WO2016147767A1 - Polyester film for optical use and polarizing plate using same - Google Patents

Polyester film for optical use and polarizing plate using same Download PDF

Info

Publication number
WO2016147767A1
WO2016147767A1 PCT/JP2016/053957 JP2016053957W WO2016147767A1 WO 2016147767 A1 WO2016147767 A1 WO 2016147767A1 JP 2016053957 W JP2016053957 W JP 2016053957W WO 2016147767 A1 WO2016147767 A1 WO 2016147767A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyester
less
layer
polyester film
Prior art date
Application number
PCT/JP2016/053957
Other languages
French (fr)
Japanese (ja)
Inventor
真鍋功
塩見篤史
坂本光隆
高田育
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2016508880A priority Critical patent/JP6729365B2/en
Priority to CN201680005533.6A priority patent/CN107108927B/en
Priority to KR1020177013188A priority patent/KR102589506B1/en
Publication of WO2016147767A1 publication Critical patent/WO2016147767A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/16Optical coatings produced by application to, or surface treatment of, optical elements having an anti-static effect, e.g. electrically conducting coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements

Definitions

  • the present invention relates to an optical polyester film and a polarizing plate.
  • Thermoplastic resin films especially biaxially oriented polyester films, have excellent properties such as mechanical properties, electrical properties, dimensional stability, transparency, and chemical resistance. It is widely used as a substrate film in the above applications.
  • various optical films such as a polarizer protective film and a transparent conductive film has been increasing in the flat panel display and touch panel fields.
  • the conventional TAC is used for the purpose of reducing the cost for the polarizer protective film application.
  • Replacement of a (triacetylcellulose) film with a biaxially oriented polyester film has been studied.
  • the biaxially oriented polyester film causes interference color when assembled as a liquid crystal display due to the orientation of the polymer at the time of stretching, so molecular orientation is required to suppress the interference color when viewing the display.
  • Examination for example, patent documents 1 and 2) etc. which make it a specific range is performed.
  • a method of reducing the biaxial orientation of the film by adjusting the polymer composition and manufacturing conditions can be considered, Since the formation of oriented crystals by stretching becomes insufficient, defects such as an increase in the heat shrinkage rate and whitening during heating were observed, which were not practical.
  • the above-described drawbacks are eliminated, and when the film is mounted on a display device such as a liquid crystal display while being a biaxially stretched polyester film, the interference color when the display is visually observed can be suppressed, and the resistance during heating can be suppressed. It aims at providing the polyester film which is excellent in whitening property.
  • the present invention for solving the above problems has the following configuration.
  • the retardation with respect to the angle inclined by 50 ° with respect to the film surface is 1500 nm or less, An optical polyester film having a temperature rising crystallization calorie ( ⁇ Hc) of 15 J / g or less by differential scanning calorimetry (DSC).
  • ⁇ Hc temperature rising crystallization calorie
  • DSC differential scanning calorimetry
  • the polyester film for optics according to (1) or (2), wherein the temperature rising crystallization heat ( ⁇ Hc2) at 2ndRun by a differential scanning calorimeter (DSC) is 5 J / g or more and 30 J / g or less.
  • One or more functions selected from the group consisting of hard coat properties, self-healing properties, antiglare properties, antireflection properties, low reflection properties, and antistatic properties on at least one outermost surface of the polyester film The optical polyester film as set forth in any one of (1) to (3), wherein layers showing the above are laminated.
  • the optical polyester film of the present invention does not exhibit an interference color when mounted on a display device such as a liquid crystal display, and is excellent in resistance to whitening during heating. Therefore, particularly when used for polarizer protection and touch panel applications. In addition, there is an effect that enables high-quality display.
  • the optical polyester film of the present invention needs to have a retardation of 1500 nm or less with respect to an angle inclined by 50 ° with respect to the film surface.
  • the retardation with respect to the angle inclined by 50 ° with respect to the film surface is set to 1500 nm or less, the interference color when viewed from an oblique direction can be suppressed when mounted on a display device such as a liquid crystal display.
  • the angle inclined by 50 ° with respect to the film surface refers to an angle defined in a phase difference measuring device such as “KOBRA” series manufactured by Oji Scientific Instruments Co., Ltd.
  • a phase difference measuring device such as “KOBRA” series manufactured by Oji Scientific Instruments Co., Ltd.
  • the retardation with respect to an angle inclined by 50 ° with respect to the film surface is preferably 1000 nm or less, more preferably 700 nm or less, and particularly preferably 600 nm or less, from the viewpoint of further suppressing the interference color when viewed from an oblique direction. . Further, the retardation with respect to the angle inclined by 50 ° with respect to the film surface is preferably as low as possible from the viewpoint of suppressing the interference color in the oblique direction, but 1 nm or more is preferable from the viewpoint of dimensional stability during heating and whitening resistance. preferable.
  • a method of reducing, a method of reducing the biaxial orientation of the polyester film by adjusting the production conditions, such as setting the draw ratio low or raising the drawing temperature, a method of reducing the film thickness, a polyester layer having a different melting point In the case of a laminated structure having at least two layers, a method of increasing the thickness ratio of the layer having a low melting point may be mentioned.
  • the optical polyester film of the present invention needs to have a heat-up crystallization heat ( ⁇ Hc) of 15 J / g or less by differential scanning calorimetry (DSC). If the temperature rising crystallization heat ( ⁇ Hc) by differential scanning calorimetry (DSC) is 15 J / g or less, the polyester film has been sufficiently crystallized, and when the optical polyester film of the present invention is heated, Dimensional stability and whitening resistance are improved. From the viewpoint of dimensional stability during heating and whitening resistance, the temperature rising crystallization calorie ( ⁇ Hc) by differential scanning calorimetry (DSC) is more preferably 10 J / g or less, most preferably 5 J / g or less. preferable.
  • the temperature rising crystallization calorie ( ⁇ Hc) by differential scanning calorimetry (DSC) is the crystallization phenomenon when measuring at a heating rate of 20 ° C./min using a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the amount of heat at the temperature at which the absolute value of the heat flow is the largest is defined as the temperature rising crystallization heat amount ( ⁇ Hc) in the present invention.
  • Polyester film is biaxially oriented, and orientational crystallization proceeds, and dimensional stability during heating and whitening resistance are improved.
  • the retardation with respect to the angle is increased, and when used for optical applications, particularly for touch panel applications and polarizer protection applications, an interference color is exhibited and the appearance is deteriorated.
  • an interference color is exhibited and the appearance is deteriorated.
  • the optical polyester film of the present invention maintains low retardation with respect to an angle inclined by 50 ° with respect to the film surface, in order to achieve both dimensional stability during heating and whitening resistance. It is important that the temperature rise crystallization heat ( ⁇ Hc) by differential scanning calorimetry (DSC) of the polyester raw material used when forming the polyester film is 15 J / g or less.
  • the optical polyester film of the present invention preferably has a heat of crystal fusion ( ⁇ Hm) of 25 J / g or more by differential scanning calorimetry (DSC) from the viewpoint of dimensional stability and whitening resistance. More preferably, the heat of crystal fusion ( ⁇ Hm) by differential scanning calorimetry (DSC) is 30 J / g or more, and most preferably 35 J / g or more and 50 J / g or less. If the heat of crystal fusion ( ⁇ Hm) is 25 J / g or more, the polyester film is sufficiently crystallized and its crystallinity is very high, so that the dimensional stability and whitening resistance are improved. .
  • DSC differential scanning calorimetry
  • the crystal melting calorie ( ⁇ Hm) by differential scanning calorimetry (DSC) is expressed by the crystal melting phenomenon when measured at a heating rate of 20 ° C./min using a differential scanning calorimeter (DSC).
  • the total calorific value is defined as the crystal melting calorie in the present invention.
  • the optical polyester film of the present invention has a temperature rising crystallization heat ( ⁇ Hc2) at 2ndRun by a differential scanning calorimeter (DSC) of 5 J / g or more and 30 J / g or less.
  • the temperature rising crystallization heat ( ⁇ Hc2) at 2ndRun by differential scanning calorimeter (DSC) is 5 J / g or more and 30 J / g or less, crystallinity can be sufficiently secured as a polyester resin constituting the polyester film, and It becomes easy to control the retardation with respect to the angle inclined by 50 ° with respect to the film surface.
  • the polyester film has at least two layers having a polyester A layer and a polyester B layer having a melting point lower than that of the polyester A layer, the crystallinity of the polyester B layer is lowered and the film surface is inclined by 50 °.
  • the retardation with respect to the angle is controlled to be low, it is preferable to achieve both dimensional stability and whitening resistance by increasing the crystallinity of the polyester A layer, and the temperature rise at 2ndRun with a differential scanning calorimeter (DSC)
  • DSC differential scanning calorimeter
  • the temperature rising crystallization heat amount ( ⁇ Hc2) at 2ndRun by a differential scanning calorimeter (DSC) is more preferably 10 J / g or more and 30 J / g or less, and most preferably 15 J / g or more and 25 J / g or less.
  • the temperature rising crystallization calorie ( ⁇ Hc2) in 2ndRun by differential scanning calorimetry (DSC) is a temperature rising to 300 ° C. at a temperature rising rate of 20 ° C./min using a differential scanning calorimeter (DSC). This is an exothermic peak calorific value that appears in the crystallization phenomenon when the temperature is raised again from 25 ° C. at a rate of temperature increase of 20 ° C./min.
  • the total calorific value is defined as the temperature-rise crystallization calorie ( ⁇ Hc2) in the present invention.
  • the optical polyester film of the present invention has both a retardation of 1500 nm or less with respect to an angle inclined by 50 ° with respect to the film surface and a temperature rising crystallization heat amount ( ⁇ Hc) by differential scanning calorimetry (DSC) of 15 J / g or less.
  • ⁇ Hc temperature rising crystallization heat amount
  • DSC differential scanning calorimetry
  • the optical polyester film of the present invention has at least two layers, the number of layers and the layer structure are not particularly limited.
  • a layer / B layer / A A configuration in which the film is symmetrical with respect to the thickness direction, and the both surface layers are polyester A layers, such as a layer, A layer / B layer / A layer / B layer / A layer, is preferable.
  • a method for lowering the melting point of the polyester B layer than that of the polyester A layer a method of lowering the melting point of the polyester resin constituting the polyester B layer can be mentioned.
  • the method is derived from the diol constituting the polyester B layer.
  • the structural unit derived from ethylene glycol is the most as the structural unit derived from diol constituting the B layer, and the most terephthalic acid is included as the structural unit derived from dicarboxylic acid
  • the proportion of diol components other than ethylene glycol can be lowered by increasing the proportion of the dicarboxylic acid component other than the acid.
  • diol components other than ethylene glycol for example, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, 1,5- Pentanediol, 1,6-hexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, 2,2-bis ( 4-hydroxyethoxyphenyl) propane, isosorbate, spiroglycol and the like.
  • neopentyl glycol, diethylene glycol, 1,4-cyclohexanedimethanol, isosorbate, and spiro glycol are preferably used.
  • These diol components may be used alone or in combination of two or more in addition to ethylene glycol.
  • dicarboxylic acid components other than terephthalic acid include, for example, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 4,4′-diphenyl.
  • Dicarboxylic acids 4,4'-diphenyl ether dicarboxylic acids, aromatic dicarboxylic acids such as 4,4'-diphenylsulfone dicarboxylic acid, fats such as adipic acid, suberic acid, sebacic acid, dimer acid, dodecanedioic acid, cyclohexanedicarboxylic acid
  • aromatic dicarboxylic acid various aromatic dicarboxylic acids, and ester derivatives with aliphatic dicarboxylic acids.
  • isophthalic acid and 2,6-naphthalenedicarboxylic acid are preferable from the viewpoint of reducing retardation with respect to an angle inclined by 50 ° with respect to the film surface and suppressing interference color when viewed from an oblique direction.
  • the polyester B layer constituting the optical polyester film of the present invention 60 mol% or more and less than 95 mol% of the dicarboxylic acid component is a terephthalic acid component, and 5 mol% or more and less than 40 mol% is another dicarboxylic acid component. preferable.
  • the retardation with respect to an angle inclined by 50 ° with respect to the film surface is increased, and interference when viewed from an oblique direction. Color may occur.
  • the polyester B layer has a terephthalic acid component of 84 mol% or more and less than 92 mol% of the dicarboxylic acid component, and 8 mol% or more and 16 mol%. It is preferable that less than mol% is other dicarboxylic acid components.
  • the dicarboxylic acid component is terephthalic acid component
  • 8 to 16 mol% is diphthalic acid component other than terephthalic acid and / or isophthalic acid and / or It is a particularly preferable embodiment that 2,6-naphthalenedicarboxylic acid is contained in an amount of 8 mol% or more and less than 16 mol%.
  • the optical polyester film of the present invention has both a retardation of 1500 nm or less with respect to an angle inclined by 50 ° with respect to the film surface and a temperature rising crystallization heat amount ( ⁇ Hc) by differential scanning calorimetry (DSC) of 15 J / g or less.
  • ⁇ Hc temperature rising crystallization heat amount
  • DSC differential scanning calorimetry
  • the temperature rising crystallization heat by differential scanning calorimetry (DSC)
  • DSC differential scanning calorimetry
  • ⁇ Hc crystallinity
  • the polyester layer with the lowest melting point has low crystallinity. If the measurement is difficult, for example, 120 ° C. to 170 ° C., and the temperature of the second stage of the heat treatment is in the range of -5 ° C. to ⁇ 1 ° C. of the polyester layer with the lowest melting point (the crystal of the polyester layer with the lowest melting point)
  • the melting point is difficult to measure by ordinary differential scanning calorimeter measurement, it is preferably set to 200 ° C. or less.
  • the dicarboxylic acid component of the polyester B layer should be 84 to 92 mol% terephthalic acid, and 8 to 16 mol% dicarboxylic acid component other than terephthalic acid. preferable. Specifically, it is preferable to control the temperature of the crystallization temperature (Tcr) to 170 ° C.
  • the amount of diethylene glycol in the polyester raw material is preferably 1.2 mol% or less, more preferably 0.8 mol% or more and 1.2 mol% or less.
  • the optical polyester film of the present invention preferably has a rigid amorphous amount of 20% or more and 30% or less by a temperature modulation differential scanning calorimeter (m-DSC).
  • m-DSC temperature modulation differential scanning calorimeter
  • the optical polyester film of the present invention as a method for setting the rigid amorphous amount by a temperature modulation differential scanning calorimeter (m-DSC) to 20% or more and 30% or less, there is a method of increasing the draw ratio during biaxial stretching.
  • m-DSC temperature modulation differential scanning calorimeter
  • the optical polyester film of the present invention preferably has a polyester B layer in which 80 mol% or more and less than 95 mol% of the dicarboxylic acid component is a terephthalic acid component, and 5 mol% or more and less than 20 mol% is another dicarboxylic acid component.
  • the amount of rigid amorphous can be controlled to 20% or more and 30% or less, and the dimensional stability and whitening resistance particularly at high temperature heating are improved.
  • the specific draw ratio is preferably 13 times or more in terms of surface magnification, and particularly preferably the draw ratio in the width direction is 3.7 times or more.
  • the optical polyester film of the present invention has a hard coat property, self-healing property, antiglare property, and antireflection property on at least one outermost surface in order to provide process stabilization in the production process and durability in the use environment. It is preferable to have a surface layer exhibiting one or more functions selected from the group consisting of low reflectivity, ultraviolet shielding, and antistatic properties.
  • the thickness of the surface layer varies depending on its function, but is preferably in the range of 10 nm to 30 ⁇ m, more preferably 50 nm to 20 ⁇ m. If it is thinner than this, the effect is insufficient, and if it is thicker, there is a possibility of adversely affecting optical performance and the like.
  • the hard coat property is a function of making the surface hard to be damaged by increasing the hardness of the surface. Its function is preferably HB or higher, more preferably 2H or higher, or # 0000 steel wool as evaluated by scratch hardness (pencil method) described in JIS K-5600-5-4-1999. In the scratch resistance test conducted under the condition of 200 g / cm 2, a state in which no scratch is made is shown.
  • the self-repairing property is a function that makes it difficult to be damaged by repairing the wound by elastic recovery or the like.
  • the function is preferably when the surface is rubbed with a brass brush under a load of 500 g. Within 3 minutes, more preferably within 1 minute.
  • the anti-glare property is a function of improving visibility by suppressing reflection of external light by light scattering on the surface.
  • the function is preferably from 2 to 50%, more preferably from 2 to 40%, particularly preferably from 2 to 30%, based on the evaluation based on the method for obtaining haze described in JIS K-7136-2000. It is.
  • Anti-reflective properties and low-reflective properties are functions that improve visibility by reducing the reflectance at the surface due to light interference effects. Its function is preferably 2% or less, particularly preferably 1% or less, by reflectance spectroscopy measurement.
  • UV blocking property is a function of improving light resistance by selectively blocking the wavelength in the ultraviolet region (wavelength 200 to 400 nm).
  • the transmittance at a wavelength of 380 nm is preferably 30% or less, more preferably 25. % Or less, particularly preferably 0.1% or more and 20% or less.
  • the antistatic property is a function of removing triboelectricity generated by peeling from the surface or rubbing on the surface by leaking.
  • the surface resistivity described in JIS K-6911-2006 is preferably 10 11 ⁇ / ⁇ or less, more preferably 10 9 ⁇ / ⁇ or less.
  • the antistatic property may be imparted from a layer containing a conductive polymer such as polythiophene, polypyrrole or polyaniline.
  • a conductive polymer such as polythiophene, polypyrrole or polyaniline.
  • the material used for the surface layer imparting the hard coat property can be a material used for a known hard coat layer, and is not particularly limited, but is dry, heat, chemical reaction Alternatively, a resin compound that polymerizes and / or reacts by irradiation with any of electron beam, radiation, and ultraviolet light can be used.
  • a curable resin include melamine-based, acrylic-based, silicon-based, and polyvinyl alcohol-based curable resins, but acrylic resins that are cured by electron beams or ultraviolet rays in terms of obtaining high surface hardness or optical design. A curable resin is preferred.
  • An acrylic resin that is cured by an electron beam or ultraviolet ray has an acrylate-based functional group.
  • an electron beam or ultraviolet curable resin as a photopolymerization initiator in the above-mentioned resin, acetophenones, benzophenones, Michler benzoylbenzoate, ⁇ -amyloxime ester, tetramethyltyramium monosulfide, thioxanthones, As a photosensitizer, n-butylamine, triethylamine, tri-n-butylphosphine and the like can be mixed and used.
  • the addition amount of the photopolymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the electron beam ultraviolet curable resin.
  • the method for curing the coating film is not particularly limited, but is preferably performed by ultraviolet irradiation.
  • ultraviolet rays it is preferable to use ultraviolet rays having a wavelength range of 190 to 380 nm. Curing with ultraviolet rays can be performed, for example, with a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a carbon arc lamp, a black light fluorescent lamp, or the like.
  • the electron beam source include various electron beam accelerators such as a cockcroft-wald type, a bandegraft type, a resonant transformer type, an insulating core transformer type, a linear type, a dynamitron type, and a high frequency type.
  • electron beam accelerators such as a cockcroft-wald type, a bandegraft type, a resonant transformer type, an insulating core transformer type, a linear type, a dynamitron type, and a high frequency type.
  • a siloxane-based thermosetting resin is also useful as a resin for the hard coat layer, and can be produced by hydrolyzing and condensing a single or two or more organosilane compounds in the presence of an acid or base catalyst.
  • the film thickness of the hard coat layer is preferably 0.5 ⁇ m to 20 ⁇ m, more preferably 1 ⁇ m to 20 ⁇ m, and even more preferably 1 ⁇ m to 15 ⁇ m.
  • the resin used for the surface layer imparting the antiglare property hereinafter referred to as the antiglare layer
  • the same resin as the electron beam or ultraviolet curable resin described above can be used.
  • One or two or more of the above-mentioned resins can be mixed and used. Further, in order to adjust physical properties such as plasticity and surface hardness, a resin that is not cured by an electron beam or ultraviolet rays can be mixed.
  • resins that are not cured by electron beams or ultraviolet rays include polyurethane, cellulose derivatives, polyesters, acrylic resins, polyvinyl butyral, polyvinyl alcohol, polyvinyl chloride, polyvinyl acetate, polycarbonate, and polyamide.
  • particles used in the antiglare layer include, for example, particles of inorganic compounds such as silica particles, alumina particles, TiO 2 particles, or polymethyl methacrylate particles, acrylic-styrene copolymer particles, crosslinked acrylic particles, melamine particles.
  • resin particles such as crosslinked melamine particles, polycarbonate particles, polyvinyl chloride particles, benzoguanamine particles, crosslinked benzoguanamine particles, polystyrene particles, and crosslinked polystyrene particles.
  • shape spherical particles having a uniform surface protrusion shape are preferably used, but indefinite shapes such as layered inorganic compounds such as talc and bentonite can also be used. Two or more different kinds of particles may be used in combination. Even if there are two or more kinds of material and two or more kinds of particle sizes, there is no limitation.
  • the particle size of the particles used in the antiglare layer is 0.5 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m, further preferably 0.5 to 3 ⁇ m, and still more preferably 0.5 to 1.5 ⁇ m.
  • the content of the particles is 1 to 50% by weight with respect to the resin, and more preferably 2 to 30% by weight.
  • the film thickness of the antiglare layer is preferably 0.5 ⁇ m to 20 ⁇ m, more preferably 1 ⁇ m to 20 ⁇ m, and even more preferably 1 ⁇ m to 10 ⁇ m.
  • the antiglare layer used in the present invention JP-A-6-18706, JP-A-10-20103, JP-A-2009-227735, JP-A-2009-86361, JP-A-2009-80256, JP-A-2011-81217, JP-A-20102010. -204479, JP-A 2010-181898, JP-A 2011-197329, JP-A 2011-197330, JP-A 2011-215393, and the like can also be suitably used.
  • the surface layer may contain other components in addition to those described above as long as they do not lose the effects of the invention.
  • Other components include, but are not limited to, for example, inorganic or organic pigments, polymers, polymerization initiators, polymerization inhibitors, antioxidants, dispersants, surfactants, light stabilizers, leveling agents, An antistatic agent, an ultraviolet absorber, a catalyst, an infrared absorber, a flame retardant, an antifoaming agent, conductive fine particles, a conductive resin, and the like can be added.
  • the polyester raw material is supplied to a vent type twin screw extruder and melt extruded.
  • the polyester A used for the polyester A layer and the polyester B used for the polyester B layer are respectively supplied to separate vent type twin screw extruders. Melt extrusion.
