WO2024004773A1 - Film for back face plate and polyester film, and image display apparatus and device with film for back face plate or polyester film mounted therein - Google Patents

Film for back face plate and polyester film, and image display apparatus and device with film for back face plate or polyester film mounted therein Download PDF

Info

Publication number
WO2024004773A1
WO2024004773A1 PCT/JP2023/022869 JP2023022869W WO2024004773A1 WO 2024004773 A1 WO2024004773 A1 WO 2024004773A1 JP 2023022869 W JP2023022869 W JP 2023022869W WO 2024004773 A1 WO2024004773 A1 WO 2024004773A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyester
less
back plate
layer
Prior art date
Application number
PCT/JP2023/022869
Other languages
French (fr)
Japanese (ja)
Inventor
龍太郎 鎌田
研 鈴木
亘 合田
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2024004773A1 publication Critical patent/WO2024004773A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present invention relates to a back plate film used for light emission for image display, a polyester film, an image display device, and a device having the image display device.
  • image display devices are required to be small, thin, and lightweight.
  • Electroluminescent display devices typified by organic light emitting display devices, are self-luminous display devices, and unlike liquid crystal display devices, do not require a separate light source, can be easily made thin and lightweight, and have excellent hue reproduction, response speed, It also has excellent viewing angles and contrast ratios, and is used in display devices.
  • the display device has a larger screen (wider display area), and the area other than the display area of the display device is also required to be reduced. Display is attracting attention.
  • a camera may be provided not only on the back side but also on the image display surface side.
  • Patent Document 2 Those made of metal, such as, and those made of plastic, such as polymethyl methacrylate, polycarbonate, polyvinyl alcohol, and polyethylene terephthalate, are known (for example, Patent Document 2).
  • plastic films can cause color unevenness or rainbow unevenness depending on the combination with specific components (polarizing plates, etc.), and various countermeasures have been taken (for example, Patent Document 3 5).
  • an object of the present invention is to eliminate the above-mentioned color unevenness without using a depolarizing member.
  • An object of the present invention is to provide an image display device with excellent imaging quality even when using a conversion element. It is also preferable to provide an image display device for use in a flexible image display device.
  • the gist of the present invention for solving the above problems is as follows.
  • a film for a back plate used in an image display device in which a polarizing plate, a light emitting element array for image display, a back plate, and a photoelectric conversion element are mounted in this order when viewed from the viewer's side.
  • the retardation value found by incident a light beam with a wavelength of 590 nm at an incident angle of 40 degrees with the vertical axis as a reference of 0 degrees along a plane including the fast axis of the film and an axis perpendicular to the film surface is 0 nm or more and 1000 nm or less A film for the back plate.
  • the biaxially oriented polyester film is a single layer film or a film in which a plurality of layers are laminated, and the isophthalic acid component is used in an amount of 6 mol% or more of the total dicarboxylic acid components of the polyester resin constituting the layer.
  • the film for a back plate according to [2] which has at least one layer of polyester resin.
  • the polyester constituting the biaxially oriented polyester film is a group consisting of naphthalene dicarboxylic acid, cyclohexane dicarboxylic acid, fluorene derivatives, paraxylene glycol, bisphenol A, isosorbate, cyclohexanedimethanol, and ester-forming derivatives thereof.
  • the film for a back plate according to the above [2] which has a crystallinity of 30% or less and a rigid amorphous content of 20% or more and 50% or less.
  • the film for a back plate according to [1] wherein the increase in haze ( ⁇ haze) when heat-treated at 120° C. for 5 hours is 0% or more and 2.0% or less.
  • the film for a back plate according to [1] which has a bending rigidity of 0.2 mN or more and 20.0 mN or less in both the longitudinal direction and the width direction.
  • the biaxially oriented polyester film is obtained by dividing the endotherm ⁇ Hg observed in the irreversible curve of temperature modulated DSC (30 to 150°C) by the specific heat capacity difference ⁇ Cp before and after the glass transition point observed in the reversible curve.
  • a film for a back plate according to [1], [16] A polyester film consisting of a dicarboxylic acid component and a diol component, in which the terephthalic acid component of the dicarboxylic acid component is 50 mol% or more and 95 mol% or less, and the ethylene glycol component of the diol component is 50 mol% or more 95 mol% or less, the melting point observed at the lowest temperature is 240°C or less, the density is 1.360 g/cc or less, and it is perpendicular to the fast axis of the film and the axis perpendicular to the film surface.
  • the polyester film is a single layer film or a film in which a plurality of layers are laminated, and the polyester resin contains an isophthalic acid component of 6 mol% or more of the total dicarboxylic acid components of the polyester resin constituting the layer.
  • the polyester film according to [16] having at least one layer.
  • the polyester constituting the polyester film is selected from the group consisting of naphthalene dicarboxylic acid, cyclohexane dicarboxylic acid, fluorene derivatives, paraxylene glycol, bisphenol A, isosorbate, cyclohexanedimethanol, and ester-forming derivatives thereof.
  • the polyester film according to [16] wherein at least one is a polymerized or copolymerized polyester or a polyester containing polyetherimide.
  • the polyester film according to [16] which has a crystallinity of 30% or less and a rigid amorphous content of 20% or more and 50% or less.
  • the image display device according to [25] wherein the light emitting device array for an image display device used in the image display device is an organic electroluminescent device array.
  • a foldable display equipped with the back plate film according to [1] or the polyester film according to [16] [29] A device comprising, as one of its components, an image display device on which the back plate film according to [1] or the polyester film according to [16] is mounted.
  • the film for a back plate according to the present invention by using the film for a back plate according to the present invention, even a photoelectric conversion element such as a camera disposed on the side opposite to the viewer's side of the light emitting element array for image display can have rainbow unevenness. Accordingly, it is possible to provide a flexible image display device that suppresses the occurrence of images and has excellent imaging quality. Furthermore, it is possible to provide a polyester film that can suppress the occurrence of rainbow unevenness when used in optical devices such as image display devices.
  • a schematic front view of an example of an image display device of the present invention Reference diagram for explanation of R40 measurement test Reference diagram for understanding bending stiffness measurement test Diagram explaining the configuration of the device used for the visibility test Reference diagram for understanding the recovery angle measurement test
  • An image display device in which the back plate film of the present invention is used includes a polarizing plate, a light emitting element array for image display, , a back plate, and a photoelectric conversion element are mounted in this order.
  • Such an image display device may include components other than these components.
  • the side opposite to the viewer's side (the side on which no image is displayed) may be referred to as the back side.
  • An image display device using the film for a back plate of the present invention has an array of light-emitting elements for image display in order to prevent a decrease in the visibility of a displayed image and a decrease in contrast ratio due to light entering the inside of the display device from the outside.
  • a polarizing plate is placed on the front side when viewed from above.
  • the polarizing plate used in the present invention can be applied to organic electroluminescent display devices, etc. as a circularly polarizing plate used together with an optical film ( ⁇ /4 retardation film), so that it can be used in organic electroluminescent devices, etc. at all wavelengths of visible light. It has the effect of blocking reflected light from metal electrodes, etc., and can prevent reflections during observation, as well as improve black expression.
  • a circularly polarizing plate is composed of a polarizer that converts incident light into linearly polarized light and a retardation plate that converts linearly polarized light into circularly polarized light.
  • any polarizing plate or coated polarizing film used in the field related to image display devices can be appropriately selected and used.
  • Typical polarizing plates include polyvinyl alcohol films dyed with dichroic materials such as iodine, but are not limited to these, and include polarizing plates that are publicly known or that may be developed in the future. can be selected and used as appropriate.
  • a retardation plate used in a field related to image display devices can be appropriately selected and used.
  • a plastic film stretched in a specific direction can be used, and examples thereof include polycarbonate, polyester, polysulfone, polystyrene, polymethyl methacrylate, and the like.
  • it is possible to form a retardation plate with a single layer of birefringent film it is possible to laminate multiple birefringent films to reduce the wavelength dependence of the retardation value and function over the entire visible light wavelength range. It may also be formed by
  • the polarizer and the retardation plate can be bonded together using a transparent acrylic adhesive or adhesive that does not have optical anisotropy.
  • an antireflection film can be provided on the surface of the polarizing plate from the viewpoint of preventing a decrease in visibility due to reflection of external light on the surface.
  • an antireflection film in addition to directly forming a multilayer film on the surface of a polarizing plate, it is also possible to attach an antireflection film. Further, a fine structure such as a moth-eye structure may be provided, or an appropriate anti-glare treatment may be applied.
  • the image display light emitting element array which is one of the constituent elements of the image display apparatus in which the back plate film of the present invention is used, is selected from any image display light emitting element array used in the field related to image display apparatuses. and can be used.
  • Typical light emitting element arrays for image display include those using organic electroluminescent elements, those using inorganic electroluminescent elements, organic light emitting diodes, micro light emitting diodes, etc.
  • the present invention is not limited thereto, and any known or future-developed light emitting element array for image display can be appropriately selected and used. Among these, it is preferable to use an organic electroluminescent device because it can achieve high contrast and form a clear image.
  • An organic electroluminescent element array can be suitably used as the image display light emitting element array.
  • An example of an organic electroluminescent device array includes a substrate, a thin film transistor, an organic electroluminescent device, and a sealing layer, and the organic electroluminescent device includes an anode, a light emitting layer, and a cathode.
  • the organic electroluminescent device may have the following layer structures (i) to (vi).
  • the light-emitting layer described below may consist of a blue light-emitting layer, a green light-emitting layer, and a red light-emitting layer.
  • the substrate is a member for supporting various elements of the light emitting element array for image display, and can be formed of an insulating material.
  • the film for a back plate of the present invention can be suitably used as the main substrate. If this base material is thin and has low rigidity, sag will occur when various elements are arranged.
  • This back plate film supports the image display light emitting element array so that it does not sag, and functions to protect the image display light emitting element array from moisture, heat, impact, and the like.
  • an adhesive layer can be disposed between the image display light emitting element array and the back plate film.
  • the film for a back plate of the present invention is determined by making a light beam with a wavelength of 590 nm incident at an incident angle of 40° with the vertical axis as a reference of 0° along a plane including the fast axis of the film and an axis perpendicular to the film surface.
  • the retardation value (hereinafter sometimes referred to as "R40") is 0 nm or more and 1000 nm or less.
  • R40 is preferably 800 nm or less, more preferably 500 nm or less.
  • R40 is determined by the method described in (4) Front phase difference Re, R40, which will be described later.
  • a method for controlling R40 in the range of 0 nm or more and 1000 nm or less is to control the film thickness and the birefringence in the thickness direction of the film.
  • an unstretched film of an amorphous resin has a small retardation, it is a commonly used method to use an amorphous resin.
  • the amorphous resin referred to here refers to a resin whose crystal fusion energy (hereinafter also referred to as " ⁇ Hm") obtained from a differential scanning calorimeter (hereinafter also referred to as "DSC”) is less than 5 J/g,
  • ⁇ Hm crystal fusion energy
  • DSC differential scanning calorimeter
  • cyclic olefin resins, polystyrene resins, polycarbonate resins, acrylic resins, triacetylcellulose, and copolymerized polyesters are often used from the viewpoint of optical quality.
  • cyclic olefin resins such as bicyclo[2,2,1]hept-2-ene (hereinafter referred to as norbornene), tricyclo[4,3,0,12.5]dec- Tricyclic olefins having 10 carbon atoms (hereinafter referred to as tricyclodecene) such as 3-ene, and carbon atoms such as tetracyclo[4,4,0,12.5,17.10]dodec-3-ene, etc.
  • tetracyclic olefins hereinafter referred to as tetracyclododecene
  • cyclopentadiene or 1,3-cyclohexadiene
  • the film thickness be made thin as long as the supporting function is not impaired.
  • the crystalline resin refers to a resin whose ⁇ Hm is 5 J/g or more.
  • the film for a back plate of the present invention is preferably a biaxially oriented polyester film from the viewpoint of being compatible with a foldable display described below. If the polyester film is biaxially oriented, the Young's modulus and elongation at break, which will be described later, can be controlled by appropriately setting the stretching conditions. Moreover, by biaxially oriented, the thickness unevenness of the film is reduced, and a high quality film can be obtained.
  • the biaxially oriented film referred to in the present invention refers to the refractive index of one or more layers constituting the film nx, ny, nz (here, the refractive index in the longitudinal direction is nx, the refractive index in the width direction is ny, The refractive index in the thickness direction is nz), and the average value of nx, ny, and nz is smaller than nx and ny and larger than nz.
  • biaxial orientation progresses planar orientation and increases R40, so the purpose of the present invention can be achieved by thinning the film or by using the resin composition and film forming process as described below. It is necessary to control the higher-order structure of the film within a range that does not inhibit the
  • the polyester film as used in the present invention refers to a film whose main component is polyester as a resin constituting the film. This is the obtained polymer.
  • a structural component shows the minimum unit which can be obtained by hydrolyzing polyester.
  • the main component refers to the resin with the highest content among the resins constituting the film, and preferably, the resin accounts for 50% by mass when the total mass of the resins constituting the film is 100% by mass. It is more preferably contained in the film in an amount of 70% by mass or more.
  • oxyacids such as hydroxybenzoic acid may be used in part as long as they do not impede the object of the present invention.
  • the dicarboxylic acid constituents constituting the polyester used in the present invention include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, 2,6-naphthalene dicarboxylic acid, 1 , 8-naphthalenedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 9,9-bis(carboxymethyl)fluorene, 9,9-bis[2-carboxyethyl]fluorene, 9,9 -Bis[1-carboxyethyl]fluorene, 9,9-bis[2-carboxy-1-cyclohexylethyl]fluorene, 9,9-bis[2-carboxy-1-phenylethyl]fluorene, 4,4'-diphenyl Aromatic compounds such as dicarboxylic acid, 4,
  • Aliphatic acids such as dicarboxylic acid, malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid, ethylmalonic acid, etc.
  • dicarboxylic acids alicyclic dicarboxylic acids such as adamantane dicarboxylic acid, norbornene dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid, and decalin dicarboxylic acid.
  • aromatic dicarboxylic acid as the main dicarboxylic acid constituent.
  • dicarboxylic acid constituents may be used alone or in combination of two or more.
  • diol components constituting the polyester used in the present invention include ethylene glycol, 1,3-butanediol, 1,4-butanediol, tetramethylene glycol, 1,6-hexanediol, and 1,2-cyclohexanediol.
  • diol constituents may be used alone or in combination of two or more.
  • the total amount of naphthalene dicarboxylic acid, cyclohexane dicarboxylic acid, the fluorene derivatives exemplified above, paraxylene glycol, bisphenol A, isosorbate, and cyclohexanedimethanol is It is preferable that it accounts for 5 mol% or more, more preferably 7.5 mol% or more.
  • the glass transition temperature Tg can be increased, and even under processing temperatures when incorporated into an image display device, an increase in haze can be suppressed, and a film with excellent transparency can be obtained.
  • polyester may contain resins other than polyester, and examples of such resins include polyetherimide.
  • polyetherimide By including polyetherimide, the proportion of the amorphous structure mentioned above can be increased, and the value of R40 can be controlled to be low, and by increasing the proportion of the amorphous structure, the amount of agglomerated amorphous components can be reduced. can be increased.
  • the recovery angle of the film for a back plate of the present invention is preferably 140° or more in both the longitudinal direction and the width direction, and more preferably 160° or more.
  • the recovery angle can be evaluated using the measurement method shown in (18) Flexibility, which will be described later.
  • the bending rigidity of the film is preferably 20.0 mN or less, more preferably 10.0 mN or less in both the longitudinal direction and the width direction. Further, by setting the bending rigidity to 0.2 mN or more, it becomes possible to support the light emitting element array for image display with a sufficient margin so as not to sag. From the viewpoint of supportability, the bending rigidity is more preferably 1.0 mN or more.
  • the method of controlling the bending rigidity within the range is not particularly limited, but the most effective method is to control the thickness of the film, and the thickness of the film is preferably 10 ⁇ m or more and 70 ⁇ m or less, and 10 ⁇ m or more and 50 ⁇ m or less.
  • the main method is to lower the Young's modulus, and the Young's modulus in both the longitudinal direction and the width direction is preferably 1.5 GPa or more and 4.5 GPa or less, and 2. It is preferable to set it to 0 GPa or more and 4.0 GPa or less.
  • a resin with a high Young's modulus such as a polyester resin.
  • the Young's modulus can be lowered.
  • the Young's modulus is related to the oriented crystalline state of the film, and can also be controlled by the stretching ratio, stretching temperature, heat treatment temperature, heat shrinkage treatment, etc. For example, if the stretching ratio in one direction is high and the stretching ratio in the other direction is low, the Young's modulus in the high-magnification direction will be higher and the Young's modulus in the low-magnification direction will be lower, so the Young's modulus is set to 4.0 GPa or less. In order to achieve this, the Young's modulus can be controlled within the above range by setting the stretching ratio in both the longitudinal direction and the width direction to 2 times or more and 4.5 times or less.
  • the melting point of the layer with the lowest melting point among the resins constituting the film is used as a reference. It is necessary to perform heat treatment at +10°C or lower.
  • the heat treatment temperature is preferably 226°C or more and 236°C or less.
  • a plasticizer or an elastomer may be added to lower the Young's modulus as long as it does not impede the effects of the present invention.
  • the film for the back plate in the present invention is preferably a polyester film, more preferably a biaxially oriented polyester film, but in that case, temperature-modulated differential scanning calorimetry (temperature-modulated DSC)
  • temperature-modulated DSC temperature-modulated differential scanning calorimetry
  • ⁇ Cp unit: J/(g°C)
  • ⁇ Hg/ ⁇ Cp hereinafter also referred to as "amorphous density A" divided by ⁇ Hg (unit: J/g) is 1.0 or more.
  • ⁇ Hg/ ⁇ Cp is preferably greater than 1.0 and less than 10.0, and the lower limit is more preferably greater than 2.0, particularly preferably greater than 2.5. , the upper limit is more preferably less than 7.0.
  • the reason why bending resistance can be improved by controlling the amorphous density is as follows.
  • a polyester film Since a polyester film is composed of polymer chains, it consists of a crystalline component with relatively high rigidity, a rigid amorphous component, and a movable amorphous component. Due to its heterogeneity, the movable amorphous component includes an agglomerated amorphous component that is relatively rigid due to the aggregation of polymer chains, and a relaxed amorphous component in which the polymer chains are dispersed.
  • the amount of relaxed amorphous components in the polyester film can be determined from the above relationship by subtracting the amount of aggregated amorphous components from the amount of mobile amorphous components.
  • the amount of mobile amorphous components and the amount of aggregated amorphous components can be analyzed by temperature modulation DSC.
  • the specific heat capacity difference ⁇ Cp before and after the glass transition temperature observed between 30° C. and 150° C. in the reversible curve obtained by temperature modulation DSC is proportional to the amount of the mobile amorphous component.
  • the endothermic amount ⁇ Hg observed between 30°C and 150°C in the irreversible curve is the amount of heat required for the agglomerated amorphous component to relax and transform into a relaxed amorphous component, so the agglomerated amorphous component depends on the amount of Note that the values of ⁇ Cp and ⁇ Hg are obtained as the average value of three measurements.
  • the method for controlling ⁇ Hg/ ⁇ Cp within the above range is, for example, as described in steps (1) and (2) below, and in particular, the temperature at the third stage of the heat treatment step and the relaxation rate in the longitudinal and lateral directions are can be controlled by Step (1) Step of stretching 3.7 times to 4.5 times in the transverse stretching direction Step (2) Step of relaxing by heat treatment at 210° C. to 245° C. Furthermore, details of each step will be described below.
  • Step (1) In order to obtain the effect of the present invention regarding the step of stretching 3.7 times or more and 4.5 times or less in the transverse stretching direction, it is important to stretch in three stages, and furthermore, in the first stage It is preferable that the stretching ratios in the second and third stages satisfy the following conditions. 1st stage: 2.0 times or more and 2.5 times or less 2nd stage: ⁇ 1.5 times 3rd stage: ⁇ 1.5 times.
  • Step (2) Regarding the step of heat treatment relaxation at 220°C or higher and 245°C or lower, in order to obtain more significant effects of the present invention, it is important to perform the heat treatment relaxation in three stages. It is preferable that the heat treatment temperature of the stage and third stage and the relaxation rate in the longitudinal direction and the transverse direction satisfy the following conditions. 1st stage: 150°C or more and 245°C or less 2nd stage: 220°C or more and 245°C or less 3rd stage: 100°C or more and 180°C or less Vertical relaxation rate: 1% or more and 8% or less Lateral relaxation rate: 1% or more 8 %below.
  • a polyester film is composed of polymer chains, it is composed of a relatively rigid crystalline component, a rigid amorphous component, and a movable amorphous component. Due to its heterogeneity, the movable amorphous component includes an agglomerated amorphous component that is relatively rigid due to the aggregation of polymer chains, and a relaxed amorphous component in which the polymer chains are dispersed.
  • Polyester film plastically deforms when bent, so when it is left in a folded state for a certain period of time, the polyester film plastically deforms, causing wrinkles, lifting, cracks, etc. to occur in the polyester film. Further, when repeatedly bent, a base point of breakage occurs in the polyester film due to plastic deformation, leading to breakage. From the above, in order to improve the static bending resistance, it is considered preferable to increase the amount of aggregated amorphous components and decrease the amount of relaxed amorphous components.
  • ⁇ Hg which indicates the amount of aggregated amorphous components
  • ⁇ Cp which indicates the amount of mobile amorphous components
  • the image display device in which the back plate film of the present invention is used is preferably flexible, and is preferably a foldable display having a bendable portion with a bending diameter of 1 mm or more and 10 mm or less.
  • a foldable display is a single continuous display that can be folded in half for carrying.
  • the upper limit of the bending diameter is more preferably 8 mm or less, more preferably 6 mm or less, and even more preferably 5 mm or less. If the bending diameter is 10 mm or less, it is possible to reduce the thickness of the folded state. It can be said that the smaller the bending diameter, the better, but the smaller the bending diameter, the more easily creases are formed.
  • the bending diameter is preferably 0.1 mm or more, but may be 1 mm or more.
  • the foldable display may be folded in three or four, or may be a roll-up type called a rollable display, and all of these fall within the scope of the foldable display in the present invention.
  • the elongation at break of the film for a back plate of the present invention is 50% or more in both the longitudinal direction and the width direction.
  • the number of times the flexural breakage is reached is 1000 times or more in both the longitudinal and width directions when evaluated using an MIT bending tester, and it can be repeatedly mounted on a foldable display. It is possible to prevent the film from becoming fatigued and breaking when bent.
  • the elongation at break is 100% or more from the viewpoint of suppressing breakage when repeatedly bent. Note that the higher the elongation at break, the better. Therefore, there is no particular upper limit, but it is sufficient that it is 300% or less in both the longitudinal direction and the width direction.
  • this can be achieved by imparting entanglement and orientation of molecular chains in the higher-order structure of the film to at least one layer of the layer structure of the film constituting the film for the back plate.
  • An effective method is to include a crystalline polyester resin.
  • ⁇ Hm of the crystalline polyester resin is 25 J/g or more.
  • Increasing the entanglement point density can be achieved by increasing the molecular weight of the crystalline resin, that is, by increasing the intrinsic viscosity (also referred to as "IV") of the film.
  • IV intrinsic viscosity
  • the IV of the resin used is preferably 0.65 or more and less than 1.00, more preferably 0.70 or more and less than 0.90, and 0.80 or more and less than 0.90. Most preferably less than Further, from the viewpoint of imparting orientation, the stretching ratios in both the longitudinal direction and the width direction are preferably 3 times or more and 5 times or less. Note that the higher the number of times the bending breakage is reached, the more preferable it is, and therefore there is no particular upper limit, but it is sufficient if it is 100,000 times or less.
  • the film for a back plate of the present invention has an increase in haze ( ⁇ haze) of 2.0% or less when heat treated at 120° C. for 5 hours.
  • ⁇ haze haze
  • the image can be maintained without whitening even when the back plate film is subjected to heat during the processing process when manufacturing an image display device using this film for the back plate.
  • High visibility of the display device can be maintained.
  • ⁇ haze is preferably 2.0% or less, more preferably 1.5% or less, even more preferably 1.0% or less, and most preferably 0.5% or less. Note that the lower limit of ⁇ Haze is zero.
  • Processing here refers to the process of forming a functional layer on the back plate film and adding it to the process before it is commercialized. Examples include a process of applying an adhesive, a process of forming a hard coat layer, a process of vapor depositing a transparent conductive layer, a lamination process of bonding films together, and an annealing process.
  • one example is to control the thermal crystallization heat amount ⁇ Hc determined from DSC to be low.
  • ⁇ Hc is preferably 15 J/g or less, more preferably 10 J/g or less, and most preferably 7 J/g or less.
  • the increase in haze during heat treatment is mainly due to thermal crystallization in which a mobile amorphous component undergoes a phase transition to a crystalline component due to the application of heat, and thermal crystallization can be achieved by controlling ⁇ Hc low.
  • the proportion of movable amorphous crystals decreases, making it difficult to whiten due to heat treatment, so that ⁇ haze can be controlled to be small.
  • a method for reducing ⁇ Hc is to use an amorphous resin such as COP, which does not undergo thermal crystallization, to form an alloy state in which thermal crystallization is inhibited.
  • an amorphous resin such as COP
  • the heat treatment temperature when heat treating the film is preferably a melting point of +7°C or less based on the melting point of the resin that constitutes the layer with the lowest melting point among the layers constituting the film, and the layer with the lowest melting point The melting point is more preferably +5° C.
  • the amount of rigid amorphous is 20% or more.
  • the upper limit of the amount of rigid amorphous is 50% or less from the viewpoint of reducing R40 as described later. Note that the amount of rigid amorphous is determined by the method described in the section (11) ⁇ Cp, ⁇ Hg, and amount of rigid amorphous Xra of the film.
  • the relaxation time of the mobile amorphous phase in TD-NMR (Time domain NMR) measurement after heat treatment at 120°C for 3 minutes is 0.200 ms or less. .
  • the molecular mobility of the mobile amorphous component at 120° C. is evaluated, and the faster the relaxation time, the lower the molecular mobility, and the more difficult it is for thermal crystallization to proceed. In this way, an increase in haze can be suppressed not only by reducing the amount of the mobile amorphous component described above, but also by slowing down the progress of thermal crystallization of the mobile amorphous component.
  • the IV of the film is preferably set to 0.65 or more, more preferably 0.68 or more.
  • the mobility of molecules can be controlled to be low, and the relaxation time of the mobile amorphous amount can be controlled to be low.
  • the lower limit of the relaxation time of the mobile amorphous phase it is practically 0.100 ms or less.
  • the film for a back plate of the present invention is a laminated film in which two or more layers are laminated, and the refractive index in the thickness direction of the layer with the largest refractive index in the thickness direction (such layer is referred to as "layer A") is nA,
  • layer B refractive index in the thickness direction of the layer with the smallest refractive index
  • nA refractive index in the thickness direction of the layer with the smallest refractive index
  • the mechanical strength of the film can be increased by having layer B with a small refractive index in the thickness direction, and the elongation at break can be controlled within the above range. can do.
  • the retardation in the thickness direction can be controlled to be low, and R40 can be controlled within the above-mentioned preferable range.
  • the sum of the thicknesses of the layers having the same refractive index as layer B is as small as possible; It is preferable that the total sum is larger. From the above, it is preferable that the total thickness of the layers having the same refractive index as layer B is 4 ⁇ m or more and 10 ⁇ m or less.
  • the method of controlling the melting point of the constituent resins is not limited, but a method of controlling by adding a copolymer component is preferably used.
  • a method of controlling by adding a copolymer component is preferably used.
  • the melting point can be lowered compared to the case where no copolymerization is performed, and the difference in melting point between the resin constituting layer A and the resin constituting layer B can be reduced. You can attach it.
  • the polyester film used in the present invention is made of a polyester resin in which the terephthalic acid component is 50 mol% or more and 95 mol% or less among the dicarboxylic acid components, and the ethylene glycol component is 50 mol% or more and 95 mol% or less among the diol components. It is preferable to use it in at least one of the layers constituting the film. Further, it is more preferable that the melting point on the lowest temperature side measured by DSC is 240° C. or lower from the viewpoint of promoting orientation relaxation. The melting point at the lowest temperature measured by DSC is more preferably 230°C or lower. Although there is no particular restriction on the lower limit, it is preferably 200°C or higher.
  • a method of increasing the amorphousness of the resin is generally used. Examples include using a polyester resin containing any one of bisphenol A, isosorbate, cyclohexanedicarboxylic acid, and cyclohexanedimethanol.
  • the density of the polyester film is preferably 1.360 g/cc or less from the viewpoint of controlling R40 to a small value. There is no particular lower limit, but it is preferably 1.34 g/cc or more. Examples of methods for reducing the density to 1.360 g/cc or less include forming a film as exemplified above and employing a heat treatment process.
  • the ratio R (r2/r1) satisfies the following formula (2). 1.0 ⁇ R ⁇ 1.8 (2).
  • the methylene group moiety of polyethylene terephthalate has two types of conformations: a gauche structure and a trans structure. Of these two types, the trans structure is more advantageous than the gauche structure in terms of regular arrangement of molecular chains. From this, the gauche-type structure reflects a part where the molecular chains of polyethylene terephthalate are not regularly arranged (hereinafter also referred to as the "amorphous part"), and the trans-type structure reflects a structure in which the molecular chains of polyethylene terephthalate are regularly arranged. are doing.
  • crystalline part a part that forms a crystalline structure
  • amorphous part hereinafter referred to as "orientated part”
  • r1 reflects the trans-type structure originating from the crystalline part
  • r2 reflects the gauche-type structure originating from the amorphous part. Reflects the structure.
  • the crystal structure since it has molecular orientation, a phase difference occurs and the value of R40 tends to increase.
  • the crystallinity of the film is preferably 30% or less.
  • the heat treatment temperature is set to -15°C or higher, with the melting point of the thickest layer being the standard.
  • This is a method in which heat treatment is performed at a temperature below the melting point of +20° C. based on the melting point of the thick layer.
  • resin a constituting layer A and resin b constituting layer B each contain a terephthalic acid component or a naphthalene dicarboxylic acid component among the acid components. In a preferable form, it contains 50 mol% or more and 95 mol% or less, and 50 mol% or more and 95 mol% of the ethylene glycol component among the diol components. In particular, it is preferable to include a terephthalic acid component as an acid component from the viewpoint of controlling R40 to 1000 nm or less.
  • cyclohexanedicarboxylic acid a fluorene derivative, paraxylene glycol, bisphenol A, isosorbate, or cyclohexanedimethanol
  • resin a it is particularly preferable in terms of controlling R40 to 1000 nm or less.
  • resin b the amorphous density A can be controlled to be low.
  • both resin a and resin b it is excellent in thermal dimensional stability and heat resistance reliability tests.
  • 6 mol % or more of isophthalic acid as an acid component.
  • the resins a and b described above are each supplied to a vented twin-screw extruder and melt-extruded. At this time, it is preferable to control the inside of the extruder under a flowing nitrogen atmosphere, with the oxygen concentration being 0.7% by volume or less, and the resin temperature being controlled at 240°C to 320°C. Then, through filters and gear pumps, foreign matter is removed and the extrusion amount is equalized, and in a three-layer merging block with a rectangular laminated section, the resin A layer is placed on the surface layer on both sides, and the resin B layer is placed on the inner layer. They are laminated in this manner and discharged in a sheet form from a T-die onto a cooling drum.
  • the electrostatic application method uses electrodes to which high voltage is applied to bring the cooling drum and resin into close contact with static electricity, the casting method creates a water film between the casting drum and the extruded polymer sheet, and the casting drum temperature is controlled to increase the temperature of the polyester resin.
  • a sheet-shaped polymer is brought into close contact with a casting drum by a method of making the extruded polymer adhere to a temperature lower than the glass transition point, or by a method of combining two or more of these methods, and is cooled and solidified to obtain an unstretched film.
  • a method of applying electrostatic charge is preferably used from the viewpoint of productivity and flatness.
  • the film for a back plate of the present invention is preferably stretched in at least one direction from the viewpoints of heat resistance, dimensional stability, mechanical strength, flatness, and thickness unevenness.
  • the unstretched film is stretched in the longitudinal direction and then stretched in the width direction, or by a sequential biaxial stretching method in which the unstretched film is stretched in the width direction and then stretched in the longitudinal direction. It can be obtained by stretching by a simultaneous biaxial stretching method in which the longitudinal direction and the width direction are stretched almost simultaneously. Further, after biaxial orientation, the film may be further stretched in the longitudinal direction or the width direction.
  • Step (1) Step of stretching 3.7 times to 4.5 times in the transverse stretching direction
  • Step (2) Step of relaxing by heat treatment at 210° C. to 245° C. Furthermore, details of each step will be described below.
  • Step (1) In order to obtain the effect of the present invention regarding the step of stretching 3.7 times or more and 4.5 times or less in the transverse stretching direction, it is important to stretch in three stages, and furthermore, in the first stage It is preferable that the stretching ratios in the second and third stages satisfy the following conditions. 1st stage: 2.0 times or more and 2.5 times or less 2nd stage: ⁇ 1.5 times 3rd stage: ⁇ 1.5 times.
  • Step (2) Regarding the step of heat treatment relaxation at 220°C or higher and 245°C or lower, in order to obtain more significant effects of the present invention, it is important to perform the heat treatment relaxation in three stages. It is preferable that the heat treatment temperature of the stage and third stage and the relaxation rate in the longitudinal direction and the transverse direction satisfy the following conditions. 1st stage: 150°C or more and 245°C or less 2nd stage: 220°C or more and 245°C or less 3rd stage: 100°C or more and 180°C or less Vertical relaxation rate: 1% or more and 8% or less Lateral relaxation rate: 1% or more 8 %below.
  • the stretching speed in step (1) is preferably 500%/min or more and 100,000%/min or less.
  • the second-axis stretching speed is preferably 10,000%/min or less.
  • the preheating temperature is preferably at least -20°C, the glass transition temperature of the resin, and the glass transition temperature of the resin, +20°C, and the stretching temperature is preferably at least the glass transition temperature of the resin, and at most 60°C, the glass transition temperature of the resin.
  • At least one side can be subjected to corona treatment or coated with an easily adhesive layer.
  • a method for providing a coating layer in-line during the film manufacturing process is to uniformly apply a coating layer composition dispersed in water onto a film that has been uniaxially stretched using a metaling wire bar, gravure roll, etc.
  • a method of drying the coating material while stretching is preferred, and in this case, the thickness of the easily adhesive layer is preferably 10 nm or more and 1000 nm or less.
  • various additives such as antioxidants, heat stabilizers, ultraviolet absorbers, infrared absorbers, pigments, dyes, organic or inorganic particles, antistatic agents, nucleating agents, etc. may be added to the adhesive layer. good.
  • the resin preferably used for the easily adhesive layer is preferably at least one resin selected from acrylic resins, polyester resins, and urethane resins from the viewpoint of adhesiveness and handleability. Furthermore, off-annealing under conditions of 90 to 200° C. is also preferably used.
  • a laminated polyester film can be obtained by coextruding using two or more extruders as described above, or a single layer film can be obtained.
  • the laminated structure include an A/B laminated structure in which layer A and layer B are laminated one by one, a multilayer laminated structure in which multiple layers of layer A and layer B are laminated alternately, and a laminated structure in which three or more types of layers are laminated. , can be set as necessary.
  • a static mixer or a feed block is applied, and layer A consisting of the polyester composition of the present invention and layer B consisting of the other polyester composition are merged so that they are alternately laminated, It is preferable that both surface layer portions become layer B.
  • Photoelectric conversion elements used in image display devices using the back plate film of the present invention include cameras that acquire light information in the near-ultraviolet to visible light and near-infrared wavelengths of about 300 nm to 1500 nm, and fingerprint Examples include imaging devices such as authentication sensors, light sensors, and distance sensors. A plurality of photoelectric conversion elements may be arranged in one image display device.
  • the image display device of the present invention light transmitted through the display panel is provided to the photoelectric conversion element disposed at the bottom of the display panel, but the form in which light is transmitted through the display does not impair the performance of the present invention. Any method is fine. For example, the method described in Japanese Patent Publication No. 2021-529411 may be mentioned, but the method is not limited thereto.
  • FIG. 1 is a schematic diagram illustrating an example of an image display device according to the present invention. As shown in FIG. It includes a light emitting element array for image display having a screen area 102 where the image sensor is placed on the back side thereof, and a screen area 103 where no image sensor is placed on the back surface thereof, and a bezel portion 105 where no light emitting element array is placed.
  • the light emitting element array for image display has a transparent material that uses transparent materials for the cathode, the anode, and the light emitting element substrate.
  • It has a light emitting element for image display with high transparency, and a part corresponding to the other screen area 103 may have a light emitting element for image display with low transparency, or a light emitting element for image display with high transparency may be included. It may have a light emitting element.
  • the image sensor 104 can collect off-screen information that has passed through the screen area 102 and has entered, and this image display device can realize full-screen display. .
  • this example an example in which the image sensor 104 is arranged is explained, but in the area corresponding to the screen area 102, there may be a camera with a different viewing angle than the image sensor 104, a fingerprint authentication sensor, a light sensor, a distance sensor, etc. Other photoelectric conversion elements may be arranged.
  • the present inventors found that in the image display device in which the photoelectric conversion element is arranged on the side opposite to the viewer side of the light emitting element array for image display described above, the R40 of the film used as the back plate is 0 nm or more. It has been found that within a range of 1000 nm or less, color unevenness can be significantly suppressed and sensor accuracy can be improved.
  • the mechanism by which the occurrence of color unevenness is suppressed by the above aspect is considered to be as follows.
  • the image display device of the present invention includes at least a polarizing plate, a light emitting element array for image display, a light emitting element array for image display, and a light emitting element array for image display in the order from the viewer's side (the side where the image is displayed) toward the direction of the light emitting element array for image display.
  • This is an image display device equipped with a back plate of an element array and photoelectric conversion elements.
  • polarizing optical elements When a film with birefringence is sandwiched between two optical elements (for example, polarizers, hereinafter referred to as "polarizing optical elements") that have different transmittance of polarized light depending on the in-plane direction, color unevenness can be seen. is widely known.
  • the back plate when light is incident on the surface of the back plate from an oblique direction, the back plate may function as a pseudo polarizing optical element.
  • the optical path for imaging the part will be pseudo-sandwiched between two polarizing optical elements. It will be done. This is thought to be one of the factors causing color unevenness in the camera and a decrease in sensor accuracy. It is thought that color unevenness can be suppressed and sensor accuracy can be improved by having the film used as the back plate within the above-mentioned retardation range.
  • Color unevenness can also be suppressed by reducing the difference in transmittance between S waves and P waves, and the average transmittance of P waves when p-polarized light is incident at an incident angle of 40 degrees and
  • the difference ⁇ T40 from the average transmittance of S waves when s-polarized light is incident is preferably 10% or less, more preferably 7% or less. More preferably, it is 5% or less.
  • the wavelength range for determining ⁇ T40 is 400 to 800 nm.
  • the method for setting ⁇ T40 within this range is not limited, but for example, by applying anti-reflection treatment to the film surface, a low refractive index layer with a refractive index lower than that of the base material is created on the surface layer.
  • a method of controlling the surface structure such as a method of increasing ⁇ T40 to reduce it, is preferably used.
  • the antireflection treatment here refers to laminating a layer with a different refractive index on the formed film by methods such as off-coating or vacuum deposition.
  • a method of depositing magnesium fluoride on the surface layer is preferable. used.
  • the average value of the refractive index in the longitudinal direction and the width direction of the outermost layer of the film (referred to as "bare film" for convenience) before forming the low refractive index layer is n.
  • n' is the refractive index of the low refractive index layer formed on the surface layer of the bare film
  • n/n' is preferably 1.08 or more from the viewpoint of controlling ⁇ T40 within the above range.
  • the refractive index of the low refractive index layer is preferably 1.35 to 1.58, more preferably 1.35 to 1.45, from the viewpoint of increasing transmittance.
  • the thickness of the low refractive index layer is preferably 1 nm to 1 ⁇ m from the viewpoint of not imparting any performance other than optical performance, and preferably from 30 nm to 500 nm from the viewpoint of increasing the transmittance through interference of visible light. is more preferably 60 nm or more and 200 nm or less.
  • the thickness is preferably 60 nm or more and 150 nm or less, and most preferably 85 nm or more and 95 nm or less.
  • the above refractive index range can be achieved by using, for example, an acrylic resin as the easily adhesive resin layer.
  • the refractive index can also be controlled low by using silica fine particles having internal voids (hereinafter also referred to as hollow silica particles) as particles added as a lubricant to the low refractive index layer. Therefore, it is preferably used.
  • the average particle diameter of the particles added as a lubricant is preferably 40 nm or more and 100 nm or less, more preferably 40 nm or more and 60 nm or less. If the average particle size is less than 40 nm, the refractive index will not be lowered sufficiently, and if it is larger than 100 nm, the film may become white or the surface may become uneven.
  • ⁇ T40 is 2% or more.
  • the photoelectric conversion element used in the present invention preferably has a diagonal angle of view of 60 to 140 degrees, which is the maximum angle at which external light irradiated to the image display device can be collected and identified. It is more preferably 70° or more, further preferably 75° or more, and since productivity may decrease if the diagonal angle of view becomes too high, the upper limit is preferably 140° or less, and more preferably 130°.
  • the angle is preferably 120° or less, more preferably 120° or less. Due to the above-mentioned mechanism for suppressing the occurrence of color unevenness, a photoelectric conversion element having a particularly large diagonal angle of view can be used in an image display device, and a wider range of image information can be accurately collected and identified.
  • the number of pixels is preferably 7 million pixels or more in order to take a clear image, and more preferably 12 million pixels or more.
  • the upper limit is not limited, but from the viewpoint of productivity, the upper limit is preferably 48 million pixels or less.
  • composition of polyester The film was hydrolyzed with alkali, each component was analyzed by gas chromatography or high performance liquid chromatography, and the composition ratio was determined from the peak area of each component. Dicarboxylic acid constituents and other constituents were measured by high performance liquid chromatography.
  • the measurement conditions can be analyzed by a known method, and an example of the measurement conditions is shown below. Note that the measurement was carried out after inorganic particles were separated by filtration.
  • Equipment Shimadzu LC-10A Column: YMC-Pack ODS-A 150 x 4.6mm S-5 ⁇ m 120A Column temperature: 40°C Flow rate: 1.2ml/min Detector: UV 240nm The diol components and other components can be quantitatively analyzed by a known method using gas chromatography. An example of measurement conditions is shown below.
  • Flow rate Nitrogen 25ml/min Detector: FID.
  • Young's modulus, elongation at break A strip-shaped sample having a length of 150 mm and a width of 10 mm was cut out from the central part of the film in the longitudinal direction and the width direction of the film. Young's modulus and elongation at break were measured using a tensile tester according to the method specified in JIS K7127 (1999). The measurements were carried out under the following conditions, and the measurements were made for each of 10 samples, and the average value was determined.
  • Measuring device Automatic film strength and elongation measuring device “Tensilon” (registered trademark) AMF/RTA-100 manufactured by Orientech Co., Ltd. Sample size: width 10mm x sample length 50mm
  • Loop Stiffness Tester (registered trademark) manufactured by J.D. Co., Ltd., is placed on a chuck 301 so that the circumference becomes a ring with a circumference of 50 mm.
  • the probe is lowered from above the ring at a displacement speed of approximately 3.5 mm/sec, and the load is measured when the displacement amount 302 reaches 10 mm after contact with the ring, and the obtained value is measured in the longitudinal direction of the film.
  • the bending stiffness (mN) was taken as .
  • a rectangular sample with a length corresponding to the longitudinal direction of the film to be measured of 5 mm and a length corresponding to the width direction of the film to be measured is 100 mm was prepared, and the obtained value was measured in the same manner.
  • the bending stiffness (mN) in the width direction was taken as the width direction bending stiffness (mN).
  • the bending stiffness in the longitudinal direction of the film and the bending stiffness in the width direction of the film were each measured five times, and the average value of all these values was taken as the bending stiffness (mN).
  • Refractive Index A 3.5 cm x 3.5 cm piece was cut out from the center of the film in the width direction and used as a measurement sample. Using sodium D line (wavelength 589 nm) as a light source and methylene iodide as a mounting liquid, the refractive index in the longitudinal direction, width direction, and thickness direction of the film was measured at 25°C using an Abbe refractometer 4T (manufactured by Atago Co., Ltd.). was measured in accordance with JIS K7142 (2014) A method, and the refractive index in the longitudinal direction of the film was determined as nx, the refractive index in the width direction as ny, and the refractive index in the thickness direction as nz. The test piece placed on the film during measurement had a refractive index of 1.74. When evaluating a laminated film, each layer was peeled off and measured. The measurement was performed five times, and the average value was used.
  • ⁇ Haze Measurement was performed using a haze measuring device (manufactured by Nippon Denshoku Kogyo, NDH5000). A square sample having a length of 50 mm and a width of 50 mm was cut out from the center of the film in the width direction. Haze measurement was performed according to the method specified in JIS K7136 (2000). The haze values of the cut samples were determined under the following conditions and were defined as (haze 1) and (haze 2), respectively. By substituting these values into equation (4), ⁇ haze was calculated. The measurement was performed five times, and the average value was used. (Haze 1): Haze value when a cut sample is measured as it is.
  • Crystallinity Xc (%) ( ⁇ Hm- ⁇ Hc)/ ⁇ Hm0 ⁇ 100 Formula (5).
  • ⁇ Measurement method Temperature modulation DSC method
  • ⁇ Measurement device Q1000 manufactured by TA Instruments
  • Data processing “Universal Analysis 2000” manufactured by TA Instruments
  • ⁇ Atmosphere Nitrogen flow (50mL/min)
  • ⁇ Specific heat calibration Sapphire ⁇ Temperature range: 0 to 150°C ⁇ Heating rate: 2°C/min
  • Sample amount 5mg - Sample container: aluminum standard container The rigid amorphous amount Xra of the film was calculated using equation (6).
  • the measurement was performed with the slow axis direction of the film perpendicular to the s-polarized light direction.
  • the slit was set to 2 nm
  • the gain was set to 2
  • the scanning speed was set to 600 nm/min
  • the sampling pitch was set to 1 nm
  • a polarizer manufactured by Kenneth Co., Ltd., thin S size polarizing film
  • the measurement was started after the film was placed in the device and kept at the set temperature of 120° C. for 3 minutes.
  • the obtained attenuation curve was fitted by the least squares method using a Gaussian function and an exponential function to separate it into three different components.
  • the lifetime of each component is designated as T1, T2, and T3 from the shortest to the lowest.
  • T1 corresponds to the lifetime of the crystalline component
  • T2 corresponds to the lifetime of the rigid amorphous component
  • T3 corresponds to the lifetime of the movable amorphous component.
  • FIG. 4 shows a schematic diagram of a visibility test in a model device configuration of an image display device in which a photoelectric conversion element is arranged below the image display surface.
  • Film 201 cut out to 50 mm x 50 mm was stacked on polarizing plate 401 (manufactured by Kennis Co., Ltd., polarizing film thin S size, transmittance 0.43, polarization rate 0.9999, product code 1-115-0820). It was used as a sample.
  • the sample was supported with the polarizing plate 401 side facing down, and was installed horizontally on a surface light source 405 (manufactured by Tritech Co., Ltd., Treviewer A4-100), and a camera built-in device 402 (Samsung "Galaxy") (Registered Trademark) S10) ultra-wide-angle lens 403 (diagonal angle of view 122°), and the built-in camera device 402 was set up so that the optical axis of the camera lens was perpendicular to the film 201. . At this time, the photograph was taken so that the entire photographing angle of view 404 was within the range illuminated by the surface light source 405.
  • the average value of the stiffness and fast axis direction values obtained 10 times in total is calculated. Supportability was evaluated based on the following criteria. Note that supportability was judged to be acceptable for A and B, which can be used in image display devices. A: The amount of slack was less than 10 mm, indicating good support. B: The amount of slack was 10 mm or more and less than 20 mm, and the supportability was at a level that caused no practical problems. C: The amount of slack was 20 mm or more, and the support was insufficient.
  • This measurement was repeated five times for each of the film sample cut out with the longitudinal direction of the film as the long side and the film sample cut out with the width direction as the long side, and the arithmetic average value was calculated and used as the recovery angle.
  • Angle 403 was read with 0° being a completely folded state and 180° being a state in which the film had recovered to its original unfolded state before folding.
  • the measurement result with the smaller recovery angle was used to evaluate the bending resistance according to the following criteria.
  • the bending resistances A and B are at a level that can be suitably used as a foldable display.
  • A: The recovery angle was 160° or more, and no wrinkles or lifting phenomenon occurred due to bending when mounted on a foldable display.
  • the recovery angle is 140° or more and less than 160°, and there is no problem in practical use as a foldable display.
  • C The recovery angle is less than 140°, and although it is practical as an image display device, it is not suitable for practical use as a foldable display.
  • the film sample was cut into a rectangle of 110 mm (test direction) x 15 mm wide, and tested using an MIT bending tester (testing machine No. 702 manufactured by Mize Co., Ltd.) according to JIS P8115 (2001).
  • a bending test was conducted with a load of 1,000 g, a bending angle of 135° left and right (R: +135°, L: -135°), a bending speed of 175 times/min, and a chuck tip R: 0.38 mm, and the film sample was broken.
  • the number of bending times at that time was defined as the number of times the bending break was reached.
  • the test was conducted three times each for samples taken with the MD direction as the test direction and samples taken with the TD direction as the test direction, and the arithmetic mean value was determined.
  • the following evaluation is performed using the MD direction or the TD direction, whichever has a larger number of bending failures, and the repeated bending resistance A and B are at a level that can be suitably used as a foldable display.
  • B The number of bending breaks reached is 1000 or more and less than 2000 times, and there is no problem in practical use as a foldable display.
  • C The number of bending failures reached is less than 1000 times, and although it is practical as an image display device, it is not suitable for practical use as a foldable display.
  • polyester resin used for film formation was prepared as follows. Note that the expression of mol% is based on the total amount of each dicarboxylic acid component and diol component being 100 mol%. Further, the total amount of dicarboxylic acid components and the total amount of diol components are equal in molar ratio.
  • terephthalic acid component is 92 mol%
  • isophthalic acid component is 8 mol%
  • diol components ethylene glycol component is 80 mol%
  • 1,4-cyclohexanedimethanol component is 10 mol%
  • isosorbate component is 10 mol%.
  • a copolymerized polyester resin (intrinsic viscosity: 0.80).
  • polyester B A copolymerized polyester resin (proper Viscosity: 0.80).
  • terephthalic acid component is 88 mol%
  • isophthalic acid component is 12 mol%
  • ethylene glycol component is 80 mol%
  • 1,4-cyclohexanedimethanol component is 10 mol%
  • isosorbate component is 10 mol%.
  • a copolymerized polyester resin (intrinsic viscosity: 0.80).
  • terephthalic acid component is 92 mol%
  • isophthalic acid component is 8 mol%
  • diol components ethylene glycol component is 73 mol%
  • 1,4-cyclohexanedimethanol component is 16 mol%
  • isosorbate component is 11 mol%.
  • a copolymerized polyester resin (intrinsic viscosity: 0.80).
  • polyester E A copolymerized polyester resin (proper Viscosity: 0.80).
  • polyester F A copolymerized polyester resin (intrinsic viscosity: 0.80) containing 88 mol% of a terephthalic acid component as a dicarboxylic acid component, 12 mol% of an isophthalic acid component, and 100 mol% of an ethylene glycol component as a diol component.
  • polyester G A polyester resin (intrinsic viscosity: 0.80) containing 100 mol% of a terephthalic acid component as a dicarboxylic acid component and 100 mol% of an ethylene glycol component as a diol component.
  • polyester H A copolymerized polyester resin (intrinsic viscosity: 0.80) containing 95 mol% of a terephthalic acid component as a dicarboxylic acid component, 5 mol% of an isophthalic acid component, and 100 mol% of an ethylene glycol component as a diol component.
  • terephthalic acid component is 92 mol%
  • isophthalic acid component is 8 mol%
  • diol components ethylene glycol component is 80 mol%
  • 1,4-cyclohexanedimethanol component is 10 mol%
  • isosorbate component is 10 mol%.
  • a copolymerized polyester resin (intrinsic viscosity: 0.77).
  • polyester J A copolymerized polyester resin (proper Viscosity: 0.77).
  • terephthalic acid component is 92 mol%
  • isophthalic acid component is 8 mol%
  • diol components ethylene glycol component is 80 mol%
  • 1,4-cyclohexanedimethanol component is 10 mol%
  • isosorbate component is 10 mol%.
  • a copolymerized polyester resin (intrinsic viscosity: 0.69).
  • polyester L A copolymerized polyester resin (proper Viscosity: 0.69).
  • polyester M A copolymerized polyester resin containing 92 mol% of terephthalic acid component as dicarboxylic acid component, 8 mol% of isophthalic acid component, 90 mol% of ethylene glycol component as diol component, and 10 mol% of isosorbate component (intrinsic viscosity: 0.80 ).
  • Polymer N A copolyester resin (intrinsic viscosity: 0.80) containing 100 mol% of a terephthalic acid component as a dicarboxylic acid component, 90 mol% of an ethylene glycol component as a diol component, and 10 mol% of an isosorbate component.
  • polyester O As dicarboxylic acid components, 82 mol% of terephthalic acid component, 8 mol% of isophthalic acid component, 10 mol% of 2,6-naphthalene dicarboxylic acid component, 90 mol% of ethylene glycol component as diol component, and 1,4-cyclohexane dicarboxylic acid component.
  • a copolyester resin containing 10 mol% of methanol component (intrinsic viscosity: 0.80).
  • terephthalic acid component is 90 mol%
  • 2,6-naphthalene dicarboxylic acid component is 10 mol%
  • ethylene glycol component is 90 mol%
  • 1,4-cyclohexanedimethanol component is 10 mol%.
  • Copolymerized polyester resin (intrinsic viscosity: 0.80).
  • the easily adhesive coating layer to be laminated on the surface of the film was prepared as follows.
  • Resin solution (a): Acrylic resin solution copolymerized with 64% by mass of methyl methacrylate, 30% by mass of ethyl acrylate, 5% by mass of acrylic acid, and 1% by mass of acrylonitrile.
  • Crosslinking agent (b): Methylol-based melamine crosslinking agent.
  • Particles (c): An aqueous dispersion of collodyl silica particles with a particle diameter of 60 nm.
  • Fluorine surfactant (d): “Megafac” (registered trademark) F-444 manufactured by DIC Corporation These were mixed at a solid content mass ratio of (a)/(b)/(c)/(d) 30 parts by mass/8 parts by mass/2 parts by mass/0.6 parts by mass.
  • the refractive index after drying is 1.50.
  • a color coating liquid 70 parts by mass of a color coating liquid, acid components terephthalic acid (50 mol%), isophthalic acid (49 mol%), 5-sodium sulfoisophthalic acid (1 mol%), diol components ethylene glycol (55 mol%), neo A solution containing 30 parts by mass of an aqueous dispersion of a polyester resin consisting of an acidic content of pentyl glycol (44 mol%), polyethylene glycol (molecular weight: 4000) (1 mol%), and a diol component.
  • Fluorine surfactant (d): “Megafac” (registered trademark) F-444 manufactured by DIC Corporation The solid content mass ratio of these is (e) / (b) / (f) / (g) / (h) / (d) 47 parts by mass / 19 parts by mass / 20 parts by mass / 4.9 parts by mass / 0 They were mixed at a ratio of .7 parts by mass/0.1 parts by mass.
  • the refractive index after drying is 1.57.
  • silica slurry consisting of 144 parts by mass of hollow silica particles having an outer shell with an average primary particle diameter of 50 nm and a porosity of 30% ("Surulia” (registered trademark) manufactured by Catalysts & Chemicals Co., Ltd.) and 560 parts by mass of isopropyl alcohol was prepared. (X3) was prepared.
  • 720 parts by mass of treatment liquid (X1), 720 parts by mass of treatment liquid (X2), 700 parts by mass of silica slurry (X3), 360 parts by mass of methanol, 4272 parts by mass of isopropyl alcohol, and 713 parts by mass of polypropylene glycol monoethyl ether were stirred and mixed. Thereafter, 15 parts by mass of acetoacetoxyaluminum was added as a curing catalyst and stirred and mixed again to prepare a paint having a refractive index of 1.45 after drying and curing.
  • the prepared paint was applied with a microgravure coater, dried at 80°C, and then heat-treated at 130°C to harden the coating layer to form an off-coat layer with a thickness of about 0.1 ⁇ m.
  • the refractive index of this off-coat layer is 1.45.
  • This unstretched film was stretched 3.2 times in the longitudinal direction at 95°C, and then cooled once.
  • both sides of this uniaxially stretched film were subjected to corona discharge treatment, the wet tension of the film was set to 55 mN/m, the easy-adhesion coating layer listed in Table 1 was applied, and then the film was stretched in stages in the width direction to obtain a total After stretching 3.8 times, it was heat-set in three stages at a maximum temperature of 228°C, and then subjected to a 2% relaxation treatment in the longitudinal and width directions at 150°C to obtain a film with a thickness of 20 ⁇ m.
  • the stacked thickness of the polyester B layer was 4.0 ⁇ m.
  • the thickness of the coating layer after drying was 80 nm.
  • Tables 2, 3 and 4 were excellent in visibility, film formation stability, bending resistance, number of times reaching bending break, and heat resistance, but the thin film thickness The support was slightly inferior.
  • Example 2 An unstretched film was produced in the same manner as in Example 1. This unstretched film was stretched 3.2 times in the longitudinal direction at 95° C., and then cooled once. Next, both sides of this uniaxially stretched film were subjected to corona discharge treatment, the wet tension of the film was set to 55 mN/m, the easy-adhesion coating layer listed in Table 1 was applied, and then the film was stretched in stages in the width direction to obtain a total After stretching 3.8 times, it was heat-set in three stages at a maximum temperature of 228°C, and then subjected to a 2% relaxation treatment at 150°C in the longitudinal and width directions to obtain a film with a thickness of 40 ⁇ m.
  • the laminated thickness of the polyester B layer was 8.0 ⁇ m.
  • the thickness of the coating layer after drying was 80 nm.
  • the evaluation results are shown in Tables 2, 3 and 4, and were excellent in visibility, film formation stability, bending resistance, number of times reaching bending breakage, heat resistance, and supportability.
  • Example 3 An off-coat layer was applied to a film produced in the same manner as in Example 2.
  • the evaluation results are shown in Tables 2, 3 and 4, and in addition to being excellent in visibility, film formation stability, bending resistance, number of times reaching bending break, heat resistance, and supportability, The value was also lower than that of Example 2.
  • Examples 4 to 9 A film having the thickness shown in Table 1 was obtained in the same manner as in Example 1 by setting the composition and film forming conditions as shown in Table 1, and adjusting the coating thickness as appropriate.
  • the thickness of the coating layer after drying was 80 nm in Examples 4, 5, 6, 8, and 9, and 92 nm in Example 7.
  • R40 and bending rigidity increased, and camera visibility and bending resistance tended to deteriorate.
  • the amorphous density A decreased, resulting in poor flexibility.
  • the refractive index of the easy-adhesive formulation of the surface layer increased, ⁇ T40 increased, resulting in poor camera visibility.
  • the total thickness of layer B was less than 4.0 ⁇ m, the stability of film formation was somewhat poor, and film tearing may occur during film formation.
  • Example 10 to 17 A film having the thickness shown in Table 1 was obtained in the same manner as in Example 1, with the composition and film forming conditions as shown in Table 1. Samples in which the heat treatment temperature was lower than the melting point of the inner layer resin and had a relatively low nA-nB of 0.02 had relatively poor camera visibility. On the other hand, when the heat treatment temperature was higher than the melting point of the inner layer resin, the ⁇ haze value was slightly inferior. Samples with poor elongation at break had slightly inferior results in the number of times they reached bending break. When the surface layer and inner layer of the film did not contain isosorbate and cyclohexanedicarboxylic acid, the amorphousness decreased and the camera visibility and bending resistance were slightly inferior. When it was contained only in the surface layer of the film, the bending resistance was slightly inferior, and when it was contained only in the inner layer of the film, camera visibility was slightly inferior.
  • Example 18-21 A film having the thickness shown in Table 1 was obtained in the same manner as in Example 1, with the composition and film forming conditions as shown in Table 1.
  • Example 17 in which the copolymerization amount of the isophthalic acid component of the dicarboxylic acid component in the inner layer was 5 mol %, the melting point of the resin in the inner layer was high and the difference in melting point between the resin in the inner layer and the resin in the surface layer was small, so the orientation was relaxed by heat treatment. It was difficult to progress, resulting in slightly inferior visibility.
  • the resin IV was low and the film IV was low, resulting in slightly inferior film forming stability and ⁇ haze values.
  • Example 22 A film having the thickness shown in Table 1 was obtained in the same manner as in Example 1, with the composition and film forming conditions as shown in Table 1. The samples obtained by thinning the film had low bending rigidity and slightly poor supportability.
  • Example 23 An unstretched film was produced in the same manner as in Example 1. This unstretched film was stretched in the longitudinal direction under the conditions listed in Table 1-2, and then cooled once. Next, both sides of this uniaxially stretched film were subjected to corona discharge treatment, the wet tension of the film was set to 55 mN/m, the easy-adhesion coating layer listed in Table 1 was applied, and then the film was stretched in stages in the width direction to obtain a total After stretching 3.8 times, it was heat-set in three stages at a maximum temperature of 228°C, and then subjected to a 2% relaxation treatment at 150°C in the longitudinal and width directions to obtain a film with a thickness of 40 ⁇ m.
  • the total stacked thickness of the layers made of polyester B was 8.0 ⁇ m.
  • the thickness of the coating layer after drying was 80 nm.
  • the evaluation results are shown in Tables 2 to 4, and the film was excellent in film formation stability, number of times reaching flexural breakage, heat resistance, and supportability, but the result was that it did not contain the 1,4-cyclohexanedimethanol component. , visibility and bending resistance were slightly inferior.
  • Example 24, 25 An unstretched film was produced in the same manner as in Example 1. This unstretched film was stretched in the longitudinal direction under the conditions listed in Table 1-2, and then cooled once. Next, corona discharge treatment was applied to both sides of this uniaxially stretched film, the wet tension of the film was set to 55 mN/m, and the easy-adhesion coating layer listed in Table 1-2 was applied, and then the film was stretched stepwise in the width direction. After stretching to a total of 3.8 times, it was heat-set in three stages at a maximum temperature of 228°C, and then relaxed by 2% in the longitudinal and width directions at 150°C to obtain a film with a thickness of 40 ⁇ m. Ta.
  • the total stacked thickness of the layers made of polyester B was 8.0 ⁇ m.
  • the thickness of the coating layer after drying was 80 nm.
  • the evaluation results are shown in Tables 2 to 4, and in Example 24 containing naphthalene dicarboxylic acid as a copolymerization component and Example 25 containing PEI, visibility, film forming stability, and bending resistance were It was excellent in the number of times it reached flexural breakage, heat resistance, and supportability.
  • Example 26 A film having the thickness shown in Table 1 was obtained in the same manner as in Example 1, with the composition and film forming conditions as shown in Table 1. In addition, since the stretching process was not performed, the coating thickness was made thinner than that in Example 1 when applying the easy-adhesive layer, and the thickness of the coated layer after drying was adjusted to 80 nm. Although the film having the olefin resin component had a low R40, the elongation at break was low and the number of times the film reached flexural breakage was slightly inferior.
  • the back plate film of the present invention When the back plate film of the present invention is used in an image display device, normal image information can be collected and recognized by the photoelectric conversion element installed below the image display surface, and the film has extremely high industrial applicability. expensive.
  • the back plate film of the present invention can be used as a screen protection film used for general displays, a polarizer protection film used for liquid crystal displays and organic EL displays, a touch panel base film forming a transparent conductive layer, or a film used for projecting holograms. It can also be suitably used as a film.
  • Image display device 102 Screen area where the image sensor is placed on the back side of the image display surface 103: Screen area where the image sensor is not placed on the back side of the image display surface 104: Image sensor 105: Bezel portion 201: Film (back plate) 202: Fast axis 203: Vertical axis 204: Incident angle 205: Light beam 301: Chuck of loop stiffness tester 302: Displacement amount 401: Polarizing plate 402: Built-in camera device 403: Ultra wide-angle lens 404: Shooting angle of view 405: Surface light source 501: Bending direction 502: Center part of the film 503: Angle formed by the film sample

