WO2024005028A1 - モータ、送風装置 - Google Patents

モータ、送風装置 Download PDF

Info

Publication number
WO2024005028A1
WO2024005028A1 PCT/JP2023/023845 JP2023023845W WO2024005028A1 WO 2024005028 A1 WO2024005028 A1 WO 2024005028A1 JP 2023023845 W JP2023023845 W JP 2023023845W WO 2024005028 A1 WO2024005028 A1 WO 2024005028A1
Authority
WO
WIPO (PCT)
Prior art keywords
yoke
magnet
axial direction
contact portion
axial
Prior art date
Application number
PCT/JP2023/023845
Other languages
English (en)
French (fr)
Inventor
裕哉 堀井
Original Assignee
ニデック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニデック株式会社 filed Critical ニデック株式会社
Publication of WO2024005028A1 publication Critical patent/WO2024005028A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/167Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings

Definitions

  • the present invention relates to a motor and a blower device.
  • a brushless motor consists of a bearing boss with a bearing fixed to its inner periphery, a shaft rotatably held by the bearing, a thrust receiving material that slides on the end surface of the shaft, and a thrust receiving material. It has a permanent magnet that pinches and attracts the end surface of the shaft in the thrust direction, and a bottom support that supports the permanent magnet.
  • the bearing boss, the bearing, the shaft, and the bottom support are made of magnetic material, and the permanent magnet, the bottom support, the bearing boss, the bearing, and the shaft form a closed magnetic path sandwiching the thrust support in this order.
  • a space is provided at the outer periphery of the permanent magnet.
  • An object of the present invention is to suppress vibration in the axial direction of the yoke of the magnet that magnetically attracts the shaft.
  • An exemplary motor of the present invention includes a rotor that rotates about an axially extending central axis.
  • the motor includes a shaft, a bearing, a housing, a magnet, and a yoke.
  • the shaft is made of a magnetic material and extends along the central axis.
  • the bearing rotatably supports the shaft.
  • the housing has a bearing holder that holds the bearing.
  • the magnet axially faces one axial end of the shaft.
  • the yoke is made of a magnetic material, and at least a portion of the yoke is disposed on one side of the magnet in the axial direction.
  • the housing has a first contact part and a second contact part. The first contact portion is disposed radially outward from the magnet and contacts at least a portion of the other axial end surface of the yoke.
  • the second contact portion contacts at least a portion of one axial end surface of the yoke.
  • an exemplary air blowing device of the present invention includes the above-mentioned motor and an impeller.
  • the impeller is fixed to the rotor.
  • the exemplary motor and blower device of the present invention it is possible to suppress the yoke of the magnet that magnetically attracts the shaft from vibrating in the axial direction.
  • FIG. 1 is a sectional view showing a configuration example of a blower device according to this embodiment.
  • FIG. 2A is a cross-sectional view showing an example of the configuration of the magnetic attraction section.
  • FIG. 2B is a sectional view showing another example of the configuration of the magnetic attraction section.
  • FIG. 3A is a perspective view showing an example of the configuration of the yoke plate section.
  • FIG. 3B is a perspective view showing another example of the configuration of the yoke plate section.
  • FIG. 4 is a graph showing an example of changes in suction force with respect to the diameter of the yoke plate portion.
  • a direction parallel to the central axis CA is referred to as an "axial direction.”
  • the direction from the rotor lid part 12 to the base part 31, which will be described later, is called “one axial direction D1”
  • the direction from the base part 31 to the rotor lid part 12 is called “the other axial direction D2”.
  • a direction perpendicular to the central axis CA is referred to as a “radial direction”
  • a direction of rotation around the central axis CA is referred to as a “circumferential direction”.
  • the direction toward the central axis CA is called “radially inward Di”
  • the direction away from the central axis CA is called “radially outward Do.”
  • annular refers to a shape that is continuous without any break over the entire circumferential area centered on the central axis CA, as well as a shape that is continuous throughout the entire circumferential area centered on the central axis CA. Includes shapes with one or more cuts in the section.
  • annular shape also includes a shape that draws a closed curve on a curved surface that intersects with the central axis CA, with the central axis CA as the center.
  • parallel refers not only to the state in which they do not intersect at all no matter how far they extend, but also to the state in which they are substantially parallel. include.
  • perpendicular and perpendicular each include not only a state in which the two intersect with each other at 90 degrees, but also a state in which they are substantially perpendicular and a state in which they are substantially orthogonal. That is, “parallel”, “perpendicular”, and “perpendicular” each include a state in which there is an angular shift in the positional relationship between the two to the extent that it does not depart from the gist of the present invention.
  • FIG. 1 is a sectional view showing a configuration example of a blower device 100 according to the present embodiment.
  • the blower device 100 is an axial fan, which sucks air from an intake port 1031 and sends out airflow F flowing through a wind tunnel 1032 from an exhaust port 1033 in one direction D1 in the axial direction.
  • this example does not exclude configurations in which the blower device 100 is other than an axial fan.
  • the blower 100 may be a centrifugal fan.
  • the blower device 100 includes a motor 101, an impeller 102, an outer cylinder portion 103, and stationary blades 104.
  • the motor 101 rotationally drives the impeller 102.
  • the impeller 102 is fixed to the rotor 1 of the motor 101, which will be described later, and is rotatable together with the rotor 1.
  • the impeller 102 has a hub 1021 and rotor blades 1022.
  • the hub 1021 is in the shape of a covered cylinder that extends in the axial direction, and is disposed at the other axial end of the rotor 1 and the shaft 11 .
  • the cylindrical portion of the hub 1021 is arranged on the radially outer surface of the rotor cylindrical portion 13, which will be described later.
  • the rotor blade 1022 extends radially outward Do from the radially outer end of the cylindrical portion of the hub 1021.
  • the rotor blades 1022 are rotatable in the circumferential direction around a central axis CA extending in the axial direction.
  • the outer cylinder part 103 has a cylindrical shape that extends in the axial direction, and surrounds the motor 101 and the impeller 102.
  • a wind tunnel 1032 through which airflow F passes is formed between the outer cylinder portion 103 and the motor 101 and impeller 102.
  • the other end in the axial direction of the outer cylinder portion 103 is an opening and functions as an intake port 1031.
  • air outside the blower 100 flows into the wind tunnel 1032 from the intake port 1031.
  • One axial end of the outer cylindrical portion 103 is an opening, and forms an exhaust port 1033 between it and the one axial end of the motor 101 .
  • the airflow F passing through the wind tunnel 1032 is sent out from the exhaust port 1033 in one direction D1 in the axial direction.
  • the stationary blades 104 are arranged on one side D1 of the rotor blade 1022 of the impeller 102 in the axial direction, and are arranged in plural in the circumferential direction. Stator blades 104 connect motor 101 and outer cylinder portion 103 and extend in the axial direction. The stationary blades 104 rectify the airflow F flowing through the wind tunnel 1032.
  • the motor 101 includes a rotor 1 that is rotatable around a central axis CA that extends in the axial direction.
  • the motor 101 further includes a stator 2 , a housing 3 , a bearing 4 , a substrate 5 , and a magnetic attraction section 6 .
  • the rotor 1 includes a shaft 11 , a rotor lid portion 12 , a rotor cylinder portion 13 , a rotor yoke 14 , and a rotor magnet 15 .
  • the shaft 11 is made of a magnetic material and extends along the central axis CA.
  • Motor 101 has shaft 11 .
  • the shaft 11 is rotatable around the central axis CA.
  • the rotor lid portion 12 extends radially outward Do from the shaft 11.
  • the rotor cylinder portion 13 extends from the radially outer end of the rotor lid portion 12 in one axial direction D ⁇ b>1 and surrounds the stator 2 .
  • the rotor yoke 14 is arranged on the radially inner surface of the rotor cylinder portion 13, and in this embodiment has a cylindrical shape extending in the axial direction.
  • the present invention is not limited to this example, and the rotor yoke 14 may be composed of a plurality of yoke pieces.
  • the plurality of yoke pieces each have a plate shape extending in the axial direction, and are arranged in plurality in the circumferential direction.
  • the rotor magnet 15 is arranged on the radially inner surface of the rotor yoke 14. In the rotor magnet 15, mutually different magnetic poles (N pole and S pole) are arranged alternately in the circumferential direction.
  • the rotor magnet 15 may be annular surrounding the central axis CA, or may be composed of a plurality of magnet pieces arranged in the circumferential direction.
  • the stator 2 is arranged radially inward Di from the rotor magnet 15.
  • the stator 2 includes a stator core 21, an insulator 22, and a coil portion 23.
  • the stator core 21 is made of a magnetic material, and in this embodiment is a laminate of a plurality of plate-shaped electromagnetic steel sheets laminated in the axial direction. Stator core 21 faces rotor magnet 15 in the radial direction.
  • the insulator 22 is made of an electrically insulating material such as resin, and is arranged on the surface of the stator core 21.
  • the coil portions 23 are arranged in the stator core 21, and are arranged in plural in the circumferential direction.
  • the coil portion 23 is a member in which a conducting wire (not shown) is disposed on the stator core 21 via the insulator 22.
  • the conducting wire is, for example, an enamel-coated copper wire, a metal wire covered with an insulating material, or the like.
  • the housing 3 includes a base portion 31 , a peripheral wall portion 32 , a bearing holder 33 , a first contact portion 34 , and a second contact portion 35 .