  • the polyester resin used for the polyester B layer is 84 mol% or more and less than 92 mol% of the dicarboxylic acid component is terephthalic acid, and 8 mol% or more and less than 16 mol% is a dicarboxylic acid component other than terephthalic acid.
  • the warm crystallization temperature (Tcr) is preferably 170 ° C.
  • the diethylene glycol amount is preferably 1.2 mol% or less.
  • the polyester A layer and the polyester B layer having a melting point lower than that of the polyester A layer will be described.
  • the foreign matter is removed and the amount of extrusion is leveled through a filter and a gear pump, the polyester A layer and the polyester B layer are merged, and then discharged from the T die onto a cooling drum in a sheet form.
  • an electrostatic application method in which a cooling drum and the resin are brought into close contact with each other by static electricity using an electrode applied with a high voltage
  • a casting method in which a water film is provided between the casting drum and the extruded polymer sheet, Adhere the extruded polymer from the glass transition point to (glass transition point-20 ° C), or a combination of these methods, the sheet polymer is brought into close contact with the casting drum, cooled and solidified, and unstretched Get a film.
  • a method of applying an electrostatic force is preferably used from the viewpoint of productivity and flatness.
  • the optical polyester film of the present invention is preferably a biaxially oriented film from the viewpoints of heat resistance and dimensional stability.
  • the biaxially oriented film is obtained by stretching an unstretched film in the longitudinal direction and then stretching in the width direction, or by stretching in the width direction and then stretching in the longitudinal direction, or by the longitudinal direction of the film. It can be obtained by stretching by a simultaneous biaxial stretching method in which the width direction is stretched almost simultaneously.
  • the stretching ratio in such a stretching method preferably 2.8 times or more and 3.5 times or less is employed in the longitudinal direction.
  • the stretching speed is preferably 1,000% / min or more and 200,000% / min or less.
  • the stretching temperature in the longitudinal direction is preferably 85 ° C. or higher and 100 ° C. or lower, and it is preferable to preheat at 80 ° C. or higher for 1 second or longer before stretching.
  • the stretching ratio in the width direction is preferably 3.7 times or more and 4.5 times or less, more preferably 3.8 times or more and 4.2 times or less, and the stretching ratio in the longitudinal direction and the width direction is multiplied.
  • the surface magnification is preferably 13 times or more.
  • the stretching speed in the width direction is desirably 1,000% / min or more and 200,000% / min or less.
  • the film is heat-treated after biaxial stretching.
  • the heat treatment can be performed by any conventionally known method such as in an oven or on a heated roll.
  • the purpose of this heat treatment is to grow oriented crystals after biaxial stretching to improve thermal dimensionality, so that it is within the range below the melting point of the polyester layer with the highest melting point (in this configuration, the polyester A layer).
  • the heat treatment temperature is set as high as possible.
  • the optical polyester film of the present invention has a retardation with respect to an angle inclined by 50 ° with respect to the film surface of 1500 nm or less, and a temperature rising crystallization heat ( ⁇ Hc) by differential scanning calorimetry (DSC) of 15 J / g or less.
  • the first heat treatment temperature is the melting point of the polyester B layer ⁇ 80 ° C. to the melting point ⁇ 30 ° C.
  • the temperature of the second stage of heat setting is in the range of the melting point of the polyester B layer from -5 ° C. to the melting point of ⁇ 1 ° C.
  • the crystallinity of the polyester B layer is low. When it is difficult to measure the melting point, for example, it is preferably set to 200 ° C. or lower.
  • the heat treatment time can be arbitrarily set within a range not deteriorating the characteristics, and is preferably 5 seconds to 60 seconds, more preferably 10 seconds to 40 seconds, and most preferably 15 seconds to 30 seconds. Good.
  • At least one surface can be subjected to corona treatment or an easy-adhesion layer can be coated.
  • a method of providing the coating layer in-line in the film manufacturing process at least uniaxially stretched film with a coating layer composition dispersed in water is uniformly applied using a metalling ring bar or gravure roll. Then, a method of drying the coating while stretching is preferable, and in this case, the thickness of the easy adhesion layer is preferably 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the resin preferably used for the easy-adhesion layer is preferably at least one resin selected from an acrylic resin, a polyester resin, and a urethane resin from the viewpoint of adhesiveness and handleability. Further, off-annealing at 90 to 200 ° C. is also preferably used.
  • a surface layer is provided on the outermost surface in order to impart functions such as hard coat properties, self-repair properties, antiglare properties, antireflection properties, low reflection properties, ultraviolet ray blocking properties, and antistatic properties.
  • laminating it is preferable to use a production method in which the above-mentioned coating composition is formed by coating-drying-curing.
  • the method for producing the surface layer by coating is not particularly limited, but the coating composition is supported by a dip coating method, a roller coating method, a wire bar coating method, a gravure coating method or a die coating method (US Pat. No. 2,681,294). It is preferable to form the surface layer by applying to a material or the like. Further, among these coating methods, the gravure coating method or the die coating method is more preferable as the coating method.
  • the drying process is accompanied by heating of the liquid film.
  • the drying method include heat transfer drying (adherence to a high-temperature object), convection heat transfer (hot air), radiant heat transfer (infrared ray), and others (microwave, induction heating).
  • a method using convective heat transfer or radiant heat transfer is preferable because it is necessary to make the drying speed uniform even in the width direction.
  • a further curing operation by irradiating heat or energy rays may be performed.
  • the temperature is preferably from room temperature to 200 ° C, more preferably from 100 ° C to 200 ° C from the viewpoint of the activation energy of the curing reaction, and from 130 ° C to 200 ° C. More preferably.
  • the oxygen concentration is preferably as low as possible because oxygen inhibition can be prevented, and curing in a nitrogen atmosphere (nitrogen purge) is more preferable.
  • the oxygen concentration is high, the hardening of the outermost surface is inhibited, and the surface hardening may be insufficient.
  • the ultraviolet lamp used when irradiating ultraviolet rays include a discharge lamp method, a flash method, a laser method, and an electrodeless lamp method.
  • the illuminance of UV is 100 to 3,000 mW / cm 2 , preferably 200 to 2,000 mW / cm 2 , more preferably 300 to 1,500 mW / cm 2. It is preferable to perform ultraviolet irradiation under the following conditions: the condition that the cumulative amount of ultraviolet light is 100 to 3,000 mJ / cm 2 , preferably 200 to 2,000 mJ / cm 2 , more preferably 300 to 1,500 mJ / cm 2. More preferably, UV irradiation is performed.
  • the illuminance of ultraviolet rays is the irradiation intensity received per unit area, and changes depending on the lamp output, the emission spectrum efficiency, the diameter of the light emission bulb, the design of the reflector, and the light source distance to the irradiated object.
  • the illuminance does not change depending on the conveyance speed.
  • the UV integrated light amount is irradiation energy received per unit area, and is the total amount of photons reaching the surface.
  • the integrated light quantity is inversely proportional to the irradiation speed passing under the light source, and is proportional to the number of irradiations and the number of lamps.
  • the retardation with respect to an angle inclined by 50 ° with respect to the film surface is 1500 nm or less, and the temperature rising crystallization heat ( ⁇ Hc) by differential scanning calorimetry (DSC) is 15 J / g or less. Therefore, when mounted on a display device such as a liquid crystal display, interference color when viewed from an oblique direction can be suppressed, and dimensional stability during heating and whitening resistance are excellent, so that in-plane retardation is 500 nm or less. It is preferable to be used by being laminated on a low retardation film.
  • a low retardation film having an in-plane retardation of 500 nm or less By being laminated on a low retardation film having an in-plane retardation of 500 nm or less, an interference color reducing effect as a laminate is exhibited.
  • it is a method for laminating as a protective film for a cyclic olefin film, an acrylic film, a TAC (triacetyl cellulose) film, which is an optical film having a low in-plane retardation, and various coating layers having a low in-plane retardation. And a method used as a support for the above.
  • the optical polyester film of the present invention has a retardation with respect to an angle inclined by 50 ° with respect to the film surface of 1500 nm or less, and a temperature-programmed crystallization heat ( ⁇ Hc) by differential scanning calorimetry (DSC) of 15 J / g or less. Therefore, when mounted on a display device such as a liquid crystal display, interference colors when viewed from an oblique direction can be suppressed, and since dimensional stability during heating and whitening resistance are excellent, iodine in PVA It is preferably used as a polarizing plate by being bonded to a PVA sheet (polarizer) prepared by containing and aligning.
  • PVA sheet polarizer
  • the optical polyester film is preferably used as a polarizer protective film on at least one surface.
  • the other polarizer protective film may be the polarizer protective polyester film of the present invention, or a film having no birefringence such as a triacetyl cellulose film, an acrylic film, or a norbornene-based film is preferably used.
  • the polarizer include a polyvinyl alcohol film containing a dichroic material such as iodine.
  • the polarizer protective film is bonded to the polarizer directly or via an adhesive layer, but it is preferable to bond the polarizer protective film via an adhesive from the viewpoint of improving adhesiveness.
  • iodine or dichroic material is dyed and adsorbed on a polyvinyl alcohol film, uniaxially stretched in a boric acid aqueous solution, and the stretched state is maintained.
  • cleaning and drying is mentioned.
  • the stretching ratio of uniaxial stretching is usually about 4 to 8 times.
  • Polyvinyl alcohol is preferred as the polyvinyl alcohol film. “Kuraray Vinylon” (manufactured by Kuraray Co., Ltd.), “Tosero Vinylon” (manufactured by Tosero Co., Ltd.), “Nippon Synthetic Chemical Co., Ltd.” (Commercially available) can be used.
  • the dichroic material include iodine, a disazo compound, and a polymethine dye.
  • the characteristics measurement method and effect evaluation method in the present invention are as follows.
  • composition of polyester The polyester resin and film were dissolved in hexafluoroisopropanol (HFIP), and the content of each monomer residue component and by-product diethylene glycol was quantified using 1 H-NMR and 13 C-NMR.
  • HFIP hexafluoroisopropanol
  • each layer of the film was scraped off in accordance with the laminated thickness to collect and evaluate the components constituting each single layer.
  • the composition was computed by calculation from the mixing ratio at the time of film manufacture.
  • the temperature at the apex of the endothermic peak obtained from the DSC curve was defined as the melting point, and the amount of heat per unit mass obtained from the endothermic peak area was defined as the heat of crystal melting ( ⁇ Hm).
  • ⁇ Hm heat of crystal melting
  • the temperature at the peak apex was defined as the temperature rising crystallization temperature (Tc2), and the amount of heat per unit mass obtained from the exothermic peak area was defined as the temperature rising crystallization heat ( ⁇ Hc2).
  • the melting point of each layer was measured by scraping each layer of the film according to the laminated thickness.
  • each layer was scraped off with a cutter and the melting point of each layer was measured, and the higher melting point layer was designated as the polyester A layer, and the lower layer was designated as the polyester B layer.
  • “ND” is indicated in the table.
  • the sample was heated from 25 ° C. to 300 ° C. at 20 ° C./min, and then the sample was held at 300 ° C. for 5 minutes, and then 25 ° C.
  • the sample was taken out under an atmosphere and rapidly cooled to an amorphous state. After storage at 25 ° C. for 5 minutes, the temperature at the top of the exothermic peak when the temperature was raised from 25 ° C. to 300 ° C. at 2 ° Run as 2nd Run was defined as the temperature rise crystallization temperature (Tc) of 2nd Run.
  • Tc temperature rise crystallization temperature
  • the temperature with the highest absolute value of the heat flow is adopted, and the melting peak of the film, 2ndRun As for the temperature rising crystallization peak of the film, the total amount of heat was adopted.
  • Retardation for an angle inclined by 50 ° with respect to the film surface Measurement was performed using a phase difference measuring device (KOBRA-21ADH) manufactured by Oji Scientific Instruments.
  • a sample of 30 mm ⁇ 50 mm (direction X ⁇ direction Y) was cut out with an arbitrary one direction in the film plane as direction X and a direction orthogonal to direction X as direction Y, and placed in a phase difference measuring apparatus.
  • Set the measurement conditions so that measurement is performed with the angle of the stage tilted 50 °, and the phase difference (retardation) is obtained when the angle of the stage of the measurement sample in the state where the light beam is perpendicularly incident on the film is 0 °. It was.
  • a test piece was prepared by laminating a 10 cm square film on one surface of a polarizer having a polarization degree of 99.9% prepared by adsorbing and orienting iodine in PVA.
  • the laminator roll set to 85 degreeC was used for bonding.
  • an LED light source Tritech A3-101
  • a test piece in which a 30 cm square film was bonded was prepared and evaluated in the same manner. S: No interference color is observed in any of the evaluations of 10 cm square and 30 cm square.
  • A In the evaluation of 10 cm square, no interference color is seen. In the evaluation of 30 cm square, a slight interference color is seen, but there is no practical problem.
  • B In both the 10 cm square and 30 cm square evaluations, a slight interference color is observed, but it is acceptable.
  • C In the evaluation of 10 cm square, a slight interference color is seen, but it is acceptable. In any evaluation of 30 cm square, interference color is seen, so it is not suitable for large screen display applications.
  • D In any evaluation of 10 cm square or 30 cm square, an interference color is clearly seen, so that it is not suitable for display applications. S to C are acceptable levels.
  • S to C are acceptable levels.
  • An oil-based black ink was applied to the back side of the rubbed sample, and scratches on the rubbed portion were visually observed with reflected light, and evaluated according to the following criteria. For the evaluation, the above test was repeated three times, and the average was evaluated in five stages. A: A flaw is not visually recognized. B: A flaw is visually recognized.
  • the polyester resin used for film formation was prepared as follows.
  • Polyethylene terephthalate resin (intrinsic viscosity 0.65) in which the terephthalic acid component is 100 mol% as the dicarboxylic acid component and the ethylene glycol component is 100 mol% as the glycol component.
  • Polyethylene terephthalate resin Isophthalic acid copolymer polyethylene terephthalate resin (inherent viscosity 0.7, melting point 230 ° C., 90 mol% terephthalic acid component as dicarboxylic acid component, 10 mol% isophthalic acid component, and 100 mol% ethylene glycol component as glycol component)
  • Polyethylene terephthalate resin Isophthalic acid copolymer polyethylene terephthalate resin (inherent viscosity 0.7, melting point 230 ° C., 90 mol% terephthalic acid component as dicarboxylic acid component, 10 mol% isophthalic acid component, and 100 mol% ethylene glycol component as glycol component)
  • Temperature rising crystallization temperature (Tcr) 172 ° C., diethylene glycol (1.25 mol%)).
  • Polyethylene terephthalate resin Isophthalic acid copolymerized polyethylene terephthalate resin (inherent viscosity 0.7, melting point 230 ° C., 88 mol% dicarboxylic acid component, 12 mol% isophthalic acid component, and 100 mol% ethylene glycol component as glycol component) Temperature rising crystallization temperature (Tcr) 168 ° C., diethylene glycol (1.15 mol%)). (Intrinsic viscosity 0.75).
  • Polyethylene terephthalate resin An isophthalic acid copolymerized polyethylene terephthalate resin (inherent viscosity 0.7, melting point 225 ° C., 88 mol% terephthalic acid component as dicarboxylic acid component, 12 mol% isophthalic acid component, and 100 mol% ethylene glycol component as glycol component) Temperature rising crystallization temperature (Tcr) 178 ° C., diethylene glycol (1.3 mol%)).
  • Polyethylene terephthalate resin Isophthalic acid copolymerized polyethylene terephthalate resin (inherent viscosity 0.7, melting point 212 ° C., 82 mol% terephthalic acid component as dicarboxylic acid component, 18 mol% isophthalic acid component, and 100 mol% ethylene glycol component as glycol component)
  • Temperature rising crystallization temperature (Tcr) 185 ° C., diethylene glycol (1.0 mol%)).
  • Particle Master 1 Polyethylene terephthalate particle master (intrinsic viscosity 0.65) containing agglomerated silica particles having a number average particle size of 2.2 ⁇ m in polyester A at a particle concentration of 2 mass%.
  • Coating composition for forming hard coat layer The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition for forming a hard coat layer having a solid concentration of 40% by mass.
  • Toluene 30 parts by mass Polyfunctional urethane acrylate 25 parts by mass (KRM 8655 manufactured by Daicel Ornex Co., Ltd.) 25 parts by mass of pentaerythritol triacrylate mixture (PET30 manufactured by Nippon Kayaku Co., Ltd.) 1 part by mass of polyfunctional silicone acrylate (EBECRYL1360, manufactured by Daicel Ornex Co., Ltd.) 3 parts by mass of photopolymerization initiator.
  • Example 1 Silica dispersion (number average particle size 1 ⁇ m) 12 parts by mass 1 part by mass of polyfunctional silicone acrylate (EBECRYL1360, manufactured by Daicel Ornex Co., Ltd.) 3 parts by mass of photopolymerization initiator (Irgacure 184, manufactured by Ciba Specialty Chemicals) (Example 1)
  • the composition is as shown in the table, and the raw materials were supplied to separate bent co-directional twin-screw extruders each having an oxygen concentration of 0.2% by volume, the A-layer extruder cylinder temperature was 280 ° C., and the B-layer extruder cylinder temperature was 265 Melt at °C, and merge in feed block to form A layer / B layer / A layer, short tube temperature after merging is 270 °C, die temperature is 275 °C, T die is 25 °C The sheet was discharged in a sheet form on a temperature-controlled cooling drum.
  • EBECRYL1360 polyfunctional silicone
  • a wire electrode having a diameter of 0.1 mm was applied electrostatically and adhered to the cooling drum to obtain an unstretched sheet.
  • preheating was performed for 1.5 seconds at a preheating temperature of 85 ° C. in the longitudinal direction, the film was stretched 3.3 times in the longitudinal direction at a stretching temperature of 90 ° C., and immediately cooled with a metal roll whose temperature was controlled at 40 ° C.
  • preheating is performed for 1.5 seconds at a preheating temperature of 85 ° C. with a tenter type horizontal stretching machine, and the film is stretched 3.5 times in the width direction at a stretching temperature of 120 ° C.
  • the heat treatment was performed at a second-stage heat treatment temperature of 230 ° C., and under the second-stage heat treatment conditions, the heat treatment was performed while relaxing 5% in the width direction to obtain a biaxially oriented polyester film having a film thickness of 25 ⁇ m.
  • Example 2 A biaxially oriented polyester film having a thickness of 25 ⁇ m was obtained in the same manner as in Example 1 except that the composition was changed as shown in the table.
  • Example 3 Example 1 except that the draw ratio in the longitudinal direction was 3.5 times, the draw ratio in the width direction was 3.8 times, the first stage heat treatment temperature was 190 ° C., and the second stage heat treatment temperature was 228 ° C. Thus, a biaxially oriented polyester film having a thickness of 25 ⁇ m was obtained.
  • Example 4 A biaxially oriented polyester film having a thickness of 25 ⁇ m was obtained in the same manner as in Example 3 except that the composition was as shown in the table and the first-stage heat treatment temperature was 180 ° C. and the second-stage heat treatment temperature was 223 ° C.
  • Example 5 A biaxially oriented polyester film having a thickness of 25 ⁇ m was obtained in the same manner as in Example 3 except that the composition was as shown in the table and the first stage heat treatment temperature was 180 ° C. and the second stage heat treatment temperature was 225 ° C.
  • Example 6 A biaxially oriented polyester film having a thickness of 25 ⁇ m was obtained in the same manner as in Example 3 except that the composition was as shown in the table and the first-stage heat treatment temperature was 180 ° C. and the second-stage heat treatment temperature was 223 ° C.
  • Example 7 A biaxially oriented polyester film having a thickness of 25 ⁇ m was obtained in the same manner as in Example 3 except that the composition was as shown in the table and the first-stage heat treatment temperature was 180 ° C. and the second-stage heat treatment temperature was 223 ° C.
  • Example 8 A biaxially oriented polyester film having a thickness of 20 ⁇ m was obtained in the same manner as in Example 3 except that the composition was as shown in the table and the first stage heat treatment temperature was 190 ° C. and the second stage heat treatment temperature was 223 ° C.
  • Example 9 A biaxially oriented polyester film having a film thickness of 40 ⁇ m was obtained in the same manner as in Example 8 except that the thickness of layer B was as shown in the table.
  • Example 10 A biaxially oriented polyester film having a thickness of 40 ⁇ m was obtained in the same manner as in Example 9 except that the composition was as shown in the table and the first stage heat treatment temperature was 200 ° C. and the second stage heat treatment temperature was 225 ° C. (Example 4-2)
  • the biaxially oriented polyester film obtained in Example 4 was coated with the above-described coating liquid for forming a hard coat layer using a slot die coater while controlling the flow rate so that the thickness after drying was 5 ⁇ m. Dry at 1 ° C. for 1 minute to remove the solvent.
  • the film coated with the hard coat layer was irradiated with 300 mJ / cm 2 ultraviolet rays using a high-pressure mercury lamp to obtain a biaxially oriented polyester film on which the hard coat layer was laminated.
  • Example 4-3 On the biaxially oriented polyester film obtained in Example 4, the above-mentioned coating solution for forming an antiglare layer was applied using a slot die coater and dried at 100 ° C. for 1 minute to remove the solvent. Next, the film coated with the antiglare layer was irradiated with 300 mJ / cm 2 ultraviolet rays using a high pressure mercury lamp to obtain a biaxially oriented polyester film in which the antiglare layer having a thickness of 5 ⁇ m was laminated.
  • Example 1 A biaxially oriented polyester film having a film thickness of 25 ⁇ m was obtained in the same manner as in Example 1 except that the first stage heat treatment temperature was 170 ° C. and the second stage heat treatment temperature was 210 ° C.
  • Comparative Example 2 A biaxially oriented polyester film having a film thickness of 25 ⁇ m was obtained in the same manner as in Comparative Example 1 except that the composition was as shown in the table and the first-stage heat treatment temperature was 190 ° C. and the second-stage heat treatment temperature was 230 ° C.
  • Comparative Example 3 A biaxially oriented polyester film having a film thickness of 25 ⁇ m was obtained in the same manner as in Comparative Example 1 except that the composition was as shown in the table and the first stage heat treatment temperature was 225 ° C. and the second stage heat treatment temperature was 225 ° C.
  • Comparative Example 4 A biaxially oriented polyester film having a film thickness of 25 ⁇ m was obtained in the same manner as in Comparative Example 1 except that the composition was as shown in the table and the first-stage heat treatment temperature was 190 ° C. and the second-stage heat treatment temperature was 215 ° C.
  • Comparative Example 5 A biaxially oriented polyester film having a film thickness of 25 ⁇ m was obtained in the same manner as in Comparative Example 3 except that the composition was as shown in the table and the first stage heat treatment temperature was 225 ° C. and the second stage heat treatment temperature was 230 ° C.
  • the present invention relates to an optical polyester film, and since the retardation with respect to an angle inclined by 50 ° with respect to the film surface is 1500 nm or less, it does not exhibit an interference color and is further increased by differential scanning calorimetry (DSC). Since the warm crystallization calorie ( ⁇ Hc) is 15 J / g or less, it is excellent in dimensional stability and whitening resistance during heating, and thus is preferably used for touch panel applications, polarizer protection applications, and the like.

