대기 하 -78oC에서 화합물 C-15e (400 mg, 1.11 mmol)를 MC (30 mL)에 용해시킨 후 디클로로메틸 메틸 에테르(300 μL, 3.33 mmol)와 사염화 티타늄 용액(1M-TiCl4 in MC, 3.33 mL, 3.33 mmol)을 순차적으로 천천히 첨가하고 2시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 증류수 (100 mL)를 천천히 적가하여 반응을 종결시키고 EA (100 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 C-15f를 수득하였다(310 mg, 72 %).
1H-NMR (400 MHz, CDCl3) δ 10.09 (s,1H), 8.62 (s, 1H), 7.89 (d, J = 8 Hz, 1H), 7.49-7.38 (m, 5H), 7.03 (d, J = 8 Hz, 1H), 5.34 (s, 2H), 4.39 (q, J = 7.2 Hz, 2H), 1.41 (t, J = 7.2 Hz, 3H); EI-MS m/z: 388[M+H]+.
단계 6: 코어 C-15의 제조
질소 대기 하 -78oC에서 화합물 C-15f (300 mg, 0.77 mmol)를 MC (15 mL)에 용해시킨 후 보론 트리클로라이드 용액 (1M-BCl3 in MC, 4.62 mL, 4.62 mmol)을 천천히 첨가하고 1.5시간 동안 교반하였다. 반응 완료 후 증류수 (100 mL)를 천천히 적가하여 반응을 종결시키고 EA (100 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 코어 C-15를 백색 고체형태로 수득하였다(185 mg, 80 %).
1H-NMR (400 MHz, DMSO-d6) δ 10.05 (s, 1H), 8.47 (s, 1H), 8.09 (d, J = 8 Hz, 1H), 7.05 (d, J = 8 Hz, 1H), 4.33 (q, J = 7.2 Hz, 2H), 1.34 (t, J = 7.2 Hz, 3H).
제조예 29: 코어 C-16의 제조
Figure PCTKR2023008742-appb-img-000116
질소 대기 하 -30oC에서 화합물 C-2d (3.0 g, 10.15 mmol)를 MC (180 mL)에 용해시킨 후 디클로로메틸 메틸 에테르(Merck, CAS NO. 4885-02-3, 2.76 mL, 30.45 mmol)와 사염화 티타늄 용액(1M-TiCl4 in MC, 30.45 mL, 30.45 mmol)을 순차적으로 천천히 첨가하고 2시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 냉각된 증류수 (100 mL)를 천천히 적가하여 반응을 종결시키고 EA (300 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 코어 C-16를 수득하였다(2.76 g, 84 %).
1H-NMR (400 MHz, CDCl3) δ10.07 (S ,1H), 9.28 (brs, 1H), 7.94 (d, J = 2.0 Hz, 1H), 7.61 (d, J = 8 Hz, 1H), 7.49 - 7.40 (m, 5H), 6.90 (d, J = 8 Hz, 1H), 5.31 (s, 2H), 4.41 (q, J = 7.2 Hz, 2H), 1.41 (t, J = 7.2 Hz, 3H).
제조예 30: 링커 Q-1의 제조
Figure PCTKR2023008742-appb-img-000117
질소 대기 하 0oC에서 링커 P-2 (172 mg, 0.64 mmol)를 포화 탄산수소나트륨 수용액 (3.5 mL)에 용해시킨 후 0oC에서 15분 동안 교반하였다. 상기 혼합물에 Q-1a (N-Methoxycarbonylmaleimide, TCI, CAS No. 55750-48-6, 100 mg, 0.64 mmol)를 천천히 첨가하고 같은 온도에서 1.5시간 동안 교반하였다. 반응 완료 후 EA (50 mL)와 증류수 (50 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 20oC 이하의 온도에서 감압 농축시켰다. 이렇게 얻은 잔사를 컬럼 크로마토그래피시켜 링커 Q-1을 무색 오일형태로 수득하였다(137.3 mg, 68 %).
1H-NMR (400 MHz, CDCl3) δ 6.70 (s, 2H), 4.20 (d, J = 2.4 Hz, 2H), 3.74 - 3.59 (m, 16H), 2.42 (t, J = 2.4 Hz, 1H).
제조예 31: 링커 Q-2의 제조
Figure PCTKR2023008742-appb-img-000118
질소 대기 하 0oC에서 화합물 Q-2a (Mal-PEG2-acid, CAS NO. 1374666-32-6, TCI, 100 mg, 0.388 mmol)를 MC (5 mL)에 용해시킨 후 NHS (49.2 mg, 0.427 mmol) 및 DCC (88.2 mg, 0.427 mmol)를 첨가하고 15시간 동안 교반하였다. 반응 완료 후 EA/n-헥산 (1:1 부피비, 20 mL)을 첨가하고 생성된 침전물을 여과하여 제거하였다. 여과액을 농축한 후 다시 한번 EA/n-헥산 (1:1 부피비, 20 mL)을 첨가하여 생성된 침전물을 제거하고 여과액을 감압 농축하여 링커 Q-2를 수득하였다(139 mg, 99 %).
1H-NMR (400 MHz, CDCl3) δ 6.70 (s, 2H), 3.81 (t, J = 6.4 Hz, 2H), 3.72 (m, 2H), 3.65-3.58 (m, 6H), 2.87 (t, J = 6.4 Hz, 2H), 2.84 (s 4H); EI-MS m/z: 355[M+H]+.
제조예 32: 링커 Q-3의 제조
Figure PCTKR2023008742-appb-img-000119
단계 1: 화합물 Q-3b의 제조
질소 대기 하 0oC에서 화합물 Q-3a (Diethanolamine, 대정화금, CAS No. 111-42-2, 10 g, 95.12 mmol)을 1,4-디옥산 (320 mL)에 용해시킨 후 증류수 (160 mL)에 용해시킨 탄산수소나트륨 (16 g, 190.24 mmol)과 디-tert-부틸 디카보네이트 (Boc anhydride, 25 g, 114.14 mmol)를 순차적으로 첨가하고 0oC에서 상온으로 서서히 승온하면서 48시간 동안 교반하였다. 반응을 완료한 후 EA (500 mL)와 증류수 (400 mL), 2N-염산 수용액 (100 mL)을 첨가하여 유기층을 5회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 화합물 Q-3b을 무색 액체형태로 수득하였다(17.89 g, 91%).
1H-NMR (400 MHz, DMSO-d6) δ 4.67 (brs, 2H), 3.49 - 3.42 (m, 4H), 3.25 - 3.19 (m, 4H), 1.38 (s, 9H).
단계 2: 화합물 Q-3c의 제조
질소 대기 하 0oC에서 화합물 Q-3b (1.02 g, 4.97 mmol)을 DMF (16 mL)에 용해시킨 후 브롬화 프로파길 (propargyl bromide, 2.2 mL, 19.88 mmol)과 수산화 칼륨 (1.11 g, 19.88 mmol)을 첨가하고 0oC에서 상온으로 천천히 승온하면서 16시간 동안 교반하였다. 반응을 완료한 후 EA (250 mL)와 증류수 (150 mL), 2N-염산 수용액 (100 mL)을 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 포화된 염화 나트륨 수용액 (250 mL)을 첨가하여 씻어 주었다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 Q-3c를 밝은 노랑색 액체형태로 수득하였다(806 mg, 57%).
1H-NMR (400 MHz, CDCl3) δ 4.14 (d, J = 2 Hz, 4H), 3.67 - 3.61 (m, 4H), 3.51 - 3.43 (m, 4H), 2.43 - 2.40 (m, 2H), 1.46 (s, 9H).
단계 3: 화합물 Q-3d의 제조
질소 대기 하 0oC에서 화합물 Q-3c (806 mg, 2.86 mmol)을 디클로로메탄 (5 mL)에 용해시킨 후 4N-염산 용액 (4M-HCl in Dioxane, 10 mL)을 첨가하고 0oC에서 1시간 동안 교반 시킨 후 상온에서 4시간 동안 교반하였다. 반응을 완료한 후 감압 농축하여 화합물 Q-3d을 상아색 고체형태로 수득하였다(618 mg, 99%).
1H-NMR (400 MHz, CDCl3) δ 9.46 (brs, 1H), 4.26 (d, J = 2.4 Hz, 4H), 3.98 (t, J = 5.2 Hz, 4H), 3.38 - 3.30 (m, 4H), 2.50 (t, J = 2.4 Hz, 2H).
단계 4: 화합물 Q-3e의 제조
질소 대기 하 0oC에서 화합물 Q-3d (618 mg, 2.84 mmol)와 링커 P-8 (747 mg, 2.84 mmol)을 DMF (15 mL)에 용해시킨 후 EDCI 염산염 (816 mg, 4.26 mmol), HOBt (384 mg, 2.84 mmol), DMAP (35 mg, 0.28 mmol) 및 DIPEA (1.48 mL, 8.51 mmol)을 순차적으로 첨가하고 0oC에서 상온으로 천천히 승온시키면서 16시간 동안 교반하였다. 반응 완료 후 EA (150 mL)와 증류수 (100 mL) 및 2N-염산 수용액 (50 mL)을 이용하여 유기층을 2회 추출하였다. 수득한 유기층에 포화된 염화 나트륨 수용액 (200 mL)을 첨가하여 유기층을 씻어 주었다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 Q-3e를 노란색 오일형태로 수득하였다(887 mg, 73%).
1H-NMR (400 MHz, CDCl3) δ 5.08 (brs, 1H), 4.30 (s, 2H), 4.16 - 4.11 (m, 4H), 3.73 - 3.68 (m, 4H), 3.68 - 3.63 (m, 4H), 3.62 - 3.58 (m, 4H), 3.57 - 3.52 (m, 2H), 3.35 - 3.29 (m, 2H), 2.45 - 2.40 (m, 2H), 1.44 (s, 9H); EI-MS m/z: 427(M+).
단계 5: 화합물 Q-3f의 제조
질소 대기 하 0oC에서 화합물 Q-3e (887 mg, 2.08 mmol)을 디클로로메탄 (4 mL)에 용해시킨 후 4N-염산 용액 (4M-HCl in Dioxane, 8 mL)을 첨가하고 0oC에서 1시간 동안 교반 시킨 후 상온에서 4시간 동안 교반하였다. 반응을 완료한 후 감압 농축하여 화합물 Q-3f를 상아색 고체형태로 수득하였다(824 mg, 정량수득).
1H-NMR (400 MHz, CDCl3) δ 8.42 (brs, 2H), 4.35 (s, 2H), 4.18 - 4.14 (m, 4H), 3.92 (t, J = 4.8 Hz, 2H), 3.76 - 3.73 (m, 2H), 3.72 - 3.64 (m, 6H), 3.58 (t, J = 4.8 Hz, 2H), 3.50 (t, J = 4.8 Hz, 2H), 3.29 - 3.23 (m, 2H), 2.52 - 2.48 (m, 2H); EI-MS m/z: 327[M+H]+.
단계 6: 화합물 Q-3의 제조
질소 대기 하 0oC에서 화합물 Q-3f (147 mg, 0.40 mmol)을 포화된 탄산수소나트륨 수용액 (Sodium bicarbonate, 2 mL)에 용해시킨 후 0oC에서 15분 동안 교반하였다. 상기 혼합물에 Q-1a (N-Methoxycarbonylmaleimide, TCI, CAS No. 55750-48-6, 63 mg, 0.40 mmol)를 천천히 첨가하고 같은 온도에서 1.5시간 동안 교반하였다. 반응 완료 후 EA (50 mL)와 증류수 (50 mL)을 첨가하여 유기층을 3회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 15oC 이하의 온도에서 감압 농축시켰다. 이렇게 얻은 잔사를 컬럼 크로마토그래피시켜 Q-3를 무색 오일형태로 수득하였다(55.1 mg, 33%).
1H-NMR (400 MHz, CDCl3) δ 6.69 (s, 2H), 4.27 (s, 2H), 4.16 - 4.11 (m, 4H), 3.75 - 3.68 (m, 4H), 3.67 - 3.62 (m, 8H), 3.61 - 3.57 (m, 4H), 2.45 - 2.41 (m, 2H); EI-MS m/z: 407[M+H]+.
제조예 33: 링커 Q-4의 제조
Figure PCTKR2023008742-appb-img-000120
단계 1: 화합물 Q-4a의 제조
질소 대기 하 상온에서 화합물 P-1a (Tetraethylene glycol, 대정화금, CAS NO. 112-60-7, 5 g, 25.74 mmol)를 THF (60 mL)에 용해시킨 후, 수소화 나트륨 (NaH 60 % dispersion in mineral oil, 16.5 mg, 0.41 mmol)을 첨가하고 상온에서 30분 동안 교반하였다. tert-부틸 아크릴레이트 (tert-butyl acrylate, Merck, CAS NO. 1663-39-4, 1.5 mL, 10.30 mmol)를 상기 반응 용액에 2시간 동안 천천히 첨가하고 상온에서 3시간 동안 교반하였다. 반응 완료 후, 포화된 염화 나트륨 수용액 (20 mL)을 첨가하여 반응을 종결시키고 감압 농축하여 반응 유기 용매를 제거하였다. 남은 염화 나트륨 수용액에 MC (60 mL)를 첨가하고 유기층을 추출한 후 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과 및 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 Q-4a를 핑크빛을 띤 오일형태로 수득하였다(1.39 g, 42 %).
1H-NMR (400 MHz, CDCl3) δ 3.75 - 3.60 (m, 18H), 2.69 (t, J = 6.4 Hz, 1H), 2.50 (t, J = 6.4 Hz, 2H), 1.45 (s, 9H); EI-MS m/z: 345[M+Na]+.
단계 2: 화합물 Q-4b의 제조
질소 대기 하 0℃에서 화합물 Q-4a (1.39 g, 4.31 mmol)를 ACN (7.5 mL)에 용해시킨 후, 피리딘 (4 mL)을 천천히 첨가하였다. 이어서 4-메틸벤젠술포닐 염화물 (p-toluenesulfonyl chloride, 1.1 g, 5.77 mmol)을 ACN (10.5 mL)에 용해시킨 용액을 30분 동안 천천히 첨가하고 상온에서 6.5시간 동안 교반하였다. 반응을 완료한 후 EA (200 mL)와 증류수 (150 mL) 및 2N-염산 수용액 (50 mL)을 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 Q-4b를 무색 오일형태로 수득하였다(1.78 g, 86 %).
1H-NMR (400 MHz, CDCl3) δ 7.80 (d, J = 8 Hz, 2H), 7.34 (d, J = 8 Hz, 2H), 4.16 (t, J = 4.8 Hz, 2H), 3.73 - 3.65 (m, 4H), 3.65 - 3.57 (m, 12H), 2.50 (t, J = 6.4 Hz, 2H), 2.45 (s, 3H), 1.44 (s, 9H); EI-MS m/z: 499[M+Na]+.
단계 3: 화합물 Q-4c의 제조
질소 대기 하 상온에서 화합물 Q-4b (1.78 g, 3.73 mmol)를 DMF (20 mL)에 용해시킨 후 아지드화 나트륨 (NaN3, 364 mg, 5.60 mmol)을 첨가하고 60℃에서 16시간 동안 교반하였다. 반응을 완료한 후 상온으로 냉각시키고 EA (200 mL)와 증류수 (200 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 포화된 염화 나트륨 수용액 (200 mL)을 첨가하여 3회 씻어주었다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 Q-4c를 무색 오일형태로 수득하였다(1.25 g, 96 %).
1H-NMR (400 MHz, CDCl3) δ 3.73 - 3.60 (m, 16H), 3.39 (t, J = 4.8 Hz, 2H), 2.50 (t, J = 6.4 Hz, 2H), 1.44 (s, 9H); EI-MS m/z: 348[M+H]+.
단계 4: 화합물 Q-4d의 제조
질소 대기 하 상온에서 화합물 Q-4c (500 mg, 1.44 mmol)를 1,4-디옥산 (8 mL)에 용해시킨 후 5% 팔라듐 차콜 (5% Pd/C, 153 mg, 0.07 mmol)을 첨가한 후 수소환경 하 60℃에서 4시간 동안 교반하였다. 반응 완료 후 EA (50 mL)로 반응용액을 희석하고 셀라이트 필터를 이용하여 여과한 용액을 감압 농축하였다. 얻어진 잔사를 컬럼 크로마토그래피시켜 화합물 Q-4d를 무색 오일형태로 수득하였다(92.5 mg, 20 %).
1H-NMR (400 MHz, CDCl3) δ 3.71 (t, J = 6.4 Hz, 4H), 3.65 - 3.56 (m, 28H), 2.81 (t, J = 5.6 Hz, 4H), 2.50 (t, J = 6.4 Hz, 4H), 1.44 (s, 18H); EI-MS m/z: 626[M+H]+.
단계 5: 화합물 Q-4e의 제조
질소 대기 하 0℃에서 화합물 Q-4d (92.5 mg, 0.15 mmol)을 MC (2 mL)에 용해시킨 후 링커 Q-2 (68.1 mg, 0.19 mmol), 피리딘 (11.9 μL) 및 DIPEA (5.1 μL)를 순차적으로 적가하고 2시간 동안 상온에서 교반하였다. 반응 완료 후 추출없이 컬럼 크로마토그래피시켜 화합물 Q-4e를 오랜지색 오일형태로 수득하였다(83.6 mg, 65 %).
1H-NMR (400 MHz, CDCl3) δ 6.70 (s, 2H), 3.76 - 3.69 (m, 8H), 3.65 - 3.54 (m, 38H), 2.66 (t, J = 6.8 Hz, 2H), 2.50 (t, J = 6.4 Hz, 4H), 1.44 (s, 18H); EI-MS m/z: 866[M+H]+.
단계 6: 화합물 Q-4f의 제조
질소 대기 하 0℃에서 화합물 Q-4e (92.5 mg, 0.15 mmol)을 MC (3 mL)에 용해시킨 후 TFA (0.3 mL)를 천천히 첨가하고 0℃에서 15℃로 서서히 승온하면서 6시간 동안 교반하였다. 반응 완료 후 MC (20 mL)를 첨가하여 희석시킨 후 저온에서 감압 농축하여 화합물 Q-4f를 무색 오일형태로 수득하였다(41.2 mg, 99%).
1H-NMR (400 MHz, CDCl3) δ 6.71 (s, 2H), 3.80 - 3.70 (m, 8H), 3.67 - 3.54 (m, 38H), 2.71 (t, J = 6.8 Hz, 2H), 2.63 - 2.58 (m, 4H); EI-MS m/z: 753[M+H]+.
단계 7: 화합물 Q-4의 제조
질소 대기 하 0℃에서 화합물 Q-4f (40.5 mg, 0.054 mmol)를 MC (3 mL)에 용해시킨 후 NHS (13 mg, 0.113 mmol) 및 DCC (24.4 mg, 0.118 mmol)를 첨가하고 0℃에서 상온으로 서서히 승온하면서 16시간 동안 교반하였다. 반응 완료 후 EA/n-헥산 (1:1 부피비, 20 mL)을 첨가하고 생성된 침전물을 여과하여 제거하였다. 여과액을 농축한 후 다시 한번 EA/n-헥산 (1:1 부피비, 20 mL)을 첨가하여 생성된 침전물을 제거하고 여과액을 감압 농축하여 링커 Q-4를 수득하였다 (17.4 mg, 43 %).
1H-NMR (400 MHz, CDCl3) δ 6.70 (s, 2H), 3.85 (t, J = 6.4 Hz, 4H), 3.76 - 3.69 (m, 4H), 3.66 - 3.52 (m, 38H), 2.90 (t, J = 6.4 Hz, 4H), 2.85 - 2.80 (m, 8H), 2.66 (t, J = 6.8 Hz, 2H); EI-MS m/z: 947[M+H]+.
제조예 34: 링커 Q-5의 제조
Figure PCTKR2023008742-appb-img-000121
질소 대기 하 0℃에서 링커 P-1 (164 mg, 0.64 mmol)을 포화 탄산수소 나트륨 수용액 (3.5 mL)에 용해시킨 후 0℃에서 20분 동안 교반하였다. 상기 혼합물에 Q-1a (N-Methoxycarbonylmaleimide, TCI, CAS No. 55750-48-6, 100 mg, 0.64 mmol)를 천천히 첨가하고 같은 온도에서 1.5시간 동안 교반하였다. EA (50 mL)와 증류수 (50 mL)를 첨가하여 유기층을 3회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 10℃이하의 온도에서 감압 농축시켰다. 이렇게 얻은 잔사를 컬럼 크로마토그래피시켜 링커 Q-5을 무색 오일형태로 수득하였다(77 mg, 40 %).
1H-NMR (400 MHz, CDCl3) δ 6.70 (s, 2H), 3.76 - 3.71 (m, 2H), 3.69 - 3.60 (m, 12H), 3.39 (t, J = 5.2 Hz, 2H).
제조예 35: 링커 Q-6의 제조
Figure PCTKR2023008742-appb-img-000122
단계 1: 화합물 Q-6a의 제조
질소 대기 하 0℃에서 링커 Q-2 (70 mg, 0.198 mmol)를 THF (3 mL)에 용해시킨 후 3,3'-Iminodipropionic acid (TCI, CAS No. 505-47-5, 28.6 mg, 0.177 mmol), 증류수 (300 μL) 및 DIPEA (41.3 μL)를 순차적으로 적가하고 12시간 동안 상온에서 교반하였다. 반응 완료 후 0.1 % 포름산이 포함된 ACN (1 mL)과 증류수 (1 mL)를 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 Q-6a을 수득하였다(3 mg, 4 %); MS m/z: 401[M+H]+.
단계 2: 화합물 Q-6의 제조
질소 대기 하 0℃에서 화합물 Q-6a (3 mg, 0.0074 mmol)를 MC (1 mL)에 용해시킨 후 NHS (1.9. mg, 0.0148 mmol) 및 DCC (3.24 mg, 0.0155 mmol)를 첨가하고 2시간 동안 교반하였다. 반응 완료 후 EA/n-헥산 (1:1 부피비, 20 mL)을 첨가하고 생성된 침전물을 여과하여 제거하였다. 여과액을 농축한 후 다시 한번 EA/n-헥산 (1:1 부피비, 20 mL)을 첨가하여 생성된 침전물을 제거하고 여과액을 감압 농축하여 링커 Q-6를 수득하였다(4.5 mg, 99 %); EI-MS m/z: 595[M+H]+.
제조예 36: 링커 Q-7의 제조
Figure PCTKR2023008742-appb-img-000123
단계 1: 화합물 Q-7a의 제조
질소 대기 하 0℃에서 화합물 P-1a (20 g, 102.97 mmol)를 에탄올 THF (80 mL)에 용해시킨 후 수소화 나트륨 (NaH 60 % dispersion in mineral oil, 823 mg, 34.3 mmol)을 첨가한 후 0℃에서 20분동안 교반하였다. 프로파질브로마이드(1.96 mL, 20.6 mmol)을 첨가한 후 0℃에서 1시간동안 교반 후 상온에서 16시간 동안 교반하였다. 반응완료 후 EA (100 mL)와 증류수 (100 mL) 및 포화된 염화 나트륨 수용액 (50 mL)를 이용하여 추출하였다. 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축 후 얻은 잔사를 컬럼 크로마토그래피시켜 Q-7a를 노란색 오일형태로 수득하였다 (3.5 g, 74%).
1H-NMR (400 MHz, CDCl3) δ 4.20 (d, J = 2.0 Hz, 2H), 3.72 - 3.67 (m, 15H), 3.62 - 3.60 (m, 2H), 2.51 (s, 1H), 2.42 (t, J = 2.0 Hz, 1H).
단계 2: 화합물 Q-7b제조
질소 대기 하 상온에서 화합물 Q-7a (1.0 g, 4.30 mmol)를 MC (50 mL)에 용해시킨 후 DMP (Dess-Martin periodinane, 2.73 g, 6.45 mmol)을 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 MC (100 mL), 티오황산나트륨수용액 (50 mL)와 탄산수소나트륨수용액 (50 mL) 이용하여 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축 후 얻은 잔사를 컬럼 크로마토그래피시켜 Q-7b를 무색 오일형태로 수득하였다 (570 mg, 57%).
1H-NMR (400 MHz, CDCl3) δ 9.73 (s, 1H), 4.20 (d, J = 2.0 Hz, 2H), 4.15 (s, 2H), 3.74 - 3.66 (m, 12H), 2.42 (t, J = 2.0 Hz, 1H).
단계 3: 화합물 Q-7c의 제조
질소 대기 하 상온에서 화합물 Q-7b (1.23 g, 5.34 mmol)를 메탄올 (100 mL)에 용해시킨 후, 화합물 P-2 (1.23 g, 5.34 mmol)와 아세트산 (0.3 mL, 5.34 mmol)을 첨가하고 10분 동안 교반하였다. 시아노 수소화붕소 나트륨 (Sodium Cyanoborohydride, 671 mg, 10.68 mmol)을 첨가하고 3시간 동안 교반하였다. 반응 완료 후 감압 농축한 잔사를 컬럼 크로마토그래피(column chromatography)시켜 화합물 Q-7c를 무색 오일형태로 수득하였다 (90 mg, 3.8 %).
1H-NMR (400 MHz, CDCl3) δ 4.20 (d, J = 2.0 Hz, 4H), 3.78 - 3.66 (m, 29H), 2.87 (t, J = 5.2 Hz, 4H), 2.43 (t, J = 2.0 Hz, 2H); EI-MS m/z: 446[M+H]+.
단계 4: 화합물 Q-7의 제조
질소 대기 하 상온에서 화합물 Q-7c (40 mg, 0.089 mmol)를 MC (5 mL)에 용해시킨 후 화합물 Q-2 (47.7 mg, 0.134 mmol)와 DIPEA (7.7 μL, 0.044 mmol), 피리딘 (7.3 μL, 0.089 mmol)을 순차적으로 첨가하고 상온에서 4시간 동안 교반하였다. 반응을 완료한 후 2N-염산 수용액 (1.0 mL)를 첨가하여 반응을 종결시키고 ACN (1.0 mL)과 증류수 (1.0 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 Q-7를 무색 오일형태로 수득하였다 (10.9 mg, 17 %).
실시예 I-1: 화합물 A-1 및 A-2의 제조
Figure PCTKR2023008742-appb-img-000124
단계 1: 화합물 A-1a의 제조
질소 대기 하 상온에서 코어 C-16 (1.76 g, 5.46 mmol)을 DMF (27 mL)에 용해시킨 후 링커 P-3 (1.8 g, 6.38 mmol) 및 탄산칼륨 (2.26 g, 16.38 mmol)을 첨가하고 80oC에서 16시간 동안 교반하였다. 반응을 완료한 후 EA (250 mL)와 2N-염산 수용액 (250 mL)을 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 A-1a를 노란색 액체형태로 수득하였다(2.86 g, 99 %).
1H-NMR (400 MHz, CDCl3) δ 10.05 (s, 1H), 8.04 (s, 1H), 7.57 (d, J = 8 Hz, 1H), 7.50 - 7.36 (m, 5H), 6.90 (d, J = 8 Hz, 1H), 5.17 - 5.13 (m, 2H), 4.36 (q, J = 7.2 Hz, 2H), 3.71 - 3.67 (m, 2H), 3.59 (t, J = 4.8 Hz, 2H), 3.53 - 3.38 (m, 8H), 3.33 (t, J = 5.2 Hz, 2H), 1.41 (t, J = 7.2 Hz, 3H).
단계 2: 화합물 A-1b의 제조
질소 대기 하 -78oC에서 화합물 A-1a (2.83 g, 5.39 mmol)을 MC (95 mL)에 용해시킨 후 보론 트리클로라이드 용액 (1M-BCl3 in MC, 43.15 mL, 43.15 mmol)을 천천히 첨가하고 -50oC까지 서서히 승온하면서 8시간 동안 교반하였다. 반응 완료 후 증류수 (300 mL)를 천천히 적가하여 반응을 종결시키고 0oC에서 2N-수산화 나트륨 수용액을 첨가하여 중화시켰다. 상기 혼합물에 MC (300 mL)를 첨가하여 유기층을 3회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-1b를 갈색 액체형태로 수득하였다(1.68 mg, 71 %).
1H-NMR (400 MHz, CDCl3) δ 10.03 (s, 1H), 9.24 (brs, 1H), 8.12 (s, 1H), 7.56 (d, J = 8 Hz, 1H), 6.94 (d, J = 7.6 Hz, 1H), 4.95 - 4.92 (m, 2H), 4.37 (q, J = 7.2 Hz, 2H), 4.15 - 4.09 (m, 2H), 3.73 - 3.71 (m, 2H), 3.61 - 3.58 (m, 4H), 3.57 - 3.51 (m, 4H), 3.33 (t, J = 5.2 Hz, 2H), 1.42 (t, J = 7.2 Hz, 3H).
단계 3: 화합물 A-1c의 제조
질소 대기 하 0oC에서 화합물 A-1b (1.68 g, 3.87 mmol)을 MC (130 mL)에 용해시킨 후 아세토브로모-알파-디-갈락토스 (183 mg, 0.44 mmol) 및 벤질트리부틸암모늄 클로라이드 (1.2 g, 3.87 mmol)를 첨가하였다. 이 반응용액에 5N-수산화 나트륨 수용액 (2.32 mL, 11.60 mmol)를 천천히 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 MC (150 mL)와 증류수 (150 mL)를 첨가하여 유기층을 3회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-1c를 갈색의 끈적한 검 형태로 수득하였다(1.9 g, 64 %).
1H-NMR (400 MHz, CDCl3) δ 10.10 (s, 1H), 8.02 (s, 1H), 7.57 (d, J = 8.4 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 5.59 (dd, J =10.4, 8 Hz, 1H), 5.50 (d, J =3.2 Hz, 1H), 5.43 (d, J = 8 Hz, 1H), 5.21 - 5.17 (m, 2H), 5.01 (m, 1H), 4.37 (q, J = 7.2 Hz, 2H), 4.23 - 4.11 (m, 3H), 3.69 - 3.67 (m, 2H), 3.58 (t, J = 5.2 Hz, 2H), 3.50 - 3.47 (m, 2H), 3.43 - 3.32 (m, 8H), 2.21 (s, 3H), 2.19 (s, 3H), 2.14 (s, 3H), 2.04 (s, 3H), 1.42 (t, J = 7.2 Hz, 3H).
단계 4: 화합물 A-1d의 제조
질소 대기 하 0oC에서 화합물 A-1c (1.9 g, 2.49 mmol)을 THF (40 mL)에 용해시킨 후 수소화 붕소 나트륨(188.6 mg)을 첨가하고 2.5시간 동안 교반하였다. 반응 완료 후 증류수 (200 mL)를 첨가하여 반응을 종결시킨 후 EA (200 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-1d를 노란색 고체형태로 수득하였다(1.55 g, 81 %).
1H-NMR (400 MHz, CDCl3) δ 7.38 (s, 1H), 7.01 (d, J = 7.6 Hz, 1H), 6.86 (d, J = 8 Hz, 1H), 5.55 (dd, J =10.4, 8 Hz, 1H), 5.48 (d, J =3.2 Hz, 1H), 5.31 (d, J = 8 Hz, 1H), 5.21 - 5.14 (m, 2H), 5.01 - 4.95 (m, 1H), 4.90 (d, J = 5.2 Hz, 2H), 4.35 (q, J = 7.2 Hz, 2H), 4.23 - 4.09 (m, 3H), 3.71 - 3.66 (m, 2H), 3.58 (t, J = 5.2 Hz, 2H), 3.51 - 3.34 (m, 10H), 2.21 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 2.02 (s, 3H), 1.76 (t, J = 5.6 Hz, 1H), 1.41 (t, J = 7.2 Hz, 3H).
단계 5: 화합물 A-1e의 제조
질소 대기 하 0oC에서 화합물 A-1d (160 mg, 0.2 mmol)를 DMF (4 mL)에 용해시킨 후 비스(4-니트로페닐) 카보네이트 (127 mg, 0.4 mmol)와 DIPEA (54.5 μL, 0.3 mmol)를 순차적으로 첨가하고 1시간 동안 교반하였다. 추가적으로 상기 반응 혼합물을 상온에서 5시간 동안 교반한 후 EA (50 mL)와 증류수 (50 mL)를 이용하여 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-1e를 밝은 노란색 오일형태로 수득하였다(162 mg, 83 %).
1H-NMR (400 MHz, CDCl3) δ 8.27 (d, J = 9.2 Hz, 2H), 7.37 (d, J = 9.2 Hz, 2H), 7.35 (s, 1H), 7.13 (d, J = 8 Hz, 1H), 6.87 (d, J = 8 Hz, 1H), 5.56 (dd, J = 10.4, 8 Hz, 1H), 5.52 (s, 2H), 5.49 (d, J =3 .2 Hz, 1H), 5.34 (d, J = 8 Hz, 1H), 5.21 - 5.15 (m, 2H), 5.03 - 4.98 (m, 1H), 4.38 (q, J = 7.2 Hz, 2H), 4.24 - 4.10 (m, 3H), 3.71 - 3.68 (m, 2H), 3.60 (t, J = 5.2 Hz, 2H), 3.54 - 3.42 (m, 8H), 3.35 (m, 2H), 2.21 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H), 1.42 (t, J = 7.2 Hz, 3H); EI-MS m/z: 795[M+H]+.
단계 6: 화합물 A-1f의 제조
질소 대기 하 상온에서 화합물 A-1e (30 mg, 0.032 mmol)을 DMF (0.2 mL)에 용해시킨 후 MMAF-OMe (24 mg, 0.032 mmol), HOBt (6.5 mg, 0.048 mmol) 및 DIPEA (14 μL, 0.08 mmol)을 순차적으로 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1 mL)을 첨가하여 반응을 종결시키고 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-1f을 백색 고체형태로 수득하였다(12.1 mg, 24 %); EI-MS m/z: 1539[M+H]+.
단계 7: 화합물 A-1 및 A-2의 제조
0oC 하에서 화합물 A-1f (12.1 mg, 0.008 mmol)를 메탄올 (1 mL)에 용해시킨 후 증류수 (250 μL)에 용해시킨 수산화 리튬 일수화물 (4.3 mg, 0.1 mmol)을 서서히 적가하고 상온에서 1.5시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1 mL)을 첨가하여 반응을 종결시키고 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-1와 A-2을 백색 고체형태로 수득하였다(A-1: 1.4 mg, 13 %, A-2: 1.8 mg, 17 %); EI-MS m/z: A-1: 1357[M+H]+, A-2: 1328[M+H]+.
실시예 I-2: 화합물 A-3의 제조
Figure PCTKR2023008742-appb-img-000125
단계 1: 화합물 A-3a의 제조
질소 대기 하 0oC에서 트리페닐포스핀 (65.6 mg, 0.24 mmol)과 사브롬화탄소 (CBr4, 173 mg, 0.50 mmol)를 MC (5 mL)에 용해시킨 후 30분 동안 교반하였다. 위 반응 용액에 실시예 I-1의 단계 4에서 제조된 화합물 A-1d (160 mg, 0.20 mmol)를 MC (2 mL)에 녹여 첨가하고 1시간 동안 교반하였다. 반응 완료 후 EA (100 mL)와 증류수 (100 mL)를 첨가하여 유기층을 추출하고 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 A-3a를 수득 하였다(30 mg, 17 %); EI-MS m/z: 761[M+H]+.
단계 2: 화합물 A-3b의 제조
질소 대기 하 0oC에서 화합물 A-3a (30 mg, 0.036 mmol)를 DMF (2 mL)에 용해시킨 후 제조예 9에서 제조된 오리스타틴F-OMe (30 mg, 0.04 mmol)와 DIPEA (18.9 μL, 0.11 mmol)을 순차적으로 첨가하고 60oC에서 3시간 동안 교반하였다. 반응 완료 후 반응 용액을 상온으로 냉각시키고 추가 과정 없이 다음 반응에 화합물 A-3b가 들어있는 반응 용액을 이용하였다; EI-MS m/z: 1509[M+H]+.
단계 3: 화합물 A-3의 제조
위 반응 용액에 수산화 리튬 일수화물 (15.2 mg, 0.36 mmol)을 서서히 적가하고 3시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (0.1 mL)를 천천히 적가하여 반응을 종결시키고 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-3을 백색 고체형태로 수득하였다(7.9 mg, 16 %); EI-MS m/z: 1299[M+H]+.
실시예 I-3: 화합물 A-4의 제조
Figure PCTKR2023008742-appb-img-000126
단계 1: 화합물 A-4a의 제조
질소 대기 하 상온에서 실시예 I-1의 단계 2에서 제조된 화합물 A-1b (300 mg, 0.69 mmol)를 DMF (5 mL)에 용해시킨 후 탄산칼륨(286 mg, 2.07 mmol)과 제조예 10에서 제조된 화합물 L3-1 (424 mg, 0.90 mmol)를 순차적으로 첨가하고 70oC에서 4시간 동안 교반하였다. 반응 완료 후 반응용액의 온도를 상온으로 낮추고 EA (100 mL)와 증류수 (200 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층에 증류수 (300 mL)를 첨가해 다시 한번 추출하고 추출된 유기층을 무수 황산마그네슘으로 건조 및 여과한 후 감압 농축하였다. 수득한 잔사를 컬럼 크로마토그래피시켜 화합물 A-4a를 밝은 노란색 오일 형태로 수득 하였다(580 mg, 96 %).
1H-NMR (400 MHz, CDCl3) δ 10.05 (s, 1H), 8.04 (s, 1H), 7.57 (d, J = 8 Hz, 1H), 7.43 (d, J = 8.8 Hz, 2H), 7.05 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8 Hz, 1H), 5.52 (m. 2H), 5.25 (s, 2H), 5.15-5.08 (m, 4H), 4.36 (q, J = 7.2 Hz, 2H), 4.26-4.22 (m, 1H), 4.19-4.07 (m, 2H), 3.69 (t, J = 6 Hz, 2H), 3.59 (m ,2H), 3.53-3.51 (m, 2H), 3.48-3.43 (m, 4H), 3.41-3.39(m, 2H), 3.44 (m, 2H), 2.19 (s, 3H), 2.08 (s, 3H), 2.05 (s, 3H), 2.02 (s, 3H), 1.41 (t, J = 7.2 Hz, 3H).
단계 2: 화합물 A-4b의 제조
질소 대기 하 0oC에서 화합물 A-4a (580 mg, 0.66 mmol)를 THF (10 mL)에 용해시킨 후 수소화 붕소 나트륨(63 mg, 1.65 mmol)을 첨가하고 3시간 동안 교반하였다. 반응 완료 후 증류수 (100 mL)를 첨가하여 반응을 종결시키고 EA (100 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-4b를 수득하였다(370 mg, 63 %).
1H-NMR (400 MHz, CDCl3) δ 7.42-7.40 (m, 3H), 7.04-6.98 (m, 3H), 6.73 (d, J = 8 Hz, 1H), 5.52-5.47(m, 2H), 5.15-5.07 (m, 6H), 4.89 (m ,2H), 4.35 (q, J = 7.2 Hz, 2H), 4.23 (m, 1H), 4.17 (m, 1H), 4.09 (m, 1H), 3.70 (m, 2H), 3.59 (m, 2H), 3.53-3.41 (m, 8H), 3.33 (m, 2H), 2.19 (s, 3H), 2.08 (s, 3H), 2.05 (s, 3H), 2.02 (s, 3H), 1.40 (t, J = 7.2 Hz, 3H).
단계 3: 화합물 A-4c의 제조
질소 대기 하 0oC에서 화합물 A-4b (150 mg, 0.17 mmol)를 DMF (3 mL)에 용해시킨 후 비스(4-니트로페닐)카보네이트 (104.5 mg, 0.34 mmol)와 DIPEA (60 μL, 0.34 mmol)을 순차적으로 첨가하고 상온에서 2시간 동안 교반하였다. 반응 완료 후 EA (50 mL)로 희석하고 증류수 (50 mL)와 2N-염산 수용액 (10 mL)을 첨가하여 추출한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축시켰다. 이렇게 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-4c를 수득하였다(115 mg, 67 %).
1H-NMR (400 MHz, CDCl3) δ 8.20 (d, J = 8 Hz, 2H), 7.41 (d, J = 8.8 Hz, 2H), 7.29 (s, 1H), 7.07-7.02 (m, 5H), 6.75 (d, J = 8 Hz, 1H), 5.52-5.46 (m, 2H), 5.34 (s, 2H), 5.16 (s, 2H), 5.14-5.07 (m, 4H), 4.35 (q, J = 7.2 Hz, 2H), 4.23 (m, 1H), 4.19-4.08 (m, 2H), 3.72 (m, 2H), 3.61 (t, J = 7.2 Hz, 2H), 3.52-3.42 (m, 8H), 3.43 (m, 2H), 2.19 (s, 3H), 2.08 (s, 3H), 2.05 (s, 3H), 2.02 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H); EI-MS m/z: 1016[M+Na]+.
단계 4: 화합물 A-4의 제조
0oC 하에서 화합물 A-4c (22.3 mg, 0.022 mmol)를 메탄올(1 mL)과 THF (1 mL)에 용해시킨 후 증류수 (200 μL)에 용해시킨 수산화 리튬 일수화물 (4.7 mg, 0.112 mmol)을 서서히 적가하고 0oC에서 10분 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1 mL)을 첨가하여 반응을 종결시키고 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-4를 아이보리색 고체형태로 수득하였다(8.9 mg, 48 %).