  • the base part 31, the peripheral wall part 32, the bearing holder 33, the first contact part 34, and the second contact part 35 are made of resin, and the magnetic attraction part is formed by casting using a mold, for example. It is integrally molded together with the yoke 63 of 6, which will be described later.
  • this example does not exclude a configuration in which at least one of the base part 31, the peripheral wall part 32, the bearing holder 33, the first contact part 34, and the second contact part 35 is a separate member, and at least one of these
  • the material is made of a material other than resin (for example, a metal material such as aluminum or an alloy thereof).
  • this example does not exclude a configuration in which the housing 3 is formed by a method other than casting using a metal mold.
  • the base portion 31 has a plate shape that extends radially outward Do from the central axis CA, and is disposed on one side D1 in the axial direction from the stator 2 and the substrate 5.
  • the peripheral wall portion 32 protrudes from the radially outer end portion of the base portion 31 toward the other axial direction D2 and extends in the circumferential direction.
  • the peripheral wall portion 32 has an annular shape surrounding the central axis and holds the substrate 5 .
  • the bearing holder 33 has a cylindrical shape extending in the axial direction, and protrudes from the radially inner Di side of the base portion 31 toward the other axial direction D2.
  • the bearing holder 33 holds the stator 2. Specifically, the stator core 21 is fixed to the bearing holder 33. Further, the shaft 11 is inserted through the bearing holder 33.
  • the bearing holder 33 holds the bearing 4.
  • the first contact portion 34 and the second contact portion 35 will be explained later.
  • the housing 3 further includes a base portion 331.
  • the base portion 331 is disposed at a radially outer end of one axial end of the bearing holder 33 and extends in the circumferential direction.
  • the platform portion 331 expands outward in the radial direction Do toward one axial direction D1, and is connected to the base portion 31.
  • this example does not exclude a configuration in which the housing 3 does not have the base portion 331.
  • the bearing 4 has a cylindrical shape surrounding the shaft 11 and extends in the axial direction.
  • the bearing 4 is a sliding bearing and is arranged on the radially inner surface of the bearing holder 33.
  • the bearing 4 rotatably supports the shaft 11.
  • the material of the bearing 4 is a non-magnetic material. Since the material of the bearing 4 is non-magnetic, the attraction force Ps of the magnet 61 to the shaft 11 can be improved compared to the case where the bearing 4 is made of a magnetic material. Note that the attractive force Ps is the magnitude of the force with which the magnetic attraction part 6 (particularly the magnet 61 described later) attracts the magnetic shaft 11 in the axial direction D1 by its magnetic force. When the impeller 102 is driven, the shaft 11 tends to separate from the magnet 61 in the axial direction.
  • this effect (the effect that the attractive force Ps of the magnet 61 is improved when the bearing 4 is made of non-magnetic material compared to when the bearing 4 is made of magnetic material) is It works more effectively. Therefore, separation of the shaft 11 from the magnet 61 can be more effectively suppressed or prevented.
  • Substrate 5 The substrate 5 is disposed on one axial side D1 of the stator 2, extends from the radially inner surface of the peripheral wall portion 32 in the radially inward direction Di, and spreads in the circumferential direction (see FIG. 1).
  • the board 5 mounts various electronic components such as a stator drive circuit.
  • an external connection line (not shown) is electrically connected to the substrate 5.
  • the external connection line is a connection line drawn out to the outside of the air blower 100, and electrically connects the board 5 and an external device (for example, an external power source) of the air blower 100.
  • FIG. 2A is a cross-sectional view showing a configuration example of the magnetic attraction section 6.
  • FIG. 2B is a sectional view showing another example of the configuration of the magnetic attraction section 6. As shown in FIG. 2A and 2B correspond to the cross-sectional structure of portion II surrounded by the broken line in FIG. 1.
  • FIG. 2A and 2B correspond to the cross-sectional structure of portion II surrounded by the broken line in FIG. 1.
  • the magnetic attraction section 6 includes a magnet 61, a thrust plate 62, and a yoke 63.
  • the motor 101 includes a magnet 61, a thrust plate 62, and a yoke 63.
  • the magnetic attraction section 6 attracts the shaft 11 in one axial direction D1 by the magnetic force of the magnet 61, and suppresses movement of the shaft 11 in the other axial direction D2. Further, even if the shaft is separated from the magnet 61 in the other axial direction D2, the shaft 11 can be pulled back in the axial direction D1 by the magnetic force.
  • the magnet 61 is a columnar permanent magnet that extends in the axial direction, and is disposed on one side D1 in the axial direction from the shaft 11 and the bearing 4.
  • the magnet 61 is disposed on the other axial end surface of the yoke 63, and particularly on the other axial end surface of a yoke plate portion 631, which will be described later.
  • the magnet 61 axially faces one axial end of the shaft 11 .
  • the thrust plate 62 has a plate shape that expands in the radial direction from the central axis CA, and is arranged on the other axial side D2 of the magnet 61. Specifically, the thrust plate 62 is arranged between the magnet 61, the bearing 4, and the shaft 11.
  • the thrust plate 62 is made of a material with high sliding properties, and contacts one axial end of the bearing 4 and one axial end of the shaft 11 .
  • this example does not exclude a configuration in which the thrust plate 62 does not come into contact with one axial end of the bearing 4.
  • the yoke 63 is made of a magnetic material. At least a portion of the yoke 63 is disposed on one axial direction D1 of the magnet 61.
  • the yoke 63 has a plate shape that is wide in the radial direction. In other words, the yoke 63 is composed of only the yoke plate portion 631. In this way, the yoke 63 can be formed into a simple plate shape.
  • the yoke plate portion 631 is disposed on one side D1 in the axial direction from the base portion 331 (see FIG. 1). In this way, vibration of the yoke 63 can be further suppressed, and the yoke 63 can be held more reliably.
  • this example does not exclude a configuration in which the yoke plate portion 631 is not disposed on one side D1 in the axial direction than the base portion 331.
  • the shape of the yoke 63 is not limited to the example shown in FIG. 2A.
  • the yoke 63 may have a cylindrical shape with a bottom.
  • the yoke 63 includes a yoke plate portion 631, a yoke cylinder portion 632, and a yoke collar portion 633.
  • the yoke plate portion 631 is disposed on one axial side D1 of the magnet 61 and extends in a direction perpendicular to the central axis CA.
  • the center of the yoke plate portion 631 when viewed from the axial direction coincides with the central axis CA.
  • the yoke cylinder part 632 has a cylindrical shape extending from the radially outer end of the yoke plate part 631 to the other axial direction D2, and surrounds the magnet 61 with an interval in the radial direction.
  • the yoke collar portion 633 spreads radially outward Do from the other axial end of the yoke cylinder portion 632 and extends in the circumferential direction.
  • the yoke 63 in FIG. 2B can be formed, for example, by press molding.
  • the explanation will be continued assuming that the yoke 63 is plate-shaped as shown in FIG. 2A.
  • the housing 3 further includes the first contact part 34 and the second contact part 35.
  • the first contact section 34 and the second contact section 35 are a part of the housing 3, and more specifically, a part of the base part 31, for example.
  • the first contact portion 34 refers to a portion disposed on the other axial direction D2 than the yoke 63 (particularly the yoke plate portion 631).
  • the first contact portion 34 is a portion disposed radially inward Di from one axial end portion of the inner peripheral surface of the bearing holder 33 in FIG.
  • the second contact portion 35 refers to a portion disposed on one side D1 in the axial direction than the yoke 63 (particularly the yoke plate portion 631), and is radially inner than the radially outer end portion of the yoke 63 (particularly the yoke plate portion 631). This is the part placed in the direction Di.
  • the first contact portion 34 is disposed radially outward Do from the magnet 61 and contacts at least a portion of the other end surface of the yoke 63 in the axial direction.
  • the first contact portion 34 contacts the other end surface of the yoke 63 in the axial direction at a radially outer side Do than the magnet 61 .
  • the first contact portion 34 radially contacts at least a portion of the radially outer surface of the magnet 61, and in this embodiment, contacts the entire radially outer surface of the magnet 61. Thereby, movement of the magnet 61 in the radial direction can be suppressed or prevented.
  • this example does not exclude a configuration in which the radially outer surface of the magnet 61 does not contact the first contact portion 34.
  • the first contact portion 34 overlaps with the base portion 331 when viewed from the radial direction.
  • at least a portion of the first contact portion 34 is arranged at the same axial position as the base portion 331.
  • the radial thickness of the portion of the housing 3 on the radially outer side Do can be made thicker than the first contact portion 34 . Therefore, the first contact portion 34 can more reliably hold the yoke 63 and further suppress its vibration.
  • the first contact portion 34 contacts the thrust plate 62 in the axial direction.
  • the thrust plate 62 can be stably arranged.
  • this example does not exclude a configuration in which the first contact portion 34 does not contact the thrust plate 62.
  • the maximum axial thickness of the first contact portion 34 may substantially match the axial thickness of the magnet 61. Further, the thrust plate 62 may contact both the other axial end of the first contact portion 34 and the other axial end of the magnet 61. In this way, the thrust plate 62 can be stably arranged.
  • the maximum axial thickness of the first contact portion 34 may be greater than or equal to the axial thickness of the magnet 61 without being limited to the above-mentioned example. Further, the first contact portion 34 may be located radially outward from the thrust plate 62, or may contact the radially outer end of the thrust plate 62. This allows the first contact portion 34 to suppress or prevent movement of the thrust plate 62 in the radial direction. Therefore, the thrust plate 62 can be stably arranged.