Abstract

The present invention addresses the problem of providing a film for a back face plate, the film being used for an image display apparatus capable of acquiring normal image information in a photoelectric conversion element behind an image display face. The spirit of the present invention is to provide a film for a back face plate, the flim being used for an image display apparatus in which a polarization plate, an image display light-emitting element array, a back face plate, and a photoelectric conversion element are mounted in this order from the viewer side, wherein a phase difference value obtained when light having a wavelength of 590 nm enters, along a plane including a fast axis of the film and the normal axis with respect to the film surface, the film at an incident angle of 40° with the normal axis as reference 0° is 0-1000 nm. The spirit of the present invention is also to provide a polyester film preferably used to the film for a back face plate.

Description

背面プレート用フィルムおよびポリエステルフィルムならびに該背面プレート用フィルムまたはポリエステルフィルムが搭載された画像表示装置およびデバイスBack plate film and polyester film, and image display devices and devices equipped with the back plate film or polyester film
 本発明は画像表示用発光に用いられる背面プレート用フィルム、ポリエステルフィルム、画像表示装置、および画像表示装置を有するデバイスに関する。 The present invention relates to a back plate film used for light emission for image display, a polyester film, an image display device, and a device having the image display device.
 表示端末の発展に伴い、画像表示装置では、小型であること、薄型であること、軽量であること等が求められている。 With the development of display terminals, image display devices are required to be small, thin, and lightweight.
 有機発光表示装置に代表される電界発光表示装置は、自体発光表示装置であって、液晶表示装置とは異なり別途の光源が不要であり、薄型軽量化が容易であり、色相具現、応答速度、視野角、コントラスト比にも優れており、表示装置へ応用されている。 Electroluminescent display devices, typified by organic light emitting display devices, are self-luminous display devices, and unlike liquid crystal display devices, do not require a separate light source, can be easily made thin and lightweight, and have excellent hue reproduction, response speed, It also has excellent viewing angles and contrast ratios, and is used in display devices.
 一方で、表示装置が小型化されるにつれ、表示装置は大きな画面である(表示領域が広い)ことが望まれ、表示装置における表示領域以外の面積の縮小化も求められ、表示端末における全画面表示が注目されている。 On the other hand, as display devices become smaller, it is desired that the display device has a larger screen (wider display area), and the area other than the display area of the display device is also required to be reduced. Display is attracting attention.
 また一方で、スマートホンやタブレット端末では、写真を撮影して記録に残したり、仲間と共有したり、といったニーズからカメラが設けられることが多い。このような端末では、カメラは背面側のみならず、画像表示面側にも設けられることがある。 On the other hand, smartphones and tablet devices are often equipped with cameras for the purpose of taking photos, keeping records, and sharing them with friends. In such terminals, a camera may be provided not only on the back side but also on the image display surface side.
 画像表示面側にカメラを配置する場合は、ほとんどはスロット又は開孔の方式である。すなわち、画像表示面側に外界からの光をカメラレンズに入射させるための孔またはスロットが設けられる。撮影時には、外部からの光線はかかるスロット又は開孔を通過して画像表示面の下に配置されたカメラに入射される。こうしたスロット又は開孔が存在する領域は、非表示領域であることから、スロット又は開孔のない画像表示装置の開発が進められている(例えば、特許文献1)。 When a camera is placed on the image display surface side, most cases use a slot or opening method. That is, a hole or slot is provided on the image display surface side to allow light from the outside world to enter the camera lens. During imaging, light rays from the outside pass through such slots or apertures and are incident on a camera located below the image display surface. Since the area where such slots or openings are present is a non-display area, development of an image display device without slots or openings is underway (for example, Patent Document 1).
 また、表示領域の外郭部である非表示領域に該当するベゼル領域の縮小や、複数の画像表示装置を折りたたみ式で開閉できるように構成するフォルダブル表示装置の開発によって、大画面での表示の実現と端末の小型化及び軽量化が検討されている。これらの開発において、反っても表示性能を維持できる薄膜でフレキシブルな画像表示装置が提案されており、しかし、かかる画像表示装置は薄すぎるため、折り曲げ時に復元ができなくなったり、折り目が固定されたりすることがある。そこで、これを支持し、折り曲げ時の曲率を適正な範囲に維持するなどの目的のために、バックプレートをフレキシブル基板の下部に配置して用いているそのようなバックプレートとしては、ステンレス鋼のような金属製のものやポリメチルメタクリレート、ポリカーボネート、ポリビニルアルコール、ポリエチレンテレフタレートといったプラスチック製のものが知られている(例えば、特許文献2)。また、プラスチック製のフィルムにおいては特定の部材(偏光板等)との組み合わせにより色ムラや虹ムラの発生があることが知られており、様々な対策がなされている(例えば、特許文献3~5)。 Furthermore, by reducing the bezel area, which corresponds to the non-display area that is the outer part of the display area, and by developing a foldable display device that allows multiple image display devices to be opened and closed in a foldable manner, it is possible to improve display on large screens. Realization and miniaturization and weight reduction of terminals are being considered. In these developments, thin-film and flexible image display devices that can maintain display performance even when warped have been proposed. However, such image display devices are so thin that they cannot be restored when folded, or the creases are fixed. There are things to do. Therefore, in order to support the flexible substrate and maintain the curvature within an appropriate range during bending, a back plate is placed below the flexible substrate.The back plate is made of stainless steel. Those made of metal, such as, and those made of plastic, such as polymethyl methacrylate, polycarbonate, polyvinyl alcohol, and polyethylene terephthalate, are known (for example, Patent Document 2). In addition, it is known that plastic films can cause color unevenness or rainbow unevenness depending on the combination with specific components (polarizing plates, etc.), and various countermeasures have been taken (for example, Patent Document 3 5).
特表2021-511649号公報Special Publication No. 2021-511649 特開2021-107918号公報JP 2021-107918 Publication 特開2022-133016号公報Japanese Patent Application Publication No. 2022-133016 特許第6862654号明細書Patent No. 6862654 specification 特許第6950731号明細書Patent No. 6950731 specification
 しかし、特定のプラスチックフィルムを背面プレート用フィルムとして用いた場合に、スロットまたは開孔を設けないで画像表示面側に設置されたカメラにて取得された画像には、虹状の色むらが生じるという問題が生じることが明らかとなった。このような色むらの発生は画質の低下につながる他、カメラの代わりに指紋認証センサー、光線センサー、距離センサーなどの他の光電変換素子を用いた場合に、得られる情報の質の低下といった問題を引き起こす。このような色ムラの改善として、特許文献3の技術のようにカメラとプラスチックフィルムとの間に偏光解消部材を挿入することで解消するが、液晶材料を用いたり、複雑な凹凸パターンを形成したりする必要があるため、透過率が低下してしまい、得られる情報の質の低下といった問題を引き起こす。 However, when a specific plastic film is used as a film for the back plate, rainbow-like color unevenness occurs in images captured by a camera installed on the image display surface without slots or holes. It became clear that a problem would arise. The occurrence of such color unevenness not only leads to a decrease in image quality, but also causes problems such as a decrease in the quality of information obtained when other photoelectric conversion elements such as a fingerprint authentication sensor, light sensor, distance sensor, etc. are used instead of a camera. cause. Such color unevenness can be improved by inserting a depolarizing member between the camera and the plastic film as in the technology of Patent Document 3, but it is also possible to solve this problem by using a liquid crystal material or forming a complicated uneven pattern. Because it is necessary to do so, the transmittance decreases, causing problems such as a decrease in the quality of the information obtained.
 また、特許文献4に記載されているフィルムでは位相差を低く制御することによって、特許文献5に記載されているフィルムでは位相差を高く制御することによって、液晶表示装置に使用した際の色むらを抑制することが記載されている。しかし背面プレートとして用いた際の色ムラ解消についての知見がないばかりでなく、耐熱性や耐屈曲性の課題がある。特に特許文献4に記載のフィルムはもろく、特許文献5に記載のフィルムは位相差を高くするために、異方性が強くてハンドリングが困難であり、またフィルム厚みが厚いため、耐屈曲性に課題がある。 Furthermore, by controlling the retardation to be low in the film described in Patent Document 4, and by controlling the retardation to be high in the film described in Patent Document 5, color unevenness when used in a liquid crystal display device can be improved. It has been described that it suppresses However, not only is there no knowledge of how to eliminate color unevenness when used as a back plate, but there are also problems with heat resistance and bending resistance. In particular, the film described in Patent Document 4 is brittle, and the film described in Patent Document 5 has strong anisotropy and is difficult to handle due to the high retardation, and the film is thick, so its bending resistance is poor. There are challenges.
 そこで、本発明の課題は、偏光解消部材を用いず、なおかつ上記した色むらを解消することにあり、画像表示用発光素子アレイの視認者側とは反対の側に配置されたカメラ等の光電変換素子であっても撮像品質に優れた画像表示装置を提供することである。また好ましくは、フレキシブルな画像表示装置に用いるための画像表示装置を提供することである。 Therefore, an object of the present invention is to eliminate the above-mentioned color unevenness without using a depolarizing member. An object of the present invention is to provide an image display device with excellent imaging quality even when using a conversion element. It is also preferable to provide an image display device for use in a flexible image display device.
 上記課題を解決するための、本発明の要旨は次のとおりである。 The gist of the present invention for solving the above problems is as follows.
 すなわち、以下のとおりである。
[1]視認者の側からみて、偏光板と、画像表示用発光素子アレイと、背面プレートと、光電変換素子とが、この順に搭載された画像表示装置に用いられる背面プレート用フィルムであって、フィルムの進相軸と、フィルム面に対する垂直軸とを含む面に沿って、垂直軸を基準0°として入射角40°で波長590nmの光線を入射させて求まる位相差値が0nm以上1000nm以下である背面プレート用フィルム。
[2]二軸配向ポリエステルフィルムをその構成要素のひとつとして含む[1]に記載の背面プレート用フィルム。
[3]前記二軸配向ポリエステルフィルムは、1層のフィルムまたは複数の層が積層されたフィルムであり、層を構成するポリエステル樹脂の全ジカルボン酸成分のうちイソフタル酸成分が6モル%以上用いられたポリエステル樹脂の層を少なくとも1層有する、[2]に記載の背面プレート用フィルム。
[4]前記二軸配向ポリエステルフィルムを構成するポリエステルは、ナフタレンジカルボン酸、シクロヘキサンジカルボン酸、フルオレン誘導体、パラキシレングリコール、ビスフェノールA、イソソルベート、シクロヘキサンジメタノール、ならびに、これらのエステル形成性誘導体からなる群から選ばれる少なくともひとつが重合または共重合されたポリエステル、あるいはポリエーテルイミドを含有したポリエステルである、前記[2]に記載の背面プレート用フィルム。
[5]結晶化度が30%以下、剛直非晶量が20%以上50%以下である前記[2]に記載の背面プレート用フィルム。
[6]2層以上の層が積層されたフィルムであり、厚み方向屈折率の最も大きい層の厚み方向屈折率をnA、厚み方向屈折率の最も小さい層の厚み方向屈折率をnBをとしたとき、下式(1)を満たす、[1]に記載の背面プレート用フィルム。
nA-nB ≧ 0.02 (1)
[7]120℃にて5時間熱処理した時のヘイズの増加量(Δヘイズ)が0%以上2.0%以下である、[1]に記載の背面プレート用フィルム。
[8]前記二軸配向ポリエステルフィルムは、120℃、3分の熱処理後のTD-NMR測定での可動非晶相の緩和時間が0.200ms以下である[2]に記載の背面プレート用フィルム。
[9]フィルムを構成する層のうち、最も厚みの厚い層のフーリエ変換型赤外分光(FT-IR)スペクトルにおいて、1388cm-1に観測されるスペクトル強度r1と、1372cm-1に観測されるスペクトル強度r2の比R(r2/r1)が下式(2)を満たす、[2]に記載の背面プレート用フィルム。
1.0 < R < 1.8 (2)
[10]曲げ剛性が、長手方向および幅方向のいずれも0.2mN以上20.0mN以下である、[1]に記載の背面プレート用フィルム。
[11]前記二軸配向ポリエステルフィルムは、温度変調DSC(30~150℃)の不可逆曲線で観測される吸熱量ΔHgを、可逆曲線で観測されるガラス転移点前後の比熱容量差ΔCpで除したΔHg/ΔCpで算出される非晶緻密度Aが1.0以上である、[2]に記載の背面プレート用フィルム。
[12]回復角が、長手方向、幅方向のいずれも140°以上である、[1]に記載の背面プレート用フィルム。
[13]破断伸度が、長手方向、幅方向のいずれも50%以上である、[1]に記載の背面プレート用フィルム。
[14]MIT屈曲試験機にて評価した屈曲破断到達回数が、長手方向および幅方向いずれも1000回以上である、[1]に記載の背面プレート用フィルム。
[15]入射角40°でp偏光を入射させたときのP波の平均透過率と入射角40°でs偏光を入射させたときのS波の平均透過率との差が10%以下である、[1]に記載の背面プレート用フィルム、
[16]ジカルボン酸成分とジオール成分とからなるポリエステルフィルムであって、前記ジカルボン酸成分のうちテレフタル酸成分が50モル%以上95モル%以下、前記ジオール成分のうちエチレングリコール成分が50モル%以上95モル%以下であり、最も低温側で観測される融点が240℃以下、密度が1.360g/cc以下、フィルムの進相軸と、フィルム面に対する垂直軸とを含む面に沿って、垂直軸を基準0°として入射角40°で波長590nmの光線を入射させて求まる位相差値が0nm以上1000nm以下であるポリエステルフィルム。
[17]前記ポリエステルフィルムは、1層のフィルムまたは複数の層が積層されたフィルムであり、層を構成するポリエステル樹脂の全ジカルボン酸成分のうちイソフタル酸成分が6モル%以上用いられたポリエステル樹脂の層を少なくとも1層有する、[16]に記載のポリエステルフィルム。
[18]前記ポリエステルフィルムを構成するポリエステルは、ナフタレンジカルボン酸、シクロヘキサンジカルボン酸、フルオレン誘導体、パラキシレングリコール、ビスフェノールA、イソソルベート、シクロヘキサンジメタノール、ならびに、これらのエステル形成性誘導体からなる群から選ばれる少なくともひとつが重合または共重合されたポリエステル、あるいはポリエーテルイミドを含有したポリエステルである、[16]に記載のポリエステルフィルム。
[19]結晶化度が30%以下、剛直非晶量が20%以上50%以下である[16]に記載のポリエステルフィルム。
[20]120℃、3分の熱処理後のTD-NMR測定での可動非晶相の緩和時間が0.200ms以下である[16]に記載のポリエステルフィルム。
[21]フィルムを構成する層のうち、最も厚みの厚い層のフーリエ変換型赤外分光(FT-IR)スペクトルにおいて、1388cm-1に観測されるスペクトル強度r1と、1372cm-1に観測されるスペクトル強度r2の比R(r2/r1)が下式(2)を満たす、[16]に記載のポリエステルフィルム。
1.0 < R < 1.8 (2)
[22]曲げ剛性が、長手方向および幅方向のいずれも0.2mN以上20.0mN以下である、[16]に記載のポリエステルフィルム。
[23]温度変調DSC(30~150℃)の不可逆曲線で観測される吸熱量ΔHgを、可逆曲線で観測されるガラス転移点前後の比熱容量差ΔCpで除したΔHg/ΔCpで算出される非晶緻密度Aが1.0以上である、[16]に記載のポリエステルフィルム。
[24]破断伸度が、長手方向、幅方向のいずれも50%以上である、[16]に記載のポリエステルフィルム。
[25][1]に記載の背面プレート用フィルムまたは[16]に記載のポリエステルフィルムが搭載された、画像表示装置。
[26]前記画像表示装置に使用されていている画像表示装置用発光素子アレイが、有機電界発光素子アレイである、[25]に記載の画像表示装置。
[27]画像表示装置に搭載された光電変換素子の受光可能な角度範囲が60°以上140°以下である、[25]に記載の画像表示装置。
[28][1]に記載の背面プレート用フィルムまたは[16]に記載のポリエステルフィルムが搭載された、フォルダブルディスプレイ、
[29][1]に記載の背面プレート用フィルムまたは[16]に記載のポリエステルフィルムが搭載された画像表示装置を構成要素の1つとして有する、デバイス。
That is, as follows.
[1] A film for a back plate used in an image display device, in which a polarizing plate, a light emitting element array for image display, a back plate, and a photoelectric conversion element are mounted in this order when viewed from the viewer's side. , the retardation value found by incident a light beam with a wavelength of 590 nm at an incident angle of 40 degrees with the vertical axis as a reference of 0 degrees along a plane including the fast axis of the film and an axis perpendicular to the film surface is 0 nm or more and 1000 nm or less A film for the back plate.
[2] The film for a back plate according to [1], which includes a biaxially oriented polyester film as one of its constituent elements.
[3] The biaxially oriented polyester film is a single layer film or a film in which a plurality of layers are laminated, and the isophthalic acid component is used in an amount of 6 mol% or more of the total dicarboxylic acid components of the polyester resin constituting the layer. The film for a back plate according to [2], which has at least one layer of polyester resin.
[4] The polyester constituting the biaxially oriented polyester film is a group consisting of naphthalene dicarboxylic acid, cyclohexane dicarboxylic acid, fluorene derivatives, paraxylene glycol, bisphenol A, isosorbate, cyclohexanedimethanol, and ester-forming derivatives thereof. The film for a back plate according to [2] above, wherein at least one selected from the following is a polymerized or copolymerized polyester, or a polyester containing polyetherimide.
[5] The film for a back plate according to the above [2], which has a crystallinity of 30% or less and a rigid amorphous content of 20% or more and 50% or less.
[6] A film in which two or more layers are laminated, where the refractive index in the thickness direction of the layer with the highest refractive index in the thickness direction is nA, and the refractive index in the thickness direction of the layer with the smallest refractive index in the thickness direction is nB. The film for a back plate according to [1], which satisfies the following formula (1).
nA-nB ≧ 0.02 (1)
[7] The film for a back plate according to [1], wherein the increase in haze (Δ haze) when heat-treated at 120° C. for 5 hours is 0% or more and 2.0% or less.
[8] The film for a back plate according to [2], wherein the biaxially oriented polyester film has a relaxation time of a mobile amorphous phase of 0.200 ms or less in TD-NMR measurement after heat treatment at 120° C. for 3 minutes. .
[9] In the Fourier transform infrared spectroscopy (FT-IR) spectrum of the thickest layer among the layers constituting the film, the spectral intensity r1 observed at 1388 cm -1 and the spectral intensity r1 observed at 1372 cm -1 The film for a back plate according to [2], wherein the ratio R (r2/r1) of spectral intensity r2 satisfies the following formula (2).
1.0 < R < 1.8 (2)
[10] The film for a back plate according to [1], which has a bending rigidity of 0.2 mN or more and 20.0 mN or less in both the longitudinal direction and the width direction.
[11] The biaxially oriented polyester film is obtained by dividing the endotherm ΔHg observed in the irreversible curve of temperature modulated DSC (30 to 150°C) by the specific heat capacity difference ΔCp before and after the glass transition point observed in the reversible curve. The film for a back plate according to [2], wherein the amorphous density A calculated by ΔHg/ΔCp is 1.0 or more.
[12] The film for a back plate according to [1], wherein the recovery angle is 140° or more in both the longitudinal direction and the width direction.
[13] The film for a back plate according to [1], which has a breaking elongation of 50% or more in both the longitudinal direction and the width direction.
[14] The film for a back plate according to [1], wherein the number of bending failures evaluated using an MIT bending tester is 1000 times or more in both the longitudinal direction and the width direction.
[15] The difference between the average transmittance of P-waves when p-polarized light is incident at an incident angle of 40° and the average transmittance of S-waves when s-polarized light is incident at an incident angle of 40° is 10% or less. A film for a back plate according to [1],
[16] A polyester film consisting of a dicarboxylic acid component and a diol component, in which the terephthalic acid component of the dicarboxylic acid component is 50 mol% or more and 95 mol% or less, and the ethylene glycol component of the diol component is 50 mol% or more 95 mol% or less, the melting point observed at the lowest temperature is 240°C or less, the density is 1.360 g/cc or less, and it is perpendicular to the fast axis of the film and the axis perpendicular to the film surface. A polyester film having a retardation value of 0 nm or more and 1000 nm or less, which is determined by incident light with a wavelength of 590 nm at an incident angle of 40 degrees with the axis as a reference of 0 degrees.
[17] The polyester film is a single layer film or a film in which a plurality of layers are laminated, and the polyester resin contains an isophthalic acid component of 6 mol% or more of the total dicarboxylic acid components of the polyester resin constituting the layer. The polyester film according to [16], having at least one layer.
[18] The polyester constituting the polyester film is selected from the group consisting of naphthalene dicarboxylic acid, cyclohexane dicarboxylic acid, fluorene derivatives, paraxylene glycol, bisphenol A, isosorbate, cyclohexanedimethanol, and ester-forming derivatives thereof. The polyester film according to [16], wherein at least one is a polymerized or copolymerized polyester or a polyester containing polyetherimide.
[19] The polyester film according to [16], which has a crystallinity of 30% or less and a rigid amorphous content of 20% or more and 50% or less.
[20] The polyester film according to [16], wherein the relaxation time of the mobile amorphous phase in TD-NMR measurement after heat treatment at 120° C. for 3 minutes is 0.200 ms or less.
[21] In the Fourier transform infrared spectroscopy (FT-IR) spectrum of the thickest layer among the layers constituting the film, the spectral intensity r1 observed at 1388 cm -1 and the spectral intensity r1 observed at 1372 cm -1 The polyester film according to [16], wherein the ratio R (r2/r1) of spectral intensity r2 satisfies the following formula (2).
1.0 < R < 1.8 (2)
[22] The polyester film according to [16], which has a bending rigidity of 0.2 mN or more and 20.0 mN or less in both the longitudinal direction and the width direction.
[23] The heat absorption amount ΔHg observed on the irreversible curve of temperature modulated DSC (30 to 150°C) is divided by the specific heat capacity difference ΔCp before and after the glass transition point observed on the reversible curve, which is calculated as ΔHg/ΔCp. The polyester film according to [16], which has a crystal density A of 1.0 or more.
[24] The polyester film according to [16], which has a breaking elongation of 50% or more in both the longitudinal direction and the width direction.
[25] An image display device equipped with the back plate film according to [1] or the polyester film according to [16].
[26] The image display device according to [25], wherein the light emitting device array for an image display device used in the image display device is an organic electroluminescent device array.
[27] The image display device according to [25], wherein the photoelectric conversion element mounted on the image display device has a light-receiving angular range of 60° or more and 140° or less.
[28] A foldable display equipped with the back plate film according to [1] or the polyester film according to [16],
[29] A device comprising, as one of its components, an image display device on which the back plate film according to [1] or the polyester film according to [16] is mounted.
 本発明によれば、本発明にかかる背面プレート用フィルムを用いることで、画像表示用発光素子アレイの視認者側とは反対の側に配置されたカメラ等の光電変換素子であっても虹ムラの発生が抑制されて撮像品質に優れた、フレキシブルな画像表示装置を提供できる。また、画像表示装置等の光学デバイスに用いた時に虹ムラの発生が抑制できるポリエステルフィルムを提供できる。 According to the present invention, by using the film for a back plate according to the present invention, even a photoelectric conversion element such as a camera disposed on the side opposite to the viewer's side of the light emitting element array for image display can have rainbow unevenness. Accordingly, it is possible to provide a flexible image display device that suppresses the occurrence of images and has excellent imaging quality. Furthermore, it is possible to provide a polyester film that can suppress the occurrence of rainbow unevenness when used in optical devices such as image display devices.
本発明の画像表示装置の一例の概略正面図A schematic front view of an example of an image display device of the present invention R40の測定試験の説明用参考図Reference diagram for explanation of R40 measurement test 曲げ剛性の測定試験を理解するための参考図Reference diagram for understanding bending stiffness measurement test 視認性テストに用いた装置の構成を説明する図Diagram explaining the configuration of the device used for the visibility test 回復角の測定試験を理解するための参考図Reference diagram for understanding the recovery angle measurement test
 本発明の背面プレート用フィルムが用いられる画像表示装置は、視認者の側(画像が表示される側。以下、「正面」とも呼称することがある)から、偏光板、画像表示用発光素子アレイ、背面プレート、光電変換素子が、この順に搭載されている。かかる画像表示装置においては、これらの構成要素以外の構成要素が搭載されていても構わない。例えば、粘着剤層を画像表示用発光素子アレイと背面プレート間に設けたり、また、カラーフィルター、レンズフィルム、拡散シート、反射防止フィルムなどを必要に応じて設けたりすることが可能である。また、以下では視認者の側とは反対の側(画像が表示されない側)を裏面と呼称することがある。 An image display device in which the back plate film of the present invention is used includes a polarizing plate, a light emitting element array for image display, , a back plate, and a photoelectric conversion element are mounted in this order. Such an image display device may include components other than these components. For example, it is possible to provide an adhesive layer between the image display light emitting element array and the back plate, or to provide a color filter, lens film, diffusion sheet, antireflection film, etc. as necessary. Furthermore, hereinafter, the side opposite to the viewer's side (the side on which no image is displayed) may be referred to as the back side.
 本発明の背面プレート用フィルムが用いられる画像表示装置は、外部から表示装置の内部に入射する光による表示画像の視認性の低下及びコントラスト比の低下等を防止するために画像表示用発光素子アレイからみて正面側に偏光板が配置される。 An image display device using the film for a back plate of the present invention has an array of light-emitting elements for image display in order to prevent a decrease in the visibility of a displayed image and a decrease in contrast ratio due to light entering the inside of the display device from the outside. A polarizing plate is placed on the front side when viewed from above.
 本発明に用いられる偏光板は、光学フィルム(λ/4位相差フィルム)とともに用いる円偏光板として、有機電界発光表示装置等に適用することにより、可視光の全波長において、有機電界発光素子等の金属電極などからの反射光を遮蔽する効果を発現し、観察時の映り込みを防止することができるとともに、黒色表現を向上させることができる。円偏光板は、入射する光を直線偏光へ変換する偏光子と、直線偏光を円偏光に変換する位相差板とで構成される。 The polarizing plate used in the present invention can be applied to organic electroluminescent display devices, etc. as a circularly polarizing plate used together with an optical film (λ/4 retardation film), so that it can be used in organic electroluminescent devices, etc. at all wavelengths of visible light. It has the effect of blocking reflected light from metal electrodes, etc., and can prevent reflections during observation, as well as improve black expression. A circularly polarizing plate is composed of a polarizer that converts incident light into linearly polarized light and a retardation plate that converts linearly polarized light into circularly polarized light.
 偏光板は、画像表示装置に関連する分野において使用される任意の偏光板またはコーティングされた偏光フィルムを適宜選択して使用することができる。代表的な偏光板としては、ポリビニルアルコールフィルム等にヨウ素等の二色性材料を染着させたものを挙げることができるが、これに限定されるものではなく、公知及び今後開発され得る偏光板を適宜選択して用いることができる。 As the polarizing plate, any polarizing plate or coated polarizing film used in the field related to image display devices can be appropriately selected and used. Typical polarizing plates include polyvinyl alcohol films dyed with dichroic materials such as iodine, but are not limited to these, and include polarizing plates that are publicly known or that may be developed in the future. can be selected and used as appropriate.
 位相差板は、画像表示装置に関連する分野において使用される位相差板を適宜選択して使用することができる。位相差板としてはプラスチックフィルムを特定方向に延伸処理されたものを用いることができ、ポリカーボネート、ポリエステル、ポリスルホン、ポリスチレン、ポリメチルメタクリレートなどを挙げることができる。なお、位相差板は、一層の複屈折フィルムで形成することも可能であるが、位相差値の波長依存性を小さくし、全可視光波長領域にわたって機能するように複数の複屈折フィルムを積層して形成してもよい。 As the retardation plate, a retardation plate used in a field related to image display devices can be appropriately selected and used. As the retardation plate, a plastic film stretched in a specific direction can be used, and examples thereof include polycarbonate, polyester, polysulfone, polystyrene, polymethyl methacrylate, and the like. Although it is possible to form a retardation plate with a single layer of birefringent film, it is possible to laminate multiple birefringent films to reduce the wavelength dependence of the retardation value and function over the entire visible light wavelength range. It may also be formed by
 また、偏光子と位相差板の貼り合わせは、光学的異方性のないアクリル系透明粘着剤や接着剤を用いて行うことができる。 Furthermore, the polarizer and the retardation plate can be bonded together using a transparent acrylic adhesive or adhesive that does not have optical anisotropy.
 なお、外光がその表面で反射されることでの視認性の低下を防止する観点から、偏光板の表面には反射防止フィルムを設けることができる。例えば、偏光板の表面に多層膜を直接形成することの他、反射防止フィルムを貼着することも可能である。また、モスアイ構造のような微細構造のものを設けてもよいし、さらに適切なアンチグレア処理を施してもよい。 Note that an antireflection film can be provided on the surface of the polarizing plate from the viewpoint of preventing a decrease in visibility due to reflection of external light on the surface. For example, in addition to directly forming a multilayer film on the surface of a polarizing plate, it is also possible to attach an antireflection film. Further, a fine structure such as a moth-eye structure may be provided, or an appropriate anti-glare treatment may be applied.
 本発明の背面プレート用フィルムが用いられる画像表示装置の構成要素のひとつである画像表示用発光素子アレイは、画像表示装置に関連する分野において使用される任意の画像表示用発光素子アレイを適宜選択して使用することができる。代表的な画像表示用発光素子アレイとしては、有機電界発光素子が用いられたものや無機電界発光素子が用いられたもの、有機発光ダイオード及びマイクロ発光ダイオードなどが用いられたものを挙げることができるが、これに限定されるものではなく、公知及び今後開発され得る画像表示用発光素子アレイを適宜選択して用いることができる。中では、高コントラストを実現でき鮮明な像を形成できるため、有機電界発光素子を用いることが好ましい。 The image display light emitting element array, which is one of the constituent elements of the image display apparatus in which the back plate film of the present invention is used, is selected from any image display light emitting element array used in the field related to image display apparatuses. and can be used. Typical light emitting element arrays for image display include those using organic electroluminescent elements, those using inorganic electroluminescent elements, organic light emitting diodes, micro light emitting diodes, etc. However, the present invention is not limited thereto, and any known or future-developed light emitting element array for image display can be appropriately selected and used. Among these, it is preferable to use an organic electroluminescent device because it can achieve high contrast and form a clear image.
 画像表示用発光素子アレイとしては、有機電界発光素子アレイを好適に用いうる。有機電解発光素子アレイの一例としては、基板、薄膜トランジスタ、有機電界発光素子及び封止層を含み、有機電界発光素子は、陽極、発光層及び陰極を含む。例えば、下記(i)~(vi)の層構造を有していてもよい。また、下記の発光層は、青色発光層、緑色発光層及び赤色発光層からなるものでもよい。 An organic electroluminescent element array can be suitably used as the image display light emitting element array. An example of an organic electroluminescent device array includes a substrate, a thin film transistor, an organic electroluminescent device, and a sealing layer, and the organic electroluminescent device includes an anode, a light emitting layer, and a cathode. For example, it may have the following layer structures (i) to (vi). Further, the light-emitting layer described below may consist of a blue light-emitting layer, a green light-emitting layer, and a red light-emitting layer.
 以下に、有機電界発光素子の構成の代表例を示す。
(i)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
(ii)陽極/正孔注入輸送層/発光層/正孔阻止層/電子注入輸送層/陰極
(iii)陽極/正孔注入輸送層/電子阻止層/発光層/正孔阻止層/電子注入輸送層/陰極
(iv)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(v)陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
(vi)陽極/正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極。
Representative examples of the structure of the organic electroluminescent device are shown below.
(i) Anode/Hole injection transport layer/Emissive layer/Electron injection transport layer/Cathode (ii) Anode/Hole injection transport layer/Emissive layer/Hole blocking layer/Electron injection transport layer/Cathode (iii) Anode/ Hole injection transport layer / Electron blocking layer / Light emitting layer / Hole blocking layer / Electron injection transport layer / Cathode (iv) Anode / Hole injection layer / Hole transport layer / Light emitting layer / Electron transport layer / Electron injection layer / Cathode (v) Anode/Hole injection layer/Hole transport layer/Light emitting layer/Hole blocking layer/Electron transport layer/Electron injection layer/Cathode (vi) Anode/Hole injection layer/Hole transport layer/Electron blocking layer/emissive layer/hole blocking layer/electron transport layer/electron injection layer/cathode.
 基板は、画像表示用発光素子アレイの多様なエレメントを支持するための部材であり、絶縁物質で形成することができる。本発明の背面プレート用フィルムは、本基板として好適に用いることが出来る。本基材が薄く、剛性が弱いと、多様なエレメントが配置された際に垂れが発生してしまう。本背面プレート用フィルムは、画像表示用発光素子アレイが垂れないように支持し、湿気、熱、衝撃等から画像表示用発光素子アレイを保護する働きをする。画像表示用発光素子アレイと背面プレート用フィルムを合着するために、画像表示用発光素子アレイと背面プレート用フィルムとの間に接着層が配置できる。 The substrate is a member for supporting various elements of the light emitting element array for image display, and can be formed of an insulating material. The film for a back plate of the present invention can be suitably used as the main substrate. If this base material is thin and has low rigidity, sag will occur when various elements are arranged. This back plate film supports the image display light emitting element array so that it does not sag, and functions to protect the image display light emitting element array from moisture, heat, impact, and the like. In order to bond the image display light emitting element array and the back plate film, an adhesive layer can be disposed between the image display light emitting element array and the back plate film.
 本発明の背面プレート用フィルムは、フィルムの進相軸と、フィルム面に対する垂直軸とを含む面に沿って、垂直軸を基準0°として入射角40°で波長590nmの光線を入射させて求まる位相差値(以下、「R40」と称することがある)が0nm以上1000nm以下である。R40を上記範囲に制御することで、光電変換素子で得られる情報の精度が高く、例えばカメラで撮影される画像の色ムラが低減でき、またセンサーの認識精度が向上する。R40を小さくするほど光電変換素子で得られる情報の精度は高くなり、R40が800nm以下であると好ましく、500nm以下であるとより好ましい。なお、本発明においてR40は、後述する(4)正面位相差Re、R40にて説明した方法で求められる。 The film for a back plate of the present invention is determined by making a light beam with a wavelength of 590 nm incident at an incident angle of 40° with the vertical axis as a reference of 0° along a plane including the fast axis of the film and an axis perpendicular to the film surface. The retardation value (hereinafter sometimes referred to as "R40") is 0 nm or more and 1000 nm or less. By controlling R40 within the above range, the accuracy of information obtained by the photoelectric conversion element is high, for example, color unevenness in images taken with a camera can be reduced, and recognition accuracy of the sensor is improved. The smaller R40 is, the higher the accuracy of information obtained by the photoelectric conversion element is, and R40 is preferably 800 nm or less, more preferably 500 nm or less. In the present invention, R40 is determined by the method described in (4) Front phase difference Re, R40, which will be described later.