1H-NMR (400 MHz, DMSO-d6) δ 8.24 (d, J = 9.2 Hz, 2H), 7.49 (d, J = 8.8 Hz, 2H), 7.34 (s, 1H), 7.28 (d, J = 9.2 Hz, 2H), 7.20 (d, J = 7.6 Hz, 1H), 7.08 (d, J = 8.8 Hz, 2H), 6.99 (d, J = 7.6 Hz, 1H), 5.48 (s, 2H), 5.21 (s, 2H), 5.18 (m, 1H), 5.03 - 5.01 (m, 2H), 4.89 - 4.84 (m, 2H), 4.67 (m, 1H), 4.53 (m, 1H), 4.32 (q, J = 7.2 Hz, 2H), 3.73 (m, 1H), 3.62 - 3.39 (m, 15H), 1.33 (t, J = 7.2 Hz, 3H); EI-MS m/z: 848[M+Na]+.
실시예 I-4: 화합물 A-5의 제조
Figure PCTKR2023008742-appb-img-000127
0oC 하에서 실시예 I-3의 단계 3에서 제조된 화합물 A-4c (23.5 mg, 0.024 mmol)를 메탄올(1.5 mL)과 THF (0.4 mL)에 용해시킨 후 증류수 (500 μL)에 용해시킨 수산화 리튬 일수화물 (24.8 mg, 0.59 mmol)을 서서히 적가하고 0oC에서 1시간 동안 교반하였다. 추가적으로 상기 반응 혼합물을 상온에서 2시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1 mL)을 첨가하여 반응을 종결시키고 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-5를 백색 고체형태로 수득하였다(10 mg, 53 %).
1H-NMR (400 MHz, DMSO-d6) δ 8.21 (d, J = 9.2 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 9.2 Hz, 2H), 7.18 (s, 1H), 7.12 (d, J = 8 Hz, 1H), 7.06 (d, J = 8.4 Hz, 2H), 6.91 (d, J = 8 Hz, 1H), 5.43 (s, 2H), 5.19 (s, 2H), 5.17 (m, 1H), 5.03 - 5.01 (m, 2H), 4.90 - 4.83 (m, 2H), 4.65 (m, 1H), 4.51 (m, 1H), 3.71 (m, 1H), 3.61 - 3.46 (m, 15H); EI-MS m/z: 820[M+Na]+.
실시예 I-5: 화합물 A-6의 제조
Figure PCTKR2023008742-appb-img-000128
단계 1: 화합물 A-6a의 제조
질소 대기 하 0oC에서 실시예 I-3의 단계 2에서 제조된 화합물 A-4b (50 mg, 0.057 mmol)를 MC (2.5 mL)에 용해시킨 후 염화티오닐 (5 μL, 0.069 mmol)을 첨가하고 3시간 동안 0oC에서 교반하였다. 반응 완료 후 EA (50 mL)와 증류수 (50 mL)를 첨가하여 유기층을 추출하고 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 A-6a를 수득하였다(50 mg, 98 %); EI-MS m/z: 891[M+H]+.
단계 2: 화합물 A-6b의 제조
질소 대기 하 0oC에서 화합물 A-6a (50 mg, 0.056 mmol)를 DMF (2 mL)에 용해시킨 후, 제조예 9에서 제조된 오리스타틴F-OMe (46.9 mg, 0.061 mmol), DIPEA (24.4 μL, 0.14 mmol) 및 TBAI (2mg, 0.005 mmol)를 순차적으로 첨가하고 40oC에서 15시간 동안 교반하여 화합물 A-6b를 제조하였다; EI-MS m/z: 1615[M+H]+.
단계 3: 화합물 A-6의 제조
상기 단계 2에서 수득된 화합물 A-6b가 들어있는 반응 용액을 상온으로 냉각시키고 메탄올 (1 mL)을 첨가하였다. 6N-수산화 나트륨 수용액 (0.1 mL)과 증류수 (1 mL)를 0oC에서 순차적으로 첨가하고 30분동안 교반 후 상온에서 추가적으로 2시간 동안 교반하였다. 2N-염산 수용액 (0.1 mL)를 천천히 적가하여 반응을 종결시키고 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-6을 수득하였다 (2 mg, 2 %); EI-MS m/z: 1405[M+H]+.
실시예 I-6: 화합물 A-7의 제조
Figure PCTKR2023008742-appb-img-000129
단계 1: 화합물 A-7a의 제조
질소 대기 하 0oC에서 코어 C-1 (99.1 mg, 0.42 mmol)을 MC (15 mL)에 용해시킨 후 아세토브로모-알파-디-갈락토스 (192 mg, 0.46 mmol) 및 벤질트리부틸암모늄 클로라이드 (132 mg, 0.42 mmol)를 첨가하였다. 이 반응용액에 5N-수산화 나트륨 수용액 (255 μL, 1.27 mmol)을 천천히 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 MC (50 mL)와 증류수 (50 mL)를 첨가하여 유기층을 3회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-7a를 아이보리색 고체형태로 수득하였다(131.3 mg, 55 %).
1H-NMR (400 MHz, CDCl3) δ 10.19 (s, 1H), 7.82 (d, J = 8 Hz, 1H), 7.38 (s, 1H), 6.80 (d, J = 8 Hz, 1H), 5.64 (dd, J =10.4, 8 Hz, 1H), 5.50 (d, J =3.2 Hz, 1H), 5.29 (d, J = 8 Hz, 1H), 5.16 (dd, J =10.4, 3.2 Hz, 1H), 4.34 (s, 3H), 4.26 - 4.09 (m, 3H), 3.93 (s, 3H), 2.21 (s, 3H), 2.08 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H).
단계 7: 화합물 A-7b의 제조
질소 대기 하 0oC에서 화합물 A-7a (131.3 mg, 0.23 mmol)를 THF (3 mL)에 용해시킨 후 수소화 붕소 나트륨 (26.5 mg, 0.70 mmol)을 첨가하고 상온에서 2시간 동안 교반하였다. 반응 완료 후 증류수 (50 mL)를 첨가하여 반응을 종결시키고 EA (50 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-7b를 노란색 고체형태로 수득하였다(101.5 mg, 77 %).
1H-NMR (400 MHz, CDCl3) δ 7.32 (s, 1H), 7.12 (d, J = 8 Hz, 1H), 6.63 (d, J = 8 Hz, 1H), 5.61 (dd, J = 10.4, 8 Hz, 1H), 5.48 (d, J = 2.8 Hz, 1H), 5.16 - 5.12 (m, 2H), 4.99 - 4.97 (m, 2H), 4.41 (s, 3H), 4.28 - 4.08 (m, 3H), 3.91 (s, 3H), 2.20 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H), 2.04 (s, 3H).
단계 8: 화합물 A-7c의 제조
질소 대기 하 0oC에서 화합물 A-7b (101.5 mg, 0.18 mmol)를 MC (5 mL)에 용해시킨 후 4-니트로페닐 클로로포르메이트 (108.5 mg, 0.54 mmol)와 DIPEA (156 μL, 0.89 mmol)을 순차적으로 첨가하고 20시간 동안 교반하였다. 반응 완료 후 EA (30 mL)와 증류수 (30 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축시켰다. 수득된 잔사를 컬럼 크로마토그래피시켜 화합물 A-7c를 수득하였다(44.1 mg, 36 %).
1H-NMR (400 MHz, CDCl3) δ 8.25 (d, J = 9.2 Hz, 2H), 7.35 (s, 1H), 7.23 (d, J = 8 Hz, 1H), 7.08 (d, J = 9.2 Hz, 2H), 6.69 (d, J = 8 Hz, 1H), 5.62 (dd, J =10.4, 8 Hz, 1H), 5.49 (d, J = 2.8 Hz, 1H), 5.44 (m, 2H), 5.18 (d, J = 8 Hz, 1H), 5.15 (dd, J = 10.4, 3.6 Hz, 1H), 4.27 (m, 1H), 4.24 (s, 3H), 4.20 - 4.09 (m, 2H), 3.91 (s, 3H), 2.21 (s, 3H), 2.06 (m, 6H), 2.04 (s, 3H).
단계 9: 화합물 A-7의 제조
질소 대기 하 0oC에서 화합물 A-7c (37.2 mg, 0.054 mmol)를 메탄올 (1.5 mL)과 ACN (1.5 mL)에 용해시킨 후 탄산칼륨(52.4 mg, 0.38 mmol)을 첨가하고 0oC에서 상온으로 승온하면서 1.5시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1 mL)을 첨가하여 반응을 종결시키고 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-7를 백색 고체형태로 수득하였다(5 mg, 18 %).
1H-NMR (400 MHz, DMSO-d6) δ 8.25 (d, J = 9.2 Hz, 2H), 7.47 (s, 1H), 7.38 (d, J = 8 Hz, 1H), 7.32 (d, J = 9.2 Hz, 2H), 6.76 (d, J = 8 Hz, 1H), 5.59 (s, 2H), 5.33 (m, 1H), 4.94 - 4.92 (m, 2H), 4.68 (m, 1H), 4.57 (m, 1H), 4.18 (s, 3H), 3.85 (s, 3H), 3.73 (m, 1H), 3.64 (m, 1H).
실시예 I-7: 화합물 A-8의 제조
Figure PCTKR2023008742-appb-img-000130
단계 1: 화합물 A-8a의 제조
질소 대기 하 0oC에서 코어 C-2 (2.4 g, 7.75 mmol)를 DMF (25 mL)에 용해시킨 후 EDC (CAS NO. 25952-53-8, 2.23 g, 11.63 mmol), HOBt (1.05 g, 8.14 mmol), DMAP (95 mg, 0.77 mmol), DIPEA (4 mL, 23.25 mmol) 및 링커 P-1 (1.98 g, 7.75 mmol)을 순차적으로 첨가하고 30분 동안 교반하였다. 추가적으로 상기 반응 혼합물을 상온에서 16시간 동안 교반한 후 EA (300 mL)와 1N-염산 수용액 (400 mL)을 이용하여 추출하였다. 수득한 유기층에 1N-수산화나트륨 수용액 (5 mL)과 증류수 (300 mL)를 첨가해 추출하고 무수 황산마그네슘으로 건조시킨 유기층을 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-8a를 밝은 노란색 오일형태로 수득하였다(2.57 g, 65 %).
1H-NMR (400 MHz, CDCl3) δ 10.01 (s, 1H), 7.67 (s, 1H), 7.54 (d, J = 8 Hz, 1H), 7.48-7.37 (m, 5H), 6.88-6.84 (m, 2H), 5.30 (s, 2H), 4.33 (s, 3H), 3.71-3.60 (m, 14H), 3.32 (t, J = 5.2 Hz, 2H); EI-MS m/z: 510[M+H]+.
단계 2 내지 단계 7: 화합물 A-8의 제조
화합물 A-8a를 출발 물질로 하여 실시예 I-1의 단계 2 내지 7과 동일한 방법으로 화합물 A-8을 백색 고체형태로 수득하였다(3.1 mg, 39 %); EI-MS m/z: 1341[M+H]+.
실시예 I-8: 화합물 A-9의 제조
Figure PCTKR2023008742-appb-img-000131
화합물 A-8b를 출발 물질로 하여 실시예 I-3과 동일한 방법으로 화합물 A-9를 아이보리색 고체형태로 수득하였다(21.5 mg, 72 %).
1H-NMR (400 MHz, DMSO-d6) δ 8.50 (t, J = 5.2 Hz, 1H), 8.22 (d, J = 9.2 Hz, 2H), 7.45 (d, J = 8.8 Hz, 2H), 7.26 (d, J = 9.2 Hz, 2H), 7.13 - 7.11 (m, 2H), 7.06 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8 Hz, 1H), 5.38 (s, 2H), 5.18 (s, 2H), 5.16 (m, 1H), 4.84 - 4.82 (m, 2H), 4.64 (m, 1H), 4.51 (m, 1H), 4.20 (s, 3H), 3.70 (m, 1H), 3.56 - 3.51 (m, 15H), 3.40 (m, 2H).
실시예 I-9: 화합물 A-10의 제조
Figure PCTKR2023008742-appb-img-000132
단계 1: 화합물 A-10a 제조
질소 대기 하 0oC에서 코어 C-3 (160 mg, 0.89 mmol)을 ACN (12 mL)에 용해시킨 후 아세토브로모-알파-디-갈락토스 (406 mg, 0.98 mmol), 산화은(I) (520 mg, 2.22 mmol)과 분자체 (70 mg)를 순차적으로 첨가하고 상온에서 30분 동안 교반하였다. 반응 완료 후 EA (100 mL)로 반응용액을 희석하고 셀라이트 필터를 이용하여 여과한 용액에 증류수 (100 mL)를 첨가하여 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-10a를 고체형태로 수득하였다(400 mg, 87.7 %).
1H-NMR (400 MHz, CDCl3) δ 10.13 (s, 1H), 7.84 (d, J = 8 Hz, 1H), 7.59 (d, J = 5.6 Hz, 1H), 7.49 (d, J = 5.6 Hz, 1H), 7.09 (d, J = 8 Hz, 1H), 5.67 (dd, J = 10.4, 8 Hz, 1H), 5.52 (d, J = 3.2 Hz, 1H), 5.30 (d, J = 8 Hz, 1H), 5.19 (dd, J =10.4, 3.6 Hz, 1H), 4.29 (m, 1H), 4.21-4.17 (m, 2H), 2.21 (s, 3H), 2.10 (s, 3H), 2.04 (s, 6H).
단계 2: 화합물 A-10b의 제조
질소 대기 하 0oC에서 화합물 A-10a (183 mg, 0.36 mmol)를 THF (10 mL)에 용해시킨 후 수소화 붕소 나트륨(34 mg, 0.90 mmol)을 첨가하고 0oC에서 1시간 동안 교반한 후 상온에서 2.5시간 동안 교반하였다. 반응 완료 후 증류수 (50 mL)를 첨가하여 반응을 종결시키고 EA (50 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-10b를 백색 고체형태로 수득하였다(137.2 mg, 75 %).
1H-NMR (400 MHz, CDCl3) δ 7.45 (d, J = 5.6 Hz, 1H), 7.40 (d, J = 5.6 Hz, 1H), 7.28 (d, J = 8 Hz, 1H), 6.95 (d, J = 8 Hz, 1H), 5.63 (dd, J = 10.4, 8 Hz, 1H), 5.50 (d, J = 2.8 Hz, 1H), 5.17 - 5.14 (m, 2H), 4.92 (d, J = 5.6 Hz, 2H), 4.29 - 4.11 (m, 3H), 2.20 (s, 3H), 2.08 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H), 1.79 (t, J = 6 Hz, 1H).
단계 3: 화합물 A-10c의 제조
질소 대기 하 0oC에서 화합물 A-10b (137.2 mg, 0.18 mmol)를 MC (10 mL)에 용해시킨 후 4-니트로페닐 클로로포르메이트 (81.2 mg, 0.40 mmol)와 DIPEA (140 μL, 0.81 mmol)을 순차적으로 첨가하고 0oC에서 상온으로 천천히 승온하면서 16시간 동안 교반하였다. 반응 완료 후 EA (50 mL)와 증류수 (50 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축시켰다. 이렇게 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-10c를 백색 고체형태로 수득하였다(114.7 mg, 63 %).
1H-NMR (400 MHz, CDCl3) δ 8.27 (d, J = 9.2 Hz, 2H), 7.48 (d, J = 5.6 Hz, 1H), 7.44 (d, J = 5.6 Hz, 1H), 7.39 - 7.36 (m, 3H), 6.97 (d, J = 8 Hz, 1H), 5.64 (dd, J = 10.4, 8 Hz, 1H), 5.24 (s, 2H), 5.51 (d, J = 3.2 Hz, 1H), 5.19 - 5.14 (m, 2H), 4.29 - 4.13 (m, 3H), 2.21 (s, 3H), 2.08 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H).
단계 4: 화합물 A-10d의 제조
질소 대기 하 0oC에서 화합물 A-10c (64 mg, 0.094 mmol)를 DMF (3 mL)에 용해시킨 후 화합물 PL-1 (25 mg, 0.113 mmol), HOBt (20 mg, 0.141 mmol), 피리딘 (500 μL) 및 DIPEA (41 μL, 0.235 mmol)을 순차적으로 첨가하고 상온에서 12시간 동안 교반하였다. 반응 완료 후 EA (50 mL)와 1N-염산 수용액 (50 mL)을 이용하여 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-10d를 수득하였다(49 mg, 68.3 %).
1H-NMR (400 MHz, CDCl3) δ 7.46 - 7.39 (m, 2H), 7.34 (m, 1H), 7.28 - 7.22 (m, 2H), 7.16 - 7.03 (m, 3H), 7.01 - 6.65 (m, 2H), 5.63 (m, 1H), 5.50 (m, 1H), 5.17 - 4.93 (m, 4H), 4.63 - 4.09 (m, 4H), 3.26 - 3.22 (m, 3H), 2.88 - 3.87 (m, 3H), 2.32 (m, 1H), 2.20 (s, 3H), 2.08 - 2.07 (m, 3H), 2.05 - 2.03 (m, 6H), 0.90 - 0.87 (m, 3H), 0.72 - 0.55 (m, 3H); MS m/z: 757[M+H]+.
단계 5: 화합물 A-10의 제조
0oC 하에서 화합물 A-10d (49 mg, 0.065 mmol)를 메탄올 (2 mL)에 용해시킨 후 증류수 (400 μL)에 용해시킨 수산화 리튬 일수화물 (13.6 mg, 0.324 mmol)을 서서히 적가하고 0oC에서 10분 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1 mL)를 첨가하여 반응을 종결시키고 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-10를 백색 고체형태로 수득하였다(28.5 mg, 74 %).
1H-NMR (400 MHz, DMSO-d6) δ 7.72 (m, 0.5H), 7.68 - 7.65 (m, 1H), 7.58 (m, 0.5H), 7.31 - 7.21 (m, 3H), 7.15 - 7.02 (m, 4H), 5.31 (m, 1H), 5.10 - 4.91 (m, 3H), 4.68 (m, 1H), 4.55 (m, 1H), 4.24 (m, 1H), 3.73 - 3.44 (m, 3H), 3.14 (s, 3H), 2.72 (m, 3H), 2.16 (m, 1H), 0.83 - 0.77 (m, 3H), 0.63 - 0.43 (m, 3H); EI-MS m/z: 589[M+H]+.
실시예 I-10: 화합물 A-11의 제조
Figure PCTKR2023008742-appb-img-000133
실시예 I-9의 단계 4에서 화합물 PL-1 대신에 MMAF-OMe를 사용한 점을 제외하고, 실시예 I-9와 동일한 방법으로 화합물 A-11을 백색 고체 형태로 수득하였다(10.4 mg, 65 %); EI-MS m/z: 1101[M+H]+ .
실시예 I-11: 화합물 A-12의 제조
Figure PCTKR2023008742-appb-img-000134
실시예 I-9의 단계 4에서 화합물 PL-1 대신에 MMAF-OMe를 사용한 점을 제외하고, 코어 C-5를 출발물질로 하여 실시예 I-9와 동일한 방법으로 화합물 A-12를 백색 고체 형태로 수득하였다(11.7 mg, 64%); EI-MS m/z: 1145[M+H]+.
실시예 I-12: 화합물 A-13의 제조
Figure PCTKR2023008742-appb-img-000135
단계 1: 화합물 A-13a의 제조
질소 대기 하 0oC에서 코어 C-6 (192 mg, 0.61 mmol)을 DMF (5 mL)에 용해시킨 후 EDCI (177 mg, 0.92 mmol), HOBt (83.1 mg, 0.61 mmol), DMAP (7.5 mg, 0.06 mmol) 및 DIPEA (322 μL, 1.85 mmol)을 순차적으로 첨가하고 DMF (3 mL)에 용해시킨 링커 P-4 (Azido-PEG4-Amine, TCI, CAS NO. 951671-92-4, 184 mg, 0.61 mmol)를 첨가한 후 0oC에서 3시간 동안 교반하였다. 상기 혼합물을 상온으로 승온시켜 16시간 동안 추가로 교반하였다. 반응 완료 후 EA (100 mL)와 2N-염산 수용액 (100 mL)을 이용하여 유기층을 추출하였다. 수득한 유기층에 2N-수산화 나트륨 수용액 (5 mL)와 증류수 (50 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-13a를 갈색 오일형태로 수득하였다(184.9 mg, 54 %).
1H-NMR (400 MHz, CDCl3) δ 10.07 (s, 1H), 8.12 (s, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.50 - 7.37 (m, 5H), 7.00 (d, J = 8 Hz, 1H), 6.96 (m, 1H), 5.33 (s, 2H), 3.68 - 3.58 (m, 18H), 3.31 (t, J = 5.2 Hz, 2H); EI-MS m/z: 557[M+H]+.
단계 2: 화합물 A-13b의 제조
질소 대기 하 -50oC에서 화합물 A-13a (184.9 mg, 0.33 mmol)를 MC (10 mL)에 용해시킨 후 보론 트리클로라이드 용액 (1M-BCl3 in MC, 2.99 mL, 2.99 mmol)을 천천히 첨가하고 -30oC까지 서서히 승온 하면서 3.5시간 동안 교반하였다. 반응 완료 후 증류수 (100 mL)를 천천히 적가하여 반응을 종결시키고 0oC에서 2N-수산화나트륨 수용액을 첨가하여 중화시켰다. 상기 혼합물에 MC (100 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-13b를 밝은 주황색 고체형태로 수득하였다(75.9 mg, 49 %).
1H-NMR (400 MHz, CDCl3) δ 10.02 (s, 1H), 8.41 (s, 1H), 7.84 (d, J = 8 Hz, 1H), 7.32 (brs, 1H), 6.98 (d, J = 8 Hz, 1H), 3.82 - 3.64 (m, 16H), 3.55 (t, J = 5.2 Hz, 2H), 3.28 (t, J = 5.2 Hz, 2H).
단계 3 내지 7: 화합물 A-13의 제조
실시예 I-9의 단계 4에서 화합물 PL-1 대신에 MMAF-OMe를 사용한 점을 제외하고, 실시예 I-9와 동일한 방법으로 화합물 A-13을 백색 고체형태로 수득하였다(25.7 mg, 66 %); EI-MS m/z: 1389[M+H]+.
실시예 I-13: 화합물 A-14의 제조
Figure PCTKR2023008742-appb-img-000136
실시예 I-12의 단계 1에서 링커 P-4를 대신하여 링커 P-5를 사용한 것을 제외하고, 실시예 I-12와 동일한 방법으로 화합물 A-14를 백색 고체형태로 수득하였다(22.4 mg, 67 %); EI-MS m/z: 1358[M+H]+.
실시예 I-14: 화합물 A-15의 제조
Figure PCTKR2023008742-appb-img-000137
단계 1: 화합물 A-15a의 제조
질소 대기 하 0oC에서 코어 C-7 (278 mg, 0.81 mmol) 및 링커 P-1 (208 mg, 0.81 mmol)을 DMF (5 mL)에 용해시킨 후 EDCI 염산염 (235 mg, 1.22 mmol), DMAP (10 mg, 0.08 mmol) 및 DIPEA (430 μL, 2.45 mmol)을 순차적으로 첨가하고 상온으로 천천히 승온시키면서 16시간 동안 교반하였다. 반응 완료 후 EA (250 mL)와 2N-염산 수용액 (250 mL)을 이용하여 유기층을 2회 추출하였다. 수득한 유기층에 포화된 염화 나트륨 수용액 (250 mL)을 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-15a를 노란색 오일형태로 수득하였다(207 mg, 47 %).
1H-NMR (400 MHz, CDCl3) δ 10.03 (s, 1H), 7.74 (d, J = 8 Hz, 1H), 7.49 - 7.34 (m, 6H), 6.94 (d, J = 8 Hz, 1H), 6.18 (m, 1H), 5.30 (s, 2H), 3.65 - 3.60 (m, 6H), 3.57 - 3.55 (m, 2H), 3.52 - 3.48 (m, 4H), 3.44 (t, J = 5.2 Hz, 2H), 3.35 (t, J = 5.2 Hz, 2H), 3.31 (t, J = 7.6 Hz, 2H), 2.64 (t, J = 7.6 Hz, 2H); EI-MS m/z: 541[M+H]+.
단계 2: 화합물 A-15b의 제조
질소 대기 하 -55oC에서 화합물 A-15a (207 mg, 0.38 mmol)를 MC (10 mL)에 용해시킨 후 보론 트리클로라이드 용액 (1M-BCl3 in MC, 2.3 mL, 2.3 mmol)을 천천히 첨가하고 -40oC까지 서서히 승온 하면서 2.5시간 동안 교반하였다. 반응 완료 후 증류수 (100 mL)를 천천히 적가하여 반응을 종결시키고 0oC에서 2N-수산화 나트륨 수용액을 첨가하여 중화시켰다. 상기 혼합물에 MC (100 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-15b를 노란색 끈적한 검 형태로 수득하였다(97.5 mg, 56 %).
1H-NMR (400 MHz, CDCl3) δ 9.98 (s, 1H), 7.66 (d, J = 8 Hz, 1H), 7.44 (s, 1H), 6.89 (d, J = 8 Hz, 1H), 6.36 (brs, 1H), 3.66 (m, 4H), 3.64 - 3.58 (m, 4H), 3.55 - 3.52 (m, 2H), 3.49 - 3.43 (m, 4H), 3.35 - 3.30 (m, 4H), 2.68 (t, J = 7.2 Hz, 2H); EI-MS m/z: 451[M+H]+.
단계 3: 화합물 A-15c의 제조
질소 대기 하 0oC에서 화합물 A-15b (97.5 mg, 0.21 mmol)를 MC (7 mL)에 용해 시킨후 아세토브로모-알파-디-갈락토스 (142 mg, 0.34 mmol), 벤질트리부틸암모늄 클로라이드 (67.5 mg, 0.21 mmol)를 첨가하였다. 이 반응용액에 5N-수산화 나트륨 수용액 (0.13 mL, 0.65 mmol)을 천천히 첨가하고 상온으로 서서히 승온하면서 20시간 동안 교반하였다. 반응 완료 후 MC (150 mL)와 증류수 (150 mL)를 첨가하여 유기층을 3회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-15c를 수득하였다(42.3 mg, 25 %).
1H-NMR (400 MHz, CDCl3) δ 10.08 (s, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.18 (s, 1H), 6.05 (d, J = 8.4 Hz, 1H), 6.14 (m, 1H), 5.59 (dd, J = 10.4, 8 Hz, 1H), 5.52 (d, J = 3.2 Hz, 1H), 5.27 (d, J = 8 Hz, 1H), 5.18 (dd, J = 10.4, 3.2 Hz, 1H), 4.27 (m, 1H), 4.20 - 4.15 (m, 2H), 3.67 - 3.65 (m, 6H), 3.61 - 3.59 (m, 2H), 3.57 - 3.52 (m, 4H), 3.48 - 3.45 (m, 2H), 3.37 (t, J = 5.2 Hz, 2H), 3.16 (t, J = 7.6 Hz, 2H), 2.63 (t, J = 7.6 Hz, 2H), 2.21 (s, 3H), 2.09 (s, 3H), 2.06 (s, 3H), 2.04 (s, 3H).
단계 4: 화합물 A-15d의 제조
질소 대기 하 0oC에서 화합물 A-15c (42.3 mg, 0.054 mmol)를 THF (3 mL)에 용해시킨 후 수소화 붕소 나트륨(5.1 mg, 0.135 mmol)을 첨가하고 0oC에서 상온으로 천천히 승온하면서 2.5시간 동안 교반하였다. 반응 완료 후 증류수 (50 mL)을 첨가하여 반응을 종결시키고 EA (50 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-15d를 흰색 고체 형태로 수득하였다(30.6 mg, 72 %); EI-MS m/z: 783[M+H]+.
단계 5: 화합물 A-15e의 제조
질소 대기 하 0oC에서 화합물 A-15d (30.6 mg, 0.039 mmol)를 MC (2 mL)에 용해시킨 후 4-니트로페닐 클로로포르메이트 (11.8 mg, 0.058 mmol)와 DIPEA (17 μL, 0.098 mmol)을 순차적으로 첨가하고 0oC에서 상온으로 승온하면서 16시간 동안 교반하였다. 반응 완료 후 MC (50 mL)와 증류수 (50 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마크네슘으로 건조시키고 여과한 후 감압 농축시켰다. 이렇게 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-15e를 흰색 고체형태로 수득하였다(22.2 mg, 60 %); EI-MS m/z: 948[M+H]+.
단계 6: 화합물 A-15f의 제조
질소 대기 하 0oC에서 화합물 A-15e (22.2 mg, 0.023 mmol)를 DMF (0.5 mL)에 용해시킨 후 MMAF-OMe (17.5 mg, 0.023 mmol), HOBt (4.7 mg, 0.035 mmol), 피리딘 (500 μL), DIPEA (10.2 μL, 0.058 mmol)를 순차적으로 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 EA (50 mL)와 2N-염산 수용액 (50 mL)을 이용하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마크네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-15f를 무색 고체 형태로 수득하였다(23.6 mg, 65 %); EI-MS m/z: 1555[M+H]+.
단계 7: 화합물 A-15의 제조
0oC 하에서 화합물 A-15f (23.6 mg, 0.015 mmol)를 메탄올 (0.6 mL)과 THF (0.3 mL)에 용해시킨 후 증류수 (0.2 mL)에 용해시킨 수산화 리튬 일수화물 (6.3 mg, 0.152 mmol)을 서서히 적가하고 0oC에서 상온으로 서서히 승온하면서 2.5시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1mL)를 첨가하여 반응을 종결시키고 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 A-15를 백색 고체형태로 수득하였다(10.1 mg, 48 %); EI-MS m/z: 1373[M+H]+.
실시예 I-15: 화합물 A-16의 제조
Figure PCTKR2023008742-appb-img-000138
실시예 I-9의 단계 4에서 화합물 PL-1 대신에 MMAF-OMe를 사용한 점을 제외하고, 코어 C-8을 출발물질로 하여 실시예 I-9와 동일한 방법으로 화합물 A-16을 백색 고체형태로 수득하였다 (7.7 mg, 60 %); EI-MS m/z: 1172[M+H]+.
실시예 I-16: 화합물 A-17의 제조
Figure PCTKR2023008742-appb-img-000139
단계 1: 화합물 A-17a 제조
질소 대기 하 상온에서 코어 C-4 (174 mg, 0.976 mmol)를 MC (30 mL)에 용해시킨후 아세토브로모-알파-디-갈락토스 (440 mg, 1.07 mmol)와 벤질트리부틸암모늄 클로라이드(Sigma-Aldrich, CAS NO. 23616-79-7, 304 mg, 0.976 mmol)를 순차적으로 첨가하였다. 이 반응용액에 5N-수산화나트륨 수용액 (586 μL, 2.93 mmol)을 첨가하고 5시간 동안 교반하였다. 반응 완료 후 MC (100 mL)와 증류수 (100 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 A-17a를 수득하였다(250 mg, 50.4 %).
1H-NMR (400 MHz, CDCl3) δ 10.09 (s, 1H), 8.09 (s, 1H), 7.59 (d, J = 8 Hz, 1H), 7.44 (t, J = 8 Hz, 1H), 6.95 (d, J = 8 Hz, 1H), 5.64 (dd, J =10.4, 8 Hz, 1H), 5.50 (d, J = 3.2 Hz, 1H), 5.23 (d, J = 8 Hz, 1H), 5.18 (dd, J =10.4, 8 Hz, 1H), 4.27 (m, 1H), 4.20-4.11 (m, 2H), 2.21 (s, 3H), 2.06 (s, 6H), 2.05 (s, 3H).
단계 2: 화합물 A-17b의 제조
질소 대기 하 0oC에서 화합물 A-17a (250 mg, 0.49 mmol)를 THF (10 mL)에 용해시킨 후 수소화 붕소 나트륨(46.5 mg, 1.225 mmol)을 첨가하고 1시간 동안 교반하였다. 반응 완료 후 증류수 (50 mL)를 첨가하여 반응을 종결시키고 EA (50 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-17b를 수득하였다(230 mg, 92 %).
1H-NMR (400 MHz, CDCl3) δ 7.53 (d, J = 8 Hz, 1H), 7.28-7.22 (m, 2H), 6.93 (d, J = 8 Hz, 1H), 5.60 (dd, J =10.4, 8 Hz, 1H), 5.48 (d, J = 2.4 Hz, 1H), 5.16-5.12 (m, 2H), 4.91 (d, = 5.2 Hz, 2H), 4.31 (dd, J =11.2, 7.2 Hz, 1H), 4.16-4.10 (m, 2H), 2.21 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H).
단계 3: 화합물 A-17c 제조
질소 대기 하 0oC에서 화합물 A-17b (300 mg, 0.58 mmol)를 농염산 (8 mL)에 용해시킨 후 1시간 동안 0oC에서 교반하였다. 반응 완료 후 EA (50 mL)와 증류수 (50 mL)를 첨가하여 유기층을 추출하고 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 화합물 A-17c를 백색 고체 형태로 수득 하였다(300 mg, 96.7 %); MS m/z: 529[M+H]+.
단계 4: 화합물 A-17d 제조
질소 대기 하 상온에서 화합물 A-17c (300 mg, 0.56 mmol)를 DMF (15 mL)에 용해시킨 후 아지드화나트륨 (55 mg, 0.84 mmol)을 첨가하고 60oC에서 2시간 동안 교반하였다. 반응 완료 후 EA (100 mL)와 증류수 (200 mL)를 첨가하여 유기층을 추출하고 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-17d를 수득하였다(230 mg, 75.6 %).
1H-NMR (400 MHz, CDCl3) δ 7.52 (d, J = 8 Hz, 1H), 7.32 (s, 1H), 7.28 (t, J = 8 Hz, 1H), 6.94 (d, J = 8 Hz, 1H), 5.61 (dd, J = 10.4, 8 Hz, 1H), 5.50 (d, J = 2.4 Hz, 1H), 5.17-5.14 (m, 2H), 4.60 (d, J = 14.4 Hz, 1H), 4.52 (d, J = 14.4 Hz, 1H), 4.26 (dd, J =11.2, 6.8 Hz, 1H), 4.20-4.11 (m, 2H), 2.20 (s, 3H), 2.07 (s, 3H), 2.05(s, 3H), 2.04 (s, 3H); MS m/z: 558[M+Na]+.
단계 5: 화합물 A-17e 제조
질소 대기 하 -78oC에서 A-17d (230 mg, 0.42 mmol)를 MC (15 mL)에 용해시킨 후 디클로로메틸 메틸 에테르(116 μL, 1.26 mmol)와 사염화 티타늄 용액(1M-TiCl4 in MC, 1.28 mL, 1.26 mmol)을 순차적으로 천천히 첨가하고 1시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 냉각된 증류수 (100 mL)를 천천히 적가하여 반응을 종결시키고 EA (100 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-17e를 백색 고체 형태로 수득하였다(130 mg, 53.7 %).
1H-NMR (400 MHz, CDCl3) δ 10.11 (s, 1H), 7.84 (d, J = 8 Hz, 1H), 7.40 (s, 1H), 7.08 (d, J = 8 Hz, 1H), 5.66 (dd, J =10.4, 8 Hz, 1H), 5.52 (d, J = 3.2 Hz, 1H), 5.29 (d, J = 8 Hz, 1H), 5.19 (dd, J =10.4, 3.2 Hz, 1H), 4.65 (d, J = 14.4 Hz, 1H), 4.52 (d, J = 14.4 Hz, 1H), 4.31-4.17 (m, 3H), 2.21 (s, 3H), 2.09 (s, 3H), 2.05 (s, 6H); MS m/z: 586[M+Na]+.
단계 6: 화합물 A-17f 제조
질소 대기 하 0oC에서 화합물 A-17e (130 mg, 0.23 mmol)를 THF (10 mL)에 용해시킨 후 수소화 붕소 나트륨(22 mg, 0.575 mmol)을 첨가하고 1시간 동안 교반하였다. 반응 완료 후 증류수 (100 mL)를 첨가하여 반응을 종결시키고 EA (100 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-17f를 수득하였다(120 mg, 92.3 %).
1H-NMR (400 MHz, CDCl3) δ 7.36 (s, 1H), 7.28 (d, J = 8 Hz, 1H), 6.94 (d, J = 8 Hz, 1H), 5.61 (dd, J =10.4, 8 Hz, 1H), 5.49 (d, J = 2.8 Hz, 1H), 5.17-5.14 (m, 2H), 4.89 (d, J = 5.6 Hz, 2H), 4.61 (d, J = 14.4 Hz, 1H), 4.54 (d, J = 14.4 Hz, 1H), 4.26 (dd, J = 11.2, 6.8 Hz, 1H), 4.20-4.11 (m, 2H), 2.20 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H), 1.79 (t, J = 5.6 Hz, 1H).
단계 7: 화합물 A-17g의 제조
질소 대기 하 0oC에서 화합물 A-17f (120 mg, 0.21 mmol)를 MC (3 mL)에 용해시킨 후 4-니트로페닐 클로로포르메이트 (85 mg, 0.42 mmol), 피리딘 (51 μL, 0.63 mmol) 및 DIPEA (55 μL, 0.32 mmol)을 순차적으로 첨가하고 0oC에서 30분, 상온에서 2시간 동안 교반하였다. 반응 완료 후 MC (50 mL)로 희석하고 2N-염산 수용액 (50 mL)을 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축시켰다. 이렇게 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-17g를 수득하였다(116.3 mg, 75 %).
1H-NMR (400 MHz, CDCl3) δ 8.27 (d, J = 9.2 Hz, 2H), 7.39 - 7.37 (m, 4H), 6.96 (d, J = 8 Hz, 1H), 5.62 (dd, J = 10.4, 8 Hz, 1H), 5.50 (d, J = 3.2 Hz, 1H), 5.48 (s, 2H), 5.19 - 5.15 (m, 2H), 4.63 (d, J = 14.4 Hz, 1H), 4.57 (d, J = 14.4 Hz, 1H), 4.26 (m, 1H), 4.20 - 4.11 (m, 2H), 2.21 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H).
단계 8: 화합물 A-17h의 제조
질소 대기 하 0oC에서 화합물 A-17g (18.7 mg, 0.025 mmol)와 화합물 PL-1 (6.7 mg, 0.031 mmol)을 DMF (500 μL)에 용해시킨 후 HOBt (5.2 mg, 0.038 mmol), 피리딘 (500 μL) 및 DIPEA (11.1 μL, 0.064 mmol)을 순차적으로 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 EA (50 mL)와 2N-염산 수용액 (50 mL)을 이용하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-17h를 백색 고체형태로 수득하였다(17.9 mg, 86 %).
1H-NMR (400 MHz, CDCl3) δ 7.37 - 7.32 (m, 1H), 7.28 - 7.22 (m, 2H), 7.19 - 6.85 (m, 5H), 5.61 (m, 1H), 5.50 (m, 1H), 5.18 - 5.09 (m, 4H), 4.64 - 4.48 (m, 3H), 4.39 - 4.13 (m, 3H), 3.25 -3.23 (m, 3H), 2.90 - 2.88 (m, 3H), 2.32 (m, 1H), 2.20 (s ,3H), 2.07 - 2.04 (m, 9H), 0.98 - 0.83 (m, 3H), 0.72 - 0.55 (m, 3H); EI-MS m/z: 812[M+H]+.
단계 9: 화합물 A-17의 제조
질소 대기 하 0oC에서 화합물 A-17h (17.9 mg, 0.022 mmol)를 메탄올 (1 mL)과 THF (0.5 mL)에 용해시킨 후 탄산칼륨 (21.3 mg, 0.154 mmol)을 첨가하고 0oC에서 40분 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1 mL)을 첨가하여 반응을 종결시키고 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-17을 백색 고체형태로 수득하였다(7.5 mg, 53%); EI-MS m/z: 644[M+H]+.
실시예 I-17: 화합물 A-18의 제조
Figure PCTKR2023008742-appb-img-000140
실시예 I-16의 단계 8에서 화합물 PL-1 대신에 MMAF-OMe를 사용하고, 단계 9에서 탄산칼륨 대신에 수산화리튬 일수화물을 사용한 점을 제외하고, 실시예 I-16과 동일한 방법으로 화합물 A-18을 백색 고체로서 수득하였다(22 mg, 71 %); EI-MS m/z: 1156[M+H]+.
실시예 I-18: 화합물 A-19의 제조
Figure PCTKR2023008742-appb-img-000141
질소 대기 하 0oC에서 화합물 A-18 (4.3 mg, 0.0037 mmol)을 DMSO (200 μL)에 용해시킨 후 링커 P-6 (16.7 mg)을 DMSO(1 mL)에 녹인 용액 중 70 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), DMSO (0.4 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 1 mg) 및 아스코르브산나트륨 (sodium ascorbate, 1.47 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 30분 동안 교반하였다. 반응 완료 후 증류수 (1 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 A-19를 수득하였다(3.6 mg, 72 %); MS m/z: 1358[M+H]+.
실시예 I-19: 화합물 A-20의 제조
Figure PCTKR2023008742-appb-img-000142
질소 대기 하 상온에서 화합물 A-18 (17.8 mg, 0.0154 mmol)을 THF (1 mL)에 용해시킨 후 트리페닐포스핀 (4.4 mg, 0.017 mmol) 및 증류수 (0.3 mL)를 순차적으로 첨가하고 12시간 동안 교반하였다. 위 반응 용액에 2N-수산화나트륨 수용액 (10 μL)을 상온에서 첨가하고 30분 동안 교반한 후 2N-염산 수용액을 천천히 적가하여 반응 용액의 pH를 3으로 적정하고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 A-20을 수득하였다(11.3 mg, 65 %); MS m/z: 1130[M+H]+.