  • the second contact portion 35 contacts at least a portion of one end surface of the yoke 63 in the axial direction.
  • the second contact portion 35 covers one end surface of the yoke 63 in the axial direction.
  • the yoke 63 can be held between the first contact portion 34 and the second contact portion 35 in the axial direction.
  • the yoke 63 is affected by the attraction force Ps together with the magnet 61. Therefore, when an axial force is applied to the yoke 63, the yoke 63 tends to vibrate in the axial direction. This vibration is more likely to occur as the diameter W3 of the yoke 63 (see FIG. 2A, etc.) is larger.
  • the yoke 63 in the axial direction as described above, even if the yoke 63 is widened in the radial direction, the yoke 63 (particularly the yoke plate portion 631) of the magnet 61 that magnetically attracts the shaft 11 will not move in the axial direction. Vibration can be suppressed. Therefore, a decrease in rotation accuracy of the motor 101 can be suppressed or prevented.
  • the housing 3 contacts at least a portion of the radially outer end of the yoke 63.
  • the plate-shaped yoke 63 is embedded within the base portion 31. Therefore, in FIG. 2A, the radially outer end portion of the plate-shaped yoke 63 is covered with and in contact with the base portion 31 of the housing 3.
  • the radially outer ends of the yoke plate portion 631, the yoke cylinder portion 632, and the yoke collar portion 633 are covered with and in contact with the base portion 31 of the housing 3.
  • the entire radial outer end of the yoke 63 (or its components 631 to 633) is in contact with the base portion 31 of the housing 3.
  • the present invention is not limited to this example, and at least a portion of the radially outer end portion thereof may not be in contact with the base portion 31 . In other words, there may be a gap between at least a portion of the radially outer end portion and the base portion 31 .
  • the maximum axial thickness W2 of the second contact portion 35 is greater than or equal to the maximum axial thickness W1 of the yoke plate portion 631.
  • the axial thickness W2 is the thickness of the portion of the base portion 31 that is closer to the yoke 63 than the yoke 63 in the axial direction D1.
  • the axial thickness W2 is the distance in the axial direction between the other axial end surface of the above portion (the end surface on the yoke 63 side) and the one axial end surface of the base portion 31.
  • the amount of deflection of the yoke 63 in the axial direction D1 can be further reduced. Therefore, vibration of the yoke 63 can be further suppressed, and the yoke 63 can be held more reliably between the first contact portion 34 and the second contact portion 35.
  • the material of the first contact portion 34 and the second contact portion 35 is resin.
  • the yoke 63 can be integrally molded with the first contact portion 34 and the second contact portion 35 using resin. Therefore, productivity of the housing 3 can be improved. Note that this example does not exclude a configuration in which the first contact portion 34 and the second contact portion 35 are not made of resin.
  • the second contact portion 35 has a through hole 351.
  • the through hole 351 is an example of the "first through hole" of the present invention, and reaches from one axial end surface of the second contact portion 35 to the other axial end surface (the end on the yoke 63 side). Further, in the present embodiment, the through hole 351 axially penetrates the second contact portion 35 and connects to the recess 65 disposed at the center of one end surface of the yoke plate portion 631 in the axial direction.
  • the through hole 351 is, for example, a trace left after removing the insert used when molding the housing 3.
  • the yoke 63 is embedded within the base portion 31 without protruding from the base portion 31. In this way, the yoke 63 can be stably integrally molded with the base portion 31. On the other hand, if the yoke 63 protrudes from the base portion 31, there is a risk that this protruding portion will be damaged due to external force acting on the protruding portion. Therefore, by preventing the yoke 63 from protruding from the base portion 31, the above-mentioned concerns can be resolved.
  • FIG. 3A is a perspective view showing a configuration example of the yoke plate portion 631.
  • FIG. 3B is a perspective view showing another example of the configuration of the yoke plate portion 631.
  • the yoke 63 is circular when viewed from the axial direction.
  • the shape of the yoke 63 when viewed from the axial direction may not be circular.
  • the yoke 63 may have a polygonal shape when viewed from the axial direction. Preferably, they are rectangular, triangular, or hexagonal as shown in FIG. 3B.
  • the plate-shaped yoke 63 is formed, for example, by punching. By forming the yoke 63 into a polygonal shape, the yield of punching can be improved, so the productivity of the yoke 63 can be improved.
  • the diameter W3 of the yoke 63 is greater than or equal to the diameter W4 of the magnet 61.
  • the diameter W3 is the minimum outer diameter in the radial direction of the plate-shaped yoke 63 when viewed from the axial direction.
  • the diameter W4 is the maximum outer diameter in the radial direction of the magnet 61 when viewed from the axial direction.
  • FIG. 4 is a graph showing an example of a change in the suction force Ps with respect to the diameter W3 of the yoke plate portion 631.
  • the diameter W3 of the yoke 63 is large.
  • the diameter W3 of the yoke 63 is greater than or equal to the inner diameter W5 of the bearing holder 33.
  • W3 ⁇ W5 the diameter W3 of the yoke 63 can be further increased. Therefore, the attraction force Ps of the magnet 61 to the shaft 11 can be further improved.
  • this example does not exclude a configuration where W3 ⁇ W5.
  • the yoke 63 may have at least one of a through hole 64 and recesses 65 and 66.
  • the through hole 64 passes through the yoke plate portion 631, for example.
  • the recessed portion 65 is arranged on the axial end surface of the yoke plate portion 631.
  • the recessed portion 65 may be arranged on one axial end surface of the yoke plate portion 631 and recessed in the other axial direction D2, or may be arranged on the other axial end surface of the yoke plate portion 631 and recessed in the axial direction D1.
  • the recess 66 is a so-called notch, and is arranged at the outer end of the yoke plate portion 631 in the radial direction and is recessed inward in the radial direction Di.
  • the yoke 63 includes components other than the yoke plate portion 631 (see, for example, FIG. 2B), any of these components may be arranged on the component.
  • the yoke 63 is integrally molded with the housing 3, a portion of the housing 3 is accommodated in the through hole 64 and the recesses 65, 66.
  • the holding force of the yoke 63 to the housing 3 can be improved due to the anchor effect of the accommodated portion. Therefore, vibration and movement of the yoke 63 can be further prevented.
  • the motor disclosed herein is A motor including a rotor that rotates around a central axis extending in an axial direction, a shaft made of a magnetic material and extending along the central axis; a bearing rotatably supporting the shaft; a housing having a bearing holder that holds the bearing; a magnet axially opposed to one axial end of the shaft; a yoke made of a magnetic material, at least a portion of which is disposed on one side of the magnet in the axial direction; Equipped with The housing includes: a first contact portion that is disposed radially outward from the magnet and contacts at least a portion of the other axial end surface of the yoke; and a second contact portion that contacts at least a portion of one axial end surface of the yoke (first configuration).
  • the housing may be configured to contact at least a portion of a radially outer end portion of the yoke (second configuration).
  • the motor of the first or second configuration is
  • the yoke has a yoke plate portion that is disposed on one side of the magnet in the axial direction and extends in a direction perpendicular to the central axis,
  • the maximum axial thickness of the second contact portion may be greater than or equal to the maximum axial thickness of the yoke plate portion (third configuration).
  • the motor having any one of the first to third configurations described above is:
  • the first contact portion and the second contact portion may be made of resin (fourth configuration).
  • the motor having any one of the first to fourth configurations is: One axial end surface of the yoke is covered with the second contact portion, The second contact portion may have a first through hole extending from one axial end surface to the other axial end surface of the second contact portion (fifth configuration).
  • the motor having any one of the first to fifth configurations is:
  • the housing has a base portion disposed at a radially outer end of one axial end of the bearing holder,
  • the platform expands radially outward in one axial direction and is connected to the other axial end surface of the base,
  • the yoke may be disposed on one side of the table (sixth configuration) than the base.
  • the yoke may have a plate shape that extends in the radial direction (seventh configuration).
  • the motor having any one of the first to seventh configurations,
  • the yoke may have a polygonal configuration (eighth configuration) when viewed from the axial direction.
  • the diameter of the yoke may be greater than or equal to the diameter of the magnet (a ninth configuration).
  • the diameter of the yoke may be greater than or equal to the inner diameter of the bearing holder (a tenth configuration).
  • the motor having any one of the first to tenth configurations
  • the yoke may have a configuration (eleventh configuration) having at least one of a second through hole and a recess.
  • the bearing has a cylindrical shape surrounding the shaft,
  • the material of the bearing may be a non-magnetic material (twelfth structure).
  • blower device disclosed in this specification is A motor having any of the above first to twelfth configurations; An impeller fixed to the rotor (a thirteenth configuration).
  • the present invention is useful for a device equipped with a motor that suppresses movement of the shaft in the axial direction using the attraction force of a magnet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Frames (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