Abstract

[Problem] The purpose of the present invention is to provide a polyester film that can, although being a biaxially-drawn polyester film, suppress interference colors when the polyester film is installed in a display such as a liquid crystal display and when the display is visually observed, and that is superior in whitening resistance and dimensional stability when being heated. [Solution] A polyester film, for optical use, of which retardation at a 50° tilt angle with respect to the film surface is not larger than 1500 nm, and of which heat of crystallization for temperature-rise (ΔHc) measured by differential scanning calorimetry (DSC) is not more than 15 J/g.

Description

光学用ポリエステルフィルム及びそれを用いた偏光板Optical polyester film and polarizing plate using the same
 本発明は、光学用ポリエステルフィルム、および偏光板に関する。 The present invention relates to an optical polyester film and a polarizing plate.
 熱可塑性樹脂フィルム、中でも二軸配向ポリエステルフィルムは、機械的性質、電気的性質、寸法安定性、透明性、耐薬品性などに優れた性質を有することから、磁気記録材料、包装材料などの多くの用途において基材フィルムとして広く使用されている。特に近年、フラットパネルディスプレイやタッチパネル分野において、偏光子保護フィルムや透明導電フィルムなど各種光学用フィルムの需要が高まっており、その中でも、偏光子保護フィルム用途では、低コスト化を目的として従来のTAC(トリアセチルセルロース)フィルムから二軸配向ポリエステルフィルムへの置き換えが検討されている。二軸配向ポリエステルフィルムは、延伸時のポリマーの配向に起因して、液晶ディスプレイとして組み立てた際に干渉色が生じてしまうことから、ディスプレイを目視した際の干渉色を抑制するために分子配向を特定の範囲とする検討(例えば、特許文献1、2)などが行われている。 Thermoplastic resin films, especially biaxially oriented polyester films, have excellent properties such as mechanical properties, electrical properties, dimensional stability, transparency, and chemical resistance. It is widely used as a substrate film in the above applications. In particular, in recent years, demand for various optical films such as a polarizer protective film and a transparent conductive film has been increasing in the flat panel display and touch panel fields. Among them, the conventional TAC is used for the purpose of reducing the cost for the polarizer protective film application. Replacement of a (triacetylcellulose) film with a biaxially oriented polyester film has been studied. The biaxially oriented polyester film causes interference color when assembled as a liquid crystal display due to the orientation of the polymer at the time of stretching, so molecular orientation is required to suppress the interference color when viewing the display. Examination (for example, patent documents 1 and 2) etc. which make it a specific range is performed.
 しかしながら、特許文献1、2とも、ディスプレイを目視した際の干渉色は抑制されるものの、厚み方向のリタデーションが高いため、斜め方向から目視した場合の干渉色抑制が不十分であった。 However, in both Patent Documents 1 and 2, the interference color when viewing the display is suppressed, but because the retardation in the thickness direction is high, the interference color suppression when viewed from an oblique direction is insufficient.
 また、斜め方向からディスプレイを目視した際の干渉色を抑制するため、ポリマー組成や製造条件を調整することによりフィルムの二軸配向を低減させる方法が考えられるが、そのような検討を行う場合、延伸による配向結晶の形成が不十分になるため、熱収縮率が増加したり、加熱時に白化が生じたりするなどの不具合が見られ、実用的なものではなかった。 Moreover, in order to suppress the interference color when viewing the display from an oblique direction, a method of reducing the biaxial orientation of the film by adjusting the polymer composition and manufacturing conditions can be considered, Since the formation of oriented crystals by stretching becomes insufficient, defects such as an increase in the heat shrinkage rate and whitening during heating were observed, which were not practical.
特開2011-252048号公報JP 2011-252048 A 特開2014-66942号公報JP 2014-66942 A
 そこで、本発明では上記の欠点を解消し、二軸延伸ポリエステルフィルムでありながら、液晶ディスプレイなどの表示装置に搭載した場合に、ディスプレイを目視した際の干渉色を抑制でき、かつ加熱時の耐白化性に優れるポリエステルフィルムを提供することを目的とする。 Therefore, in the present invention, the above-described drawbacks are eliminated, and when the film is mounted on a display device such as a liquid crystal display while being a biaxially stretched polyester film, the interference color when the display is visually observed can be suppressed, and the resistance during heating can be suppressed. It aims at providing the polyester film which is excellent in whitening property.
 上記課題を解決するための本発明は、以下の構成を有する。
(1)フィルム面に対して50°傾斜した角度に対するリタデーションが1500nm以下であり、
示差走査熱量測定(DSC)による昇温結晶化熱量(ΔHc)が15J/g以下である、光学用ポリエステルフィルム。
(2)温度変調示差走査熱量計(m-DSC)による剛直非晶量が20%以上で30%以下である(1)に記載の光学用ポリエステルフィルム。
(3)示差走査熱量計(DSC)による2ndRunにおける昇温結晶化熱量(ΔHc2)が5J/g以上30J/g以下である(1)または(2)に記載の光学用ポリエステルフィルム。
(4)前記ポリエステルフィルムの少なくとも一方の最表面に、ハードコート性、自己修復性、防眩性、反射防止性、低反射性、及び帯電防止性からなる群より選択される1種以上の機能を示す層が積層されていることを特徴とする、(1)~(3)のいずれかに記載の光学用ポリエステルフィルム。
(5)(1)~(4)のいずれかに記載の光学用ポリエステルフィルムの少なくとも片面に、面内リタデーションが500nm以下であるフィルムが積層されてなる積層体。
(6)偏光子の少なくとも片面に偏光子保護フィルムを有してなる偏光板であって、少なくとも一方の面の偏光子保護フィルムが(1)~(4)のいずれかに記載の光学用ポリエステルフィルムである偏光板。
The present invention for solving the above problems has the following configuration.
(1) The retardation with respect to the angle inclined by 50 ° with respect to the film surface is 1500 nm or less,
An optical polyester film having a temperature rising crystallization calorie (ΔHc) of 15 J / g or less by differential scanning calorimetry (DSC).
(2) The optical polyester film according to (1), wherein the rigid amorphous amount by a temperature modulation differential scanning calorimeter (m-DSC) is 20% or more and 30% or less.
(3) The polyester film for optics according to (1) or (2), wherein the temperature rising crystallization heat (ΔHc2) at 2ndRun by a differential scanning calorimeter (DSC) is 5 J / g or more and 30 J / g or less.
(4) One or more functions selected from the group consisting of hard coat properties, self-healing properties, antiglare properties, antireflection properties, low reflection properties, and antistatic properties on at least one outermost surface of the polyester film The optical polyester film as set forth in any one of (1) to (3), wherein layers showing the above are laminated.
(5) A laminate obtained by laminating a film having an in-plane retardation of 500 nm or less on at least one surface of the optical polyester film according to any one of (1) to (4).
(6) The optical polyester according to any one of (1) to (4), wherein the polarizer has a polarizer protective film on at least one side of the polarizer, and the polarizer protective film on at least one side is A polarizing plate that is a film.
 本発明の光学用ポリエステルフィルムは、液晶ディスプレイなどの表示装置に搭載した場合に干渉色を呈することがなく、加熱時の耐白化性に優れるため、特に偏光子保護用途、タッチパネル用途に使用した場合に高品位な表示を可能とする効果を奏する。 The optical polyester film of the present invention does not exhibit an interference color when mounted on a display device such as a liquid crystal display, and is excellent in resistance to whitening during heating. Therefore, particularly when used for polarizer protection and touch panel applications. In addition, there is an effect that enables high-quality display.
 以下、本発明の光学用ポリエステルフィルムについて詳細に説明する。 Hereinafter, the optical polyester film of the present invention will be described in detail.
 本発明の光学用ポリエステルフィルムは、フィルム面に対して50°傾斜した角度に対するリタデーションが1500nm以下であることが必要である。フィルム面に対して50°傾斜した角度に対するリタデーションを1500nm以下とすることで、液晶ディスプレイなどの表示装置に搭載した場合に、斜め方向から見た際の干渉色を抑制することができる。 The optical polyester film of the present invention needs to have a retardation of 1500 nm or less with respect to an angle inclined by 50 ° with respect to the film surface. When the retardation with respect to the angle inclined by 50 ° with respect to the film surface is set to 1500 nm or less, the interference color when viewed from an oblique direction can be suppressed when mounted on a display device such as a liquid crystal display.
 ここで、フィルム面に対して50°傾斜した角度とは、王子計測機器(株)製「KOBRA」シリーズなどの位相差測定装置において定義される角度を指しており、具体的には、光束がフィルムに垂直に入射する状態の測定試料のステージの角度を0°とした場合に、50°ステージを傾斜回転させた角度を指す。 Here, the angle inclined by 50 ° with respect to the film surface refers to an angle defined in a phase difference measuring device such as “KOBRA” series manufactured by Oji Scientific Instruments Co., Ltd. When the angle of the stage of the measurement sample that is perpendicularly incident on the film is set to 0 °, the angle is obtained by tilting and rotating the 50 ° stage.
 フィルム面に対して50°傾斜した角度に対するリタデーションは、斜め方向から見た際の干渉色をより抑制できる観点から、好ましくは1000nm以下であり、より好ましくは700nm以下、特に好ましくは600nm以下である。また、フィルム面に対して50°傾斜した角度に対するリタデーションは、斜め方向の干渉色を抑制する観点からは低いほど好ましいが、加熱時の寸法安定性、耐白化性の観点からは、1nm以上が好ましい。 The retardation with respect to an angle inclined by 50 ° with respect to the film surface is preferably 1000 nm or less, more preferably 700 nm or less, and particularly preferably 600 nm or less, from the viewpoint of further suppressing the interference color when viewed from an oblique direction. . Further, the retardation with respect to the angle inclined by 50 ° with respect to the film surface is preferably as low as possible from the viewpoint of suppressing the interference color in the oblique direction, but 1 nm or more is preferable from the viewpoint of dimensional stability during heating and whitening resistance. preferable.
 フィルム面に対して50°傾斜した角度に対するリタデーションを1500nm以下とする具体的な方法としては、本発明のポリエステルフィルムを構成するポリエステルのジカルボン酸成分を2種類以上とし、ポリエステルフィルムの二軸配向を低下させる方法、延伸倍率を低く設定したり、延伸温度を上げたりするなど、製造条件を調整してポリエステルフィルムの二軸配向を低下させる方法、フィルム厚みを低減させる方法、融点の異なるポリエステル層を少なくとも2層以上有する積層構成の場合に融点の低い層の厚み割合を大きくする方法などが挙げられる。 As a specific method for setting the retardation with respect to an angle inclined by 50 ° with respect to the film surface to 1500 nm or less, two or more dicarboxylic acid components of the polyester constituting the polyester film of the present invention are used, and the biaxial orientation of the polyester film is set. A method of reducing, a method of reducing the biaxial orientation of the polyester film by adjusting the production conditions, such as setting the draw ratio low or raising the drawing temperature, a method of reducing the film thickness, a polyester layer having a different melting point In the case of a laminated structure having at least two layers, a method of increasing the thickness ratio of the layer having a low melting point may be mentioned.
 本発明の光学用ポリエステルフィルムは、示差走査熱量測定(DSC)による昇温結晶化熱量(ΔHc)が15J/g以下であることが必要である。示差走査熱量測定(DSC)による昇温結晶化熱量(ΔHc)が15J/g以下であれば、ポリエステルフィルムの結晶化が十分になされており、本発明の光学用ポリエステルフィルムを加熱した際の、寸法安定性、耐白化性が良好となる。加熱時の寸法安定性、耐白化性の観点より、示差走査熱量測定(DSC)による昇温結晶化熱量(ΔHc)は10J/g以下であれば、より好ましく、5J/g以下であれば最も好ましい。 The optical polyester film of the present invention needs to have a heat-up crystallization heat (ΔHc) of 15 J / g or less by differential scanning calorimetry (DSC). If the temperature rising crystallization heat (ΔHc) by differential scanning calorimetry (DSC) is 15 J / g or less, the polyester film has been sufficiently crystallized, and when the optical polyester film of the present invention is heated, Dimensional stability and whitening resistance are improved. From the viewpoint of dimensional stability during heating and whitening resistance, the temperature rising crystallization calorie (ΔHc) by differential scanning calorimetry (DSC) is more preferably 10 J / g or less, most preferably 5 J / g or less. preferable.
 ここで、示差走査熱量測定(DSC)による昇温結晶化熱量(ΔHc)とは、示差走査熱量計(DSC)を用いて、昇温速度20℃/分で測定を行った際の結晶化現象で発現する発熱ピーク熱量であり、昇温結晶化ピークが複数ある場合は、熱流の絶対値が最も大きい温度における熱量を本発明における昇温結晶化熱量(ΔHc)とする。
ポリエステルフィルムは、二軸配向させることで配向結晶化が進行し、加熱時の寸法安定性、耐白化性が良好となる一方で、面配向が高くなるため、特にフィルム面に対して50°傾斜した角度に対するリタデーションが高くなり、光学用途、特に、タッチパネル用途、偏光子保護用途などに使用した際に干渉色を呈し、外観が低下してしまう。一方、干渉色を低減させるために、面配向を低くしようとすると、ポリエステルフィルムの二軸配向性を低減させる必要があり、従来技術であれば、二軸配向性を低減させると、結晶化が不十分となるため、示差走査熱量測定(DSC)による昇温結晶化熱量(ΔHc)が15J/g以下に制御することが困難であった。
Here, the temperature rising crystallization calorie (ΔHc) by differential scanning calorimetry (DSC) is the crystallization phenomenon when measuring at a heating rate of 20 ° C./min using a differential scanning calorimeter (DSC). In the case where there are a plurality of temperature rising crystallization peaks, the amount of heat at the temperature at which the absolute value of the heat flow is the largest is defined as the temperature rising crystallization heat amount (ΔHc) in the present invention.
Polyester film is biaxially oriented, and orientational crystallization proceeds, and dimensional stability during heating and whitening resistance are improved. The retardation with respect to the angle is increased, and when used for optical applications, particularly for touch panel applications and polarizer protection applications, an interference color is exhibited and the appearance is deteriorated. On the other hand, in order to reduce the interference color, it is necessary to reduce the biaxial orientation of the polyester film if the surface orientation is to be lowered. Since it becomes insufficient, it has been difficult to control the temperature rising crystallization heat (ΔHc) by differential scanning calorimetry (DSC) to 15 J / g or less.
 本発明の光学用ポリエステルフィルムは、干渉色を低減させるために、フィルム面に対して50°傾斜した角度に対するリタデーションを低く保ちつつ、加熱時の寸法安定性、耐白化性を両立するために、ポリエステルフィルムを製膜する際に使用するポリエステル原料の示差走査熱量測定(DSC)による昇温結晶化熱量(ΔHc)が15J/g以下であることが重要である。 In order to reduce the interference color, the optical polyester film of the present invention maintains low retardation with respect to an angle inclined by 50 ° with respect to the film surface, in order to achieve both dimensional stability during heating and whitening resistance. It is important that the temperature rise crystallization heat (ΔHc) by differential scanning calorimetry (DSC) of the polyester raw material used when forming the polyester film is 15 J / g or less.
 また、本発明の光学用ポリエステルフィルムは、寸法安定性、耐白化性の観点から、示差走査熱量測定(DSC)による結晶融解熱量(ΔHm)が25J/g以上であることが好ましい。より好ましくは、示差走査熱量測定(DSC)による結晶融解熱量(ΔHm)は、30J/g以上であり、35J/g以上50J/g以下であれば最も好ましい。結晶融解熱量(ΔHm)が25J/g以上であれば、ポリエステルフィルムの結晶化が十分なされており、かつ、その結晶性も非常に高い状態であるため、寸法安定性、耐白化性が高くなる。ここで、示差走査熱量測定(DSC)による結晶融解熱量(ΔHm)とは、示差走査熱量計(DSC)を用いて、昇温速度20℃/分で測定を行った際の結晶融解現象で発現する吸熱ピーク熱量であり、示差走査熱量測定(DSC)の結晶融解ピークが複数ある場合は、その合計熱量を本発明における結晶融解熱量とする。
さらに、本発明の光学用ポリエステルフィルムは、寸法安定性、耐白化性を高めるために、示差走査熱量計(DSC)による2ndRunにおける昇温結晶化熱量(ΔHc2)が5J/g以上30J/g以下であることが好ましい。示差走査熱量計(DSC)による2ndRunにおける昇温結晶化熱量(ΔHc2)が5J/g以上30J/g以下であれば、ポリエステルフィルムを構成するポリエステル樹脂として、結晶性は十分に確保でき、かつ、フィルム面に対して50°傾斜した角度に対するリタデーションを低く制御しやすくなる。例えば、ポリエステルフィルムをポリエステルA層とポリエステルA層より融点の低いポリエステルB層を有する少なくとも2層以上の構成とする場合、ポリエステルB層の結晶性を低くして、フィルム面に対して50°傾斜した角度に対するリタデーションを低く制御させる構成であれば、ポリエステルA層の結晶性は高くすることで寸法安定性、耐白化性を両立させることが好ましく、示差走査熱量計(DSC)による2ndRunにおける昇温結晶化熱量(ΔHc2)が5J/g以上30J/g以下となるような樹脂設計とすることで、干渉色の低減、寸法安定性、耐白化性をより高いレベルで達成することが可能となる。示差走査熱量計(DSC)による2ndRunにおける昇温結晶化熱量(ΔHc2)は、10J/g以上30J/g以下であればより好ましく、15J/g以上25J/g以下であれば最も好ましい。ここで、示差走査熱量測定(DSC)による2ndRunにおける昇温結晶化熱量(ΔHc2)とは、示差走査熱量計(DSC)を用いて、昇温速度20℃/分で300℃まで昇温、5分間保持し、その後、25℃まで急冷、5分間保持後に、再度25℃から昇温速度20℃/分で昇温した際の結晶化現象で発現する発熱ピーク熱量であり、昇温結晶化ピークが複数ある場合は、その合計熱量を本発明における昇温結晶化熱量(ΔHc2)とする。
The optical polyester film of the present invention preferably has a heat of crystal fusion (ΔHm) of 25 J / g or more by differential scanning calorimetry (DSC) from the viewpoint of dimensional stability and whitening resistance. More preferably, the heat of crystal fusion (ΔHm) by differential scanning calorimetry (DSC) is 30 J / g or more, and most preferably 35 J / g or more and 50 J / g or less. If the heat of crystal fusion (ΔHm) is 25 J / g or more, the polyester film is sufficiently crystallized and its crystallinity is very high, so that the dimensional stability and whitening resistance are improved. . Here, the crystal melting calorie (ΔHm) by differential scanning calorimetry (DSC) is expressed by the crystal melting phenomenon when measured at a heating rate of 20 ° C./min using a differential scanning calorimeter (DSC). In the case where there are a plurality of differential scanning calorimetry (DSC) crystal melting peaks, the total calorific value is defined as the crystal melting calorie in the present invention.
Furthermore, in order to improve dimensional stability and whitening resistance, the optical polyester film of the present invention has a temperature rising crystallization heat (ΔHc2) at 2ndRun by a differential scanning calorimeter (DSC) of 5 J / g or more and 30 J / g or less. It is preferable that If the temperature rising crystallization heat (ΔHc2) at 2ndRun by differential scanning calorimeter (DSC) is 5 J / g or more and 30 J / g or less, crystallinity can be sufficiently secured as a polyester resin constituting the polyester film, and It becomes easy to control the retardation with respect to the angle inclined by 50 ° with respect to the film surface. For example, when the polyester film has at least two layers having a polyester A layer and a polyester B layer having a melting point lower than that of the polyester A layer, the crystallinity of the polyester B layer is lowered and the film surface is inclined by 50 °. If the retardation with respect to the angle is controlled to be low, it is preferable to achieve both dimensional stability and whitening resistance by increasing the crystallinity of the polyester A layer, and the temperature rise at 2ndRun with a differential scanning calorimeter (DSC) By designing the resin so that the heat of crystallization (ΔHc2) is 5 J / g or more and 30 J / g or less, it is possible to achieve a reduction in interference color, dimensional stability, and whitening resistance at a higher level. . The temperature rising crystallization heat amount (ΔHc2) at 2ndRun by a differential scanning calorimeter (DSC) is more preferably 10 J / g or more and 30 J / g or less, and most preferably 15 J / g or more and 25 J / g or less. Here, the temperature rising crystallization calorie (ΔHc2) in 2ndRun by differential scanning calorimetry (DSC) is a temperature rising to 300 ° C. at a temperature rising rate of 20 ° C./min using a differential scanning calorimeter (DSC). This is an exothermic peak calorific value that appears in the crystallization phenomenon when the temperature is raised again from 25 ° C. at a rate of temperature increase of 20 ° C./min. In the case where there are a plurality of nuclei, the total calorific value is defined as the temperature-rise crystallization calorie (ΔHc2) in the present invention.
 本発明の光学用ポリエステルフィルムは、フィルム面に対して50°傾斜した角度に対するリタデーション1500nm以下と、示差走査熱量測定(DSC)による昇温結晶化熱量(ΔHc)を15J/g以下を両立するために、ポリエステルA層と、ポリエステルA層より融点の低いポリエステルB層を有する少なくとも2層以上の構成とすることが好ましい。積層構成とすることで、例えば、ポリエステルB層のリタデーションを低く制御し、ポリエステルA層で取り扱い性を付与するといった設計が可能となる。 The optical polyester film of the present invention has both a retardation of 1500 nm or less with respect to an angle inclined by 50 ° with respect to the film surface and a temperature rising crystallization heat amount (ΔHc) by differential scanning calorimetry (DSC) of 15 J / g or less. In addition, it is preferable to have at least two layers having a polyester A layer and a polyester B layer having a melting point lower than that of the polyester A layer. By setting it as a laminated structure, the design which controls the retardation of a polyester B layer low and provides a handleability with a polyester A layer, for example becomes possible.