실시예 I-20: 화합물 A-21의 제조
Figure PCTKR2023008742-appb-img-000143
질소 대기 하 0oC에서 화합물 A-20 (4.7 mg, 0.0041 mmol)을 THF (2 mL)에 용해시킨 후 링커 P-7 (2.7 mg, 0.0078 mmol), DIPEA (10 μL) 및 증류수 (200 μL)를 순차적으로 적가하고 1시간 동안 상온에서 교반하였다. 반응 완료 후 0.1 % 포름산이 포함된 ACN (2 mL)을 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 A-21을 수득하였다(2.9 mg, 51 %); MS m/z: 1358[M+H]+.
실시예 I-21: 화합물 A-22의 제조
Figure PCTKR2023008742-appb-img-000144
코어 C-10을 출발물질로 하여, 실시예 I-15와 동일한 방법으로 화합물 A-22를 백색 고체형태로 수득하였다(8 mg, 58 %); EI-MS m/z: 1171[M+H]+.
실시예 I-22: 화합물 A-23의 제조
Figure PCTKR2023008742-appb-img-000145
단계 1: 화합물 A-23a의 제조
질소 대기 하 0oC에서 코어 C-11 (189 mg, 0.76 mmol) 및 링커 P-1 (233 mg, 0.91 mmol)을 DMF (5 mL)에 용해시킨 후 EDCI 염산염 (219 mg, 1.14 mmol), DMAP (9.3 mg, 0.07 mmol) 및 DIPEA (400 μL, 2.29 mmol)을 순차적으로 첨가하고 상온으로 천천히 승온시키면서 16시간 동안 교반하였다. 반응 완료 후 EA (150 mL)와 2N-염산 수용액 (150 mL)를 이용하여 유기층을 2회 추출하였다. 수득한 유기층에 포화된 염화 나트륨 수용액 (100 mL)을 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-23a를 주황색 고체형태로 수득하였다(47.5 mg, 14 %); EI-MS m/z: 449[M+H]+.
단계 2 내지 6: 화합물 A-23의 제조
실시예 I-9의 단계 4에서 화합물 PL-1 대신에 MMAF-OMe를 사용한 점을 제외하고, 화합물 A-23a를 출발물질로 하여 실시예 I-9와 동일한 방법으로 화합물 A-23를 백색 고체 형태로 수득하였다(16.8 mg, 69 %); EI-MS m/z: 1371[M+H]+.
실시예 I-23: 화합물 A-24의 제조
Figure PCTKR2023008742-appb-img-000146
코어 C-12를 출발물질로 하여, 실시예 I-1의 단계 3 내지 7과 동일한 방법으로 화합물 A-24를 백색 고체형태로 수득하였다(12.1 mg, 68 %); EI-MS m/z: 1129[M+H]+.
실시예 I-24: 화합물 A-25의 제조
Figure PCTKR2023008742-appb-img-000147
코어 C-13을 출발물질로 하여 실시예 I-14와 동일한 방법으로 화합물 A-25를 백색 고체형태로 수득하였다(18.6 mg, 65 %); EI-MS m/z: 1342[M+H]+.
실시예 I-25: 화합물 A-26의 제조
Figure PCTKR2023008742-appb-img-000148
실시예 I-16의 단계 8에서 화합물 PL-1 대신에 MMAF-OMe를 사용하고, 단계 9에서 탄산칼륨 대신에 수산화리튬 일수화물을 사용한 점을 제외하고, 코어 C-14를 출발물질로 하여 실시예 I-16과 동일한 방법으로 화합물 A-26을 백색 고체형태로 수득하였다(21.3 mg, 61 %); EI-MS m/z: 1140[M+H]+.
실시예 I-26: 화합물 A-27의 제조
Figure PCTKR2023008742-appb-img-000149
질소 대기 하 상온에서 화합물 A-26 (15.7 mg, 0.013 mmol)을 THF (1 mL)에 용해시킨 후 트리페닐포스핀 (5.4 mg, 0.0195 mmol) 및 증류수 (0.3 mL)를 순차적으로 첨가하고 16시간 동안 교반하였다. 위 반응 용액에 2N-수산화나트륨 수용액 (10 μL)을 상온에서 첨가하고 1시간 동안 추가적으로 교반한 후 2N-염산 수용액을 천천히 적가하여 반응 용액의 pH를 3으로 적정하고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 A-27을 백색 고체 형태로 수득하였다(10.5 mg, 65 %); MS m/z: 1113[M+H]+.
실시예 I-27: 화합물 A-28의 제조
Figure PCTKR2023008742-appb-img-000150
질소 대기 하 0oC에서 화합물 A-27 (3 mg, 0.0026 mmol)을 THF (2 mL)에 용해시킨 후 링커 P-7 (1.4 mg, 0.0039 mmol), DIPEA (10 μL) 및 증류수 (200 μL)를 순차적으로 적가하고 1시간 동안 상온에서 교반하였다. 반응 완료 후 2N-염산 수용액 (20 μL)을 첨가하고 0.1 % 포름산이 포함된 ACN (2 mL)을 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 A-28을 수득하였다 (2.2 mg, 61 %); MS m/z: 1341[M+H]+.
실시예 I-28: 화합물 A-29의 제조
Figure PCTKR2023008742-appb-img-000151
실시예 I-9의 단계 2에서 THF 대신에 IPA와 클로르포름을 용매로 사용하고 수소화 붕소 나트륨과 함께 실리카겔을 첨가하며, 단계 4에서 화합물 PL-1 대신에 MMAF-OMe를 사용한 점을 제외하고, 코어 C-15를 출발물질로 하여 실시예 I-9와 동일한 방법으로 화합물 A-29를 백색 고체형태로 수득하였다(15.9 mg, 64 %); EI-MS m/z: 1192[M+H]+.
실시예 I-29: 화합물 A-33의 제조
Figure PCTKR2023008742-appb-img-000152
단계 1: 화합물 A-33a의 제조
질소 대기 하 0oC에서 실시예 I-11의 화합물 A-12b (180 mg, 0.31 mmol)를 MC (20 mL)에 용해시킨 후 염화 티오닐 (Thionyl chloride, 48.2 μL, 0.65 mmol)을 천천히 첨가하고 0oC에서 2시간 동안 교반하였다. 반응 완료 후 MC (50 mL)를 첨가하여 희석시킨 후 감압 농축하였다. 잔사에 n-헥산 (50 mL)을 첨가하여 고체화시킨 후 감압 농축하여 하얀색 고체 형태의 화합물 A-33a를 수득하였다. 수득한 화합물은 추가 정제과정 없이 다음 반응에 이용하였다(185 mg, 99 %).
1H-NMR (400 MHz, CDCl3) δ 8.12 (s, 1H), 7.41 (d, J = 8 Hz, 1H), 6.98 (d, J = 8 Hz, 1H), 5.62 (dd, J = 10.8, 8 Hz, 1H), 5.48 (d, J = 2.8 Hz, 1H), 5.17 - 5.13 (m, 2H), 4.80 (s, 2H), 4.22 (m, 1H), 4.18 (m, 1H), 4.12 (m, 1H), 3.96 (s ,3H), 2.21 (s , 3H), 2.08 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H); EI-MS m/z: 587[M+H]+.
단계 2 및 3: 화합물 A-33의 제조
질소 대기 하 0oC에서 화합물 A-33a (30 mg, 0.051 mmol)를 DMF (3 mL)에 용해시킨 후 화합물 Auristatin F-OMe (42.7 mg, 0.056 mmol), DIPEA (26.7 μL, 0.153 mmol) 및 TBAI (2mg, 0.005 mmol)를 순차적으로 반응에 첨가하고 40oC에서 16시간 동안 교반하였다. 반응 완료 후 생성된 화합물 A-33b (EI-MS m/z: 1311[M+H]+)가 들어있는 반응 용액을 상온으로 냉각시키고 수산화 리튬 수화물 (21.4 mg, 0.51 mmol)을 증류수 (1 mL)에 녹여 0oC에서 천천히 첨가하고 2시간 동안 교반하였다. 2N-염산 수용액 (0.3 mL)를 천천히 반응 용액에 적가하여 반응을 종결시키고 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 A-33을 수득하였다 (1.1 mg, 2 %); EI-MS m/z: 1115[M+H]+.
실시예 I-30: 화합물 A-34의 제조
Figure PCTKR2023008742-appb-img-000153
단계 1: 화합물 A-34a의 제조
질소 대기 하 상온에서 실시예 I-29의 화합물 A-33a (135 mg, 0.229 mmol)를 CAN (5 mL)에 용해시킨 후 칼륨 티오아세테이트 (Potassium thioacetate, 31.5 mg, 0.275 mmol)를 첨가하고 3시간 동안 교반하였다. 반응 완료 후 EA (50 mL)와 증류수 (50 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조 및 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-34a를 수득하였다(140 mg, 97 %).
1H-NMR (400 MHz, CDCl3) δ 8.11 (s, 1H), 7.40 (d, J = 8 Hz, 1H), 6.95 (d, J = 8 Hz, 1H), 5.60 (dd, J = 10.4, 8 Hz, 1H), 5.47 (d, J = 2.8 Hz, 1H), 5.15 - 5.12 (m, 2H), 4.31 (d, J = 5.2 Hz, 1H), 4.25 - 4.08 (m, 3H), 3.95 (s, 3H), 2.36 (s ,3H), 2.20 (s ,3H), 2.08 (s ,2H), 2.06 (s, 3H), 2.03 (s ,3H); EI-MS m/z: 627[M+H]+.
단계 2: 화합물 A-34b의 제조
질소 대기 하 0oC에서 N-클로로석신이미드 (NCS, 120 mg, 0.88 mmol)를 2N-염산 수용액 (60 μL)과 ACN (300 μL)의 혼합 용액에 첨가한 후 화합물 A-34a (140 mg, 0.22 mmol)를 ACN (100 μL)에 용해시켜 첨가하였다. 상기 반응 용액을 0oC에서 3시간 동안 교반하고 반응 완료 후 디에틸 에테르 (100 mL)와 증류수 (100 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조 및 여과한 후 감압 농축하여 얻은 하얀색 고체 형태의 화합물 A-34b를 추가 정제과정 없이 다음 반응에 이용하였다(35 mg, 24 %).
단계 3 및 4: 화합물 A-34의 제조
질소 대기 하 0oC에서 화합물 A-34b (35 mg, 0.053 mmol)를 DMF (3 mL)에 용해시킨 후 SN-38 (CAS NO. 86639-52-3, 21 mg, 0.053 mmol)과 TEA (18.7 μL, 0.132 mmol)을 순차적으로 첨가하고 0oC에서 1시간 동안 교반하였다. 반응 완료 후 EA (50 mL)와 2N-염산 수용액(10 mL), 증류수 (100 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조 및 여과한 후 감압 농축하여 화합물 A-34c를 수득하였다. 수득한 화합물 A-34c에 메탄올 (2 mL)과 THF (1 mL)를 첨가하여 용해시킨 후 수산화 리튬 수화물 (22.5 mg, 0.53 mmol)을 증류수 (0.5 mL)에 녹여 0oC에서 천천히 첨가하고 30분 동안 교반하였다. 추가로 상온에서 30분 동안 교반 한 후 2N-염산 수용액 (0.3 mL)를 천천히 적가하여 반응을 종결시켰다. 반응 용액을 ACN (1 mL)과 증류수 (1 mL)로 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-34를 수득하였다(0.4 mg, 1%); EI-MS m/z: 825[M+H]+.
실시예 I-31: 화합물 A-35의 제조
Figure PCTKR2023008742-appb-img-000154
단계 1: 화합물 A-35a의 제조
질소 대기 하 0oC에서 코어 C-9 (572.6 mg, 2.44 mmol)를 MC (80 mL)에 용해시킨후 아세토브로모-알파-디-갈락토스 (1.1 g, 2.69 mmol), 벤질트리부틸암모늄 클로라이드 (762.5 mg, 2.44 mmol)을 첨가하였다. 이 반응용액에 5N-수산화 나트륨 수용액 (1.46 mL, 7.33 mmol)를 천천히 첨가하고 상온으로 서서히 승온하면서 16시간 동안 교반하였다. 반응 완료 후 MC (200 mL)와 증류수 (200 mL)를 첨가하여 유기층을 3회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-35a를 고체 형태로 수득하였다(1.017 g, 74 %).
1H-NMR (400 MHz, CDCl3) δ 7.17 - 7.10 (m, 2H), 6.80 (dd, J = 7.6, 0.8 Hz, 1H), 6.42 (s, 1H), 5.57 (dd, J = 10.4, 8 Hz, 1H), 5.48 (d, J = 3.2 Hz, 1H), 5.15 - 5.10 (m, 2H), 4.28 - 4.23 (m, 1H), 4.20 - 4.16 (m, J = 1H), 4.10 - 4.07 (m, 1H), 3.67 (s, 3H), 2.81 (t, J = 7.2 Hz, 2H), 2.39 (t, J = 7.2 Hz, 2H), 2.20 (s, 3H), 2.10 - 2.05 (m, 8H), 2.03 (s, 3H).
단계 2: 화합물 A-35b 제조
질소 대기 하 -30oC에서 화합물 A-35a (700 mg, 1.23 mmol)를 MC (40 mL)에 용해시킨 후 디클로로메틸 메틸 에테르(450 μL, 4.92 mmol)와 사염화 티타늄 용액(1M-TiCl4 in MC, 4.9 mL, 4.92 mmol)을 순차적으로 천천히 첨가하고 -10oC에서 2시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 증류수 (100 mL)를 천천히 적가하여 반응을 종결시키고 EA (100 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-35b를 수득하였다(190 mg, 25.8 %).
1H-NMR (400 MHz, CDCl3) δ 10.33 (s, 1H), 7.69 (d, J = 8.4 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 6.49 (s, 1H), 5.59 (dd, J = 10.4, 8 Hz, 1H), 5.49 (d, J = 3.6 Hz, 1H), 5.23 (d, J = 8 Hz, 1H), 5.16 (dd, J =10.4, 3.6 Hz, 1H), 4.27-4.14 (m, 3H), 3.68 (s, 3H), 2.89 (t, J = 7.2 Hz, 2H), 2.42 (t, J = 7.2 Hz, 2H), 2.20 (s, 3H), 2.11 (m, 2H), 2.07 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H).
단계 3: 화합물 A-35c 제조
질소 대기 하 상온에서 화합물 A-35b (190 mg, 0.32 mmol)를 무수 THF (3 mL)에 용해시킨 후 Zn powder (CAS NO. 7440-66-6, DAEJUNG, 105 mg, 3.2 mmol), 1,2-diiodoethane (CAS NO. 624-73-7, Alfa Aesar, 90.4 mg, 0.32 mmol), 프로파질 브로마이드 (Propargyl bromide 80 % in toluene, 45.5 μL, 0.525 mmol)를 순차적으로 첨가하고 초음파 세척기(Ultrasonic cleaner, powersonic 410)에서 30분 동안 초음파를 통해 반응시켰다. 반응 완료 후 EA (50 mL)로 반응용액을 희석하고 셀라이트를 이용하여 여과한 용액에 증류수 (50 mL)와 2N-염산 수용액 (0.7 mL)를 첨가하여 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-35c를 백색 고체형태로 수득하였다(167 mg, 82.6 %).
1H-NMR (400 MHz, CDCl3) δ 7.21 (m, 1H), 6.81-6.79(m, 1H), 6.44 (s, 1H), 5.55 (dd, J = 10.4, 8 Hz, 1H), 5.47 (d, J = 3.2 Hz, 1H), 5.27 (m, 1H), 5.15-5.09 (m, 2H), 4.26-4.13 (m, 2H), 4.09 (m, 1H), 3.67 (s ,3H), 2.86-2.78 (m, 4H), 2.57 (dd, J = 9.2, 4.8 Hz, 1H), 2.40 (m, 2H), 2.19 (s ,3H), 2.08-2.04 (m, 8H), 2.20 (s, 3H); MS m/z: 655[M+Na]+.
단계 4: 화합물 A-35d 제조
질소 대기 하 0oC에서 화합물 A-35c (42 mg, 0.066 mmol)를 MC (2 mL)에 용해시킨 후 4-니트로페닐 클로로포르메이트 (27 mg, 0.132 mmol)와 피리딘 (16 μL, 0.2 mmol), DIPEA (11.6 μL, 0.066 mmol)을 순차적으로 첨가하고 1시간 동안 교반하였다. 반응 완료 후 EA (50 mL)로 희석하고 증류수 (50 mL)와 2N-염산 수용액 (2 mL)을 첨가하여 추출한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축시켰다. 이렇게 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-35d를 수득하였다(51 mg, 96.4 %).
1H-NMR (400 MHz, CDCl3) δ 8.26 (d, J = 9.2 Hz, 2H), 7.38 (d, J = 9.2 Hz, 2H), 7.25 (m, 1H), 6.81 (dd, J = 8.4, 2.4 Hz, 1H), 6.46 (s, 1H), 6.25 (m, 1H), 5.56 (dd, J = 10.4, 8 Hz, 1H), 5.48 (d, J = 2.8 Hz, 1H), 5.15-5.12 (m, 2H), 4.27-4.08 (m, 3H), 3.67 (s, 3H), 3.17-3.01 (m, 2H), 2.84 (t, J = 7.2 Hz, 2H), 2.41 (t, J = 7.2 Hz, 2H), 2.20 (s, 3H), 2.11-2.04 (m, 8H), 2.03 (s, 3H); MS m/z: 820[M+Na]+.
단계 5: 화합물 A-35e 제조
질소 대기 하 0oC에서 화합물 A-35d (32 mg, 0.040 mmol)를 DMF (3 mL)에 용해시킨 후 화합물 PL-1 (13.2 mg, 0.06 mmol), HOBt (5.4 mg, 0.04 mmol), 피리딘 (300 μL), DIPEA (14 μL, 0.08 mmol)을 순차적으로 첨가하고 30분 동안 교반한 후 상온에서 12시간 동안 추가적으로 교반하였다. 반응 완료 후 EA (50 mL)와 1N-염산 수용액 (50 mL)을 이용하여 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-35e를 백색 고체 형태로 수득하였다(27 mg, 77 %); MS m/z: 901[M+Na]+.
단계 6: 화합물 A-35의 제조
0oC 하에서 화합물 A-35e (27 mg, 0.031 mmol)를 메탄올 (1 mL)과 THF (0.5 mL)에 용해시킨 후 증류수 (0.2 mL)에 용해시킨 수산화 리튬 수화물 (19 mg, 0.461 mmol)을 적가하고 0oC에서 상온으로 서서히 승온하면서 2.5시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1 mL)을 첨가하여 반응을 종결시키고 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-35을 백색 고체형태로 수득하였다(5.8 mg, 27 %); EI-MS m/z: 719[M+Na]+.
실시예 I-32: 화합물 A-36의 제조
Figure PCTKR2023008742-appb-img-000155
단계 1: 화합물 A-36a의 제조
질소 대기 하 0oC에서 실시예 I-24의 화합물 A-25b (277 mg, 0.64 mmol)를 MC (21 mL)에 용해시킨 후 아세토브로모-알파-디-글루쿠론산 메틸 에스테르 (Acetobromo-α-D-glucuronic acid methyl ester, TCI, CAS No. 21085-72-3, 405 mg, 1.02 mmol), 벤질트리부틸암모늄 클로라이드 (199 mg, 0.64 mmol) 및 5N-수산화 나트륨 수용액 (0.53 mL, 2.55 mmol)을 천천히 첨가하고 0oC에서 30분 교반한 후 추가로 상온에서 48시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액을 반응용액에 첨가하여 중화시키고 MC (100 mL)와 증류수 (100 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-36a를 노란색 끈적한 검 형태로 수득하였다 (144 mg, 30%); EI-MS m/z: 751[M+H]+.
단계 2: 화합물 A-36b의 제조
질소 대기 하 0oC에서 화합물 A-36a (144 mg, 0.19 mmol)를 THF (10 mL)에 용해시킨 후 수소화 붕소 나트륨 (18 mg, 0.48 mmol)을 첨가하고 0oC에서 3시간 동안 교반하였다. 반응 완료 후 증류수 (50 mL)을 첨가하여 반응을 종결시키고 EA (50 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-36b를 무색 끈적한 검 형태로 수득하였다 (93.5 mg, 65%); EI-MS m/z: 753[M+H]+.
단계 3: 화합물 A-36c의 제조
질소 대기 하 0oC에서 화합물 A-36b (93.5 mg, 0.12 mmol)을 MC (5 mL)에 용해시킨 후 4-니트로페닐 클로로포르메이트 (50.1 mg, 0.25 mmol), 피리딘 (30 μL, 0.37 mmol) 및 DIPEA (32.4 μL, 0.18 mmol)를 순차적으로 첨가하고 0oC에서 30분 동안 교반하고, 상온에서 2.5시간 동안 추가적으로 교반하였다. 반응 완료 후 EA (50 mL)로 희석하고 2N-염산 수용액 (50 mL)을 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축시켰다. 이렇게 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-36c를 수득하였다 (80.3 mg, 70%); EI-MS m/z: 918[M+H]+.
단계 4: 화합물 A-36d의 제조
질소 대기 하 0oC에서 화합물 A-36c (80.3 mg, 0.087 mmol)를 DMF (1 mL)에 용해시킨 후 MMAE (monomethyl auristatin E, CAS NO. 474645-27-7, 62.8 mg, 0.087 mmol), HOBt (17.7 mg, 0.131 mmol), DIPEA (38.1 μL, 0.218 mmol) 및 피리딘 (1 mL)을 순차적으로 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 EA (50 mL)와 2N-염산 수용액 (50 mL)을 이용하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 A-36d를 하얀색 고체형태로 수득하였다 (42 mg, 32%); EI-MS m/z: 1497[M+H]+.
단계 5: 화합물 A-36의 제조
-20oC 하에서 화합물 A-36d (42 mg, 0.028 mmol)에 메탄올 (0.7 mL), 증류수 (0.35 mL) 및 THF (0.14 mL)를 혼합 첨가하여 용해시킨 후 증류수 (0.35 mL)에 용해시킨 수산화 리튬 (2.9 mg, 0.07 mmol)을 적가하고 -20oC에서 -5oC로 서서히 승온하면서 1시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (0.2 mL)을 첨가하여 반응을 종결시키고 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-36을 하얀색 고체형태로 수득하였다 (29.1 mg, 76%); EI-MS m/z: 1357[M+H]+.
실시예 I-33: 화합물 A-37의 제조
Figure PCTKR2023008742-appb-img-000156
단계 1: 화합물 A-37a의 제조
질소 대기 하 상온에서 화합물 A-33a (20 mg, 0.034 mmol)를 DMF (2 mL)에 용해시킨 후 Gefitinib (CAS No.: 18447535-2, 15.2 mg, 0.034 mmol), KI (Potassium Iodide, 1.7 mg, 0.01 mmol) 및 DIPEA (14.83 μL, 0.085 mmol)를 순차적으로 반응에 첨가하고 60 ℃에서 15시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (10 μL)을 첨가하여 중화시키고 ACN (1 mL)과 증류수 (1 mL)로 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-37a를 수득하였다(8.4 mg, 24%); EI-MS m/z: 998[M+H]+.
단계 2: 화합물 A-37의 제조
0 ℃ 하에서 화합물 A-37a (3.6 mg, 0.0035 mmol)를 메탄올 (1 mL)과 THF (0.5 mL)에 용해시킨 후 증류수 (0.3 mL)에 용해시킨 수산화 리튬 수화물 (1.5 mg, 0.035 mmol)을 적가하고 0 ℃에서 30분 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (10 μL)을 첨가하여 반응을 종결시키고 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-37을 수득하였다(1.5 mg, 50 %); EI-MS m/z: 830[M+H]+.
실시예 I-34: 화합물 A-38의 제조
Figure PCTKR2023008742-appb-img-000157
단계 1: 화합물 A-38a 제조
질소 대기 하 0 ℃에서 화합물 A-10c (20.0 mg, 0.029 mmol)를 MC (3.0 mL)에 용해시킨 후 N,N'-디메틸에틸렌디아민 (TCI, CAS NO. 110-70-3, 31 μL, 0.29 mmol)을 적가하고 상온에서 1시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액을 천천히 적가하여 반응용액의 pH를 7로 맞춘 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-38a를 백색 고체형태로 수득하였다(8.5 mg, 24 %); EI-MS m/z: 625[M+H]+.
단계 2: 화합물 A-38b 제조
질소 대기 하 0 ℃에서 화합물 A-38a (8.5 mg, 0.013 mmol)을 DMF (2.0 mL)에 용해시킨 후 화합물 PL-2 (7.5 mg, 0.013 mmol) 및 DIPEA (2.37 μL, 0.013 mmol)를 순차적으로 첨가하고 상온에서 2시간 동안 교반하였다. 반응 완료 후 EA (10 mL)와 증류수 (10 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-38b를 투명 오일형태로 수득하였다(10.0 mg, 71 %); EI-MS m/z: 1044[M+H]+.
단계 3: 화합물 A-38 제조
질소 대기 하 0 ℃에서 화합물 A-38b (8.5 mg, 0.013 mmol)를 메탄올 (1.0 mL)에 용해시킨 후 증류수 (500.0 μL)에 용해시킨 탄산칼륨 (9.27 mg, 0.067 mmol)을 서서히 적가하고 0 ℃에서 2시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1.0 mL)을 첨가하여 반응을 종결시키고 ACN (1.0 mL)과 증류수 (1.0 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-38을 백색 고체형태로 수득하였다(1.5 mg, 18 %); EI-MS m/z: 875[M+H]+.
실시예 I-35: 화합물 A-39의 제조
Figure PCTKR2023008742-appb-img-000158
단계 1: 화합물 A-39a 제조
질소 대기 하 0 ℃에서 코어 C-3 (55.0 mg, 0.308 mmol)을 ACN (5.0 mL)에 용해시킨 후 2-(브로모메틸)-5-니트로퓨란 (Sigma aldrich, CAS NO. 20782-91-6, 76.3 mg, 0.370 mmol) 및 탄산칼륨 (85.1 mg, 0.616 mmol)을 순차적으로 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 EA (10 mL)와 증류수 (10 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-39a를 노란색 고체형태로 수득하였다(90.0 mg, 96 %).
1H-NMR (400 MHz, CDCl3) δ 10.11 (s, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.58 (s, 2H), 7.33 (d, J = 3.6 Hz, 1H), 7.00 (d, J = 8.0 Hz, 1H), 6.74 (d, J = 3.6 Hz, 1H), 5.36 (s, 2H).
단계 2: 화합물 A-39b 제조
질소 대기 하 0 ℃에서 화합물 A-39a (90.0 mg, 0.297 mmol)를 THF (10.0 mL)에 용해시킨 후 수소화 붕소 나트륨(28.0 mg, 0.742 mmol)을 첨가하고 0 ℃에서 3시간 동안 교반하였다. 반응 완료 후 EA (30 mL)와 증류수 (30 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-39b를 노란색 고체형태로 수득하였다(30.0 mg, 33 %).
1H-NMR (400 MHz, CDCl3) δ 7.54 (d, J = 5.6 Hz, 1H), 7.41 (d, J = 5.6 Hz, 1H), 7.31 - 7.28 (m, 2H), 6.81 (d, J = 8.0 Hz, 1H), 6.67 (d, J = 3.6 Hz, 1H), 5.25 (s, 2H), 4.92 (d, J = 5.6 Hz, 2H), 1.73 (t, J = 5.6 Hz, 1H).
단계 3: 화합물 A-39 제조
질소 대기 하 0 ℃에서 화합물 A-39b (20.0 mg, 0.065 mmol)와 크산텐-9-카복실산 (Xanthene-9-carboxylic acid, Alfa Aesar, CAS NO. 82-07-5, 16.3 mg, 0.072 mmol)을 DMF (3.0 mL)에 용해시킨 후 EDCI 염산염 (18.8 mg, 0.098 mmol), DMAP (0.8 mg, 0.006 mmol) 및 DIPEA (34.0 μL, 0.196 mmol)를 순차적으로 첨가하고 0 ℃에서 상온으로 천천히 승온시키면서 16시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1.0 mL)을 첨가하여 반응을 종결시키고 ACN (1.0 mL)과 증류수 (1.0 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-39를 아이보리색 고체형태로 수득하였다(2.3 mg, 6.8 %).
1H-NMR (400 MHz, DMSO) δ 7.73 - 7.71 (m, 2H), 7.51 (d, J = 5.6 Hz, 1H), 7.39 -7.32 (m, 4H), 7.26 (d, J = 8.0 Hz, 1H), 7.18 (d, J = 8.0 Hz, 2H), 7.15 - 7.04 (m, 4H), 5.43 (s, 2H), 5.30 - 5.26 (m, 3H); EI-MS m/z: 536[M+Na]+.
실시예 I-36: 화합물 A-40의 제조
Figure PCTKR2023008742-appb-img-000159
질소 대기 하 0 ℃에서 화합물 A-39b (9.1 mg, 0.029 mmol)를 THF (2.0 mL)에 용해시킨 후 화합물 PL-3 및 수소화 나트륨 (60 % dispersion in mineral oil, 1.44 mg, 0.036 mmol)을 순차적으로 첨가하고 0 ℃에서 7시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1.0 mL)을 첨가하여 반응을 종결시키고 ACN (1.0 mL)과 증류수 (1.0 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-40를 백색 고체형태로 수득하였다(5.1 mg, 2.5 %).
1H-NMR (400 MHz, CDCl3) δ 8.49 (s, 1H), 8.33 (s, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 5.6 Hz, 1H), 7.28 (d, J = 5.6 Hz, 1H), 7.22 - 7.18 (m, 2H), 7.13 - 7.09 (m, 1H), 6.68 (d, J = 8.0 Hz, 1H), 6.55 (d, J = 3.6 Hz, 1H), 5.86 (s, 1H), 5.31 - 5.30 (m, 1H), 5.24 (s, 2H), 5.12 (s, 2H), 4.40 - 4.37 (m, 1H), 2.17 - 2.11 (m, 3H), 1.97 - 1.73 (m, 5H), 1.67 - 1.30 (m, 10H), 0.93 (s, 3H), 0.91 (s, 3H); EI-MS m/z: 681[M+H]+.
실시예 I-37: 화합물 A-41의 제조
Figure PCTKR2023008742-appb-img-000160
단계 1: 화합물 A-41a 제조
질소 대기 하 0 ℃에서 화합물 A-10c (20.0 mg, 0.029 mmol)를 DMF (3.0 mL)에 용해시킨 후 Doxorubicin (Sigma aldrich, CAS NO. 23214-92-8, 19.3 mg, 0.035 mmol) 및 DIPEA (7.6 μL, 0.043 mmol)를 순차적으로 첨가하고 0 ℃에서 4시간 동안 교반하였다. 반응 완료 후 EA (20 mL)와 증류수 (20 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-41a를 붉은 고체형태로 수득하였다(12.0 mg, 38 %); EI-MS m/z: 1102[M+Na]+.
단계 2: 화합물 A-41 제조
질소 대기 하 0 ℃에서 화합물 A-41a (12.0 mg, 0.011 mmol)를 메탄올 (1.0 mL) 및 THF (0.5 mL)에 용해시킨 후 증류수 (200.0 μL)에 용해시킨 탄산칼륨 (10.7 mg, 0.077 mmol)을 서서히 적가하고 0 ℃에서 2시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1.0 mL)을 첨가하여 반응을 종결시키고 ACN (1.0 mL)과 증류수 (1.0 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-41를 붉은 고체형태로 수득하였다(0.3 mg, 2.9 %); EI-MS m/z: 934[M+Na]+.
실시예 I-38: 화합물 A-42의 제조
Figure PCTKR2023008742-appb-img-000161
단계 1: 화합물 A-42a 제조
질소 대기 하에서 화합물 A-10c (18.2 mg, 0.027 mmol)를 DMF (2.0 mL)에 용해시킨 후 라파티닙 (TCI, CAS NO. 231277-92-2, 15.6 mg, 0.027 mmol) 및 DIPEA (12.0 μL, 0.067 mmol)를 순차적으로 적가하고 상온에서 48시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1.0 mL)을 첨가하여 반응을 종결시키고 ACN (1.0 mL)과 증류수 (1.0 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-42a를 백색 고체형태로 수득하였다(7.0 mg, 23 %); EI-MS m/z: 1118[M+H]+.
단계 2: 화합물 A-42 제조
질소 대기 하 0 ℃에서 화합물 A-42a (7.0 mg, 0.006 mmol)를 메탄올 (1.0 mL) 및 THF (0.5 mL)에 용해시킨 후 증류수 (200.0 μL)에 용해시킨 탄산칼륨 (6.0 mg, 0.044 mmol)을 서서히 적가하고 0 ℃에서 30분 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1.0 mL)을 첨가하여 반응을 종결시키고 ACN (1.0 mL)과 증류수 (1.0 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-42를 백색 고체형태로 수득하였다(3.7 mg, 62 %); EI-MS m/z: 949[M+H]+.
실시예 I-39: 화합물 A-43의 제조
Figure PCTKR2023008742-appb-img-000162
단계 1: 화합물 A-43a의 제조
질소 대기 하 0 ℃에서 화합물 A-10b (69.0 mg, 0.135 mmol)를 MC (2.0 mL)에 용해시킨 후 염화티오닐 (21.6 μL, 0.296 mmol)을 서서히 적가하고 0 ℃에서 3시간 동안 교반하였다. 반응 완료 후 MC (20 mL)와 증류수 (20 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-43a를 백색 고체형태로 수득하였다(62.0 mg, 87 %).
1H-NMR (400 MHz, CDCl3) δ 7.46 - 7.42 (m, 2H), 7.30 (d, J = 8.0 Hz, 1H), 6.93 (d, J = 8.0 Hz, 1H), 5.63 (dd, J = 10.4 Hz, J = 8.0 Hz, 1H), 5.50 (d, J = 3.2 Hz 1H), 5.17 - 5.13 (m, 2H), 4.83 (s, 2H), 4.28 - 4.24 (m, 1H), 4.21 - 4.18(m, 1H), 4.16 - 4.11 (m, 1H), 2.20 (s, 3H), 2.08 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H).
단계 2: 화합물 A-43b의 제조
질소 대기 하 0 ℃에서 화합물 A-43a (21.0 mg, 0.040 mmol)를 DMF (1.0 mL)에 용해시킨 후 엘로티닙 (Sigma-Aldrich, CAS No. 183319-69-9, 20.6 mg 0.048 mmol) 및 아이오딘화 칼륨 (0.6 mg, 0.004 mmol)을 순차적으로 적가하고 80 ℃에서 16시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1.0 mL)을 첨가하여 반응을 종결시키고 ACN (1.0 mL)과 증류수 (1.0 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-43b를 백색 고체형태로 수득하였다(2.2 mg, 62 %).
1H-NMR (400 MHz, DMSO) δ 8.25 (s, 1H), 7.80 (d, J = 5.6 Hz, 1H), 7.64 (s, 1H), 7.40 (d, J = 4.4 Hz, 1H), 7.27 - 7.23 (m, 2H), 7.12 (s, 1H), 7.07 - 7.04 (m, 3H), 6.77 (s, 1H), 5.57 - 5.53 (m, 3H), 5.39 - 5.31 (m, 3H), 4.47 (t, J = 6.4 Hz, 1H), 4.13 - 4.12 (m, 4H), 4.07 (s, 1H), 3.94 (t, J = 4.4 Hz, 2H), 3.66 (t, J = 4.4 Hz, 2H), 3.42 (t, J = 4.4 Hz, 2H), 3.29 (s, 3H), 3.16 (s, 3H), 2.15 (s, 3H), 2.00 (s, 6H), 1.96 (s, 3H); EI-MS m/z: 887[M+H]+.
단계 3: 화합물 A-43 제조
질소 대기 하 0 ℃에서 화합물 A-43b (5.0 mg, 0.0056 mmol)를 메탄올 (1.0 mL)에 용해시킨 후 증류수 (200.0 μL)에 용해시킨 탄산칼륨 (5.45 mg, 0.039 mmol)을 서서히 적가하고 0 ℃에서 2시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1.0 mL)을 첨가하여 반응을 종결시키고 ACN (1.0 mL)과 증류수 (1.0 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-43를 백색 고체형태로 수득하였다(2.2 mg, 54 %).
1H-NMR (400 MHz, DMSO) δ 8.29 (s, 1H), 8.26 (s, 1H), 7.71 (d, J = 5.6 Hz, 1H), 7.66 - 7.63 (m, 2H), 7.34 (d, J = 8.0 Hz, 1H), 5.67 (t, J = 8.0 Hz, 1H), 7.13 - 7.09 (m, 2H), 7.08 - 7.03 (m, 2H), 6.81 - 6.77 (m, 1H), 5.55 (s, 2H), 4.89 (d, J = 8.0 Hz, 1H), 4.11 (t, J = 4.4 Hz, 2H), 4.06 (s, 1H), 3.93 (t, J = 4.4 Hz, 2H), 3.73 - 3.44 (m, 9H), 3.29 (s, 3H), 3.18 (s, 3H); EI-MS m/z: 719[M+H]+.
실시예 I-40: 화합물 A-44의 제조
Figure PCTKR2023008742-appb-img-000163
단계 1: 화합물 A-44a의 제조
질소 대기 하 0 ℃에서 화합물 A-43a (36.2 mg, 0.068 mmol)를 DMF (1.0 mL)에 용해시킨 후 이마티닙 (TCI, CAS No. 152459-95-5, 40.5 mg 0.082 mmol) 및 아이오딘화 칼륨 (1.1 mg, 0.006 mmol)을 순차적으로 적가하고 80 ℃에서 16시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1.0 mL)을 첨가하여 반응을 종결시키고 ACN (1.0 mL)과 증류수 (1.0 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-44a를 백색 고체형태로 수득하였다(18.0 mg, 26 %).
1H-NMR (400 MHz, DMSO) δ 10.24 (s, 1H), 9.27 (d, J = 3.2 Hz, 1H), 8.99 (s, 1H), 8.68 (dd, J = 8.0 Hz, J = 3.2 Hz 1H), 8.54 (s, 1H), 8.51 (d, J = 5.6 Hz, 1H), 8.47 (dt, J = 8.0 Hz, J = 3.2 Hz, 1H), 8.08 (s, 1H), 7.96 (d, J = 8.0 Hz, 2H), 7.89 (d, J = 5.6 Hz, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.53 - 7.42 (m, 5H), 7.29 (d, J = 5.6 Hz, 1H), 7.21 (d, J = 8.4 Hz, 1H), 7.15 (d, J = 8.4 Hz, 1H), 5.65 (d, J = 10.8 Hz, 1H), 5.40 - 5.35 (m, 3H), 4.86 (s, 2H), 4.55 (t, J = 6.4 Hz, 1H), 4.16 - 4.13 (m, 2H), 3.71 (s, 2H), 3.65 - 3.62 (m, 2H), 3.51 - 3.48 (m, 2H), 3.06 (s, 3H), 2.91 - 2.88 (m, 2H), 2.74 - 2.68 (m, 2H), 2.22 (s, 3H), 2.16 (s, 3H), 2.03 (s, 3H), 1.98 (s, 3H); EI-MS m/z: 988[M+H]+, 494 1/2[M+H]+.
단계 2: 화합물 A-44의 제조
질소 대기 하 0 ℃에서 화합물 A-44a (18.0 mg, 0.018 mmol)를 메탄올 (1.0 mL)에 용해시킨 후 증류수 (200.0 μL)에 용해시킨 탄산칼륨 (17.6 mg, 0.127 mmol)을 서서히 적가하고 0 ℃에서 30분 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1.0 mL)을 첨가하여 반응을 종결시키고 ACN (1.0 mL)과 증류수 (1.0 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-44를 백색 고체형태로 수득하였다(7.0 mg, 46 %).
1H-NMR (400 MHz, DMSO) δ 10.23 (s, 1H), 9.27 (d, J =1.6 Hz, 1H), 8.98 (s, 1H), 8.68 (dd, J = 5.6 Hz, J = 1.6 Hz, 1H), 8.51 (d, J = 5.6 Hz, 1H), 8.48 - 8.46 (m, 2H), 8.08 (s, 1H), 7.96 (d, J = 5.6 Hz, 2H), 7.80 (d, J = 5.6 Hz, 1H), 7.66 (d, J = 5.6 Hz, 1H), 7.56 - 7.42 (m, 5H), 7.23 - 7.18 (m, 2H), 4.99 (d, J = 7.6 Hz, 1H), 4.85 (s, 2H), 3.76 - 3.46 (m, 15H), 3.05 (s, 3H), 2.91 - 2.88 (m, 2H), 2.74 - 2.69 (m, 2H), 2.22 (s, 3H), 3.17 (s, 2H), 3.65 - 3.62 (m, 2H), 3.51 - 3.48 (m, 2H), 3.06 (s, 3H), 2.91 - 2.88 (m, 2H), 2.74 - 2.68 (m, 2H), 2.22 (s, 3H); EI-MS m/z: 987 [M+H]+, 494 1/2[M+H]+.
실시예 I-41: 화합물 A-45 및 A-50의 제조
Figure PCTKR2023008742-appb-img-000164
질소 대기 하 상온에서 화합물 A-25 (13.5 mg, 0.01 mmol)를 THF (1 mL)에 용해시킨 후 트리페닐포스핀 (3.95 mg, 0.015 mmol) 및 증류수 (0.3 mL)를 순차적으로 첨가하고 12시간 동안 교반하였다. 위 반응 용액에 2N-수산화나트륨 수용액 (10 μL)을 상온에서 첨가하고 30분 동안 교반한 후 2N-염산 수용액을 천천히 적가하여 반응 용액의 pH를 3으로 적정하고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 A-45 및 A-50을 각각 수득하였다(A-45: 1 mg, 7%, A-50: 7.8 mg, 59%); MS m/z: A-45 = 1317[M+H]+, A-50 = 1318[M+H]+.