モータのハウジングは、シャフトを回転可能に支持するベアリングを保持するベアリングホルダを有する。マグネットは、磁性体から成るシャフトの軸方向一方端部と軸方向に対向する。ヨークは、磁性体から成り、少なくとも一部がマグネットの軸方向一方側に配置される。ハウジングの第1接触部は、マグネットよりも径方向外方に配置され、ヨークの軸方向他方端面の少なくとも一部と接触する。第2接触部は、ヨークの軸方向一方端面の少なくとも一部と接触する。

Description

モータ、送風装置
 本発明は、モータ、送風装置に関する。
 従来、シャフトの軸方向端部をマグネットと軸方向に対向させ、磁力によりシャフトの移動を抑制する技術が知られている。たとえば、ブラシレスモータは、内周に軸受が固定された軸受ボス部と、軸受により回転自在に保持された軸(つまりシャフト)と、軸の端面と摺動するスラスト受け材と、スラスト受け材を挟んで軸の端面をスラスト方向に吸引する永久磁石と、永久磁石を支持する底受け部と、を有する。軸受ボス部、軸受、軸、底受け部は磁性材料で構成され、永久磁石,底受け部,軸受ボス部,軸受,軸の順でスラスト受け材を挟む閉磁路が構成される。また、底受け部での磁気飽和を緩和するため、永久磁石の外周部には、空間部が設けられる。(たとえば特開2005-192262号公報参照)
特開2005-192262号公報
 しかしながら、永久磁石の径方向外方側に空間を広く設けると、軸の移動に応じて永久磁石とともに、磁性体の底受け部が軸方向に振動し易くなる。そのため、軸方向に軸が移動し易くなり、モータの回転精度に影響が生じる虞がある。
 本発明は、シャフトを磁気吸引するマグネットのヨークが軸方向に振動することを抑制することを目的とする。
 本発明の例示的なモータは、軸方向に延びる中心軸回りに回転するロータを備える。モータは、シャフトと、ベアリングと、ハウジングと、マグネットと、ヨークと、を備える。シャフトは、磁性体から成り、中心軸に沿って延びる。ベアリングは、シャフトを回転可能に支持する。ハウジングは、ベアリングを保持するベアリングホルダを有する。マグネットは、シャフトの軸方向一方端部と軸方向に対向する。ヨークは、磁性体から成り、少なくとも一部がマグネットの軸方向一方側に配置される。ハウジングは、第1接触部と、第2接触部と、を有する。第1接触部は、マグネットよりも径方向外方に配置され、ヨークの軸方向他方端面の少なくとも一部と接触する。第2接触部は、ヨークの軸方向一方端面の少なくとも一部と接触する。
 また、本発明の例示的な送風装置は、上述のモータと、インペラと、を備える。インペラは、ロータに固定される。
 本発明の例示的なモータ、送風装置によれば、シャフトを磁気吸引するマグネットのヨークが軸方向に振動することを抑制することができる。
図1は、本実施形態に係る送風装置の構成例を示す断面図である。 図2Aは、磁気吸引部の構成例を示す断面図である。 図2Bは、磁気吸引部の他の構成例を示す断面図である。 図3Aは、ヨーク板部の構成例を示す斜視図である。 図3Bは、ヨーク板部の他の構成例を示す斜視図である。 図4は、ヨーク板部の径に対する吸引力の変化の一例を示すグラフである。
 以下に図面を参照して例示的な実施形態を説明する。
 なお、本明細書では、中心軸CAと平行な方向を「軸方向」と呼ぶ。軸方向のうち、後述するロータ蓋部12からベース部31への向きを「軸方向一方D1」と呼び、ベース部31からロータ蓋部12への向きを「軸方向他方D2」と呼ぶ。また、中心軸CAに直交する方向を「径方向」と呼び、中心軸CAを中心とする回転方向を「周方向」と呼ぶ。径方向のうち、中心軸CAへと近づく向きを「径方向内方Di」と呼び、中心軸CAから離れる向きを「径方向外方Do」と呼ぶ。
 また、本明細書において、「環状」は、中心軸CAを中心とする周方向の全域に渡って切れ目の無く連続的に一繋がりとなる形状のほか、中心軸CAを中心とする全域の一部に1以上の切れ目を有する形状を含む。また、「環状」は、中心軸CAを中心として、中心軸CAと交差する曲面において閉曲線を描く形状も含む。
 また、方位、線、及び面のうちのいずれかと他のいずれかとの位置関係において、「平行」は、両者がどこまで延長しても全く交わらない状態のみならず、実質的に平行である状態を含む。また、「垂直」及び「直交」はそれぞれ、両者が互いに90度で交わる状態のみならず、実質的に垂直である状態及び実質的に直交する状態を含む。つまり、「平行」、「垂直」及び「直交」はそれぞれ、両者の位置関係に本発明の主旨を逸脱しない程度の角度ずれがある状態を含む。
 なお、これらは単に説明のために用いられる名称であって、実際の位置関係、方向、及び名称などを限定する意図はない。
<1.送風装置100>
 図1は、本実施形態に係る送風装置100の構成例を示す断面図である。図1に示すように、送風装置100は、軸流ファンであり、吸気口1031から吸引して風洞1032を流れる気流Fを排気口1033から軸方向一方D1に送出する。但し、この例示は、送風装置100が軸流ファン以外である構成を排除しない。たとえば、送風装置100は、遠心ファンであってもよい。
 送風装置100は、モータ101と、インペラ102と、外筒部103と、静翼104と、を備える。
 モータ101は、インペラ102を回転駆動する。
 インペラ102は、モータ101の後述するロータ1に固定され、ロータ1とともに回転可能である。インペラ102は、ハブ1021と、動翼1022と、を有する。ハブ1021は、軸方向に延びる有蓋筒状であって、ロータ1及びシャフト11の軸方向他方端部に配置される。ハブ1021の筒部分は、後述するロータ筒部13の径方向外側面に配置される。動翼1022は、ハブ1021の筒部分の径方向外端部から径方向外方Doに延びる。動翼1022は、軸方向に延びる中心軸CAを中心にして、周方向に回転可能である。
 外筒部103は、軸方向に延びる筒状であって、モータ101及びインペラ102を囲む。外筒部103とモータ101及びインペラ102との間には、気流Fが通る風洞1032が形成される。外筒部103の軸方向他方端部は、開口であって、吸気口1031として機能する。インペラ102の回転により、送風装置100の外部の空気は、吸気口1031から風洞1032内に流れ込む。外筒部103の軸方向一方端部は、開口であって、モータ101の軸方向一方端部との間に排気口1033を形成する。風洞1032を通る気流Fは、排気口1033から軸方向一方D1に送出される。
 静翼104は、インペラ102の動翼1022よりも軸方向一方D1に配置されて、周方向に複数並ぶ。静翼104は、モータ101と外筒部103とを接続し、軸方向に延びる。静翼104は、風洞1032を流れる気流Fを整流する。
 <1-1.モータ101>
 次に、図1を参照して、モータ101の構成を説明する。モータ101は、軸方向に延びる中心軸CA回りに回転可能するロータ1を備える。また、モータ101は、ステータ2と、ハウジング3と、ベアリング4と、基板5と、磁気吸引部6と、をさらに備える。
  <1-1―1.ロータ1>