 R40を0nm以上1000nm以下の範囲に制御する方法としては、フィルム厚みやフィルムの厚み方向の複屈折を制御する。特に非晶性樹脂の未延伸フィルムは、位相差が小さいため、非晶性樹脂を用いることが一般的に用いられる方法である。ここで言う非晶性樹脂とは、示差走査型熱量計(以下、「DSC」ともいう)から得られる結晶融解エネルギー(以下、「ΔHm」ともいう)が5J/g未満である樹脂を指し、代表的な光学用途の非晶性樹脂の例として、環状オレフィン樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、アクリル樹脂、トリアセチルセルロース、共重合ポリエステルが光学品位の観点からよく用いられる。特に耐熱性、生産性の観点から、環状オレフィン樹脂であるビシクロ〔2,2,1〕ヘプト-2-エン(以下、ノルボルネンとする)、トリシクロ〔4,3,0,12.5〕デカ-3-エンなどの、炭素数10の三環式オレフィン(以下、トリシクロデセンとする)、テトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エンなどの、炭素数12の四環式オレフィン(以下、テトラシクロドデセンとする)、シクロペンタジエン、または1,3-シクロヘキサジエンが広く用いられる。また、フィルム厚みは、支持機能が損なわれない限り、薄くすることが望ましい。また、結晶性樹脂とはΔHmが5J/g以上である樹脂を指す。 A method for controlling R40 in the range of 0 nm or more and 1000 nm or less is to control the film thickness and the birefringence in the thickness direction of the film. In particular, since an unstretched film of an amorphous resin has a small retardation, it is a commonly used method to use an amorphous resin. The amorphous resin referred to here refers to a resin whose crystal fusion energy (hereinafter also referred to as "ΔHm") obtained from a differential scanning calorimeter (hereinafter also referred to as "DSC") is less than 5 J/g, As examples of typical amorphous resins for optical applications, cyclic olefin resins, polystyrene resins, polycarbonate resins, acrylic resins, triacetylcellulose, and copolymerized polyesters are often used from the viewpoint of optical quality. In particular, from the viewpoint of heat resistance and productivity, cyclic olefin resins such as bicyclo[2,2,1]hept-2-ene (hereinafter referred to as norbornene), tricyclo[4,3,0,12.5]dec- Tricyclic olefins having 10 carbon atoms (hereinafter referred to as tricyclodecene) such as 3-ene, and carbon atoms such as tetracyclo[4,4,0,12.5,17.10]dodec-3-ene, etc. 12 tetracyclic olefins (hereinafter referred to as tetracyclododecene), cyclopentadiene, or 1,3-cyclohexadiene are widely used. Further, it is desirable that the film thickness be made thin as long as the supporting function is not impaired. Moreover, the crystalline resin refers to a resin whose ΔHm is 5 J/g or more.
 また、本発明の背面プレート用フィルムは、後述するフォルダブルディスプレイへの対応を可能とする観点から、二軸に配向させたポリエステルフィルムであることが好ましい。二軸配向させたポリエステルフィルムであれば、延伸条件を適切に設定することで後述するヤング率、破断伸度を制御することができる。また、二軸配向させることによってフィルムの厚みムラが低減し、品位の高いフィルムを得ることができる。なお、本発明にいう二軸配向フィルムとは、フィルムを構成する1つ以上の層の屈折率nx、ny、nz(ここで、長手方向の屈折率をnx、幅方向の屈折率をny、厚み方向の屈折率をnzとする)について、nxとnyとnzとの平均値がnx、nyより小さく、nzより大きいフィルムをいう。ただし、一般的に二軸に配向することで面配向が進行し、R40は大きくなるため、フィルムを薄膜化するか、あるいは後述するような樹脂組成、製膜プロセスを経ることにより本発明の目的を阻害しない範囲にフィルムの高次構造を制御することが必要である。 Furthermore, the film for a back plate of the present invention is preferably a biaxially oriented polyester film from the viewpoint of being compatible with a foldable display described below. If the polyester film is biaxially oriented, the Young's modulus and elongation at break, which will be described later, can be controlled by appropriately setting the stretching conditions. Moreover, by biaxially oriented, the thickness unevenness of the film is reduced, and a high quality film can be obtained. Note that the biaxially oriented film referred to in the present invention refers to the refractive index of one or more layers constituting the film nx, ny, nz (here, the refractive index in the longitudinal direction is nx, the refractive index in the width direction is ny, The refractive index in the thickness direction is nz), and the average value of nx, ny, and nz is smaller than nx and ny and larger than nz. However, in general, biaxial orientation progresses planar orientation and increases R40, so the purpose of the present invention can be achieved by thinning the film or by using the resin composition and film forming process as described below. It is necessary to control the higher-order structure of the film within a range that does not inhibit the
 また、本発明でいうポリエステルフィルムとは、フィルムを構成する樹脂としてポリエステルを主成分とするものを指し、本発明でいうポリエステルは、ジカルボン酸構成成分とジオール構成成分あるいはそれらのエステル形成性誘導体から得られる重合体である。なお、本発明において、構成成分とはポリエステルを加水分解することで得ることが可能な最小単位のことを示す。また、主成分とは、フィルムを構成する樹脂のうちの最も含有量の多い樹脂をいい、好ましく、該樹脂は、フィルムを構成する樹脂の総質量を100質量%としたとき、50質量%を超え、より好ましく70質量%以上フィルム中に含有される。また、本発明の目的を阻害しない限りにおいて、ヒドロキシ安息香酸等のオキシ酸などが一部に用いられていてもよい。 In addition, the polyester film as used in the present invention refers to a film whose main component is polyester as a resin constituting the film. This is the obtained polymer. In addition, in this invention, a structural component shows the minimum unit which can be obtained by hydrolyzing polyester. In addition, the main component refers to the resin with the highest content among the resins constituting the film, and preferably, the resin accounts for 50% by mass when the total mass of the resins constituting the film is 100% by mass. It is more preferably contained in the film in an amount of 70% by mass or more. Furthermore, oxyacids such as hydroxybenzoic acid may be used in part as long as they do not impede the object of the present invention.
 本発明に用いられるポリエステルを構成するジカルボン酸構成成分としては、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、9,9-ビス(カルボキシメチル)フルオレン、9,9-ビス[2-カルボキシエチル]フルオレン、9,9-ビス[1-カルボキシエチル]フルオレン、9,9-ビス[2-カルボキシ-1-シクロヘキシルエチル]フルオレン、9,9-ビス[2-カルボキシ-1-フェニルエチル]フルオレン、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルエンダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、9,9’-ビス(4-カルボキシフェニル)フルオレン酸等の芳香族ジカルボン酸、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸類、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、1,4-シクロヘキサンジカルボン酸、デカリンジカルボン酸、などの脂環族ジカルボン酸が挙げられる。中でも、芳香族ジカルボン酸を主たるジカルボン酸構成成分とすることが好ましい。これらのジカルボン酸構成成分は、1種のみ用いてもよく、2種以上併用されていてもよい。なかでは、ナフタレンジカルボン酸、シクロヘキサンジカルボン酸、9,9-ビス[2-カルボキシエチル]フルオレン、9,9-ビス[1-カルボキシエチル]フルオレン、9,9-ビス[2-カルボキシ-1-シクロヘキシルエチル]フルオレン、9,9-ビス[2-カルボキシ-1-フェニルエチル]フルオレンからなる群からなる選ばれる少なくともひとつを用いることが好ましい。 The dicarboxylic acid constituents constituting the polyester used in the present invention include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, 2,6-naphthalene dicarboxylic acid, 1 , 8-naphthalenedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 9,9-bis(carboxymethyl)fluorene, 9,9-bis[2-carboxyethyl]fluorene, 9,9 -Bis[1-carboxyethyl]fluorene, 9,9-bis[2-carboxy-1-cyclohexylethyl]fluorene, 9,9-bis[2-carboxy-1-phenylethyl]fluorene, 4,4'-diphenyl Aromatic compounds such as dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, 5-sodium sulfoisophthalic acid, phenyl endane dicarboxylic acid, anthracenedicarboxylic acid, phenanthrene dicarboxylic acid, 9,9'-bis(4-carboxyphenyl)fluorene acid, etc. Aliphatic acids such as dicarboxylic acid, malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid, ethylmalonic acid, etc. Examples include dicarboxylic acids, alicyclic dicarboxylic acids such as adamantane dicarboxylic acid, norbornene dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid, and decalin dicarboxylic acid. Among these, it is preferable to use aromatic dicarboxylic acid as the main dicarboxylic acid constituent. These dicarboxylic acid constituents may be used alone or in combination of two or more. Among them, naphthalenedicarboxylic acid, cyclohexanedicarboxylic acid, 9,9-bis[2-carboxyethyl]fluorene, 9,9-bis[1-carboxyethyl]fluorene, 9,9-bis[2-carboxy-1-cyclohexyl It is preferable to use at least one selected from the group consisting of ethyl]fluorene and 9,9-bis[2-carboxy-1-phenylethyl]fluorene.
 本発明に用いられるポリエステルを構成するジオール構成成分としては、例えばエチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、テトラメチレングリコール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、パラキシレングリコール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール、イソソルベート、1,2-プロパンジオール、1,3-プロパンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1、7-ヘプタンジオール、9,9-ビス[4-(2 -ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエ トキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエト キシ)-3,5-ジメチルフェニル]フルオレン、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、ビスフェノールA、スピログリコール、などが挙げられる。これらのジオール構成成分は1種のみ用いてもよく、2種以上を併用されていててもよい。なかでは、パラキシレングリコール、ビスフェノールA、イソソルベート、シクロヘキサンジメタノール、9,9-ビス(t-ブトキシカルボニルメチル)フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-メチルフェニル]フルオレン、および、9,9-ビス[4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル]フルオレンから選ばれる少なくともひとつの成分を用いることが好ましい。 Examples of diol components constituting the polyester used in the present invention include ethylene glycol, 1,3-butanediol, 1,4-butanediol, tetramethylene glycol, 1,6-hexanediol, and 1,2-cyclohexanediol. Methanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, paraxylene glycol, diethylene glycol, triethylene glycol, polyalkylene glycol, isosorbate, 1,2-propanediol, 1,3-propanediol, neopentyl Glycol, 1,5-pentanediol, 1,7-heptanediol, 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene, 9,9-bis[4-(2-hydroxyethoxy)- 3-methylphenyl]fluorene, 9,9-bis[4-(2-hydroxyethoxy)-3,5-dimethylphenyl]fluorene, 2,2-bis(4-hydroxyethoxyphenyl)propane, bisphenol A, spiro Examples include glycol. These diol constituents may be used alone or in combination of two or more. Among them, paraxylene glycol, bisphenol A, isosorbate, cyclohexanedimethanol, 9,9-bis(t-butoxycarbonylmethyl)fluorene, 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene, 9, At least one selected from 9-bis[4-(2-hydroxyethoxy)-3-methylphenyl]fluorene and 9,9-bis[4-(2-hydroxyethoxy)-3,5-dimethylphenyl]fluorene It is preferable to use the following components.
 特には、全ジカルボン酸成分およびジオール成分の和を100mol%としたとき、ナフタレンジカルボン酸、シクロヘキサンジカルボン酸、上に例示したフルオレン誘導体、パラキシレングリコール、ビスフェノールA、イソソルベート、シクロヘキサンジメタノールの合計量が5mol%以上を占めることが好ましく、更に好ましくは、7.5mol%以上を占めることがより好ましい。そのような共重合ポリエステルとすることで、ポリエステルの非晶性が向上し、R40の値を低く制御することができるほか、非晶構造の割合が増加することで上述した凝集した非晶成分の量を増加させることができ、凝集した非晶量を示すΔHgの値を高く制御しやすくなる。非晶性を高くする観点から、これらの共重合成分を2種類用いることが、さらに好ましい。また、ガラス転移温度Tgを高くすることができ、画像表示装置に組み込む際の加工温度下であっても、ヘイズの上昇を抑えることができ、透明性に優れたフィルムを得ることができる。 In particular, when the sum of all dicarboxylic acid components and diol components is 100 mol%, the total amount of naphthalene dicarboxylic acid, cyclohexane dicarboxylic acid, the fluorene derivatives exemplified above, paraxylene glycol, bisphenol A, isosorbate, and cyclohexanedimethanol is It is preferable that it accounts for 5 mol% or more, more preferably 7.5 mol% or more. By using such a copolymerized polyester, the amorphousness of the polyester can be improved and the R40 value can be controlled low, and the ratio of the amorphous structure can be increased, so that the agglomerated amorphous components mentioned above can be reduced. This makes it easier to control the value of ΔHg, which indicates the amount of aggregated amorphous, to a high value. From the viewpoint of increasing amorphousness, it is more preferable to use two types of these copolymerization components. Furthermore, the glass transition temperature Tg can be increased, and even under processing temperatures when incorporated into an image display device, an increase in haze can be suppressed, and a film with excellent transparency can be obtained.
 また、ポリエステルには、ポリエステル以外の樹脂が含まれていても良いが、そのような樹脂としては、ポリエーテルイミドを挙げることができる。ポリエーテルイミドを含むことでも、上述した非晶構造の割合を増やすことが出来、R40の値を低く制御することができるほか、非晶構造の割合を増加することで凝集した非晶成分の量を増加させることができる。 Furthermore, polyester may contain resins other than polyester, and examples of such resins include polyetherimide. By including polyetherimide, the proportion of the amorphous structure mentioned above can be increased, and the value of R40 can be controlled to be low, and by increasing the proportion of the amorphous structure, the amount of agglomerated amorphous components can be reduced. can be increased.
 本発明の背面プレート用フィルムの回復角は、長手方向、幅方向のいずれも140°以上であることが好ましく、160°以上であることがさらに好ましい。回復角は後述する(18)耐屈曲性に示す測定方法にて評価することができ、回復角を本範囲に制御することによって、画像表示装置を数回折ったり広げたりを繰り返しても、背面プレート用フィルムとして用いた場合のシワの発生や浮き上がり現象の抑制がいっそう顕著である。 The recovery angle of the film for a back plate of the present invention is preferably 140° or more in both the longitudinal direction and the width direction, and more preferably 160° or more. The recovery angle can be evaluated using the measurement method shown in (18) Flexibility, which will be described later. By controlling the recovery angle within this range, even if the image display device is folded and unfolded several times, the back When used as a plate film, the suppression of wrinkles and lifting phenomena is even more remarkable.
 回復角を上記範囲に制御するために、フィルムの曲げ剛性は、長手方向および幅方向のいずれも20.0mN以下であることが好ましく、10.0mN以下であることがより好ましい。また、曲げ剛性を0.2mN以上とすることで、画像表示用発光素子アレイを垂れないように余裕をもって支持できるようになる。支持性の観点では、曲げ剛性は1.0mN以上とするとより好ましい。曲げ剛性を当該範囲に制御する方法は特には制限されないが、フィルムの厚みを制御することが最も有効であり、フィルムの厚みは10μm以上70μm以下とすることが好ましく、10μm以上50μm以下とすることがより好ましい。その上で曲げ剛性を低く制御するためにはヤング率を低下させることが主に取られる手法であり、長手方向、幅方向いずれのヤング率ともに1.5GPa以上4.5GPa以下が好ましく、2.0GPa以上4.0GPa以下とすることが好ましい。ヤング率を制御する方法として、ポリエステル系樹脂などのヤング率の高い樹脂を用いることでも大きくなる。また、ポリエステル系樹脂の中でも、共重合成分を含むことによって非晶性を高くすると、ヤング率を低下することができる。その他に、ヤング率にはフィルムの配向結晶状態が関与しており、延伸倍率、延伸温度、熱処理温度、熱収縮処理等によっても制御することができる。例えば一方向の延伸倍率を高く、もう一方向の延伸倍率を低くすると、高倍率方向のヤング率はより高く、低倍率方向のヤング率はより低くなるため、ヤング率を4.0GPa以下とするためには、長手方向、幅方向のいずれも延伸倍率を2倍以上4.5倍以下とすることで、ヤング率上記範囲に制御することができる。また、フィルムの配向状態を緩和させるとヤング率は下がる傾向にある為、ヤング率を2.0GPa以上とするためには、フィルムを構成する樹脂のうち最も融点の低い層の融点を基準として融点+10℃以下で熱処理を行う必要がある。例えば融点226℃の共重合ポリエステルが最も融点の低い層である場合、熱処理温度は226℃以上236℃以下であることが好ましい。また、本発明の効果を阻害しない範囲であれば可塑剤やエラストマーを添加してヤング率を低下させてもよい。 In order to control the recovery angle within the above range, the bending rigidity of the film is preferably 20.0 mN or less, more preferably 10.0 mN or less in both the longitudinal direction and the width direction. Further, by setting the bending rigidity to 0.2 mN or more, it becomes possible to support the light emitting element array for image display with a sufficient margin so as not to sag. From the viewpoint of supportability, the bending rigidity is more preferably 1.0 mN or more. The method of controlling the bending rigidity within the range is not particularly limited, but the most effective method is to control the thickness of the film, and the thickness of the film is preferably 10 μm or more and 70 μm or less, and 10 μm or more and 50 μm or less. is more preferable. In addition, in order to control the bending rigidity to a low level, the main method is to lower the Young's modulus, and the Young's modulus in both the longitudinal direction and the width direction is preferably 1.5 GPa or more and 4.5 GPa or less, and 2. It is preferable to set it to 0 GPa or more and 4.0 GPa or less. As a method of controlling the Young's modulus, it can also be increased by using a resin with a high Young's modulus such as a polyester resin. Further, among polyester resins, if the amorphousness is increased by including a copolymer component, the Young's modulus can be lowered. In addition, the Young's modulus is related to the oriented crystalline state of the film, and can also be controlled by the stretching ratio, stretching temperature, heat treatment temperature, heat shrinkage treatment, etc. For example, if the stretching ratio in one direction is high and the stretching ratio in the other direction is low, the Young's modulus in the high-magnification direction will be higher and the Young's modulus in the low-magnification direction will be lower, so the Young's modulus is set to 4.0 GPa or less. In order to achieve this, the Young's modulus can be controlled within the above range by setting the stretching ratio in both the longitudinal direction and the width direction to 2 times or more and 4.5 times or less. In addition, as the orientation state of the film is relaxed, the Young's modulus tends to decrease, so in order to make the Young's modulus 2.0 GPa or more, the melting point of the layer with the lowest melting point among the resins constituting the film is used as a reference. It is necessary to perform heat treatment at +10°C or lower. For example, when a copolymerized polyester with a melting point of 226°C is the layer with the lowest melting point, the heat treatment temperature is preferably 226°C or more and 236°C or less. Further, a plasticizer or an elastomer may be added to lower the Young's modulus as long as it does not impede the effects of the present invention.
 本発明における背面プレート用フィルムは、ポリエステルフィルムであることが好ましく、二軸に配向させたポリエステルフィルムであることがより好ましいが、その場合、温度変調式示差走査熱量測定(温度変調DSC)の可逆曲線において30℃から150℃の間で観測されるガラス転移点前後の比熱容量差ΔCp(単位:J/(g℃))で、不可逆曲線で30℃から150℃の間で観測される吸熱量ΔHg(単位:J/g)を除したΔHg/ΔCp(以下、「非晶緻密度A」とも称す。)が1.0以上であることが好ましい。 The film for the back plate in the present invention is preferably a polyester film, more preferably a biaxially oriented polyester film, but in that case, temperature-modulated differential scanning calorimetry (temperature-modulated DSC) The specific heat capacity difference ΔCp (unit: J/(g°C)) before and after the glass transition point observed between 30°C and 150°C on the curve, and the endothermic amount observed between 30°C and 150°C on the irreversible curve. It is preferable that ΔHg/ΔCp (hereinafter also referred to as "amorphous density A") divided by ΔHg (unit: J/g) is 1.0 or more.
 非晶緻密度Aを上記範囲に制御することによっても、耐屈曲性を向上させることができ、回復角を高く制御することが出来る。好ましい範囲としては、ΔHg/ΔCpが1.0を超え、10.0未満であることが好ましく、下限としては、2.0より大きいことがより好ましく、特に好ましくは2.5より大きいことが好ましく、上限としては7.0未満であることがより好ましい。非晶緻密度を制御することにより、耐屈曲性を向上できる理由は下記の通りである。 By controlling the amorphous density A within the above range, the bending resistance can be improved and the recovery angle can be highly controlled. As a preferable range, ΔHg/ΔCp is preferably greater than 1.0 and less than 10.0, and the lower limit is more preferably greater than 2.0, particularly preferably greater than 2.5. , the upper limit is more preferably less than 7.0. The reason why bending resistance can be improved by controlling the amorphous density is as follows.
 ポリエステルフィルムは、高分子鎖から構成されるため、剛性の比較的高い結晶成分と剛直非晶成分、および可動非晶成分からなる。可動非晶成分は、その不均一性から、比較的高分子鎖が凝集して剛性をもつ凝集非晶成分と、高分子鎖が分散した緩和非晶成分が存在する。ポリエステルフィルムの緩和非晶成分の量は、上記の関係から、可動非晶成分の量から、凝集非晶成分の量を減算することで求めることができる。可動非晶成分の量および凝集非晶成分の量については、温度変調DSCにて分析することができる。温度変調DSCにて得られる可逆曲線において30℃から150℃の間で観測されるガラス転移温度前後の比熱容量差ΔCpは、可動非晶成分の量に比例する。また、不可逆曲線において30℃から150℃の間で観測される吸熱量ΔHgは、凝集非晶成分が緩和して緩和非晶成分に転移するのに必要な熱量であることから、凝集非晶成分の量に依存する。なお、ΔCpおよびΔHgの値は3回測定の平均値として求められる。 Since a polyester film is composed of polymer chains, it consists of a crystalline component with relatively high rigidity, a rigid amorphous component, and a movable amorphous component. Due to its heterogeneity, the movable amorphous component includes an agglomerated amorphous component that is relatively rigid due to the aggregation of polymer chains, and a relaxed amorphous component in which the polymer chains are dispersed. The amount of relaxed amorphous components in the polyester film can be determined from the above relationship by subtracting the amount of aggregated amorphous components from the amount of mobile amorphous components. The amount of mobile amorphous components and the amount of aggregated amorphous components can be analyzed by temperature modulation DSC. The specific heat capacity difference ΔCp before and after the glass transition temperature observed between 30° C. and 150° C. in the reversible curve obtained by temperature modulation DSC is proportional to the amount of the mobile amorphous component. In addition, the endothermic amount ΔHg observed between 30°C and 150°C in the irreversible curve is the amount of heat required for the agglomerated amorphous component to relax and transform into a relaxed amorphous component, so the agglomerated amorphous component depends on the amount of Note that the values of ΔCp and ΔHg are obtained as the average value of three measurements.
 ΔHg/ΔCpを上記範囲に制御する方法は、例えば、下記工程(1)、(2)に記載の通りであり、特に、熱処理工程の3段目の温度と、縦方向と横方向の弛緩率によって制御できる。
工程(1)横延伸方向に3.7倍以上4.5倍以下に延伸する工程
工程(2)210℃以上245℃以下で熱処理弛緩する工程
 さらに、それぞれの工程について詳細を下記する。
The method for controlling ΔHg/ΔCp within the above range is, for example, as described in steps (1) and (2) below, and in particular, the temperature at the third stage of the heat treatment step and the relaxation rate in the longitudinal and lateral directions are can be controlled by
Step (1) Step of stretching 3.7 times to 4.5 times in the transverse stretching direction Step (2) Step of relaxing by heat treatment at 210° C. to 245° C. Furthermore, details of each step will be described below.
 工程(1):横延伸方向に3.7倍以上4.5倍以下に延伸する工程に関して本発明の効果を得るためには、3段階で延伸することが重要であり、更に、1段目、2段目、3段目の延伸倍率は以下の条件を満たすことが好ましい。
1段目:2.0倍以上2.5倍以下
2段目:≦1.5倍
3段目:≦1.5倍。
Step (1): In order to obtain the effect of the present invention regarding the step of stretching 3.7 times or more and 4.5 times or less in the transverse stretching direction, it is important to stretch in three stages, and furthermore, in the first stage It is preferable that the stretching ratios in the second and third stages satisfy the following conditions.
1st stage: 2.0 times or more and 2.5 times or less 2nd stage: ≦1.5 times 3rd stage: ≦1.5 times.
 工程(2):220℃以上245℃以下で熱処理弛緩する工程に関して、本発明のより顕著な効果を得るためには、3段階で熱処理弛緩することが重要であり、更に、1段目、2段目、3段目の熱処理温度および縦方向と横方向の弛緩率は以下の条件を満たすことが好ましい。
1段目:150℃以上245℃以下
2段目:220℃以上245℃以下
3段目:100℃以上180℃以下
縦方向弛緩率:1%以上8%以下
横方向弛緩率:1%以上8%以下。
Step (2): Regarding the step of heat treatment relaxation at 220°C or higher and 245°C or lower, in order to obtain more significant effects of the present invention, it is important to perform the heat treatment relaxation in three stages. It is preferable that the heat treatment temperature of the stage and third stage and the relaxation rate in the longitudinal direction and the transverse direction satisfy the following conditions.
1st stage: 150°C or more and 245°C or less 2nd stage: 220°C or more and 245°C or less 3rd stage: 100°C or more and 180°C or less Vertical relaxation rate: 1% or more and 8% or less Lateral relaxation rate: 1% or more 8 %below.
 ΔHg/ΔCpの値を大きくすることで耐屈曲性が向上する理由としては、次のように考えられる。ポリエステルフィルムは、高分子鎖から構成されるため、剛性の比較的高い結晶成分と剛直非晶成分、および可動非晶成分からなる。可動非晶成分は、その不均一性から、比較的高分子鎖が凝集して剛性をもつ凝集非晶成分と、高分子鎖が分散した緩和非晶成分が存在する。ポリエステルフィルムが屈曲されるとき、その屈曲部においては、高分子鎖に対して伸長や圧縮の力が加わっており、比較的剛性の低い緩和非晶成分が塑性変形すると考えられる。ポリエステルフィルムは、屈曲に対して塑性変形することで、折りたたんだ状態で一定時間静置した際に塑性変形して、ポリエステルフィルムにシワや浮き上がり、亀裂などが発生する。また、繰り返し屈曲に対しては塑性変形によってポリエステルフィルムの破断の基点が発生し破断へとつながることになる。以上より、静的耐屈曲性を良好にするためには、凝集した非晶成分を増やして緩和した非晶成分量を少なくすることが好ましいと考えられる。すなわち凝集した非晶量を示すΔHgを大きくし、可動非晶成分量を表すΔCpを小さくする、すなわち、ΔHg/ΔCpの値が大きいことで、耐屈曲性が良好になると考えられる。なお、ΔHg、ΔCpは、(12)フィルムのΔCp、ΔHg、剛直非晶量Xraの項で説明した方法よって求められる。 The reason why the bending resistance is improved by increasing the value of ΔHg/ΔCp is considered to be as follows. Since a polyester film is composed of polymer chains, it is composed of a relatively rigid crystalline component, a rigid amorphous component, and a movable amorphous component. Due to its heterogeneity, the movable amorphous component includes an agglomerated amorphous component that is relatively rigid due to the aggregation of polymer chains, and a relaxed amorphous component in which the polymer chains are dispersed. When a polyester film is bent, elongation or compression force is applied to the polymer chain at the bend, and it is thought that the relaxed amorphous component, which has relatively low rigidity, is plastically deformed. Polyester film plastically deforms when bent, so when it is left in a folded state for a certain period of time, the polyester film plastically deforms, causing wrinkles, lifting, cracks, etc. to occur in the polyester film. Further, when repeatedly bent, a base point of breakage occurs in the polyester film due to plastic deformation, leading to breakage. From the above, in order to improve the static bending resistance, it is considered preferable to increase the amount of aggregated amorphous components and decrease the amount of relaxed amorphous components. That is, it is thought that the bending resistance is improved by increasing ΔHg, which indicates the amount of aggregated amorphous components, and decreasing ΔCp, which indicates the amount of mobile amorphous components, that is, by increasing the value of ΔHg/ΔCp. Note that ΔHg and ΔCp are obtained by the method described in the section (12) ΔCp, ΔHg, and rigid amorphous amount Xra of the film.
 本発明の背面プレート用フィルムが用いられる画像表示装置は、フレキシブル性を有していることが好ましく、屈曲径1mm以上10mm以下の折り曲げ可能な屈曲部を有するフォルダブルディスプレイであることが好ましい。フォルダブルディスプレイとは、連続した1枚のディスプレイが、携帯時は2つ折りなどに折りたたむことができるものである。屈曲径のより好ましい範囲は上限として8mm以下であり、さらに好ましくは6mm以下、さらにより好ましくは5mm以下である。屈曲径が10mm以下であれば、折りたたんだ状態での薄型化が可能となる。屈曲径は小さいほど良いと言えるが、屈曲径が小さいほど折り跡がつきやすくなる。屈曲径は0.1mm以上が好ましいが、1mm以上であってもよい。屈曲径が1mmであっても、携帯時には実用的に十分な薄型化を達成することができる。また、フォルダブルディスプレイは3つ折り、4つ折りであってもよく、さらに、ローラブルといわれる巻き取り型であってもよく、これらいずれも本発明でいうフォルダブルディスプレイの範囲に入るものとする。 The image display device in which the back plate film of the present invention is used is preferably flexible, and is preferably a foldable display having a bendable portion with a bending diameter of 1 mm or more and 10 mm or less. A foldable display is a single continuous display that can be folded in half for carrying. The upper limit of the bending diameter is more preferably 8 mm or less, more preferably 6 mm or less, and even more preferably 5 mm or less. If the bending diameter is 10 mm or less, it is possible to reduce the thickness of the folded state. It can be said that the smaller the bending diameter, the better, but the smaller the bending diameter, the more easily creases are formed. The bending diameter is preferably 0.1 mm or more, but may be 1 mm or more. Even if the bending diameter is 1 mm, it is possible to achieve a practically sufficient thickness for carrying. Further, the foldable display may be folded in three or four, or may be a roll-up type called a rollable display, and all of these fall within the scope of the foldable display in the present invention.
 本発明の背面プレート用フィルムの破断伸度は、長手方向および幅方向のいずれも50%以上であることが好ましい。破断伸度を50%以上とすることで、MIT屈曲試験機にて評価した屈曲破断到達回数を長手方向、幅方向のいずれも1000回以上とすることができ、フォルダブルディスプレイに実装して繰り返し屈曲したときに、フィルムが疲弊して破断することを抑制できる。破断伸度は100%以上であると、繰り返し屈曲したときの破断を抑制する観点からより好ましい。なお、前記の破断伸度は高ければ高いほど好ましく、従って上限としては特に制限はないが、長手方向および幅方向のいずれも、300%以下であれば十分である。破断伸度を向上するためには、背面プレート用フィルムを構成するフィルムの層構成の少なくとも1層に、フィルムの高次構造において、分子鎖の絡み合いと配向を付与することで達成でき、特に樹脂としては結晶性ポリエステル樹脂を含むことが有効な方法である。また、結晶性ポリエステル樹脂のΔHmは25J/g以上であることがより好ましい。絡み合い点密度を上げるためには、結晶性樹脂の分子量が高い、すなわちフィルムの極限粘度(「IV」ともいう)を高くすることで達成できる。好ましいIVとしては、0.60以上1.00未満である。ただし、1.00以上であると、達成するために粘度の高い樹脂を用いる必要があり、溶融押出が困難であり、0.60未満であると絡み合い点が形成し難く、延伸による配向の付与が難しくなる。好ましくは0.65以上0.90未満であり、0.68以上0.85未満が最も好ましい。フィルムとしたときのIVを上記とする観点から、用いる樹脂のIVとしては、0.65以上1.00未満が好ましく、0.70以上0.90未満がより好ましく、0.80以上0.90未満が最も好ましい。また、配向を付与する観点から、長手方向、幅方向の延伸倍率は、いずれも3倍以上5倍以下が好ましい。なお、前記の屈曲破断到達回数は高ければ高いほど好ましく、従って上限としては特に制限はないが、100000回以下であれば十分である。 It is preferable that the elongation at break of the film for a back plate of the present invention is 50% or more in both the longitudinal direction and the width direction. By setting the elongation at break to 50% or more, the number of times the flexural breakage is reached is 1000 times or more in both the longitudinal and width directions when evaluated using an MIT bending tester, and it can be repeatedly mounted on a foldable display. It is possible to prevent the film from becoming fatigued and breaking when bent. It is more preferable that the elongation at break is 100% or more from the viewpoint of suppressing breakage when repeatedly bent. Note that the higher the elongation at break, the better. Therefore, there is no particular upper limit, but it is sufficient that it is 300% or less in both the longitudinal direction and the width direction. In order to improve the elongation at break, this can be achieved by imparting entanglement and orientation of molecular chains in the higher-order structure of the film to at least one layer of the layer structure of the film constituting the film for the back plate. An effective method is to include a crystalline polyester resin. Moreover, it is more preferable that ΔHm of the crystalline polyester resin is 25 J/g or more. Increasing the entanglement point density can be achieved by increasing the molecular weight of the crystalline resin, that is, by increasing the intrinsic viscosity (also referred to as "IV") of the film. A preferred IV is 0.60 or more and less than 1.00. However, if it is 1.00 or more, it is necessary to use a resin with high viscosity and melt extrusion is difficult, and if it is less than 0.60, it is difficult to form entanglement points and it is difficult to provide orientation by stretching. becomes difficult. It is preferably 0.65 or more and less than 0.90, most preferably 0.68 or more and less than 0.85. From the viewpoint of the above IV when made into a film, the IV of the resin used is preferably 0.65 or more and less than 1.00, more preferably 0.70 or more and less than 0.90, and 0.80 or more and less than 0.90. Most preferably less than Further, from the viewpoint of imparting orientation, the stretching ratios in both the longitudinal direction and the width direction are preferably 3 times or more and 5 times or less. Note that the higher the number of times the bending breakage is reached, the more preferable it is, and therefore there is no particular upper limit, but it is sufficient if it is 100,000 times or less.
 本発明の背面プレート用フィルムは、120℃条件で5時間熱処理した時のヘイズの増加量(Δヘイズ)が2.0%以下であることが好ましい。Δヘイズを上記範囲に制御することで、本背面プレート用フィルムを用いて画像表示装置を製造する際の加工プロセスにて、背面プレート用フィルムに熱がかかる工程を経ても白化することなく、画像表示装置の視認性を高く維持することができる。視認性を高く維持する観点から、Δヘイズは2.0%以下が好ましく、1.5%以下がより好ましく、1.0%以下がさらに好ましく、0.5%以下が最も好ましい。なお、Δヘイズの下限はゼロである。ここでの加工とは、背面プレート用フィルム上に機能層を形成し、製品化されるまでに加わる工程を意味する。例えば、粘着剤を塗布する加工、ハードコート層を形成する加工、透明導電層を蒸着する加工、フィルム同士を貼り合わせるラミネート加工、またアニール処理加工などが挙げられる。 It is preferable that the film for a back plate of the present invention has an increase in haze (Δhaze) of 2.0% or less when heat treated at 120° C. for 5 hours. By controlling the Δ haze within the above range, the image can be maintained without whitening even when the back plate film is subjected to heat during the processing process when manufacturing an image display device using this film for the back plate. High visibility of the display device can be maintained. From the viewpoint of maintaining high visibility, Δ haze is preferably 2.0% or less, more preferably 1.5% or less, even more preferably 1.0% or less, and most preferably 0.5% or less. Note that the lower limit of ΔHaze is zero. Processing here refers to the process of forming a functional layer on the back plate film and adding it to the process before it is commercialized. Examples include a process of applying an adhesive, a process of forming a hard coat layer, a process of vapor depositing a transparent conductive layer, a lamination process of bonding films together, and an annealing process.
 Δヘイズを抑制するための方策としては、DSCから求められる熱結晶化熱量ΔHcを低く制御することが挙げられる。ΔHcは15J/g以下とすることが好ましく、10J/g以下とすることがより好ましく、7J/g以下とすることが最も好ましい。熱処理を施した時のヘイズの上昇は、主に熱を加えたことによる可動非晶成分が結晶成分へ相転移する熱結晶化が原因であり、ΔHcを低く制御する事で、熱結晶化しうる可動非晶量の割合は少なくなり、熱処理により白化しにくくなるためΔヘイズを小さく制御することができる。ΔHcを小さくする方法としては、熱結晶化が進行しない、COPに代表されるような非晶性の樹脂を用いて、熱結晶化が阻害されるようなアロイ状態を形成する。あるいは結晶性の樹脂を用いた上で、本発明の効果を損なわない範囲で、配向結晶化によるフィルムの高次構造を形成することが必要である。ΔHcを上記に制御する観点から、フィルムを熱処理する際の熱処理温度はフィルムを構成する各層のうち最も融点の低い層を構成する樹脂の融点を基準として融点+7℃以下が好ましく、最も融点の低い層を構成する樹脂の融点を基準として融点+5℃以下がより好ましい。上記のように、可動非晶成分を少なくする観点から、剛直非晶量を20%以上とすることが好ましい。剛直非晶量の上限としては、後述するようにR40を低減する観点から、50%以下である。なお、剛直非晶量は、(11)フィルムのΔCp、ΔHg、剛直非晶量Xraの項で説明した方法よって求められる。 As a measure for suppressing Δ haze, one example is to control the thermal crystallization heat amount ΔHc determined from DSC to be low. ΔHc is preferably 15 J/g or less, more preferably 10 J/g or less, and most preferably 7 J/g or less. The increase in haze during heat treatment is mainly due to thermal crystallization in which a mobile amorphous component undergoes a phase transition to a crystalline component due to the application of heat, and thermal crystallization can be achieved by controlling ΔHc low. The proportion of movable amorphous crystals decreases, making it difficult to whiten due to heat treatment, so that Δ haze can be controlled to be small. A method for reducing ΔHc is to use an amorphous resin such as COP, which does not undergo thermal crystallization, to form an alloy state in which thermal crystallization is inhibited. Alternatively, it is necessary to use a crystalline resin and form a higher-order structure of the film by oriented crystallization within a range that does not impair the effects of the present invention. From the viewpoint of controlling ΔHc to the above level, the heat treatment temperature when heat treating the film is preferably a melting point of +7°C or less based on the melting point of the resin that constitutes the layer with the lowest melting point among the layers constituting the film, and the layer with the lowest melting point The melting point is more preferably +5° C. or lower based on the melting point of the resin constituting the layer. As mentioned above, from the viewpoint of reducing the movable amorphous component, it is preferable that the amount of rigid amorphous is 20% or more. The upper limit of the amount of rigid amorphous is 50% or less from the viewpoint of reducing R40 as described later. Note that the amount of rigid amorphous is determined by the method described in the section (11) ΔCp, ΔHg, and amount of rigid amorphous Xra of the film.