실시예 I-42: 화합물 A-46의 제조
Figure PCTKR2023008742-appb-img-000165
단계 1: 화합물 A-46a의 제조
질소 대기 하 0 ℃에서 화합물 A-26g (50.0 mg, 0.070 mmol)를 DMF (2.0 mL)에 용해시킨 후 MMAE (50.0 mg, 0.070 mmol), HOBt (14.0 mg, 0.105 mmol), DIPEA (30.0 μL, 0.175 mmol) 및 피리딘 (1.0 mL)을 순차적으로 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 증류수 (50 mL), 2N-염산 수용액 (50 mL) 및 EA (100 mL)를 이용하여 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-46a를 백색 고체형태로 수득하였다(75.0 mg, 83 %); EI-MS m/z: 1294[M+H]+.
단계 2: 화합물 A-46 제조
질소 대기 하 0 ℃에서 화합물 A-46a (62.0 mg, 0.048 mmol)를 메탄올 (1.0 mL)에 용해시킨 후 증류수 (1.0 mL)에 용해시킨 탄산칼륨 (46.3 mg, 0.335 mmol)을 서서히 적가하고 0 ℃에서 1시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1.0 mL)을 첨가하여 반응을 종결시키고 ACN (1.0 mL)과 증류수 (1.0 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-46를 백색 고체형태로 수득하였다(29.0 mg, 59 %); EI-MS m/z: 1126[M+H] +.
실시예 I-43: 화합물 A-47의 제조
Figure PCTKR2023008742-appb-img-000166
질소 대기 하 상온에서 화합물 A-46 (12.4 mg, 0.011 mmol)을 THF (2 mL)에 용해시킨 후 트리페닐포스핀 (4.33 mg, 0.0165 mmol) 및 증류수 (0.1 mL)를 순차적으로 첨가하고 48시간 동안 교반하였다. 반응 완료 후 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 A-47을 수득하였다(3 mg, 24.8 %); EI-MS m/z: 1100[M+H]+.
실시예 I-44: 화합물 A-48의 제조
Figure PCTKR2023008742-appb-img-000167
단계 1: 화합물 A-48a의 제조
질소 대기 하 0 ℃에서 화합물 A-26g (43.0 mg, 0.060 mmol)를 MC (6.0 mL)에 용해시킨 후 N,N'-디메틸에틸렌디아민 (TCI, CAS NO. 110-70-3, 64 μL, 0.6 mmol)을 첨가하고 상온에서 1시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1.0 mL)을 첨가하여 반응을 종결시키고 ACN (1.0 mL)과 증류수 (1.0 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-48a를 백색 고체형태로 수득하였다(28.5 mg, 71 %); EI-MS m/z: 664[M+H]+.
단계 2: 화합물 A-48b의 제조
질소 대기 하 0 ℃에서 화합물 A-48a (28.5 mg, 0.043 mmol)를 DMF (1.0 mL)에 용해시킨 후 화합물 PL-2 (24 mg, 0.043 mmol) 및 DIPEA (7.5 μL, 0.043 mmol)를 순차적으로 첨가하고 상온에서 4시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1.0 mL)을 첨가하여 반응을 종결시키고 ACN (1.0 mL)과 증류수 (1.0 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-48b를 백색 고체형태로 수득하였다(26.5 mg, 57 %); EI-MS m/z: 1083[M+H]+.
단계 3: 화합물 A-48의 제조
질소 대기 하 0 ℃에서 화합물 A-48b (26.5 mg, 0.024 mmol)를 메탄올 (1.0 mL) 및 THF (0.5 mL)에 용해시킨 후 증류수 (200.0 μL)에 용해시킨 탄산칼륨 (23.6 mg, 0.171 mmol)을 서서히 적가하고 0 ℃에서 2시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1.0 mL)을 첨가하여 반응을 종결시키고 ACN (1.0 mL)과 증류수 (1.0 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-48를 백색 고체형태로 수득하였다(16.5 mg, 73 %); EI-MS m/z: 914[M+H]+.
실시예 I-45: 화합물 A-49의 제조
Figure PCTKR2023008742-appb-img-000168
단계 1: 화합물 A-49a의 제조
질소 대기 하 상온에서 THF (300 mL)에 LAH (2.25 g, 59.29 mmol)를 첨가한 후 0 ℃로 냉각하였다. 화합물 C-15e (8.53 g, 23.74 mmol)를 THF (75 mL)에 용해시켜서 천천히 첨가하고 0 ℃에서 5분 동안 교반하였다. 반응 완료 후 2N-수산화나트륨 수용액 (36 mL)을 첨가하여 반응을 종결시키고 THF (150 mL)로 반응용액을 희석하고 셀라이트를 이용하여 여과하였다. 수득한 용액을 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-49a를 아이보리색 고체형태로 수득하였다(7.2 g, 96 %).
1H-NMR (400 MHz, CDCl3) δ 7.66 (s, 1H), 7.48 - 7.33 (m, 6H), 7.19 (t, J = 8 Hz, 1H), 6.83 (d, J = 8 Hz, 1H), 5.19 (s, 2H), 4.93 (d, J = 6 Hz, 2H), 1.92 (t, J = 6 Hz, 1H); EI-MS m/z: 318[M+H]+.
단계 2: 화합물 A-49b의 제조
질소 대기 하 상온에서 MC (93 mL)에 화합물 A-49a (4.66 g, 14.69 mmol)를 첨가한 후 TEMPO (Alfa aesar, CAS NO. 2564-83-2, 230 mg, 1.47 mmol) 및 TBAI (543 mg, 1.47 mmol)를 첨가하였다. 이어서 탄산수소나트륨(4.2 g, 0.5 mol)과 탄산칼륨 (691 mg, 0.05 mol)을 물 100mL에 용해시켜서 첨가한 후 NCS (N-Chlorosuccinimide, Merck, CAS NO. 128-09-6, 2.16 g, 16.18 mmol)를 순차적으로 첨가하고 상온에서 2시간 동안 교반 하였다. 반응 완료 후 MC (100 mL)와 증류수 (100 mL)를 첨가하여 유기층을 2회 추출하였다. 염화나트륨 포화 수용액 (100 mL)을 첨가하여 세척한 후 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-49b를 노란색 고체형태로 수득하였다(4.35 g, 94 %).
1H-NMR (400 MHz, CDCl3) δ 9.95 (s, 1H), 8.53 (s, 1H), 7.53 - 7.35 (m, 7H), 6.88 (d, J = 8 Hz, 1H), 5.23 (s, 2H); EI-MS m/z: 316[M+H]+.
단계 3: 화합물 A-49c의 제조
질소 대기 하 상온에서 화합물 A-49b (4.35 g, 13.80 mmol)를 MC (70 mL)에 용해시킨 후 (카베톡시메틸렌)트리페닐포스포란 ((Carbethoxymethylene)tri-phenylphosphorane, Merck, CAS No. 1099-45-2, 9.16 g, 27.59 mmol)을 첨가하고 상온에서 1.5시간 동안 교반하였다. 반응 완료 후 반응 용액을 감압 농축시켜 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-49c를 아이보리색 고체형태로 수득하였다(5.12 g, 96 %).
1H-NMR (400 MHz, CDCl3) δ 7.94 (s, 1H), 7.86 (d, J = 15.2 Hz, 1H), 7.48 - 7.34 (m, 6H), 6.82 (d, J = 8 Hz, 1H), 6.10 (d, J = 15.2 Hz, 1H), 5.20 (s, 2H), 4.26 (q, J = 7.2 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H); EI-MS m/z: 386[M+H]+.
단계 4: 화합물 A-49d의 제조
질소 대기 하 상온에서 화합물 A-49c (5.12 g, 13.29 mmol)를 EA (147 mL) 및 메탄올 (441 mL)에 용해시킨 후 5% 팔라듐 차콜 (5% Pd/C, 5.12 g)을 첨가하고 수소환경 하에서 16시간 동안 교반하였다. 반응 완료 후 MC (800 mL)로 반응용액을 희석하고 셀라이트를 이용하여 여과하였다. 여과된 용액을 감압 농축 후 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-49d를 베이지색 오일형태로 수득하였다(4.53 g, 88 %).
1H-NMR (400 MHz, CDCl3) δ 7.50 - 7.3 (m, 7H), 7.14 (t, J = 8 Hz, 1H), 6.81 (d, J = 8 Hz, 1H), 5.12 (s, 2H), 4.16 (q, J = 7.2 Hz, 2H), 3.25 (t, J = 7.6 Hz, 2H), 2.73 (t, J = 7.6 Hz, 2H), 1.26 (t, J = 7.2 Hz, 3H); EI-MS m/z: 388[M+H]+.
단계 5: 화합물 A-49e의 제조
질소 대기 하 -78 ℃에서 화합물 A-49d (3.88 g, 10.01 mmol)를 MC (287 mL)에 용해시킨 후 디클로로메틸 메틸 에테르(Dichloromethyl methyl ether, Merck, CAS No. 4885-02-3, 2.72 mL, 30.01 mmol)와 사염화 티타늄 용액(1M-TiCl4 in MC, 30 mL, 30 mmol)을 순차적으로 천천히 첨가하고 2시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 증류수 (250 mL)를 천천히 적가하여 반응을 종결시키고 MC (250 mL)를 첨가하여 유기층을 2회 추출하였다. 염화나트륨 포화 수용액 (250 mL)을 첨가하여 세척한 후 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-49e를 노란색 오일형태로 수득하였다(2.59 g, 62 %).
1H-NMR (400 MHz, CDCl3) δ 10.05 (s, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.58 (s, 1H), 7.49 - 7.36 (m, 5H), 6.99 (d, J = 8.4 Hz, 1H), 5.30 (s, 2H), 4.17 (q, J = 7.2 Hz, 2H), 3.32 (t, J = 7.6 Hz, 2H), 2.76 (t, J = 7.6 Hz, 2H), 1.25 (t, J = 7.2 Hz, 3H); EI-MS m/z: 416[M+H]+.
단계 6: 화합물 A-49f의 제조
질소 대기 하 0 ℃에서 화합물 A-49e (2.85 g, 6.86 mmol)를 에탄올 (17 mL)과 THF (17 mL)에 용해시킨 후 증류수 (8.5 mL)에 용해시킨 수산화 리튬 일수화물 (864 mg, 20.59 mmol)을 서서히 적가하고 상온에서 1.5시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (15 mL)을 첨가하여 반응을 종결시키고 EA (85 mL)와 증류수 (85 mL)를 첨가하여 유기층을 추출하였다. 염화나트륨 포화 수용액 (250 mL)을 첨가하여 세척한 후 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-49f를 주황색 고체형태로 수득하였다(2.56 g, 96 %).
1H-NMR (400 MHz, CDCl3) δ 10.05 (s, 1H), 7.73 (d, J = 8 Hz, 1H), 7.60 (s, 1H), 7.52 - 7.36 (m, 5H), 6.99 (d, J = 8.4 Hz, 1H), 5.31 (s, 2H), 3.33 (t, J = 7.6 Hz, 2H), 2.83 (t, J = 7.6 Hz, 2H); EI-MS m/z: 388[M+H]+.
단계 7: 화합물 A-49g의 제조
질소 대기 하 0 ℃에서 화합물 A-49f (2.56 g, 6.61 mmol)를 DMF (22 mL)에 용해시킨 후 EDC (1.9 g, 9.91 mmol), HOBt (894 mg, 6.61 mmol), DMAP (81 mg, 0.66 mmol) 및 DIPEA (3.45 mL, 19.81 mmol)를 순차적으로 첨가하고 1.5시간 동안 교반하였다. 추가적으로 DMF (11 mL)에 용해시킨 링커 P-1 (1.68 g, 6.60 mmol)을 서서히 적가하고 상기 반응 혼합물을 상온에서 16시간 동안 교반한 후 EA (100 mL)와 증류수 (100 mL)를 이용하여 추출하였다. 수득한 유기층에 염화나트륨 포화 수용액 (50 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시킨 유기층을 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-49g를 갈색 오일형태로 수득하였다(2.24 g, 58 %).
1H-NMR (400 MHz, CDCl3) δ 10.04 (s, 1H), 7.71 (d, J = 8.4 Hz, 1H), 7.58 (s, 1H), 7.49 - 7.36 (m, 5H), 6.98 (d, J = 8 Hz, 1H), 6.14 (brs, 1H), 5.30 (s, 2H), 3.71 - 3.49 (m, 14H), 3.47 - 3.44 (m, 2H), 3.36 - 3.33 (m, 4H), 2.61 (t, J = 7.6 Hz, 2H); EI-MS m/z: 588[M+H]+.
단계 8: 화합물 A-49h의 제조
질소 대기 하 -78 ℃에서 화합물 A-49g (2.23 g, 3.80 mmol)를 MC (76 mL)에 용해시킨 후 펜타메틸벤젠 (Pentamethylbenzene, Alfa aesar CAS NO. 700-12-9, 1.69 g, 11.40 mmol)을 첨가하고 보론 트리클로라이드 용액 (1M-BCl3 in MC, 22.8 mL, 22.8 mmol)을 천천히 첨가한 후 -55 ℃까지 서서히 승온하면서 1시간 동안 교반하였다. 반응 완료 후 증류수 (150 mL)를 천천히 적가하여 반응을 종결시키고 0 ℃에서 2N-수산화 나트륨 수용액을 첨가하여 중화시켰다. 상기 혼합물에 MC (150 mL)와 증류수 (150 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 염화나트륨 포화 수용액 (150 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-49h를 베이지색 고체형태로 수득하였다(1.33 g, 71 %).
1H-NMR (400 MHz, CDCl3) δ 10.01 (s, 1H), 8.42 (brs, 1H), 7.66 - 7.64 (m, 2H), 6.94 (d, J = 8 Hz, 1H), 6.32 (brs, 1H), 3.66 - 3.59 (m, 8H), 3.53 - 3.52 (m, 2H), 3.48 - 3.44 (m, 4H), 3.38 - 3.33 (m, 4H), 2.66 (t, J = 7.2 Hz, 2H); EI-MS m/z: 498[M+H]+.
단계 9: 화합물 A-49i의 제조
질소 대기 하 0 ℃에서 화합물 A-49h (500 mg, 1.01 mmol)를 MC (33 mL)에 용해시킨 후 아세토브로모-알파-디-글루쿠론산 메틸 에스테르 (TCI, 838 mg, 2.11 mmol), 벤질트리부틸암모늄 클로라이드 (314 mg, 1.01 mmol) 및 5N-수산화 나트륨 수용액 (1 mL, 5.00 mmol)을 천천히 첨가하고 0 ℃에서 30분 교반한 후 추가로 상온에서 16시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액을 반응용액에 첨가하여 중화시키고 MC (165 mL)와 증류수 (165 mL)를 첨가하여 추출하였다. 수득한 유기층을 염화나트륨 포화 수용액 (165 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-49i를 아이보리색의 끈적한 검 형태로 수득하였다(200 mg, 25 %).
1H-NMR (400 MHz, CDCl3) δ 10.10 (s, 1H), 7.73 (d, J = 8 Hz, 1H), 7.39 (s, 1H), 7.09 (d, J = 8.4 Hz, 1H), 6.16 (brs, 1H), 5.44 - 5.37 (m, 4H), 4.29 (m, 1H), 3.72 (s, 3H), 3.67 - 3.46 (m, 14H), 3.38 - 3.33 (m, 4H), 2.61 (t, J = 7.6 Hz, 2H), 2.09 (s, 3H), 2.07 (s, 6H); EI-MS m/z: 814[M+H]+.
단계 10: 화합물 A-49j의 제조
질소 대기 하 0 ℃에서 화합물 A-49i (198 mg, 0.24 mmol)를 THF (13.3 mL)에 용해시킨 후 수소화 붕소 나트륨 (NaBH4, 27.6 mg, 0.73 mmol)을 첨가하고 0 ℃에서 5시간 동안 교반하였다. 반응 완료 후 증류수 (13 mL)를 첨가하여 반응을 종결시키고 EA (53 mL)와 증류수 (27 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 염화나트륨 포화 수용액 (53 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-49j를 하얀색의 끈적한 검 형태로 수득하였다(146 mg, 74 %).
1H-NMR (400 MHz, CDCl3) δ 7.34 (s, 1H), 7.14 (d, J = 8 Hz, 1H), 6.93 (d, J = 8 Hz, 1H), 6.22 (brs, 1H), 5.39 - 5.35 (m, 3H), 5.19 (m, 1H), 4.81 (d, J = 5.6 Hz, 2H), 4.20 (m, 1H), 3.74 (s, 3H), 3.65 - 3.43 (m, 14H), 3.38 - 3.28 (m, 4H), 2.61 (m, 2H), 2.07 (s, 3H), 2.05 (s, 6H); EI-MS m/z: 816[M+H]+.
단계 11: 화합물 A-49k의 제조
질소 대기 하 0 ℃에서 화합물 A-49j (171 mg, 0.21 mmol)를 MC (5.1 mL)에 용해시킨 후 4-니트로페닐 클로로포르메이트 (4-Nitrophenyl chloroformate, 85 mg, 0.42 mmol), 피리딘 (50.7 μL, 0.63 mmol) 및 DIPEA (54.8 μL, 0.32 mmol)를 순차적으로 첨가하고 0 ℃에서 30분 동안 교반하고, 상온에서 2.5시간 동안 추가적으로 교반하였다. 반응 완료 후 EA (25 mL)로 희석하고 2N-염산 수용액 (25 mL)을 첨가하여 유기층을 추출하였다. 수득한 유기층을 염화나트륨 포화 수용액 (25 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축시켰다. 이렇게 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-49k를 투명한 끈적한 포말(sticky foam) 형태로 수득하였다(158 mg, 77 %).
1H-NMR (400 MHz, CDCl3) δ 8.27 (d, J = 8.8 Hz, 1H), 7.41 - 7.37 (m, 3H), 6.95 (d, J = 8.4 Hz, 1H), 6.20 (brs, 1H), 5.43 - 5.37 (m, 5H), 5.24 - 5.23 (m, 1H), 4.23 - 4.21 (m, 1H), 3.73 (s, 3H), 3.66 - 3.54 (m, 12H), 3.51 - 3.47 (m, 2H), 3.37 - 3.34 (m, 4H), 2.60 (d, J = 7.6 Hz, 2H), 2.08 - 2.06 (m, 9H); EI-MS m/z: 981[M+H]+.
단계 12: 화합물 A-49L의 제조
질소 대기 하 0 ℃에서 화합물 A-49k (41.1 mg, 0.042 mmol)를 DMF (1 mL)에 용해시킨 후 MMAE (30 mg, 0.042 mmol), HOBt (8.5 mg, 0.063 mmol), DIPEA (18.2 μL, 0.104 mmol) 및 피리딘 (1 mL)을 순차적으로 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 EA (20 mL)와 2N-염산 수용액 (20 mL)를 이용하여 유기층을 2회 추출하였다. 수득한 유기층을 염화나트륨 포화 수용액 (20 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-49L을 하얀색 고체형태로 수득하였다(47.7 mg, 73 %); EI-MS m/z: 1560[M+H]+, 780 1/2[M+H]+.
단계 13: 화합물 A-49 제조
-20 ℃ 하에서 화합물 A-49L (47.7 mg, 0.031 mmol)에 메탄올 (0.76 mL), 증류수 (0.1 mL) 및 THF (0.48 mL)를 혼합 첨가하여 용해시킨 후 증류수 (0.44 mL)에 용해시킨 수산화 리튬 (5.1 mg, 0.12 mmol)을 적가하고 -20 ℃에서 1시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1 mL)을 첨가하여 반응을 종결시키고 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-49를 하얀색 고체형태로 수득하였다(28.2 mg, 65 %); EI-MS m/z: 1420[M+H]+, 710 1/2[M+H]+.
실시예 I-46: 화합물 A-51의 제조
Figure PCTKR2023008742-appb-img-000169
단계 1: 화합물 A-51a 제조
질소 대기 하 0 ℃에서 화합물 A-49k (37 mg, 0.038 mmol)를 DMF (1 mL)에 용해시킨 후 MMAF-OMe (28 mg, 0.038 mmol), HOBt (7.6 mg, 0.056 mmol), DIPEA (16.4 μL, 0.094 mmol) 및 피리딘 (1 mL)을 순차적으로 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 EA (20 mL)와 2N-염산 수용액 (20 mL)를 이용하여 유기층을 2회 추출하였다. 수득한 유기층을 염화나트륨 포화 수용액 (20 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-51a를 투명한 끈적한 포말(sticky foam) 형태로 수득하였다(45 mg, 75 %); EI-MS m/z: 1588[M+H]+, 794 1/2[M+H]+.
단계 2: 화합물 A-51 제조
-20 ℃ 하에서 화합물 A-51a (45 mg, 0.028 mmol)에 메탄올 (0.71 mL), 증류수 (0.11 mL) 및 THF (0.14 mL)를 혼합 첨가하여 용해시킨 후 증류수 (0.6 mL)에 용해시킨 수산화 리튬 (8.9 mg, 0.212 mmol)을 적가하고 -20 ℃에서 -5 ℃로 서서히 승온하면서 3시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (0.5 mL)을 첨가하여 반응을 종결시키고 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-51을 하얀색 고체형태로 수득하였다 (22.2 mg, 55 %); EI-MS m/z: 1434[M+H]+, 717 1/2[M+H]+.
실시예 I-47: 화합물 A-52의 제조
Figure PCTKR2023008742-appb-img-000170
단계 1: 화합물 A-52a의 제조
질소 대기 하 -78 ℃에서 화합물 A-49b (8 g, 25.38 mmol)를 MC (242 mL, 0.105 M)에 용해시킨 후 보론 트리클로라이드 용액 (1M-BCl3 in MC, 76.14 mL, 76.14 mmol)을 천천히 첨가하고 2시간 동안 교반하였다. 반응 완료 후 증류수 (200 mL)를 첨가하여 반응을 종결시키고 0 ℃에서 2N-수산화 나트륨 수용액을 첨가하여 중화시켰다. 상기 혼합물에 2N-염산 수용액을 천천히 적가하여 반응용액의 pH를 7로 적정하였다. 혼합물에 MC (200 mL)를 이용하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조 및 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-52a를 연두색 고체형태로 수득하였다(4.9 g, 85.8%).
1H-NMR (400 MHz, DMSO) δ 9.97 (s, 1H), 8.65 (s, 1H), 7.53 (d, J = 8 Hz, 1H), 7.32(t, J = 8 Hz, 1H), 6.82 (d, J = 8 Hz, 1H); EI-MS m/z: 226[M+H]+.
단계 2: 화합물 A-52b의 제조
질소 대기 하 상온에서 탄산은 (9.07 g, 32.9 mmol)과 HMTTA (1,1,4,7,10,10-Hexamethyltriethylenetetramine, 1.13 g, 4.88 mmol)를 ACN (80 mL)에 용해시킨 후 1시간 교반하였다. 이 반응용액을 0 ℃로 냉각한 후 화합물 A-52a (2 g, 8.88 mmol)를 ACN (30 mL)에 녹인 용액과 아세토브로모-알파-디-글루쿠론산 메틸 에스테르 (TCI, 8.82 g, 22.2 mmol)을 ACN (20 mL)에 녹인 용액을 순차적으로 천천히 첨가하고 0 ℃에서 상온으로 서서히 승온하면서 16시간 동안 교반하였다. 반응 완료 후 셀라이트 필터를 통해 얻어진 여과액을 감압 농축하였다. 이렇게 수득한 농축액에 EA (100 mL)와 증류수 (100 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층에 염화나트륨 수용액을 첨가하여 세척하였다. 세척한 유기층을 무수 황산마그네슘으로 건조 및 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-52b를 노란색 고체형태로 수득하였다(0.82 g, 17 %).
1H-NMR (400 MHz, CDCl3) δ 9.97 (s, 1H), 8.36 (s, 1H), 7.64 (d, J = 8 Hz, 1H), 7.39 (t, J = 8 Hz, 1H), 6.97 (d, J = 8 Hz, 1H), 5.5 - 5.36 (m, 3H), 5.31 (m, 1H), 4.25 (m, 1H), 3.73 (s, 3H), 2.09 (s, 3H), 2.07 (s, 6H); EI-MS m/z: 542[M+H]+.
단계 3: 화합물 A-52c의 제조
질소 대기 하 0 ℃에서 화합물 A-52b (2.50 g, 4.61 mmol)를 THF (45 mL, 0.1 M)에 용해시킨 후 수소화 붕소 나트륨 (0.44 g)을 첨가하고 2시간 동안 교반하였다. 반응 완료 후 증류수 (30 mL)를 첨가하여 반응을 종결시킨 후 EA (30 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-52c를 백색 고체형태로 수득하였다(1.37 g, 54.6%).
1H-NMR (400 MHz, CDCl3) δ 7.58 (d, J = 8 Hz, 1H), 7.47 (s, 1H), 7.2 (t, J = 8 Hz, 1H), 6.94 (d, J = 8 Hz, 1H), 5.41 - 5.35 (m, 3H), 5.23 (m, 1H), 4.93 (d, J = 6 Hz, 2H), 4.21 (m, 1H), 3.73 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H), 1.99 (t, J = 6 Hz, 1H); EI-MS m/z: 566[M+Na]+.
단계 4: 화합물 A-52d의 제조
질소 대기 하 -10 ℃에서 화합물 A-52c (700 mg, 1.29 mmol)를 37% 염산 수용액 (35 mL)에 용해시킨 후 2시간 동안 -10 ℃에서 교반하였다. 반응 완료 후 EA (40 mL)와 증류수 (40 mL)를 첨가하여 유기층을 2회 추출한다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 화합물 A-52d를 백색 고체 형태로 수득하였다(700 mg, 97.2%).
1H-NMR (400 MHz, CDCl3) δ 7.6 - 7.54 (m, 2H), 7.23 - 7.2 (m, 1H), 6.95 (d, J = 8 Hz, 1H), 5.5 - 5.35 (m, 3H), 5.22 (d, J = 7.2 Hz, 1H), 4.88 (s, 2H), 4.23 - 4.2 (m, 1H), 3.73 (s, 3H), 2.08 - 2.04 (m, 9H); EI-MS m/z: 584[M+Na]+.
단계 5: 화합물 A-52e의 제조
질소 대기 하 상온에서 화합물 A-52d (700 mg, 1.25 mmol)를 DMF (25 mL)에 용해시킨 후 아지드화나트륨 (121 mg, 1.87 mmol)을 첨가하고 60 ℃에서 16시간 동안 교반하였다. 반응완료 후 EA (30 mL)와 증류수 (60 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-52e를 백색 고체 형태로 수득하였다(428 mg, 58.4 %).
1H-NMR (400 MHz, CDCl3) δ 7.58 (d, J = 8 Hz, 1H), 7.52 (s, 1H), 7.25 - 7.2 (m, 1H), 6.95 (d, J = 8 Hz, 1H), 5.46 - 5.34 (m, 3H), 5.24 (d, J = 7.2 Hz, 1H), 4.63 (d, J = 14.4 Hz, 1H), 4.57(d, J = 14.4 Hz, 1H) 4.26 - 4.19 (m, 1H), 3.73 (s, 3H), 2.08 (s, 3H), 2.06 (s, 6H); EI-MS m/z: 591[M+Na]+.
단계 6: 화합물 A-52f의 제조
질소 대기 하 -78 ℃에서 A-52e (434 mg, 0.76 mmol)를 MC (24 mL)에 용해시킨 후 디클로로메틸 메틸 에테르(210 μL, 2.3 mmol)와 사염화 티타늄 용액(1M-TiCl4 in MC, 2.3 mL, 2.3 mmol)을 순차적으로 천천히 첨가하고 4시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 -78 ℃에서 냉각된 증류수 (100 mL)를 천천히 적가하여 반응을 종결시키고 MC (100 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층에 염화나트륨 수용액을 첨가하여 세척하였다. 세척한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-52f를 백색 고체 형태로 수득하였다(208 mg, 45.6 %).
1H-NMR (400 MHz, CDCl3) δ 10.13 (s, 1H), 7.82 (d, J = 8 Hz, 1H), 7.6 (s, 1H), 7.12 (d, J = 8 Hz, 1H), 5.5 - 5.38 (m, 4H), 4.7 (d, J = 14.4 Hz, 1H), 4.63 (d, J = 14.4 Hz, 1H), 4.35 - 4.27 (m, 1H), 3.72 (s, 3H), 2.09 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H); EI-MS m/z: 619[M+Na]+.
단계 7: 화합물 A-52g의 제조
질소 대기 하 0 ℃에서 화합물 A-52f (121 mg, 0.2 mmol)를 THF (8 mL)에 용해시킨 후 수소화 붕소 나트륨(40 mg, 1.01 mmol)을 첨가하고 2시간 동안 교반하였다. 반응 완료 후 증류수 (50 mL)를 첨가하여 반응을 종결시키고 EA (50 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층에 염화나트륨 수용액을 첨가하여 세척하였다. 세척한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-52g를 백색 고체 형태로 수득하였다(73 mg, 60.2%).
1H-NMR (400 MHz, CDCl3) δ 7.56 (s, 1H), 7.2 (d, J = 8 Hz, 1H), 6.95 (d, J = 7.6 Hz, 1H), 5.45 - 5.3 (m, 3H), 5.22 (d, J = 6.8 Hz, 1H), 4.86 (d, J = 5.6 Hz, 2H), 4.63 (d, J = 14.4 Hz, 1H), 4.58 (d, J = 14.4 Hz, 1H), 4.24 - 4.2 (m, 1H), 3.74 (s, 3H), 2.08 (s, 3H), 2.05 (s, 6H), 1.74 (t, J = 6 Hz, 1H); EI-MS m/z: 621[M+Na]+.
단계 8: 화합물 A-52h의 제조
질소 대기 하 0 ℃에서 화합물 A-52g (423 mg, 0.71 mmol)를 MC (18.5 mL)에 용해시킨 후 4-니트로페닐 클로로포르메이트 (285 mg, 1.41 mmol), 피리딘 (170 μL, 2.12 mmol) 및 DIPEA (180 μL, 1.06 mmol)를 순차적으로 첨가하고 0 ℃에서 30분, 상온에서 2시간 동안 교반하였다. 반응 완료 후 MC (50 mL)로 희석하고 2N-염산 수용액 (50 mL)을 첨가하여 유기층을 2회 추출하였다. 수득한 유기층에 염화나트륨 수용액을 첨가하여 세척하였다. 세척한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-52h을 백색 고체 형태로 수득하였다(499.2 mg, 92.6%).
1H-NMR (400 MHz, CDCl3) δ 8.27 (d, J = 9.2 Hz, 2H), 7.58 (s, 1H), 7.38 (d, J = 9.2 Hz, 2H), 7.34 (d, J = 8 Hz, 1H), 6.98 (d, J = 8 Hz, 1H), 5.46 - 5.34 (m, 5H), 5.27 (d, J = 7.2 Hz, 1H), 4.66 (d, J = 14.4 Hz, 1H), 4.6 (d, J = 14.4 Hz, 1H), 4.26 - 4.22 (m, 1H), 3.74 (s, 3H), 2.08 (s, 3H), 2.07- 2.03 (m, 6H); EI-MS m/z: 786[M+Na]+.
단계 9: 화합물 A-52i의 제조
질소 대기 하 0 ℃에서 화합물 A-52h (100 mg, 0.13 mmol)를 DMF (2 mL)에 용해시킨 후 MMAE (94 mg, 0.13 mmol), HOBt (26 mg, 0.195 mmol), DIPEA (56 μL, 0.325 mmol) 및 피리딘 (2 mL)을 순차적으로 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 EA (50 mL)와 2N-염산 수용액 (50 mL)을 이용하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-52i를 백색 고체형태로 수득하였다(125 mg, 70.9%); EI-MS m/z: 1343[M+H]+.
단계 10: 화합물 A-52의 제조
-20 ℃ 하에서 화합물 A-52i (40.4 mg, 0.03 mmol)에 메탄올 (2 mL) 및 THF (2 mL)를 혼합 첨가하여 용해시킨 후 증류수 (0.4 mL)에 용해시킨 수산화 리튬 (8 mg, 0.19 mmol)을 적가하고 -20 ℃에서 2시간 동안 교반하고, 0 ℃에서 30분 동안 추가적으로 교반하였다. 반응 완료 후 2N-염산 수용액 (0.5 mL)을 첨가하여 반응을 종결시키고 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-52을 백색 고체형태로 수득하였다(30.3 mg, 83.7%); EI-MS m/z: 1202[M]+.
실시예 I-48: 화합물 A-53의 제조
Figure PCTKR2023008742-appb-img-000171
질소 대기 하 상온에서 화합물 A-52 (15.3 mg, 0.015 mmol)를 THF (1.0 mL)에 용해시킨 후 트리페닐포스핀 (5.9 mg, 0.022 mmol) 및 증류수 (200.0 μL)를 순차적으로 첨가하고 16시간 동안 교반하였다. 위 반응 용액에 2N-수산화나트륨 수용액 (10.0 μL)을 첨가하고 30분 동안 추가적으로 교반한 후 2N-염산 수용액을 천천히 적가하여 반응 용액의 pH를 3으로 적정하고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 A-53을 백색 고체 형태로 수득하였다(11.4 mg, 76.2 %); EI-MS m/z: 1177[M+H]+.
실시예 I-49: 화합물 A-54의 제조
Figure PCTKR2023008742-appb-img-000172
단계 1: 화합물 A-54a 제조
질소 대기 하 0 ℃에서 화합물 A-52h (100.0 mg, 0.13 mmol)를 DMF (2.0 mL)에 용해시킨 후 MMAF-OMe (monomethyl auristatin F methyl ester, CAS NO. 863971-12-4, 97.7 mg, 0.13 mmol), HOBt (26.0 mg, 0.195 mmol), DIPEA (56.0 μL, 0.325 mmol) 및 피리딘 (2.0 mL)을 순차적으로 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 증류수 (10 mL), 2N-염산 수용액 (5 mL) 및 EA (15 mL)를 이용하여 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-54a를 백색 고체형태로 수득하였다(120.0 mg, 67 %); EI-MS m/z: 1371[M+H]+.
단계 2: 화합물 A-54 제조
질소 대기 하 0 ℃에서 화합물 A-54a (60.0 mg, 0.043 mmol)를 메탄올 (1.0 mL)에 용해시킨 후 증류수 (1.0 mL)에 용해시킨 수산화 리튬 (13.8 mg, 0.328 mmol)을 서서히 적가하고 상온에서 3시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1.0 mL)을 첨가하여 반응을 종결시키고 ACN (1.0 mL)과 증류수 (1.0 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-54를 백색 고체형태로 수득하였다(29.6 mg, 56 %); EI-MS m/z: 1217[M+H]+.
실시예 I-50: 화합물 A-55의 제조
Figure PCTKR2023008742-appb-img-000173
질소 대기 하 상온에서 화합물 A-54 (21.7 mg, 0.017 mmol)을 THF (1.5 mL)에 용해시킨 후 트리페닐포스핀 (5.1 mg, 0.019 mmol) 및 증류수 (0.15 mL)를 순차적으로 첨가하고 16시간 동안 교반하였다. 위 반응 용액에 2N-염산 수용액 (10.0 μL)을 첨가하고 4시간 반응 후 2N-수산화나트륨 수용액 (20.0 μL)을 첨가하고 1시간 동안 추가적으로 교반하였다. 이어서, 2N-염산 수용액을 천천히 적가하여 반응 용액의 pH를 3으로 적정하고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 A-55를 백색 고체 형태로 수득하였다(11.0 mg, 52 %); EI-MS m/z: 1191[M+H]+.
실시예 I-51: 화합물 A-56의 제조
Figure PCTKR2023008742-appb-img-000174
단계 1: 화합물 A-56a의 제조
질소 대기 하 상온에서 탄산은 (Silver carbonate, Alfa aesar, CAS NO. 534-16-7, 37.9 g, 137.44 mmol)을 ACN (330 mL)에 첨가한 후 HMTTA (Alfa aesar, CAS NO. 3083-10-1, 5.56 mL, 20.43 mmol)를 첨가하고 1시간 동안 교반하였다. 추가적으로 코어 C-4 (6.62 g, 37.15 mmol)와 ACN (100 mL)에 용해시킨 아세토브로모-알파-디-글루쿠론산 메틸 에스테르 (TCI, 36.88 g, 92.86 mmol)를 천천히 첨가하고 0 ℃에서 상온으로 천천히 승온시키면서 16시간 동안 교반하였다. 반응 완료 후 EA (500 mL)로 반응용액을 희석하고 셀라이트를 이용하여 여과하였다. 여과한 용액을 증류수 (1000 mL)와 2N-염산 수용액 (70 mL)을 첨가하여 추출하였다. 수득한 유기층을 염화나트륨 포화 수용액 (500 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 화합물 A-56a를 다음 반응에 추가 정제과정 없이 이용하였다(11.93 g, 65 %); EI-MS m/z: 517[M+Na]+.
단계 2: 화합물 A-56b의 제조
질소 대기 하 0 ℃에서 화합물 A-56a (11.93 g, 24.13 mmol)를 THF (600 mL)에 용해시킨 후 수소화 붕소 나트륨(2.28 g, 60.31 mmol)을 첨가하고 1.5시간 동안 교반하였다. 반응 완료 후 증류수 (600 mL)를 첨가하여 반응을 종결시키고 EA (1000 mL)와 증류수 (500 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 염화나트륨 포화 수용액 (500 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-56b를 아이보리색 고체형태로 수득하였다(3.42 g, 29 %).
1H-NMR (400 MHz, CDCl3) δ 7.53 (d, J = 8.4 Hz, 1H), 7.28 (s, 1H), 7.25 (m, 1H), 6.93 (d, J = 8 Hz, 1H), 5.41 - 5.37 (m, 3H), 5.25 (d, J = 6.8 Hz, 1H), 4.92 (d, J = 6 Hz, 2H), 4.21 (m, 1H), 3.72 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H), 1.91 (t, J = 6 Hz, 1H); EI-MS m/z: 518[M+Na]+.
단계 3: 화합물 A-56c의 제조
질소 대기 하 -10 ℃에서 화합물 A-56b (3.42 g, 6.89 mmol)를 농염산 (172 mL)에 용해시킨 후 3시간 동안 -10 ℃에서 교반하였다. 반응 완료 후 EA (400 mL)와 증류수 (400 mL)를 첨가하여 유기층을 추출하고 수득한 유기층을 염화나트륨 포화 수용액 (200 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 화합물 A-56c를 다음 반응에 추가 정제과정 없이 이용하였다(2.77 g, 78 %); MS m/z: 536[M+Na]+.
단계 4: 화합물 A-56d의 제조
질소 대기 하 상온에서 화합물 A-56c (2.78 g, 5.40 mmol)를 DMF (103 mL)에 용해시킨 후 아지드화나트륨 (526 mg, 8.09 mmol)을 첨가하고 60 ℃에서 16시간 동안 교반하였다. 반응 완료 후 EA (300 mL)와 증류수 (300 mL)를 첨가하여 유기층을 추출하고 수득한 유기층을 염화나트륨 포화 수용액 (150 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-56d를 하얀색 고체형태로 수득하였다(1.45 g, 52 %).
1H-NMR (400 MHz, CDCl3) δ 7.53 (d, J = 8.4 Hz, 1H), 7.32 (s, 1H), 7.28 (m, 1H), 6.94 (d, J = 7.6 Hz, 1H), 5.45 - 5.37 (m, 3H), 5.25 (d, J = 7.2 Hz, 1H), 4.60 (d, J = 14.4 Hz, 1H), 4.53 (d, J = 14.4 Hz, 1H), 4.23 (m, 1H), 3.73 (s, 3H), 2.07 (s, 3H), 2.05 (s, 6H); MS m/z: 543[M+Na]+.
단계 5: 화합물 A-56e의 제조
질소 대기 하 -78 ℃에서 화합물 A-56d (1.45 g, 2.78 mmol)를 MC (80 mL)에 용해시킨 후 디클로로메틸 메틸 에테르(1.51 mL, 16.68 mmol)와 사염화 티타늄 용액(1M-TiCl4 in MC, 16.7 mL, 16.7 mmol)을 순차적으로 천천히 첨가하고 2.5시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 냉각된 증류수 (100 mL)를 천천히 적가하여 반응을 종결시키고 MC (200 mL)와 증류수 (200 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 염화나트륨 포화 수용액 (100 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-56e를 하얀색 고체형태로 수득하였다(608 mg, 40 %).
1H-NMR (400 MHz, CDCl3) δ 10.11 (s, 1H), 7.85 (d, J = 8 Hz, 1H), 7.39 (s, 1H), 7.09 (d, J = 8.4 Hz, 1H), 5.45 - 5.41 (m, 4H), 4.65 (d, J = 14.4 Hz, 1H), 4.58 (d, J = 14.4 Hz, 1H), 4.32 (m, 1H), 3.72 (s, 3H), 2.09 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H); MS m/z: 571[M+Na]+.
단계 6: 화합물 A-56f의 제조
질소 대기 하 0 ℃에서 화합물 A-56e (608 mg, 1.11 mmol)를 THF (56 mL)에 용해시킨 후 수소화 붕소 나트륨(188 mg, 4.97 mmol)을 첨가하고 4시간 동안 교반하였다. 반응 완료 후 증류수 (60 mL)를 첨가하여 반응을 종결시키고 EA (100 mL)와 증류수 (50 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 염화나트륨 포화 수용액 (100 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-56f를 하얀색 고체형태로 수득하였다(469 mg, 77 %).