 ロータ1は、シャフト11と、ロータ蓋部12と、ロータ筒部13と、ロータヨーク14と、ロータマグネット15と、を有する。シャフト11は、磁性体から成り、中心軸CAに沿って延びる。モータ101は、シャフト11を有する。シャフト11は、中心軸CAを中心に回転可能である。ロータ蓋部12は、シャフト11から径方向外方Doに広がる。ロータ筒部13は、ロータ蓋部12の径方向外端部から軸方向一方D1に延び、ステータ2を囲む。ロータヨーク14は、ロータ筒部13の径方向内側面に配置され、本実施形態では軸方向に延びる筒状である。但し、この例示に限定されず、ロータヨーク14は、複数のヨーク片で構成されてもよい。複数のヨーク片は、それぞれ軸方向に延びる板状であって、周方向に複数並ぶ。ロータマグネット15は、ロータヨーク14の径方向内側面に配置される。ロータマグネット15では、互いに異なる磁極(N極及びS極)が周方向において交互に配列する。ロータマグネット15は、中心軸CAを囲む環状であってもよいし、周方向に配置される複数の磁石片で構成されてもよい。
  <1-1-2.ステータ2>
 ステータ2は、ロータマグネット15よりも径方向内方Diに配置される。ステータ2は、ステータコア21と、インシュレータ22と、コイル部23と、を有する。ステータコア21は、磁性体から成り、本実施形態では軸方向に複数積層された板状の電磁鋼板の積層体である。ステータコア21は、ロータマグネット15と径方向に対向する。インシュレータ22は、樹脂などの電気絶縁性を有する材料から成り、ステータコア21の表面に配置される。コイル部23は、ステータコア21に配置され、周方向に複数並ぶ。コイル部23は、導線(図示省略)がインシュレータ22を介してステータコア21に配置された部材である。導線は、たとえばエナメル被覆銅線、絶縁部材で被覆された金属線などである。コイル部23に駆動電流が供給されると、ステータ2は、励磁されてロータ1を駆動する。
  <1-1-3.ハウジング3>
 ハウジング3は、ベース部31と、周壁部32と、ベアリングホルダ33と、第1接触部34と、第2接触部35と、を有する。なお、本実施形態では、ベース部31、周壁部32、ベアリングホルダ33、第1接触部34、及び第2接触部35は、樹脂を材料とし、たとえば金型を用いた鋳込みによって、磁気吸引部6の後述のヨーク63とともに一体成型される。但し、この例示は、ベース部31、周壁部32、ベアリングホルダ33、第1接触部34、及び第2接触部35の少なくともいずれかが別部材である構成を排除しないし、これらの少なくともいずれかが樹脂以外の材料(たとえばアルミニウム又はその合金などの金属材料)で形成される構成を排除しない。また、この例示は、ハウジング3が金型を用いた鋳込み成型以外で形成される構成も排除しない。
 ベース部31は、中心軸CAから径方向外方Doに広がる板状であり、ステータ2及び基板5よりも軸方向一方D1に配置される。周壁部32は、ベース部31の径方向外端部から軸方向他方D2に突出し、周方向に延びる。周壁部32は、本実施形態では中心軸を囲む環状であり、基板5を保持する。ベアリングホルダ33は、軸方向に延びる筒状であり、ベース部31の径方向内方Di側から軸方向他方D2に突出する。ベアリングホルダ33は、ステータ2を保持する。詳細には、ベアリングホルダ33には、ステータコア21が固定される。また、ベアリングホルダ33には、シャフト11が挿通される。ベアリングホルダ33は、ベアリング4を保持する。第1接触部34及び第2接触部35については、後に説明する。
 また、好ましくは、ハウジング3は、台部331をさらに有する。台部331は、ベアリングホルダ33の軸方向一方端部における径方向外端部に配置され、周方向に延びる。台部331は、軸方向一方D1に向かうほど径方向外方Doに広がり、ベース部31に接続される。但し、この例示は、ハウジング3が台部331を有さない構成を排除しない。
  <1-1-4.ベアリング4>
 ベアリング4は、シャフト11を囲む筒状であって、軸方向に延びる。ベアリング4は、滑り軸受であり、ベアリングホルダ33の径方向内側面に配置される。ベアリング4は、シャフト11を回転可能に支持する。
 好ましくは、ベアリング4の材料は、非磁性体である。ベアリング4の材料が非磁性体であることで、ベアリング4が磁性体である場合と比べて、シャフト11に対するマグネット61の吸引力Psを向上できる。なお、吸引力Psは、磁気吸引部6(特に後述するマグネット61)がその磁力によって磁性体のシャフト11を軸方向一方D1に引き付ける力の大きさである。インペラ102が駆動する際、軸方向において、シャフト11は、マグネット61から離れ易くなる。両者間の軸方向間隔が大きくなると、この効果(ベアリング4の材料が非磁性体である場合に、ベアリング4が磁性体である場合と比べて、マグネット61の吸引力Psが向上する効果)はより有効に作用する。そのため、マグネット61に対するシャフト11の離間をより効果的に抑制又は防止できる。
  <1-1-5.基板5>
 基板5は、ステータ2よりも軸方向一方D1に配置され、周壁部32の径方向内側面から径方向内方Diに延びて周方向に広がる(図1参照)。基板5は、ステータの駆動回路などの様々な電子部品を搭載する。また、基板5には、外部接続線(図示省略)が電気的に接続される。外部接続線は、送風装置100の外部に引き出される接続線であり、基板5と送風装置100の外部機器(たとえば外部電源)などとを電気的に接続する。
  <1-1-6.磁気吸引部6>
 次に、図1及び図2Aから図2Bを参照して、磁気吸引部6を説明する。図2Aは、磁気吸引部6の構成例を示す断面図である。図2Bは、磁気吸引部6の他の構成例を示す断面図である。図2A及び図2Bは、図1の破線で囲まれた部分IIの断面構造に対応する。
 磁気吸引部6は、マグネット61と、スラスト板62と、ヨーク63と、を有する。また、言い換えると、モータ101は、マグネット61と、スラスト板62と、ヨーク63と、を有する。磁気吸引部6は、マグネット61の磁力によってシャフト11を軸方向一方D1に吸引し、シャフト11の軸方向他方D2への移動を抑制する。また、マグネット61に対してシャフトが軸方向他方D2に離れても、磁力によりシャフト11を軸方向一方D1に引き戻すことができる。
 マグネット61は、軸方向に延びる柱状の永久磁石であって、シャフト11及びベアリング4よりも軸方向一方D1に配置される。マグネット61は、ヨーク63の軸方向他方端面上に配置され、特に後述するヨーク板部631の軸方向他方端面上に配置される。マグネット61は、シャフト11の軸方向一方端部と軸方向に対向する。
 スラスト板62は、中心軸CAから径方向に広がる板状であり、マグネット61の軸方向他方D2に配置される。詳細には、スラスト板62は、マグネット61とベアリング4及びシャフト11との間に配置される。スラスト板62は、摺動性に富む材料から成り、ベアリング4の軸方向一方端部及びシャフト11の軸方向一方端部と接触する。但し、この例示は、スラスト板62がベアリング4の軸方向一方端部と接触しない構成を排除しない。
 ヨーク63は、磁性体から成る。ヨーク63の少なくとも一部は、マグネット61の軸方向一方D1に配置される。図2Aでは、ヨーク63は、径方向に広かる板状である。言い換えると、ヨーク63は、ヨーク板部631のみで構成される。こうすれば、ヨーク63を簡易な板状に形成できる。
 好ましくは、ヨーク板部631は、台部331よりも軸方向一方D1に配置される(図1参照)。こうすれば、ヨーク63の振動をより抑制でき、ヨーク63をより確実に保持できる。但し、この例示は、ヨーク板部631が台部331よりも軸方向一方D1に配置されない構成を排除しない。