 本発明の光学用ポリエステルフィルムは、少なくとも2層以上あれば層数、層構成は特に限定されないが、フィルムのカールを抑制し、反り低減、取り扱い性の観点からは、A層/B層/A層、A層/B層/A層/B層/A層、といったように、フィルムが厚み方向に対して対称であり、かつ両表層がポリエステルA層である構成が好ましい。 As long as the optical polyester film of the present invention has at least two layers, the number of layers and the layer structure are not particularly limited. However, from the viewpoint of curling of the film, reduction of warpage, and handling properties, A layer / B layer / A A configuration in which the film is symmetrical with respect to the thickness direction, and the both surface layers are polyester A layers, such as a layer, A layer / B layer / A layer / B layer / A layer, is preferable.
 ポリエステルB層の融点をポリエステルA層より低くするための方法としては、ポリエステルB層を構成するポリエステル樹脂の融点を下げる方法が挙げられ、具体的な方法としては、ポリエステルB層を構成するジオール由来の構造単位であるジオール成分、およびB層を構成するジカルボン酸由来の構造単位であるジカルボン酸成分のうちそれぞれ最も多い成分に対し、それ以外の成分を増やしていく方法が挙げられる。 As a method for lowering the melting point of the polyester B layer than that of the polyester A layer, a method of lowering the melting point of the polyester resin constituting the polyester B layer can be mentioned. As a specific method, the method is derived from the diol constituting the polyester B layer. A method of increasing the other components with respect to the most numerous components among the diol component which is a structural unit of the dicarboxylic acid component and the dicarboxylic acid component which is the structural unit derived from the dicarboxylic acid constituting the B layer.
 例えば、B層を構成するジオール由来の構造単位としてエチレングリコール由来の構造単位を最も多く含み、ジカルボン酸由来の構造単位としてテレフタル酸を最も多く含む場合、エチレングリコール以外のジオール成分の割合、およびテレフタル酸以外のジカルボン酸成分の割合を増やしていくことで、ポリエステルB層の融点を下げることができる。 For example, in the case where the structural unit derived from ethylene glycol is the most as the structural unit derived from diol constituting the B layer, and the most terephthalic acid is included as the structural unit derived from dicarboxylic acid, the proportion of diol components other than ethylene glycol, The melting point of the polyester B layer can be lowered by increasing the proportion of the dicarboxylic acid component other than the acid.
 ここで、エチレングリコール以外のジオール成分としては、例えば、1,2-プロパンジオール、1,3-プロパンジオール、ネオペンチルグリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、イソソルベート、スピログリコールなどを挙げることができる。中でも、ネオペンチルグリコール、ジエチレングリコール、1,4-シクロヘキサンジメタノール、イソソルベート、スピログリコールが好ましく用いられる。これらのジオール成分はエチレングリコール以外に1種類のみでもよく、2種類以上を併用してもよい。
中でも、フィルム面に対して50°傾斜した角度に対するリタデーションを低減させ、斜め方向から見た際の干渉色を抑制する観点からは、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、イソソルベート、スピログリコールが好ましい。
Here, as diol components other than ethylene glycol, for example, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, 1,5- Pentanediol, 1,6-hexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, 2,2-bis ( 4-hydroxyethoxyphenyl) propane, isosorbate, spiroglycol and the like. Of these, neopentyl glycol, diethylene glycol, 1,4-cyclohexanedimethanol, isosorbate, and spiro glycol are preferably used. These diol components may be used alone or in combination of two or more in addition to ethylene glycol.
Among them, from the viewpoint of reducing retardation for an angle inclined by 50 ° with respect to the film surface and suppressing interference color when viewed from an oblique direction, 1,4-cyclohexanedimethanol, neopentyl glycol, isosorbate, spiroglycol Is preferred.
 また、テレフタル酸以外のジカルボン酸成分としては、例えば、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸などの芳香族ジカルボン酸、アジピン酸、スベリン酸、セバシン酸、ダイマー酸、ドデカンジオン酸、シクロヘキサンジカルボン酸などの脂肪族ジカルボン酸、および、各種芳香族ジカルボン酸、脂肪族ジカルボン酸とのエステル誘導体などが挙げられる。 Examples of dicarboxylic acid components other than terephthalic acid include, for example, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 4,4′-diphenyl. Dicarboxylic acids, 4,4'-diphenyl ether dicarboxylic acids, aromatic dicarboxylic acids such as 4,4'-diphenylsulfone dicarboxylic acid, fats such as adipic acid, suberic acid, sebacic acid, dimer acid, dodecanedioic acid, cyclohexanedicarboxylic acid An aromatic dicarboxylic acid, various aromatic dicarboxylic acids, and ester derivatives with aliphatic dicarboxylic acids.
 中でも、フィルム面に対して50°傾斜した角度に対するリタデーションを低減させ、斜め方向から見た際の干渉色を抑制する観点からは、イソフタル酸、2,6-ナフタレンジカルボン酸が好ましい。 Among them, isophthalic acid and 2,6-naphthalenedicarboxylic acid are preferable from the viewpoint of reducing retardation with respect to an angle inclined by 50 ° with respect to the film surface and suppressing interference color when viewed from an oblique direction.
 本発明の光学用ポリエステルフィルムを構成するポリエステルB層は、ジカルボン酸成分の60モル%以上95モル%未満がテレフタル酸成分、5モル%以上40モル%未満がその他のジカルボン酸成分であることが好ましい。ジカルボン酸成分の95モル%以上がテレフタル酸成分、5%未満がその他のジカルボン酸成分であると、フィルム面に対して50°傾斜した角度に対するリタデーションが高くなり、斜め方向から見た際の干渉色が発生する場合がある。また、ジカルボン酸成分の60モル%未満がテレフタル成分、40モル%以上がその他のジカルボン酸成分であると、ポリエステルの結晶性が低下して製造時の厚みムラが大きくなったり、偏光板製造時の破断、エッジ部分のクラックが発生しやすくなったりする場合がある。斜め方向から見た際の干渉色抑制と加工時の取扱い性の両立の観点からは、ポリエステルB層が、ジカルボン酸成分の84モル%以上92モル%未満がテレフタル酸成分、8モル%以上16モル%未満がその他のジカルボン酸成分であることが好ましい。 In the polyester B layer constituting the optical polyester film of the present invention, 60 mol% or more and less than 95 mol% of the dicarboxylic acid component is a terephthalic acid component, and 5 mol% or more and less than 40 mol% is another dicarboxylic acid component. preferable. When 95 mol% or more of the dicarboxylic acid component is a terephthalic acid component and less than 5% is another dicarboxylic acid component, the retardation with respect to an angle inclined by 50 ° with respect to the film surface is increased, and interference when viewed from an oblique direction. Color may occur. Further, when less than 60 mol% of the dicarboxylic acid component is a terephthalic component and 40 mol% or more is another dicarboxylic acid component, the crystallinity of the polyester is lowered, resulting in increased thickness unevenness during production, or during polarizing plate production. In some cases, cracks at the edges and cracks at the edge portions are likely to occur. From the viewpoint of coexistence of interference color suppression when viewed from an oblique direction and handleability during processing, the polyester B layer has a terephthalic acid component of 84 mol% or more and less than 92 mol% of the dicarboxylic acid component, and 8 mol% or more and 16 mol%. It is preferable that less than mol% is other dicarboxylic acid components.
 すなわち、本発明におけるポリエステルB層は、ジカルボン酸成分の84モル%以上92モル%未満がテレフタル酸成分、8モル%以上16モル%未満がテレフタル酸以外のジカルボン酸成分としてイソフタル酸および/または、2,6-ナフタレンジカルボン酸を8モル%以上16モル%未満含んでいることが特に好ましい態様である。 That is, in the polyester B layer in the present invention, 84 to 92 mol% of the dicarboxylic acid component is terephthalic acid component, and 8 to 16 mol% is diphthalic acid component other than terephthalic acid and / or isophthalic acid and / or It is a particularly preferable embodiment that 2,6-naphthalenedicarboxylic acid is contained in an amount of 8 mol% or more and less than 16 mol%.
 本発明の光学用ポリエステルフィルムは、フィルム面に対して50°傾斜した角度に対するリタデーション1500nm以下と、示差走査熱量測定(DSC)による昇温結晶化熱量(ΔHc)を15J/g以下を両立するために、フィルム製造時の延伸後の熱処理温度を、最も融点の低いポリエステル層の融点-5℃から融点の範囲に設定し、配向した結晶を溶融させずに残存させる方法などが挙げられる。また、フィルム面に対して50°傾斜した角度に対するリタデーションを1500nm以下と低く制御するためには熱処理時間は長くする方が好ましいが、一方で、示差走査熱量測定(DSC)による昇温結晶化熱量(ΔHc)を15J/g以下と結晶性を高く維持するためには、融点付近での熱処理時間は短い方が好ましい。このため、熱処理条件としては、熱処理温度を段階的に高くしていく方法も非常に有効である。この場合、熱処理温度1段目の温度を最も融点の低いポリエステル層の融点-80℃~融点-30℃(最も融点の低いポリエステル層の結晶性が低く、通常の示差走査熱量計測定では融点の測定が困難な場合は、例えば120℃~170℃)とし、熱処理2段目の温度を最も融点の低いポリエステル層の融点-5℃から融点-1℃の範囲(最も融点の低いポリエステル層の結晶性が低く、通常の示差走査熱量計測定では融点の測定が困難な場合は、例えば200℃以下)に設定することが好ましい。 The optical polyester film of the present invention has both a retardation of 1500 nm or less with respect to an angle inclined by 50 ° with respect to the film surface and a temperature rising crystallization heat amount (ΔHc) by differential scanning calorimetry (DSC) of 15 J / g or less. In addition, there is a method in which the heat treatment temperature after stretching during film production is set in the range from the melting point of -5 ° C. to the melting point of the polyester layer having the lowest melting point, and the oriented crystals remain without melting. Further, in order to control the retardation with respect to the angle inclined by 50 ° with respect to the film surface as low as 1500 nm or less, it is preferable to increase the heat treatment time, but on the other hand, the temperature rising crystallization heat by differential scanning calorimetry (DSC) In order to maintain high crystallinity (ΔHc) of 15 J / g or less, it is preferable that the heat treatment time near the melting point is short. For this reason, as a heat treatment condition, a method of increasing the heat treatment temperature stepwise is also very effective. In this case, the temperature of the first stage of the heat treatment is the melting point of the polyester layer with the lowest melting point—80 ° C. to melting point—30 ° C. (the polyester layer with the lowest melting point has low crystallinity. If the measurement is difficult, for example, 120 ° C. to 170 ° C., and the temperature of the second stage of the heat treatment is in the range of -5 ° C. to −1 ° C. of the polyester layer with the lowest melting point (the crystal of the polyester layer with the lowest melting point) When the melting point is difficult to measure by ordinary differential scanning calorimeter measurement, it is preferably set to 200 ° C. or less.
 また、本発明の光学用ポリエステルフィルムにおいて、フィルム面に対して50°傾斜した角度に対するリタデーション1500nm以下と、示差走査熱量測定(DSC)による昇温結晶化熱量(ΔHc)を15J/g以下を両立するために、ポリエステルB層のジカルボン酸成分の84ル%以上92モル%未満をテレフタル酸、8モル%以上16モル%未満をテレフタル酸以外のジカルボン酸成分とし、かつ結晶化速度を高めることが好ましい。具体的には、フィルムの製造に用いるポリエステル原料について触媒種、触媒量を制御して、昇温結晶化温度(Tcr)を170℃以下に制御することが好ましい。さらに、ポリエステル原料のジエチレングリコール量を1.2モル%以下、より好ましくは、0.8モル%以上1.2モル%以下とすることが好ましい。 Further, in the optical polyester film of the present invention, a retardation of 1500 nm or less with respect to an angle inclined by 50 ° with respect to the film surface and a temperature rising crystallization heat (ΔHc) by differential scanning calorimetry (DSC) of 15 J / g or less are compatible. In order to increase the crystallization speed, the dicarboxylic acid component of the polyester B layer should be 84 to 92 mol% terephthalic acid, and 8 to 16 mol% dicarboxylic acid component other than terephthalic acid. preferable. Specifically, it is preferable to control the temperature of the crystallization temperature (Tcr) to 170 ° C. or less by controlling the catalyst type and the amount of the polyester raw material used for the production of the film. Furthermore, the amount of diethylene glycol in the polyester raw material is preferably 1.2 mol% or less, more preferably 0.8 mol% or more and 1.2 mol% or less.
 本発明の光学用ポリエステルフィルムは、温度変調示差走査熱量計(m-DSC)による剛直非晶量が20%以上30%以下であることが好ましい。剛直非晶量を20%以上30%以下とすることで、斜め方向から見た際の干渉色を抑制しつつ、高温加熱時の寸法安定性と耐白化性を両立することが可能となる。高温加熱時の寸法安定性と耐白化性の観点より、剛直非晶量は25%以上30%以下であることがより好ましい。 The optical polyester film of the present invention preferably has a rigid amorphous amount of 20% or more and 30% or less by a temperature modulation differential scanning calorimeter (m-DSC). By setting the rigid amorphous amount to 20% or more and 30% or less, it becomes possible to achieve both dimensional stability and whitening resistance during high-temperature heating while suppressing interference colors when viewed from an oblique direction. From the viewpoint of dimensional stability and whitening resistance during high-temperature heating, the rigid amorphous amount is more preferably 25% or more and 30% or less.
 本発明の光学用ポリエステルフィルムにおいて、温度変調示差走査熱量計(m-DSC)による剛直非晶量を20%以上30%以下とする方法としては、二軸延伸時の延伸倍率を高くする方法が好ましく用いられる。本発明の光学用ポリエステルフィルムは、ジカルボン酸成分の80モル%以上95モル%未満がテレフタル酸成分、5モル%以上20モル%未満がその他のジカルボン酸成分であるポリエステルB層を有することが好ましいが、該構成として、延伸倍率を高くすることで、剛直非晶量を20%以上30%以下に制御することができ、特に高温加熱時の寸法安定性と耐白化性が良好となる。具体的な延伸倍率としては、面倍率で13倍以上が好ましく、特に幅方向の延伸倍率を3.7倍以上とすることが好ましい。 In the optical polyester film of the present invention, as a method for setting the rigid amorphous amount by a temperature modulation differential scanning calorimeter (m-DSC) to 20% or more and 30% or less, there is a method of increasing the draw ratio during biaxial stretching. Preferably used. The optical polyester film of the present invention preferably has a polyester B layer in which 80 mol% or more and less than 95 mol% of the dicarboxylic acid component is a terephthalic acid component, and 5 mol% or more and less than 20 mol% is another dicarboxylic acid component. However, as the structure, by increasing the draw ratio, the amount of rigid amorphous can be controlled to 20% or more and 30% or less, and the dimensional stability and whitening resistance particularly at high temperature heating are improved. The specific draw ratio is preferably 13 times or more in terms of surface magnification, and particularly preferably the draw ratio in the width direction is 3.7 times or more.
 また、本発明の光学用ポリエステルフィルムは、製造工程における工程安定化や、使用環境における耐久性を付与するため、少なくとも一方の最表面にハードコート性、自己修復性、防眩性、反射防止性、低反射性、紫外線遮蔽性、及び帯電防止性からなる群より選択される1種以上の機能を示す表面層を有することが好ましい。 In addition, the optical polyester film of the present invention has a hard coat property, self-healing property, antiglare property, and antireflection property on at least one outermost surface in order to provide process stabilization in the production process and durability in the use environment. It is preferable to have a surface layer exhibiting one or more functions selected from the group consisting of low reflectivity, ultraviolet shielding, and antistatic properties.
 前記表面層の厚みは、その機能により異なるが、好ましくは10nmから30μmの範囲であり、50nmから20μmがより好ましい。これよりも薄いと効果が不十分になり、厚くなると光学性能などに悪影響を及ぼす可能性がある。 The thickness of the surface layer varies depending on its function, but is preferably in the range of 10 nm to 30 μm, more preferably 50 nm to 20 μm. If it is thinner than this, the effect is insufficient, and if it is thicker, there is a possibility of adversely affecting optical performance and the like.
 ここでハードコート性とは、表面の硬度を高めることにより傷がつきにくくする機能である。その機能としては、JIS K-5600-5-4-1999に記載の引っかき硬度(鉛筆法)による評価にて、好ましくはHB以上で、より好ましくは2H以上であるか、#0000のスチールウールで200g/cmの条件で行う耐擦傷性試験において、傷がつかない状態を示す。 Here, the hard coat property is a function of making the surface hard to be damaged by increasing the hardness of the surface. Its function is preferably HB or higher, more preferably 2H or higher, or # 0000 steel wool as evaluated by scratch hardness (pencil method) described in JIS K-5600-5-4-1999. In the scratch resistance test conducted under the condition of 200 g / cm 2, a state in which no scratch is made is shown.
 ここで、自己修復性とは、弾性回復などより傷を修復することにより傷がつくにくくする機能であり、その機能としては、500gの荷重をかけた真鍮ブラシで表面を擦過した際、好ましくは3分以内で、より好ましくは1分以内である。
防眩性とは、表面での光散乱により外光の映り込みを抑制することで、視認性を向上させる機能である。その機能としては、JIS K-7136-2000に記載の、ヘイズの求め方に基づく評価にて、2~50%であることが好ましく、より好ましくは2~40%、特に好ましくは2~30%である。
Here, the self-repairing property is a function that makes it difficult to be damaged by repairing the wound by elastic recovery or the like. The function is preferably when the surface is rubbed with a brass brush under a load of 500 g. Within 3 minutes, more preferably within 1 minute.
The anti-glare property is a function of improving visibility by suppressing reflection of external light by light scattering on the surface. The function is preferably from 2 to 50%, more preferably from 2 to 40%, particularly preferably from 2 to 30%, based on the evaluation based on the method for obtaining haze described in JIS K-7136-2000. It is.
 反射防止性、低反射性とは、光の干渉効果により表面での反射率を低減することで、視認性を向上させる機能である。その機能としては反射率分光測定により、好ましくは2%以下、特に好ましくは1%以下である。 Anti-reflective properties and low-reflective properties are functions that improve visibility by reducing the reflectance at the surface due to light interference effects. Its function is preferably 2% or less, particularly preferably 1% or less, by reflectance spectroscopy measurement.
 紫外線遮断性とは、紫外線領域(波長200~400nm)の波長を選択的に遮断することで、耐光性を向上させる機能である。紫外線遮断性を発現させる方法としては、紫外線を反射する方法、紫外線を吸収する方法どちらでも問題なく、その機能としては、波長380nmにおける透過率が30%以下であることが好ましく、より好ましくは25%以下、特に好ましくは0.1%以上20%以下である。 UV blocking property is a function of improving light resistance by selectively blocking the wavelength in the ultraviolet region (wavelength 200 to 400 nm). There is no problem in either the method of reflecting the ultraviolet ray or the method of absorbing the ultraviolet ray as a method for expressing the ultraviolet blocking property, and as its function, the transmittance at a wavelength of 380 nm is preferably 30% or less, more preferably 25. % Or less, particularly preferably 0.1% or more and 20% or less.
 帯電防止性とは、表面からの剥離や表面への擦過により発生した摩擦電気を、漏洩させることにより除去する機能である。その機能の目安としては、JIS K-6911-2006に記載の表面抵抗率が、好ましくは1011Ω/□以下であり、より好ましくは10Ω/□以下である。帯電防止性の付与は、公知の帯電防止剤を含有した層である他、ポリチオフェン、ポリピロール、ポリアニリン等の導電性高分子を含有した層からなるものであってもよい。以下、ハードコート性と防眩性の付与について、より詳しく述べる。 The antistatic property is a function of removing triboelectricity generated by peeling from the surface or rubbing on the surface by leaking. As a standard of the function, the surface resistivity described in JIS K-6911-2006 is preferably 10 11 Ω / □ or less, more preferably 10 9 Ω / □ or less. In addition to a layer containing a known antistatic agent, the antistatic property may be imparted from a layer containing a conductive polymer such as polythiophene, polypyrrole or polyaniline. Hereinafter, the provision of hard coat properties and antiglare properties will be described in more detail.
 前記ハードコート性を付与する表面層(以下、ハードコート層とする)に用いられる材料は、公知のハードコート層に用いられる材料を用いることができ、特に限定されないが、乾燥、熱、化学反応、もしくは電子線、放射線、紫外線のいずれかを照射することによって重合、および/または反応する樹脂化合物を用いることができる。このような、硬化性樹脂としては、メラミン系、アクリル系、シリコン系、ポリビニルアルコール系の硬化性樹脂が挙げられるが、高い表面硬度もしくは光学設計を得る点で電子線又は紫外線により硬化するアクリル系硬化性樹脂が好ましい。 The material used for the surface layer imparting the hard coat property (hereinafter, referred to as a hard coat layer) can be a material used for a known hard coat layer, and is not particularly limited, but is dry, heat, chemical reaction Alternatively, a resin compound that polymerizes and / or reacts by irradiation with any of electron beam, radiation, and ultraviolet light can be used. Examples of such a curable resin include melamine-based, acrylic-based, silicon-based, and polyvinyl alcohol-based curable resins, but acrylic resins that are cured by electron beams or ultraviolet rays in terms of obtaining high surface hardness or optical design. A curable resin is preferred.