 また、Δヘイズを上記範囲に抑制する観点から、120℃、3分の熱処理後のTD-NMR(Time domain NMR)測定での可動非晶相の緩和時間が0.200ms以下であることが好ましい。この測定では、120℃における可動非晶成分の分子の運動性を評価しており、緩和時間が早いほど分子運動性は低く、熱結晶化は進行しにくい。このように、上述した可動非晶成分の量を減らすだけでなく、可動非晶成分の熱結晶化の進行を遅くすることでも、ヘイズの上昇を抑制することができる。TD-NMR測定での可動非晶相の緩和時間を上記範囲に制御する方法として、フィルムのIVを0.65以上とすることが好ましく、0.68以上とすることがより好ましい。高IV化することで、分子の運動性を低く制御して、可動非晶量の緩和時間を低く制御することができる。なお、可動非晶相の緩和時間の下限としては特に制限がないが、実用的には0.100ms以下である。 In addition, from the viewpoint of suppressing the Δ haze within the above range, it is preferable that the relaxation time of the mobile amorphous phase in TD-NMR (Time domain NMR) measurement after heat treatment at 120°C for 3 minutes is 0.200 ms or less. . In this measurement, the molecular mobility of the mobile amorphous component at 120° C. is evaluated, and the faster the relaxation time, the lower the molecular mobility, and the more difficult it is for thermal crystallization to proceed. In this way, an increase in haze can be suppressed not only by reducing the amount of the mobile amorphous component described above, but also by slowing down the progress of thermal crystallization of the mobile amorphous component. As a method for controlling the relaxation time of the mobile amorphous phase in the TD-NMR measurement within the above range, the IV of the film is preferably set to 0.65 or more, more preferably 0.68 or more. By increasing the IV, the mobility of molecules can be controlled to be low, and the relaxation time of the mobile amorphous amount can be controlled to be low. Although there is no particular restriction on the lower limit of the relaxation time of the mobile amorphous phase, it is practically 0.100 ms or less.
 本発明の背面プレート用フィルムは、2層以上の層が積層された積層フィルムとし、厚み方向屈折率の最も大きい層(かかる層を「層A」という)の厚み方向屈折率をnA、厚み方向屈折率の最も小さい層(かかる層を「層B」という)の厚み方向屈折率をnBとしたとき、下記の式(1)を満たすことが好ましい。
nA-nB ≧ 0.02  (1)    。
The film for a back plate of the present invention is a laminated film in which two or more layers are laminated, and the refractive index in the thickness direction of the layer with the largest refractive index in the thickness direction (such layer is referred to as "layer A") is nA, When the refractive index in the thickness direction of the layer with the smallest refractive index (such layer is referred to as "layer B") is nB, it is preferable that the following formula (1) is satisfied.
nA−nB ≧ 0.02 (1).
 式(1)を満たすようにフィルムの各層の屈折率を制御することによって、厚み方向屈折率が小さい層Bを持つことでフィルムの機械強度を高めることができ、破断伸度を上記範囲に制御することができる。nA-nBは高ければ高いほど好ましいが、実用的には0.15以下である。また、厚み方向屈折率が大きい層Aを持つことで、厚み方向位相差を低く制御することができ、R40を前記の好ましい範囲に制御することができる。このように各層の屈折率を制御した構成とすることで、光学特性と機械特性の両立を達成することができる。なお、R40を低く制御する観点から、層Bと同じ屈折率を持つ層の厚みの総和は小さいほど好ましく、一方で安定した製膜を行う観点から、層Bと同じ屈折率を持つ層の厚みの総和は大きい方が好ましい。以上から、層Bと同じ屈折率を持つ層の厚みの総和は、4μm以上10μm以下であることが好ましい。 By controlling the refractive index of each layer of the film so as to satisfy formula (1), the mechanical strength of the film can be increased by having layer B with a small refractive index in the thickness direction, and the elongation at break can be controlled within the above range. can do. The higher nA−nB is, the more preferable it is, but practically it is 0.15 or less. Further, by having the layer A having a large refractive index in the thickness direction, the retardation in the thickness direction can be controlled to be low, and R40 can be controlled within the above-mentioned preferable range. By controlling the refractive index of each layer in this manner, it is possible to achieve both optical properties and mechanical properties. In addition, from the viewpoint of controlling R40 low, it is preferable that the sum of the thicknesses of the layers having the same refractive index as layer B is as small as possible; It is preferable that the total sum is larger. From the above, it is preferable that the total thickness of the layers having the same refractive index as layer B is 4 μm or more and 10 μm or less.
 式(1)を充足するように制御する方法として、層Aを構成する樹脂の融点をTmA、層Bを構成する樹脂の融点をTmBとしたとき、TmA>TmBとして、TmB-15℃以上TmA-5℃以下の熱処理温度で熱処理することで達成可能である。なお、熱処理温度は、より高温であるほど配向緩和が進行してR40は低減する傾向にあるが、TmA-5℃より高い熱処理温度で熱処理を実施すると、フィルムは融解してしまい製膜することができない場合がある。構成樹脂の融点を制御する方法としては、限定されるものではないが、共重合成分を加えることで制御する方法が好ましく用いられる。例えば、ジカルボン酸成分にイソフタル酸を共重合することで、共重合しなかった場合と比較して融点を低下させることができ、層Aを構成する樹脂と層Bを構成する樹脂の融点差をつけることができる。 As a method of controlling to satisfy formula (1), when the melting point of the resin constituting layer A is TmA, and the melting point of the resin constituting layer B is TmB, TmA>TmB, TmB - 15°C or more TmA This can be achieved by heat treatment at a heat treatment temperature of -5°C or lower. Note that the higher the heat treatment temperature is, the more the orientation relaxation progresses and the R40 tends to decrease, but if the heat treatment is performed at a heat treatment temperature higher than TmA - 5°C, the film will melt and it will be difficult to form a film. may not be possible. The method of controlling the melting point of the constituent resins is not limited, but a method of controlling by adding a copolymer component is preferably used. For example, by copolymerizing isophthalic acid with a dicarboxylic acid component, the melting point can be lowered compared to the case where no copolymerization is performed, and the difference in melting point between the resin constituting layer A and the resin constituting layer B can be reduced. You can attach it.
 融点差を容易に確保できる観点から、層を構成するポリエステル樹脂の全ジカルボン酸成分のうちイソフタル酸成分が6モル%以上用いられたポリエステル樹脂の層を少なくとも1層有することが好ましい。 From the viewpoint of easily ensuring a melting point difference, it is preferable to have at least one layer of a polyester resin in which an isophthalic acid component is used in an amount of 6 mol % or more of the total dicarboxylic acid components of the polyester resin constituting the layer.
 また、本発明に用いるポリエステルフィルムは、ジカルボン酸成分のうちテレフタル酸成分が50モル%以上95モル%以下、ジオール成分のうちエチレングリコール成分が50モル%以上95モル%以下であるポリエステル樹脂を、該フィルムを構成する層の少なくとも1層に用いることが好ましい。また、DSCにて測定される最も低温側の融点が240℃以下とすることが配向緩和を進行させる観点からより好ましい。DSCにて測定される最も低温側の融点は、更に好ましくは、230℃以下である。下限としては特に制限はないが、200℃以上とすることが好ましい。 In addition, the polyester film used in the present invention is made of a polyester resin in which the terephthalic acid component is 50 mol% or more and 95 mol% or less among the dicarboxylic acid components, and the ethylene glycol component is 50 mol% or more and 95 mol% or less among the diol components. It is preferable to use it in at least one of the layers constituting the film. Further, it is more preferable that the melting point on the lowest temperature side measured by DSC is 240° C. or lower from the viewpoint of promoting orientation relaxation. The melting point at the lowest temperature measured by DSC is more preferably 230°C or lower. Although there is no particular restriction on the lower limit, it is preferably 200°C or higher.
 また、厚み方向の屈折率を低下させる方法として樹脂の非晶性を上げる方法が一般的に用いられ、上述したようにナフタレンジカルボン酸、シクロヘキサンジカルボン酸、上に例示したフルオレン誘導体、パラキシレングリコール、ビスフェノールA、イソソルベート、シクロヘキサンジカルボン酸、シクロヘキサンジメタノールのいずれかの構成成分が用いられたポリエステル樹脂を用いることが挙げられる。 In addition, as a method of reducing the refractive index in the thickness direction, a method of increasing the amorphousness of the resin is generally used. Examples include using a polyester resin containing any one of bisphenol A, isosorbate, cyclohexanedicarboxylic acid, and cyclohexanedimethanol.
 ポリエステルフィルムの密度としては、1.360g/cc以下とすることが、R40を小さく制御する観点から好ましい。下限としては特に制限はないが、1.34g/cc以上とすることが好ましい。密度を1.360g/cc以下とする方法としては、上に例示したようなフィルム構成とすることや熱処理工程を採用する方法が挙げられる。 The density of the polyester film is preferably 1.360 g/cc or less from the viewpoint of controlling R40 to a small value. There is no particular lower limit, but it is preferably 1.34 g/cc or more. Examples of methods for reducing the density to 1.360 g/cc or less include forming a film as exemplified above and employing a heat treatment process.
 フィルムを構成する層のうち、最も厚みの厚い層のフーリエ変換型赤外分光(FT-IR)スペクトルにおいて、1388cm-1に観測されるスペクトル強度r1と、1372cm-1に観測されるスペクトル強度r2の比R(r2/r1)が下式(2)を満たすことが好ましい。
1.0 < R < 1.8 (2)    。
In the Fourier transform infrared spectroscopy (FT-IR) spectrum of the thickest layer among the layers constituting the film, the spectral intensity r1 observed at 1388 cm -1 and the spectral intensity r2 observed at 1372 cm -1 It is preferable that the ratio R (r2/r1) satisfies the following formula (2).
1.0 < R < 1.8 (2).
 ポリエチレンテレフタレートのメチレン基部分の立体配座において、ゴーシュ型構造、トランス型構造の2種類をとることが知られている。これら2種類の内、分子鎖が規則正しく配列する上では、ゴーシュ型構造に比べ、トランス型構造が有利である。このことから、ゴーシュ型構造はポリエチレンテレフタレートの分子鎖が規則正しく配列していない部分(以後「非晶部分」ともいう)を反映し、トランス型構造はポリエチレンテレフタレートの分子鎖が規則正しく配列した構造を反映している。分子鎖が規則正しく配列した構造には、結晶構造を形成する部分(以後「結晶部分」ともいう)と、上記非晶部分と結晶部分の中間程度に分子鎖が配列した非晶部分(以後「配向非晶部分)ともいう)があり、これらはFT-IRで観測することが可能である。即ち、r1は結晶部分に由来するトランス型構造を反映し、r2は非晶部分に由来するゴーシュ型構造を反映する。結晶構造については、分子配向を持っているため、位相差が生じることとなりR40の値が大きくなる傾向となる。一方非晶部分については、分子が結晶構造と比較してランダムな方向に向いているため、非晶部分の比率が高い程R40は低くなる傾向となる。式(2)に示したように、Rを1.0より大きくすることで、R40を低く制御することが可能である。一方で、Rを1.8未満とすることで、Δヘイズを抑制することができる。また、同様の理由からフィルムの結晶化度は30%以下であることが好ましい。Rの値を式(2)を満たすように制御し、かつ結晶化度を30%以下とする方法として、熱処理温度を、最も積層厚みの厚い層の融点を基準として融点-15℃以上、最も積層厚みの厚い層の融点を基準として融点+20℃以下で熱処理することで達成する方法をあげることができる。 It is known that the methylene group moiety of polyethylene terephthalate has two types of conformations: a gauche structure and a trans structure. Of these two types, the trans structure is more advantageous than the gauche structure in terms of regular arrangement of molecular chains. From this, the gauche-type structure reflects a part where the molecular chains of polyethylene terephthalate are not regularly arranged (hereinafter also referred to as the "amorphous part"), and the trans-type structure reflects a structure in which the molecular chains of polyethylene terephthalate are regularly arranged. are doing. In a structure in which molecular chains are regularly arranged, there is a part that forms a crystalline structure (hereinafter also referred to as "crystalline part") and an amorphous part (hereinafter referred to as "orientated part") in which molecular chains are arranged in an intermediate position between the above-mentioned amorphous part and crystalline part. These can be observed by FT-IR.In other words, r1 reflects the trans-type structure originating from the crystalline part, and r2 reflects the gauche-type structure originating from the amorphous part. Reflects the structure. Regarding the crystal structure, since it has molecular orientation, a phase difference occurs and the value of R40 tends to increase. On the other hand, for the amorphous part, the molecules are random compared to the crystal structure. Therefore, the higher the ratio of the amorphous portion, the lower the R40 tends to be.As shown in equation (2), by increasing R larger than 1.0, R40 can be controlled low. On the other hand, by setting R to less than 1.8, Δ haze can be suppressed.For the same reason, the crystallinity of the film is preferably 30% or less. As a method of controlling the value of R so as to satisfy formula (2) and making the degree of crystallinity 30% or less, the heat treatment temperature is set to -15°C or higher, with the melting point of the thickest layer being the standard. One example of this is a method in which heat treatment is performed at a temperature below the melting point of +20° C. based on the melting point of the thick layer.
 次に、本発明の背面プレート用フィルムを製造する好ましい態様を以下に説明する。ただし、本発明はかかる例に限定して解釈されるものではない。 Next, a preferred embodiment of manufacturing the film for a back plate of the present invention will be described below. However, the present invention is not construed as being limited to such examples.
 本発明の最も適した樹脂の組み合わせは、上記A層を構成する樹脂a、B層を構成する樹脂bとして、樹脂a、樹脂bのいずれも酸成分のうちテレフタル酸成分あるいはナフタレンジカルボン酸成分を50モル%以上95モル%以下、ジオール成分のうちエチレングリコール成分を50モル%以上95モル%含むことが好ましい形態である。特に酸成分としてテレフタル酸成分を含むことが、R40を1000nm以下に制御する観点から好ましい。さらに、樹脂a、樹脂bのいずれにもシクロヘキサンジカルボン酸、フルオレン誘導体、パラキシレングリコール、ビスフェノールA、イソソルベート、シクロヘキサンジメタノール、のいずれかをモノマーとして用いることが好ましく、いずれか2種類を用いることがより好ましい。樹脂aに用いることによって、R40を1000nm以下に制御する点で特に好ましい。樹脂bに用いることによって、非晶緻密度Aを低く制御することができる。さらには、樹脂a、樹脂bのいずれにも用いることによって、熱寸法安定性や耐熱信頼性試験においても優れる。また、樹脂bには、樹脂aと比較して融点を低くする観点から、酸成分としてイソフタル酸を6モル%以上用いることが好ましい。 The most suitable combination of resins in the present invention is that resin a constituting layer A and resin b constituting layer B each contain a terephthalic acid component or a naphthalene dicarboxylic acid component among the acid components. In a preferable form, it contains 50 mol% or more and 95 mol% or less, and 50 mol% or more and 95 mol% of the ethylene glycol component among the diol components. In particular, it is preferable to include a terephthalic acid component as an acid component from the viewpoint of controlling R40 to 1000 nm or less. Furthermore, it is preferable to use either cyclohexanedicarboxylic acid, a fluorene derivative, paraxylene glycol, bisphenol A, isosorbate, or cyclohexanedimethanol as a monomer for both resin a and resin b, and it is preferable to use any two of them. More preferred. By using it as resin a, it is particularly preferable in terms of controlling R40 to 1000 nm or less. By using it as resin b, the amorphous density A can be controlled to be low. Furthermore, by using it as both resin a and resin b, it is excellent in thermal dimensional stability and heat resistance reliability tests. Further, from the viewpoint of lowering the melting point of resin b compared to resin a, it is preferable to use 6 mol % or more of isophthalic acid as an acid component.
 上述した樹脂a、樹脂bそれぞれを、ベント式二軸押出機に供給し溶融押出しする。この際、押出機内は流通窒素雰囲気下で、酸素濃度を0.7体積%以下とし、樹脂温度は240℃~320℃に制御することが好ましい。ついで、フィルターやギアポンプを通じて、異物の除去、押出量の均整化を各々行い、矩形積層部を備えた3層合流ブロックにて、両面表層部に樹脂a層が、内層部に樹脂b層が来るように積層してTダイより冷却ドラム上にシート状に吐出する。その際、高電圧を掛けた電極を使用して静電気で冷却ドラムと樹脂を密着させる静電印加法、キャスティングドラムと押出したポリマーシート間に水膜を設けるキャスト法、キャスティングドラム温度をポリエステル樹脂のガラス転移点未満にして押出したポリマーを粘着させる方法、もしくは、これらの方法を複数組み合わせた方法により、シート状ポリマーをキャスティングドラムに密着させ、冷却固化し、未延伸フィルムを得る。これらのキャスト法の中でも、ポリエステルを使用する場合は、生産性や平面性の観点から、静電印加する方法が好ましく使用される。 The resins a and b described above are each supplied to a vented twin-screw extruder and melt-extruded. At this time, it is preferable to control the inside of the extruder under a flowing nitrogen atmosphere, with the oxygen concentration being 0.7% by volume or less, and the resin temperature being controlled at 240°C to 320°C. Then, through filters and gear pumps, foreign matter is removed and the extrusion amount is equalized, and in a three-layer merging block with a rectangular laminated section, the resin A layer is placed on the surface layer on both sides, and the resin B layer is placed on the inner layer. They are laminated in this manner and discharged in a sheet form from a T-die onto a cooling drum. At that time, the electrostatic application method uses electrodes to which high voltage is applied to bring the cooling drum and resin into close contact with static electricity, the casting method creates a water film between the casting drum and the extruded polymer sheet, and the casting drum temperature is controlled to increase the temperature of the polyester resin. A sheet-shaped polymer is brought into close contact with a casting drum by a method of making the extruded polymer adhere to a temperature lower than the glass transition point, or by a method of combining two or more of these methods, and is cooled and solidified to obtain an unstretched film. Among these casting methods, when polyester is used, a method of applying electrostatic charge is preferably used from the viewpoint of productivity and flatness.
 本発明の背面プレート用フィルムは、耐熱性、寸法安定性、機械的強度、平面性、厚みムラの観点から少なくとも一方向に延伸することが好ましい。二軸配向する場合には、未延伸フィルムを長手方向に延伸した後、幅方向に延伸する、あるいは、幅方向に延伸した後、長手方向に延伸する逐次二軸延伸方法により、または、フィルムの長手方向、幅方向をほぼ同時に延伸していく同時二軸延伸方法などにより延伸を行うことで得ることができる。また、二軸配向した後にさらに長手方向あるいは幅方向に延伸してもよい。 The film for a back plate of the present invention is preferably stretched in at least one direction from the viewpoints of heat resistance, dimensional stability, mechanical strength, flatness, and thickness unevenness. In the case of biaxial orientation, the unstretched film is stretched in the longitudinal direction and then stretched in the width direction, or by a sequential biaxial stretching method in which the unstretched film is stretched in the width direction and then stretched in the longitudinal direction. It can be obtained by stretching by a simultaneous biaxial stretching method in which the longitudinal direction and the width direction are stretched almost simultaneously. Further, after biaxial orientation, the film may be further stretched in the longitudinal direction or the width direction.
 本発明では、長手方向への延伸を行った後、少なくとも下記工程(1)、(2)の工程を順番に実施することが好ましい。
工程(1)横延伸方向に3.7倍以上4.5倍以下に延伸する工程
工程(2)210℃以上245℃以下で熱処理弛緩する工程
 さらに、それぞれの工程について詳細を下記する。
In the present invention, after stretching in the longitudinal direction, it is preferable to perform at least the following steps (1) and (2) in order.
Step (1) Step of stretching 3.7 times to 4.5 times in the transverse stretching direction Step (2) Step of relaxing by heat treatment at 210° C. to 245° C. Furthermore, details of each step will be described below.
 工程(1):横延伸方向に3.7倍以上4.5倍以下に延伸する工程に関して本発明の効果を得るためには、3段階で延伸することが重要であり、更に、1段目、2段目、3段目の延伸倍率は以下の条件を満たすことが好ましい。
1段目:2.0倍以上2.5倍以下
2段目:≦1.5倍
3段目:≦1.5倍。
Step (1): In order to obtain the effect of the present invention regarding the step of stretching 3.7 times or more and 4.5 times or less in the transverse stretching direction, it is important to stretch in three stages, and furthermore, in the first stage It is preferable that the stretching ratios in the second and third stages satisfy the following conditions.
1st stage: 2.0 times or more and 2.5 times or less 2nd stage: ≦1.5 times 3rd stage: ≦1.5 times.
 工程(2):220℃以上245℃以下で熱処理弛緩する工程に関して、本発明のより顕著な効果を得るためには、3段階で熱処理弛緩することが重要であり、更に、1段目、2段目、3段目の熱処理温度および縦方向と横方向の弛緩率は以下の条件を満たすことが好ましい。
1段目:150℃以上245℃以下
2段目:220℃以上245℃以下
3段目:100℃以上180℃以下
縦方向弛緩率:1%以上8%以下
横方向弛緩率:1%以上8%以下。
Step (2): Regarding the step of heat treatment relaxation at 220°C or higher and 245°C or lower, in order to obtain more significant effects of the present invention, it is important to perform the heat treatment relaxation in three stages. It is preferable that the heat treatment temperature of the stage and third stage and the relaxation rate in the longitudinal direction and the transverse direction satisfy the following conditions.
1st stage: 150°C or more and 245°C or less 2nd stage: 220°C or more and 245°C or less 3rd stage: 100°C or more and 180°C or less Vertical relaxation rate: 1% or more and 8% or less Lateral relaxation rate: 1% or more 8 %below.
 工程(1)の延伸速度は500%/分以上100,000%/分以下であることが望ましい。とくにR40を小さくする観点から、延伸速度を遅くすることがより好ましく、二軸目の延伸速度は10,000%/分以下であることが好ましい。また、予熱温度は樹脂のガラス転移温度-20℃以上、樹脂のガラス転移温度+20℃以下、延伸温度としては、樹脂のガラス転移温度以上、樹脂のガラス転移温度+60℃以下であることが好ましい。 The stretching speed in step (1) is preferably 500%/min or more and 100,000%/min or less. In particular, from the viewpoint of reducing R40, it is more preferable to slow the stretching speed, and the second-axis stretching speed is preferably 10,000%/min or less. Further, the preheating temperature is preferably at least -20°C, the glass transition temperature of the resin, and the glass transition temperature of the resin, +20°C, and the stretching temperature is preferably at least the glass transition temperature of the resin, and at most 60°C, the glass transition temperature of the resin.
 さらに、少なくとも片面にコロナ処理を施したり、易接着層をコーティングしたりすることもできる。コーティング層をフィルム製造工程内のインラインで設ける方法としては、少なくとも一軸延伸を行ったフィルム上にコーティング層組成物を水に分散させたものをメタリングワイヤーバーやグラビアロールなどを用いて均一に塗布し、延伸を施しながら塗剤を乾燥させる方法が好ましく、その際、易接着層厚みとしては10nm以上1000nm以下とすることが好ましい。また、易接着層中に各種添加剤、例えば、酸化防止剤、耐熱安定剤、紫外線吸収剤、赤外線吸収剤、顔料、染料、有機または無機粒子、帯電防止剤、核剤などを添加してもよい。易接着層に好ましく用いられる樹脂としては、接着性、取扱い性の点からアクリル樹脂、ポリエステル樹脂およびウレタン樹脂から選ばれる少なくとも1種の樹脂であることが好ましい。さらに、90~200℃条件下でオフアニールすることも好ましく用いられる。 Furthermore, at least one side can be subjected to corona treatment or coated with an easily adhesive layer. A method for providing a coating layer in-line during the film manufacturing process is to uniformly apply a coating layer composition dispersed in water onto a film that has been uniaxially stretched using a metaling wire bar, gravure roll, etc. However, a method of drying the coating material while stretching is preferred, and in this case, the thickness of the easily adhesive layer is preferably 10 nm or more and 1000 nm or less. Additionally, various additives such as antioxidants, heat stabilizers, ultraviolet absorbers, infrared absorbers, pigments, dyes, organic or inorganic particles, antistatic agents, nucleating agents, etc. may be added to the adhesive layer. good. The resin preferably used for the easily adhesive layer is preferably at least one resin selected from acrylic resins, polyester resins, and urethane resins from the viewpoint of adhesiveness and handleability. Furthermore, off-annealing under conditions of 90 to 200° C. is also preferably used.
 積層構成については、上記のように2台以上の押出機を用いて共押出しすることで積層ポリエステルフィルムとすることができるし、単層フィルムとすることもできる。積層構成は、例えば層Aと層Bを1層ずつ積層したA/B積層構成、層Aと層Bを交互に複数層を積層した多層積層構成、3種類以上の層を積層した積層構成など、必要に応じて設定することができる。101層以上の積層ポリエステルとする場合は、スタティックミキサーやフィードブロックを適用し、本発明のポリエステル組成物からなる層Aと、他方のポリエステル組成物からなる層Bが交互に積層するよう合流させ、両表層部分が層Bとなるようにするとよい。 Regarding the laminated structure, a laminated polyester film can be obtained by coextruding using two or more extruders as described above, or a single layer film can be obtained. Examples of the laminated structure include an A/B laminated structure in which layer A and layer B are laminated one by one, a multilayer laminated structure in which multiple layers of layer A and layer B are laminated alternately, and a laminated structure in which three or more types of layers are laminated. , can be set as necessary. In the case of a laminated polyester having 101 or more layers, a static mixer or a feed block is applied, and layer A consisting of the polyester composition of the present invention and layer B consisting of the other polyester composition are merged so that they are alternately laminated, It is preferable that both surface layer portions become layer B.
 本発明の背面プレート用フィルムが用いられる画像表示装置に用いられる光電変換素子としては、波長としては300nm~1500nm程度の近紫外から可視光、近赤外における光の情報を取得するカメラや、指紋認証センサー、光線センサー、距離センサーといった撮像素子等が挙げられる。光電変換素子としては、1つの画像表示装置に複数配置されてもよい。 Photoelectric conversion elements used in image display devices using the back plate film of the present invention include cameras that acquire light information in the near-ultraviolet to visible light and near-infrared wavelengths of about 300 nm to 1500 nm, and fingerprint Examples include imaging devices such as authentication sensors, light sensors, and distance sensors. A plurality of photoelectric conversion elements may be arranged in one image display device.
 本発明の画像表示装置は、ディスプレイパネルを透過した光がディスプレイパネルの下部に配置される光電変換素子に提供されるが、そのディスプレイを光が透過する形態としては、本発明の性能を損なわない手法であればよい。例えば、特表2021-529411号公報に記載の方法が挙げられるが、これに限定されるものではない。 In the image display device of the present invention, light transmitted through the display panel is provided to the photoelectric conversion element disposed at the bottom of the display panel, but the form in which light is transmitted through the display does not impair the performance of the present invention. Any method is fine. For example, the method described in Japanese Patent Publication No. 2021-529411 may be mentioned, but the method is not limited thereto.
 図1は、本発明の画像表示装置の一例を説明する概略図であり、図1に示すように画像表示装置101において、画面側を撮影する撮像素子104が発光素子アレイよりも裏面側に配置されている画面領域102と、撮像素子が裏面に配置されていない画面領域103とを持つ画像表示用発光素子アレイ、および、発光素子アレイの配置されていないベゼル部分105が含まれる。撮像素子104が画像表示面の裏側に配置されている画面領域102に対応する部分には、画像表示用発光素子アレイは、陰極や陽極、発光素子基板にそれぞれ透明材料を採用した、透明性の高い画像表示用発光素子を有しており、それ以外の画面領域103に対応する部分には、透明性の低い画像表示用発光素子を有していてもよいし、透明性の高い画像表示用発光素子を有していてもよい。 FIG. 1 is a schematic diagram illustrating an example of an image display device according to the present invention. As shown in FIG. It includes a light emitting element array for image display having a screen area 102 where the image sensor is placed on the back side thereof, and a screen area 103 where no image sensor is placed on the back surface thereof, and a bezel portion 105 where no light emitting element array is placed. In a portion corresponding to the screen area 102 in which the image sensor 104 is arranged on the back side of the image display surface, the light emitting element array for image display has a transparent material that uses transparent materials for the cathode, the anode, and the light emitting element substrate. It has a light emitting element for image display with high transparency, and a part corresponding to the other screen area 103 may have a light emitting element for image display with low transparency, or a light emitting element for image display with high transparency may be included. It may have a light emitting element.
 この画面領域102は高い透明性を有するので、当該撮像素子104は画面領域102を透過して入射した画面外の情報を採集することができ、また、かかる画像表示装置は全画面表示を実現できる。この例では、撮像素子104が配置された例を説明したが、画面領域102に対応する領域には、撮像素子104とは視野角が異なったカメラや指紋認証センサー、光線センサー、距離センサーなどの他の光電変換素子が配置されていてもよい。 Since this screen area 102 has high transparency, the image sensor 104 can collect off-screen information that has passed through the screen area 102 and has entered, and this image display device can realize full-screen display. . In this example, an example in which the image sensor 104 is arranged is explained, but in the area corresponding to the screen area 102, there may be a camera with a different viewing angle than the image sensor 104, a fingerprint authentication sensor, a light sensor, a distance sensor, etc. Other photoelectric conversion elements may be arranged.
 本発明者らは鋭意検討した結果、上述した画像表示用発光素子アレイの視認者の側とは反対の側に光電変換素子を配置した画像表示装置において、背面プレートとして用いるフィルムのR40が0nm以上1000nm以下の範囲にあれば、有意に色ムラの抑制やセンサー精度向上できることを見出した。上記態様により色ムラの発生が抑制される機構は、次のように考えられる。 As a result of intensive studies, the present inventors found that in the image display device in which the photoelectric conversion element is arranged on the side opposite to the viewer side of the light emitting element array for image display described above, the R40 of the film used as the back plate is 0 nm or more. It has been found that within a range of 1000 nm or less, color unevenness can be significantly suppressed and sensor accuracy can be improved. The mechanism by which the occurrence of color unevenness is suppressed by the above aspect is considered to be as follows.
 本発明の画像表示装置は、視認者の側(画像が表示される側)から、画像表示用発光素子アレイがある方向に向かう順に、少なくとも偏光板、画像表示用発光素子アレイ、画像表示用発光素子アレイの背面プレート、光電変換素子が搭載された画像表示装置である。複屈折を持つフィルムを、面内の方向によって偏光の透過率が異なる光学素子(例えば偏光子など、以下では「偏光光学素子」と呼称する。)2枚で挟むと、色ムラが見られることは広く知られている。一方で、今回示した偏光板、画像表示装置用発光素子アレイ、背面プレート、光電変換素子の順で配置した構成では、偏光板以外に偏光光学素子は含まれていないため、上述したような色ムラは観察されないと考えられる。しかし、斜めから入射する外部からの光、または、円偏光板から出射した円偏光は、背面プレートに入射した際、光の振動方向が入射面に平行な偏光(P波)の透過率と、光の振動方向が入射面に垂直な偏光(S波)の透過率とが異なる可能性がある。つまり背面プレート表面に光が斜め方向から入射した場合には、背面プレートは擬似的な偏光光学素子として働く可能性がある。その結果、斜め方向から入射する光、つまりカメラで撮影される写真の端部に対応する部分では、当該部分を撮像する光路は擬似的に2枚の偏光光学素子に挟まれた状態となると考えられる。このことがカメラの色ムラやセンサー精度低下を発生させている要因の一つとなっていると考えられる。背面プレートとして用いるフィルムが上述した位相差範囲にあることで、色ムラ抑制やセンサー精度を向上できると考えられる。以上の機構から、正面位相差Reを低く制御した場合であっても、R40が本発明で規定する範囲に含まれない場合には色ムラを抑制することは困難である。また、S波とP波の透過率の差を小さくすることでも色ムラを抑制することができ、入射角40°でp偏光を入射させたときのP波の平均透過率と入射角40°でs偏光を入射させたときのS波の平均透過率との差ΔT40が10%以下であることが好ましく、7%以下であることがより好ましい。さらに好ましくは、5%以下であることが好ましい。なお、ΔT40を求める波長の範囲は400~800nmである。ΔT40を本範囲とするための方法は制限されるものではないが、例えばフィルム表面に反射防止加工を施すなどして、表層に基材の屈折率よりも屈折率の低い低屈折率層を作りフィルム界面での反射率を抑えることで透過率を向上させる方法、フィルム表面に光の波長の1/10以下の微細な突起を形成してフィルム界面での反射率を抑えることで、透過率を高くしてΔT40を小さくする方法、などの表面構造を制御する方法が好ましく用いられる。ここでいう反射防止加工とは、製膜したフィルムに対してさらに屈折率の異なる層をオフコート、真空蒸着等の手法により積層することを指し、例えばフッ化マグネシウムを表層に蒸着する方法が好ましく用いられる。フィルム表面に低屈折率層を形成する場合には、低屈折率層を設ける前のフィルム(便宜上、「ベアフィルム」と称する)の最表層の長手方向と幅方向の屈折率の平均値をn、ベアフィルムの表層に形成された低屈折率層の屈折率をn’とした時、n/n’が1.08以上であることがΔT40を上記範囲に制御する観点から好ましい。また、低屈折率層の屈折率は、透過率を高める観点から1.35~1.58が好ましく、より好ましくは、1.35~1.45である。低屈折率層の厚みは、光学的な性能以外は付与しない観点から、1nm~1μmが好ましく、特に可視光の光を干渉により、透過率を上げる観点から、30nm以上500nm以下であることが好ましくは、さらに好ましくは、60nm以上200nm以下である。屈折率が1.50の場合、厚みは60nm以上150nm以下が好ましく、85nm以上95nm以下が最も好ましい。低屈折率層としては、例えばアクリル系の樹脂を易接着樹脂層として用いることで、上記屈折率範囲とすることができる。また、低屈折率層に易滑剤として添加する粒子として、内部に空隙を有するシリカ微粒子(以下、中空シリカ粒子とも記載することがある。)を用いることでも、屈折率を低く制御することができるため好ましく用いられる。易滑剤として添加する粒子の平均粒子径の好ましい範囲は40nm以上100nm以下であり、より好ましくは40nm以上60nm以下である。平均粒子径が40nm未満であると屈折率の低下が充分ではなく、100nmより大きいと膜が白くなったり、表面の凹凸が大きくなったりすることがある。ただし、ΔT40を2%未満のような低い領域まで制御するためには、インプリント等によりモスアイ構造を形成したり、反射防止膜として蒸着層を複数層積層するなど、表面構造を精密に制御する必要があるため、生産性で劣る。その観点から、ΔT40は2%以上であることが好ましい。 The image display device of the present invention includes at least a polarizing plate, a light emitting element array for image display, a light emitting element array for image display, and a light emitting element array for image display in the order from the viewer's side (the side where the image is displayed) toward the direction of the light emitting element array for image display. This is an image display device equipped with a back plate of an element array and photoelectric conversion elements. When a film with birefringence is sandwiched between two optical elements (for example, polarizers, hereinafter referred to as "polarizing optical elements") that have different transmittance of polarized light depending on the in-plane direction, color unevenness can be seen. is widely known. On the other hand, in the configuration shown here, in which the polarizing plate, the light emitting element array for the image display device, the back plate, and the photoelectric conversion element are arranged in this order, no polarizing optical element is included other than the polarizing plate, so the above-mentioned color It is considered that no unevenness is observed. However, when external light incident obliquely or circularly polarized light emitted from a circularly polarizing plate enters the back plate, the transmittance of polarized light (P wave) whose vibration direction is parallel to the incident plane, There is a possibility that the transmittance of polarized light (S wave) in which the vibration direction of light is perpendicular to the incident plane is different. In other words, when light is incident on the surface of the back plate from an oblique direction, the back plate may function as a pseudo polarizing optical element. As a result, it is thought that for light incident from an oblique direction, that is, the part corresponding to the edge of the photograph taken by the camera, the optical path for imaging the part will be pseudo-sandwiched between two polarizing optical elements. It will be done. This is thought to be one of the factors causing color unevenness in the camera and a decrease in sensor accuracy. It is thought that color unevenness can be suppressed and sensor accuracy can be improved by having the film used as the back plate within the above-mentioned retardation range. From the above mechanism, even if the front retardation Re is controlled to be low, it is difficult to suppress color unevenness when R40 is not within the range defined by the present invention. Color unevenness can also be suppressed by reducing the difference in transmittance between S waves and P waves, and the average transmittance of P waves when p-polarized light is incident at an incident angle of 40 degrees and The difference ΔT40 from the average transmittance of S waves when s-polarized light is incident is preferably 10% or less, more preferably 7% or less. More preferably, it is 5% or less. Note that the wavelength range for determining ΔT40 is 400 to 800 nm. The method for setting ΔT40 within this range is not limited, but for example, by applying anti-reflection treatment to the film surface, a low refractive index layer with a refractive index lower than that of the base material is created on the surface layer. A method to improve transmittance by suppressing the reflectance at the film interface.By suppressing the reflectance at the film interface by forming fine protrusions of 1/10 or less of the wavelength of light on the film surface, the transmittance can be improved. A method of controlling the surface structure, such as a method of increasing ΔT40 to reduce it, is preferably used. The antireflection treatment here refers to laminating a layer with a different refractive index on the formed film by methods such as off-coating or vacuum deposition. For example, a method of depositing magnesium fluoride on the surface layer is preferable. used. When forming a low refractive index layer on the film surface, the average value of the refractive index in the longitudinal direction and the width direction of the outermost layer of the film (referred to as "bare film" for convenience) before forming the low refractive index layer is n. When n' is the refractive index of the low refractive index layer formed on the surface layer of the bare film, n/n' is preferably 1.08 or more from the viewpoint of controlling ΔT40 within the above range. Further, the refractive index of the low refractive index layer is preferably 1.35 to 1.58, more preferably 1.35 to 1.45, from the viewpoint of increasing transmittance. The thickness of the low refractive index layer is preferably 1 nm to 1 μm from the viewpoint of not imparting any performance other than optical performance, and preferably from 30 nm to 500 nm from the viewpoint of increasing the transmittance through interference of visible light. is more preferably 60 nm or more and 200 nm or less. When the refractive index is 1.50, the thickness is preferably 60 nm or more and 150 nm or less, and most preferably 85 nm or more and 95 nm or less. As the low refractive index layer, the above refractive index range can be achieved by using, for example, an acrylic resin as the easily adhesive resin layer. Furthermore, the refractive index can also be controlled low by using silica fine particles having internal voids (hereinafter also referred to as hollow silica particles) as particles added as a lubricant to the low refractive index layer. Therefore, it is preferably used. The average particle diameter of the particles added as a lubricant is preferably 40 nm or more and 100 nm or less, more preferably 40 nm or more and 60 nm or less. If the average particle size is less than 40 nm, the refractive index will not be lowered sufficiently, and if it is larger than 100 nm, the film may become white or the surface may become uneven. However, in order to control ΔT40 to a low range of less than 2%, it is necessary to precisely control the surface structure, such as by forming a moth-eye structure by imprinting or stacking multiple vapor-deposited layers as an anti-reflection film. Productivity is poor due to necessity. From that point of view, it is preferable that ΔT40 is 2% or more.