 但し、ヨーク63の形状は、図2Aの例示に限定されない。たとえば、図2Bに示すように、ヨーク63は、有底筒状であってもよい。詳細には、図2Bにおいて、ヨーク63は、ヨーク板部631と、ヨーク筒部632と、ヨーク鍔部633と、を有する。ヨーク板部631は、マグネット61よりも軸方向一方D1に配置されて、中心軸CAと垂直な方向に広がる。好ましくは、軸方向から見たヨーク板部631の中心は、中心軸CAと一致する。ヨーク筒部632は、ヨーク板部631の径方向外端部から軸方向他方D2に延びる筒状であり、径方向に間隔を空けてマグネット61を囲む。ヨーク鍔部633は、ヨーク筒部632の軸方向他方端部から径方向外方Doに広がり、周方向に延びる。図2Bのヨーク63は、たとえばプレス成型などで形成できる。
 なお、以下では内容を理解し易くするため、原則として、ヨーク63が図2Aのように板状である構成で説明を続ける。
  <1-2.第1接触部34、第2接触部35>
 次に、前述の如く、ハウジング3は、第1接触部34と、第2接触部35と、をさらに有する。なお、第1接触部34及び第2接触部35は、ハウジング3の一部であり、詳細には、たとえばベース部31の一部である。ベース部31の軸方向から見てヨーク63と重なる部分のうち、第1接触部34は、ヨーク63(特にヨーク板部631)よりも軸方向他方D2に配置された部分を指す。なお、第1接触部34は、図2Aではベアリングホルダ33の内周面の軸方向一方端部よりも径方向内方Diに配置された部分であり、図2Bではヨーク筒部632よりも径方向内方Diに配置された部分である。第2接触部35は、ヨーク63(特にヨーク板部631)よりも軸方向一方D1に配置された部分を指し、ヨーク63(特にヨーク板部631)の径方向外端部よりも径方向内方Diに配置された部分である。
 第1接触部34は、マグネット61よりも径方向外方Doに配置され、ヨーク63の軸方向他方端面の少なくとも一部と接触する。第1接触部34は、マグネット61よりも径方向外方Doにおいて、ヨーク63の軸方向他方端面と接触する。また、第1接触部34は、マグネット61の径方向外側面の少なくとも一部と径方向に接触し、本実施形態ではマグネット61の径方向外側面の全域と接触する。これにより、マグネット61の径方向への移動を抑制又は防止できる。但し、この例示は、マグネット61の径方向外側面が第1接触部34と接触しない構成を排除しない。
 好ましくは、径方向から見て、第1接触部34の少なくとも一部は、台部331と重なる。言い換えると、第1接触部34の少なくとも一部は、台部331と同じ軸方向位置に配置される。こうすれば、ハウジング3のうちの第1接触部34よりも径方向外方Doの部分の径方向厚さをより厚くできる。従って、第1接触部34は、ヨーク63をより確実に保持して、その振動をより抑制できる。
 また、第1接触部34は、スラスト板62と軸方向に接触する。こうすれば、スラスト板62を安定的に配置できる。但し、この例示は、第1接触部34がスラスト板62と接触しない構成を排除しない。
 ここで、第1接触部34の最大の軸方向厚さは、マグネット61の軸方向厚さと実質的に一致してもよい。また、スラスト板62は、第1接触部34の軸方向他方端部とマグネット61の軸方向他方端部との両方に接触してもよい。こうすれば、スラスト板62を安定的に配置できる。
 なお、上述の例示に限定されず、第1接触部34の最大の軸方向厚さは、マグネット61の軸方向厚さ以上であってもよい。また、第1接触部34は、スラスト板62よりも径方向外方にあってもよいし、或いは、スラスト板62の径方向外端部に接触してもよい。こうすれば、スラスト板62の径方向の移動を第1接触部34で抑制又は防止できる。従って、スラスト板62を安定的に配置できる。
 第2接触部35は、ヨーク63の軸方向一方端面の少なくとも一部と接触する。第2接触部35は、ヨーク63の軸方向一方端面を覆う。
 こうすれば、第1接触部34及び第2接触部35で、ヨーク63を軸方向に挟んで保持できる。マグネット61の磁気吸引により、磁気吸引部6に対するシャフト11の離間が抑制される際、ヨーク63は、マグネット61とともに吸引力Psの影響を受ける。そのためヨーク63に軸方向の力が作用することで、ヨーク63が軸方向に振動し易くなる。この振動は、ヨーク63の径W3(図2Aなど参照)が大きいほど、生じやすい。従って、上述のようにヨーク63を軸方向に保持することで、ヨーク63を径方向に広くしても、シャフト11を磁気吸引するマグネット61のヨーク63(特にヨーク板部631)が軸方向に振動することを抑制することができる。よって、モータ101の回転精度の低下を抑制又は防止できる。
 好ましくは、ハウジング3は、ヨーク63の径方向外端部の少なくとも一部と接触する。こうすれば、径方向におけるヨーク63の移動を抑制又は防止できる。たとえば、図2A及び図2Bでは、板状のヨーク63は、ベース部31内に埋め込まれている。そのため、図2Aでは、板状のヨーク63の径方向外端部は、ハウジング3のベース部31に覆われて接触している。なお、図2Bでは、ヨーク板部631、ヨーク筒部632、及びヨーク鍔部633の径方向外端部は、ハウジング3のベース部31に覆われて接触している。なお、図2A及び図2Bでは、ヨーク63(又はその構成要素631から633)の径方向外端部全体がハウジング3のベース部31と接触している。但し、この例示に限定されず、その径方向外端部の少なくとも一部は、ベース部31と接触していなくてもよい。つまり、その径方向外端部の少なくとも一部には、ベース部31との間に隙間があってもよい。
 また、好ましくは、第2接触部35の最大の軸方向厚さW2は、ヨーク板部631の最大の軸方向厚さW1以上である。軸方向厚さW2は、ベース部31のうちのヨーク63よりも軸方向一方D1側の部分の厚さである。軸方向厚さW2は、上記の部分の軸方向他方端面(ヨーク63側の端面)とベース部31の軸方向一方端面との間の軸方向における間隔である。W2≧W1とすることで、ヨーク63の軸方向一方端面に接触する第2接触部35の厚さW2を十分に確保できる。従って、ヨーク63の軸方向一方D1へのたわみ量をより小さくできる。よって、ヨーク63の振動をより抑制でき、第1接触部34及び第2接触部35間によってヨーク63をより確実に保持できる。
 また、前述の如く、第1接触部34及び第2接触部35の材料は樹脂である。こうすれば、樹脂を用いて、ヨーク63を第1接触部34及び第2接触部35と一体成型できる。従って、ハウジング3の生産性を改善できる。なお、この例示は、第1接触部34及び第2接触部35が樹脂でない構成を排除しない。
 好ましくは、第2接触部35は、貫通孔351を有する。貫通孔351は、本発明の「第1貫通孔」の一例であり、第2接触部35の軸方向一方端面から軸方向他方端面(ヨーク63側の端部)に達する。また、本実施形態では、貫通孔351は、第2接触部35を軸方向に貫通し、ヨーク板部631の軸方向一方端面の中央部に配置された凹部65に繋がる。貫通孔351は、たとえば、ハウジング3の金型成型の際に用いた入れ子を抜いた跡である。金型で成型する際に入れ子でヨーク63を支持することで、ヨーク63を第1接触部34及び第2接触部35と安定的に一体成型できる。
 好ましくは、ヨーク63は、ベース部31からはみ出すことなく、ベース部31内に埋め込まれている。こうすれば、ヨーク63をベース部31と安定的に一体成型できる。一方、ヨーク63がベース部31からはみ出していると、はみ出した部分に外力が作用することにより、この部分が破損する懸念が生じる。従って、ヨーク63をベース部31からはみ出さないようにすることで、上述の懸念を解消できる。
  <1-3.ヨーク63>