1H-NMR (400 MHz, CDCl3) δ 7.36 (s, 1H), 7.29 (d, J = 8 Hz, 1H), 6.94 (d, J = 8 Hz, 1H), 5.42 - 5.37 (m, 3H), 5.24 (d, J = 6.8 Hz, 1H), 4.89 (d, J = 6 Hz, 2H), 4.61 (d, J = 14.4 Hz, 1H), 4.54 (d, J = 14.4 Hz, 1H), 4.22 (m, 1H), 3.74 (s, 3H), 2.07 (s, 3H), 2.05 (s, 6H), 1.75 (t, J = 6 Hz, 1H); MS m/z: 573[M+Na]+.
단계 7: 화합물 A-56g의 제조
질소 대기 하 0 ℃에서 화합물 A-56f (468 mg, 0.85 mmol)를 MC (14 mL)에 용해시킨 후 4-니트로페닐 클로로포르메이트 (342 mg, 1.70 mmol), 피리딘 (20.5 μL, 2.54 mmol) 및 DIPEA (222 μL, 1.28 mmol)를 순차적으로 첨가하고 0 ℃에서 상온으로 천천히 승온하면서 1.5시간 동안 교반하였다. 반응 완료 후 EA (70 mL)로 희석하고 2N-염산 수용액 (70 mL)을 첨가하여 유기층을 추출하였다. 수득한 유기층을 염화나트륨 포화 수용액 (70 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축시켰다. 이렇게 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-56g를 하얀색 고체형태로 수득하였다(560 mg, 92 %).
1H-NMR (400 MHz, CDCl3) δ 8.27 (d, J = 8.8 Hz, 2H), 7.39 - 7.37 (m, 4H), 6.96 (d, J = 8 Hz, 1H), 5.48 (s, 2H), 5.45 - 5.38 (m, 3H), 5.28 (d, J = 6.8 Hz, 1H), 4.63 (d, J = 14.4 Hz, 1H), 4.56 (d, J = 14.4 Hz, 1H), 4.25 (m, 1H), 3.74 (s, 3H), 2.08 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H); MS m/z: 738[M+Na]+.
단계 8: 화합물 A-56h 제조
질소 대기 하 0 ℃에서 화합물 A-56g (100 mg, 0.14 mmol)를 DMF (2 mL)에 용해시킨 후 MMAE (100 mg, 0.14 mmol), HOBt (28 mg, 0.21 mmol), DIPEA (60.8 μL, 0.35 mmol) 및 피리딘 (2 mL)을 순차적으로 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 EA (40 mL)와 2N-염산 수용액 (40 mL)를 이용하여 유기층을 2회 추출하였다. 수득한 유기층을 염화나트륨 포화 수용액 (40 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-56h를 하얀색 고체형태로 수득하였다(129 mg, 71 %); EI-MS m/z: 1296[M+H]+.
단계 9: 화합물 A-56 제조
-20 ℃ 하에서 화합물 A-56h (63.7 mg, 0.049 mmol)에 메탄올 (1.3 mL), 증류수 (0.1 mL) 및 THF (0.25 mL)를 혼합 첨가하여 용해시킨 후 증류수 (0.8 mL)에 용해시킨 수산화 리튬 (10.3 mg, 0.246 mmol)을 적가하고 -20 ℃에서 2시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1 mL)을 첨가하여 반응을 종결시키고 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-56을 하얀색 고체형태로 수득하였다 (46.2 mg, 91 %); EI-MS m/z: 1156[M+H]+.
실시예 I-52: 화합물 A-57의 제조
Figure PCTKR2023008742-appb-img-000175
질소 대기 하 상온에서 화합물 A-56 (20 mg, 0.017 mmol)을 THF (1.5 mL)에 용해시킨 후 트리페닐포스핀 (5 mg, 0.019 mmol) 및 증류수 (0.15 mL)를 순차적으로 첨가하고 16시간 동안 교반하였다. 위 반응 용액에 2N-수산화나트륨 수용액 (10 μL)을 상온에서 첨가하고 4시간 동안 추가적으로 교반한 후 2N-염산 수용액을 천천히 적가하여 반응 용액의 pH를 3으로 적정하고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 A-57을 하얀색 고체형태로 수득하였다(13.7 mg, 70 %); MS m/z: 1130[M+H]+.
실시예 I-53: 화합물 A-58의 제조
Figure PCTKR2023008742-appb-img-000176
단계 1: 화합물 A-58a 제조
질소 대기 하 0 ℃에서 화합물 A-56g (100 mg, 0.14 mmol)를 DMF (2 mL)에 용해시킨 후 MMAF-OMe (104 mg, 0.14 mmol), HOBt (28 mg, 0.21 mmol), DIPEA (60.8 μL, 0.35 mmol) 및 피리딘 (2 mL)을 순차적으로 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 EA (40 mL)와 2N-염산 수용액 (40 mL)를 이용하여 유기층을 2회 추출하였다. 수득한 유기층을 염화나트륨 포화 수용액 (40 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-58a를 하얀색 고체형태로 수득하였다(139 mg, 75 %); EI-MS m/z: 1324[M+H]+.
단계 2: 화합물 A-58 제조
-20 ℃ 하에서 화합물 A-58a (70.5 mg, 0.053 mmol)에 메탄올 (1.3 mL), 증류수 (0.1 mL) 및 THF (0.25 mL)를 혼합 첨가하여 용해시킨 후 증류수 (1.6 mL)에 용해시킨 수산화 리튬 (22.4 mg, 0.533 mmol)을 적가하고 -20 ℃에서 2.5시간 교반 후 0 ℃로 서서히 승온하면서 2시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1 mL)을 첨가하여 반응을 종결시키고 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-58을 하얀색 고체형태로 수득하였다(35.1 mg, 56 %); EI-MS m/z: 1170[M+H]+.
실시예 I-54: 화합물 A-59의 제조
Figure PCTKR2023008742-appb-img-000177
질소 대기 하 상온에서 화합물 A-58 (20 mg, 0.017 mmol)을 THF (1.5 mL)에 용해시킨 후 트리페닐포스핀 (5 mg, 0.019 mmol) 및 증류수 (0.15 mL)를 순차적으로 첨가하고 16시간 동안 교반하였다. 위 반응 용액에 2N-염산 수용액 (10 μL)을 상온에서 첨가하고 1시간 동안 교반한 후 2N-수산화나트륨 수용액 (20 μL)을 첨가하고 2시간 동안 추가적으로 교반하였다. 반응 완료 후 2N-염산 수용액을 천천히 적가하여 반응 용액의 pH를 3으로 적정하고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 A-59를 하얀색 고체형태로 수득하였다(14.3 mg, 73 %); MS m/z: 1144[M+H]+.
실시예 I-55: 화합물 A-60의 제조
Figure PCTKR2023008742-appb-img-000178
단계 1: 화합물 A-60a의 제조
질소 대기 하 0 ℃에서 화합물 A-15b (1.15 g, 2.56 mmol)를 MC (85 mL)에 용해시킨 후 아세토브로모-알파-디-글루쿠론산 메틸 에스테르 (TCI, 1.63 g, 4.11 mmol), 벤질트리부틸암모늄 클로라이드 (801 mg, 2.56 mmol) 및 5N-수산화 나트륨 수용액 (1.54 mL, 7.70 mmol)을 천천히 첨가하고 0 ℃에서 상온으로 서서히 승온하면서 16시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액을 반응용액에 첨가하여 중화시키고 MC (150 mL)와 증류수 (80 mL), 포화된 염화 나트륨 수용액 (70 mL)을 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-60a를 노란색 끈적한 검 형태로 수득하였다 (348 mg, 18 %).
1H-NMR (400 MHz, CDCl3) δ 10.08 (s, 1H), 7.76 (d, J = 8 Hz, 1H), 7.16 (s, 1H), 7.05 (d, J = 8 Hz, 1H), 6.14 (m, 1H), 5.47 - 5.35 (m, 4H), 4.30 (m, 1H), 3.71 (s, 3H), 3.69 - 3.62 (m, 6H), 3.62 - 3.58 (m, 2H), 3.58 - 3.51 (m, 4H), 3.51 - 3.43 (m, 2H), 3.40 - 3.35 (m, 2H), 3.31 (t, J = 7.6 Hz, 2H), 2.63 (t, J = 7.6 Hz, 2H), 2.09 (s, 3H), 2.07 (s, 6H); EI-MS m/z: 767[M+H]+.
단계 2: 화합물 A-60b의 제조
질소 대기 하 0 ℃에서 화합물 A-60a (415 mg, 0.54 mmol)를 THF (20 mL)에 용해시킨 후 수소화 붕소 나트륨 (71.2 mg, 1.88 mmol)을 첨가하고 0 ℃에서 상온으로 서서히 승온하면서 4시간 동안 교반하였다. 반응 완료 후 증류수 (100 mL)를 첨가하여 반응을 종결시키고 EA (100 mL)를 첨가하여 유기층을 2회 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-60b를 무색 끈적한 검 형태로 수득하였다 (286 mg, 69 %).
1H-NMR (400 MHz, CDCl3) δ 7.20 (d, J = 8 Hz, 1H), 7.12 (s, 1H), 6.91 (d, J = 8 Hz, 1H), 6.13 (m, 1H), 5.41 - 5.34 (m, 3H), 5.20 (m, 1H), 4.85 (d, J = 6 Hz, 2H), 4.20 (m, 1H), 3.73 (s, 3H), 3.66 - 3.58 (m, 6H), 3.58 - 3.54 (m, 2H), 3.54 - 3.48 (m, 4H), 3.48 - 3.41 (m, 2H), 3.38 - 3.33 (m, 2H), 3.25 (t, J = 7.6 Hz, 2H), 2.59 (t, J = 7.6 Hz, 2H), 2.07 (s, 6H), 2.05 (s, 3H); EI-MS m/z: 769[M+H]+.
단계 3: 화합물 A-60c의 제조
질소 대기 하 0 ℃에서 화합물 A-60b (286 mg, 0.37 mmol)를 MC (10 mL)에 용해시킨 후 4-니트로페닐 클로로포르메이트 (150 mg, 0.74 mmol), DIPEA (97.2 μL, 0.56 mmol) 및 피리딘 (90 μL, 1.12 mmol)을 순차적으로 첨가하고 0 ℃에서 30분 동안 교반하고, 상온에서 2시간 동안 추가적으로 교반하였다. 반응 완료 후 MC (50 mL)로 희석하고 2N-염산 수용액 (50 mL)을 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축시켰다. 이렇게 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-60c를 무색 끈적한 검 형태로 수득하였다 (136 mg, 39 %).
1H-NMR (400 MHz, CDCl3) δ 8.27 (d, J = 9.2 Hz, 2H), 7.39 (d, J = 9.2 Hz, 2H), 7.30 (d, J = 8 Hz, 1H), 7.15 (s, 1H), 6.92 (d, J = 8 Hz, 1H), 6.26 (m, 1H), 5.45 (s, 2H), 5.42 - 5.34 (m, 3H), 5.25 (m, 1H), 4.22 (m, 1H), 3.73 (s, 3H), 3.67 - 3.59 (m, 8H), 3.59 - 3.51 (m, 4H), 3.51 - 3.45 (m, 2H), 3.36 (t, J = 5.2 Hz, 2H), 3.28 (t, J = 7.6 Hz, 2H), 2.62 (t, J = 7.6 Hz, 2H), 2.08 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H); EI-MS m/z: 934[M+H]+.
단계 4: 화합물 A-60d의 제조
질소 대기 하 0 ℃에서 화합물 A-60c (57.4 mg, 0.061 mmol)를 DMF (1 mL)에 용해시킨 후 MMAE (44.1 mg, 0.061 mmol), HOBt (12.4 mg, 0.092 mmol), DIPEA (26.8 μL, 0.154 mmol) 및 피리딘 (1 mL)을 순차적으로 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 EA (50 mL)와 2N-염산 수용액 (50 mL)을 이용하여 유기층을 2회 추출한 후, 포화된 염화 나트륨 수용액 (50 mL)을 사용하여 유기층을 씻어주었다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-60d를 하얀색 끈적한 검 형태로 수득하였다(60.9 mg, 65 %); EI-MS m/z: 1513[M+H]+, 756 1/2[M+H]+.
단계 5: 화합물 A-60의 제조
-20 ℃ 하에서 화합물 A-60d (60.9 mg, 0.04 mmol)에 메탄올 (1 mL), 증류수 (0.4 mL) 및 THF (0.4 mL)를 혼합 첨가하여 용해시킨 후 증류수 (0.6 mL)에 용해시킨 수산화 리튬 (8.4 mg, 0.201 mmol)을 적가하고 -20 ℃에서 -5 ℃로 서서히 승온하면서 1.5시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (0.2 mL)을 첨가하여 반응을 종결시키고 ACN (3 mL)와 증류수 (3 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-60을 하얀색 고체형태로 수득하였다 (39.7 mg, 72 %); EI-MS m/z: 1373[M+H]+, 686 1/2[M+H]+.
실시예 I-56: 화합물 A-61의 제조
Figure PCTKR2023008742-appb-img-000179
단계 1: 화합물 A-61a의 제조
질소 대기 하 0 ℃에서 화합물 A-60c (52.4 mg, 0.056 mmol)를 DMF (1 mL)에 용해시킨 후 MMAF-OMe (41.9 mg, 0.056 mmol), HOBt (11.4 mg, 0.084 mmol), DIPEA (24.4 μL, 0.14 mmol) 및 피리딘 (1 mL)을 순차적으로 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 EA (50 mL)와 2N-염산 수용액 (50 mL)을 이용하여 유기층을 2회 추출한 후, 포화된 염화 나트륨 수용액 (50 mL)을 사용하여 유기층을 씻어주었다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-61a를 무색 끈적한 검 형태로 수득하였다(63.5 mg, 73 %); EI-MS m/z: 1541[M+H]+, 770 1/2[M+H]+.
단계 2: 화합물 A-61의 제조
-20 ℃ 하에서 화합물 A-61a (63.5 mg, 0.041 mmol)에 메탄올 (1 mL), 증류수 (0.4 mL) 및 THF (0.4 mL)를 혼합 첨가하여 용해시킨 후 증류수 (0.6 mL)에 용해시킨 수산화 리튬 (13 mg, 0.309 mmol)을 적가하고 -20 ℃에서 -5 ℃로 서서히 승온하면서 4.5시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (0.3 mL)을 첨가하여 반응을 종결시키고 ACN (3 mL)와 증류수 (3 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-61을 하얀색 고체형태로 수득하였다 (40.1 mg, 70 %); EI-MS m/z: 1387[M+H]+, 693 1/2[M+H]+.
실시예 I-57: 화합물 A-62의 제조
Figure PCTKR2023008742-appb-img-000180
단계 1: 화합물 A-62b 제조
질소 대기 하 0 ℃에서 수소화 나트륨 (60 % dispersion in mineral oil, 724.0 mg, 18.1 mmol)에 THF (12.0 mL)를 적가하고, THF (8.0 mL)에 용해시킨 화합물 A-62a (2,3-디하이드록시벤즈알데히드, Alfa Aesar, CAS No. 24677-78-9, 1.0 g, 7.24 mmol)를 천천히 반응용액에 첨가 후 상온에서 1시간 동안 교반하였다. 브롬화벤질 (0.86 mL, 7.24 mmol)을 상기 반응 용액에 천천히 첨가하고 16시간 동안 추가적으로 교반하였다. 반응 완료 후, 증류수 (50 mL), 2N-염산 수용액 (50 mL) 및 EA (100 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사에 에탄올 (30.0 mL)을 첨가 후 생성된 고체를 여과시켜 화합물 A-62b를 노란색 고체형태로 수득하였다(680.0 mg, 41 %).
1H-NMR (400 MHz, CDCl3) δ 11.07 (s, 1H), 9.92 (s, 1H), 7.45 - 7.31 (m, 5H), 7.19 (dd, J = 7.6 Hz, J = 1.2 Hz, 1H), 7.13 (d, J = 7.6 Hz, 1H), 6.89 (t, J = 7.6 Hz, 1H), 5.19 (s, 3H).
단계 2: 화합물 A-62c 제조
질소 대기 하에서 화합물 A-62b (680.0 mg, 2.97 mmol)를 DMF (5.0 mL)에 용해시킨 후 에틸 브로모아세테이트 (0.38 mL, 3.57 mmol) 및 탄산칼륨 (1.03 g, 7.44 mmol)을 순차적으로 첨가 후 80 ℃에서 2시간 동안 교반하였다. 반응 완료 후, 증류수 (50 mL) 및 EA (50 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 포화된 염화 나트륨 수용액 (50 mL)을 첨가하여 씻어 주었다. 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 A-62c를 백색 고체형태로 수득하였다(870.0 mg, 93 %).
1H-NMR (400 MHz, CDCl3) δ 10.63 (s, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.44 - 7.34 (m, 5H), 7.19 (d, J = 8.0 Hz, 1H), 7.11 (t, J = 8.0 Hz, 1H), 5.13 (s, 2H), 4.85 (s, 2H) 4.15 (q, J = 7.2 Hz, 2H), 1.22 (t, J = 7.2 Hz, 3H).
단계 3: 화합물 A-62d 제조
질소 대기 하에서 화합물 A-62c (870.0 mg, 2.76 mmol)를 DMF (10.0 mL)에 용해시킨 후 탄산칼륨 (1.03 g, 7.44 mmol)을 후 100 ℃에서 3시간 동안 교반하였다. 반응 완료 후, 증류수 (100 mL) 및 EA (100 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 포화된 염화 나트륨 수용액 (100 mL)를 첨가하여 씻어 주었다. 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 A-62d를 백색 고체형태로 수득하였다(640.0 mg, 78 %); EI-MS m/z: 297[M+H]+.
1H-NMR (400 MHz, CDCl3) δ 7.51 - 7.49 (m, 3H), 7.40 - 7.30 (m, 3H), 7.25 - 7.23 (m, 1H), 7.15 (t, J = 8.0 Hz, 1H), 6.94 (d, J = 8.0 Hz, 1H), 5.33 (s, 2H), 4.44 (q, J = 7.2 Hz, 2H), 1.42 (t, J = 7.2 Hz, 3H).
단계 4: 화합물 A-62e 제조
질소 대기 하 -78 ℃에서 화합물 A-62d (640.0 mg, 2.16 mmol)를 MC (20.0 mL)에 용해시킨 후 디클로로메틸 메틸 에테르(0.57 mL, 6.48 mmol)와 사염화 티타늄 용액 (1M-TiCl4 in MC, 6.48 mL, 6.48 mmol)을 순차적으로 천천히 첨가하고 2시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 냉각된 증류수 (100 mL)를 천천히 적가하여 반응을 종결시키고 EA (100 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-62e를 백색 고체 형태로 수득하였다(420.0 mg, 60 %); EI-MS m/z: 325[M+H]+.
1H-NMR (400 MHz, CDCl3) δ 10.03 (s, 1H), 8.22 (s, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.50 - 7.48 (m, 2H), 7.42 - 7.34 (m, 3H), 7.04 (d, J = 8.0 Hz, 1H), 5.42 (s, 2H), 4.45 (q, J = 7.2 Hz, 2H), 1.43 (t, J = 7.2 Hz, 3H).
단계 5: 화합물 A-62f 제조
질소 대기 하 -78 ℃에서 화합물 A-62e (420.0 mg, 1.29 mmol)를 MC (13.0 mL)에 용해시킨 후 보론 트리클로라이드 용액 (1M-BCl3 in MC, 3.88 mL, 3.88 mmol)을 천천히 첨가하고 2시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 증류수 (50.0 mL)를 -50 ℃에서 천천히 적가하여 반응을 종결시키고 상온에서 EA (100 mL)와 증류수 (100 mL)를 추가로 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-62f를 상아색 고체형태로 수득하였다(145.0 mg, 47 %).
1H-NMR (400 MHz, CDCl3) δ 10.05 (s, 1H), 8.23 (s, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.10 (d, J = 8.0 Hz, 1H), 6.51 (s, 1H), 4.46 (q, J = 7.2 Hz, 2H), 1.44 (t, J = 7.2 Hz, 3H).
단계 6: 화합물 A-62g 제조
질소 대기 하 0 ℃에서 화합물 A-62f (140.0 mg 0.59 mmol)를 ACN (20.0 mL)에 용해시킨 후 아세토브로모-알파-디-갈락토스 (295.0 mg, 0.71 mmol), 분자체 (50.0 mg) 및 산화은 (I) (346.0 mg, 1.49 mmol)을 순차적으로 첨가하고 상온에서 2시간 동안 교반하였다. 반응 완료 후 EA (100 mL)로 반응용액을 희석하고 셀라이트를 이용하여 여과한 용액에 포화된 염화 나트륨 수용액 (100 mL)를 첨가하여 씻어 주었다. 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-62g를 백색 고체형태로 수득하였다(303.0 mg, 89 %); EI-MS m/z: 586[M+Na]+.
1H-NMR (400 MHz, CDCl3) δ 10.10 (s, 1H), 8.23 (s, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.27 (d, J = 8.0 Hz, 1H), 5.60 - 5.59 (m, 2H), 5.50 (d, J = 3.2 Hz, 1H), 5.21 - 5.17 (m, 1H), 4.45 (q, J = 7.2 Hz, 2H), 4.23 - 4.17 (m, 3H), 2.19 (s, 3H), 2.14 (s, 3H), 2.03 (s, 3H), 1.98 (s, 3H), 1.43 (t, J = 7.2 Hz, 3H).
단계 7: 화합물 A-62h 제조
질소 대기 하 0 ℃에서 화합물 A-62g (136.0 mg, 0.24 mmol)을 THF (10.0 mL)에 용해시킨 후 수소화 붕소 나트륨(22.8 mg, 0.60 mmol)을 첨가하고 0 ℃에서 2시간 동안 교반하였다. 반응 완료 후 EA (50 mL)와 증류수 (50 mL)을 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-62h를 백색 고체형태로 수득하였다(85.0 mg, 62 %).
1H-NMR (400 MHz, CDCl3) δ 7.70 (s, 1H), 7.18 (s, 2H), 5.57 (dd, J = 10.4 Hz, J = 8.0 Hz, 1H), 5.47 (d, J = 3.2 Hz, 1H), 5.27 (d, J = 8.0 Hz, 1H), 5.14 (dd, J = 10.4 Hz, J = 3.2 Hz, 1H), 4.90 (d, J = 5.6 Hz, 2H), 4.43 (q, J = 7.2 Hz, 2H), 4.24 - 4.19 (m, 2H) 4.14 - 4.06 (m, 1H), 2.20 (s, 3H), 2.19 (s, 3H), 2.02 (s, 3H), 2.01 (s, 3H), 1.72 (t, J = 5.6 Hz, 1H), 1.42 (t, J = 7.2 Hz, 3H).
단계 8: 화합물 A-62i 제조
질소 대기 하 0 ℃에서 화합물 A-62h (85.0 mg, 0.15 mmol)를 MC (3.0 mL)에 용해시킨 후 4-니트로페닐 클로로포르메이트 (45.0 mg, 0.22 mmol)와 DIPEA (40.0 μL, 0.22 mmol) 및 피리딘 (36.0 μL,0.45 mmol)을 순차적으로 첨가하고 0 ℃에서 상온으로 천천히 승온하면서 16시간 동안 교반하였다. 반응 완료 후 EA (50 mL)와 증류수 (50 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축시켰다. 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-62i를 백색 고체형태로 수득하였다(54.0 mg, 49 %).
1H-NMR (400 MHz, CDCl3) δ 8.27 (d, J = 9.2 Hz, 2H), 7.68 (s, 1H), 7.37 (d, J = 9.2 Hz, 2H), 7.32 - 7.20 (m, 2H), 5.58 (dd, J = 10.4 Hz, J = 8.0 Hz, 1H), 5.49 (s, 3H), 5.35 (d, J = 8.0 Hz, 1H), 5.16 (dd, J = 10.4 Hz, J = 3.2 Hz, 1H), 4.45 (q, J = 7.2 Hz, 2H), 4.25 - 4.15 (m, 2H), 4.14 - 4.09 (m, 1H), 2.20 (s, 3H), 2.18 (s, 3H), 2.03 (s, 3H), 2.01 (s, 3H), 1.43 (s, J = 7.2 Hz, 3H).
단계 9: 화합물 A-62j 제조
질소 대기 하 0 ℃에서 화합물 A-62i (54.0 mg, 0.073 mmol)를 DMF (2.0 mL)에 용해시킨 후 MMAE (53.0 mg, 0.073 mmol), HOBt (15.0 mg, 0.110 mmol), DIPEA (33.0 μL, 0.184 mmol) 및 피리딘 (1.0 mL)을 순차적으로 첨가하고 상온에서 6시간 동안 교반하였다. 반응 완료 후 증류수 (50 mL), 2N-염산 수용액 (50 mL) 및 EA (100 mL)를 이용하여 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-62j를 백색 고체형태로 수득하였다(35.0 mg, 36 %); EI-MS m/z: 1311[M+H]+.
단계 10: 화합물 A-62 제조
질소 대기 하 0 ℃에서 화합물 A-62j (20.0 mg, 0.015 mmol)를 메탄올 (1.0 mL)에 용해시킨 후 증류수 (1.0 mL)에 용해시킨 수산화 리튬 (4.8 mg, 0.114 mmol)을 서서히 적가하고 0 ℃에서 2시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1.0 mL)을 첨가하여 반응을 종결시키고 ACN (1.0 mL)과 증류수 (1.0 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-62를 백색 고체형태로 수득하였다(9.2 mg, 54 %); EI-MS m/z: 1115[M+H]+.
실시예 I-58: 화합물 A-63의 제조
Figure PCTKR2023008742-appb-img-000181
단계 1: 화합물 A-63b 제조
질소 대기 하 -78 ℃에서 화합물 A-63a (2-클로로-3-메톡시벤즈알데히드, Sigma aldrich, CAS NO. 54881-49-1, 3.0 g, 17.6 mmol)를 MC (60.0 mL)에 용해시킨 후 보론 트리브로마이드 용액 (1M-BBr3 in MC, 53.0 mL, 53.0 mmol)을 천천히 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 증류수 (100 mL)를 천천히 적가하여 반응을 종결시키고 EA (500 mL)와 증류수 (500 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-63b를 분홍색 고체형태로 수득하였다(1.8 g, 65 %).
1H-NMR (400 MHz, CDCl3) δ 10.39 (s, 1H), 7.52 (dd, J = 7.2 Hz, 2.0 Hz, 1H), 7.35 - 7.27 (m, 2H), 5.81 (s, 1H).
단계 2: 화합물 A-63c 제조
질소 대기 하 0 ℃에서 화합물 A-63b (1.8 g, 11.5 mmol)를 ACN (60.0 mL)에 용해시킨 후 탄산칼륨 (3.98 g, 28.7 mmol)과 브롬화벤질 (2.05 mL, 1.72 mmol)을 천천히 첨가하고 0 ℃에서 10분 동안 교반하였다. 반응 온도를 상온으로 올리고 16시간 동안 추가적으로 교반하였다. 반응 완료 후 EA (200 mL)와 증류수 (200 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-63c를 백색 고체형태로 수득하였다(2.0 g, 71 %).
1H-NMR (400 MHz, CDCl3) δ 10.54 (s, 1H), 7.54 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 7.48 - 7.27 (m, 5H), 7.19 (dd, J = 7.6 Hz, J = 1.2 Hz, 1H), 5.21 (s, 2H).
단계 3: 화합물 A-63d 제조
질소 대기 하에서 화합물 A-63c (650.0 mg, 2.63 mmol)를 DMF (25.0 mL)에 용해시킨 후 메틸 티오글리콜레이트 (Merck, 0.47 mL, 5.27 mmol) 및 탄산칼륨 (728.0 mg, 5.27 mmol)을 첨가하고 상온에서 30분 동안 교반하였다. 반응 온도를 80 ℃로 올리고 3시간 동안 추가적으로 교반하였다. 반응 완료 후 EA (250 mL)와 증류수 (250 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 포화된 염화 나트륨 수용액 (250 mL)을 첨가하여 씻어 주었다. 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 노란색 고체형태로 A-63d를 수득하였고 추가 정제 과정 없이 다음 반응에 이용하였다(230.0 mg, 29 %).
단계 4: 화합물 A-63e 제조
질소 대기 하 -78 ℃에서 화합물 A-63d (400.0 mg, 1.34 mmol)를 MC (30.0 mL)에 용해시킨 후 디클로로메틸 메틸 에테르(0.71 mL, 8.04 mmol)와 사염화 티타늄 용액 (1M-TiCl4 in MC, 8.04 mL, 8.04 mmol)을 순차적으로 천천히 첨가하고 2시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 냉각된 증류수 (100 mL)를 천천히 적가하여 반응을 종결시키고 EA (150 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-63e를 백색 고체 형태로 수득하였다(125.0 mg, 28 %).
1H-NMR (400 MHz, CDCl3) δ 10.08 (s, 1H), 9.01 (s, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.53 - 7.35 (m, 5H), 7.04 (d, J = 8.0 Hz, 1H), 5.38 (s, 2H), 3.97 (s, 3H).
단계 5: 화합물 A-63f 제조
질소 대기 하 -78 ℃에서 화합물 A-63e (400.0 mg, 1.34 mmol)를 MC (10.0 mL)에 용해시킨 후 보론 트리클로라이드 용액 (1M-BCl3 in MC, 1.14 mL, 1.14 mmol)을 천천히 첨가하고 1시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 증류수 (50.0 mL)를 -50 ℃에서 천천히 적가하여 반응을 종결시키고 상온에서 EA (100 mL)와 증류수 (50 mL)를 추가로 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-63f를 백색 고체형태로 수득하였다(40.0 mg, 44 %).
1H-NMR (400 MHz, CDCl3) δ 10.09 (s, 1H), 9.03 (s, 1H), 7.81 (d, J = 8.0 Hz, 1H), 6.96 (d, J = 8.0 Hz, 1H), 5.93 (s, 1H), 3.98 (s, 3H).
단계 6: 화합물 A-63g 제조
질소 대기 하 0 ℃에서 화합물 A-63f (40.0 mg 0.169 mmol)를 ACN (10.0 mL)에 용해시킨 후 아세토브로모-알파-디-갈락토스 (83.0 mg, 0.203 mmol) 및 산화은 (I) (98.0 mg, 0.423 mmol)을 순차적으로 첨가하고 상온에서 2시간 동안 교반하였다. 반응 완료 후 EA (50 mL)로 반응용액을 희석하고 셀라이트를 이용하여 여과한 용액에 포화된 염화 나트륨 수용액 (50 mL)을 첨가하여 씻어 주었다. 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-63g를 백색 고체형태로 수득하였다(60.0 mg, 62 %).
1H-NMR (400 MHz, CDCl3) δ 10.14 (s, 1H), 9.00 (s, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 5.66 (dd, J = 10.4 Hz, J = 8.0 Hz, 1H), 5.51 (d, 3.2 Hz, 1H), 5.29 (d, 8.0 Hz, 1H), 5.17 (dd, J = 10.4 Hz, J = 3.2 Hz, 1H), 4.29 - 4.19 (m, 3H), 2.22 (s, 3H), 2.108 (s, 3H), 2.100 (s, 3H), 2.04 (s, 3H).
단계 7: 화합물 A-63h 제조
질소 대기 하 0 ℃에서 화합물 A-63g (23.0 mg, 0.04 mmol)를 THF (3.0 mL)에 용해시킨 후 수소화 붕소 나트륨(3.84 mg, 0.10 mmol)을 첨가하고 0 ℃에서 2시간 동안 교반하였다. 반응 완료 후 EA (50 mL)와 증류수 (50 mL)을 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-63h를 백색 고체형태로 수득하였다(20.0 mg, 86 %); EI-MS m/z: 590[M+Na]+.
1H-NMR (400 MHz, CDCl3) δ 8.27 (s, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.11 (d, J = 8.0 Hz, 1H), 5.62 (dd, J = 10.4 Hz, J = 8.0 Hz, 1H), 5.49 (d, J = 3.2 Hz, 1H), 5.15 - 5.12 (m, 2H), 4.99 (d, J = 5.6 Hz, 2H), 4.30 - 4.27 (m, 1H), 4.21 - 4.17 (m, 1H), 4.16 - 4.09 (m, 1H), 3.95 (s, 3H), 2.21 (s, 3H), 2.17 (s, 3H), 2.13 (s, 3H), 2.03 (s, 3H).
단계 8: 화합물 A-63i 제조
질소 대기 하 0 ℃에서 화합물 A-63h (20.0 mg, 0.035 mmol)를 MC (1.0 mL)에 용해시킨 후 4-니트로페닐 클로로포르메이트 (20 mg, 0.105 mmol)와 DIPEA (18.0 μL, 0.105 mmol) 및 피리딘 (17.0 μL, 0.21 mmol)을 순차적으로 첨가하고 상온에서 6시간 동안 교반하였다. 반응 완료 후 EA (50 mL)와 증류수 (50 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축시켰다. 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-63i를 백색 고체형태로 수득하였다(24.0 mg, 90 %).
1H-NMR (400 MHz, CDCl3) δ 8.27 (d, J = 9.2 Hz, 2H), 8.24 (s, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 9.2 Hz, 2H), 7.12 (d, J = 8.0 Hz, 1H), 5.63 (dd, J = 10.4 Hz, J = 3.2 Hz, 1H), 5.57 (s, 2H), 5.50 (d, J = 3.2 Hz, 1H), 5.18 (d, J = 8.0 Hz, 1H), 5.15 (dd, J = 10.4 Hz, J = 3.2 Hz, 1H), 4.28 - 4.25 (m, 1H), 4.21 - 4.09 (m, 2H), 2.21 (s, 3H), 2.12 (s, 3H), 2.08 (s, 3H), 2.04 (s, 3H); EI-MS m/z: 755[M+Na]+.
단계 9: 화합물 A-63j 제조
질소 대기 하 0 ℃에서 화합물 A-63i (24.0 mg, 0.032 mmol)를 DMF (1.0 mL)에 용해시킨 후 MMAE (23.4 mg, 0.032 mmol), HOBt (6.7 mg, 0.049 mmol), DIPEA (14.0 μL, 0.081 mmol) 및 피리딘 (1.0 mL)을 순차적으로 첨가하고 상온에서 6시간 동안 교반하였다. 반응 완료 후 증류수 (10 mL), 2N-염산 수용액 (5 mL), EA (15 mL)를 이용하여 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-63j를 백색 고체형태로 수득하였다(19.0 mg, 44 %); EI-MS m/z: 1313[M+H]+.
단계 10: 화합물 A-63 제조
질소 대기 하 0 ℃에서 화합물 A-63j (19.0 mg, 0.014 mmol)를 메탄올 (1.0 mL)에 용해시킨 후 증류수 (1.0 mL)에 용해시킨 수산화 리튬 (9.0 mg, 0.214 mmol)을 서서히 적가하고 상온에서 6시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1.0 mL)을 첨가하여 반응을 종결시키고 ACN (1.0 mL)과 증류수 (1.0 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-63를 백색 고체형태로 수득하였다(6.7 mg, 41 %); EI-MS m/z: 1131[M+H]+.
실시예 I-59: 화합물 A-64의 제조
Figure PCTKR2023008742-appb-img-000182
단계 1: 화합물 A-64a의 제조
질소 대기 하 상온에서 탄산은 (Alfa aesar, 25.0 g, 90.59 mmol)을 ACN (200 mL)에 첨가한 후 HMTTA (Alfa aesar, 3.66 mL, 13.47 mmol)를 첨가하고 1시간 동안 교반하였다. 추가적으로 코어 C-14 (3.97 g, 24.49 mmol)와 ACN (45 mL)에 용해시킨 아세토브로모-알파-디-글루쿠론산 메틸 에스테르 (TCI, 24.3 g, 61.21 mmol)를 천천히 첨가하고 0 ℃에서 상온으로 천천히 승온시키면서 16시간 동안 교반하였다. 반응 완료 후 EA (400 mL)로 반응용액을 희석하고 셀라이트를 이용하여 여과하였다. 여과한 용액을 증류수 (800 mL)와 2N-염산 수용액 (20 mL)을 첨가하여 추출하였다. 수득한 유기층을 염화나트륨 포화 수용액 (400 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 화합물 A-64a를 다음 반응에 추가 정제과정 없이 이용하였다(2.73 g, 23 %); EI-MS m/z: 500[M+Na]+.
단계 2: 화합물 A-64b의 제조
질소 대기 하 0 ℃에서 화합물 A-64a (2.73 g, 5.71 mmol)를 THF (286 mL)에 용해시킨 후 수소화 붕소 나트륨(540 mg, 14.27 mmol)을 첨가하고 1시간 동안 교반하였다. 반응 완료 후 증류수 (250 mL)를 첨가하여 반응을 종결시키고 EA (500 mL)와 증류수 (250 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 염화나트륨 포화 수용액 (200 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-64b를 하얀색 고체형태로 수득하였다(1.37 g, 50 %).
1H-NMR (400 MHz, CDCl3) δ 7.22 - 7.20 (m, 2H), 6.84 - 6.82 (m, 1H), 6.70 (s, 1H), 5.39 - 5.37 (m, 3H), 5.24 - 5.22 (m, 1H), 4.75 (d, J = 6 Hz, 2H), 4.22 - 4.19 (m, 1H), 3.74 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H), 1.86 (t, J = 6 Hz, 1H); EI-MS m/z: 502[M+Na]+.
단계 3: 화합물 A-64c의 제조
질소 대기 하 0 ℃에서 화합물 A-64b (1.02 g, 2.12 mmol)를 MC (53 mL)에 용해시킨 후 MsCl (Methanesulfonyl chloride, CAS NO. 124-63-0, 대정화금, 986 μL, 12.74 mmol)와 TEA (888 μL, 6.37 mmol)를 첨가하고 7시간 동안 상온에서 교반하였다. 반응 완료 후 0 ℃에서 증류수 (55 mL)를 첨가하여 반응을 종결시키고 EA (130 mL)와 증류수 (130 mL)를 첨가하여 유기층을 추출하고 수득한 유기층을 염화나트륨 포화 수용액 (130 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 화합물 A-64c를 다음 반응에 추가 정제과정 없이 이용하였다(1.45 g, 정량 수득); MS m/z: 520[M+Na]+.
단계 4: 화합물 A-64d의 제조
질소 대기 하 상온에서 화합물 A-64c (1.45 g, 2.91 mmol)를 DMF (56 mL)에 용해시킨 후 아지드화나트륨 (283 mg, 4.36 mmol)을 첨가하고 60 ℃에서 16시간 동안 교반하였다. 반응 완료 후 EA (230 mL)와 증류수 (230 mL)를 첨가하여 유기층을 추출하고 수득한 유기층을 염화나트륨 포화 수용액 (180 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-64d를 하얀색 고체형태로 수득하였다(689 mg, 47 %).
1H-NMR (400 MHz, CDCl3) δ 7.24 - 7.23 (m, 2H), 6.84 (t, J = 4.4 Hz, 1H), 6.76 (s, 1H), 6.94 (d, J = 7.6 Hz, 1H), 5.38 - 5.37 (m, 3H), 5.24 - 5.22 (m, 1H), 4.42 (s, 2H), 4.22 - 4.20 (m, 1H), 3.74 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H); MS m/z: 527[M+Na]+.
단계 5: 화합물 A-64e의 제조
질소 대기 하 -78 ℃에서 A-64d (689 mg, 1.36 mmol)를 MC (37 mL)에 용해시킨 후 디클로로메틸 메틸 에테르(925 μL, 10.22 mmol)와 사염화 티타늄 용액(1M-TiCl4 in MC, 10.2 mL, 10.2 mmol)을 순차적으로 천천히 첨가하고 4시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 냉각된 증류수 (60 mL)를 천천히 적가하여 반응을 종결시키고 EA (70 mL)와 증류수 (70 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 염화나트륨 포화 수용액 (70 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-64e를 하얀색 고체형태로 수득하였다(145 mg, 20 %).
1H-NMR (400 MHz, CDCl3) δ 10.35 (s, 1H), 7.81 (d, J = 8.4 Hz, 1H), 6.93 (d, J = 8.8 Hz, 1H), 6.82 (s, 1H), 5.40 (m, 4H), 4.51 (s, 2H), 4.30 - 4.27 (m, 1H), 3.73 (s, 3H), 2.08 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H); MS m/z: 534[M+H]+.
단계 6: 화합물 A-64f의 제조
질소 대기 하 0 ℃에서 화합물 A-64e (133 mg, 0.25 mmol)를 THF (12.5 mL)에 용해시킨 후 수소화 붕소 나트륨(23.6 mg, 0.62 mmol)을 첨가하고 2.5시간 동안 교반하였다. 반응 완료 후 증류수 (20 mL)를 첨가하여 반응을 종결시키고 EA (30 mL)와 증류수 (10 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 염화나트륨 포화 수용액 (20 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-64f를 하얀색 고체형태로 수득하였다(112.5 mg, 84 %).
1H-NMR (400 MHz, CDCl3) δ 7.27 - 7.25 (m, 1H), 6.83 (d, J = 8 Hz, 1H), 6.78 (s, 1H), 5.39 - 5.35 (m, 3H), 5.22 - 5.20 (m, 1H), 4.93 (d, J = 6 Hz, 2H), 4.44 (s, 2H), 4.22 - 4.20 (m, 1H), 3.74 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H), 1.83 (t, J = 6 Hz, 1H); MS m/z: 557[M+Na]+.