 本発明に用いられる光電変換素子は、画像表示装置に照射される外部光の内、採集、識別することができる最大の角度である対角画角が60~140°であることが好ましく、下限としてより好ましくは70°以上、さらに好ましくは75°以上であり、対角画角が高くなりすぎると生産性が低下する可能性があることから上限としては140°以下が好ましく、より好ましくは130°以下、さらに好ましくは120°以下である。上述の色ムラの発生が抑制される機構から、特に対角画角が大きな光電変換素子を画像表示装置に用いることができ、より広い範囲の画像情報を正確に採集、識別することができる。また、光電変換素子としてカメラを用いる際には、その画素数は700万画素以上が鮮明な画像を撮影する上で好ましく、1200万画素以上がより好ましい。上限については制限されるものではないが、生産性の観点から4800万画素以下が好ましくとられる上限である。 The photoelectric conversion element used in the present invention preferably has a diagonal angle of view of 60 to 140 degrees, which is the maximum angle at which external light irradiated to the image display device can be collected and identified. It is more preferably 70° or more, further preferably 75° or more, and since productivity may decrease if the diagonal angle of view becomes too high, the upper limit is preferably 140° or less, and more preferably 130°. The angle is preferably 120° or less, more preferably 120° or less. Due to the above-mentioned mechanism for suppressing the occurrence of color unevenness, a photoelectric conversion element having a particularly large diagonal angle of view can be used in an image display device, and a wider range of image information can be accurately collected and identified. Further, when a camera is used as a photoelectric conversion element, the number of pixels is preferably 7 million pixels or more in order to take a clear image, and more preferably 12 million pixels or more. The upper limit is not limited, but from the viewpoint of productivity, the upper limit is preferably 48 million pixels or less.
 (特性の測定および効果の評価方法)
 本発明における特性の測定方法、および効果の評価方法は次のとおりである。
(Methods for measuring characteristics and evaluating effects)
The method of measuring the characteristics and the method of evaluating the effect in the present invention are as follows.
 (1)ポリエステルの組成
 フィルムをアルカリにより加水分解し、各成分をガスクロマトグラフィーあるいは高速液体クロマトグラフィーにより分析し、各成分のピーク面積より組成比を求めた。ジカルボン酸構成成分や、その他構成成分は高速液体クロマトグラフィーにて測定を行った。測定条件は既知の方法で分析することができ、以下に測定条件の一例を示す。なお、測定にあたっては無機粒子を濾過分離した後に実施した。
装置:島津LC-10A
カラム:YMC-Pack ODS-A 150×4.6mm S-5μm 120A
カラム温度:40℃
流量:1.2ml/min
検出器:UV 240nm
 ジオール構成成分や、その他構成成分の定量はガスクロマトグラフィーを用いて既知の方法で分析することができる。以下に測定条件の一例を示す。
装置 :島津9A(島津製作所製)
カラム:SUPELCOWAX-10 キャピラリーカラム30m
カラム温度:140℃~250℃(昇温速度5℃/min)
流量 :窒素 25ml/min
検出器:FID。
(1) Composition of polyester The film was hydrolyzed with alkali, each component was analyzed by gas chromatography or high performance liquid chromatography, and the composition ratio was determined from the peak area of each component. Dicarboxylic acid constituents and other constituents were measured by high performance liquid chromatography. The measurement conditions can be analyzed by a known method, and an example of the measurement conditions is shown below. Note that the measurement was carried out after inorganic particles were separated by filtration.
Equipment: Shimadzu LC-10A
Column: YMC-Pack ODS-A 150 x 4.6mm S-5μm 120A
Column temperature: 40℃
Flow rate: 1.2ml/min
Detector: UV 240nm
The diol components and other components can be quantitatively analyzed by a known method using gas chromatography. An example of measurement conditions is shown below.
Equipment: Shimadzu 9A (manufactured by Shimadzu Corporation)
Column: SUPELCOWAX-10 capillary column 30m
Column temperature: 140°C to 250°C (heating rate 5°C/min)
Flow rate: Nitrogen 25ml/min
Detector: FID.
 (2)固有粘度(IV)
オルトクロロフェノール100mlに、測定試料(ポリエステル樹脂(原料)又はポリエステルフィルム)を溶解させ(溶液濃度C(測定試料質量/溶液体積)=1.2g/100ml)、その溶液の25℃での粘度を、オストワルド粘度計を用いて測定する。また、同様に溶媒の粘度を測定する。得られた溶液粘度、溶媒粘度を用いて、下記式(3)により、[η]を算出し、得られた値をもって固有粘度(IV)(単位:dl/g)とする。
ηsp/C=[η]+K[η]・C   式(3)
(ここで、ηsp=(溶液粘度/溶媒粘度)-1、Kはハギンス定数(0.343とする)である。)。
(2) Intrinsic viscosity (IV)
A measurement sample (polyester resin (raw material) or polyester film) was dissolved in 100 ml of orthochlorophenol (solution concentration C (measurement sample mass/solution volume) = 1.2 g/100 ml), and the viscosity of the solution at 25 ° C. , measured using an Ostwald viscometer. In addition, the viscosity of the solvent is measured in the same manner. Using the obtained solution viscosity and solvent viscosity, [η] is calculated by the following formula (3), and the obtained value is defined as the intrinsic viscosity (IV) (unit: dl/g).
ηsp/C=[η]+K[η] 2・C Formula (3)
(Here, ηsp=(solution viscosity/solvent viscosity)-1, K is Huggins' constant (assumed to be 0.343).)
 (3)フィルム厚み
フィルム厚みは、ダイヤルゲージ((株)ミツトヨ製 標準型ダイヤルゲージ2109S-10)を用い、JIS K7130(1992年)A-2法 に準じて、フィルムの任意の5ヶ所について厚さを測定した。その平均値をフィルム厚みとした。
(3) Film thickness The film thickness is measured at five arbitrary locations on the film using a dial gauge (standard dial gauge 2109S-10 manufactured by Mitutoyo Co., Ltd.) in accordance with JIS K7130 (1992) A-2 method. We measured the The average value was taken as the film thickness.
 (4)正面位相差Re、R40、フィルムの遅相軸方向、進相軸方向
 測定は、王子計測機器(株)製 位相差測定装置(“KOBRA”(登録商標)-WPR)を用いた。サンプルをフィルム幅方向中央部から3.5cm×3.5cmで切り出し、下記条件にて波長590nmにおける正面位相差Re[nm]およびフィルム配向角を測定した。得られた配向角方向を遅相軸方向、遅相軸方向と直交する方向を進相軸方向とした。長手方向、幅方向が不明な場合、長手方向と遅相軸方向、幅方向と進相軸方向がそれぞれ一致しているものとした。
(4) Front phase difference Re, R40, slow axis direction, fast axis direction of the film A phase difference measuring device (“KOBRA” (registered trademark)-WPR) manufactured by Oji Scientific Instruments Co., Ltd. was used for measurement. A sample of 3.5 cm x 3.5 cm was cut out from the center in the width direction of the film, and the front retardation Re [nm] at a wavelength of 590 nm and the film orientation angle were measured under the following conditions. The direction of the obtained orientation angle was defined as the slow axis direction, and the direction perpendicular to the slow axis direction was defined as the fast axis direction. When the longitudinal direction and the width direction are unknown, it is assumed that the longitudinal direction and the slow axis direction and the width direction and the fast axis direction are the same, respectively.
 測定法:高位相差モード
 分散曲線パラメーター:a=474.44777,b=2.04281×10,c=250
 λ=750nmでの次数範囲:1~5
また、R40測定の手順について、図2を用いて説明する。フィルムサンプル201のフィルムの進相軸202と、フィルム面に対する垂直軸203とを含む面に沿って、垂直軸を基準0°としたときの入射角204を40°とした角度から波長590nmの光線205を入射させて求まる位相差値をR40とした。本測定も上記と同様の測定法、分散曲線パラメーター、次数範囲にて測定を行った。
Measurement method: High phase difference mode Dispersion curve parameters: a=474.44777, b=2.04281×10 7 , c=250
Order range at λ=750nm: 1-5
Further, the procedure of R40 measurement will be explained using FIG. 2. A light beam with a wavelength of 590 nm is generated along a plane including the fast axis 202 of the film of the film sample 201 and the vertical axis 203 with respect to the film surface from an angle where the incident angle 204 is 40 degrees when the vertical axis is the reference 0 degrees. The phase difference value found by making 205 incident is set as R40. This measurement was also carried out using the same measurement method, dispersion curve parameters, and order range as above.
 測定は、フィルム幅方向中央部から試料数5で切り出しにて、それぞれについて測定をして、平均値を採用した。 For the measurement, 5 samples were cut out from the center in the width direction of the film, each was measured, and the average value was used.
 (5)ヤング率、破断伸度
 フィルム幅方向中央部から、フィルム長手方向および幅方向に、長さ150mm、幅10mmの短冊状のサンプルを切り出して用いた。ヤング率および破断伸度はJIS K7127(1999年)に規定された方法に従って、引張試験機を用いて測定した。測定は下記の条件で行い、試料数10にて、それぞれについてその測定をして、平均値を求めた。
測定装置:オリエンテック(株)製フィルム強伸度自動測定装置“テンシロン”(登録商標)AMF/RTA-100
試料サイズ:幅10mm×試長間50mm
引張り速度:300mm/分
測定環境:温度23℃、湿度65%RH。
(5) Young's modulus, elongation at break A strip-shaped sample having a length of 150 mm and a width of 10 mm was cut out from the central part of the film in the longitudinal direction and the width direction of the film. Young's modulus and elongation at break were measured using a tensile tester according to the method specified in JIS K7127 (1999). The measurements were carried out under the following conditions, and the measurements were made for each of 10 samples, and the average value was determined.
Measuring device: Automatic film strength and elongation measuring device “Tensilon” (registered trademark) AMF/RTA-100 manufactured by Orientech Co., Ltd.
Sample size: width 10mm x sample length 50mm
Tensile speed: 300 mm/min Measurement environment: Temperature 23°C, humidity 65% RH.
 (6)曲げ剛性
 曲げ剛性測定の手順について、図3を用いて説明する。
(6) Bending rigidity The procedure for measuring bending rigidity will be explained using FIG. 3.
 フィルム幅方向中央部から、測定されるフィルムの幅方向に対応する長さが5mm、長手方向に対応する長さが100mmである矩形の試料201を調製し、試料201をループスティフネステスタ(東洋精機製 ループスティフネステスタ、登録商標)に、円環とした際に円周が50mmの円環となるようにチャック301に設置し、チャック301同士を当接させて試料201を円環とし、当該円環の上方から変位速度約3.5mm/秒で測定子を降下させ、円環に接してから変位量302が10mmとなった時点での荷重を測定し、得られた値をフィルムの長手方向の曲げ剛性(mN)とした。また、同様に、測定されるフィルムの長手方向に対応する長さが5mm、幅方向に対応する長さが100mmである矩形の試料を調製し、同様に測定を行い、得られた値をフィルムの幅方向の曲げ剛性(mN)とした。フィルムの長手方向の曲げ剛性、フィルムの幅方向の曲げ剛性をそれぞれ5回ずつ測定し、これらの全ての値の平均値を曲げ剛性(mN)とした。 A rectangular sample 201 with a length corresponding to the width direction of the film to be measured of 5 mm and a length corresponding to the longitudinal direction of the film to be measured is 100 mm is prepared from the center of the film width direction. Loop Stiffness Tester (registered trademark) manufactured by J.D. Co., Ltd., is placed on a chuck 301 so that the circumference becomes a ring with a circumference of 50 mm. The probe is lowered from above the ring at a displacement speed of approximately 3.5 mm/sec, and the load is measured when the displacement amount 302 reaches 10 mm after contact with the ring, and the obtained value is measured in the longitudinal direction of the film. The bending stiffness (mN) was taken as . Similarly, a rectangular sample with a length corresponding to the longitudinal direction of the film to be measured of 5 mm and a length corresponding to the width direction of the film to be measured is 100 mm was prepared, and the obtained value was measured in the same manner. The bending stiffness (mN) in the width direction was taken as the width direction bending stiffness (mN). The bending stiffness in the longitudinal direction of the film and the bending stiffness in the width direction of the film were each measured five times, and the average value of all these values was taken as the bending stiffness (mN).
 (7)屈折率
 フィルム幅方向中央部から3.5cm×3.5cmで切り出し、測定サンプルとした。ナトリウムD線(波長589nm)を光源とし、マウント液としてヨウ化メチレンを用い、25℃にてアッベ屈折計4T(アタゴ(株)製)を用いてフィルム長手方向、幅方向および厚み方向の屈折率をJIS K7142(2014年)A法に準拠して測定して、フィルムの長手方向の屈折率をnx、幅方向の屈折率をny、厚み方向の屈折率をnzとして求めた。測定時にフィルムの上に置くテストピースの屈折率は、1.74のものを用いた。積層フィルムを評価する場合には、各層を剥がして測定した。測定は5回実施し、その平均値を採用した。
(7) Refractive Index A 3.5 cm x 3.5 cm piece was cut out from the center of the film in the width direction and used as a measurement sample. Using sodium D line (wavelength 589 nm) as a light source and methylene iodide as a mounting liquid, the refractive index in the longitudinal direction, width direction, and thickness direction of the film was measured at 25°C using an Abbe refractometer 4T (manufactured by Atago Co., Ltd.). was measured in accordance with JIS K7142 (2014) A method, and the refractive index in the longitudinal direction of the film was determined as nx, the refractive index in the width direction as ny, and the refractive index in the thickness direction as nz. The test piece placed on the film during measurement had a refractive index of 1.74. When evaluating a laminated film, each layer was peeled off and measured. The measurement was performed five times, and the average value was used.
 (8)Δヘイズ
 ヘイズ測定装置(日本電色工業製、NDH5000)を用いて測定を行った。試料をフィルム幅方向中央部から長さ50mm、幅50mmの正方形にサンプルを切り出して用いた。ヘイズ測定は、JIS K7136(2000年)に規定された方法に準じて測定した。切り出したサンプルについて、次の条件でヘイズ値を求め、それぞれ(ヘイズ1)、(ヘイズ2)とした。これらの値を式(4)に代入して、Δヘイズを算出した。測定は5回実施し、その平均値を採用した。
(ヘイズ1):切り出したサンプルをそのまま測定した時のヘイズ値。
(ヘイズ2):切り出したサンプルを120℃に設定してギアオーブン(エスペック(株)製 GPHH-202)中で5時間静置したときの、サンプルのヘイズ値。
Δヘイズ=(ヘイズ2)―(ヘイズ1)  式(4)   。
(8) ΔHaze Measurement was performed using a haze measuring device (manufactured by Nippon Denshoku Kogyo, NDH5000). A square sample having a length of 50 mm and a width of 50 mm was cut out from the center of the film in the width direction. Haze measurement was performed according to the method specified in JIS K7136 (2000). The haze values of the cut samples were determined under the following conditions and were defined as (haze 1) and (haze 2), respectively. By substituting these values into equation (4), Δ haze was calculated. The measurement was performed five times, and the average value was used.
(Haze 1): Haze value when a cut sample is measured as it is.
(Haze 2): Haze value of the sample when the cut sample was set at 120° C. and allowed to stand for 5 hours in a gear oven (GPHH-202, manufactured by ESPEC Co., Ltd.).
ΔHaze = (Haze 2) - (Haze 1) Equation (4).
 (9)FT-IR測定
 フィルム幅方向中央部から3.5cm×3.5cmで切り出し、測定サンプルとした。(株)パーキンエルマー製のFrontier FT-IRを用い、UATR IRユニットを使用して、媒質結晶をダイヤモンド/ZnSe(屈折率2.4、φ1.5mm)、光源をMIR、測定範囲を4000~650cm-1、検出器をMIR TGSとして、減衰全反射法(ATR法、1回反射)によってスペクトル強度を測定した。分光器の分解能は4cm-1、スペクトルの積算回数は16回として測定する。スペクトルはATR補正を実施し、強度は、各波長での吸光度(arb.unit)とした。測定は5回実施し、その平均値を採用した。
(9) FT-IR measurement A 3.5 cm x 3.5 cm piece was cut out from the center of the film in the width direction and used as a measurement sample. Using Frontier FT-IR manufactured by PerkinElmer Co., Ltd., using a UATR IR unit, the medium crystal was diamond/ZnSe (refractive index 2.4, φ1.5 mm), the light source was MIR, and the measurement range was 4000 to 650 cm. -1 , the spectral intensity was measured by the attenuated total reflection method (ATR method, one reflection) using MIR TGS as a detector. The resolution of the spectrometer is 4 cm −1 and the number of spectral integrations is 16. The spectrum was subjected to ATR correction, and the intensity was expressed as the absorbance (arb.unit) at each wavelength. The measurement was performed five times, and the average value was used.
 (10)フィルムの熱結晶化熱量ΔHc、融点Tm、結晶融解エネルギーΔHm、結晶化度Xc
 フィルム幅方向中央部からサンプルを電子天秤で5mg計量し、アルミニウム製サンプルパンに入れて(株)リガク社 製Thermo plus ECO2シリーズ DSC vestaを用いて、JIS K7121(1987年)、JIS K7122(1987年)に従い、25℃から300℃まで20℃/分で昇温して測定を行った。データ解析は同社製Thermo plus ECO2システムを用いた。得られたDSCデータから熱結晶化量ΔHc、融点Tm、結晶融解エネルギーΔHmを求めた。なお、融点ピークが複数見られた場合には、ピーク温度の低い方から順にTm1、Tm2、・・・と名付けた。
(10) Film thermal crystallization heat amount ΔHc, melting point Tm, crystal melting energy ΔHm, crystallinity Xc
Weigh 5 mg of the sample from the center in the width direction of the film using an electronic balance, place it in an aluminum sample pan, and use a Thermo plus ECO2 series DSC vesta manufactured by Rigaku Co., Ltd. to measure JIS K7121 (1987) and JIS K7122 (1987). ), the measurement was carried out by increasing the temperature from 25°C to 300°C at a rate of 20°C/min. Data analysis was performed using the company's Thermo plus ECO2 system. The thermal crystallization amount ΔHc, melting point Tm, and crystal melting energy ΔHm were determined from the obtained DSC data. In addition, when multiple melting point peaks were observed, they were named Tm1, Tm2, . . . in order from the one with the lowest peak temperature.
 フィルムの結晶化度は、式(5)から算出した。ただし、ΔHm0=140.1J/gとして算出した。 The crystallinity of the film was calculated from equation (5). However, it was calculated as ΔHm0=140.1J/g.
 結晶化度Xc(%)=(ΔHm-ΔHc)/ΔHm0×100  式(5)   。 Crystallinity Xc (%) = (ΔHm-ΔHc)/ΔHm0×100 Formula (5).
 (11)フィルムのΔCp、ΔHg、剛直非晶量Xra
 フィルムの比熱差ΔCp(単位:J/(g℃))および吸熱量ΔHg(単位:J/g)は、下記の測定条件にて実施した。
・測定手法 :温度変調DSC法
・測定装置 :TA Instruments社製Q1000
・データ処理:TA Instruments社製 ”Universal Analysis2000”
・雰囲気  :窒素流(50mL/min)
・温度,熱量校正:高純度インジウム(Tm=156.61℃,ΔHm=28.70g/J)
・比熱校正 :サファイア
・温度範囲 :0~150℃
・昇温速度 :2℃/min
・試料量  :5mg
・試料容器 :アルミニウム製標準容器
 フィルムの剛直非晶量Xraは、式(6)を用いて算出した。ただしΔCp0=0.4052J/g℃として算出した。
剛直非晶量Xra(%)=100-(Xc+ΔCp/ΔCp0×100) 式(6)   。
これらの測定を5回実施し、その平均値を採用した。
(11) Film ΔCp, ΔHg, rigid amorphous amount Xra
The specific heat difference ΔCp (unit: J/(g°C)) and endothermic amount ΔHg (unit: J/g) of the film were measured under the following measurement conditions.
・Measurement method: Temperature modulation DSC method ・Measurement device: Q1000 manufactured by TA Instruments
・Data processing: “Universal Analysis 2000” manufactured by TA Instruments
・Atmosphere: Nitrogen flow (50mL/min)
・Temperature and calorific value calibration: High purity indium (Tm=156.61℃, ΔHm=28.70g/J)
・Specific heat calibration: Sapphire ・Temperature range: 0 to 150℃
・Heating rate: 2℃/min
・Sample amount: 5mg
- Sample container: aluminum standard container The rigid amorphous amount Xra of the film was calculated using equation (6). However, it was calculated as ΔCp0=0.4052J/g°C.
Rigid amorphous amount Xra (%)=100-(Xc+ΔCp/ΔCp0×100) Formula (6).
These measurements were performed five times, and the average value was used.
 (12)入射角40°で入射時のS波とP波の平均透過率の差ΔT40
 下記(b1)~(b3)の手順で求めた。下記測定は5回実施し、その平均値を採用した。
(b1) フィルム幅方向中央部から3.5cm×3.5cmで切り出し、測定サンプルとした。(株)日立ハイテク(旧(株)日立ハイテクノロジーズ)製の分光光度計(U-4100 Spectrophotometer)に付属のU-4100形分光光度計用角度可変透過付属装置、光源マスクに8mm(H)×5mm(W)、ならびにグランテーラ社製偏光子を取り付け、測定検体であるフィルム面に対して入射角40°でp偏光となる偏光を入射させ、波長400~800nmの範囲の透過スペクトルを測定した。この時、フィルムの遅相軸方向をs偏光方向と垂直になるようにして測定を行った。測定条件としては、スリットは2nmとし、ゲインは2と設定し、走査速度を600nm/分とし、サンプリングピッチを1nmとし、検出器の直前に偏光子(ケニス(株)製、偏光フィルム薄手Sサイズ、透過率0.43、偏光率0.9999、商品コード1-115-0820)を取り付けて透過光のうちのp偏光成分のみを検出器へと入光させた。得られた透過スペクトルから、波長400~800nmの範囲の透過率の平均値を算出し、透過光中のp偏光成分量Tpp[%]とした。
(b2) 前記(b1)と同様の実験を、入射光を入射面に対してs偏光となる光線とし、検出器の直前の偏光子でs偏光のみを検出器に入光させるよう変更して実施し、透過光中のs偏光成分量Tps[%]を求めた。
(b3) 下記式(7)にてΔT40[%]を算出した。
ΔT40[%]=|Tps-Tpp|   式(7)   。
(12) Difference in average transmittance between S wave and P wave when incident at an incident angle of 40° ΔT40
It was determined using the following procedures (b1) to (b3). The following measurements were performed five times, and the average value was used.
(b1) A 3.5 cm x 3.5 cm piece was cut out from the center of the film in the width direction and used as a measurement sample. Variable angle transmission attachment device for U-4100 spectrophotometer, attached to the spectrophotometer (U-4100 Spectrophotometer) manufactured by Hitachi High-Technology Co., Ltd. (formerly Hitachi High-Technologies Co., Ltd.), 8 mm (H) x 8 mm (H) on the light source mask. 5 mm (W) and a polarizer manufactured by GranTerra Co., Ltd., polarized light that becomes p-polarized light at an incident angle of 40° was incident on the film surface that was the measurement specimen, and the transmission spectrum in the wavelength range of 400 to 800 nm was measured. At this time, the measurement was performed with the slow axis direction of the film perpendicular to the s-polarized light direction. As for the measurement conditions, the slit was set to 2 nm, the gain was set to 2, the scanning speed was set to 600 nm/min, the sampling pitch was set to 1 nm, and a polarizer (manufactured by Kenneth Co., Ltd., thin S size polarizing film) was placed just before the detector. , transmittance 0.43, polarization rate 0.9999, product code 1-115-0820) was attached to allow only the p-polarized component of the transmitted light to enter the detector. From the obtained transmission spectrum, the average value of the transmittance in the wavelength range of 400 to 800 nm was calculated, and was taken as the amount of p-polarized light component Tpp [%] in the transmitted light.
(b2) The same experiment as in (b1) above was carried out by changing the incident light to become s-polarized light with respect to the incident plane, and using a polarizer just in front of the detector to allow only s-polarized light to enter the detector. The amount of s-polarized light component Tps [%] in the transmitted light was determined.
(b3) ΔT40 [%] was calculated using the following formula (7).
ΔT40[%]=|Tps−Tpp| Formula (7).
 (13)密度
 フィルム幅方向中央部から一辺5mmの正方形に切り取り、臭化ナトリウム水溶液を用いた密度勾配管を用いて、JIS K7112-2(2023年)規格に従って密度(g/cc)を測定した。なお、測定は3回行い、その平均値を採用した。
(13) Density A square of 5 mm on each side was cut from the center of the film in the width direction, and the density (g/cc) was measured according to the JIS K7112-2 (2023) standard using a density gradient tube using an aqueous sodium bromide solution. . Note that the measurement was performed three times, and the average value was used.
 (14)120℃、3分の熱処理後のTD-NMR測定での可動非晶相の緩和時間
 可動非晶の緩和時間は、以下に示す装置および条件にて求めた。測定は5回実施し、その平均値を採用した。
装置:Bruker Biospin社製mq20
温度:120℃
測定核周波数:19.95MHz
90°パルス幅:2.2μsec
パルス繰り返し時間:2sec
パルスモード: Solido Echo法
 測定は、フィルムを裁断して、外径10mmのガラス管の管内に高さ1cmとなるまで断裁したフィルムを詰め込み、上記条件にてH核のスピン-スピンの緩和応答の減衰曲線を測定した。測定はフィルムを装置に投入して3分間、設定温度である120℃に保温した後に開始した。得られた減衰曲線を最小二乗法により、ガウス関数と指数関数を用いてフィッティングして、異なる3つの成分に分離した。各成分の寿命を、短い方からT1,T2,T3とする。T1が結晶成分の寿命に、T2が剛直非晶成分の寿命に、T3が可動非晶成分の寿命に相当する。
(14) Relaxation time of mobile amorphous phase in TD-NMR measurement after heat treatment at 120° C. for 3 minutes The relaxation time of mobile amorphous phase was determined using the apparatus and conditions shown below. The measurement was performed five times, and the average value was used.
Equipment: Bruker Biospin mq20
Temperature: 120℃
Measurement nuclear frequency: 19.95MHz
90° pulse width: 2.2μsec
Pulse repetition time: 2sec
Pulse mode: Solido Echo method Measurement was performed by cutting the film, packing the cut film to a height of 1 cm into a glass tube with an outer diameter of 10 mm, and measuring the spin-spin relaxation response of the 1 H nucleus under the above conditions. The decay curve was measured. The measurement was started after the film was placed in the device and kept at the set temperature of 120° C. for 3 minutes. The obtained attenuation curve was fitted by the least squares method using a Gaussian function and an exponential function to separate it into three different components. The lifetime of each component is designated as T1, T2, and T3 from the shortest to the lowest. T1 corresponds to the lifetime of the crystalline component, T2 corresponds to the lifetime of the rigid amorphous component, and T3 corresponds to the lifetime of the movable amorphous component.
 (15)カメラ視認性(色ムラ評価)
 本発明の構成の疑似的な評価装置として、画像表示面下方に光電変換素子を配置した画像表示装置のモデル装置構成における視認性テストの概要図を図4に示す。
(15) Camera visibility (color unevenness evaluation)
As a pseudo evaluation device for the configuration of the present invention, FIG. 4 shows a schematic diagram of a visibility test in a model device configuration of an image display device in which a photoelectric conversion element is arranged below the image display surface.
 50mm×50mmに切り出したフィルム201を、偏光板401(ケニス(株)製、偏光フィルム薄手Sサイズ、透過率0.43、偏光率0.9999、商品コード1-115-0820)に重ねて測定サンプルとした。偏光板401側を下になるようにサンプルを支持して、面光源405((株)トライテック製、トレビューアーA4-100)の上に水平に設置し、カメラ内蔵装置402(Samsung “Galaxy”(登録商標) S10)の超広角レンズ403(対角画角122°)を用いて、カメラのレンズの光軸がフィルム201に対して垂直になるようにカメラ内蔵装置402を設置して撮影した。このとき、撮影画角404全体が面光源405の光っている範囲内に収まるように撮影した。このようにして、偏光板と、背面プレートと、カメラ(光電変換素子)とが、この順に並ぶように配置した状態で撮影された画像を観察し、視認性を以下の通り判断した。なお、視認性はA、B、Cを画像表示装置においても十分使用可能な合格レベルとした。
A:干渉色は全体にほとんど見られない。
B:干渉色が画角の隅で若干見られるものの実用に問題ない。
C:干渉色が全体に見られるが、実用できる。
D:干渉色がはっきりみられるため、実用には適さない。
Film 201 cut out to 50 mm x 50 mm was stacked on polarizing plate 401 (manufactured by Kennis Co., Ltd., polarizing film thin S size, transmittance 0.43, polarization rate 0.9999, product code 1-115-0820). It was used as a sample. The sample was supported with the polarizing plate 401 side facing down, and was installed horizontally on a surface light source 405 (manufactured by Tritech Co., Ltd., Treviewer A4-100), and a camera built-in device 402 (Samsung "Galaxy") (Registered Trademark) S10) ultra-wide-angle lens 403 (diagonal angle of view 122°), and the built-in camera device 402 was set up so that the optical axis of the camera lens was perpendicular to the film 201. . At this time, the photograph was taken so that the entire photographing angle of view 404 was within the range illuminated by the surface light source 405. In this way, images taken with the polarizing plate, back plate, and camera (photoelectric conversion element) arranged in this order were observed, and the visibility was judged as follows. Note that the visibility of A, B, and C was determined to be an acceptable level that can be used sufficiently even in an image display device.
A: Almost no interference color is seen throughout.
B: Although some interference colors are seen at the corners of the angle of view, there is no problem in practical use.
C: Interference color is seen throughout, but can be used for practical purposes.
D: Not suitable for practical use because interference colors are clearly seen.
 (16)支持性
 長さ100mm×幅20mmのサンプルとして、遅相軸方向を長辺とするサンプルと、進相軸方向を長辺とするサンプルの2種類準備し、それぞれについて、サンプルの長さ50mm分をはみ出させて地表に水平な台の上にサンプルを置く。サンプルのはみ出した部分は垂れ下がるので、その弛み量を測定する。弛み量は、サンプルの台の上に載っている部分の上面から、サンプルの垂れ下がった先端までの、地表面に垂直な長さで定義され、本測定を5回繰り返し、遅相軸方向の曲げ剛性、進相軸方向の計10回の値の平均値を算出する。下記基準で支持性を評価した。なお、支持性はA、Bを画像表示装置においても十分使用可能な合格レベルとして判定した。
A:弛み量が10mm未満であり、良好な支持性を示した。
B:弛み量が10mm以上20mm未満であり、支持性は実用上問題ないレベルであった。
C:弛み量が20mm以上で、支持性が不十分であった。
(16) Supportability Two types of samples with a length of 100 mm and a width of 20 mm were prepared, one with the long side in the slow axis direction and the other with the long side in the fast axis direction. Place the sample on a platform horizontal to the ground surface with 50 mm protruding from the sample. The protruding part of the sample will sag, so measure the amount of sag. The amount of slack is defined as the length perpendicular to the ground surface from the top surface of the sample resting on the stage to the hanging tip of the sample.This measurement is repeated five times, and the bending in the slow axis direction is defined as the length perpendicular to the ground surface. The average value of the stiffness and fast axis direction values obtained 10 times in total is calculated. Supportability was evaluated based on the following criteria. Note that supportability was judged to be acceptable for A and B, which can be used in image display devices.
A: The amount of slack was less than 10 mm, indicating good support.
B: The amount of slack was 10 mm or more and less than 20 mm, and the supportability was at a level that caused no practical problems.
C: The amount of slack was 20 mm or more, and the support was insufficient.
 (17)製膜安定性
 300mm幅、200m長(6インチ、350mm長コア巻)のフィルムを準備し、下記条件で、3インチ、350mm長コアに巻返しを行い、搬送速度、張力を変化しながら下記の基準で評価を行った。なお、A、Bを、加工時に十分ハンドリングできるレベルであると判断した。
A:速度15m/分、搬送張力70N/mで巻き返しても破れや欠けが発生しなかった。
B:速度10m/分、搬送張力70N/mで巻き返しても破れや欠けが発生しなかったが、速度を15m/分とすると時々破れや欠けが発生した。
C:速度10m/分、搬送張力70N/mで巻き返すと破れや欠けが発生した。
(17) Film forming stability A film with a width of 300 mm and a length of 200 m (6 inch, 350 mm long core wound) was prepared, and it was rewound onto a 3 inch, 350 mm long core under the following conditions, and the conveying speed and tension were varied. However, evaluation was performed using the following criteria. Note that A and B were judged to be at a level that could be sufficiently handled during processing.
A: No tearing or chipping occurred even when the film was rewound at a speed of 15 m/min and a conveying tension of 70 N/m.
B: No tears or chips occurred even when the film was rewound at a speed of 10 m/min and a conveyance tension of 70 N/m, but when the speed was set to 15 m/min, tears or chips sometimes occurred.
C: Tears and chips occurred when the film was rewound at a speed of 10 m/min and a conveyance tension of 70 N/m.
 (18)耐屈曲性
 U字伸縮試験器(ユアサシステム機器製DLDMLH-FS)を用いて測定を行った。図5を参照しつつ説明すると、長さ60mm×幅25mmに切り出したフィルムサンプル201を、長辺に平行な方向が屈曲方向501となるようにクランプ面が水平とされたチルトクランプに固定し、面間距離3mmにてフィルムの中央部502が屈曲する状態で、24時間静置する。24時間経過後、屈曲状態を開放して装置から取り出し、屈曲した外側が下にくるように静置し、フィルムサンプルの成す角度503を測定する。この測定を、フィルムの長手方向を長辺として切り出したフィルムサンプル、幅方向を長辺として切り出したフィルムサンプルのそれぞれについて5回繰り返し、その算術平均値を算出し回復角とした。完全に折りたたまれた状態を0°、フィルムが折りたたむ前の元の折れの無い状態まで回復する状態を180°として角度403を読み取った。長手方向、幅方向の測定結果のうち、回復角が小さい方の測定結果を用いて下記基準で耐屈曲性を評価した。なお、耐屈曲性A、Bはフォルダブルディスプレイとして好適に用いることができるレベルである。
A:回復角が160°以上で、フォルダブルディスプレイに実装した際に屈曲によるシワの発生や浮き上がり現象は発生しなかった。
B:回復角が140°以上160°未満で、フォルダブルディスプレイとしての実用に問題ない。
C:回復角が140°未満であり、画像表示装置としては実用可能であるが、フォルダブルディスプレイの実用には適さない。
(18) Bending resistance Measurement was performed using a U-shaped stretch tester (DLDMLH-FS manufactured by Yuasa System Instruments). To explain with reference to FIG. 5, a film sample 201 cut out to a length of 60 mm x width of 25 mm is fixed to a tilt clamp with a horizontal clamping surface so that the direction parallel to the long side is the bending direction 501. The film is left standing for 24 hours in a state where the center portion 502 of the film is bent with a distance between surfaces of 3 mm. After 24 hours, the film sample is released from the bent state, taken out from the apparatus, and left standing with the bent outside facing down, and the angle 503 formed by the film sample is measured. This measurement was repeated five times for each of the film sample cut out with the longitudinal direction of the film as the long side and the film sample cut out with the width direction as the long side, and the arithmetic average value was calculated and used as the recovery angle. Angle 403 was read with 0° being a completely folded state and 180° being a state in which the film had recovered to its original unfolded state before folding. Among the measurement results in the longitudinal direction and the width direction, the measurement result with the smaller recovery angle was used to evaluate the bending resistance according to the following criteria. Note that the bending resistances A and B are at a level that can be suitably used as a foldable display.
A: The recovery angle was 160° or more, and no wrinkles or lifting phenomenon occurred due to bending when mounted on a foldable display.