 次に、図1から図3Bを参照して、ヨーク63(言い換えるとヨーク板部631)の形状を説明する。図3Aは、ヨーク板部631の構成例を示す斜視図である。図3Bは、ヨーク板部631の他の構成例を示す斜視図である。
 本実施形態では図3Aに示すように、軸方向から見て、ヨーク63は、円形である。但し、この例示に限定されず、軸方向から見たヨーク63の形状は、円形でなくてもよい。たとえば、軸方向から見て、ヨーク63は、多角形であってもよい。好ましくは、図3Bのような矩形、三角形、六角形である。板状のヨーク63は、たとえば打ち抜き加工により形成される。ヨーク63を多角形状にすることで、打ち抜き加工の歩留まりを向上できるので、ヨーク63の生産性を向上できる。
 ヨーク63の径W3は、マグネット61の径W4以上である。なお、径W3は、軸方向から見た板状のヨーク63の径方向における最小の外径である。径W4は、軸方向から見たマグネット61の径方向における最大の外径である。ヨーク63の径W3をマグネット61の径W4からさらに大きくすることにより、シャフト11に対するマグネット61の吸引力Psを向上できる。
 たとえば、図4は、ヨーク板部631の径W3に対する吸引力Psの変化の一例を示すグラフである。図4に示すように、ヨーク63の径W3は、大きくすることが望ましい。好ましくは、ヨーク63の径W3は、ベアリングホルダ33の内径W5以上である。W3≧W5とすることで、ヨーク63の径W3をさらに大きくできる。従って、シャフト11に対するマグネット61の吸引力Psをさらに向上できる。但し、この例示は、W3<W5である構成を排除しない。
 また、図3A及び図3Bに示すように、ヨーク63は、貫通孔64及び凹部65,66のうちの少なくともいずれかを有してもよい。貫通孔64は、たとえばヨーク板部631を貫通する。凹部65は、ヨーク板部631の軸方向端面に配置される。凹部65は、ヨーク板部631の軸方向一方端面に配置されて軸方向他方D2に凹んでもよいし、ヨーク板部631の軸方向他方端面に配置されて軸方向一方D1に凹んでもよい。凹部66は、いわゆる切り欠きであって、ヨーク板部631の径方向外端部に配置されて径方向内方Diに凹む。なお、ヨーク63がヨーク板部631以外の構成要素を備える場合(たとえば図2B参照)、これらのいずれかは、その構成要素に配置されてもよい。こうすれば、ヨーク63をハウジング3と一体成型する際、貫通孔64及び凹部65,66には、ハウジング3の一部が収容される。収容された部分のアンカー効果によりハウジング3に対するヨーク63の保持力を向上できる。従って、ヨーク63の振動及び移動をさらに防止できる。
<2.その他>
 以上、本発明の実施形態を説明した。なお、本発明の範囲は上述の実施形態に限定されない。本発明は、発明の主旨を逸脱しない範囲で上述の実施形態に種々の変更を加えて実施することができる。また、上述の実施形態で説明した事項は、矛盾が生じない範囲で適宜任意に組み合わせることができる。
<3.総括>
 以下では、これまでに説明した実施形態及びその変形例について総括的に述べる。
 たとえば、本明細書に開示されているモータは、
 軸方向に延びる中心軸回りに回転するロータを備えたモータであって、
 磁性体から成り、前記中心軸に沿って延びるシャフトと、
 前記シャフトを回転可能に支持するベアリングと、
 前記ベアリングを保持するベアリングホルダを有するハウジングと、
 前記シャフトの軸方向一方端部と軸方向に対向するマグネットと、
 磁性体から成り、少なくとも一部が前記マグネットの軸方向一方側に配置されるヨークと、
を備え、
 前記ハウジングは、
  前記マグネットよりも径方向外方に配置され、前記ヨークの軸方向他方端面の少なくとも一部と接触する第1接触部と、
  前記ヨークの軸方向一方端面の少なくとも一部と接触する第2接触部と、を有する構成(第1の構成)とされる。
 なお、上記第1の構成のモータは、
 前記ハウジングは、前記ヨークの径方向外端部の少なくとも一部と接触する構成(第2の構成)にしてもよい。
 また、上記第1又は第2の構成のモータは、
 前記ヨークは、前記マグネットよりも軸方向一方に配置されて前記中心軸と垂直な方向に広がるヨーク板部を有し、
 前記第2接触部の最大の軸方向厚さは、前記ヨーク板部の最大の軸方向厚さ以上である構成(第3の構成)にしてもよい。
 また、上記第1から第3のいずれかの構成のモータは、
 前記第1接触部及び前記第2接触部の材料は樹脂である構成(第4の構成)にしてもよい。
 また、上記第1から第4のいずれかの構成のモータは、
 前記ヨークの軸方向一方端面は、前記第2接触部で覆われ、
 前記第2接触部は、前記第2接触部の軸方向一方端面から軸方向他方端面に達する第1貫通孔を有する構成(第5の構成)にしてもよい。
 また、上記第1から第5のいずれかの構成のモータは、
 前記ハウジングは、ベアリングホルダの軸方向一方端部における径方向外端部に配置される台部を有し、
  前記台部は、軸方向一方に向かうにつれて径方向外方に広がって、前記ベース部の軸方向他方端面に接続され、
 前記ヨークは、前記台部よりも事項方向一方に配置される構成(第6の構成)にしてもよい。
 また、上記第1から第6のいずれかの構成のモータは、
 前記ヨークは、径方向に広がる板状である構成(第7の構成)にしてもよい。
 また、上記第1から第7のいずれかの構成のモータは、
 軸方向から見て、前記ヨークは、多角形状である構成(第8の構成)にしてもよい。
 また、上記第1から第8のいずれかの構成のモータは、
 前記ヨークの径は、前記マグネットの径以上である構成(第9の構成)にしてもよい。
 また、上記第1から第9のいずれかの構成のモータは、
 前記ヨークの径は、前記ベアリングホルダの内径以上である構成(第10の構成)にしてもよい。
 また、上記第1から第10のいずれかの構成のモータは、
 前記ヨークは、第2貫通孔及び凹部の少なくともいずれかを有する構成(第11の構成)にしてもよい。
 また、上記第1から第11のいずれかの構成のモータは、
 前記ベアリングは、前記シャフトを囲む筒状であって、
  前記ベアリングの材料は、非磁性体である構成(第12の構成)にしてもよい。
 また、本明細書に開示されている送風装置は、
 上記第1から第12のいずれかの構成のモータと、
 前記ロータに固定されるインペラと、を備える構成(第13の構成)とされる。
 本発明は、シャフトの軸方向への移動をマグネットの吸引力で抑制するモータを搭載する装置に有用である。
 100・・・送風装置、101・・・モータ、102・・・インペラ、1021・・・ハブ、1022・・・動翼、103・・・外筒部、1031・・・吸気口、1032・・・風洞、1033・・・排気口、104・・・静翼、1・・・ロータ、11・・・シャフト、12・・・ロータ蓋部、13・・・ロータ筒部、14・・・ロータヨーク、15・・・ロータマグネット、2・・・ステータ、21・・・ステータコア、22・・・インシュレータ、23・・・コイル部、3・・・ハウジング、31・・・ベース部、32・・・・周壁部、33・・・ベアリングホルダ、331・・・台部、34・・・第1接触部、35・・・第2接触部、351・・・貫通孔、4・・・ベアリング、5・・・基板、6・・・磁気吸引部、61・・・マグネット、62・・・スラスト板、63・・・ヨーク、631・・・ヨーク板部、632・・・ヨーク筒部、633・・・ヨーク鍔部、64・・・貫通孔、65,66・・・凹部、CA・・・中心軸、F・・・気流、D1・・・軸方向一方、D2・・・軸方向他方、Di・・・径方向内方、Do・・・径方向外方