단계 7: 화합물 A-64g의 제조
질소 대기 하 0 ℃에서 화합물 A-64f (111 mg, 0.21 mmol)를 MC (3.3 mL)에 용해시킨 후 4-니트로페닐 클로로포르메이트 (84 mg, 0.42 mmol), 피리딘 (50.1 μL, 0.62 mmol) 및 DIPEA (54.2 μL, 0.31 mmol)을 순차적으로 첨가하고 0 ℃에서 30분 동안 교반하였다. 반응 완료 후 EA (15 mL)로 희석하고 2N-염산 수용액 (15 mL)을 첨가하여 유기층을 추출하였다. 수득한 유기층을 염화나트륨 포화 수용액 (15 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축시켰다. 이렇게 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-64g를 하얀색 고체형태로 수득하였다(130 mg, 90 %).
1H-NMR (400 MHz, CDCl3) δ 8.27 (d, J = 9.2 Hz, 2H), 7.39 (d, J = 9.2 Hz, 2H), 7.35 (d, J = 8.4 Hz, 1H), 6.86 (d, J = 8.4 Hz, 1H), 6.81 (s, 1H) 5.59 - 5.52 (m, 2H), 5.38 - 5.37 (m, 3H), 5.26 - 5.25 (m, 1H), 4.46 (s, 1H), 4.24 - 4.22 (m, 1H), 3.74 (s, 3H), 2.07 (s, 3H), 2.06 (s, 6H); MS m/z: 722[M+Na]+.
단계 8: 화합물 A-64h 제조
질소 대기 하 0 ℃에서 화합물 A-64g (41.1 mg, 0.059 mmol)를 DMF (1 mL)에 용해시킨 후 MMAE (42.1 mg, 0.059 mmol), HOBt (12 mg, 0.089 mmol), DIPEA (25.5 μL, 0.147 mmol) 및 피리딘 (1 mL)을 순차적으로 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 EA (20 mL)와 2N-염산 수용액 (20 mL)를 이용하여 유기층을 2회 추출하였다. 수득한 유기층을 염화나트륨 포화 수용액 (20 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-64h를 하얀색 고체형태로 수득하였다(60 mg, 80 %); EI-MS m/z: 1280[M+H]+.
단계 9: 화합물 A-64 제조
-20 ℃ 하에서 화합물 A-64h (59 mg, 0.046 mmol)에 메탄올 (1.2 mL), 증류수 (0.3 mL) 및 THF (0.25 mL)를 혼합 첨가하여 용해시킨 후 증류수 (0.6 mL)에 용해시킨 수산화 리튬 (9.7 mg, 0.231 mmol)을 적가하고 -20 ℃에서 2.5시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1 mL)을 첨가하여 반응을 종결시키고 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-64을 하얀색 고체형태로 수득하였다(40.9 mg, 78 %); EI-MS m/z: 1140[M+H]+.
실시예 I-60: 화합물 A-65의 제조
Figure PCTKR2023008742-appb-img-000183
질소 대기 하 상온에서 화합물 A-64 (20.1 mg, 0.018mmol)를 THF (1.5 mL)에 용해시킨 후 트리페닐포스핀 (5.1 mg, 0.019 mmol) 및 증류수 (0.15 mL)를 순차적으로 첨가하고 16시간 동안 교반하였다. 위 반응 용액에 2N-염산 수용액 (10 μL)을 상온에서 첨가하고 1시간 동안 교반한 후 2N-수산화나트륨 수용액 (20 μL)을 첨가하고 2시간 동안 추가적으로 교반하였다. 반응 완료 후 2N-염산 수용액을 천천히 적가하여 반응 용액의 pH를 3으로 적정하고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 A-65을 하얀색 고체형태로 수득하였다(13.6 mg, 69 %); MS m/z: 1114[M+H]+.
실시예 I-61: 화합물 A-66의 제조
Figure PCTKR2023008742-appb-img-000184
단계 1: 화합물 A-66a 제조
질소 대기 하 0 ℃에서 화합물 A-64g (40 mg, 0.057 mmol)를 DMF (1 mL)에 용해시킨 후 MMAF-OMe (43 mg, 0.58 mmol), HOBt (12 mg, 0.089 mmol), DIPEA (24.9 μL, 0.142 mmol) 및 피리딘 (1 mL)을 순차적으로 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 EA (20 mL)와 2N-염산 수용액 (20 mL)를 이용하여 유기층을 2회 추출하였다. 수득한 유기층을 염화나트륨 포화 수용액 (20 mL)을 첨가하여 세척한 후 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-66a를 하얀색 고체형태로 수득하였다(57.7 mg, 79 %); EI-MS m/z: 1308[M+H]+.
단계 2: 화합물 A-66 제조
-20 ℃ 하에서 화합물 A-66a (57.7 mg, 0.044 mmol)에 메탄올 (1.1 mL), 증류수 (0.2 mL) 및 THF (0.22 mL)를 혼합 첨가하여 용해시킨 후 증류수 (0.9 mL)에 용해시킨 수산화 리튬 (13.9 mg, 0.331 mmol)을 적가하고 -20 ℃에서 3.5시간 교반 후 상온으로 서서히 승온하면서 2시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1 mL)을 첨가하여 반응을 종결시키고 ACN (1 mL)과 증류수 (1 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-66을 하얀색 고체형태로 수득하였다(38.8 mg, 76 %); EI-MS m/z: 1154[M+H]+.
실시예 I-62: 화합물 A-67 및 A-68의 제조
Figure PCTKR2023008742-appb-img-000185
질소 대기 하 상온에서 화합물 A-66 (20 mg, 0.017 mmol)을 THF (1.5 mL)에 용해시킨 후 트리페닐포스핀 (7.3 mg, 0.028 mmol) 및 증류수 (0.15 mL)를 순차적으로 첨가하고 16시간 동안 교반하였다. 위 반응 용액에 2N-염산 수용액 (10 μL)을 상온에서 첨가하고 16시간 동안 추가적으로 교반한 후 2N-수산화나트륨 수용액 (20 μL)을 첨가하고 4.5시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액을 천천히 적가하여 반응 용액의 pH를 3으로 적정하고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 A-67와 A-68를 각각 하얀색 고체형태로 수득하였다(A-67: 13.4 mg, 69 %, A-68: 0.5 mg, 3 %); EI-MS m/z: A-67 = 1128[M+H]+, A-68 = 1129[M+H]+.
실시예 I-63: 화합물 A-69의 제조
Figure PCTKR2023008742-appb-img-000186
질소 대기 하 0 ℃에서 화합물 A-52 (7.1 mg, 0.0059 mmol)를 DMSO (200 μL)에 용해시킨 후 링커 P-6 (15.6 mg)을 DMSO(1.56 mL)에 녹인 용액 중 160 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), DMSO (0.8 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 1.6 mg) 및 아스코르브산나트륨 (2.34 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 10분 동안 교반하였다. 반응 완료 후 증류수 (2 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 A-69를 하얀색 고체형태로 수득하였다(7.8 mg, 94 %); EI-MS m/z: 1404[M+H]+, 702 1/2[M+H]+.
실시예 I-64: 화합물 A-70의 제조
Figure PCTKR2023008742-appb-img-000187
단계 1: 화합물 A-70a의 제조
질소 대기 하 0 ℃에서 화합물 A-36c (35.5 mg, 0.039 mmol)를 DMF (1 mL)에 용해시킨 후 MMAF-OMe (28.8 mg, 0.039 mmol), HOBt (7.8 mg, 0.058 mmol), DIPEA (16.8 μL, 0.097 mmol) 및 피리딘 (1 mL)을 순차적으로 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 EA (50 mL)와 2N-염산 수용액 (50 mL)을 이용하여 유기층을 추출한 후, 포화된 염화 나트륨 수용액 (50 mL)을 사용하여 유기층을 씻어주었다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-70a를 무색 끈적한 검 형태로 수득하였다(41.3 mg, 70 %); EI-MS m/z: 1524[M+H]+, 762 1/2[M+H]+.
단계 2: 화합물 A-70의 제조
-20 ℃ 하에서 화합물 A-70a (41.3 mg, 0.027 mmol)에 메탄올 (0.7 mL), 증류수 (0.25 mL) 및 THF (0.28 mL)를 혼합 첨가하여 용해시킨 후 증류수 (0.45 mL)에 용해시킨 수산화 리튬 (8.5 mg, 0.203 mmol)을 적가하고 -20 ℃에서 -5 ℃로 서서히 승온하면서 3시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (0.2 mL)을 첨가하여 반응을 종결시키고 ACN (2 mL)과 증류수 (2 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-70을 하얀색 고체형태로 수득하였다(28.5 mg, 77 %); EI-MS m/z: 1371[M+H]+, 685 1/2[M+H]+.
실시예 I-65: 화합물 A-71의 제조
Figure PCTKR2023008742-appb-img-000188
단계 1: 화합물 A-71a의 제조
질소 대기 하 0 ℃에서 화합물 A-52h (53.7 mg, 0.07 mmol)와 엑사테칸 메실레이트 (Exatecan mesylate, CAS NO. 169869-90-3, 37.4 mg, 0.07 mmol)를 DMF (2 mL)에 용해시킨 후 HOBt (10.4 mg, 0.08 mmol), 피리딘 (0.3 mL) 및 DIPEA (24.5 μL, 0.14 mmol)을 순차적으로 첨가하고 0 ℃에서 30분 동안 교반하였다. 추가적으로 상기 반응 혼합물을 상온에서 2시간 동안 교반하였다. 반응 완료 후 EA (50 mL)와 2N-염산 수용액 (50 mL)을 이용하여 유기층을 추출한 후, 포화된 염화 나트륨 수용액 (50 mL)을 사용하여 유기층을 씻어주었다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-71a를 노란색 고체형태로 수득하였다(66.8 mg, 89 %).
1H-NMR (400 MHz, CDCl3) δ 7.67 (m, 1H), 7.56 (s, 1H), 7.48 (s, 1H), 7.26 (m, 1H), 6.84 (d, J = 8 Hz, 1H), 5.68 (m, 1H), 5.45 - 5.23 (m, 9H), 5.11 (m, 1H), 4.57 (s, 2H), 4.15 (m, 1H), 3.73 (s, 3H), 3.20 - 3.13 (m, 2H), 2.42 (s, 3H), 2.39 - 2.28 (m, 2H), 2.11 - 2.04 (m, 10H), 1.90 (q, J = 7.2 Hz, 2H), 1.28 - 1.23 (m, 2H), 1.05 (t, J = 7.2 Hz, 3H); EI-MS m/z: 1060[M+H]+.
단계 2: 화합물 A-71의 제조
-20 ℃ 하에서 화합물 A-71a (66.8 mg, 0.063 mmol)에 메탄올 (3.2 mL) 및 THF (3.2 mL)를 혼합 첨가하여 용해시킨 후 증류수 (0.64 mL)에 용해시킨 수산화 리튬 (13.2 mg, 0.315 mmol)을 적가하고 -20 ℃에서 -5 ℃로 서서히 승온하면서 4시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (0.3 mL)을 첨가하여 반응을 종결시키고 ACN (3 mL)와 증류수 (3 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-71을 상아색 고체형태로 수득하였다(36.3 mg, 63 %); EI-MS m/z: 920[M+H]+.
실시예 I-66: 화합물 A-72의 제조
Figure PCTKR2023008742-appb-img-000189
단계 1: 화합물 A-72a 제조
질소 대기 하 상온에서 셀레늄 분말 (Selenium powder, TCI, CAS No.7782-49-2, 640.0 mg, 8.10 mmol)을 THF (27.0 mL)에 첨가하고 0 ℃로 냉각한 후 n-부틸리튬 용액 (2.5M n-BuLi in Hexane, 3.56 mL, 8.91 mmol)을 천천히 적가하였다. 상기 혼합물을 0 ℃ 하에서 40분 동안 교반한 후 화합물 A-63c (2.0 g, 8.10 mmol)를 DMF (5.4 mL)에 용해시켜 첨가하고 상온에서 3시간 동안 교반하였다. 반응완료 후 증류수 (100 mL)를 적가하여 반응을 종결시켰다. 상기 반응 용액에 EA (100 mL)를 첨가한 후 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-72a를 노란색 액체형태로 수득하였다(2.03 g, 72 %).
1H-NMR (400 MHz, CDCl3) δ 10.71 (s, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.50 - 7.48 (m, 2H), 7.42 - 7.32 (m, 4H), 7.14 (d, J = 8.0 Hz, 1H), 5.20 (s, 2H), 2.89 (t, J = 7.6 Hz, 2H), 1.71 - 1.50 (m, 2H), 1.39 - 1.31 (m, 2H), 0.81 (t, J = 7.6 Hz, 3H).
단계 2: 화합물 A-72b 제조
질소 대기 하 상온에서 화합물 A-72a (2.0 g, 5.75 mmol)를 DMF (25.0 mL)에 용해시킨 후 에틸 브로모아세테이트 (1.6 mL, 13.4 mmol) 및 탄산칼륨 (1.85 g, 13.4 mmol)을 순차적으로 첨가 후 120 ℃에서 16시간 동안 교반하였다. 반응 완료 후, 증류수 (250 mL) 및 EA (250 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 포화된 염화 나트륨 수용액 (250 mL)을 첨가하여 씻어 주었다. 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축한 잔사를 컬럼 크로마토그래피시켜 화합물 A-72b를 백색 고체형태로 수득하였다(1.5 g, 69 %).
1H-NMR (400 MHz, CDCl3) δ 10.63 (s, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.50 - 7.49 (m, 2H), 7.44 - 7.39 (m, 3H), 7.37 - 7.33 (m, 1H), 7.18 (d, J = 8.0Hz, 1H), 5.22 (s, 1H), 3.95 (q, J = 7.2 Hz, 2H), 3.53 (s, 2H), 1.05 (t, J = 7.2 Hz, 3H).
단계 3: 화합물 A-72c 제조
질소 대기 하 0 ℃에서 화합물 A-72b (1.5 g, 3.97 mmol)를 DMF (20.0 mL)에 용해시킨 후 탄산칼륨 (824.0 mg, 5.96 mmol)을 첨가하고 120 ℃에서 2시간 동안 교반하였다. 반응 완료 후 EA (200 mL)와 증류수 (200 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 포화된 염화 나트륨 수용액 (200 mL)을 첨가하여 씻어 주었다. 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-72c를 백색 고체형태로 수득하였다(1.2 g, 84 %).
1H-NMR (400 MHz, CDCl3) δ 8.30 (s, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.48 - 7.46 (m, 2H), 7.42 - 7.38 (m, 2H), 7.35 - 7.32 (m, 2H), 6.87 (d, J = 8.0 Hz, 1H), 5.27 (s, 2H), 4.38 (q, J = 7.2 Hz, 2H), 4.38 (t, J = 7.2 Hz, 3H); EI-MS m/z: 360[M+H]+.
단계 4: 화합물 A-72d 제조
질소 대기 하 0 ℃에서 화합물 A-72c (1.2 g, 3.34 mmol)를 MC (30.0 mL)에 용해시킨 후 용해시킨 후 디클로로메틸 메틸 에테르(1.19 mL, 13.36 mmol)와 사염화 티타늄 용액(1M-TiCl4 in MC, 13.36 mL, 13.36 mmol)을 순차적으로 천천히 첨가하고 3시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 냉각된 증류수 (150 mL)를 천천히 적가하여 반응을 종결시키고 EA (150 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-72d를 백색 고체 형태로 수득하였다(1.09 g, 89 %).
1H-NMR (400 MHz, CDCl3) δ 10.04 (s, 1H), 9.32 (s, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.48 - 7.35 (m, 5H), 7.00 (d, J = 8.0 Hz, 1H), 5.37 (s, 2H), 4.41 (q, J = 7.2 Hz, 2H), 1.42 (t, J = 7.2 Hz, 3H).
단계 5: 화합물 A-72e 제조
질소 대기 하 -78 ℃에서 화합물 A-72d (420.0 mg, 1.11 mmol)를 MC (20.0 mL)에 용해시킨 후 보론 트리클로라이드 용액 (1M-BCl3 in MC, 3.33 mL, 3.33 mmol)을 천천히 첨가하고 2시간 동안 온도를 유지하며 교반하였다. 반응 완료 후 증류수 (50 mL)를 -50 ℃에서 천천히 적가하여 반응을 종결시키고 상온에서 EA (150 mL)와 증류수 (100 mL)를 추가로 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-72e를 백색 고체형태로 수득하였다(300.0 mg, 90 %).
1H-NMR (400 MHz, CDCl3) δ 10.05 (s, 1H), 9.33 (s, 1H), 7.81 (d, J = 8.0 Hz, 1H), 6.92 (d, J = 8.0 Hz, 1H), 5.98 (s, 1H), 4.41 (q, J = 7.2 Hz, 2H), 1.43 (t, J = 7.2 Hz, 3H).
단계 6: 화합물 A-72f 제조
질소 대기 하 0 ℃에서 화합물 A-72e (150.0 mg 0.50 mmol)를 ACN (30.0 mL)에 용해시킨 후 아세토브로모-알파-디-갈락토스 (250.0 mg, 0.60 mmol) 및 산화은 (I) (290.0 mg, 1.25 mmol)을 순차적으로 첨가하고 상온에서 2시간 동안 교반하였다. 반응 완료 후 EA (50 mL)로 반응용액을 희석하고 셀라이트를 이용하여 여과한 용액에 포화된 염화 나트륨 수용액 (80 mL)을 첨가하여 씻어 주었다. 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-72f를 백색 고체형태로 수득하였다(290.0 mg, 91 %).
1H-NMR (400 MHz, CDCl3) δ 10.11 (s, 1H), 9.30 (s, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.15 (d, J = 8.0 Hz, 1H), 5.63 (dd, J = 10.4 Hz, 8.0 Hz, 1H), 7.52 (d, J = 3.2 Hz, 1H), 5.28 (d, J = 8.0 Hz, 1H), 5.17 (dd, J = 10.4 Hz, 3.2 Hz, 1H), 4.42 (d, J = 7.2 Hz, 1H), 4.31 - 4.26 (m, 1H), 4.22 - 4.14 (m, 2H), 2.22 (s, 3H), 2.10 (s, 6H), 2.04 (s, 3H), 1.43 (t, J = 7.2 Hz, 3H).
단계 7: 화합물 A-72g 제조
질소 대기 하 0 ℃에서 화합물 A-72f (90.0 mg, 0.143 mmol)를 THF (10.0 mL)에 용해시킨 후 수소화 붕소 나트륨 (13.5 mg, 0.358 mmol)을 첨가하고 0 ℃에서 2시간 동안 교반하였다. 반응 완료 후 EA (50 mL)와 증류수 (50 mL)을 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-72g를 백색 고체형태로 수득하였다(72.0 mg, 80 %).
1H-NMR (400 MHz, CDCl3) δ 8.52 (s, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 5.60 (dd, J = 10.4 Hz, 8.0 Hz, 1H), 5.49 (d, J = 3.2 Hz, 1H), 5.16 - 5.12 (m, 2H), 4.99 (d, J = 5.6 Hz, 2H), 4.39 (q, J = 7.2 Hz, 2H), 4.30 - 4.25 (m, 1H), 4.21 - 4.17 (m, 1H), 4.14 - 4.11 (m, 1H), 2.21 (s, 3H), 2.11 (s, 3H), 2.09 (s, 3H), 2.03 (s, 3H), 1.41 (t, J = 7.2 Hz, 3H).
단계 8: 화합물 A-72h 제조
질소 대기 하 0 ℃에서 화합물 A-72g (70.0 mg, 0.111 mmol)를 MC (3.0 mL)에 용해시킨 후 4-니트로페닐 클로로포르메이트 (44.0 mg, 0.222 mmol)와 DIPEA (58.0 μL, 0.333 mmol) 및 피리딘 (31.0 μL, 0.388 mmol)을 순차적으로 첨가하고 상온에서 4시간 동안 교반하였다. 반응 완료 후 EA (50 mL)와 증류수 (50 mL)를 첨가하여 유기층을 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축시켰다. 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-72h를 백색 고체형태로 수득하였다(70.0 mg, 79 %).
1H-NMR (400 MHz, CDCl3) δ 8.50 (s, 1H), 8.26 (d, J = 9.2 Hz, 2H), 7.46 (d, J = 8.0 Hz, 1H), 7.36 (d, J = 9.2 Hz, 2H), 7.04 (d, J = 8.0 Hz, 1H), 5.63 - 5.57 (m, 3H), 5.50 (d, J = 3.2 Hz, 1H), 5.19 - 5.13 (m, 2H), 4.42 (q, J = 7.2 Hz, 2H), 4.30 - 4.25 (m, 2H), 4.21 - 4.11 (m, 2H), 2.21 (s, 3H), 2.11 (s, 3H), 2.09 (s, 3H), 2.04 (s, 3H), 1.43 (t, J = 7.2 Hz, 3H).
단계 9: 화합물 A-72i 제조
질소 대기 하 0 ℃에서 화합물 A-72h (70.0 mg, 0.088 mmol)를 DMF (1.0 mL)에 용해시킨 후 MMAE (63.0 mg, 0.088 mmol), HOBt (18.0 mg, 0.132 mmol), DIPEA (38.4 μL, 0.22 mmol) 및 피리딘 (1.0 mL)을 순차적으로 첨가하고 상온에서 16시간 동안 교반하였다. 반응 완료 후 증류수 (20 mL), 2N-염산 수용액 (5 mL) 및 EA (25 mL)를 이용하여 추출하였다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-72i를 백색 고체형태로 수득하였다(60.0 mg, 50 %); EI-MS m/z: 1374[M+H]+.
단계 10: 화합물 A-72 제조
질소 대기 하 0 ℃에서 화합물 A-72i (60.0 mg, 0.043 mmol)를 메탄올 (1.0 mL)에 용해시킨 후 증류수 (1.0 mL)에 용해시킨 수산화 리튬 (19.2 mg, 0.458 mmol)을 서서히 적가하고 상온에서 3시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (1.0 mL)을 첨가하여 반응을 종결시키고 ACN (1.0 mL)과 증류수 (1.0 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-72를 백색 고체형태로 수득하였다(40.6 mg, 78 %); EI-MS m/z: 1178[M+H]+.
실시예 I-67: 화합물 A-73의 제조
Figure PCTKR2023008742-appb-img-000190
단계 1: 화합물 A-73a의 제조
질소 대기 하 0 ℃에서 화합물 A-52h (39.2 mg, 0.051 mmol)와 벨로테칸 하이드로클로라이드 (Belotecan Hydrochloride, CAS NO. 213819-48-8, 24.1 mg, 0.051 mmol)를 DMF (2 mL)에 용해시킨 후 HOBt (7.6 mg, 0.056 mmol), 피리딘 (0.3 mL) 및 DIPEA (17.9 μL, 0.102 mmol)을 순차적으로 첨가하고 0 ℃에서 30분 동안 교반하였다. 추가적으로 상기 반응 혼합물을 상온에서 3시간 동안 교반하였다. 반응 완료 후 EA (50 mL)와 2N-염산 수용액 (50 mL)을 이용하여 유기층을 추출한 후, 포화된 염화 나트륨 수용액 (50 mL)을 사용하여 유기층을 씻어주었다. 수득한 유기층을 무수 황산마그네슘으로 건조시키고 여과한 후 감압 농축하여 얻은 잔사를 컬럼 크로마토그래피시켜 화합물 A-73a를 흰색 고체형태로 수득하였다(48.9 mg, 90 %); EI-MS m/z: 1058[M+H]+.
단계 2: 화합물 A-73의 제조
-20 ℃ 하에서 화합물 A-73a (29 mg, 0.027 mmol)에 메탄올 (1.4 mL) 및 THF (1.4 mL)를 혼합 첨가하여 용해시킨 후 증류수 (0.28 mL)에 용해시킨 수산화 리튬 (5.7 mg, 0.137 mmol)을 적가하고 -20 ℃에서 -5 ℃로 서서히 승온하면서 2시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (0.2 mL)을 첨가하여 반응을 종결시키고 ACN (2 mL)과 증류수 (2 mL)를 이용해 희석시킨 후 Preparative-HPLC를 이용하여 분리 정제하고 동결 건조하여 화합물 A-73을 노란색 고체형태로 수득하였다(15.3 mg, 61 %); EI-MS m/z: 918[M+H]+.
실시예 I-68: 화합물 A-74의 제조
Figure PCTKR2023008742-appb-img-000191
질소 대기 하 상온에서 화합물 A-71 (20.9 mg, 0.023 mmol)을 1,4-디옥산 (2 mL)와 증류수 (0.4 mL)에 용해시킨 후 트리페닐포스핀 (8.9 mg, 0.034 mmol) 첨가하고 12시간 동안 교반하였다. 위 반응 용액에 2N-수산화나트륨 수용액 (20 μL)을 상온에서 첨가하고 3시간 동안 교반한 후 2N-염산 수용액을 천천히 적가하여 반응 용액의 pH를 3으로 적정하고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 A-74을 수득하였다 (11.5 mg, 56 %); EI-MS m/z: 894[M+H]+.
실시예 I-69: 화합물 A-75의 제조
Figure PCTKR2023008742-appb-img-000192
질소 대기 하 상온에서 화합물 A-73 (18.4 mg, 0.02 mmol)을 1,4-디옥산 (1 mL)와 증류수 (0.2 mL)에 용해시킨 후 트리페닐포스핀 (7.9 mg, 0.03 mmol) 첨가하고 12시간 동안 교반하였다. 위 반응 용액에 2N-수산화나트륨 수용액 (20 μL)을 상온에서 첨가하고 3.5시간 동안 교반한 후 2N-염산 수용액을 천천히 적가하여 반응 용액의 pH를 3으로 적정하고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 A-75를 수득하였다 (8.2 mg, 46 %); EI-MS m/z: 892[M+H]+.
실시예 I-70: 화합물 A-76의 제조
Figure PCTKR2023008742-appb-img-000193
질소 대기 하 상온에서 화합물 A-53 (1 mg, 0.00085 mmol)을 THF (1 mL)에 용해시킨 후 DBCO-PEG4-NHS 에스테르 (TCI, CAS NO. 1427004-19-0, 0.5 mg, 0.00094 mmol), 증류수 (200 μL), DIPEA (10 μL) 및 피리딘 (10 μL)을 순차적으로 적가하고 3시간 동안 교반하였다. 반응 완료 후 0.1 % 포름산이 포함된 ACN (1 mL)을 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 A-76을 하얀색 고체형태로 수득하였다(0.8 mg, 57 %); MS m/z: 1711[M+H]+.
실시예 I-71: 화합물 A-77의 제조
Figure PCTKR2023008742-appb-img-000194
실시예 I-70에서 DBCO-PEG4-NHS 에스테르 대신에 N-Boc-아미노옥시아세트산 NHS 에스테르 (N-Boc-aminooxyacetic acid NHS ester, WO2015/182984, WO2018/090045에서 서술한 방법으로 제조)를 사용하고, 실시예 70과 유사한 방법으로 화합물 A-77를 수득하였다(2 mg, 55 %); MS m/z: 1426[M+H]+.
실시예 II-1: 화합물 B-1의 제조
Figure PCTKR2023008742-appb-img-000195
질소 대기 하 0oC에서 화합물 A-23 (4.5 mg, 0.0032 mmol)을 DMSO (200 μL)에 용해시킨 후 링커 Q-1 (10 mg)을 DMSO (1 mL)에 녹인 용액 중 100 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), DMSO (0.4 mL), 황산(II)구리 5수화물 (CuSO4 .5H2O, 1 mg), 아스코르브산나트륨 (1.3 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 30분 동안 교반하였다. 반응 완료 후 증류수 (1 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-1을 백색 고체 형태로 수득하였다(4.5 mg, 81.8 %); MS m/z: 1682[M+H]+.
실시예 II-2: 화합물 B-2의 제조
Figure PCTKR2023008742-appb-img-000196
질소 대기 하 0oC에서 화합물 A-15 (4.5 mg, 0.0032 mmol)를 DMSO (200 μL)에 용해시킨 후 링커 Q-1 (10 mg)을 DMSO (1 mL)에 녹인 용액 중 150 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), 에탄올 (20 μL), 황산(II)구리 오수화물 (CuSO4.5H2O, 1 mg), 아스코르브산나트륨 (1.3 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 30분 동안 교반하였다. 반응 완료 후 증류수 (1 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-2를 백색 고체 형태로 수득하였다(3.9 mg, 70.9 %); MS m/z: 1684[M+H]+.
실시예 II-3: 화합물 B-3의 제조
Figure PCTKR2023008742-appb-img-000197
실시예 II-2에서 화합물 A-15 대신에 화합물 A-18을 사용한 점을 제외하고 실시예 II-2와 동일한 방법으로 화합물 B-3을 백색 고체 형태로 수득하였다(6.3 mg, 77.5 %); MS m/z: 1466[M+H]+.
실시예 II-4: 화합물 B-4의 제조
Figure PCTKR2023008742-appb-img-000198
실시예 II-2에서 화합물 A-15 대신에 화합물 A-26을 사용한 점을 제외하고 실시예 II-2와 동일한 방법으로 화합물 B-4를 백색 고체 형태로 수득하였다(6.7 mg, 93.9 %); MS m/z: 1450[M+H]+.
실시예 II-5: 화합물 B-5의 제조
Figure PCTKR2023008742-appb-img-000199
질소 대기 하 0oC에서 화합물 A-20 (6 mg, 0.0053 mmol)을 THF (2 mL)에 용해시킨 후 링커 Q-2 (2 mg, 0.0058 mmol), 증류수 (200 μL), DIPEA (10 μL), 피리딘 (20 μL)을 순차적으로 적가하고 1시간 동안 상온에서 교반하였다. 반응 완료 후 2N-염산 수용액 (20 μL)을 첨가하고 0.1 % 포름산이 포함된 ACN (2 mL)을 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-5을 수득하였다(5.6 mg, 77.7 %); MS m/z: 1369[M+H]+.
실시예 II-6: 화합물 B-6의 제조
Figure PCTKR2023008742-appb-img-000200
실시예 II-5에서 화합물 A-20 대신에 화합물 A-27을 사용하고 피리딘의 첨가를 생략한 점을 제외하고, 실시예 II-5와 동일한 방법으로 화합물 B-6를 수득하였다(4 mg, 54.9 %); MS m/z: 1352[M+H]+.
실시예 II-7: 화합물 B-7의 제조
Figure PCTKR2023008742-appb-img-000201
실시예 II-2에서 화합물 A-15 대신에 화합물 A-25를 사용한 점을 제외하고, 실시예 II-2와 동일한 방법으로 화합물 B-7을 백색 고체 형태로 수득하였다(4.6 mg, 71.8 %); MS m/z: 1654[M+H]+.
실시예 II-8: 화합물 B-8의 제조
Figure PCTKR2023008742-appb-img-000202
실시예 II-2에서 화합물 A-15 대신에 화합물 A-36를 사용한 점을 제외하고, 실시예 II-2와 동일한 방법으로 화합물 B-8을 백색 고체 형태로 수득하였다(4.8 mg, 71 %); MS m/z: 1668[M+H]+.
실시예 II-9: 화합물 B-9의 제조
Figure PCTKR2023008742-appb-img-000203
실시예 II-2에서 링커 Q-1 대신에 링커 Q-3을 사용하고, 화합물 A-15 대신에 화합물 A-36를 사용한 점을 제외하고, 실시예 II-2와 동일한 방법으로 화합물 B-9을 백색 고체 형태로 수득하였다(5.6 mg, 73 %); MS m/z: 3120[M+H]+.
실시예 II-10: 화합물 B-10의 제조
Figure PCTKR2023008742-appb-img-000204
실시예 II-2에서 링커 Q-1 대신에 링커 Q-3을 사용하고, 화합물 A-15 대신에 화합물 A-25를 사용한 점을 제외하고, 실시예 II-2와 동일한 방법으로 화합물 B-10을 백색 고체 형태로 수득하였다(6.9 mg, 90 %); MS m/z: 3092[M+H]+.
실시예 II-11: 화합물 B-11의 제조
Figure PCTKR2023008742-appb-img-000205
질소 대기 하 0 ℃에서 화합물 A-46 (4.2 mg, 0.0037 mmol)을 DMSO (200 μL)에 용해시킨 후 링커 Q-1 (7 mg)을 DMSO (0.5 mL)에 녹인 용액 중 100 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 1 mg) 및 아스코르브산나트륨 (1.3 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 30분 동안 교반하였다. 반응 완료 후 증류수 (1 mL)와 ACN (1 mL)을 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-11을 백색 고체 형태로 수득하였다(4.8 mg, 89.5 %); MS m/z: 1436[M+H]+
실시예 II-12: 화합물 B-12의 제조
Figure PCTKR2023008742-appb-img-000206
질소 대기 하 0 ℃에서 화합물 A-47 (3.1 mg, 0.0028 mmol)을 THF (2 mL)에 용해시킨 후 링커 Q-2 (1.5 mg, 0.0042 mmol), 증류수 (100 μL) 및 DIPEA (5 μL)를 순차적으로 적가하고 1시간 동안 상온에서 교반하였다. 반응 완료 후 0.1 % 포름산이 포함된 ACN (1 mL)과 증류수 (1 mL)를 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-12를 수득하였다(2.4 mg, 63.6 %); MS m/z: 1338[M+H]+.
실시예 II-13: 화합물 B-13의 제조
Figure PCTKR2023008742-appb-img-000207
질소 대기 하 0 ℃에서 화합물 A-48 (3.6 mg, 0.0039 mmol)을 DMSO (400.0 μL)에 용해시킨 후 링커 Q-1 (2.0 mg)을 DMSO (200.0 μL)에 녹인 용액 중 135 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2.0 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 1.0 mg) 및 아스코르브산나트륨 (1.3 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 30분 동안 교반하였다. 반응 완료 후 증류수 (1.0 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-13을 백색 고체 형태로 수득하였다(2.9 mg, 60 %); EI-MS m/z: 1225[M]+, 613[1/2 M+H]+.
실시예 II-14: 화합물 B-14의 제조
Figure PCTKR2023008742-appb-img-000208
질소 대기 하 0 ℃에서 화합물 A-49 (5.9 mg, 0.0041 mmol)을 DMSO (200 μL)에 용해시킨 후 링커 Q-1 (2.6 mg)을 DMSO (0.26 mL)에 녹인 용액 중 140 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), DMSO (1.8 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 1.14 mg) 및 아스코르브산나트륨 (1.64 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 15분 동안 교반하였다. 반응 완료 후 증류수 (2 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-14를 하얀색 고체형태로 수득하였다(6.9 mg, 96 %); EI-MS m/z: 1731[M+H]+, 865 1/2[M+H]+.
실시예 II-15: 화합물 B-15의 제조
Figure PCTKR2023008742-appb-img-000209
질소 대기 하 0 ℃에서 화합물 A-51 (5.7 mg, 0.004 mmol)을 DMSO (200 μL)에 용해시킨 후 링커 Q-1 (2.2 mg)을 DMSO (0.22 mL)에 녹인 용액 중 140 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), DMSO (1.8 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 1.1 mg) 및 아스코르브산나트륨 (1.57 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 30분 동안 교반하였다. 반응 완료 후 증류수 (2 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-15를 하얀색 고체형태로 수득하였다(6.1 mg, 88 %); EI-MS m/z: 1745[M+H]+, 873 1/2[M+H]+.
실시예 II-16: 화합물 B-16의 제조
Figure PCTKR2023008742-appb-img-000210
질소 대기 하 0 ℃에서 화합물 A-52 (5.0 mg, 0.0041 mmol)를 DMSO (2.0 mL)에 용해시킨 후 링커 Q-1 (2.0 mg)을 DMSO (200.0 μL)에 녹인 용액 중 142 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2.0 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 1.0 mg) 및 아스코르브산나트륨 (1.3 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 30분 동안 교반하였다. 반응 완료 후 증류수 (1.0 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-16을 백색 고체 형태로 수득하였다(3.1 mg, 49 %); EI-MS m/z: 1514[M+H]+, 757 1/2[M+H]+.
실시예 II-17: 화합물 B-17의 제조
Figure PCTKR2023008742-appb-img-000211
질소 대기 하 0 ℃에서 화합물 A-53 (5.3 mg, 0.0045 mmol)을 THF (2.0 mL)에 용해시킨 후 링커 Q-2 (2.39 mg, 0.0067 mmol), 증류수 (200 μL), DIPEA (10.0 μL) 및 피리딘 (20.0 μL)을 순차적으로 적가하고 1시간 동안 상온에서 교반하였다. 반응 완료 후 2N-염산 수용액 (20.0 μL)을 첨가하고 0.1 % 포름산이 포함된 ACN (2.0 mL)을 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-17을 백색 고체 형태로 수득하였다(3.5 mg, 54.9 %); EI-MS m/z: 1416[M+H]+, 708 1/2[M+H]+.
실시예 II-18: 화합물 B-18의 제조
Figure PCTKR2023008742-appb-img-000212
질소 대기 하 0 ℃에서 화합물 A-54 (7.1 mg, 0.0041 mmol)를 DMSO (2.0 mL)에 용해시킨 후 링커 Q-1 (2.0 mg)을 DMSO (200.0 μL)에 녹인 용액 중 199.0 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2.0 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 1.0 mg) 및 아스코르브산나트륨 (1.3 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 30분 동안 교반하였다. 반응 완료 후 증류수 (1.0 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-18을 백색 고체 형태로 수득하였다(3.1 mg, 49 %); EI-MS m/z: 1528[M+H]+, 764 1/2[M+H]+.
실시예 II-19: 화합물 B-19의 제조
Figure PCTKR2023008742-appb-img-000213
질소 대기 하 0 ℃에서 화합물 A-55 (4.4 mg, 0.0037 mmol)를 THF (2.0 mL)에 용해시킨 후 링커 Q-2 (1.96 mg, 0.0055 mmol), 증류수 (200.0 μL), DIPEA (1030 μL) 및 피리딘 (20.0 μL)을 순차적으로 적가하고 1시간 동안 상온에서 교반하였다. 반응 완료 후 2N-염산 수용액 (20.0 μL)을 첨가하고 0.1 % 포름산이 포함된 ACN (2.0 mL)을 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-19를 백색 고체 형태로 수득하였다(2.5 mg, 47.3 %); EI-MS m/z: 1430[M+H]+, 715 1/2[M+H]+.
실시예 II-20: 화합물 B-20의 제조
Figure PCTKR2023008742-appb-img-000214
질소 대기 하 상온에서 화합물 A-57 (5 mg, 0.0044 mmol)을 THF (2.5 mL)에 용해시킨 후 링커 Q-2 (2.9 mg, 0.0082 mmol), 증류수 (200 μL), DIPEA (10 μL) 및 피리딘 (10 μL)을 순차적으로 적가하고 1.5시간 동안 교반하였다. 반응 완료 후 0.1 % 포름산이 포함된 ACN (2 mL)을 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-20을 하얀색 고체형태로 수득하였다(4.2 mg, 69 %); MS m/z: 1369[M+H]+, 684 1/2[M+H]+.
실시예 II-21: 화합물 B-21의 제조
Figure PCTKR2023008742-appb-img-000215
질소 대기 하 상온에서 화합물 A-59 (5.1 mg, 0.0045 mmol)를 THF (2.05 mL)에 용해시킨 후 링커 Q-2 (2.3 mg, 0.0079 mmol), 증류수 (200 μL), DIPEA (10 μL) 및 피리딘 (10 μL)을 순차적으로 적가하고 3시간 동안 교반하였다. 반응 완료 후 0.1 % 포름산이 포함된 ACN (2 mL)을 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-21을 하얀색 고체형태로 수득하였다(3.5 mg, 57 %); MS m/z: 1383[M+H]+, 691 1/2[M+H]+.
실시예 II-22: 화합물 B-22의 제조
Figure PCTKR2023008742-appb-img-000216
질소 대기 하 상온에서 화합물 A-56 (4.9 mg, 0.0042 mmol)을 DMSO (1 mL)에 용해시킨 후 링커 Q-1 (1.5 mg, 0.0048 mmol)을 DMSO (1 mL)에 녹인 용액을 첨가하였다. 추가적으로 증류수 (200 μL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 0.74 mg, 0.0046 mmol) 및 아스코르브산나트륨 (1.5 mg, 0.0085 mmol)을 순차적으로 반응 용액에 첨가한 후 2.5시간 동안 교반하였다. 반응 완료 후 증류수 (1 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-22를 하얀색 고체형태로 수득하였다(3.2 mg, 51 %); MS m/z: 1467[M+H]+, 733 1/2[M+H]+.
실시예 II-23: 화합물 B-23의 제조
Figure PCTKR2023008742-appb-img-000217
질소 대기 하 상온에서 화합물 A-58 (4.8 mg, 0.0041 mmol)를 DMSO (1 mL)에 용해시킨 후 링커 Q-1 (1.4 mg, 0.0045 mmol)을 DMSO (1 mL)에 녹인 용액을 첨가하였다. 추가적으로 증류수 (200 μL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 0.72 mg, 0.0045 mmol) 및 아스코르브산나트륨 (1.4 mg, 0.0079 mmol)을 순차적으로 반응 용액에 첨가한 후 5시간 동안 교반하였다. 반응 완료 후 증류수 (1 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-23을 하얀색 고체형태로 수득하였다(3.2 mg, 51 %); MS m/z: 1481[M+H]+, 740 1/2[M+H]+.