B: The recovery angle is 140° or more and less than 160°, and there is no problem in practical use as a foldable display.
C: The recovery angle is less than 140°, and although it is practical as an image display device, it is not suitable for practical use as a foldable display.
 (19)屈曲破断到達回数
 フィルムサンプルを110mm(試験方向)×幅15mmの矩形に切り出して、MIT屈曲試験機(マイズ社製試験機No.702)を用い、JIS P8115(2001年)に準じて、荷重1,000g、屈曲角度左右135°(R:+135°、L:-135°)、屈曲速度175回/分、チャック先端R:0.38mmで屈曲試験を行い、フィルムサンプルが破断されたときの屈曲回数を屈曲破断到達回数とした。試験は、MD方向が試験方向として採取したサンプル、TD方向を試験方向として採取したサンプルについて、それぞれ3回実施して算術平均値を求めた。なお、下記の評価にはMD方向、TD方向のうちより屈曲破断到達回数が大きい方を用いて評価し、耐繰り返し屈曲性A、Bはフォルダブルディスプレイとして好適に用いることができるレベルである。
A:屈曲破断到達回数2000回以上であり、非常に良好な耐繰り返し屈曲性を示した。
B:屈曲破断到達回数1000回以上2000回未満であり、フォルダブルディスプレイとして実用上問題ない。
C:屈曲破断到達回数1000回未満であり、画像表示装置としては実用可能であるが、フォルダブルディスプレイの実用には適さない。
(19) Number of times to reach bending break The film sample was cut into a rectangle of 110 mm (test direction) x 15 mm wide, and tested using an MIT bending tester (testing machine No. 702 manufactured by Mize Co., Ltd.) according to JIS P8115 (2001). A bending test was conducted with a load of 1,000 g, a bending angle of 135° left and right (R: +135°, L: -135°), a bending speed of 175 times/min, and a chuck tip R: 0.38 mm, and the film sample was broken. The number of bending times at that time was defined as the number of times the bending break was reached. The test was conducted three times each for samples taken with the MD direction as the test direction and samples taken with the TD direction as the test direction, and the arithmetic mean value was determined. In addition, the following evaluation is performed using the MD direction or the TD direction, whichever has a larger number of bending failures, and the repeated bending resistance A and B are at a level that can be suitably used as a foldable display.
A: The number of bending breaks reached was 2000 times or more, indicating very good repeated bending resistance.
B: The number of bending breaks reached is 1000 or more and less than 2000 times, and there is no problem in practical use as a foldable display.
C: The number of bending failures reached is less than 1000 times, and although it is practical as an image display device, it is not suitable for practical use as a foldable display.
 (ポリエステルの製造)
 製膜に供したポリエステル樹脂は以下のように準備した。なお、モル%の表記は、ジカルボン酸成分およびジオール成分のそれぞれにおいて、それぞれの成分の総量を100モル%としての表記である。また、ジカルボン酸成分の総量とジオール成分の総量はモル比として等しい。
(Production of polyester)
The polyester resin used for film formation was prepared as follows. Note that the expression of mol% is based on the total amount of each dicarboxylic acid component and diol component being 100 mol%. Further, the total amount of dicarboxylic acid components and the total amount of diol components are equal in molar ratio.
 (ポリエステルA)
 ジカルボン酸成分としてテレフタル酸成分が92モル%、イソフタル酸成分が8モル%、ジオール成分としてエチレングリコール成分が80モル%、1,4-シクロヘキサンジメタノール成分が10モル%、イソソルベート成分が10モル%である共重合ポリエステル樹脂(固有粘度:0.80)。
(Polyester A)
As dicarboxylic acid components, terephthalic acid component is 92 mol%, isophthalic acid component is 8 mol%, as diol components, ethylene glycol component is 80 mol%, 1,4-cyclohexanedimethanol component is 10 mol%, and isosorbate component is 10 mol%. A copolymerized polyester resin (intrinsic viscosity: 0.80).
 (ポリエステルB)
 ジカルボン酸成分としてテレフタル酸成分が100モル%、ジオール成分としてエチレングリコール成分が80モル%、1,4-シクロヘキサンジメタノール成分が10モル%、イソソルベート成分が10モル%である共重合ポリエステル樹脂(固有粘度:0.80)。
(Polyester B)
A copolymerized polyester resin (proper Viscosity: 0.80).
 (ポリエステルC)
 ジカルボン酸成分としてテレフタル酸成分が88モル%、イソフタル酸成分が12モル%、ジオール成分としてエチレングリコール成分が80モル%、1,4-シクロヘキサンジメタノール成分が10モル%、イソソルベート成分が10モル%である共重合ポリエステル樹脂(固有粘度:0.80)。
(Polyester C)
As dicarboxylic acid components, terephthalic acid component is 88 mol%, isophthalic acid component is 12 mol%, as diol components, ethylene glycol component is 80 mol%, 1,4-cyclohexanedimethanol component is 10 mol%, and isosorbate component is 10 mol%. A copolymerized polyester resin (intrinsic viscosity: 0.80).
 (ポリエステルD)
 ジカルボン酸成分としてテレフタル酸成分が92モル%、イソフタル酸成分が8モル%、ジオール成分としてエチレングリコール成分が73モル%、1,4-シクロヘキサンジメタノール成分が16モル%、イソソルベート成分が11モル%である共重合ポリエステル樹脂(固有粘度:0.80)。
(Polyester D)
As dicarboxylic acid components, terephthalic acid component is 92 mol%, isophthalic acid component is 8 mol%, as diol components, ethylene glycol component is 73 mol%, 1,4-cyclohexanedimethanol component is 16 mol%, and isosorbate component is 11 mol%. A copolymerized polyester resin (intrinsic viscosity: 0.80).
 (ポリエステルE)
 ジカルボン酸成分としてテレフタル酸成分が100モル%、ジオール成分としてエチレングリコール成分が73モル%、1,4-シクロヘキサンジメタノール成分が16モル%、イソソルベート成分が11モル%である共重合ポリエステル樹脂(固有粘度:0.80)。
(Polyester E)
A copolymerized polyester resin (proper Viscosity: 0.80).
 (ポリエステルF)
 ジカルボン酸成分としてテレフタル酸成分が88モル%、イソフタル酸成分が12モル%、ジオール成分としてエチレングリコール成分が100モル%である共重合ポリエステル樹脂(固有粘度:0.80)。
(Polyester F)
A copolymerized polyester resin (intrinsic viscosity: 0.80) containing 88 mol% of a terephthalic acid component as a dicarboxylic acid component, 12 mol% of an isophthalic acid component, and 100 mol% of an ethylene glycol component as a diol component.
 (ポリエステルG)
 ジカルボン酸成分としてテレフタル酸成分が100モル%、ジオール成分としてエチレングリコール成分が100モル%であるポリエステル樹脂(固有粘度:0.80)。
(Polyester G)
A polyester resin (intrinsic viscosity: 0.80) containing 100 mol% of a terephthalic acid component as a dicarboxylic acid component and 100 mol% of an ethylene glycol component as a diol component.
 (ポリエステルH)
 ジカルボン酸成分としてテレフタル酸成分が95モル%、イソフタル酸成分が5モル%、ジオール成分としてエチレングリコール成分が100モル%である共重合ポリエステル樹脂(固有粘度:0.80)。
(Polyester H)
A copolymerized polyester resin (intrinsic viscosity: 0.80) containing 95 mol% of a terephthalic acid component as a dicarboxylic acid component, 5 mol% of an isophthalic acid component, and 100 mol% of an ethylene glycol component as a diol component.
 (ポリエステルI)
 ジカルボン酸成分としてテレフタル酸成分が92モル%、イソフタル酸成分が8モル%、ジオール成分としてエチレングリコール成分が80モル%、1,4-シクロヘキサンジメタノール成分が10モル%、イソソルベート成分が10モル%である共重合ポリエステル樹脂(固有粘度:0.77)。
(Polyester I)
As dicarboxylic acid components, terephthalic acid component is 92 mol%, isophthalic acid component is 8 mol%, as diol components, ethylene glycol component is 80 mol%, 1,4-cyclohexanedimethanol component is 10 mol%, and isosorbate component is 10 mol%. A copolymerized polyester resin (intrinsic viscosity: 0.77).
 (ポリエステルJ)
 ジカルボン酸成分としてテレフタル酸成分が100モル%、ジオール成分としてエチレングリコール成分が80モル%、1,4-シクロヘキサンジメタノール成分が10モル%、イソソルベート成分が10モル%である共重合ポリエステル樹脂(固有粘度:0.77)。
(Polyester J)
A copolymerized polyester resin (proper Viscosity: 0.77).
 (ポリエステルK)
 ジカルボン酸成分としてテレフタル酸成分が92モル%、イソフタル酸成分が8モル%、ジオール成分としてエチレングリコール成分が80モル%、1,4-シクロヘキサンジメタノール成分が10モル%、イソソルベート成分が10モル%である共重合ポリエステル樹脂(固有粘度:0.69)。
(Polyester K)
As dicarboxylic acid components, terephthalic acid component is 92 mol%, isophthalic acid component is 8 mol%, as diol components, ethylene glycol component is 80 mol%, 1,4-cyclohexanedimethanol component is 10 mol%, and isosorbate component is 10 mol%. A copolymerized polyester resin (intrinsic viscosity: 0.69).
 (ポリエステルL)
 ジカルボン酸成分としてテレフタル酸成分が100モル%、ジオール成分としてエチレングリコール成分が80モル%、1,4-シクロヘキサンジメタノール成分が10モル%、イソソルベート成分が10モル%である共重合ポリエステル樹脂(固有粘度:0.69)。
(Polyester L)
A copolymerized polyester resin (proper Viscosity: 0.69).
 (ポリエステルM)
 ジカルボン酸成分としてテレフタル酸成分が92モル%、イソフタル酸成分が8モル%、ジオール成分としてエチレングリコール成分が90モル%、イソソルベート成分が10モル%である共重合ポリエステル樹脂(固有粘度:0.80)。
(Polyester M)
A copolymerized polyester resin containing 92 mol% of terephthalic acid component as dicarboxylic acid component, 8 mol% of isophthalic acid component, 90 mol% of ethylene glycol component as diol component, and 10 mol% of isosorbate component (intrinsic viscosity: 0.80 ).
 (ポリエステルN)
 ジカルボン酸成分としてテレフタル酸成分が100モル%、ジオール成分としてエチレングリコール成分が90モル%、イソソルベート成分が10モル%である共重合ポリエステル樹脂(固有粘度:0.80)。
(Polyester N)
A copolyester resin (intrinsic viscosity: 0.80) containing 100 mol% of a terephthalic acid component as a dicarboxylic acid component, 90 mol% of an ethylene glycol component as a diol component, and 10 mol% of an isosorbate component.
 (ポリエステルO)
 ジカルボン酸成分としてテレフタル酸成分が82モル%、イソフタル酸成分が8モル%、2,6-ナフタレンジカルボン酸成分が10モル%、ジオール成分としてエチレングリコール成分が90モル%、1,4-シクロヘキサンジメタノール成分が10モル%である共重合ポリエステル樹脂(固有粘度:0.80)。
(Polyester O)
As dicarboxylic acid components, 82 mol% of terephthalic acid component, 8 mol% of isophthalic acid component, 10 mol% of 2,6-naphthalene dicarboxylic acid component, 90 mol% of ethylene glycol component as diol component, and 1,4-cyclohexane dicarboxylic acid component. A copolyester resin containing 10 mol% of methanol component (intrinsic viscosity: 0.80).
 (ポリエステルP)
 ジカルボン酸成分としてテレフタル酸成分が90モル%、2,6-ナフタレンジカルボン酸成分が10モル%、ジオール成分としてエチレングリコール成分が90モル%、1,4-シクロヘキサンジメタノール成分が10モル%である共重合ポリエステル樹脂(固有粘度:0.80)。
(Polyester P)
As dicarboxylic acid components, terephthalic acid component is 90 mol%, 2,6-naphthalene dicarboxylic acid component is 10 mol%, as diol components, ethylene glycol component is 90 mol%, and 1,4-cyclohexanedimethanol component is 10 mol%. Copolymerized polyester resin (intrinsic viscosity: 0.80).
 (ポリエステル/PEI樹脂A)
 温度280℃に加熱されたニーディングパドル混練部を3箇所設けた同方向回転タイプのベント式2軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に、上記方法で得られたポリエステルFとSABICイノベーティブプラスチック社製のポリエーテルイミド(PEI)“Ultem”(登録商標)XH6050-1000のペレットを供給して、剪断速度100sec-1、滞留時間1分にて溶融押出し、ポリエーテルイミドを16質量%含有したポリエステル/PEI樹脂Aを得た。(固有粘度:0.80)
 (ポリエステル/PEI樹脂B)
 温度280℃に加熱されたニーディングパドル混練部を3箇所設けた同方向回転タイプのベント式2軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に、ポリエステルGとSABICイノベーティブプラスチック社製のポリエーテルイミド(PEI)“Ultem”(登録商標)XH6050-1000のペレットを供給して、剪断速度100sec-1、滞留時間1分にて溶融押出し、ポリエーテルイミドを16質量%含有したポリエステル/PEI樹脂Bを得た。(固有粘度:0.80)
 (オレフィンA)
 日本ゼオン社製“ZEONOR”(登録商標) 1020R (環状オレフィンおよび/またはその誘導体を開環メタセシス重合させた後に水素化させた樹脂)を用いた。
(Polyester/PEI resin A)
A co-rotating vent type twin-screw kneading extruder equipped with three kneading paddle kneading sections heated to a temperature of 280°C (manufactured by Japan Steel Works, screw diameter 30 mm, screw length/screw diameter = 45.5) Pellets of polyester F obtained by the above method and polyetherimide (PEI) “ Ultem ” (registered trademark) Polyester/PEI resin A containing 16% by mass of polyetherimide was obtained by melt extrusion. (Intrinsic viscosity: 0.80)
(Polyester/PEI resin B)
A co-rotating vent type twin-screw kneading extruder equipped with three kneading paddle kneading sections heated to a temperature of 280°C (manufactured by Japan Steel Works, screw diameter 30 mm, screw length/screw diameter = 45.5) Pellets of polyester G and polyetherimide (PEI) “ Ultem ” (registered trademark) Polyester/PEI resin B containing 16% by mass of etherimide was obtained. (Intrinsic viscosity: 0.80)
(Olefin A)
"ZEONOR" (registered trademark) 1020R manufactured by Nippon Zeon Co., Ltd. (a resin obtained by ring-opening metathesis polymerization of a cyclic olefin and/or its derivative and then hydrogenation) was used.
 (易接着塗布層)
 フィルムの表面に積層する易接着塗布層は以下のように準備した。
(Easy adhesive coating layer)
The easily adhesive coating layer to be laminated on the surface of the film was prepared as follows.
 <塗布層A>
樹脂溶液(a):メチルメタクリレート64質量%、エチルアクリレート30質量%、アクリル酸5質量%、アクリロニトリル1質量%で共重合したアクリル樹脂溶液。
架橋剤(b):メチロール基型メラミン架橋剤。
粒子(c):粒子径60nmのコロダイルシリカ粒子の水分散体。
フッ素系界面活性剤(d):DIC(株)製“メガファック”(登録商標)F-444
これらを固形分質量比で(a)/(b)/(c)/(d)=30質量部/8質量部/2質量部/0.6質量部で混合した。乾燥後の屈折率は1.50。
<Coating layer A>
Resin solution (a): Acrylic resin solution copolymerized with 64% by mass of methyl methacrylate, 30% by mass of ethyl acrylate, 5% by mass of acrylic acid, and 1% by mass of acrylonitrile.
Crosslinking agent (b): Methylol-based melamine crosslinking agent.
Particles (c): An aqueous dispersion of collodyl silica particles with a particle diameter of 60 nm.
Fluorine surfactant (d): “Megafac” (registered trademark) F-444 manufactured by DIC Corporation
These were mixed at a solid content mass ratio of (a)/(b)/(c)/(d)=30 parts by mass/8 parts by mass/2 parts by mass/0.6 parts by mass. The refractive index after drying is 1.50.
 <塗布層B>
樹脂溶液(e):酸成分であるテレフタル酸(88mol%)、5-ナトリウムスルホイソフタル酸(12mol%)、ジオール成分であるエチレングリコール(100mol%)の酸成分とジオール成分からなるポリエステル樹脂の水溶性塗液を70質量部と、酸成分であるテレフタル酸(50mol%)、イソフタル酸(49mol%)、5-ナトリウムスルホイソフタル酸(1mol%)とジオール成分であるエチレングリコール(55mol%)、ネオペンチルグリコール(44mol%)、ポリエチレングリコール(分子量:4000)(1mol%)の酸性分とジオール成分からなるポリエステル樹脂の水分散体30質量部を混合した溶液。
架橋剤(b):メチロール基型メラミン架橋剤
架橋剤(f):オキサゾリン基含有架橋剤
粒子(g):粒子径約150nmのコロダイルシリカ粒子の水分散体
粒子(h):粒子径約300nmのコロダイルシリカ粒子の水分散体
フッ素系界面活性剤(d):DIC(株)製“メガファック”(登録商標)F-444
 これらを固形分質量比で(e)/(b)/(f)/(g)/(h)/(d)=47質量部 /19質量部/20質量部/4.9質量部/0.7質量部/0.1質量部で混合した。乾燥後の屈折率は1.57。
<Coating layer B>
Resin solution (e): Aqueous solution of polyester resin consisting of an acid component of terephthalic acid (88 mol%), 5-sodium sulfoisophthalic acid (12 mol%) as an acid component, and ethylene glycol (100 mol%) as a diol component. 70 parts by mass of a color coating liquid, acid components terephthalic acid (50 mol%), isophthalic acid (49 mol%), 5-sodium sulfoisophthalic acid (1 mol%), diol components ethylene glycol (55 mol%), neo A solution containing 30 parts by mass of an aqueous dispersion of a polyester resin consisting of an acidic content of pentyl glycol (44 mol%), polyethylene glycol (molecular weight: 4000) (1 mol%), and a diol component.
Crosslinking agent (b): Methylol-based melamine crosslinking agent Crosslinking agent (f): Oxazoline group-containing crosslinking agent Particles (g): Aqueous dispersion of collodyl silica particles with a particle size of about 150 nm Particles (h): Particle size of about 300 nm Aqueous dispersion of collodyl silica particles Fluorine surfactant (d): “Megafac” (registered trademark) F-444 manufactured by DIC Corporation
The solid content mass ratio of these is (e) / (b) / (f) / (g) / (h) / (d) = 47 parts by mass / 19 parts by mass / 20 parts by mass / 4.9 parts by mass / 0 They were mixed at a ratio of .7 parts by mass/0.1 parts by mass. The refractive index after drying is 1.57.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらに限定して解釈されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention should not be construed as being limited to these.
 (表層加工層)
 <オフコート層>
 3,3,3-トリフルオロプロピルトリメトキシシラン(信越シリコーン製 KBM-7103)219質量部を20℃±5℃で撹拌しながら、0.5N蟻酸89質量部で加水分解した。60分後にイソプロピルアルコール412質量部を混合して処理液(X1)を調整した。
(Surface processed layer)
<Off coat layer>
219 parts by mass of 3,3,3-trifluoropropyltrimethoxysilane (KBM-7103, manufactured by Shin-Etsu Silicone) was hydrolyzed with 89 parts by mass of 0.5N formic acid while stirring at 20°C±5°C. After 60 minutes, 412 parts by mass of isopropyl alcohol was mixed to prepare a treatment liquid (X1).
 同様に、3,3,3-トリフルオロプロピルトリメトキシシラン(信越シリコーン製KBM-7103)158質量部を30℃±10℃で攪拌しながら、1N蟻酸41質量部で加水分解した。460分後にイソプロピルアルコール521質量部を混合して処理液(X2)を調整した。 Similarly, 158 parts by mass of 3,3,3-trifluoropropyltrimethoxysilane (KBM-7103 manufactured by Shin-Etsu Silicone) was hydrolyzed with 41 parts by mass of 1N formic acid while stirring at 30°C±10°C. After 460 minutes, 521 parts by mass of isopropyl alcohol was mixed to prepare a treatment liquid (X2).
 次に、平均1次粒子径50nmの外殻を有する空隙率30%の中空シリカ粒子(触媒化成工業株式会社製 “スルーリア”(登録商標))144質量部、イソプロピルアルコール560質量部からなるシリカスラリー(X3)を準備した。 Next, a silica slurry consisting of 144 parts by mass of hollow silica particles having an outer shell with an average primary particle diameter of 50 nm and a porosity of 30% ("Surulia" (registered trademark) manufactured by Catalysts & Chemicals Co., Ltd.) and 560 parts by mass of isopropyl alcohol was prepared. (X3) was prepared.
 処理液(X1)720質量部、処理液(X2)720質量部、シリカスラリー(X3)700質量部、メタノール360質量部、イソプロピルアルコール4272質量部、ポリプロピレングリコールモノエチルエーテル713質量部を攪拌混合した後、硬化触媒としアセトアセトキシアルミニウムを15質量部添加して再度攪拌混合し、乾燥硬化後の屈折率1.45の塗料を調整した。 720 parts by mass of treatment liquid (X1), 720 parts by mass of treatment liquid (X2), 700 parts by mass of silica slurry (X3), 360 parts by mass of methanol, 4272 parts by mass of isopropyl alcohol, and 713 parts by mass of polypropylene glycol monoethyl ether were stirred and mixed. Thereafter, 15 parts by mass of acetoacetoxyaluminum was added as a curing catalyst and stirred and mixed again to prepare a paint having a refractive index of 1.45 after drying and curing.
 調整した塗料を、マイクログラビアコーターで塗工し、80℃で乾燥後、130℃で熱処理し、塗工層を硬化させ、厚さ約0.1μmのオフコート層を形成した。本オフコート層の屈折率は1.45。 The prepared paint was applied with a microgravure coater, dried at 80°C, and then heat-treated at 130°C to harden the coating layer to form an off-coat layer with a thickness of about 0.1 μm. The refractive index of this off-coat layer is 1.45.
 (実施例1)
 層Aの樹脂成分としてポリエステルAを、層Bの樹脂成分としてポリエステルBを、それぞれ、2台の単軸押出機に投入し、280℃で溶融させた。次いで、それぞれ、FSSタイプのリーフディスクフィルタを5枚介した後、ギアポンプにて吐出比がポリエステルA/ポリエステルB=1/4になるように計量しながら、矩形積層部を備えた3層合流ブロックにて、内層部にポリエステルAの層を、両面表層部にポリエステルBの層がくるように積層し、Tダイよりシート状にして押出した後、静電印加キャスト法を用意して25℃のキャスティングドラムに巻き付けて冷却固化し、未延伸フィルムを作製した。
(Example 1)
Polyester A as the resin component of layer A and polyester B as the resin component of layer B were respectively charged into two single-screw extruders and melted at 280°C. Next, after passing through five FSS type leaf disk filters, a three-layer confluence block with a rectangular laminated portion was measured using a gear pump so that the discharge ratio was polyester A/polyester B = 1/4. Then, a layer of polyester A was layered on the inner layer and a layer of polyester B was layered on the surface layer on both sides, and after extruding it into a sheet from a T-die, an electrostatic casting method was prepared and the layer was heated at 25°C. It was wound around a casting drum and cooled and solidified to produce an unstretched film.
 この未延伸フィルムを長手方向に、95℃で3.2倍に延伸し、その後一旦冷却した。次いで、この一軸延伸フィルムの両面にコロナ放電処理を施し、フィルムの濡れ張力を55mN/mとし、表1に記載の易接着塗布層を塗布し、次いで幅方向に段階的に延伸し、トータルで3.8倍に延伸した後に三段階に分けて最大温度228℃で熱固定し、次いで150℃で長手、幅方向に2%の弛緩処理を施して、厚さ20μmのフィルムを得た。ポリエステルBによる層の積層厚みは、4.0μmであった。乾燥後の塗布層の厚みは80nmだった。この評価結果は、表2、表3ないし表4に示したとおりであり、視認性、製膜安定性、耐屈曲性、屈曲破断到達回数、耐熱性に優れていたが、フィルム厚みが薄い影響で支持性が若干劣っていた。 This unstretched film was stretched 3.2 times in the longitudinal direction at 95°C, and then cooled once. Next, both sides of this uniaxially stretched film were subjected to corona discharge treatment, the wet tension of the film was set to 55 mN/m, the easy-adhesion coating layer listed in Table 1 was applied, and then the film was stretched in stages in the width direction to obtain a total After stretching 3.8 times, it was heat-set in three stages at a maximum temperature of 228°C, and then subjected to a 2% relaxation treatment in the longitudinal and width directions at 150°C to obtain a film with a thickness of 20 μm. The stacked thickness of the polyester B layer was 4.0 μm. The thickness of the coating layer after drying was 80 nm. The evaluation results are shown in Tables 2, 3 and 4, and were excellent in visibility, film formation stability, bending resistance, number of times reaching bending break, and heat resistance, but the thin film thickness The support was slightly inferior.
 (実施例2)
 実施例1と同様の方法にて未延伸フィルムを作製した。この未延伸フィルムを長手方向に、95℃で3.2倍に延伸し、その後一旦冷却した。次いで、この一軸延伸フィルムの両面にコロナ放電処理を施し、フィルムの濡れ張力を55mN/mとし、表1に記載の易接着塗布層を塗布し、次いで幅方向に段階的に延伸し、トータルで3.8倍に延伸した後に、三段階に分けて最大温度228℃で熱固定し、次いで150℃で長手、幅方向に2%の弛緩処理を施して、厚さ40μmのフィルムを得た。ポリエステルBによる層の積層厚みは、8.0μmであった。乾燥後の塗布層の厚みは80nmだった。この評価結果は、表2、表3ないし表4に示したとおりであり、視認性、製膜安定性、耐屈曲性、屈曲破断到達回数、耐熱性、支持性において優れていた。
(Example 2)
An unstretched film was produced in the same manner as in Example 1. This unstretched film was stretched 3.2 times in the longitudinal direction at 95° C., and then cooled once. Next, both sides of this uniaxially stretched film were subjected to corona discharge treatment, the wet tension of the film was set to 55 mN/m, the easy-adhesion coating layer listed in Table 1 was applied, and then the film was stretched in stages in the width direction to obtain a total After stretching 3.8 times, it was heat-set in three stages at a maximum temperature of 228°C, and then subjected to a 2% relaxation treatment at 150°C in the longitudinal and width directions to obtain a film with a thickness of 40 μm. The laminated thickness of the polyester B layer was 8.0 μm. The thickness of the coating layer after drying was 80 nm. The evaluation results are shown in Tables 2, 3 and 4, and were excellent in visibility, film formation stability, bending resistance, number of times reaching bending breakage, heat resistance, and supportability.
 (実施例3)
 実施例2と同様の方法にて作製したフィルムに対して、オフコート層を塗布形成した。
この評価結果は、表2、表3ないし表4に示したとおりであり、視認性、製膜安定性、耐屈曲性、屈曲破断到達回数、耐熱性、支持性において優れている他、ΔT40の値も、実施例2と比較して低い値となっていた。
(Example 3)
An off-coat layer was applied to a film produced in the same manner as in Example 2.
The evaluation results are shown in Tables 2, 3 and 4, and in addition to being excellent in visibility, film formation stability, bending resistance, number of times reaching bending break, heat resistance, and supportability, The value was also lower than that of Example 2.
 (実施例4~9)
 組成、製膜条件を表1のとおりとし、また適宜塗布厚みを調整して、実施例1と同様にして表1に記載の厚みのフィルムを得た。乾燥後の塗布層の厚みは、実施例4、5、6、8、9では80nm、実施例7では92nmだった。フィルム厚みが厚くなるにつれてR40と曲げ剛性は大きくなり、カメラ視認性、耐屈曲性は劣る傾向となった。多段延伸プロセスでなくしたり、長手方向の弛緩率を下げたりすると非晶緻密度Aは小さくなり屈曲性が劣る結果となった。表層の易接着処方の屈折率が高くなると、ΔT40が大きくなりカメラ視認性で劣る結果となった。また、層Bの総厚みが4.0μm未満の場合には、製膜安定性が若干劣り製膜中にフィルム破れが発生することがあった。
(Examples 4 to 9)
A film having the thickness shown in Table 1 was obtained in the same manner as in Example 1 by setting the composition and film forming conditions as shown in Table 1, and adjusting the coating thickness as appropriate. The thickness of the coating layer after drying was 80 nm in Examples 4, 5, 6, 8, and 9, and 92 nm in Example 7. As the film thickness increased, R40 and bending rigidity increased, and camera visibility and bending resistance tended to deteriorate. When it was eliminated by a multi-stage stretching process or when the relaxation rate in the longitudinal direction was lowered, the amorphous density A decreased, resulting in poor flexibility. When the refractive index of the easy-adhesive formulation of the surface layer increased, ΔT40 increased, resulting in poor camera visibility. Furthermore, when the total thickness of layer B was less than 4.0 μm, the stability of film formation was somewhat poor, and film tearing may occur during film formation.
 (実施例10~17)
 組成、製膜条件を表1のとおりとして、実施例1と同様にして表1に記載の厚みのフィルムを得た。内層の樹脂の融点に対して熱処理温度が低く、nA-nBが0.02と比較的低いサンプルでは、カメラ視認性が比較的劣る結果となった。一方、内層の樹脂の融点に対して熱処理温度が高い場合には、Δヘイズの値で若干劣る結果となった。破断点伸度の劣るサンプルでは、屈曲破断到達回数で若干劣る結果となった。フィルムの表層、内層にイソソルベート、シクロヘキサンジカルボン酸を含まない場合には、非晶性が下がりカメラ視認性、耐屈曲性が若干劣る結果となった。フィルム表層のみに含む場合には耐屈曲性が、フィルム内層にのみ含む場合には、カメラ視認性が、若干劣る結果となった。
(Examples 10 to 17)
A film having the thickness shown in Table 1 was obtained in the same manner as in Example 1, with the composition and film forming conditions as shown in Table 1. Samples in which the heat treatment temperature was lower than the melting point of the inner layer resin and had a relatively low nA-nB of 0.02 had relatively poor camera visibility. On the other hand, when the heat treatment temperature was higher than the melting point of the inner layer resin, the Δ haze value was slightly inferior. Samples with poor elongation at break had slightly inferior results in the number of times they reached bending break. When the surface layer and inner layer of the film did not contain isosorbate and cyclohexanedicarboxylic acid, the amorphousness decreased and the camera visibility and bending resistance were slightly inferior. When it was contained only in the surface layer of the film, the bending resistance was slightly inferior, and when it was contained only in the inner layer of the film, camera visibility was slightly inferior.
 (実施例18~21)
 組成、製膜条件を表1のとおりとして、実施例1と同様にして表1に記載の厚みのフィルムを得た。内層のジカルボン酸成分のイソフタル酸成分の共重合量が5モル%とした実施例17では、内層の樹脂の融点が高く内層の樹脂と表層の樹脂との融点差が小さいため、熱処理による配向緩和が進行しにくく、視認性で若干劣る結果となった。実施例18、19,20では、樹脂のIVが低く、フィルムIVが低くなったため、製膜安定性やΔヘイズの値で若干劣った結果となった。
(Examples 18-21)
A film having the thickness shown in Table 1 was obtained in the same manner as in Example 1, with the composition and film forming conditions as shown in Table 1. In Example 17, in which the copolymerization amount of the isophthalic acid component of the dicarboxylic acid component in the inner layer was 5 mol %, the melting point of the resin in the inner layer was high and the difference in melting point between the resin in the inner layer and the resin in the surface layer was small, so the orientation was relaxed by heat treatment. It was difficult to progress, resulting in slightly inferior visibility. In Examples 18, 19, and 20, the resin IV was low and the film IV was low, resulting in slightly inferior film forming stability and Δ haze values.
 (実施例22)
 組成、製膜条件を表1のとおりとして、実施例1と同様にして表1に記載の厚みのフィルムを得た。フィルム薄膜化により得たサンプルでは、曲げ剛性が低く支持性に若干劣る結果となった。
(Example 22)
A film having the thickness shown in Table 1 was obtained in the same manner as in Example 1, with the composition and film forming conditions as shown in Table 1. The samples obtained by thinning the film had low bending rigidity and slightly poor supportability.
 (実施例23)
 実施例1と同様の方法にて未延伸フィルムを作製した。この未延伸フィルムを長手方向に、表1-2に記載の条件にて延伸し、その後一旦冷却した。次いで、この一軸延伸フィルムの両面にコロナ放電処理を施し、フィルムの濡れ張力を55mN/mとし、表1に記載の易接着塗布層を塗布し、次いで幅方向に段階的に延伸し、トータルで3.8倍に延伸した後に、三段階に分けて最大温度228℃で熱固定し、次いで150℃で長手、幅方向に2%の弛緩処理を施して、厚さ40μmのフィルムを得た。ポリエステルBによる層の積層総厚みは、8.0μmであった。乾燥後の塗布層の厚みは80nmだった。この評価結果は、表2ないし表4に示したとおりであり、製膜安定性、屈曲破断到達回数、耐熱性、支持性において優れていたが、1,4-シクロヘキサンジメタノール成分を含まない結果、視認性、耐屈曲性に若干劣っていた。
(Example 23)
An unstretched film was produced in the same manner as in Example 1. This unstretched film was stretched in the longitudinal direction under the conditions listed in Table 1-2, and then cooled once. Next, both sides of this uniaxially stretched film were subjected to corona discharge treatment, the wet tension of the film was set to 55 mN/m, the easy-adhesion coating layer listed in Table 1 was applied, and then the film was stretched in stages in the width direction to obtain a total After stretching 3.8 times, it was heat-set in three stages at a maximum temperature of 228°C, and then subjected to a 2% relaxation treatment at 150°C in the longitudinal and width directions to obtain a film with a thickness of 40 μm. The total stacked thickness of the layers made of polyester B was 8.0 μm. The thickness of the coating layer after drying was 80 nm. The evaluation results are shown in Tables 2 to 4, and the film was excellent in film formation stability, number of times reaching flexural breakage, heat resistance, and supportability, but the result was that it did not contain the 1,4-cyclohexanedimethanol component. , visibility and bending resistance were slightly inferior.
 (実施例24、25)
 実施例1と同様の方法にて未延伸フィルムを作製した。この未延伸フィルムを長手方向に、表1-2に記載の条件にて延伸し、その後一旦冷却した。次いで、この一軸延伸フィルムの両面にコロナ放電処理を施し、フィルムの濡れ張力を55mN/mとし、表1-2に記載の易接着塗布層を塗布し、次いで幅方向に段階的に延伸し、トータルで3.8倍に延伸した後に、三段階に分けて最大温度228℃で熱固定し、次いで150℃で長手、幅方向に2%の弛緩処理を施して、厚さ40μmのフィルムを得た。ポリエステルBによる層の積層総厚みは、8.0μmであった。乾燥後の塗布層の厚みは80nmだった。この評価結果は、表2ないし表4に示したとおりであり、ナフタレンジカルボン酸を共重合成分として含む実施例24、およびPEIを含む実施例25では、視認性、製膜安定性、耐屈曲性、屈曲破断到達回数、耐熱性、支持性において優れていた。
(Example 24, 25)
An unstretched film was produced in the same manner as in Example 1. This unstretched film was stretched in the longitudinal direction under the conditions listed in Table 1-2, and then cooled once. Next, corona discharge treatment was applied to both sides of this uniaxially stretched film, the wet tension of the film was set to 55 mN/m, and the easy-adhesion coating layer listed in Table 1-2 was applied, and then the film was stretched stepwise in the width direction. After stretching to a total of 3.8 times, it was heat-set in three stages at a maximum temperature of 228°C, and then relaxed by 2% in the longitudinal and width directions at 150°C to obtain a film with a thickness of 40 μm. Ta. The total stacked thickness of the layers made of polyester B was 8.0 μm. The thickness of the coating layer after drying was 80 nm. The evaluation results are shown in Tables 2 to 4, and in Example 24 containing naphthalene dicarboxylic acid as a copolymerization component and Example 25 containing PEI, visibility, film forming stability, and bending resistance were It was excellent in the number of times it reached flexural breakage, heat resistance, and supportability.
 (実施例26)
 組成、製膜条件を表1のとおりとして、実施例1と同様にして表1に記載の厚みのフィルムを得た。なお、延伸工程を経ないため、易接着層塗布時には、実施例1と比較して塗布厚みを薄くして、乾燥後の塗布層の厚みが80nmになるように調整した。オレフィン樹脂成分として持つフィルムでは、R40は低いものの、破断伸度が低く、屈曲破断到達回数で若干劣った結果となった。
(Example 26)
A film having the thickness shown in Table 1 was obtained in the same manner as in Example 1, with the composition and film forming conditions as shown in Table 1. In addition, since the stretching process was not performed, the coating thickness was made thinner than that in Example 1 when applying the easy-adhesive layer, and the thickness of the coated layer after drying was adjusted to 80 nm. Although the film having the olefin resin component had a low R40, the elongation at break was low and the number of times the film reached flexural breakage was slightly inferior.
 (比較例1、2)
 組成、製膜条件を表1のとおりとして、実施例1と同様にして表1に記載の厚みのフィルムを得た。R40が1000nmを超えた値である結果、いずれも視認性に劣っていた。
(比較例3)
 実施例1と同様の方法にて未延伸フィルムを作製した。この未延伸フィルムの両面にコロナ放電処理を施し、フィルムの濡れ張力を55mN/mとし、表1-2に記載の易接着塗布層を塗布し、次いで長手方向、幅方向両方向に同時にそれぞれ3.4倍に二軸延伸した後に、最大温度230℃で熱固定し、次いで150℃で長手、幅方向に2%の弛緩処理を施して、厚さ40μmのフィルムを得た。ポリエステルBによる層の積層総厚みは、8.0μmであった。実施例1と比較して、易接着層塗布後の総延伸倍率が高いため、易接着層塗布時の塗布厚みを厚くした。乾燥後の塗布層の厚みは80nmだった。R40が1000nmを超えた値である結果、いずれも視認性に劣っていた。
(Comparative Examples 1 and 2)
A film having the thickness shown in Table 1 was obtained in the same manner as in Example 1, with the composition and film forming conditions as shown in Table 1. As a result of R40 exceeding 1000 nm, visibility was poor in all cases.
(Comparative example 3)
An unstretched film was produced in the same manner as in Example 1. Both sides of this unstretched film were subjected to corona discharge treatment, the wet tension of the film was set to 55 mN/m, and the easy-adhesion coating layer listed in Table 1-2 was coated, and then 3. After biaxially stretching 4 times, it was heat-set at a maximum temperature of 230°C, and then subjected to a relaxation treatment of 2% in the longitudinal and width directions at 150°C to obtain a film with a thickness of 40 μm. The total stacked thickness of the layers made of polyester B was 8.0 μm. Compared to Example 1, since the total stretching ratio after application of the easy-adhesion layer was higher, the coating thickness at the time of application of the easy-adhesion layer was increased. The thickness of the coating layer after drying was 80 nm. As a result of R40 exceeding 1000 nm, visibility was poor in all cases.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明の背面プレート用フィルムは、画像表示装置に用いた際に画像表示面下方に設置された光電変換素子において正常な画像情報を採集、認識することができ、産業上の利用可能性は極めて高い。また、本発明の背面プレート用フィルムは、ディスプレイ全般に用いられる画面保護フィルム、液晶ディスプレイや有機ELディスプレイに用いられる偏光子保護フィルム、透明導電層を形成するタッチパネル基材フィルム、あるいはホログラムを投影するフィルムとしても好適に用いることができる。 When the back plate film of the present invention is used in an image display device, normal image information can be collected and recognized by the photoelectric conversion element installed below the image display surface, and the film has extremely high industrial applicability. expensive. In addition, the back plate film of the present invention can be used as a screen protection film used for general displays, a polarizer protection film used for liquid crystal displays and organic EL displays, a touch panel base film forming a transparent conductive layer, or a film used for projecting holograms. It can also be suitably used as a film.
101: 画像表示装置
102: 撮像素子が画像表示面の裏側に配置されている画面領域
103: 撮像素子が画像表示面の裏側に配置されていない画面領域
104: 撮像素子
105: ベゼル部分
201: フィルム(背面プレート)
202: 進相軸
203: 垂直軸
204: 入射角
205: 光線
301: ループスティフネステスタのチャック
302: 変位量
401: 偏光板
402: カメラ内蔵装置
403: 超広角レンズ
404: 撮影画角
405: 面光源
501: 屈曲方向
502: フィルムの中央部
503: フィルムサンプルのなす角度
101: Image display device 102: Screen area where the image sensor is placed on the back side of the image display surface 103: Screen area where the image sensor is not placed on the back side of the image display surface 104: Image sensor 105: Bezel portion 201: Film (back plate)
202: Fast axis 203: Vertical axis 204: Incident angle 205: Light beam 301: Chuck of loop stiffness tester 302: Displacement amount 401: Polarizing plate 402: Built-in camera device 403: Ultra wide-angle lens 404: Shooting angle of view 405: Surface light source 501: Bending direction 502: Center part of the film 503: Angle formed by the film sample