Claims (13)

  1.  軸方向に延びる中心軸回りに回転するロータを備えたモータであって、
     磁性体から成り、前記中心軸に沿って延びるシャフトと、
     前記シャフトを回転可能に支持するベアリングと、
     前記ベアリングを保持するベアリングホルダを有するハウジングと、
     前記シャフトの軸方向一方端部と軸方向に対向するマグネットと、
     磁性体から成り、少なくとも一部が前記マグネットの軸方向一方側に配置されるヨークと、
    を備え、
     前記ハウジングは、
      前記マグネットよりも径方向外方に配置され、前記ヨークの軸方向他方端面の少なくとも一部と接触する第1接触部と、
      前記ヨークの軸方向一方端面の少なくとも一部と接触する第2接触部と、を有する、モータ。
  2.  前記ハウジングは、前記ヨークの径方向外端部の少なくとも一部と接触する、請求項1に記載のモータ。
  3.  前記ヨークは、前記マグネットよりも軸方向一方に配置されて前記中心軸と垂直な方向に広がるヨーク板部を有し、
     前記第2接触部の最大の軸方向厚さは、前記ヨーク板部の最大の軸方向厚さ以上である、請求項1に記載のモータ。
  4.  前記第1接触部及び前記第2接触部の材料は樹脂である、請求項1に記載のモータ。
  5.  前記ヨークの軸方向一方端面は、前記第2接触部で覆われ、
     前記第2接触部は、前記第2接触部の軸方向一方端面から軸方向他方端面に達する第1貫通孔を有する、請求項1に記載のモータ。
  6.  前記ハウジングは、ベアリングホルダの軸方向一方端部における径方向外端部に配置される台部を有し、
      前記台部は、軸方向一方に向かうにつれて径方向外方に広がって、
     前記ヨークは、前記台部よりも軸方向一方に配置される、請求項1に記載のモータ。
  7.  前記ヨークは、径方向に広がる板状である、請求項1に記載のモータ。
  8.  軸方向から見て、前記ヨークは、多角形状である、請求項1に記載のモータ。
  9.  前記ヨークの径は、前記マグネットの径以上である、請求項1に記載のモータ。
  10.  前記ヨークの径は、前記ベアリングホルダの内径以上である、請求項1に記載のモータ。
  11.  前記ヨークは、第2貫通孔及び凹部の少なくともいずれかを有する、請求項1に記載のモータ。
  12.  前記ベアリングは、前記シャフトを囲む筒状であって、
      前記ベアリングの材料は、非磁性体である、請求項1に記載のモータ。
  13.  請求項1から請求項12のいずれか1項に記載のモータと、
     前記ロータに固定されるインペラと、を備える、送風装置。
PCT/JP2023/023845 2022-06-30 2023-06-27 モータ、送風装置 WO2024005028A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022105645 2022-06-30
JP2022-105645 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024005028A1 true WO2024005028A1 (ja) 2024-01-04

Family

ID=89382304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023845 WO2024005028A1 (ja) 2022-06-30 2023-06-27 モータ、送風装置

Country Status (1)

Country Link
WO (1) WO2024005028A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09317755A (ja) * 1996-05-30 1997-12-09 Japan Servo Co Ltd 軸受け装置及びこの軸受け装置を使用した磁気記録装 置用スピンドルモータ
JP2019180200A (ja) * 2018-03-30 2019-10-17 日本電産株式会社 モータ及び送風装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09317755A (ja) * 1996-05-30 1997-12-09 Japan Servo Co Ltd 軸受け装置及びこの軸受け装置を使用した磁気記録装 置用スピンドルモータ
JP2019180200A (ja) * 2018-03-30 2019-10-17 日本電産株式会社 モータ及び送風装置

Similar Documents

Publication Publication Date Title
US9033680B2 (en) Electric fan
JP2009303473A (ja) モータおよびそれを用いた送風ファン
CN110323867B (zh) 马达以及送风装置
JP6207870B2 (ja) ファンモータ
US20090110551A1 (en) Axial flow fan
JP7293680B2 (ja) モータおよび送風装置
JP5200521B2 (ja) モータ及び冷却ファン
US20190128280A1 (en) Centrifugal fan
US11552533B2 (en) Stator assembly, motor, and fan motor
AU2019460693B2 (en) Motor and air conditioner using the same
CN110277867B (zh) 马达以及风扇马达
JP6220360B2 (ja) ブラシレスモータおよび送風機
US11280351B2 (en) Blower
US20190157917A1 (en) Stator and motor
JP2010057300A (ja) モータ及びファン
JP2014003799A (ja) ブラシレスモータ
WO2024005028A1 (ja) モータ、送風装置
JP2002206499A (ja) 軸流式送風機の羽根車
CN110323900B (zh) 马达以及送风装置
JP2008151527A (ja) レゾルバロータの取付方法
EP3364527B1 (en) Electric motor and blower
JP2019103205A (ja) 回路基板、モータ、及びファンモータ
JP7527469B2 (ja) ロータ、電動機、送風機、空気調和装置およびロータの製造方法
JP7131032B2 (ja) モータ及び送風装置
CN116624409A (zh) 送风装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831468

Country of ref document: EP

Kind code of ref document: A1