실시예 II-24: 화합물 B-24의 제조
Figure PCTKR2023008742-appb-img-000218
질소 대기 하 0 ℃에서 화합물 A-60 (11.1 mg, 0.0081 mmol)을 DMSO (200 μL)에 용해시킨 후 링커 Q-1 (5.7 mg)을 DMSO (0.57 mL)에 녹인 용액 중 300 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 2.22 mg) 및 아스코르브산나트륨 (3.2 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 1.5시간 동안 교반하였다. 반응 완료 후 증류수 (2 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-24를 하얀색 고체형태로 수득하였다(11.6 mg, 85 %); EI-MS m/z: 1683[M+H]+, 842 1/2[M+H]+.
실시예 II-25: 화합물 B-25의 제조
Figure PCTKR2023008742-appb-img-000219
질소 대기 하 0 ℃에서 화합물 A-61 (5.1 mg, 0.0037 mmol)을 DMSO (200 μL)에 용해시킨 후 링커 Q-1 (4.2 mg)을 DMSO (0.42 mL)에 녹인 용액 중 140 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), DMSO (0.4 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 1.01 mg) 및 아스코르브산나트륨 (1.46 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 1.5시간 동안 교반하였다. 반응 완료 후 증류수 (2 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-25를 하얀색 고체형태로 수득하였다(3.8 mg, 61 %); EI-MS m/z: 1697[M+H]+, 849 1/2[M+H]+.
실시예 II-26: 화합물 B-26의 제조
Figure PCTKR2023008742-appb-img-000220
질소 대기 하 상온에서 화합물 A-64 (4.4 mg, 0.0039 mmol)를 DMSO (0.2 mL)에 용해시킨 후 링커 Q-1 (4.8 mg, 0.0154 mmol)을 DMSO (480 μL)에 녹인 용액 중 130 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 0.68 mg, 0.0043 mmol) 및 아스코르브산나트륨 (1.4 mg, 0.0079 mmol)을 순차적으로 반응 용액에 첨가한 후 3.5시간 동안 교반하였다. 반응 완료 후 증류수 (1 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-26을 하얀색 고체형태로 수득하였다(1.1 mg, 20 %); MS m/z: 1451[M+H]+, 725 1/2[M+H]+.
실시예 II-27: 화합물 B-27의 제조
Figure PCTKR2023008742-appb-img-000221
질소 대기 하 상온에서 화합물 A-66 (4.5 mg, 0.0039 mmol)을 DMSO (0.2 mL)에 용해시킨 후 링커 Q-1 (5.4 mg, 0.0173 mmol)을 DMSO (540 μL)에 녹인 용액 중 130 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 0.69 mg, 0.0043 mmol) 및 아스코르브산나트륨 (1.4 mg, 0.0079 mmol)을 순차적으로 반응 용액에 첨가한 후 4.5시간 동안 교반하였다. 반응 완료 후 증류수 (1 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-27을 하얀색 고체형태로 수득하였다(3.2 mg, 51 %); MS m/z: 1465[M+H]+, 732 1/2[M+H]+.
실시예 II-28: 화합물 B-28의 제조
Figure PCTKR2023008742-appb-img-000222
.
질소 대기 하 0 ℃에서 화합물 A-46 (6.7 mg, 0.0059 mmol)을 DMSO (200 μL)에 용해시킨 후 링커 Q-3 (4.8 mg)을 DMSO (400 μL)에 녹인 용액 중 100 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 1 mg) 및 아스코르브산나트륨 (1.3 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 30분 동안 교반하였다. 반응 완료 후 증류수 (1 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-28를 백색 고체 형태로 수득하였다(6.4 mg, 81.6 %); MS m/z: 2657[M+H]+, 1328 1/2[M+H]+, 886 1/3[M+H]+.
실시예 II-29: 화합물 B-29의 제조
Figure PCTKR2023008742-appb-img-000223
질소 대기 하 0 ℃에서 화합물 A-26 (6.4 mg, 0.0056 mmol)을 DMSO (400 μL)에 용해시킨 후 링커 Q-3 (4.8 mg)을 DMSO (400 μL)에 녹인 용액 중 100 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 1 mg) 및 아스코르브산나트륨 (1.2 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 20분 동안 교반하였다. 반응 완료 후 증류수 (1 mL)와 ACN (1 mL)을 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-29를 백색 고체 형태로 수득하였다(5.7 mg, 75.7 %); MS m/z: 2685[M+H]+, 1342 1/2[M+H]+, 895 1/3[M+H]+.
실시예 II-30: 화합물 B-30의 제조
Figure PCTKR2023008742-appb-img-000224
질소 대기 하 0 ℃에서 화합물 A-47 (2 mg, 0.0018 mmol)을 THF (1 mL)에 용해시킨 후 링커 Q-6 (0.54 mg, 0.0009 mmol) 및 DIPEA (5 μL)를 순차적으로 적가하고 0 ℃에서 30분 동안 교반하였다. 추가적으로 상온에서 2시간 동안 교반한 후, 0.1 % 포름산이 포함된 ACN (1 mL)과 증류수 (1 mL)를 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-30을 수득하였다(1.4 mg, 60.8 %); MS m/z: 2562[M+H]+, 1281 1/2[M+H]+, 854 1/3 [M+H]+.
실시예 II-31: 화합물 B-31의 제조
Figure PCTKR2023008742-appb-img-000225
질소 대기 하 0 ℃에서 화합물 A-48 (6.0 mg, 0.0065 mmol)을 DMSO (1.5 mL)에 용해시킨 후 링커 Q-3 (2.0 mg)을 DMSO (200.0 μL)에 녹인 용액 중 133 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2.0 mL), ACN (0.5 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 2.0 mg) 및 아스코르브산나트륨 (2.6 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 1시간 동안 교반하였다. 반응 완료 후 증류수 (1.0 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-31을 백색 고체 형태로 수득하였다(3.4 mg, 23 %); EI-MS m/z: 2234[M+H]+, MS m/z: 1117 1/2[M+H]+.
실시예 II-32: 화합물 B-32의 제조
Figure PCTKR2023008742-appb-img-000226
질소 대기 하 0 ℃에서 화합물 A-27 (3.1 mg, 0.0027 mmol)을 THF (1.5 mL), DMSO(200 μL) 및 증류수 (100 μL)의 혼합용매에 용해시킨 후 링커 Q-6 (3 mg)을 DMSO (2.5 mL)에 녹인 용액 중 500 μL를 취해 반응에 첨가하였다. 마지막으로 DIPEA (5 μL)를 적가하고 0 ℃에서 30분 동안 교반하였다. 추가적으로 상온에서 2시간 동안 교반한 후, 0.1 % 포름산이 포함된 ACN (1 mL)과 증류수 (1 mL)를 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-32을 수득하였다(1.4 mg, 60.8 %); MS m/z: 2592[M+H]+, 1296 1/2[M+H]+, 864 1/3 [M+H]+.
실시예 II-33: 화합물 B-33의 제조
Figure PCTKR2023008742-appb-img-000227
질소 대기 하 0 ℃에서 화합물 A-49 (6.0 mg, 0.0042 mmol)를 DMSO (200 μL)에 용해시킨 후 링커 Q-3 (2.2 mg)을 DMSO (0.22 mL)에 녹인 용액 중 86 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), DMSO (1.8 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 1.16 mg) 및 아스코르브산나트륨 (1.67 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 1시간 동안 교반하였다. 반응 완료 후 증류수 (3 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-33을 하얀색 고체형태로 수득하였다(3.8 mg, 55 %); EI-MS m/z: 1623 1/2[M+H]+, 1082 1/3[M+H]+.
실시예 II-34: 화합물 B-34의 제조
Figure PCTKR2023008742-appb-img-000228
질소 대기 하 0 ℃에서 화합물 A-51 (5.9 mg, 0.0041 mmol)을 DMSO (200 μL)에 용해시킨 후 링커 Q-3 (2.2 mg)을 DMSO (0.22 mL)에 녹인 용액 중 83 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), DMSO (1.8 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 1.13 mg) 및 아스코르브산나트륨 (1.63 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 1.5시간 동안 교반하였다. 반응 완료 후 증류수 (3 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-34를 하얀색 고체형태로 수득하였다(2.2 mg, 33 %); EI-MS m/z: 1637 1/2[M+H]+, 1091 1/3[M+H]+.
실시예 II-35: 화합물 B-35의 제조
Figure PCTKR2023008742-appb-img-000229
질소 대기 하 상온에서 화합물 A-53 (5.9 mg, 0.005 mmol)을 THF (1 mL)에 용해시킨 후 링커 Q-4 (3.1 mg)를 THF (3.1 mL)에 녹인 용액 중 2.5 mL를 취해 반응에 첨가하였다. 추가적으로 증류수 (0.2 mL), 피리딘 (10 μL) 및 DIPEA (10 μL)를 순차적으로 반응 용액에 첨가한 후 상온에서 2.5시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (20 μL)을 첨가하고 0.1 % 포름산이 포함된 ACN (3 mL)을 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-35를 수득하였다(3.2 mg, 43 %); EI-MS m/z: 1534 1/2[M+H]+, 1023 1/3[M+H]+.
실시예 II-36: 화합물 B-36의 제조
Figure PCTKR2023008742-appb-img-000230
질소 대기 하 0 ℃에서 화합물 A-55 (6.8 mg, 0.0057 mmol)를 THF (2.0 mL)에 용해시킨 후 링커 Q-4 (2.75 mg, 0.0027 mmol), 증류수 (200.0 μL), DIPEA (10.0 μL) 및 피리딘 (20.0 μL)을 순차적으로 적가하고 2시간 동안 상온에서 교반하였다. 반응 완료 후 2N-염산 수용액 (20.0 μL)을 첨가하고 0.1 % 포름산이 포함된 ACN (2.0 mL)을 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-36을 백색 고체 형태로 수득하였다(2.6 mg, 30.0 %); EI-MS m/z: 1548 1/2[M+H]+, 1032 1/3[M+H]+.
실시예 II-37: 화합물 B-37의 제조
Figure PCTKR2023008742-appb-img-000231
질소 대기 하 상온에서 화합물 A-57 (6.1 mg, 0.0054 mmol)을 THF (2.14 mL)에 용해시킨 후 링커 Q-4 (3.1 mg, 0.0033 mmol), 증류수 (200 μL), DIPEA (10 μL) 및 피리딘 (10 μL)을 순차적으로 적가하고 3시간 동안 교반하였다. 반응 완료 후 0.1 % 포름산이 포함된 ACN (2 mL)을 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-37을 하얀색 고체형태로 수득하였다(3.7 mg, 23 %); MS m/z: 2976[M+H]+, 1487 1/2[M+H]+, 991 1/3[M+H]+.
실시예 II-38: 화합물 B-38의 제조
Figure PCTKR2023008742-appb-img-000232
질소 대기 하 상온에서 화합물 A-59 (6.3 mg, 0.0055 mmol)를 THF (2.11 mL)에 용해시킨 후 링커 Q-4 (3 mg, 0.0032 mmol), 증류수 (200 μL), DIPEA (10 μL) 및 피리딘 (10 μL)을 순차적으로 적가하고 4시간 동안 교반하였다. 반응 완료 후 0.1 % 포름산이 포함된 ACN (2 mL)을 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-38을 하얀색 고체형태로 수득하였다(4 mg, 24 %); MS m/z: 3004[M+H]+, 1501 1/2[M+H]+, 1001 1/3[M+H]+.
실시예 II-39: 화합물 B-39의 제조
Figure PCTKR2023008742-appb-img-000233
질소 대기 하 0 ℃에서 화합물 A-60 (6.7 mg, 0.0049 mmol)을 DMSO (200 μL)에 용해시킨 후 링커 Q-3 (1.7 mg)을 DMSO (0.17 mL)에 녹인 용액 중 100 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), DMSO (0.4 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 1.34 mg) 및 아스코르브산나트륨 (1.93 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 30분 동안 교반하였다. 반응 완료 후 증류수 (3 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-39를 하얀색 고체형태로 수득하였다(5.1 mg, 66 %); EI-MS m/z: 1575 1/2[M+H]+, 1050 1/3[M+H]+.
실시예 II-40: 화합물 B-40의 제조
Figure PCTKR2023008742-appb-img-000234
질소 대기 하 0 ℃에서 화합물 A-61 (8.0 mg, 0.0058 mmol)을 DMSO (200 μL)에 용해시킨 후 링커 Q-3 (2.0 mg)을 DMSO (0.2 mL)에 녹인 용액 중 117 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), DMSO (0.8 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 1.58 mg) 및 아스코르브산나트륨 (2.28 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 40분 동안 교반하였다. 반응 완료 후 증류수 (3 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-40을 하얀색 고체형태로 수득하였다(4.5 mg, 49 %); EI-MS m/z: 1589 1/2[M+H]+, 1059 1/3[M+H]+.
실시예 II-41: 화합물 B-41의 제조
Figure PCTKR2023008742-appb-img-000235
질소 대기 하 상온에서 화합물 A-65 (5 mg, 0.0045 mmol)를 THF (2 mL)에 용해시킨 후 링커 Q-2 (2.4 mg, 0.0068 mmol), DIPEA (20 μL) 및 피리딘 (10 μL)을 순차적으로 적가하고 6.5시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (10 μL)을 첨가하고 0.1 % 포름산이 포함된 ACN (2 mL)을 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-41을 하얀색 고체형태로 수득하였다(2.3 mg, 38 %); MS m/z: 1353[M+H]+, 676 1/2[M+H]+.
실시예 II-42: 화합물 B-42의 제조
Figure PCTKR2023008742-appb-img-000236
질소 대기 하 상온에서 화합물 A-67 (5.1 mg, 0.0045 mmol)을 THF (2 mL)에 용해시킨 후 링커 Q-2 (2.4 mg, 0.0068 mmol), 증류수 (110 μL), DIPEA (10 μL) 및 피리딘 (10 μL)을 순차적으로 적가하고 6시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (30 μL)을 첨가하고 0.1 % 포름산이 포함된 ACN (2 mL)을 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-42을 하얀색 고체형태로 수득하였다(2.5 mg, 40 %); MS m/z: 1367[M+H]+, 683 1/2[M+H]+.
실시예 II-43: 화합물 B-43의 제조
Figure PCTKR2023008742-appb-img-000237
질소 대기 하 0 ℃에서 화합물 A-70 (4.6 mg, 0.0033 mmol)을 DMSO (200 μL)에 용해시킨 후 링커 Q-1 (4.3 mg)을 DMSO (0.43 mL)에 녹인 용액 중 140 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), DMSO (0.4 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 0.92 mg) 및 아스코르브산나트륨 (1.33 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 30분 동안 교반하였다. 반응 완료 후 증류수 (3 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-43을 하얀색 고체형태로 수득하였다(5.2 mg, 92 %); EI-MS m/z: 1681[M+H]+, 841 1/2[M+H]+.
실시예 II-44: 화합물 B-44의 제조
Figure PCTKR2023008742-appb-img-000238
질소 대기 하 0 ℃에서 화합물 A-70 (7.7 mg, 0.0056 mmol)을 DMSO (200 μL)에 용해시킨 후 링커 Q-3 (2.1 mg)을 DMSO (0.21 mL)에 녹인 용액 중 114 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), DMSO (0.8 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 1.54 mg) 및 아스코르브산나트륨 (2.22 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 1시간 동안 교반하였다. 반응 완료 후 증류수 (3 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-44를 하얀색 고체형태로 수득하였다(6.1 mg, 69 %); EI-MS m/z: 1573 1/2[M+H]+, 1049 1/3[M+H]+.
실시예 II-45: 화합물 B-45의 제조
Figure PCTKR2023008742-appb-img-000239
질소 대기 하 0 ℃에서 화합물 A-71 (4.6 mg, 0.005 mmol)을 DMSO (600 μL)에 용해시킨 후 링커 Q-1 (4.3 mg)을 DMSO (0.43 mL)에 녹인 용액 중 200 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), DMSO (0.6 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 1.37 mg) 및 아스코르브산나트륨 (1.98 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 30분 동안 교반하였다. 반응 완료 후 증류수 (2 mL)와 ACN (2 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-45를 상아색 고체형태로 수득하였다(4.7 mg, 76 %); EI-MS m/z: 1231[M+H]+, 616 1/2[M+H]+.
실시예 II-46: 화합물 B-46의 제조
Figure PCTKR2023008742-appb-img-000240
질소 대기 하 0 ℃에서 화합물 A-73 (5.8 mg, 0.0063 mmol)을 DMSO (600 μL)에 용해시킨 후 링커 Q-1 (36.7 mg)을 DMSO (3.67 mL)에 녹인 용액 중 260 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), DMSO (0.8 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 1.73 mg) 및 아스코르브산나트륨 (2.5 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 1시간 동안 교반하였다. 반응 완료 후 증류수 (2 mL)와 ACN (2 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-46를 상아색 고체형태로 수득하였다(5.8 mg, 74 %); EI-MS m/z: 1229[M+H]+, 615 1/2[M+H]+.
실시예 II-47: 화합물 B-47의 제조
Figure PCTKR2023008742-appb-img-000241
질소 대기 하 상온에서 화합물 A-65 (6.1 mg, 0.0055 mmol)을 THF (1.1 mL)에 용해시킨 후 THF (0.9 mL)에 용해시킨 링커 Q-4 (2.6 mg, 0.0027 mmol), 증류수 (200 μL), DIPEA (10 μL) 및 피리딘 (10 μL)을 순차적으로 적가하고 3시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (20 μL)을 첨가하고 0.1 % 포름산이 포함된 ACN (2 mL)을 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-47을 하얀색 고체형태로 수득하였다(2.1 mg, 13 %); MS m/z: 2944[M+H]+, 1471 1/2[M+H]+, 981 1/3[M+H]+.
실시예 II-48: 화합물 B-48의 제조
Figure PCTKR2023008742-appb-img-000242
질소 대기 하 상온에서 화합물 A-67 (6.2 mg, 0.0055 mmol)을 THF (0.8 mL)에 용해시킨 후 THF (1.2 mL)에 용해시킨 링커 Q-4 (2.6 mg, 0.0027 mmol), 증류수 (200 μL), DIPEA (10 μL) 및 피리딘 (10 μL)을 순차적으로 적가하고 3시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (20 μL)을 첨가하고 0.1 % 포름산이 포함된 ACN (2 mL)을 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-48을 하얀색 고체형태로 수득하였다(2.8 mg, 17 %); MS m/z: 2972[M+H]+, 1485 1/2[M+H]+, 990 1/3[M+H]+.
실시예 II-49: 화합물 B-49의 제조
Figure PCTKR2023008742-appb-img-000243
질소 대기 하 0 ℃에서 화합물 A-21 (1.7 mg, 0.0012 mmol)을 DMSO (100 μL)에 용해시킨 후 링커 Q-5 (114 mg)을 DMSO (5.7 mL)에 녹인 용액 중 32 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (1 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 0.3 mg) 및 아스코르브산나트륨 (0.5 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 20분 동안 교반하였다. 반응 완료 후 증류수 (2 mL)와 ACN (2 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-49를 흰색 고체형태로 수득하였다(1.9 mg, 90 %); EI-MS m/z: 1655[M+H]+, 828 1/2[M+H]+.
실시예 II-50: 화합물 B-50의 제조
Figure PCTKR2023008742-appb-img-000244
질소 대기 하 상온에서 화합물 A-74 (1.2 mg, 0.0013 mmol)을 THF (1 mL)에 용해시킨 후 링커 Q-2 (3.5 mg)을 THF (0.35 mL)에 녹인 용액 중 60 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (0.1 mL), 피리딘 (10 μL) 및 DIPEA (10 μL)를 순차적으로 반응 용액에 첨가한 후 상온에서 1.5시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (10 μL)을 첨가하고 0.1 % 포름산이 포함된 ACN (3 mL)을 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-50을 수득하였다(0.2 mg, 13 %); EI-MS m/z: 1133[M+H]+, 566 1/2[M+H]+.
실시예 II-51: 화합물 B-51의 제조
Figure PCTKR2023008742-appb-img-000245
질소 대기 하 상온에서 화합물 A-75 (1.3 mg, 0.0014 mmol)을 THF (2 mL)에 용해시킨 후 링커 Q-2 (3.5 mg)을 THF (0.35 mL)에 녹인 용액 중 70 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (0.2 mL), 피리딘 (10 μL) 및 DIPEA (10 μL)를 순차적으로 반응 용액에 첨가한 후 상온에서 1.5시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (10 μL)을 첨가하고 0.1 % 포름산이 포함된 ACN (3 mL)을 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-51을 흰색 고체형태로 수득하였다(0.5 mg, 30 %); EI-MS m/z: 1131[M+H]+, 566 1/2[M+H]+.
실시예 II-52: 화합물 B-52의 제조
Figure PCTKR2023008742-appb-img-000246
질소 대기 0 ℃에서 화합물 A-74 (3.3 mg, 0.0036 mmol)을 DMF (0.5 mL)에 용해시킨 후 DMF (0.5 mL)에 용해시킨 링커 Q-4 (1.75 mg, 0.0018 mmol)를 첨가하고 추가적으로 증류수 (20 μL), TEA (10 μL)를 순차적으로 적가하고 3시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (20 μL)을 첨가하고 0.1 % 포름산이 포함된 증류수 (7 mL)를 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-52을 아이보리색 고체형태로 수득하였다(0.9 mg, 20 %); EI-MS m/z: 2505[M+H]+.
실시예 II-53: 화합물 B-53의 제조
Figure PCTKR2023008742-appb-img-000247
질소 대기 하 상온에서 화합물 A-75 (6.6 mg, 0.0074 mmol)을 THF (1.5 mL)에 용해시킨 후 THF (0.5 mL)에 용해시킨 링커 Q-4 (3.5 mg, 0.0037 mmol)와 증류수 (200 μL), DIPEA (10 μL), 피리딘 (10 μL), DMF (1 mL)를 순차적으로 적가하고 5시간 동안 교반하였다. 반응 완료 후 2N-염산 수용액 (20 μL)을 첨가하고 0.1 % 포름산이 포함된 증류수 (7 mL)를 이용해 반응 용액을 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-53을 아이보리색 고체형태로 수득하였다(2.6 mg, 28 %); MS m/z: 2501[M+H]+, 1250 1/2[M+H]+, 833 1/3[M+H]+.
실시예 II-54: 화합물 B-54의 제조
Figure PCTKR2023008742-appb-img-000248
질소 대기 하 0 ℃에서 화합물 A-71 (5.8 mg, 0.0063 mmol)을 DMSO (400 μL)에 용해시킨 후 링커 Q-3 (2.4 mg)을 DMSO (0.24 mL)에 녹인 용액 중 128 μL(3.15 μmol)를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), DMSO (0.4 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 3.1 mg) 및 아스코르브산나트륨 (4.9 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 2시간 동안 교반하였다. 반응 완료 후 ACN (2 mL)과 증류수 (6 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-54를 상아색 고체형태로 수득하였다(3 mg, 42 %); EI-MS m/z: 2246[M+H]+, 1123 1/2[M+H]+, 749 1/3[M+H]+.
실시예 II-55: 화합물 B-55의 제조
Figure PCTKR2023008742-appb-img-000249
질소 대기 하 0 ℃에서 화합물 A-73 (6.1 mg, 0.0066 mmol)을 DMSO (400 μL)에 용해시킨 후 링커 Q-3 (2.4 mg)을 DMSO (0.24 mL)에 녹인 용액 중 165 μL(4.0 μmol)를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), DMSO (1 mL), 황산(II)구리 오수화물 (CuSO4 .5H2O, 3.1 mg) 및 아스코르브산나트륨 (5.2 mg)을 순차적으로 반응 용액에 첨가한 후 상온에서 2시간 동안 교반하였다. 반응 완료 후 ACN (2 mL)과 증류수 (6 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-55를 상아색 고체형태로 수득하였다(3.9 mg, 52 %); EI-MS m/z: 2241[M+H]+, 1121 1/2[M+H]+, 748 1/3[M+H]+.
실시예 II-56: 화합물 B-56의 제조
Figure PCTKR2023008742-appb-img-000250
질소 대기 하 상온에서 화합물 A-52 (5.0 mg, 0.0041 mmol)를 DMSO (2 mL)에 용해시킨 후 링커 Q-7 (10.9 mg)를 DMSO (1.0 mL)에 녹인 용액 중 130 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), 황산(II)구리 오수화물 (CuSO4.5H2O, 1.0 mg), 아스코르브산나트륨 (1.3 mg)을 순차적으로 반응 용액에 첨가한 후 4시간 동안 교반하였다. 반응 완료 후 증류수 (2 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-56를 하얀색 고체형태로 수득하였다 (2.0 mg, 31.2 %); EI-MS m/z: 1544 1/2[M+H]+, 1030 1/3[M+H]+.
실시예 II-57: 화합물 B-57의 제조
Figure PCTKR2023008742-appb-img-000251
질소 대기 하 상온에서 화합물 A-73 (7.3 mg, 0.0079 mmol)를 DMSO (2 mL)에 용해시킨 후 링커 Q-7 (10.9 mg)를 DMSO (1.0 mL)에 녹인 용액 중 250 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), 황산(II)구리 오수화물 (CuSO4.5H2O, 1.0 mg), 아스코르브산나트륨 (1.3 mg)을 순차적으로 반응 용액에 첨가한 후 4시간 동안 교반하였다. 반응 완료 후 증류수 (2 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-57를 하얀색 고체형태로 수득하였다 (2.8 mg, 28 %); EI-MS m/z: 2521 [M+H]+, 1260 1/2[M+H]+, 840 1/3[M+H]+.
실시예 II-58: 화합물 B-58의 제조
Figure PCTKR2023008742-appb-img-000252
질소 대기 하 상온에서 화합물 A-71 (4.2 mg, 0.0045 mmol)를 DMSO (2 mL)에 용해시킨 후 링커 Q-7 (10.9 mg)를 DMSO (1.0 mL)에 녹인 용액 중 143 μL를 취해 반응에 첨가하였다. 추가적으로 증류수 (2 mL), 황산(II)구리 오수화물 (CuSO4.5H2O, 1.0 mg), 아스코르브산나트륨 (1.3 mg)을 순차적으로 반응 용액에 첨가한 후 4시간 동안 교반하였다. 반응 완료 후 증류수 (2 mL)를 이용해 희석시키고 Preparative-HPLC를 이용하여 분리 정제한 후 동결 건조하여 화합물 B-58를 하얀색 고체형태로 수득하였다 (1.2 mg, 21 %); EI-MS m/z: 2524 [M+H]+, 1263 1/2[M+H]+, 842 1/3[M+H]+.
실시예 III: 항체-약물 접합체 (ADC, antibody-drug conjugate) 제조
화합물 B-1 내지 B-10, B-15, B-14, B-30, B-33, B34, B-19, B-17, B-36 및 B-35를 각각 Nature Biotechnology, 2008, 26, 925-932; Bioconjugate Chem., 2013, 24, 1256-1263; Bioconjugate Chem., 2016, 27, 1324-1331; Bioconjugate Chem. 2014, 25, 460-469에 제시된 방법 등을 참고하여 특정 위치에 티올기로 치환된 허셉틴(Herceptin)에 특이적 결합반응을 시켜 티오맵 약물 복합체(TDC, thiomab drug conjugate)로 ADC-1 내지 ADC-19를 각각 제조하였다. ADC-1 내지 ADC-19의 구조는 표 D 및 E에 제시되어 있다. 이때 항체에 결합된 약물의 비율 (DAR, drug-antibody ratio)은 HPLC를 이용하여 측정하였다. 본 실시예에서 사용된 허셉틴(Trastuzumab)은 ㈜와이바이오로직스로부터 구입하였으며, 이는 유전자 재조합 방법을 통하여 항체 경쇄의 149번에 존재하는 알라닌(Alanine)을 시스테인(Cysteine)으로 치환하여, HEK293 세포에 일시적 주입법(Transient transfection)으로 DNA를 주입하여 배양액으로 분비되는 항체를 정제하여 제조한 것이다.
시험예 1: 효소 절단 분석법(Enzyme Cleavage assay)을 이용한 효소 반응 속도 연구(kinetic study)
방법 1: 대장균 베타-갈락토시다제 효소(β-Galactosidase enzyme)
본 발명의 화합물 (A-15, A-16, A-19, A-21, A-22, A-23, A-25, A-28 및 A-29)을 각각 10 mM이 되도록 DMSO (Dimethylsulfoxide: Sigma, SA-276855-1L)에 녹인 후 PBS (pH 7.4; Hyclone, SH30256.01) 완충용액과 혼합하여 500 μM (5% DMSO)이 되도록 용액을 제조하였다. 표준물질로 사용한 MPS (Methylphenylsulfoxide: Alfa aesar, A15009-5G) 또한 PBS 완충용액으로 500 μM이 되도록 용액을 준비하였다. PBS 완충용액 415.8 μL와 500 μM 본 발명의 화합물과 MPS를 각 140 μL씩 혼합한 후 3.36 mg/mL 효소용액 4.2 μL를 첨가하여 총 700 μL의 효소 반응용액을 제조하였다. 인간 베타-갈락토시다제와 비교시에는 동일 몰 농도로 맞추기 위해 21 μL의 1 mg/mL 효소용액을 첨가하고, 본 발명의 화합물과 MPS 각 140 μL와 PBS 완충용액을 399 μL 혼합하여 제조하였다. 모든 조건은 37oC 항온배양기에서 반응을 개시하였다. 상기 반응 혼합물에는 대장균 베타-갈락토시다제 효소(Sigma, G4155)를 사용하였다. 효소 반응용액은 반응 전 0 분, 반응 후 일정 시간에 각각 70 μL씩 분취하여 남아있는 본 발명의 화합물 또는 MPS, 및 효소반응으로 유리된 물질을 HPLC 방법으로 정량 분석하였다.
방법 2: 인간 베타-갈락토시다제 효소(β-Galactosidase enzyme)
화합물 A-22를 10 mM이 되도록 DMSO에 녹인 후 PBS 완충용액과 혼합하여 500 μM (5% DMSO)이 되도록 용액을 제조하였다. 표준물질로 사용한 MPS도 PBS 완충용액으로 500 μM이 되도록 용액을 준비하였다. 50 mM 소듐 시트레이트 완충용액 (pH 4.5) 200 μL와 500 μM 본 발명의 화합물 A-22와 MPS를 각 100 μL씩 혼합한 후 0.1 mg/mL 효소용액 100 μL를 첨가하여 총 500 μL의 효소 반응용액을 제조하였다. 이는 37oC 항온배양기에서 반응을 개시하였다. 상기 반응 혼합물에는 인간 베타-갈락토시다제 효소(R&D, 6464-GH-020)를 사용하였다. 효소 반응용액은 반응 전 0 분, 반응 후 일정 시간에 각각 50 μL씩 분취하여 남아있는 화합물 A-22 또는 MPS, 및 효소반응으로 유리된 MMAF(Monomethyl auristatin F)을 HPLC 방법으로 정량 분석하였다.
방법 3: 대장균 베타-글루쿠로니데다제 효소(β-Glucuronidase enzyme)
본 발명의 화합물 (A-36 및 A-69)를 10 mM이 되도록 DMSO에 녹인 후 PBS 완충용액과 혼합하여 500 μM (5% DMSO)이 되도록 용액을 제조하였다. 표준물질로 사용한 MPS도 PBS 완충용액으로 500 μM이 되도록 용액을 준비하였다. PBS 완충용액 (pH 7.4) 406 μL와 500 μM 본 발명의 화합물과 MPS를 각 140 μL씩 혼합한 후 1 mg/mL 효소용액 14 μL를 첨가하여 총 700 μL의 효소 반응용액을 제조하였다. 이는 37oC 항온배양기에서 반응을 개시하였다. 상기 반응 혼합물에는 대장균 베타-글루쿠로니데이즈 효소 (Sigma G7396)를 사용하였다. 효소 반응용액은 반응 전 0 분, 반응 후 일정 시간에 각각 70 μL씩 분취하여 남아있는 본 발명의 화합물 또는 MPS, 및 효소반응으로 유리된 물질을 HPLC 방법으로 정량 분석하였다.
방법 4: 인간 베타-글루쿠로니다제 효소(β-Glucuronidase enzyme)
본 발명의 화합물 (A-36 및 A-69)을 10 mM이 되도록 DMSO에 녹인 후 PBS 완충용액과 혼합하여 500 μM (5% DMSO)이 되도록 용액을 제조하였다. 표준물질로 사용한 MPS도 PBS 완충용액으로 500 μM이 되도록 용액을 준비하였다. 50 mM 소듐 시트레이트 완충용액 (pH 4.5) 200 μL와 500 μM 본 발명의 화합물과 MPS를 각 100 μL씩 혼합한 후 0.1 mg/mL 효소용액 100 μL를 첨가하여 총 500 μL의 효소 반응용액을 제조하였다. 이는 37oC 항온배양기에서 반응을 개시하였다. 상기 반응 혼합물에는 인간 베타-글루쿠로니데이즈 효소(R&D Systems, 6144-GH-020)를 사용하였다. 효소 반응용액은 반응 전 0 분, 반응 후 일정 시간에 각각 50 μL씩 분취하여 남아있는 본 발명의 화합물 또는 MPS, 및 효소반응으로 유리된 MMAE(Monomethyl auristatin E)을 HPLC 방법으로 정량 분석하였다.
상기 방법 1, 2, 3 및 4를 이용하여 본 발명의 화합물들의 페이로드 방출 반감기를 측정한 결과를 표 1에 나타내었다. 또한, 화합물 A-15, A-23, A-36 및 A-69의 효소 절단 속도 측정 결과는 각각 도 1 내지 4에 나타내었다.
본 발명의 화합물 페이로드 방출
t1/2 (min)
실험 방법 pH 조건
A-15 9.4 방법 1 7.4
A-16 22.5 방법 1 7.4
A-19 4.8 방법 1 7.4
A-21 4.7 방법 1 7.4
A-22 1.4 방법 1 7.4
6.4 방법 2 4.5
A-23 1.4 방법 1 7.4
A-25 0.7 방법 1 7.4
A-28 1.0 방법 1 7.4
A-29 27.5 방법 1 7.4
A-36 1.0 방법 3 7.4
6.5 방법 4 4.5
A-69 2.4 방법 3 7.4
13.2 방법 4 4.5
상기 표 1 및 도 1 내지 4의 결과로부터, 본 발명의 화합물들이 베타-갈락토시다제 또는 베타-글루쿠로니다제에 의해 신속하게 분해되어 페이로드를 효율적으로 방출함을 확인할 수 있었다.
시험예 2: 화학적 안정성(Chemical stability)
본 발명의 화합물 (A-15, A-16, A-19, A-21 내지 A-25, A-28, A-29, A-36 및 A-69)를 각각 10 mM이 되도록 DMSO에 녹인 후 PBS 완충용액 (pH 7.4)과 혼합하여 500 μM (5% DMSO)이 되도록 용액을 제조하였다. 표준물질로 사용한 MPS도 PBS 완충용액으로 500 μM이 되도록 용액을 준비하였다. PBS 완충용액 420 μL와 500 μM 본 발명의 화합물과 MPS를 각 140 μL씩 혼합하여 총 700 μL의 반응용액을 제조하였다. 상기 혼합액을 37oC 항온배양기에서 반응을 개시하였다. 반응용액은 반응 전 0 분, 반응 후 일정 시간에 각각 70 μL씩 분취하여 남아있는 본 발명의 화합물 또는 MPS 또는 유리된 MMAF 또는 MMAE를 HPLC 방법으로 정량 분석하였다. 본 발명의 화합물의 PBS 완충액 (pH 7.4) 중의 반감기를 측정한 결과를 하기 표 2에 기재하였다. 또한, PBS 완충액 (pH 7.4) 중에서 화합물 A-69의 인큐베이션 시간에 따른 잔존량을 도 5에 나타내었다.
본 발명의 화합물 화학적 안정성
t1/2 (day)
A-15 > 7
A-16 > 7
A-19 > 7
A-21 > 7
A-22 > 7
A-23 > 7
A-24 > 7
A-25 > 7
A-28 > 7
A-29 > 7
A-36 > 7
A-69 > 7
상기 표 2 및 도 5를 참고하면, 본 발명의 화합물들은 중성 완충액 중에서 장시간 화학적으로 안정함을 확인할 수 있다.
시험예 3: 혈장 안정성 시험(Plasma stability test)
방법 1: 마우스 혈장 안정성(Mouse plasma stability)
본 발명의 화합물(A-16, A-22, A-25, A-36, A-69) 및 표준물질로 사용한 MPS를 30 mM이 되도록 각각 DMSO와 PBS 완충용액에 녹인 후 마우스 혈장(Biochemed, 029-APSC-PMG)에 화합물과 MPS가 각각 최종농도 300 μM(final 1.0% DMSO), 600 μM이 되도록 혼합하였다. 상기 혈장 혼합액을 37oC 항온배양기에서 반응을 개시하였다. 반응 전 및 반응 후 일정 일에 상기 시료를 100 μL씩 분취하여 반응을 종료하기 위해 아세토니트릴(ACN, Sigma, SA-271004-1L) 200 μL를 첨가하여 혼합한 후 1 분 정도 볼텍싱후 혈장단백질 침전을 위해 4oC, 15 분, 14,000 rpm조건으로 원심분리(Beckman, B30150)하였다. 원심분리하여 얻어진 각 상등액을 수집하여 HPLC 방법으로 정량 분석하였다.
방법 2: 인간 혈장 안정성(Human plasma stability)
본 발명의 화합물(A-19, A-22, A-25, A-36, A-69) 및 표준물질로 사용한 MPS를 30 mM이 되도록 각각 DMSO와 PBS 완충용액에 녹인 후 인간 혈장(Biochemed, 752PR-SC-PMG)에 화합물과 MPS가 각각 최종농도 300 μM(final 1.0% DMSO), 600 μM이 되도록 혼합하였다. 상기 혈장 혼합액을 37oC 항온배양기에서 반응을 개시하였다. 반응 전 및 반응 후 일정 일에 상기 시료를 100 μL씩 분취하여 반응을 종료하기 위해 ACN 200 μL를 첨가하여 혼합한 후 1 분 정도 볼텍싱한 후 혈장단백질 침전을 위해 4oC, 15 분, 14,000 rpm 조건으로 원심분리 하였다. 원심분리하여 얻어진 각 상등액을 수집하여 HPLC 방법으로 정량 분석하였다.
방법 3: 랫트 혈장 안정성(Rat plasma stability)
본 발명의 화합물(A-22, A-69) 및 표준물질로 사용한 MPS를 30 mM이 되도록 각각 DMSO와 PBS 완충용액에 녹인 후 랫트 혈장(Biochemed, 031-APSC-PMG)에 화합물과 MPS가 각각 최종농도 300 μM(final 1.0% DMSO), 600 μM이 되도록 혼합하였다. 상기 혈장 혼합액을 37oC 항온배양기에서 반응을 개시하였다. 반응 전 및 반응 후 일정 일에 상기 시료를 100 μL씩 분취하여 반응을 종료하기 위해 ACN 200 μL를 첨가하여 혼합한 후 1 분 정도 볼텍싱한 후 혈장단백질 침전을 위해 4oC, 15 분, 14,000 rpm 조건으로 원심분리하였다. 원심분리하여 얻어진 각 상등액을 수집하여 HPLC 방법으로 정량 분석하였다.
방법 4: 비글견 혈장 안정성 (Dog plasma stability)
본 발명의 화합물(A-22, A-69) 및 표준물질로 사용한 MPS를 30 mM이 되도록 각각 DMSO와 PBS 완충용액에 녹인 후 비글견 혈장(Biochemed, 014-APSC-PMG)에 화합물과 MPS가 각각 최종농도 300 μM(final 1.0% DMSO), 600 μM이 되도록 혼합하였다. 상기 혈장 혼합액을 37oC 항온배양기에서 반응을 개시하였다. 반응 전 및 반응 후 일정 일에 상기 시료를 100 μL씩 분취하여 반응을 종료하기 위해 ACN 200 μL를 첨가하여 혼합한 후 1 분 정도 볼텍싱한 후 혈장단백질 침전을 위해 4oC, 15 분, 14,000 rpm 조건으로 하였다. 원심분리하여 얻어진 각 상등액을 수집하여 HPLC 방법으로 정량 분석하였다.
상기 방법 1 내지 4로 본 발명의 화합물의 혈장 반감기를 측정한 결과를 표 3에 기재하였다. 또한, 혈장 중에서 화합물 A-69의 인큐베이션 시간에 따른 잔존량을 도 5에 나타내었다.
본 발명의 화합물 혈장 안정성
t1/2 (day)
실험 방법
A-16 > 7 방법 1(마우스 혈장)
A-19 > 7 방법 2(인간 혈장)
A-22 > 7 방법 1(마우스 혈장)
> 7 방법 2(인간 혈장)
> 7 방법 3(랫트 혈장)
> 7 방법 4(비글견 혈장)
A-25 > 7 방법 1(마우스 혈장
> 7 방법 2(인간 혈장)
A-36 > 7 방법 1(마우스 혈장
> 7 방법 2(인간 혈장)
A-69 > 7 방법 1(마우스 혈장)
> 7 방법 2(인간 혈장)
> 7 방법 3(랫트 혈장)
> 7 방법 4(비글견 혈장)
표 3 및 도 5을 참고하면, 본 발명의 화합물들은 혈장 중에서 장시간 안정한 것을 확인할 수 있다.