Claims (29)

  1. 視認者の側からみて、偏光板と、画像表示用発光素子アレイと、背面プレートと、光電変換素子とが、この順に搭載された画像表示装置に用いられる背面プレート用フィルムであって、フィルムの進相軸と、フィルム面に対する垂直軸とを含む面に沿って、垂直軸を基準0°として入射角40°で波長590nmの光線を入射させて求まる位相差値が0nm以上1000nm以下である背面プレート用フィルム。 A film for a back plate used in an image display device, in which a polarizing plate, a light emitting element array for image display, a back plate, and a photoelectric conversion element are mounted in this order when viewed from the viewer's side. The back surface has a retardation value of 0 nm or more and 1000 nm or less, which is determined by making a light beam with a wavelength of 590 nm incident at an incident angle of 40 degrees with the vertical axis as a reference of 0 degrees along a plane including a fast axis and an axis perpendicular to the film surface. Film for plates.
  2. 二軸配向ポリエステルフィルムをその構成要素のひとつとして含む請求項1に記載の背面プレート用フィルム。 The film for a back plate according to claim 1, comprising a biaxially oriented polyester film as one of its constituent elements.
  3. 前記二軸配向ポリエステルフィルムは、1層のフィルムまたは複数の層が積層されたフィルムであり、層を構成するポリエステル樹脂の全ジカルボン酸成分のうちイソフタル酸成分が6モル%以上用いられたポリエステル樹脂の層を少なくとも1層有する、請求項2に記載の背面プレート用フィルム。 The biaxially oriented polyester film is a single layer film or a laminated film of multiple layers, and is a polyester resin in which an isophthalic acid component is used in an amount of 6 mol % or more of the total dicarboxylic acid components of the polyester resin constituting the layer. The film for a back plate according to claim 2, comprising at least one layer of.
  4. 前記二軸配向ポリエステルフィルムを構成するポリエステルが、ナフタレンジカルボン酸、シクロヘキサンジカルボン酸、フルオレン誘導体、パラキシレングリコール、ビスフェノールA、イソソルベート、シクロヘキサンジメタノール、ならびに、これらのエステル形成性誘導体からなる群から選ばれる少なくともひとつが重合または共重合されたポリエステル、あるいはポリエーテルイミドを含有したポリエステルである、請求項2に記載の背面プレート用フィルム。 The polyester constituting the biaxially oriented polyester film is selected from the group consisting of naphthalene dicarboxylic acid, cyclohexane dicarboxylic acid, fluorene derivatives, paraxylene glycol, bisphenol A, isosorbate, cyclohexanedimethanol, and ester-forming derivatives thereof. The film for a back plate according to claim 2, wherein at least one is a polymerized or copolymerized polyester or a polyester containing polyetherimide.
  5. 結晶化度が30%以下、剛直非晶量が20%以上50%以下である請求項2に記載の背面プレート用フィルム。 The film for a back plate according to claim 2, which has a crystallinity of 30% or less and a rigid amorphous content of 20% or more and 50% or less.
  6. 2層以上の層が積層されたフィルムであり、厚み方向屈折率の最も大きい層の厚み方向屈折率をnA、厚み方向屈折率の最も小さい層の厚み方向屈折率をnBをとしたとき、下式(1)を満たす、請求項1に記載の背面プレート用フィルム。
    nA-nB ≧ 0.02 (1)
    A film in which two or more layers are laminated, where the refractive index in the thickness direction of the layer with the largest refractive index in the thickness direction is nA, and the refractive index in the thickness direction of the layer with the smallest refractive index in the thickness direction is nB. The film for a back plate according to claim 1, which satisfies formula (1).
    nA-nB ≧ 0.02 (1)
  7. 120℃にて5時間熱処理した時のヘイズの増加量(Δヘイズ)が0%以上2.0%以下である、請求項1に記載の背面プレート用フィルム。 The film for a back plate according to claim 1, wherein the increase in haze (Δhaze) when heat-treated at 120° C. for 5 hours is 0% or more and 2.0% or less.
  8. 前記二軸配向ポリエステルフィルムは、120℃、3分の熱処理後のTD-NMR測定での可動非晶相の緩和時間が0.200ms以下である請求項2に記載の背面プレート用フィルム。 3. The film for a back plate according to claim 2, wherein the biaxially oriented polyester film has a relaxation time of a mobile amorphous phase of 0.200 ms or less as measured by TD-NMR after heat treatment at 120° C. for 3 minutes.
  9. 前記二軸配向ポリエステルフィルムは複数の層からなり、かつ、フィルムを構成する層のうち、最も厚みの厚い層のフーリエ変換型赤外分光(FT-IR)スペクトルにおいて、1388cm-1に観測されるスペクトル強度r1と、1372cm-1に観測されるスペクトル強度r2の比R(r2/r1)が下式(2)を満たす、請求項2に記載の背面プレート用フィルム。
    1.0 < R < 1.8 (2)
    The biaxially oriented polyester film consists of a plurality of layers, and among the layers constituting the film, the thickest layer has a Fourier transform infrared spectroscopy (FT-IR) spectrum observed at 1388 cm -1 . The film for a back plate according to claim 2, wherein the ratio R (r2/r1) of the spectral intensity r1 and the spectral intensity r2 observed at 1372 cm -1 satisfies the following formula (2).
    1.0 < R < 1.8 (2)
  10. 曲げ剛性が、長手方向および幅方向のいずれも0.2mN以上20.0mN以下である、請求項1に記載の背面プレート用フィルム。 The film for a back plate according to claim 1, having bending rigidity of 0.2 mN or more and 20.0 mN or less in both the longitudinal direction and the width direction.
  11. 前記二軸配向ポリエステルフィルムは、温度変調DSC(30~150℃)の不可逆曲線で観測される吸熱量ΔHgを、可逆曲線で観測されるガラス転移点前後の比熱容量差ΔCpで除したΔHg/ΔCpで算出される非晶緻密度Aが1.0以上である、請求項2に記載の背面プレート用フィルム。 The biaxially oriented polyester film has a ratio of ΔHg/ΔCp obtained by dividing the endotherm ΔHg observed in the irreversible curve of temperature modulated DSC (30 to 150°C) by the specific heat capacity difference ΔCp before and after the glass transition point observed in the reversible curve. The film for a back plate according to claim 2, wherein the amorphous density A calculated by the following is 1.0 or more.
  12. 回復角が、長手方向、幅方向のいずれも140°以上である、請求項1に記載の背面プレート用フィルム。 The film for a back plate according to claim 1, wherein the recovery angle is 140° or more in both the longitudinal direction and the width direction.
  13. 破断伸度が、長手方向、幅方向のいずれも50%以上である、請求項1に記載の背面プレート用フィルム。 The film for a back plate according to claim 1, having a breaking elongation of 50% or more in both the longitudinal direction and the width direction.
  14. MIT屈曲試験機にて評価した屈曲破断到達回数が、長手方向および幅方向いずれも1000回以上である、請求項1に記載の背面プレート用フィルム。 The film for a back plate according to claim 1, wherein the number of times the film reaches bending breakage when evaluated using an MIT bending tester is 1000 times or more in both the longitudinal direction and the width direction.
  15. 入射角40°でp偏光を入射させたときのP波の平均透過率と入射角40°でs偏光を入射させたときのS波の平均透過率との差が10%以下である、請求項1に記載の背面プレート用フィルム。 A claim that the difference between the average transmittance of P-waves when p-polarized light is incident at an incident angle of 40° and the average transmittance of S-waves when s-polarized light is incident at an incident angle of 40° is 10% or less. The film for a back plate according to item 1.
  16. ジカルボン酸成分とジオール成分とからなるポリエステルフィルムであって、前記ジカルボン酸成分のうちテレフタル酸成分が50モル%以上95モル%以下、前記ジオール成分のうちエチレングリコール成分が50モル%以上95モル%以下であり、最も低温側で観測される融点が240℃以下、密度が1.360g/cc以下、フィルムの進相軸とフィルム面に対する垂直軸とを含む面に沿って、垂直軸を基準0°として入射角40°で波長590nmの光線を入射させて求まる位相差値が0nm以上1000nm以下であるポリエステルフィルム。 A polyester film consisting of a dicarboxylic acid component and a diol component, wherein the terephthalic acid component of the dicarboxylic acid component is 50 mol% or more and 95 mol% or less, and the ethylene glycol component of the diol component is 50 mol% or more and 95 mol%. below, the melting point observed at the lowest temperature is 240°C or less, the density is 1.360g/cc or less, and the vertical axis is 0 along the plane including the fast axis of the film and the axis perpendicular to the film surface. A polyester film having a retardation value of 0 nm or more and 1000 nm or less, which is determined by incident light with a wavelength of 590 nm at an incident angle of 40 degrees.
  17. 前記ポリエステルフィルムは、1層のフィルムまたは複数の層が積層されたフィルムであり、層を構成するポリエステル樹脂の全ジカルボン酸成分のうちイソフタル酸成分が6モル%以上用いられたポリエステル樹脂の層を少なくとも1層有する、請求項16に記載のポリエステルフィルム。 The polyester film is a single layer film or a film in which multiple layers are laminated, and the polyester resin layer contains an isophthalic acid component of 6 mol% or more of the total dicarboxylic acid components of the polyester resin constituting the layer. 17. The polyester film according to claim 16, having at least one layer.
  18. 前記ポリエステルフィルムを構成するポリエステルが、ナフタレンジカルボン酸、シクロヘキサンジカルボン酸、フルオレン誘導体、パラキシレングリコール、ビスフェノールA、イソソルベート、シクロヘキサンジメタノール、ならびに、これらのエステル形成性誘導体からなる群から選ばれる少なくともひとつが重合または共重合されたポリエステル、あるいはポリエーテルイミドを含有したポリエステルある、請求項16に記載のポリエステルフィルム。 The polyester constituting the polyester film is at least one selected from the group consisting of naphthalene dicarboxylic acid, cyclohexane dicarboxylic acid, fluorene derivatives, paraxylene glycol, bisphenol A, isosorbate, cyclohexanedimethanol, and ester-forming derivatives thereof. The polyester film according to claim 16, which is a polymerized or copolymerized polyester or a polyester containing polyetherimide.
  19. 結晶化度が30%以下、剛直非晶量が20%以上50%以下である請求項16に記載のポリエステルフィルム。 The polyester film according to claim 16, which has a crystallinity of 30% or less and a rigid amorphous content of 20% or more and 50% or less.
  20. 120℃、3分の熱処理後のTD-NMR測定での可動非晶相の緩和時間が0.200ms以下である請求項16に記載のポリエステルフィルム。 The polyester film according to claim 16, wherein the relaxation time of the mobile amorphous phase in TD-NMR measurement after heat treatment at 120° C. for 3 minutes is 0.200 ms or less.
  21. フィルムを構成する層のうち、最も厚みの厚い層のフーリエ変換型赤外分光(FT-IR)スペクトルにおいて、1388cm-1に観測されるスペクトル強度r1と、1372cm-1に観測されるスペクトル強度r2の比R(r2/r1)が下式(2)を満たす、請求項16に記載のポリエステルフィルム。
    1.0 < R < 1.8 (2)
    In the Fourier transform infrared spectroscopy (FT-IR) spectrum of the thickest layer among the layers constituting the film, the spectral intensity r1 observed at 1388 cm -1 and the spectral intensity r2 observed at 1372 cm -1 The polyester film according to claim 16, wherein the ratio R (r2/r1) satisfies the following formula (2).
    1.0 < R < 1.8 (2)
  22. 曲げ剛性が、長手方向および幅方向のいずれも0.2mN以上20.0mN以下である、請求項16に記載のポリエステルフィルム。 The polyester film according to claim 16, having bending rigidity of 0.2 mN or more and 20.0 mN or less in both the longitudinal direction and the width direction.
  23. 温度変調DSC(30~150℃)の不可逆曲線で観測される吸熱量ΔHgを、可逆曲線で観測されるガラス転移点前後の比熱容量差ΔCpで除したΔHg/ΔCpで算出される非晶緻密度Aが1.0以上である、請求項16に記載のポリエステルフィルム。 Amorphous density calculated as ΔHg/ΔCp, which is the endotherm ΔHg observed on the irreversible curve of temperature modulated DSC (30 to 150°C) divided by the specific heat capacity difference ΔCp before and after the glass transition point observed on the reversible curve. The polyester film according to claim 16, wherein A is 1.0 or more.
  24. 破断伸度が、長手方向、幅方向のいずれも50%以上である、請求項16に記載のポリエステルフィルム。 The polyester film according to claim 16, wherein the elongation at break is 50% or more in both the longitudinal direction and the width direction.
  25. 請求項1に記載の背面プレート用フィルムまたは請求項16に記載のポリエステルフィルムが搭載された、画像表示装置。 An image display device equipped with the back plate film according to claim 1 or the polyester film according to claim 16.
  26. 前記画像表示装置に使用されていている画像表示装置用発光素子アレイが、有機電界発光素子アレイである、請求項25に記載の画像表示装置。 26. The image display device according to claim 25, wherein a light emitting device array for an image display device used in the image display device is an organic electroluminescent device array.
  27. 前記画像表示装置に搭載された光電変換素子の受光可能な角度範囲が60°以上140°以下である、請求項25に記載の画像表示装置。 The image display device according to claim 25, wherein a light-receiving angular range of a photoelectric conversion element mounted on the image display device is 60° or more and 140° or less.
  28. 請求項1に記載の背面プレート用フィルムまたは請求項16に記載のポリエステルフィルムが搭載された、フォルダブルディスプレイ。 A foldable display equipped with the back plate film according to claim 1 or the polyester film according to claim 16.
  29. 請求項1に記載の背面プレート用フィルムまたは請求項16に記載のポリエステルフィルムが搭載された画像表示装置を構成要素の1つとして有する、デバイス。 A device comprising, as one of its components, an image display device on which the back plate film according to claim 1 or the polyester film according to claim 16 is mounted.
PCT/JP2023/022869 2022-06-27 2023-06-21 Film for back face plate and polyester film, and image display apparatus and device with film for back face plate or polyester film mounted therein WO2024004773A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022102460 2022-06-27
JP2022-102460 2022-06-27