 電子線又は紫外線により硬化するアクリル樹脂とは、アクリレート系の官能基を有するものであり、例えば、比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物の(メタ)アクリレート等のオリゴマーまたはプレポリマーおよび反応性希釈剤としてエチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等の単官能モノマー並びに多官能モノマー、例えば、トリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等を含有するものが使用できる。 An acrylic resin that is cured by an electron beam or ultraviolet ray has an acrylate-based functional group. For example, a relatively low molecular weight polyester resin, polyether resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, spiro resin Acetal resins, polybutadiene resins, polythiol polyene resins, oligomers or prepolymers of polyfunctional compounds such as polyhydric alcohols (meth) acrylates and prepolymers and reactive diluents such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methyl Monofunctional and polyfunctional monomers such as styrene and N-vinylpyrrolidone such as trimethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) a Contains relate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, etc. Things can be used.
 電子線又は紫外線硬化型樹脂の場合には、前述の樹脂中に光重合開始剤として、アセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α-アミロキシムエステル、テトラメチルチラウムモノサルファイド、チオキサントン類や、光増感剤としてn-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン等を混合して用いることができる。上記光重合開始剤の添加量は、電子線紫外線硬化型樹脂100質量部に対して、0.1~10質量部であることが好ましい。 In the case of an electron beam or ultraviolet curable resin, as a photopolymerization initiator in the above-mentioned resin, acetophenones, benzophenones, Michler benzoylbenzoate, α-amyloxime ester, tetramethyltyramium monosulfide, thioxanthones, As a photosensitizer, n-butylamine, triethylamine, tri-n-butylphosphine and the like can be mixed and used. The addition amount of the photopolymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the electron beam ultraviolet curable resin.
 上記塗膜の硬化方法としては特に限定されないが、紫外線照射によって行うことが好ましい。紫外線によって硬化を行う場合、190~380nmの波長域の紫外線を使用することが好ましい。紫外線による硬化は、例えば、メタルハライドランプ灯、高圧水銀灯、低圧水銀灯、超高圧水銀灯、カーボンアーク灯、ブラックライト蛍光灯等によって行うことができる。電子線源の具体例としては、コッククロフトワルト型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器が挙げられる。 The method for curing the coating film is not particularly limited, but is preferably performed by ultraviolet irradiation. When curing by ultraviolet rays, it is preferable to use ultraviolet rays having a wavelength range of 190 to 380 nm. Curing with ultraviolet rays can be performed, for example, with a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a carbon arc lamp, a black light fluorescent lamp, or the like. Specific examples of the electron beam source include various electron beam accelerators such as a cockcroft-wald type, a bandegraft type, a resonant transformer type, an insulating core transformer type, a linear type, a dynamitron type, and a high frequency type.
 また、シロキサン系熱硬化性樹脂もハードコート層の樹脂として有用であり、酸または塩基触媒下においてオルガノシラン化合物を単独または2種以上混合して加水分解及び縮合反応させて製造することができる。 A siloxane-based thermosetting resin is also useful as a resin for the hard coat layer, and can be produced by hydrolyzing and condensing a single or two or more organosilane compounds in the presence of an acid or base catalyst.
 上記ハードコート層の膜厚は、0.5μm~20μmが好ましく、1μm~20μmがさらに好ましく、1μm~15μmがさらに好ましい。
前記防眩性を付与する表面層(以下、防眩層とする)に使用される樹脂としては、前述の電子線又は紫外線硬化型樹脂と同様のものも使用することができる。前記記載の樹脂から1種類もしくは2種類以上を混合して使用することができる。また、可塑性や表面硬度などの物性を調整するために、電子線又は紫外線で硬化しない樹脂を混合することもできる。電子線または紫外線で硬化しない樹脂には、ポリウレタン、セルロース誘導体、ポリエステル、アクリル樹脂、ポリビニルブチラール、ポリビニルアルコール、ポリ塩化ビニル、ポリ酢酸ビニル、ポリカーボネート、ポリアミドなどが挙げられる。
The film thickness of the hard coat layer is preferably 0.5 μm to 20 μm, more preferably 1 μm to 20 μm, and even more preferably 1 μm to 15 μm.
As the resin used for the surface layer imparting the antiglare property (hereinafter referred to as the antiglare layer), the same resin as the electron beam or ultraviolet curable resin described above can be used. One or two or more of the above-mentioned resins can be mixed and used. Further, in order to adjust physical properties such as plasticity and surface hardness, a resin that is not cured by an electron beam or ultraviolet rays can be mixed. Examples of resins that are not cured by electron beams or ultraviolet rays include polyurethane, cellulose derivatives, polyesters, acrylic resins, polyvinyl butyral, polyvinyl alcohol, polyvinyl chloride, polyvinyl acetate, polycarbonate, and polyamide.
 防眩層に使用する粒子の具体例としては、例えばシリカ粒子、アルミナ粒子、TiO粒子等の無機化合物の粒子、あるいはポリメチルメタクリレート粒子、アクリル-スチレン共重合体粒子、架橋アクリル粒子、メラミン粒子、架橋メラミン粒子、ポリカーボネート粒子、ポリ塩化ビニル粒子、ベンゾグアナミン粒子、架橋ベンゾグアナミン粒子、ポリスチレン粒子、架橋ポリスチレン粒子などの樹脂粒子が好ましく挙げられる。形状としては、表面突起形状が揃う真球状粒子が好適に用いられるが、タルク、ベントナイトなどの層状無機化合物などの不定形のものも使用できる。また、異なる2種以上の粒子を併用して用いてもよい。素材種が2種類以上でも、粒径が2種類以上でも、その制限は無い。 Specific examples of particles used in the antiglare layer include, for example, particles of inorganic compounds such as silica particles, alumina particles, TiO 2 particles, or polymethyl methacrylate particles, acrylic-styrene copolymer particles, crosslinked acrylic particles, melamine particles. Preferred are resin particles such as crosslinked melamine particles, polycarbonate particles, polyvinyl chloride particles, benzoguanamine particles, crosslinked benzoguanamine particles, polystyrene particles, and crosslinked polystyrene particles. As the shape, spherical particles having a uniform surface protrusion shape are preferably used, but indefinite shapes such as layered inorganic compounds such as talc and bentonite can also be used. Two or more different kinds of particles may be used in combination. Even if there are two or more kinds of material and two or more kinds of particle sizes, there is no limitation.
 防眩層で使用する粒子の粒径は、0.5~10μmであり、0.5~5μmがより好ましく、0.5~3μmがさらに好ましく、0.5~1.5μmがより一層好ましい。また、前記粒子の含有量は、樹脂に対して1~50重量%であり、2~30重量%がさらに好ましい。 The particle size of the particles used in the antiglare layer is 0.5 to 10 μm, more preferably 0.5 to 5 μm, further preferably 0.5 to 3 μm, and still more preferably 0.5 to 1.5 μm. The content of the particles is 1 to 50% by weight with respect to the resin, and more preferably 2 to 30% by weight.
 上記防眩層の膜厚は、0.5μm~20μmが好ましく、1μm~20μmがさらに好ましく、1μm~10μmがさらに好ましい。
本発明に用いられる防眩層としては、特開平6-18706、特開平10-20103、特開2009-227735、特開2009-86361、特開2009-80256、特開2011-81217、特開2010-204479、特開2010-181898、特開2011-197329、特開2011-197330、特開2011-215393などに記載の防眩層も好適に使用できる。
The film thickness of the antiglare layer is preferably 0.5 μm to 20 μm, more preferably 1 μm to 20 μm, and even more preferably 1 μm to 10 μm.
As the antiglare layer used in the present invention, JP-A-6-18706, JP-A-10-20103, JP-A-2009-227735, JP-A-2009-86361, JP-A-2009-80256, JP-A-2011-81217, JP-A-20102010. -204479, JP-A 2010-181898, JP-A 2011-197329, JP-A 2011-197330, JP-A 2011-215393, and the like can also be suitably used.
 前記表面層には、上記記載のもの以外に、必要に応じて、発明の効果を失わない範囲でその他の成分を含んでもよい。その他の成分としては、限定されるわけではないが、例えば、無機または有機顔料、重合体、重合開始剤、重合禁止剤、酸化防止剤、分散剤、界面活性剤、光安定剤、レベリング剤、帯電防止剤、紫外線吸収剤、触媒、赤外線吸収剤、難燃剤、消泡剤、導電性微粒子、導電性樹脂などを添加することができる。 The surface layer may contain other components in addition to those described above as long as they do not lose the effects of the invention. Other components include, but are not limited to, for example, inorganic or organic pigments, polymers, polymerization initiators, polymerization inhibitors, antioxidants, dispersants, surfactants, light stabilizers, leveling agents, An antistatic agent, an ultraviolet absorber, a catalyst, an infrared absorber, a flame retardant, an antifoaming agent, conductive fine particles, a conductive resin, and the like can be added.
 次に、本発明の光学用ポリエステルフィルムの好ましい製造方法を以下に説明する。本発明はかかる例に限定して解釈されるものではない。 Next, a preferred method for producing the optical polyester film of the present invention will be described below. The present invention should not be construed as being limited to such examples.
 はじめに、ポリエステル原料をベント式二軸押出機に供給して溶融押出する。ポリエステルA層と、ポリエステルA層より融点の低いポリエステルB層を積層させる場合は、ポリエステルA層に用いるポリエステルAと、ポリエステルB層に用いるポリエステルBをそれぞれ別々のベント式二軸押出機に供給し溶融押出する。この際、ポリエステルB層に用いられるポリエステル樹脂としては、ジカルボン酸成分の84モル%以上92モル%未満をテレフタル酸、8モル%以上16モル%未満をテレフタル酸以外のジカルボン酸成分とし、かつ昇温結晶化温度(Tcr)を170℃以下とすることが好ましく、ジエチレングリコール量を1.2モル%以下とすることが好ましい。以下、ポリエステルA層と、ポリエステルA層より融点の低いポリエステルB層を積層した構成として説明する。この際、押出機内を流通窒素雰囲気下で、酸素濃度を0.7体積%以下とし、樹脂温度は250℃~275℃に制御することが好ましい。ついで、フィルターやギヤポンプを通じて、異物の除去、押出量の均整化を各々行い、ポリエステルA層とポリエステルB層を合流させた後、Tダイより冷却ドラム上にシート状に吐出する。その際、高電圧を掛けた電極を使用して静電気で冷却ドラムと樹脂を密着させる静電印加法、キャスティングドラムと押出したポリマーシート間に水膜を設けるキャスト法、キャスティングドラム温度をポリエステル樹脂のガラス転移点~(ガラス転移点-20℃)にして押出したポリマーを粘着させる方法、もしくは、これらの方法を複数組み合わせた方法により、シート状ポリマーをキャスティングドラムに密着させ、冷却固化し、未延伸フィルムを得る。これらのキャスト法の中でも、ポリエステルを使用する場合は、生産性や平面性の観点から、静電印加する方法が好ましく使用される。 First, the polyester raw material is supplied to a vent type twin screw extruder and melt extruded. When laminating the polyester A layer and the polyester B layer having a melting point lower than that of the polyester A layer, the polyester A used for the polyester A layer and the polyester B used for the polyester B layer are respectively supplied to separate vent type twin screw extruders. Melt extrusion. In this case, the polyester resin used for the polyester B layer is 84 mol% or more and less than 92 mol% of the dicarboxylic acid component is terephthalic acid, and 8 mol% or more and less than 16 mol% is a dicarboxylic acid component other than terephthalic acid. The warm crystallization temperature (Tcr) is preferably 170 ° C. or less, and the diethylene glycol amount is preferably 1.2 mol% or less. Hereinafter, the polyester A layer and the polyester B layer having a melting point lower than that of the polyester A layer will be described. At this time, it is preferable to control the resin temperature to 250 ° C. to 275 ° C. under an atmosphere of flowing nitrogen in the extruder with an oxygen concentration of 0.7% by volume or less. Next, the foreign matter is removed and the amount of extrusion is leveled through a filter and a gear pump, the polyester A layer and the polyester B layer are merged, and then discharged from the T die onto a cooling drum in a sheet form. At that time, an electrostatic application method in which a cooling drum and the resin are brought into close contact with each other by static electricity using an electrode applied with a high voltage, a casting method in which a water film is provided between the casting drum and the extruded polymer sheet, Adhere the extruded polymer from the glass transition point to (glass transition point-20 ° C), or a combination of these methods, the sheet polymer is brought into close contact with the casting drum, cooled and solidified, and unstretched Get a film. Among these casting methods, when using polyester, a method of applying an electrostatic force is preferably used from the viewpoint of productivity and flatness.
 本発明の光学用ポリエステルフィルムは、耐熱性、寸法安定性の観点から二軸配向フィルムとすることが好ましい。二軸配向フィルムは、未延伸フィルムを長手方向に延伸した後、幅方向に延伸する、あるいは、幅方向に延伸した後、長手方向に延伸する逐次二軸延伸方法により、または、フィルムの長手方向、幅方向をほぼ同時に延伸していく同時二軸延伸方法などにより延伸を行うことで得ることができる。 The optical polyester film of the present invention is preferably a biaxially oriented film from the viewpoints of heat resistance and dimensional stability. The biaxially oriented film is obtained by stretching an unstretched film in the longitudinal direction and then stretching in the width direction, or by stretching in the width direction and then stretching in the longitudinal direction, or by the longitudinal direction of the film. It can be obtained by stretching by a simultaneous biaxial stretching method in which the width direction is stretched almost simultaneously.
 かかる延伸方法における延伸倍率としては、長手方向に、好ましくは、2.8倍以上3.5倍以下が採用される。また、延伸速度は1,000%/分以上200,000%/分以下であることが望ましい。また長手方向の延伸温度は、85℃以上100℃以下が好ましく、延伸前に80℃以上の温度で1秒以上予熱することが好ましい。また、幅方向の延伸倍率としては、好ましくは3.7倍以上4.5倍以下、さらに好ましくは、3.8倍以上4.2倍以下で、長手方向と幅方向の延伸倍率を掛け合わせた面倍率は13倍以上とすることが好ましい。幅方向の延伸速度は1,000%/分以上200,000%/分以下であることが望ましい。 As the stretching ratio in such a stretching method, preferably 2.8 times or more and 3.5 times or less is employed in the longitudinal direction. The stretching speed is preferably 1,000% / min or more and 200,000% / min or less. The stretching temperature in the longitudinal direction is preferably 85 ° C. or higher and 100 ° C. or lower, and it is preferable to preheat at 80 ° C. or higher for 1 second or longer before stretching. The stretching ratio in the width direction is preferably 3.7 times or more and 4.5 times or less, more preferably 3.8 times or more and 4.2 times or less, and the stretching ratio in the longitudinal direction and the width direction is multiplied. The surface magnification is preferably 13 times or more. The stretching speed in the width direction is desirably 1,000% / min or more and 200,000% / min or less.
 さらに、二軸延伸の後にフィルムの熱処理を行う。熱処理はオーブン中、加熱したロール上など従来公知の任意の方法により行うことができる。この熱処理は、二軸延伸後の配向結晶を成長させて熱寸法性を向上させることが目的であるため、最も融点の高いポリエステル層(本構成の場合、ポリエステルA層)の融点以下の範囲内で、なるべく高い熱処理温度に設定する場合が一般的である。 Furthermore, the film is heat-treated after biaxial stretching. The heat treatment can be performed by any conventionally known method such as in an oven or on a heated roll. The purpose of this heat treatment is to grow oriented crystals after biaxial stretching to improve thermal dimensionality, so that it is within the range below the melting point of the polyester layer with the highest melting point (in this configuration, the polyester A layer). In general, the heat treatment temperature is set as high as possible.
 本発明の光学用ポリエステルフィルムは、フィルム面に対して50°傾斜した角度に対するリタデーションを1500nm以下とし、示差走査熱量測定(DSC)による昇温結晶化熱量(ΔHc)を15J/g以下とするために、熱処理温度1段目の温度をポリエステルB層の融点-80℃~融点-30℃(ポリエステルB層の結晶性が低く、通常の示差走査熱量計測定では融点の測定が困難な場合は、例えば120℃~170℃)とし、熱固定2段目の温度をポリエステルB層の融点-5℃から融点-1℃の範囲(ポリエステルB層の結晶性が低く、通常の示差走査熱量計測定では融点の測定が困難な場合は、例えば200℃以下)に設定することが好ましい。 The optical polyester film of the present invention has a retardation with respect to an angle inclined by 50 ° with respect to the film surface of 1500 nm or less, and a temperature rising crystallization heat (ΔHc) by differential scanning calorimetry (DSC) of 15 J / g or less. In addition, the first heat treatment temperature is the melting point of the polyester B layer −80 ° C. to the melting point −30 ° C. (If the polyester B layer has low crystallinity and it is difficult to measure the melting point by ordinary differential scanning calorimetry, For example, the temperature of the second stage of heat setting is in the range of the melting point of the polyester B layer from -5 ° C. to the melting point of −1 ° C. (The crystallinity of the polyester B layer is low. When it is difficult to measure the melting point, for example, it is preferably set to 200 ° C. or lower.
 また、熱処理時間は特性を悪化させない範囲において任意とすることができ、好ましくは5秒以上60秒以下、より好ましくは10秒以上40秒以下、最も好ましくは15秒以上30秒以下で行うのがよい。 The heat treatment time can be arbitrarily set within a range not deteriorating the characteristics, and is preferably 5 seconds to 60 seconds, more preferably 10 seconds to 40 seconds, and most preferably 15 seconds to 30 seconds. Good.
 さらに、偏光子、各種機能層との接着力を向上させるため、少なくとも片面にコロナ処理を行ったり、易接着層をコーティングさせたりすることもできる。コーティング層をフィルム製造工程内のインラインで設ける方法としては、少なくとも一軸延伸を行ったフィルム上にコーティング層組成物を水に分散させたものをメタリングリングバーやグラビアロールなどを用いて均一に塗布し、延伸を施しながら塗剤を乾燥させる方法が好ましく、その際、易接着層厚みとしては0.01μm以上1μm以下とすることが好ましい。また、易接着層中に各種添加剤、例えば、酸化防止剤、耐熱安定剤、紫外線吸収剤、赤外線吸収剤、顔料、染料、有機または無機粒子、帯電防止剤、核剤などを添加してもよい。易接着層に好ましく用いられる樹脂としては、接着性、取扱い性の点からアクリル樹脂、ポリエステル樹脂およびウレタン樹脂から選ばれる少なくとも1種の樹脂であることが好ましい。さらに、90~200℃条件下でオフアニールすることも好ましく用いられる。 Furthermore, in order to improve the adhesive strength between the polarizer and various functional layers, at least one surface can be subjected to corona treatment or an easy-adhesion layer can be coated. As a method of providing the coating layer in-line in the film manufacturing process, at least uniaxially stretched film with a coating layer composition dispersed in water is uniformly applied using a metalling ring bar or gravure roll. Then, a method of drying the coating while stretching is preferable, and in this case, the thickness of the easy adhesion layer is preferably 0.01 μm or more and 1 μm or less. Also, various additives such as antioxidants, heat stabilizers, ultraviolet absorbers, infrared absorbers, pigments, dyes, organic or inorganic particles, antistatic agents, nucleating agents, etc. may be added to the easy-adhesion layer. Good. The resin preferably used for the easy-adhesion layer is preferably at least one resin selected from an acrylic resin, a polyester resin, and a urethane resin from the viewpoint of adhesiveness and handleability. Further, off-annealing at 90 to 200 ° C. is also preferably used.
 本発明の光学用ポリエステルフィルムにおいて、ハードコート性、自己修復性、防眩性、反射防止性、低反射性、紫外線遮断性、及び帯電防止性などの機能を付与するため、最表面に表面層を積層する場合には、前述の塗料組成物を塗布-乾燥-硬化することにより形成する製造方法を用いることが好ましい。 In the optical polyester film of the present invention, a surface layer is provided on the outermost surface in order to impart functions such as hard coat properties, self-repair properties, antiglare properties, antireflection properties, low reflection properties, ultraviolet ray blocking properties, and antistatic properties. In the case of laminating, it is preferable to use a production method in which the above-mentioned coating composition is formed by coating-drying-curing.
 塗布により表面層を製造する方法は特に限定されないが、塗料組成物をディップコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やダイコート法(米国特許第2681294号明細書)などにより支持基材等に塗布することにより表面層を形成することが好ましい。さらに、これらの塗布方式のうち、グラビアコート法または、ダイコート法が塗布方法としてより好ましい。 The method for producing the surface layer by coating is not particularly limited, but the coating composition is supported by a dip coating method, a roller coating method, a wire bar coating method, a gravure coating method or a die coating method (US Pat. No. 2,681,294). It is preferable to form the surface layer by applying to a material or the like. Further, among these coating methods, the gravure coating method or the die coating method is more preferable as the coating method.
 次いで、塗布された液膜を乾燥することで完全に溶媒を除去するため、乾燥工程では液膜の加熱を伴うことが好ましい。乾燥方法については、伝熱乾燥(高熱物体への密着)、対流伝熱(熱風)、輻射伝熱(赤外線)、その他(マイクロ波、誘導加熱)などが挙げられる。この中でも、精密に幅方向でも乾燥速度を均一にする必要から、対流伝熱、または輻射伝熱を使用した方式が好ましい。 Next, in order to completely remove the solvent by drying the applied liquid film, it is preferable that the drying process is accompanied by heating of the liquid film. Examples of the drying method include heat transfer drying (adherence to a high-temperature object), convection heat transfer (hot air), radiant heat transfer (infrared ray), and others (microwave, induction heating). Among these, a method using convective heat transfer or radiant heat transfer is preferable because it is necessary to make the drying speed uniform even in the width direction.