시험예 4: 항체-약물 접합체의 시험관내(in vitro) 분석
방법 1: 세포 세포독성(JIMT-1) 실험
JIMT-1 유방암 세포주(DSMZ, ACC589)를 10% 우태아 혈청(Hyclone, SH30919.03)과 1% antibiotic-antimycotic 용액(Hyclone, SV30079.01)이 공급된 DMEM 배양액(Hyclone, SH30243.01) 1 mL에 40,000개 세포가 되도록 제조한 후, 96-웰 플레이트(Sarstedt, 83.3924)에 웰당 100 mL(4,000개 세포)씩 분주하여 24 시간 동안 CO2 항온배양기(Forma, 51030303-TIF)에서 배양하였다. 실시예 III에서 제조한 19종의 항체-약물 접합체를 41 nM부터 0.0020 nM까지 1/3로 연속 희석하여 처리하였다. 96 시간 뒤에 살아있는 세포를 정량하기 위해 MTS 염료 용액(Promega, G3581)을 플레이트의 각 웰에 20 mL씩 첨가하고 CO2 항온배양기에서 4시간 정치하였다. 세포 내의 미토콘드리아 산화환원효소(oxidoreductase)에 의해 MTS(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) 염료가 환원되어 형성된 포마잔(formazan)의 흡광도를 490 nm에서 분광기(Promega, GM3000)로 측정 후 GraphPad Prism 7 프로그램을 사용하여 분석하고 항체-약물 접합체의 세포독성 시험 결과를 하기 표 4에 나타내었다.
방법 2: 세포 세포독성(NCI-N87) 실험
NCI-N87 위암 세포주(한국세포주은행, 60113)를 10% 우태아 혈청(Hyclone, SH30919.03)과 1% antibiotic-antimycotic 용액(Hyclone, SV30079.01)이 공급된 RPMI1640 배양액(Hyclone, SH30027.01) 1 mL에 100,000개 세포가 되도록 제조한 후, 96-웰 플레이트(Sarstedt, 83.3924)에 웰당 100 mL(10,000개 세포)씩 분주하여 24 시간 동안 CO2 항온배양기(Forma, 51030303-TIF)에서 배양하였다. 실시예 III에서 제조한 8종의 항체-약물 접합체를 4.5 nM부터 0.0088 nM까지 1/2로 연속 희석하여 처리하였다. 96 시간 뒤에 살아있는 세포를 정량하기 위해 MTS 염료 용액(Promega, G3581)을 플레이트의 각 웰에 20 mL씩 첨가하고 CO2 항온배양기에서 4시간 정치하였다. 세포 내의 미토콘드리아 산화환원효소(oxidoreductase)에 의해 MTS(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) 염료가 환원되어 형성된 포마잔(formazan)의 흡광도를 490 nm에서 분광기(Promega, GM3000)로 측정 후 GraphPad Prism 7 프로그램을 사용하여 분석하고 항체-약물 접합체의 세포독성 시험 결과를 하기 표 4에 나타내었다.
방법 3: 세포 세포독성(SK-BR3) 실험
SK-BR3 유방암 세포주(한국세포주은행, 30030)를 10% 우태아 혈청(Hyclone, SH30919.03)과 1% antibiotic-antimycotic 용액(Hyclone, SV30079.01)이 공급된 RPMI1640 배양액(Hyclone, SH30027.01) 1 mL에 80,000개 세포가 되도록 제조한 후, 96-웰 플레이트(Sarstedt, 83.3924)에 웰당 100 mL(8,000개 세포)씩 분주하여 24 시간 동안 CO2 항온배양기(Forma, 51030303-TIF)에서 배양하였다. 실시예 III에서 제조한 4종의 항체-약물 접합체를 0.5 nM부터 0.00098 nM까지 1/2로 연속 희석하여 처리하였다. 96 시간 뒤에 살아있는 세포를 정량하기 위해 MTS 염료 용액(Promega, G3581)을 플레이트의 각 웰에 20 mL씩 첨가하고 CO2 항온배양기에서 4시간 정치하였다. 세포 내의 미토콘드리아 산화환원효소(oxidoreductase)에 의해 MTS(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) 염료가 환원되어 형성된 포마잔(formazan)의 흡광도를 490 nm에서 분광기(Promega, GM3000)로 측정 후 GraphPad Prism 7 프로그램을 사용하여 분석하고 항체-약물 접합체의 세포독성 시험 결과를 하기 표 4에 나타내었다.
방법 4: 세포 세포독성(BT-474) 실험
BT-474 유방암 세포주(한국세포주은행, 60062)를 10% 우태아 혈청(Hyclone, SH30919.03)과 1% antibiotic-antimycotic 용액(Hyclone, SV30079.01)이 공급된 RPMI1640 배양액(Hyclone, SH30027.01) 1 mL에 100,000개 세포가 되도록 제조한 후, 96-웰 플레이트(Sarstedt, 83.3924)에 웰당 100 mL(10,000개 세포)씩 분주하여 24 시간 동안 CO2 항온배양기(Forma, 51030303-TIF)에서 배양하였다. 실시예 III에서 제조한 4종의 항체-약물 접합체를 1.5 nM부터 0.0029 nM까지 1/2로 연속 희석하여 처리하였다. 96 시간 뒤에 살아있는 세포를 정량하기 위해 MTS 염료 용액(Promega, G3581)을 플레이트의 각 웰에 20 mL씩 첨가하고 CO2 항온배양기에서 4시간 정치하였다. 세포 내의 미토콘드리아 산화환원효소(oxidoreductase)에 의해 MTS(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) 염료가 환원되어 형성된 포마잔(formazan)의 흡광도를 490 nm에서 분광기(Promega, GM3000)로 측정 후 GraphPad Prism 7 프로그램을 사용하여 분석하고 항체-약물 접합체의 세포독성 시험 결과를 하기 표 4에 나타내었다.
방법 5: 세포 세포독성(MCF-7) 실험
MCF-7 유방암 세포주(한국세포주은행, 30022)를 10% 우태아 혈청(Hyclone, SH30919.03)과 1% antibiotic-antimycotic 용액(Hyclone, SV30079.01)이 공급된 RPMI1640 배양액(Hyclone, SH30027.01) 1 mL에 40,000개 세포가 되도록 제조한 후, 96-웰 플레이트(Sarstedt, 83.3924)에 웰당 100 mL(4,000개 세포)씩 분주하여 24 시간 동안 CO2 항온배양기(Forma, 51030303-TIF)에서 배양하였다. 실시예 III에서 제조한 4종의 항체-약물 접합체를 50 nM과 3.125 nM로 희석하여 처리하였다. 96 시간 뒤에 살아있는 세포를 정량하기 위해 MTS 염료 용액(Promega, G3581)을 플레이트의 각 웰에 20 mL씩 첨가하고 CO2 항온배양기에서 4시간 정치하였다. 세포 내의 미토콘드리아 산화환원효소(oxidoreductase)에 의해 MTS(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) 염료가 환원되어 형성된 포마잔(formazan)의 흡광도를 490 nm에서 분광기(Promega, GM3000)로 측정 후 GraphPad Prism 7 프로그램을 사용하여 분석하고 항체-약물 접합체의 세포독성 시험 결과를 하기 표 4에 나타내었다.
IC50(nM)
ADC DAR JIMT-1 NCI-N87 SK-BR3 BT-474 MCF-7
ADC-1 1.9 0.294
ADC-2 2.0 0.274
ADC-3 1.9 0.258
ADC-4 1.9 0.189
ADC-5 1.9 0.177
ADC-6 1.9 0.162
ADC-7 1.9 0.893 0.246 0.090 0.107 >50
ADC-8 1.9 1.249 0.282 0.091 0.110 >50
ADC-9 3.6 0.303 0.185 0.045 0.063 >50
ADC-10 3.6 0.312 0.191 0.047 0.076 >50
ADC-11 1.9 0.199 0.226
ADC-12 1.9 0.533 0.276
ADC-14 3.8 0.164 0.145
ADC-15 3.8 0.074 0.082
ADC-16 2.0 0.333
ADC-17 2.0 0.496
ADC-18 3.8 0.115
ADC-19 3.8 0.215
상기 표 4의 결과로부터, 시험관내 실험을 통하여 본 발명의 항체-약물 접합체의 우수한 항암 활성을 확인할 수 있었다.
시험예 5: 항체-약물 접합체의 생체 내(in vivo) 분석
실시예 III에서 제조한 항체-약물 접합체(ADC-1 내지 ADC-7, ADC-11 내지 ADC-15)의 생체 내(in vivo) 활성을 종양 이종이식 생쥐 모델에서 측정하였다. JIMT-1 유방암 세포주를 37oC, 5% CO2 조건에서 10% 우태아혈청과 1% antibiotic-antimycotic 용액(Gibco, 15240-062)가 공급된 DMEM 배양액에서 3~4일 동안 배양하여 생존율이 97% 이상일 때 트립신-EDTA를 사용하여 수확한 뒤, DPBS(Hyclone, SH30028.02) 완충용액에 혼탁하여 1.59x108 세포/mL로 제조한 후, 이를 matrigel (Corning, 356235)에 1:1로 희석하여 7.14x107 세포/mL의 농도가 되도록 하였다. 세포 현탁액을 Athymic nude mouse(6-week, female)의 피하에 일회용 주사기(1mL)를 사용하여 0.07 mL(5x106 세포/마리)를 주입하였다. 종양 부피가 80~120 mm3 일때, 평균 종양 부피가 최대한 균일하게 분포되도록 마우스를 그룹별로 분리하여 약물 투여를 개시하였다. Kadcyla®(T-DM1, Roche, CAS No. 1018448-65-1) 및 본 발명의 항체-약물 접합체를 각각 5 mg/kg 단회 정맥 투여하고 3~4일 간격으로 일주일에 2회 종양의 부피를 측정하였다. 종양의 부피는 하기 공식에 의해 계산하였다: 부피=(a2b)/2, a는 짧은 직경, b는 긴 직경). 실험에서 얻어진 모든 측정 결과는 SPSS (Version 27.0, IBM corporation, U.S.A.)를 사용하여 통계 처리하였다. 대조 약물로 사용한 Kadcyla® 및 본 발명의 항체-약물 접합체의 생체 내(in vivo) 활성 분석 결과를 도 6 내지 도 8에 도시하였다.
도 6 내지 도 8을 참고하면, 본 발명의 항체-약물 접합체가 대조 약물인 Kadcyla® 또는 미처리 대조군보다 현저히 우수한 항암 활성을 나타냄을 확인할 수 있다.
Figure PCTKR2023008742-appb-img-000253
Figure PCTKR2023008742-appb-img-000254
Figure PCTKR2023008742-appb-img-000255
Figure PCTKR2023008742-appb-img-000256
Figure PCTKR2023008742-appb-img-000257
Figure PCTKR2023008742-appb-img-000258
Figure PCTKR2023008742-appb-img-000259
Figure PCTKR2023008742-appb-img-000260
Figure PCTKR2023008742-appb-img-000261
Figure PCTKR2023008742-appb-img-000262
Figure PCTKR2023008742-appb-img-000263
Figure PCTKR2023008742-appb-img-000264
Figure PCTKR2023008742-appb-img-000265
Figure PCTKR2023008742-appb-img-000266
Figure PCTKR2023008742-appb-img-000267
Figure PCTKR2023008742-appb-img-000268
Figure PCTKR2023008742-appb-img-000269
Figure PCTKR2023008742-appb-img-000270
Figure PCTKR2023008742-appb-img-000271
Figure PCTKR2023008742-appb-img-000272
Figure PCTKR2023008742-appb-img-000273
Figure PCTKR2023008742-appb-img-000274

Claims (35)

  1. 하기 화학식 1로 표시되는 자가-희생기를 포함하는 화합물 또는 이의 약학적으로 허용가능한 염:
    [화학식 1]
    Figure PCTKR2023008742-appb-img-000275
    상기 화학식 1에서,
    L1은 2가 또는 다가 연결기이고;
    k는 0 또는 1이고, j는 1 내지 10이고;
    A는 부재, H 또는 결합성 작용기이고;
    U는 하기 화학식 A로 표시되는 잔기이며:
    [화학식 A]
    Figure PCTKR2023008742-appb-img-000276
    상기 화학식 A에서,
    R1 및 R2는 각각 독립적으로 H 또는 C1-8의 포화 또는 불포화 하이드로카빌이고;
    PL은 N, O 및 S로부터 선택된 헤테로원자에 의해 L2 또는 R1 및 R2가 결합된 탄소원자에 연결된 활성제이고;
    L2는 R1 및 R2가 결합된 탄소원자와 L2 사이의 결합의 절단이 L2와 PL 사이의 결합의 절단을 촉진하도록 선택된 자가-제거 링커(self-eliminating linker)이고;
    W는 벤젠 고리 상의 임의의 치환기이고;
    Z1 및 Z3 중 하나는 N, NR3, O, S 및 Se로 구성되는 군에서 선택되고, Z1 및 Z3 중 나머지 하나와 Z2는 각각 독립적으로 CH 또는 N이되, -(L1)k-A, 및 존재하는 경우 -(V)h는 각각 독립적으로 NH 또는 CH의 H를 대체하고;
    Figure PCTKR2023008742-appb-img-000277
    는 A-(L1)k-와의 결합을 의미하고;
    R3는 H 또는 C1-8 하이드로카빌이고;
    V는 전자끄는기 또는 전자주는기이고;
    T는 절단시 1,6-제거 반응에 의해 PL 및 존재하는 경우 L2의 방출을 개시할 수 있는 촉발기(triggering group)이고;
    L3는 존재하는 경우 T의 절단시 순차적으로 절단되는 선택적 자가-희생 스페이서기이고;
    X 및 Y는 각각 독립적으로 -O-, -NH-, 및 S로부터 선택되고;
    h, i, l, x 및 y는 각각 독립적으로 0 또는 1이고, p는 0 내지 2의 정수이다.
  2. 제1항에 있어서,
    상기 화학식 A의
    Figure PCTKR2023008742-appb-img-000278
    고리는 하기 군으로부터 선택되는 것인, 자가-희생기를 포함하는 화합물 또는 이의 약학적으로 허용가능한 염:
    Figure PCTKR2023008742-appb-img-000279
    Figure PCTKR2023008742-appb-img-000280
    .
  3. 제1항에 있어서,
    V는 할로겐, CN, NO2, 포르밀, C1-8 알킬카보닐, 카복시, C1-8 알콕시카보닐, 카복시-C1-8 알킬, 카바모일, 모노-C1-8 알킬카바모일, 디-C1-8 알킬카바모일, C1-8 알킬, C1-8 알켄일, OH, C1-8 알콕시, SH, C1-8 알킬설파닐, NH2, 모노-C1-8 알킬아미노, 디-C1-8 알킬아미노 및 C6-18 아릴으로 구성되는 군에서 선택되는, 자가-희생기를 포함하는 화합물.
  4. 제1항에 있어서,
    W는 H, C1-12 포화 또는 불포화 하이드로카빌, 할로겐, 할로-C1-8 알킬, CN, NO2, OH, C1-8 알콕시, 하이드록시-C1-8 알킬, C1-8 알콕시-C1-8 알킬, SH, C1-8 알킬티오, 머캅토-C1-8 알킬, 아미노, 모노-C1-8 알킬아미노, 디-C1-8 알킬아미노, 아미노-C1-8 알킬, C1-8 모노알킬아미노-C1-8 알킬, C1-8 디알킬아미노-C1-8 알킬, 카복시, C1-8 알콕시카보닐, C1-8 알콕시카보닐옥시, 카복시-C1-8 알킬, C1-8 알콕시카보닐-C1-8 알킬, 카바모일, 모노-C1-8 알킬카바모일, 디-C1-8 알킬카바모일, 카바모일-C1-8 알킬, 모노-C1-8 알킬카바모일-C1-8 알킬 및 디-C1-8 알킬카바모일-C1-8 알킬로 구성되는 군에서 선택되는, 자가-희생기를 포함하는 화합물.
  5. 제1항에 있어서,
    -(Y)y-T는
    Figure PCTKR2023008742-appb-img-000281
    ; -O-SO3 -; -NO2; -OC(O)(CH2)rCORt1; -O(CH2)-Ar1-NO2; -S-C(O)(CH2)sCORt2; -S(CH2)-Ar2-NO2 및 -BRt3Rt4으로 표시되는 잔기로 구성된 군에서 선택되되;
    상기
    Figure PCTKR2023008742-appb-img-000282
    Figure PCTKR2023008742-appb-img-000283
    은 -OH 기가 보호기로 보호되거나 치환기로 치환된 형태를 포함할 수 있고;
    Rt1 및 Rt2는 각각 C1-C8 알킬이고, Ar1 및 Ar2는 각각 C5-C20 아릴렌 또는 헤테로아릴렌이고;
    Rt3 및 Rt4는 각각 독립적으로 수소, C1-C8 알콕시 또는 하이드록시이고;
    Rt5는 OH, 모노-C1-8 알킬아미노, 디-C1-8 알킬아미노 또는 -NH(CH2CH2O)fRt6이되, Rt6은 H 또는 C1-4 알킬이고;
    f는 1 내지 10의 정수이고, r 및 s는 각각 1 내지 5의 정수인, 자가-희생기를 포함하는 화합물.
  6. 제1항에 있어서,
    -(X)x-L3-은
    Figure PCTKR2023008742-appb-img-000284
    이고,
    R8 및 R9는 각각 독립적으로 H, 할로겐, C1-8 알킬, CN 및 NO2로 구성되는 군에서 선택되고, o는 0 내지 2의 정수인, 자가-희생기를 포함하는 화합물.
  7. 제1항에 있어서,
    상기 PL은 약물, 독소, 형광체, 친화성 리간드, 진단 물질 또는 검출용 탐침으로부터 선택된 활성제인, 자가-희생기를 포함하는 화합물.
  8. 제7항에 있어서,
    상기 약물은 시토카인(cytokine), 면역조절 화합물, 항암제, 항바이러스제, 항박테리아제, 항진균제, 구충제 또는 이들의 조합으로부터 선택되는, 자가-희생기를 포함하는 화합물.
  9. 제1항에 있어서,
    상기 PL은 하기로 구성되는 군으로부터 선택되는, 자가-희생기를 포함하는 화합물:
    Figure PCTKR2023008742-appb-img-000285
    Figure PCTKR2023008742-appb-img-000286
    Figure PCTKR2023008742-appb-img-000287
    Figure PCTKR2023008742-appb-img-000288
    Figure PCTKR2023008742-appb-img-000289
    Figure PCTKR2023008742-appb-img-000290
    .
  10. 제1항에 있어서,
    상기 L2는 -OC(=O)-, -S(=O)2-,
    Figure PCTKR2023008742-appb-img-000291
    Figure PCTKR2023008742-appb-img-000292
    로 구성되는 군에서 선택되고,
    R10 내지 R12는 각각 독립적으로 H, C1-8 알킬, 아미노-C1-8 알킬, 모노- 또는 디-(C1-8 알킬)아미노로 치환된 C1-8 알킬, 또는 -(CH2CH2O)gR13이되,
    R13은 H 또는 C1-4 알킬이고, g는 1 내지 10의 정수인, 자가-희생기를 포함하는 화합물.
  11. 제1항에 있어서,
    상기 결합성 작용기는 클릭 화학(Click chemistry) 반응에 의해 수용체 결합 특성을 갖는 리간드 또는 단백질, 또는 링커 전구체와 결합할 수 있는 작용기인, 자가-희생기를 포함하는 화합물.
  12. 제1항에 있어서,
    상기 결합성 작용기는 할로겐, OH, C1-8 알콕시, 하이드록실아미노, COH, C1-8 알킬카보닐, 카복시, C1-8 알콕시카보닐, 토실, 토실레이트, 아미노, 모노-C1-8 알킬아미노, 디-C1-8 알킬아미노, NHNH2, N3, 할로아세트아마이드, 말레이미딜, 석신이미딜, SH, SO3H, C1-8 알킬설포닐,
    Figure PCTKR2023008742-appb-img-000293
    ,
    Figure PCTKR2023008742-appb-img-000294
    , C1-8 알콕시설포닐, 2-피리딜 디설파이드, PO3H2, OPO3H2, -N≡C, -NCS, C4-10 디엔일, C2-8 알켄일, C2-8 알카인일, C4-10 사이클로알카인일 및 C2-8 알카인일카보닐로 구성되는 군에서 선택되는 작용기를 포함하고, Rf는 H 또는 C1-8 알킬인, 자가-희생기를 포함하는 화합물.
  13. 제1항에 있어서,
    A-L1은 A의 전구체 및 L1의 전구체의 결합에 의해 형성되고, A의 전구체는 하이드록시, 아미노, 아지도, 알카인일, 공액 디엔일, 알켄일, 사이클로옥타인일, 말레이미딜, SO2N3, 알콕시설피닐, 옥시란일, 아지리딘일, 옥소, 하이드라진일, 하이드록시아미노, 머캅토 및 1,3-디카보닐로 구성된 군에서 선택되는 적어도 하나의 작용기를 포함하고, L1의 전구체는 상기 A의 전구체와 화학 반응하여 A-L1 결합을 형성하는 작용기를 포함하는, 자가-희생기를 포함하는 화합물.
  14. 제1항에 있어서,
    L1은 사슬의 중간에 임의로 아마이드, 설폰아마이드, 아미노, 에테르, 카보닐, 트리아졸, 테트라졸, 당(sugar)-유래기, 설포 에스테르 및 덴드리머로 구성되는 군에서 선택되는 2가 또는 다가의 관능기를 포함하는 C1-200 알킬렌인, 자가-희생기를 포함하는 화합물.
  15. 제1항에 있어서,
    L1은 -(CH2)na-; -(CH2CH2O)ma-; -(CH2OCH2)mb-; -(OCH2CH2)mc-; -C(=O)-;
    Figure PCTKR2023008742-appb-img-000295
    로 구성되는 군에서 선택되는 어느 하나 또는 이들의 조합을 포함하고,
    Rd는 H 또는 C1-8 알킬이고, na 및 ma 내지 mc는 각각 독립적으로 0 내지 10의 정수인, 자가-희생기를 포함하는 화합물.
  16. 제1항에 있어서,
    A-L1-은 N3-(CH2)n1-; N3-(CH2CH2O)m1-(CH2)n2-; HO-(CH2CH2O)m1-(CH2)n2-; H2N-(CH2CH2O)m1-(CH2)n2-; H2N-O-(CH2CH2O)m1-(CH2)n2-; N3-(CH2CH2O)m2-(CH2)n3-NRd1CO-(CH2)n4-; Ra1NH-(CH2)n5-; Rb1OC(=O)-(CH2)n6-; Rc1C≡C-(CH2OCH2)m3-CONRd2-(CH2)n7-;
    Figure PCTKR2023008742-appb-img-000296
    Figure PCTKR2023008742-appb-img-000297
    Figure PCTKR2023008742-appb-img-000298
    Figure PCTKR2023008742-appb-img-000299
    Figure PCTKR2023008742-appb-img-000300
    로 구성되는 군에서 선택되고,
    Ra1, Rb1, Rc1, Rc2 및 Rd1 내지 Rd5는 각각 독립적으로 H 또는 C1-8 알킬이고,
    n1 내지 n15 및 m1 내지 m11은 각각 독립적으로 0 내지 10의 정수인, 자가-희생기를 포함하는 화합물.
  17. 제1항에 있어서,
    화학식 1로 표시되는 화합물은 하기 화학식으로 표시되는 화합물들로 구성되는 군에서 선택되는, 자가-희생기를 포함하는 화합물:
    Figure PCTKR2023008742-appb-img-000301
    Figure PCTKR2023008742-appb-img-000302
    Figure PCTKR2023008742-appb-img-000303
    상기 화학식에서 A, L1, k, V, R1, R2, R3, R11, R12 및 PL은 제1항 내지 제16항 중 어느 한 항에 기재된 바와 같다.
  18. 제1항에 있어서,
    화학식 1로 표시되는 화합물은 하기 화학식 1-1로 표시되는 화합물인, 자가-희생기를 포함하는 화합물:
    [화학식 1-1]
    Figure PCTKR2023008742-appb-img-000304
    화학식 1-1에서,
    A는 제1항에 기재된 A와 동일한 의미를 갖고;
    U1 및 U2는 각각 제1항에 기재된 U와 동일한 의미를 가지되, U1 및 U2는 서로 동일하거나 상이하고;
    j는 1 내지 10이고;
    L11 및 L12는 각각 제1항에 기재된 L1과 동일한 의미를 가지되, L11 및 L12는 서로 동일하거나 상이하고;
    L1a 및 L1b는 각각 독립적으로 직접 결합;
    Figure PCTKR2023008742-appb-img-000305
    Figure PCTKR2023008742-appb-img-000306
    로부터 선택되고, Re는 H 또는 C1-8 알킬이고;
    q1, q2 및 q3는 각각 독립적으로 0 내지 10의 정수이고, q4는 1 내지 10의 정수이고;
    단, L1a
    Figure PCTKR2023008742-appb-img-000307
    또는
    Figure PCTKR2023008742-appb-img-000308
    인 경우 q2는 0이 아니고, L1b
    Figure PCTKR2023008742-appb-img-000309
    또는
    Figure PCTKR2023008742-appb-img-000310
    인 경우 q3는 0이 아니다.
  19. 제18항에 있어서,
    상기 화학식 1-1의
    Figure PCTKR2023008742-appb-img-000311
    은 하기 구조로부터 선택되는 것인, 화합물:
    Figure PCTKR2023008742-appb-img-000312
    상기 식에서 q2 및 q3의 정의는 제18항에 기재된 바와 같다.
  20. 제18항에 있어서,
    L11 및 L12는 각각 독립적으로 -(CH2)n1-; -(CH2CH2O)m1-(CH2)n2-; -(CH2CH2O)m2-(CH2)n3-NRd1CO-(CH2)n4-;-(CH2CH2O)m10-(CH2)n15-CONRd5-(CH2)n14- 및
    Figure PCTKR2023008742-appb-img-000313
    로부터 선택되고;
    Rd1 및 Rd5는 각각 독립적으로 H 또는 C1-8 알킬이고,
    n1, n2, n3, n4, n8, n14 및 n15, 및 m1, m2, m8 및 m10은 각각 독립적으로 1 내지 8의 정수인, 화합물.
  21. 제18항에 있어서,
    상기 화학식 1-1로 표시되는 화합물은 하기 화학식으로 표시되는 화합물들로 구성되는 군에서 선택되는, 화합물:
    Figure PCTKR2023008742-appb-img-000314
    Figure PCTKR2023008742-appb-img-000315
    상기 화학식에서, q1 내지 q4, U1 및 U2는 제18항에 기재된 바와 같고,
    Rd1, Rd5 및 Re는 각각 독립적으로 H 또는 C1-8 알킬이고,
    n1, n3, n4, n8, n14 및 n15, m2, m8 및 m10은 각각 독립적으로 1 내지 8의 정수이다.
  22. 하기 화학식 2로 표시되는 리간드-약물 접합체 또는 이의 약학적으로 허용가능한 염:
    [화학식 2]
    Figure PCTKR2023008742-appb-img-000316
    상기 화학식 2에서,
    E는 수용체 결합 특성을 갖는 리간드 또는 단백질이고;
    A'은 A의 결합성 작용기로부터 유래된 2가 연결기이고;
    n은 1 내지 10의 실수이고;
    A, U, L1, k 및 j의 정의는 제1항에 기재된 바와 같다.
  23. 제22항에 있어서,
    상기 리간드는 펩타이드, 종양세포 특이적 펩타이드(tumor cell-specific peptides), 종양세포 특이적 앱타머(tumor cell-specific aptamers), 종양세포 특이적 탄수화물(tumor cell-specific carbohydrates), 종양세포 특이적 단일클론 항체 또는 다종클론 항체(tumor cell-specific monoclonal or polyclonal antibodies) 및 항체 단편으로 이루어진 군으로부터 선택되고;
    상기 단백질은 C1-20 하이드로카빌, 올리고펩타이드, 폴리펩타이드, 항원성 폴리펩타이드의 단편 및 인공항체(Repebody)로부터 구성된 군으로부터 선택되는, 리간드-약물 접합체.
  24. 제23항에 있어서,
    상기 항체는 원형 다클론 항체(intact polyclonal antibody), 원형 단일클론 항체(intact monoclonal antibody), 항체 단편(antibody fragment), 단쇄 Fv (scFv) 돌연변이(single chain Fv(scFv) mutant), 다중특이 항체(multispecific antibody), 이중특이 항체(bispecific antibody), 키메라 항체(chimeric antibody), 인간화 항체(humanized antibody), 인간 항체(human antibody), 항체의 항원 결정 부분을 포함하는 융합 단백질(fusion protein comprising an antigen determination portion of an antibody), 및 항원 인식 부위를 포함하는 다른 변형된 면역글로불린 분자(modified immunoglobulin molecule comprising an antigen recognition site)로 이루어진 군으로부터 선택되는, 리간드-약물 접합체.
  25. 제23항에 있어서,
    상기 항체는 뮤로모나브-CD3(Muromonab-CD3), 아브식시마브(Abciximab), 리툭시마브(Rituximab), 다클리주마브(Daclizumab), 팔리비주마브(Palivizumab), 인플릭시마브(Infliximab), 트라스투주마브(Trastuzumab, herceptin), 에타너셉트(Etanercept), 바실릭시마브(Basiliximab), 겜투주마브(Gemtuzumab), 알렘투주마브(Alemtuzumab), 이브리투모마브(Ibritumomab), 아달리무마브(Adalimumab), 알레파셉트(Alefacept), 오말리주마브(Omalizumab), 에팔리주마브(Efalizumab), 토시투모모브-I131(Tositumomob-I131), 세툭시마브(Cetuximab), 베박시주마브(Bevacizumab), 나탈리주마브(Natalizumab), 라니비주마브(Ranibizumab), 파니투무마브(Panitumumab), 에콜리주마브(Eculizumab), 리로나셉트(Rilonacept), 서톨리주마브 페골(Certolizumab pegol), 로미플로스팀(Romiplostim), AMG-531(Romiplostim), CNTO-148(Golimumab), CNTO-1275(Ustekinumab), ABT874(Briakinumab), LEA-29Y(Belatacept), 벨리무마브(Belimumab), TACI-Ig(Transmembrane activator and calcium modulator and cyclophilin ligand interactor-immunoglobulin), 2세대 항-CD20(Second generation anti-CD20), ACZ-885(Canakinumab), 토실리주마브(Tocilizumab), 아틀리주마브(Atlizumab), 메폴리주마브(Mepolizumab), 퍼투주마브(Pertuzumab), 휴막스 CD20(Humax CD20; Ofatumumab), 트레멜리무마브(Tremelimumab,CP-675 206), 티실리무마브(Ticilimumab), MDX-010(Ipilimumab), IDEC-114(Galiximab), 이노투주마브(Inotuzumab), 휴막스 EGFR(HuMax EGFR; Zalutumumab), 알리버셉트(Aflibercept; VEGF Trap-Eye), 휴막스-CD4(HuMax-CD4; Zanolimumab), Ala-Ala(hOKT3gamma1), 오테릭시주맙(Otelixizumab; ChAglyCD3; TRX4), 카투막소마브(Catumaxomab), MT-201(Adecatumumab), 프레고보마브(Pregovomab), CH-14.18(Dinutuximab), WXG250(Girentuximab), AMG-162(Denosumab), AAB-001(Bapineuzumab), 모타비주마브(Motavizumab), MEDI524(Motavizumab), 에푸마구마브(Efumgumab), 아우로그라브®(Aurograb®), 락시바쿠마브(Raxibacumab), 3세대 항-CD20(Third generation anti-CD20), LY2469298(Ocaratuzumab), 및 벨투주마브(Veltuzumab)로 이루어진 군으로부터 선택되는, 리간드-약물 접합체.
  26. 제22항에 있어서,
    E는 항체이고, 화학식 2의 E-A' 결합 구조는
    Figure PCTKR2023008742-appb-img-000317
    Figure PCTKR2023008742-appb-img-000318
    Figure PCTKR2023008742-appb-img-000319
    Figure PCTKR2023008742-appb-img-000320
    를 포함하되, *는 항체의 나머지 잔기인, 리간드-약물 접합체.
  27. 제22항에 있어서,
    화학식 2로 표시되는 접합체가 하기 접합체들로부터 선택되는 것인, 리간드-약물 접합체:
    Figure PCTKR2023008742-appb-img-000321
    상기 식에서, mAb는 항체의 잔기를 의미하고;
    m5, m6, m9, m10, n9, n10, n13, n14 및 n15은 각각 독립적으로 1 내지 10의 정수이고;
    Rd3 및 Rd5은 각각 독립적으로 H 또는 C1-8 알킬이고;
    Z1은 NR3, O, S 및 Se로부터 선택된 헤테로원자이고, R3는 H 또는 C1-8 하이드로카빌이고;
    PL은 활성제의 잔기이고;
    n은 1 내지 10의 실수이다.
  28. 제27항에 있어서,
    상기 화학식 2로 표시되는 리간드-약물 접합체는 하기 화학식으로 표시되는 접합체들로 구성되는 군에서 선택되는, 리간드-약물 접합체:
    Figure PCTKR2023008742-appb-img-000322
    Figure PCTKR2023008742-appb-img-000323
    Figure PCTKR2023008742-appb-img-000324
    Figure PCTKR2023008742-appb-img-000325
    Figure PCTKR2023008742-appb-img-000326
    Figure PCTKR2023008742-appb-img-000327
    Figure PCTKR2023008742-appb-img-000328
    상기 식에서, mAb는 항체의 잔기이고, n은 1 내지 10의 실수이다.
  29. 제22항에 있어서,
    화학식 2로 표시되는 화합물은 하기 화학식 2-1로 표시되는 화합물인, 리간드-약물 접합체:
    [화학식 2-1]
    Figure PCTKR2023008742-appb-img-000329
    화학식 2-1에서,
    E는 수용체 결합 특성을 갖는 리간드 또는 단백질이고;
    A'은 제1항에 기재된 A의 결합성 작용기로부터 유래된 2가 연결기이고;
    U1 및 U2는 각각 제1항에 기재된 U와 동일한 의미를 가지되, U1 및 U2는 서로 동일하거나 상이하고;
    j는 1 내지 10이고;
    L11 및 L12는 각각 제1항에 기재된 L1과 동일한 의미를 가지되, L11 및 L12는 서로 동일하거나 상이하고;
    L1a 및 L1b는 각각 독립적으로 직접 결합;
    Figure PCTKR2023008742-appb-img-000330
    Figure PCTKR2023008742-appb-img-000331
    로부터 선택되고, Re는 H 또는 C1-8 알킬이고;
    q1, q2 및 q3는 각각 독립적으로 0 내지 10의 정수이고, q4는 1 내지 10의 정수이고;
    단, L1a
    Figure PCTKR2023008742-appb-img-000332
    또는
    Figure PCTKR2023008742-appb-img-000333
    인 경우 q2는 0이 아니고, L1b
    Figure PCTKR2023008742-appb-img-000334
    또는
    Figure PCTKR2023008742-appb-img-000335
    인 경우 q3는 0이 아니고;
    n은 1 내지 10의 실수이다.
  30. 제29항에 있어서,
    화학식 2-1로 표시되는 접합체는 하기 화학식으로 표시되는 접합체들로 구성되는 군에서 선택되는, 리간드-약물 접합체:
    Figure PCTKR2023008742-appb-img-000336
    Figure PCTKR2023008742-appb-img-000337
    상기 화학식에서, mAb는 항체의 잔기이고;
    q1 내지 q4, n, U1 및 U2는 제29항에 기재된 바와 같고,
    Rd1, Rd5 및 Re는 각각 독립적으로 H 또는 C1-8 알킬이고,
    n1, n3, n4, n8, n14 및 n15, m2, m8 및 m10은 각각 독립적으로 1 내지 8의 정수이다.
  31. 제29항에 있어서,
    화학식 2-1로 표시되는 접합체는 하기 화학식으로 표시되는 접합체들로 구성되는 군에서 선택되는, 리간드-약물 접합체:
    Figure PCTKR2023008742-appb-img-000338
    Figure PCTKR2023008742-appb-img-000339
    Figure PCTKR2023008742-appb-img-000340
    Figure PCTKR2023008742-appb-img-000341
    Figure PCTKR2023008742-appb-img-000342
    상기 화학식에서,mAb는 항체의 잔기이고; n은 1 내지 10의 실수이다.
  32. 제22항 내지 제31항 중 어느 한 항에 따른 리간드-약물 접합체 및 약학적으로 허용가능한 담체 또는 부형제를 포함하는 약학적 조성물.
  33. 제32항에 있어서,
    상기 약학적 조성물이 증식성 질환, 자가면역질환 또는 감염성 질환의 치료 또는 예방을 위한 것인 약학 조성물.
  34. 제22항 내지 제31항 중 어느 한 항에 따른 리간드-약물 접합체를 포함하는 이미징 조성물.
  35. 제22항 내지 제31항 중 어느 한 항에 따른 리간드-약물 접합체를 포함하는 검출용 조성물.
PCT/KR2023/008742 2022-06-27 2023-06-23 자가-희생기를 포함하는 화합물 및 이를 포함하는 리간드-약물 접합체 WO2024005460A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220078448 2022-06-27
KR10-2022-0078448 2022-06-27

Publications (1)

Publication Number Publication Date
WO2024005460A1 true WO2024005460A1 (ko) 2024-01-04

Family

ID=89380898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008742 WO2024005460A1 (ko) 2022-06-27 2023-06-23 자가-희생기를 포함하는 화합물 및 이를 포함하는 리간드-약물 접합체

Country Status (2)

Country Link
KR (1) KR20240002203A (ko)
WO (1) WO2024005460A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140031535A1 (en) * 2005-07-18 2014-01-30 Seattle Genetics, Inc. Beta-glucuronide-linker drug conjugates
WO2017197056A1 (en) * 2016-05-10 2017-11-16 C4 Therapeutics, Inc. Bromodomain targeting degronimers for target protein degradation
KR20180077087A (ko) * 2016-12-28 2018-07-06 주식회사 인투셀 베타-갈락토사이드가 도입된 자가-희생 기를 포함하는 화합물
WO2021016537A1 (en) * 2019-07-25 2021-01-28 North Carolina State University Cross-linking compounds and methods of use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140031535A1 (en) * 2005-07-18 2014-01-30 Seattle Genetics, Inc. Beta-glucuronide-linker drug conjugates
WO2017197056A1 (en) * 2016-05-10 2017-11-16 C4 Therapeutics, Inc. Bromodomain targeting degronimers for target protein degradation
KR20180077087A (ko) * 2016-12-28 2018-07-06 주식회사 인투셀 베타-갈락토사이드가 도입된 자가-희생 기를 포함하는 화합물
WO2021016537A1 (en) * 2019-07-25 2021-01-28 North Carolina State University Cross-linking compounds and methods of use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SATO DAISUKE, WU ZHIYUAN, FUJITA HIKARU, LINDSEY JONATHAN: "Design, Synthesis, and Utility of Defined Molecular Scaffolds", ORGANICS, vol. 2, no. 3, 11 July 2021 (2021-07-11), pages 161 - 273, XP093122158, ISSN: 2673-401X, DOI: 10.3390/org2030013 *

Also Published As

Publication number Publication date
KR20240002203A (ko) 2024-01-04

Similar Documents

Publication Publication Date Title
WO2015182984A1 (ko) 자가-희생 기를 포함하는 화합물
TWI801332B (zh) 包含自消耗基團之結合物及與其相關之方法
JP2022068172A (ja) ペプチド基を含む複合体及びそれに関連する方法
CN107847605A (zh) 包含分支接头的抗体‑药物缀合物及其相关方法
CN106255513B (zh) 用于药物偶联物的含磺酰胺连接系统
CN104619351B (zh) 抗cd70抗体药物结合物
US5475092A (en) Cell binding agent conjugates of analogues and derivatives of CC-1065
AU2018271751B2 (en) Anti-human interleukin-2 antibodies and uses thereof
WO2010126178A1 (ko) 신규한 클로린 e6-엽산 결합 화합물, 이의 제조방법 및 이를 함유하는 암 치료용 약학적 조성물
CN111278845A (zh) 包含可裂解接头的化合物及其用途
KR102085798B1 (ko) 베타-갈락토사이드가 도입된 자가-희생 기를 포함하는 화합물
WO2018174544A2 (ko) Muc1에 특이적으로 결합하는 항체 및 그의 용도
WO2018124758A2 (ko) 베타-갈락토사이드가 도입된 자가-희생 기를 포함하는 화합물
CN112739341A (zh) 抗cd2抗体药物缀合物(adc)在同种异体细胞疗法中的用途
CA3168882A1 (en) Camptothecin derivatives and conjugates thereof
WO2020222573A1 (ko) 트리스 구조를 가지는 링커를 포함하는 리간드-약물 접합체
WO2024005460A1 (ko) 자가-희생기를 포함하는 화합물 및 이를 포함하는 리간드-약물 접합체
CN112166115A (zh) 新型苯二氮杂*衍生物及其用途
WO2024005461A1 (ko) 신규한 링커 화합물 및 이의 리간드-약물 접합체
WO2022211508A1 (ko) 인간 cldn18.2에 대한 항체를 포함하는 항체 약물 접합체 및 이의 용도
KR20190004662A (ko) 절단성 링커를 포함하는 화합물 및 이들의 용도
WO2010126179A1 (ko) 클로린 e6-엽산 결합 화합물 및 키토산을 함유하는 암 치료용 약학적 조성물
WO2022245186A1 (ko) Ror1 및 b7-h3에 결합하는 항체-약물 접합체 및 그 용도
CN107660208B (zh) 包含cti药效团的双功能细胞毒性剂
WO2024049220A1 (ko) 캄토테신계 약물이, 항원 결합 친화도가 낮은 항체에 링커를 통해 연결된 항체-약물 접합체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831820

Country of ref document: EP

Kind code of ref document: A1