Publications (1)

Publication Number Publication Date
WO2024004773A1 true WO2024004773A1 (en) 2024-01-04

Family

ID=89382238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022869 WO2024004773A1 (en) 2022-06-27 2023-06-21 Film for back face plate and polyester film, and image display apparatus and device with film for back face plate or polyester film mounted therein

Country Status (1)

Country Link
WO (1) WO2024004773A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015232120A (en) * 2014-05-16 2015-12-24 東レ株式会社 Polyester film for optical use, and polarizing plate and transparent conductive film using the same
JP2016060075A (en) * 2014-09-17 2016-04-25 東レ株式会社 Biaxially oriented polyester film, and polarizing plate and liquid crystal display using the same
WO2016147767A1 (en) * 2015-03-13 2016-09-22 東レ株式会社 Polyester film for optical use and polarizing plate using same
CN112968048A (en) * 2021-02-10 2021-06-15 武汉华星光电半导体显示技术有限公司 Display device and manufacturing method thereof
KR102305521B1 (en) * 2021-03-04 2021-09-30 주식회사 오플렉스 Backplate film for flexible display and flexible display comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015232120A (en) * 2014-05-16 2015-12-24 東レ株式会社 Polyester film for optical use, and polarizing plate and transparent conductive film using the same
JP2016060075A (en) * 2014-09-17 2016-04-25 東レ株式会社 Biaxially oriented polyester film, and polarizing plate and liquid crystal display using the same
WO2016147767A1 (en) * 2015-03-13 2016-09-22 東レ株式会社 Polyester film for optical use and polarizing plate using same
CN112968048A (en) * 2021-02-10 2021-06-15 武汉华星光电半导体显示技术有限公司 Display device and manufacturing method thereof
KR102305521B1 (en) * 2021-03-04 2021-09-30 주식회사 오플렉스 Backplate film for flexible display and flexible display comprising the same

Similar Documents

Publication Publication Date Title
JP6920047B2 (en) Circularly polarizing plate and flexible image display device using it
JP3735366B2 (en) Birefringent material for optical film
KR101633237B1 (en) Uniaxially stretched multi-layer laminate film, polarizing plate comprising same, optical member for liquid crystal display device, and liquid crystal display device
TWI384290B (en) An optical display device having a polarizing film
US20070264447A1 (en) Optical Film Laminated Body
JP6329248B2 (en) Reflective polarizing film for liquid crystal display polarizing plate, polarizing plate for liquid crystal display comprising the same, optical member for liquid crystal display, and liquid crystal display
WO2012173170A1 (en) Reflective polarizing film, optical member for liquid crystal display device formed from same, and liquid crystal display device
WO2004090590A1 (en) Optical element, polarization element, and illuminating device and liquid crystal display unit
TW201131218A (en) Image display device
JP2003121644A (en) Polarizer and liquid crystal display element
KR102577635B1 (en) Optical laminate and image display device using the optical laminate
JP4525865B2 (en) Manufacturing method of optical film
JP4070510B2 (en) Birefringent film, optical compensation layer integrated polarizing plate, image display device, and method for producing birefringent film
JP2021063975A (en) Polarizing plate with retardation layer and organic electroluminescence display device using the same
JP2015169769A (en) Multilayer uniaxially oriented film, reflective polarizing plate comprising the same, optical member for liquid crystal display device employing ips system, and liquid crystal display device employing ips system
JP2003050313A (en) Polarizing plate and liquid crystal display element
JP5502809B2 (en) Reflective polarizing film, optical member for liquid crystal display device comprising the same, and liquid crystal display device
JP3791806B2 (en) Manufacturing method of optical film
JP2008164984A (en) Laminated retardation film
WO2024004773A1 (en) Film for back face plate and polyester film, and image display apparatus and device with film for back face plate or polyester film mounted therein
JP2020076939A (en) Polarizing plate with retardation layer and image display using the same
WO2017135239A1 (en) Optical laminate and image display device in which said optical laminate is used
WO2021070467A1 (en) Phase difference layer-attached polarization plate and organic electro luminescence display device using same
TW202408815A (en) Backsheet films and polyester films, and image display devices and equipment equipped with the backsheet films or polyester films
JP5554752B2 (en) Reflective polarizing film for VA mode liquid crystal display, optical member comprising the same, and VA mode liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831219

Country of ref document: EP

Kind code of ref document: A1