 さらに、熱またはエネルギー線を照射することによるさらなる硬化操作(硬化工程)を行ってもよい。硬化工程において、熱で硬化する場合には、室温から200℃であることが好ましく、硬化反応の活性化エネルギーの観点から、100℃以上200℃以下がより好ましく、130℃以上200℃以下であることがさらに好ましい。 Furthermore, a further curing operation (curing step) by irradiating heat or energy rays may be performed. In the curing step, when cured with heat, the temperature is preferably from room temperature to 200 ° C, more preferably from 100 ° C to 200 ° C from the viewpoint of the activation energy of the curing reaction, and from 130 ° C to 200 ° C. More preferably.
 また、活性エネルギー線により硬化する場合には汎用性の点から電子線(EB線)及び/又は紫外線(UV線)であることが好ましい。また紫外線により硬化する場合は、酸素阻害を防ぐことができることから酸素濃度ができるだけ低い方が好ましく、窒素雰囲気下(窒素パージ)で硬化する方がより好ましい。酸素濃度が高い場合には、最表面の硬化が阻害され、表面の硬化が不十分となる場合がある。また、紫外線を照射する際に用いる紫外線ランプの種類としては、例えば、放電ランプ方式、フラッシュ方式、レーザー方式、無電極ランプ方式等が挙げられる。放電ランプ方式である高圧水銀灯を用いて紫外線硬化させる場合、紫外線の照度が100~3,000mW/cm、好ましくは200~2,000mW/cm、さらに好ましくは300~1,500mW/cmとなる条件で紫外線照射を行うことが好ましく、紫外線の積算光量が100~3,000mJ/cm、好ましく200~2,000mJ/cm、さらに好ましくは300~1,500mJ/cmとなる条件で紫外線照射を行うことがより好ましい。
ここで、紫外線の照度とは、単位面積当たりに受ける照射強度で、ランプ出力、発光スペクトル効率、発光バルブの直径、反射鏡の設計及び被照射物との光源距離によって変化する。しかし、搬送スピードによって照度は変化しない。また、紫外線積算光量とは単位面積当たりに受ける照射エネルギーで、その表面に到達するフォトンの総量である。積算光量は、光源下を通過する照射速度に反比例し、照射回数とランプ灯数に比例する。
本発明の光学用ポリエステフィルムは、フィルム面に対して50°傾斜した角度に対するリタデーションが1500nm以下であり、示差走査熱量測定(DSC)による昇温結晶化熱量(ΔHc)が15J/g以下であることから、液晶ディスプレイなどの表示装置に搭載した場合に、斜め方向から見た際の干渉色を抑制でき、かつ加熱時の寸法安定性、耐白化性に優れることから、面内リタデーションが500nm以下である低リタデーションフィルムに積層して用いられることが好ましい。面内リタデーションが500nm以下である低リタデーションフィルムに積層して用いられることで、積層体としての干渉色低減効果が発揮される。具体的には、面内位相差の低い光学用フィルムである、環状オレフィンフィルム、アクリルフィルム、TAC(トリアセチルセルロース)フィルムの保護フィルムとして積層して用いる方法、面内位相差の低い各種コーティング層の支持体として使用される方法などが挙げられる。
また、本発明の光学用ポリエステルフィルムは、フィルム面に対して50°傾斜した角度に対するリタデーションが1500nm以下であり、示差走査熱量測定(DSC)による昇温結晶化熱量(ΔHc)が15J/g以下であることから、液晶ディスプレイなどの表示装置に搭載した場合に、斜め方向から見た際の干渉色を抑制でき、かつ加熱時の寸法安定性、耐白化性に優れることから、PVA中にヨウ素を含有させて配向させて作成されたPVAシート(偏光子)と貼り合わされて偏光板として、好ましく用いられる。
Moreover, when hardening with an active energy ray, it is preferable that it is an electron beam (EB ray) and / or an ultraviolet-ray (UV ray) from a versatility point. In the case of curing with ultraviolet rays, the oxygen concentration is preferably as low as possible because oxygen inhibition can be prevented, and curing in a nitrogen atmosphere (nitrogen purge) is more preferable. When the oxygen concentration is high, the hardening of the outermost surface is inhibited, and the surface hardening may be insufficient. Examples of the ultraviolet lamp used when irradiating ultraviolet rays include a discharge lamp method, a flash method, a laser method, and an electrodeless lamp method. When UV curing is performed using a high-pressure mercury lamp that is a discharge lamp method, the illuminance of UV is 100 to 3,000 mW / cm 2 , preferably 200 to 2,000 mW / cm 2 , more preferably 300 to 1,500 mW / cm 2. It is preferable to perform ultraviolet irradiation under the following conditions: the condition that the cumulative amount of ultraviolet light is 100 to 3,000 mJ / cm 2 , preferably 200 to 2,000 mJ / cm 2 , more preferably 300 to 1,500 mJ / cm 2. More preferably, UV irradiation is performed.
Here, the illuminance of ultraviolet rays is the irradiation intensity received per unit area, and changes depending on the lamp output, the emission spectrum efficiency, the diameter of the light emission bulb, the design of the reflector, and the light source distance to the irradiated object. However, the illuminance does not change depending on the conveyance speed. Further, the UV integrated light amount is irradiation energy received per unit area, and is the total amount of photons reaching the surface. The integrated light quantity is inversely proportional to the irradiation speed passing under the light source, and is proportional to the number of irradiations and the number of lamps.
In the optical polyester film of the present invention, the retardation with respect to an angle inclined by 50 ° with respect to the film surface is 1500 nm or less, and the temperature rising crystallization heat (ΔHc) by differential scanning calorimetry (DSC) is 15 J / g or less. Therefore, when mounted on a display device such as a liquid crystal display, interference color when viewed from an oblique direction can be suppressed, and dimensional stability during heating and whitening resistance are excellent, so that in-plane retardation is 500 nm or less. It is preferable to be used by being laminated on a low retardation film. By being laminated on a low retardation film having an in-plane retardation of 500 nm or less, an interference color reducing effect as a laminate is exhibited. Specifically, it is a method for laminating as a protective film for a cyclic olefin film, an acrylic film, a TAC (triacetyl cellulose) film, which is an optical film having a low in-plane retardation, and various coating layers having a low in-plane retardation. And a method used as a support for the above.
In addition, the optical polyester film of the present invention has a retardation with respect to an angle inclined by 50 ° with respect to the film surface of 1500 nm or less, and a temperature-programmed crystallization heat (ΔHc) by differential scanning calorimetry (DSC) of 15 J / g or less. Therefore, when mounted on a display device such as a liquid crystal display, interference colors when viewed from an oblique direction can be suppressed, and since dimensional stability during heating and whitening resistance are excellent, iodine in PVA It is preferably used as a polarizing plate by being bonded to a PVA sheet (polarizer) prepared by containing and aligning.
 本発明の偏光板は、少なくとも一方の面の偏光子保護フィルムとして、前記光学用ポリエステルフィルムが用いられることが好ましい。他方の偏光子保護フィルムは、本発明の偏光子保護ポリエステルフィルムであっても良いし、トリアセチルセルロースフィルムやアクリルフィルム、ノルボルネン系フィルムに代表されるような複屈折が無いフィルムを用いることも好ましい。
偏光子としては、例えばポリビニルアルコール系フィルムにヨウ素などの二色性材料を含むものが挙げられる。偏光子保護フィルムは偏光子と直接または接着剤層を介して張り合わされるが、接着性向上の点からは接着剤を介して張り合わすことが好ましい。本発明のポリエステルフィルムを接着させるのに好ましい偏光子としては、例えば、ポリビニルアルコール系フィルムにヨウ素や二色性材料を染色・吸着させ、ホウ酸水溶液中で一軸延伸し、延伸状態を保ったまま洗浄・乾燥を行うことにより得られる偏光子が挙げられる。一軸延伸の延伸倍率は、通常4~8倍程度である。ポリビニルアルコール系フィルムとしてはポリビニルアルコールが好適であり、「クラレビニロン」((株)クラレ製)、「トーセロビニロン」(東セロ(株)製)、「日合ビニロン」(日本合成化学(株)製)などの市販品を利用することができる。二色性材料としてはヨウ素、ジスアゾ化合物、ポリメチン染料などが挙げられる。
In the polarizing plate of the present invention, the optical polyester film is preferably used as a polarizer protective film on at least one surface. The other polarizer protective film may be the polarizer protective polyester film of the present invention, or a film having no birefringence such as a triacetyl cellulose film, an acrylic film, or a norbornene-based film is preferably used. .
Examples of the polarizer include a polyvinyl alcohol film containing a dichroic material such as iodine. The polarizer protective film is bonded to the polarizer directly or via an adhesive layer, but it is preferable to bond the polarizer protective film via an adhesive from the viewpoint of improving adhesiveness. As a preferable polarizer for bonding the polyester film of the present invention, for example, iodine or dichroic material is dyed and adsorbed on a polyvinyl alcohol film, uniaxially stretched in a boric acid aqueous solution, and the stretched state is maintained. The polarizer obtained by performing washing | cleaning and drying is mentioned. The stretching ratio of uniaxial stretching is usually about 4 to 8 times. Polyvinyl alcohol is preferred as the polyvinyl alcohol film. “Kuraray Vinylon” (manufactured by Kuraray Co., Ltd.), “Tosero Vinylon” (manufactured by Tosero Co., Ltd.), “Nippon Synthetic Chemical Co., Ltd.” (Commercially available) can be used. Examples of the dichroic material include iodine, a disazo compound, and a polymethine dye.
 本発明における特性の測定方法、および効果の評価方法は次のとおりである。 The characteristics measurement method and effect evaluation method in the present invention are as follows.
 (1)ポリエステルの組成
ポリエステル樹脂およびフィルムをヘキサフルオロイソプロパノール(HFIP)に溶解し、H-NMRおよび13C-NMRを用いて各モノマー残基成分や副生ジエチレングリコールについて含有量を定量した。積層フィルムの場合は、積層厚みに応じて、フィルムの各層を削り取ることで、各層単体を構成する成分を採取して評価した。なお、本発明のフィルムについては、フィルム製造時の混合比率から計算により、組成を算出した。
(1) Composition of polyester The polyester resin and film were dissolved in hexafluoroisopropanol (HFIP), and the content of each monomer residue component and by-product diethylene glycol was quantified using 1 H-NMR and 13 C-NMR. In the case of a laminated film, each layer of the film was scraped off in accordance with the laminated thickness to collect and evaluate the components constituting each single layer. In addition, about the film of this invention, the composition was computed by calculation from the mixing ratio at the time of film manufacture.
 (2)ポリエステルの固有粘度
ポリエステル樹脂およびフィルムの極限粘度は、ポリエステルをオルトクロロフェノールに溶解し、オストワルド粘度計を用いて25℃にて測定した。積層フィルムの場合は、積層厚みに応じて、フィルムの各層を削り取ることで、各層単体の固有粘度を評価した。
(2) Intrinsic viscosity of polyester The intrinsic viscosity of the polyester resin and the film was measured at 25 ° C. using an Ostwald viscometer after dissolving the polyester in orthochlorophenol. In the case of a laminated film, the intrinsic viscosity of each layer was evaluated by scraping each layer of the film according to the laminated thickness.
 (3)フィルム厚み、層厚み
フィルムをエポキシ樹脂に包埋し、フィルム断面をミクロトームで切り出した。該断面を透過型電子顕微鏡(日立製作所製TEM H7100)で5000倍の倍率で観察し、フィルム厚みおよびポリエステル層の厚みを求めた。
(3) Film thickness and layer thickness The film was embedded in an epoxy resin, and the film cross section was cut out with a microtome. The cross section was observed with a transmission electron microscope (TEM H7100, manufactured by Hitachi, Ltd.) at a magnification of 5000 times to determine the film thickness and the thickness of the polyester layer.
 (4)昇温結晶化温度、昇温結晶化熱量、融点、結晶融解熱量
示差走査熱量計(セイコー電子工業製、RDC220)を用い、JIS K-7121-1987、JIS K-7122-1987に準拠して測定および、解析を行った。ポリエステルフィルムの測定は、フィルムサンプル5mgを用い、25℃から20℃/分で300℃まで昇温した際のDSC曲線より得られた発熱ピークの頂点の温度を昇温結晶化温度(Tc)とし、発熱ピーク面積から得られる単位質量当たりの熱量を昇温結晶化熱量(ΔHc)とした。また、DSC曲線より得られた吸熱ピークの頂点の温度を融点、吸熱ピーク面積から得られる単位質量当たりの熱量を結晶融解熱量(ΔHm)とした。また、300℃に昇温後、5分間保持し、その後、25℃まで急冷、5分間保持後に、再度25℃から昇温速度20℃/分で昇温した際の結晶化現象で発現する発熱ピークの頂点の温度を昇温結晶化温度(Tc2)とし、発熱ピーク面積から得られる単位質量当たりの熱量を昇温結晶化熱量(ΔHc2)とした。なお、積層フィルムの場合は、積層厚みに応じて、フィルムの各層を削り取ることで、各層単体の融点を測定した。(3)の断面観察において積層構成が確認された場合は、各層をカッターで削り取ってそれぞれの層の融点を測定し融点の高い層をポリエステルA層、低い方の層をポリエステルB層とした。なお、融点が観測されない場合は、表に「ND」と表記している。また、ポリエステル樹脂原料の測定については、ペレタイズ時の結晶化の影響を取り除くため、25℃から20℃/分で300℃まで昇温した後、サンプルを300℃で5分間保持し、その後25℃雰囲気下にサンプルを取り出すことで急冷し非晶状態とした。25℃で5分間保管後、2ndRunとして、25℃から20℃/分で300℃まで昇温した際の、発熱ピークの頂点の温度を2ndRunの昇温結晶化温度(Tc)とした。なお、本発明においては、フィルムの昇温結晶ピーク、ポリエステル樹脂原料の昇温結晶化ピーク、融解ピークが複数ある場合は、熱流の絶対値が最も大きい温度を採用し、フィルムの融解ピーク、2ndRunにおけるフィルムの昇温結晶化ピークについては、熱量の合計を採用した。
(4) Temperature rising crystallization temperature, temperature rising crystallization calorie, melting point, crystal melting calorie, differential scanning calorimeter (Seiko Denshi Kogyo Co., Ltd., RDC220), conforming to JIS K-7121-1987 and JIS K-7122-1987 Then, measurement and analysis were performed. The polyester film was measured using a 5 mg film sample, and the temperature at the top of the exothermic peak obtained from the DSC curve when the temperature was raised from 25 ° C. to 300 ° C. at 20 ° C./min was defined as the temperature rise crystallization temperature (Tc). The amount of heat per unit mass obtained from the exothermic peak area was defined as the heat-up crystallization heat amount (ΔHc). Further, the temperature at the apex of the endothermic peak obtained from the DSC curve was defined as the melting point, and the amount of heat per unit mass obtained from the endothermic peak area was defined as the heat of crystal melting (ΔHm). Further, after heating to 300 ° C., holding for 5 minutes, then rapidly cooling to 25 ° C., holding for 5 minutes, and then generating heat due to crystallization phenomenon when the temperature is raised again from 25 ° C. at a heating rate of 20 ° C./min. The temperature at the peak apex was defined as the temperature rising crystallization temperature (Tc2), and the amount of heat per unit mass obtained from the exothermic peak area was defined as the temperature rising crystallization heat (ΔHc2). In the case of a laminated film, the melting point of each layer was measured by scraping each layer of the film according to the laminated thickness. When the laminated structure was confirmed in the cross-sectional observation of (3), each layer was scraped off with a cutter and the melting point of each layer was measured, and the higher melting point layer was designated as the polyester A layer, and the lower layer was designated as the polyester B layer. When the melting point is not observed, “ND” is indicated in the table. Further, regarding the measurement of the polyester resin raw material, in order to remove the influence of crystallization during pelletizing, the sample was heated from 25 ° C. to 300 ° C. at 20 ° C./min, and then the sample was held at 300 ° C. for 5 minutes, and then 25 ° C. The sample was taken out under an atmosphere and rapidly cooled to an amorphous state. After storage at 25 ° C. for 5 minutes, the temperature at the top of the exothermic peak when the temperature was raised from 25 ° C. to 300 ° C. at 2 ° Run as 2nd Run was defined as the temperature rise crystallization temperature (Tc) of 2nd Run. In the present invention, when there are a plurality of temperature rising crystallization peaks of the film, temperature rising crystallization peaks of the polyester resin raw material, and melting peaks, the temperature with the highest absolute value of the heat flow is adopted, and the melting peak of the film, 2ndRun As for the temperature rising crystallization peak of the film, the total amount of heat was adopted.
 (5)フィルム面に対して50°傾斜した角度に対するリタデーション(Re(50))
王子計測機器(株)製 位相差測定装置(KOBRA-21ADH)を用いて測定した。フィルム面内の任意の一方向を方向X、方向Xに直交する方向を方向Yとして、30mm×50mm(方向X×方向Y)のサンプルを切り出し、位相差測定装置に設置した。光束がフィルムに垂直に入射する状態の測定試料のステージの角度を0°とした場合に、ステージの角度が50°傾斜した状態で測定するよう測定条件を設定し、位相差(リタデーション)を求めた。
(5) Retardation for an angle inclined by 50 ° with respect to the film surface (Re (50))
Measurement was performed using a phase difference measuring device (KOBRA-21ADH) manufactured by Oji Scientific Instruments. A sample of 30 mm × 50 mm (direction X × direction Y) was cut out with an arbitrary one direction in the film plane as direction X and a direction orthogonal to direction X as direction Y, and placed in a phase difference measuring apparatus. Set the measurement conditions so that measurement is performed with the angle of the stage tilted 50 °, and the phase difference (retardation) is obtained when the angle of the stage of the measurement sample in the state where the light beam is perpendicularly incident on the film is 0 °. It was.
 (6)剛直非晶量
TA Instruments社製Q100を用いて測定した。フィルム試料5mgを、窒素雰囲気下、0℃で5分間保持後10℃/min.の昇温速度で300℃まで測定した。このDSC曲線から極点(符号の決め方により極小点または極大点)の温度を融点とし、ピーク面積を融解熱量とした。また、温度変調DSC法を用いて0℃から150℃まで2℃/min.の昇温速度、温度変調振幅±1℃、温度変調周期60秒で測定した。ガラス転移温度での比熱差を求め、下記の通り、結晶化度、可動非晶量を求め、
結晶化度(%)=(融解熱量)/(ポリエステル完全結晶物の融解熱量理論値)×100
可動非晶量(%)=(比熱差)/(ポリエステル完全非晶物の比熱差理論値)×100
下記式より剛直非晶量を算出した。
剛直非晶量(%)=100-(結晶化度+可動非晶量)。
温度・熱量校正にはインジウム、比熱校正にはサファイアを用いた。 
(7)視認性評価
PVA中にヨウ素を吸着・配向させて作成した偏光度99.9%の偏光子の一方の面に、10cm四方のフィルムを貼り合わせてテストピースとした。なお、貼り合わせには、85℃に設定したラミネーターロールを使用した。作成したテストピースとフィルムを貼り付けていない偏光板とをクロスニコルの配置にて重ね合わせLED光源(トライテック製A3-101)上においた場合の、テストピース平面に対して50°の角度からの視認性を確認した。また、同様にして30cm四方のフィルムを貼り合せたテストピースも作製し、同様の評価を行った。
S:10cm四方、30cm四方のいずれの評価とも、干渉色はみられない。
A:10cm四方の評価においては、干渉色はみられない。30cm四方の評価において、干渉色がわずかに見られるが実用上は問題ない。
B:10cm四方、30cm四方の評価とも、わずかに干渉色が見られるが、許容できる程度である。
C: 10cm四方の評価においては、わずかに干渉色が見られるが、許容できる程度である。30cm四方のいずれの評価では干渉色が見られるため、大画面のディスプレイ用途には適さない。
D:10cm四方、30cm四方のいずれかの評価において、干渉色がはっきり見られるため、ディスプレイ用途には適さない。
S~Cが合格レベルである。
(6) Rigid amorphous amount Measured with Q100 manufactured by TA Instruments. A film sample of 5 mg was held at 0 ° C. for 5 minutes in a nitrogen atmosphere and then 10 ° C./min. It measured to 300 degreeC with the temperature increase rate of. From this DSC curve, the temperature of the extreme point (minimum point or maximum point depending on how to determine the sign) was taken as the melting point, and the peak area was taken as the heat of fusion. In addition, 2 ° C./min. From 0 ° C. to 150 ° C. using the temperature modulation DSC method. Temperature rise rate, temperature modulation amplitude ± 1 ° C., temperature modulation period 60 seconds. Find the specific heat difference at the glass transition temperature, as below, to determine the crystallinity, the amount of movable amorphous,
Crystallinity (%) = (heat of fusion) / (theoretical value of heat of fusion of polyester complete crystal) × 100
Movable amorphous amount (%) = (specific heat difference) / (theoretical value of specific heat difference of polyester completely amorphous) × 100
The rigid amorphous amount was calculated from the following formula.
Rigid amorphous amount (%) = 100− (crystallinity + movable amorphous amount).
Indium was used for temperature and calorie calibration, and sapphire was used for specific heat calibration.
(7) Visibility evaluation A test piece was prepared by laminating a 10 cm square film on one surface of a polarizer having a polarization degree of 99.9% prepared by adsorbing and orienting iodine in PVA. In addition, the laminator roll set to 85 degreeC was used for bonding. When the prepared test piece and the polarizing plate with no film attached are placed on an LED light source (Tritech A3-101) in a crossed Nicol arrangement from an angle of 50 ° to the test piece plane The visibility of was confirmed. In the same manner, a test piece in which a 30 cm square film was bonded was prepared and evaluated in the same manner.
S: No interference color is observed in any of the evaluations of 10 cm square and 30 cm square.
A: In the evaluation of 10 cm square, no interference color is seen. In the evaluation of 30 cm square, a slight interference color is seen, but there is no practical problem.
B: In both the 10 cm square and 30 cm square evaluations, a slight interference color is observed, but it is acceptable.
C: In the evaluation of 10 cm square, a slight interference color is seen, but it is acceptable. In any evaluation of 30 cm square, interference color is seen, so it is not suitable for large screen display applications.
D: In any evaluation of 10 cm square or 30 cm square, an interference color is clearly seen, so that it is not suitable for display applications.
S to C are acceptable levels.
 (8)耐熱性(i)
フィルムサンプル(100mm×100mm角)および、フィルムサンプルを120℃で1時間熱処理した後のヘイズについて、JIS K 7105(1985年)に基づいて、ヘーズメーター(スガ試験器社製HGM-2GP)にて測定し、下記の通り評価を行った。なお、100℃で12時間熱処理の方法としては、温度100℃の熱風オーブンに100mm×100mm角のフィルムサンプルをオーブンの上下左右の壁面に接触しないようにツリー状に吊し、12時間保管して実施した。
S:120℃で1時間熱処理した後のΔヘイズ値が0.5%未満。
A:120℃で1時間熱処理した後のΔヘイズ値が0.5%以上1%未満。
B:120℃で1時間熱処理した後のΔヘイズ値が1%以上1.5%未満。
C:120℃で1時間熱処理した後のΔヘイズ値が1.5%以上2%未満。
D:120℃で1時間熱処理した後のΔヘイズ値が2%以上。
S~Cが合格レベルである。
(8) Heat resistance (i)
Film samples (100 mm × 100 mm square) and haze after heat treatment of the film samples at 120 ° C. for 1 hour are measured with a haze meter (HGM-2GP manufactured by Suga Test Instruments Co., Ltd.) based on JIS K 7105 (1985). Measurements were made and evaluated as follows. As a heat treatment method at 100 ° C. for 12 hours, a 100 mm × 100 mm square film sample is hung in a tree shape in a hot air oven at a temperature of 100 ° C. so as not to contact the top, bottom, left and right walls of the oven and stored for 12 hours. Carried out.
S: Δhaze value after heat treatment at 120 ° C. for 1 hour is less than 0.5%.
A: Δhaze value after heat treatment at 120 ° C. for 1 hour is 0.5% or more and less than 1%.
B: Δhaze value after heat treatment at 120 ° C. for 1 hour is 1% or more and less than 1.5%.
C: Δhaze value after heat treatment at 120 ° C. for 1 hour is 1.5% or more and less than 2%.
D: Δhaze value after heat treatment at 120 ° C. for 1 hour is 2% or more.
S to C are acceptable levels.
 (9)耐熱性(ii)
フィルムサンプル(100mm×100mm角)および、フィルムサンプルを150℃で1時間熱処理した後のヘイズについて、JIS K 7105(1985年)に基づいて、ヘーズメーター(スガ試験器社製HGM-2GP)にて測定し、下記の通り評価を行った。なお、150℃で1時間熱処理の方法としては、温度150℃の熱風オーブンに100mm×100mm角のフィルムサンプルをオーブンの上下左右の壁面に接触しないようにツリー状に吊し、1時間保管して実施した。
S:150℃で1時間熱処理した後のΔヘイズ値が0.5%未満。
A:150℃で1時間熱処理した後のΔヘイズ値が0.5%以上1%未満。
B:150℃で12時間熱処理した後のΔヘイズ値が1%以上1.5%未満。
C:150℃で12時間熱処理した後のΔヘイズ値が1.5%以上2%未満。
D:150℃で12時間熱処理した後のΔヘイズ値が2%以上。
(9) Heat resistance (ii)
Film samples (100 mm × 100 mm square) and haze after heat treatment of the film samples at 150 ° C. for 1 hour were measured with a haze meter (HGM-2GP manufactured by Suga Test Instruments Co., Ltd.) based on JIS K 7105 (1985). Measurements were made and evaluated as follows. As a method of heat treatment at 150 ° C. for 1 hour, a 100 mm × 100 mm square film sample is suspended in a hot air oven at a temperature of 150 ° C. in a tree shape so as not to contact the top, bottom, left and right walls of the oven and stored for 1 hour. Carried out.
S: Δhaze value after heat treatment at 150 ° C. for 1 hour is less than 0.5%.
A: Δhaze value after heat treatment at 150 ° C. for 1 hour is 0.5% or more and less than 1%.
B: Δhaze value after heat treatment at 150 ° C. for 12 hours is 1% or more and less than 1.5%.
C: Δhaze value after heat treatment at 150 ° C. for 12 hours is 1.5% or more and less than 2%.
D: Δhaze value after heat treatment at 150 ° C. for 12 hours is 2% or more.
 (10)耐傷性
(7)で得られたテストピースについて、ラビングテスターを用いて、以下の条件でこすりテストをおこなうことで、耐擦傷性の指標とした。
評価環境条件:25℃、60%RH
こすり材:スチールウール(日本スチールウール(株)製、ゲレードNo.0000)
試料と接触するテスターのこすり先端部(1cm×1cm)に巻いて、バンド固定。
移動距離(片道):13cm、
こすり速度:13cm/秒、
荷重:500g/cm
先端部接触面積:1cm×1cm、こすり回数:10往復。
こすり終えた試料の裏側に油性黒インキを塗り、こすり部分の傷を反射光で目視観察し、以下の基準で評価した。評価は上記テストを3回繰り返し、平均して5段階で評価した。
A :傷が視認されない。
B :傷が視認される。
(10) Scratch resistance The test piece obtained in (7) was subjected to a rubbing test under the following conditions using a rubbing tester to obtain an index of scratch resistance.
Evaluation environmental conditions: 25 ° C, 60% RH
Rubbing material: Steel wool (Nippon Steel Wool Co., Ltd., gelled No. 0000)
Wrap around the tip (1cm x 1cm) of the scraper of the tester that comes into contact with the sample, and fix the band.
Travel distance (one way): 13cm
Rubbing speed: 13 cm / second,
Load: 500 g / cm 2
Tip contact area: 1 cm × 1 cm, rubbing frequency: 10 reciprocations.
An oil-based black ink was applied to the back side of the rubbed sample, and scratches on the rubbed portion were visually observed with reflected light, and evaluated according to the following criteria. For the evaluation, the above test was repeated three times, and the average was evaluated in five stages.
A: A flaw is not visually recognized.
B: A flaw is visually recognized.
 (ポリエステルの製造)
製膜に供したポリエステル樹脂は以下のように準備した。
(Manufacture of polyester)
The polyester resin used for film formation was prepared as follows.
 (ポリエステルA)
 ジカルボン酸成分としてテレフタル酸成分が100モル%、グリコール成分としてエチレングリコール成分が100モル%であるポリエチレンテレフタレート樹脂(固有粘度0.65)。
(Polyester A)
Polyethylene terephthalate resin (intrinsic viscosity 0.65) in which the terephthalic acid component is 100 mol% as the dicarboxylic acid component and the ethylene glycol component is 100 mol% as the glycol component.
 (ポリエステルB)
ジカルボン酸成分としてテレフタル酸成分が90モル%、イソフタル酸成分が10モル%、グリコール成分としてエチレングリコール成分が100モル%であるイソフタル酸共重合ポリエチレンテレフタレート樹脂(固有粘度0.7、融点230℃、昇温結晶化温度(Tcr)160℃、ジエチレングリコール(0.85モル%))。
(Polyester B)
Isophthalic acid copolymer polyethylene terephthalate resin (inherent viscosity 0.7, melting point 230 ° C., 90 mol% terephthalic acid component as dicarboxylic acid component, 10 mol% isophthalic acid component, and 100 mol% ethylene glycol component as glycol component) Temperature rising crystallization temperature (Tcr) 160 ° C., diethylene glycol (0.85 mol%)).
 (ポリエステルC)
ジカルボン酸成分としてテレフタル酸成分が90モル%、イソフタル酸成分が10モル%、グリコール成分としてエチレングリコール成分が100モル%であるイソフタル酸共重合ポリエチレンテレフタレート樹脂(固有粘度0.7、融点230℃、昇温結晶化温度(Tcr)172℃、ジエチレングリコール(1.25モル%))。
(Polyester C)
Isophthalic acid copolymer polyethylene terephthalate resin (inherent viscosity 0.7, melting point 230 ° C., 90 mol% terephthalic acid component as dicarboxylic acid component, 10 mol% isophthalic acid component, and 100 mol% ethylene glycol component as glycol component) Temperature rising crystallization temperature (Tcr) 172 ° C., diethylene glycol (1.25 mol%)).
 (ポリエステルD)
ジカルボン酸成分としてテレフタル酸成分が88モル%、イソフタル酸成分が12モル%、グリコール成分としてエチレングリコール成分が100モル%であるイソフタル酸共重合ポリエチレンテレフタレート樹脂(固有粘度0.7、融点230℃、昇温結晶化温度(Tcr)168℃、ジエチレングリコール(1.15モル%))。
(固有粘度0.75)。
(Polyester D)
Isophthalic acid copolymerized polyethylene terephthalate resin (inherent viscosity 0.7, melting point 230 ° C., 88 mol% dicarboxylic acid component, 12 mol% isophthalic acid component, and 100 mol% ethylene glycol component as glycol component) Temperature rising crystallization temperature (Tcr) 168 ° C., diethylene glycol (1.15 mol%)).
(Intrinsic viscosity 0.75).
 (ポリエステルE)
ジカルボン酸成分としてテレフタル酸成分が88モル%、イソフタル酸成分が12モル%、グリコール成分としてエチレングリコール成分が100モル%であるイソフタル酸共重合ポリエチレンテレフタレート樹脂(固有粘度0.7、融点225℃、昇温結晶化温度(Tcr)178℃、ジエチレングリコール(1.3モル%))。
(Polyester E)
An isophthalic acid copolymerized polyethylene terephthalate resin (inherent viscosity 0.7, melting point 225 ° C., 88 mol% terephthalic acid component as dicarboxylic acid component, 12 mol% isophthalic acid component, and 100 mol% ethylene glycol component as glycol component) Temperature rising crystallization temperature (Tcr) 178 ° C., diethylene glycol (1.3 mol%)).
 (ポリエステルF)
ジカルボン酸成分としてテレフタル酸成分が82モル%、イソフタル酸成分が18モル%、グリコール成分としてエチレングリコール成分が100モル%であるイソフタル酸共重合ポリエチレンテレフタレート樹脂(固有粘度0.7、融点212℃、昇温結晶化温度(Tcr)185℃、ジエチレングリコール(1.0モル%))。
(Polyester F)
Isophthalic acid copolymerized polyethylene terephthalate resin (inherent viscosity 0.7, melting point 212 ° C., 82 mol% terephthalic acid component as dicarboxylic acid component, 18 mol% isophthalic acid component, and 100 mol% ethylene glycol component as glycol component) Temperature rising crystallization temperature (Tcr) 185 ° C., diethylene glycol (1.0 mol%)).
 (粒子マスター1)
ポリエステルA中に数平均粒子径2.2μmの凝集シリカ粒子を粒子濃度2質量%で含有したポリエチレンテレフタレート粒子マスター(固有粘度0.65)。
(Particle Master 1)
Polyethylene terephthalate particle master (intrinsic viscosity 0.65) containing agglomerated silica particles having a number average particle size of 2.2 μm in polyester A at a particle concentration of 2 mass%.
 (ハードコート層形成用塗料組成物)
下記材料を混合し、メチルエチルケトンを用いて希釈し固形分濃度40質量%のハードコート層形成用塗料組成物を得た。
トルエン                             30質量部
多官能ウレタンアクリレート                    25質量部
(ダイセルオルネクス株式会社製 KRM8655)
ペンタエリスリトールトリアクリレート混合物            25質量部
(日本化薬株式会社製 PET30) 
多官能シリコーンアクリレート                    1質量部
(ダイセルオルネクス株式会社製 EBECRYL1360)
光重合開始剤                            3質量部。
(チバスペシャリティーケミカルズ社製 イルガキュア184)
 (防眩層形成用塗料組成物)
下記材料を混合し、メチルエチルケトンを用いて希釈し固形分濃度40質量%の防眩層形成用塗料組成物を得た。
トルエン                             30質量部
ペンタエリスリトールトリアクリレート               50質量部 
(日本化薬株式会社製 PET30) 
シリカ分散物(数平均粒径1μm)                 12質量部         
多官能シリコーンアクリレート                    1質量部
(ダイセルオルネクス株式会社製 EBECRYL1360)
光重合開始剤                            3質量部
(チバスペシャリティーケミカルズ社製 イルガキュア184)
 (実施例1)
組成を表の通りとして、原料をそれぞれ酸素濃度0.2体積%とした別々のベント同方向二軸押出機に供給し、A層押出機シリンダー温度を280℃、B層押出機シリンダー温度を265℃で溶融し、フィードブロック内でA層/B層/A層の3層構成になるよう合流させ、合流後の短管温度を270℃、口金温度を275℃で、Tダイより25℃に温度制御した冷却ドラム上にシート状に吐出した。その際、直径0.1mmのワイヤー状電極を使用して静電印加し、冷却ドラムに密着させ未延伸シートを得た。次いで、長手方向への予熱温度85℃で1.5秒間予熱を行い、延伸温度90℃で長手方向に3.3倍延伸し、すぐに40℃に温度制御した金属ロールで冷却化した。次いでテンター式横延伸機にて予熱温度85℃で1.5秒予熱を行い、延伸温度120℃で幅方向に3.5倍延伸し、そのままテンター内にて、1段目熱処理温度を190℃、2段目熱処理温度を230℃として熱処理を行い、2段目熱処理条件下で、幅方向に5%のリラックスを掛けながら熱処理を行い、フィルム厚み25μmの二軸配向ポリエステルフィルムを得た。
(Coating composition for forming hard coat layer)
The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition for forming a hard coat layer having a solid concentration of 40% by mass.
Toluene 30 parts by mass Polyfunctional urethane acrylate 25 parts by mass (KRM 8655 manufactured by Daicel Ornex Co., Ltd.)
25 parts by mass of pentaerythritol triacrylate mixture (PET30 manufactured by Nippon Kayaku Co., Ltd.)
1 part by mass of polyfunctional silicone acrylate (EBECRYL1360, manufactured by Daicel Ornex Co., Ltd.)
3 parts by mass of photopolymerization initiator.
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
(Anti-glare layer forming coating composition)
The following materials were mixed and diluted with methyl ethyl ketone to obtain a coating composition for forming an antiglare layer having a solid content of 40% by mass.
Toluene 30 parts by mass Pentaerythritol triacrylate 50 parts by mass
(Nippon Kayaku Co., Ltd. PET30)
Silica dispersion (number average particle size 1 μm) 12 parts by mass
1 part by mass of polyfunctional silicone acrylate (EBECRYL1360, manufactured by Daicel Ornex Co., Ltd.)
3 parts by mass of photopolymerization initiator (Irgacure 184, manufactured by Ciba Specialty Chemicals)
(Example 1)
The composition is as shown in the table, and the raw materials were supplied to separate bent co-directional twin-screw extruders each having an oxygen concentration of 0.2% by volume, the A-layer extruder cylinder temperature was 280 ° C., and the B-layer extruder cylinder temperature was 265 Melt at ℃, and merge in feed block to form A layer / B layer / A layer, short tube temperature after merging is 270 ℃, die temperature is 275 ℃, T die is 25 ℃ The sheet was discharged in a sheet form on a temperature-controlled cooling drum. At that time, a wire electrode having a diameter of 0.1 mm was applied electrostatically and adhered to the cooling drum to obtain an unstretched sheet. Next, preheating was performed for 1.5 seconds at a preheating temperature of 85 ° C. in the longitudinal direction, the film was stretched 3.3 times in the longitudinal direction at a stretching temperature of 90 ° C., and immediately cooled with a metal roll whose temperature was controlled at 40 ° C. Next, preheating is performed for 1.5 seconds at a preheating temperature of 85 ° C. with a tenter type horizontal stretching machine, and the film is stretched 3.5 times in the width direction at a stretching temperature of 120 ° C. The heat treatment was performed at a second-stage heat treatment temperature of 230 ° C., and under the second-stage heat treatment conditions, the heat treatment was performed while relaxing 5% in the width direction to obtain a biaxially oriented polyester film having a film thickness of 25 μm.
 (実施例2)
組成を表の通りに変更した以外は、実施例1と同様にして厚み25μmの二軸配向ポリエステルフィルムを得た。
(Example 2)
A biaxially oriented polyester film having a thickness of 25 μm was obtained in the same manner as in Example 1 except that the composition was changed as shown in the table.
 (実施例3)
長手方向の延伸倍率を3.5倍、幅方向の延伸倍率を3.8倍、1段目熱処理温度を190℃、2段目熱処理温度を228℃とした以外は、実施例1と同様にして厚み25μmの二軸配向ポリエステルフィルムを得た。
(Example 3)
Example 1 except that the draw ratio in the longitudinal direction was 3.5 times, the draw ratio in the width direction was 3.8 times, the first stage heat treatment temperature was 190 ° C., and the second stage heat treatment temperature was 228 ° C. Thus, a biaxially oriented polyester film having a thickness of 25 μm was obtained.
 (実施例4)
組成を表の通りとし、1段目熱処理温度を180℃、2段目熱処理温度を223℃とした以外は、実施例3と同様にして厚み25μmの二軸配向ポリエステルフィルムを得た。
Example 4
A biaxially oriented polyester film having a thickness of 25 μm was obtained in the same manner as in Example 3 except that the composition was as shown in the table and the first-stage heat treatment temperature was 180 ° C. and the second-stage heat treatment temperature was 223 ° C.
 (実施例5)
組成を表の通りとし、1段目熱処理温度を180℃、2段目熱処理温度を225℃とした以外は、実施例3と同様にして厚み25μmの二軸配向ポリエステルフィルムを得た。
(Example 5)
A biaxially oriented polyester film having a thickness of 25 μm was obtained in the same manner as in Example 3 except that the composition was as shown in the table and the first stage heat treatment temperature was 180 ° C. and the second stage heat treatment temperature was 225 ° C.
 (実施例6)
組成を表の通りとし、1段目熱処理温度を180℃、2段目熱処理温度を223℃とした以外は、実施例3と同様にして厚み25μmの二軸配向ポリエステルフィルムを得た。
(Example 6)
A biaxially oriented polyester film having a thickness of 25 μm was obtained in the same manner as in Example 3 except that the composition was as shown in the table and the first-stage heat treatment temperature was 180 ° C. and the second-stage heat treatment temperature was 223 ° C.
 (実施例7)
組成を表の通りとし、1段目熱処理温度を180℃、2段目熱処理温度を223℃とした以外は、実施例3と同様にして厚み25μmの二軸配向ポリエステルフィルムを得た。
(Example 7)
A biaxially oriented polyester film having a thickness of 25 μm was obtained in the same manner as in Example 3 except that the composition was as shown in the table and the first-stage heat treatment temperature was 180 ° C. and the second-stage heat treatment temperature was 223 ° C.
 (実施例8)
組成を表の通りとし、1段目熱処理温度を190℃、2段目熱処理温度を223℃とした以外は、実施例3と同様にして厚み20μmの二軸配向ポリエステルフィルムを得た。
(Example 8)
A biaxially oriented polyester film having a thickness of 20 μm was obtained in the same manner as in Example 3 except that the composition was as shown in the table and the first stage heat treatment temperature was 190 ° C. and the second stage heat treatment temperature was 223 ° C.
 (実施例9)
B層厚みを表の通りとした以外は、実施例8と同様にしてフィルム厚み40μmの二軸配向ポリエステルフィルムを得た。
Example 9
A biaxially oriented polyester film having a film thickness of 40 μm was obtained in the same manner as in Example 8 except that the thickness of layer B was as shown in the table.
 (実施例10)
組成を表の通りとし、1段目熱処理温度を200℃、2段目熱処理温度を225℃とした以外は、実施例9と同様にして厚み40μmの二軸配向ポリエステルフィルムを得た。 (実施例4-2)
実施例4で得られた二軸配向ポリエステルフィルムに、前述のハードコート層形成用塗布液を、乾燥後の厚みが5μmになるように流量を制御してスロットダイコーターを用いて塗布し、100℃で1分間乾燥し、溶剤を除去した。次いで、ハードコート層を塗布したフィルムに高圧水銀灯を用いて300mJ/cmの紫外線を照射し、ハードコート層が積層された二軸配向ポリエステルフィルムを得た。
(Example 10)
A biaxially oriented polyester film having a thickness of 40 μm was obtained in the same manner as in Example 9 except that the composition was as shown in the table and the first stage heat treatment temperature was 200 ° C. and the second stage heat treatment temperature was 225 ° C. (Example 4-2)
The biaxially oriented polyester film obtained in Example 4 was coated with the above-described coating liquid for forming a hard coat layer using a slot die coater while controlling the flow rate so that the thickness after drying was 5 μm. Dry at 1 ° C. for 1 minute to remove the solvent. Next, the film coated with the hard coat layer was irradiated with 300 mJ / cm 2 ultraviolet rays using a high-pressure mercury lamp to obtain a biaxially oriented polyester film on which the hard coat layer was laminated.
 (実施例4-3)
実施例4で得られた二軸配向ポリエステルフィルム上に、前述の防眩層形成用塗布液をスロットダイコーターを用いて塗布し、100℃で1分間乾燥し、溶剤を除去した。次いで、防眩層を塗布したフィルムに高圧水銀灯を用いて300mJ/cmの紫外線を照射し、厚み5μmの防眩層が積層された二軸配向ポリエステルフィルムを得た。
(Example 4-3)
On the biaxially oriented polyester film obtained in Example 4, the above-mentioned coating solution for forming an antiglare layer was applied using a slot die coater and dried at 100 ° C. for 1 minute to remove the solvent. Next, the film coated with the antiglare layer was irradiated with 300 mJ / cm 2 ultraviolet rays using a high pressure mercury lamp to obtain a biaxially oriented polyester film in which the antiglare layer having a thickness of 5 μm was laminated.
 (比較例1)
1段目熱処理温度を170℃、2段目熱処理温度を210℃とした以外は、実施例1と同様にしてフィルム厚み25μmの二軸配向ポリエステルフィルムを得た。
(Comparative Example 1)
A biaxially oriented polyester film having a film thickness of 25 μm was obtained in the same manner as in Example 1 except that the first stage heat treatment temperature was 170 ° C. and the second stage heat treatment temperature was 210 ° C.
 (比較例2)
組成を表の通りとし、1段目熱処理温度を190℃、2段目熱処理温度を230℃とした以外は、比較例1と同様にしてフィルム厚み25μmの二軸配向ポリエステルフィルムを得た。
(Comparative Example 2)
A biaxially oriented polyester film having a film thickness of 25 μm was obtained in the same manner as in Comparative Example 1 except that the composition was as shown in the table and the first-stage heat treatment temperature was 190 ° C. and the second-stage heat treatment temperature was 230 ° C.
  (比較例3)
組成を表の通りとし、1段目熱処理温度を225℃、2段目熱処理温度を225℃とした以外は、比較例1と同様にしてフィルム厚み25μmの二軸配向ポリエステルフィルムを得た。
(Comparative Example 3)
A biaxially oriented polyester film having a film thickness of 25 μm was obtained in the same manner as in Comparative Example 1 except that the composition was as shown in the table and the first stage heat treatment temperature was 225 ° C. and the second stage heat treatment temperature was 225 ° C.
  (比較例4)
組成を表の通りとし、1段目熱処理温度を190℃、2段目熱処理温度を215℃とした以外は、比較例1と同様にしてフィルム厚み25μmの二軸配向ポリエステルフィルムを得た。
(Comparative Example 4)
A biaxially oriented polyester film having a film thickness of 25 μm was obtained in the same manner as in Comparative Example 1 except that the composition was as shown in the table and the first-stage heat treatment temperature was 190 ° C. and the second-stage heat treatment temperature was 215 ° C.
  (比較例5)
組成を表の通りとし、1段目熱処理温度を225℃、2段目熱処理温度を230℃とした以外は、比較例3と同様にしてフィルム厚み25μmの二軸配向ポリエステルフィルムを得た。
(Comparative Example 5)
A biaxially oriented polyester film having a film thickness of 25 μm was obtained in the same manner as in Comparative Example 3 except that the composition was as shown in the table and the first stage heat treatment temperature was 225 ° C. and the second stage heat treatment temperature was 230 ° C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明は、光学用ポリエステルフィルムに関するものであり、フィルム面に対して50°傾斜した角度に対するリタデーションが1500nm以下であるため、干渉色を呈することがなく、さらに示走査熱量測定(DSC)による昇温結晶化熱量(ΔHc)が15J/g以下であるため、加熱時の寸法安定性、耐白化性に優れるため、タッチパネル用途、偏光子保護用途などに好ましく用いられる。
 
The present invention relates to an optical polyester film, and since the retardation with respect to an angle inclined by 50 ° with respect to the film surface is 1500 nm or less, it does not exhibit an interference color and is further increased by differential scanning calorimetry (DSC). Since the warm crystallization calorie (ΔHc) is 15 J / g or less, it is excellent in dimensional stability and whitening resistance during heating, and thus is preferably used for touch panel applications, polarizer protection applications, and the like.

Claims (6)

  1. フィルム面に対して50°傾斜した角度に対するリタデーションが1500nm以下であり、
    示差走査熱量測定(DSC)による昇温結晶化熱量(ΔHc)が15J/g以下である、光学用ポリエステルフィルム。
    Retardation with respect to an angle inclined by 50 ° with respect to the film surface is 1500 nm or less,
    An optical polyester film having a temperature rising crystallization calorie (ΔHc) of 15 J / g or less by differential scanning calorimetry (DSC).
  2. 温度変調示差走査熱量計(m-DSC)による剛直非晶量が20%以上で30%以下である請求項1に記載の光学用ポリエステルフィルム。 2. The optical polyester film according to claim 1, wherein the rigid amorphous amount by a temperature modulation differential scanning calorimeter (m-DSC) is 20% or more and 30% or less.
  3. 示差走査熱量計(DSC)による2ndRunにおける昇温結晶化熱量(ΔHc2)が5J/g以上30J/g以下である請求項1または2に記載の光学用ポリエステルフィルム。 3. The optical polyester film according to claim 1, wherein a temperature rising crystallization heat amount (ΔHc2) at 2ndRun by a differential scanning calorimeter (DSC) is 5 J / g or more and 30 J / g or less.
  4. 前記ポリエステルフィルムの少なくとも一方の最表面に、ハードコート性、自己修復性、防眩性、反射防止性、低反射性、紫外線遮断性、及び帯電防止性からなる群より選択される1種以上の機能を示す層が積層されていることを特徴とする、請求項1~3のいずれかに記載の光学用ポリエステルフィルム。 On the outermost surface of at least one of the polyester films, at least one selected from the group consisting of hard coat properties, self-repair properties, antiglare properties, antireflection properties, low reflection properties, ultraviolet blocking properties, and antistatic properties The optical polyester film according to any one of claims 1 to 3, wherein a layer exhibiting a function is laminated.
  5. 請求項1~4のいずれかに記載の光学用ポリエステルフィルムの少なくとも片面に、面内リタデーションが500nm以下であるフィルムが積層されてなる積層体。 A laminate in which a film having an in-plane retardation of 500 nm or less is laminated on at least one side of the optical polyester film according to any one of claims 1 to 4.
  6. 偏光子の少なくとも片面に偏光子保護フィルムを有してなる偏光板であって、少なくとも一方の面の偏光子保護フィルムが請求項1~4のいずれかに記載の光学用ポリエステルフィルムである偏光板。
     
    A polarizing plate comprising a polarizer protective film on at least one surface of a polarizer, wherein the polarizer protective film on at least one surface is the optical polyester film according to any one of claims 1 to 4. .
PCT/JP2016/053957 2015-03-13 2016-02-10 Polyester film for optical use and polarizing plate using same WO2016147767A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016508880A JP6729365B2 (en) 2015-03-13 2016-02-10 Optical polyester film and polarizing plate using the same
CN201680005533.6A CN107108927B (en) 2015-03-13 2016-02-10 Optical polyester film and polarizing plate using same
KR1020177013188A KR102589506B1 (en) 2015-03-13 2016-02-10 Polyester film for optical use and polarizing plate using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015050407 2015-03-13
JP2015-050407 2015-03-13

Publications (1)

Publication Number Publication Date
WO2016147767A1 true WO2016147767A1 (en) 2016-09-22

Family

ID=56919961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053957 WO2016147767A1 (en) 2015-03-13 2016-02-10 Polyester film for optical use and polarizing plate using same

Country Status (5)

Country Link
JP (1) JP6729365B2 (en)
KR (1) KR102589506B1 (en)
CN (1) CN107108927B (en)
TW (1) TWI686432B (en)
WO (1) WO2016147767A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189221A1 (en) * 2018-03-27 2019-10-03 大日本印刷株式会社 Polyethylene terephthalate film for cell packaging material, cell packaging material, method for manufacturing cell packaging material, and cell
JPWO2018181655A1 (en) * 2017-03-31 2020-02-06 東洋紡株式会社 Liquid crystal display, polarizing plate and polarizer protective film
WO2020071282A1 (en) * 2018-10-02 2020-04-09 東洋紡株式会社 Liquid crystal display device, polarization plate and polarizer protection film
WO2021020548A1 (en) * 2019-07-31 2021-02-04 Jfeスチール株式会社 Resin-coated metal plate, container, and evaluation method
WO2022024493A1 (en) * 2020-07-30 2022-02-03 日東電工株式会社 Polyester film for protecting polarizer and polarizing plate including said polyester film
WO2022024492A1 (en) * 2020-07-30 2022-02-03 日東電工株式会社 Polyester film for polarizer protection and polarizing plate comprising said polyester film
WO2022024494A1 (en) * 2020-07-30 2022-02-03 日東電工株式会社 Polarizer-protecting polyester film and polarizing plate including said polyester film
WO2024004773A1 (en) * 2022-06-27 2024-01-04 東レ株式会社 Film for back face plate and polyester film, and image display apparatus and device with film for back face plate or polyester film mounted therein

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059322A1 (en) * 2017-09-22 2019-03-28 三菱ケミカル株式会社 Copolyester film
WO2021086082A1 (en) * 2019-10-31 2021-05-06 에스케이씨 주식회사 Polyester film, method for manufacturing same, and method for recycling polyethylene terephthalate container using same
KR102258535B1 (en) * 2019-10-31 2021-05-31 에스케이씨 주식회사 Polyester film and method for reproducing polyester container using same
EP4089027A4 (en) * 2020-03-11 2023-07-05 JFE Steel Corporation Resin-coated metal plate for containers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189125A (en) * 2000-12-21 2002-07-05 Toray Ind Inc Polyester film used to be stick with polarizer film
JP2005272656A (en) * 2004-03-25 2005-10-06 Kanebo Ltd Manufacturing method of polyester resin and molded article made of the same
JP2006241446A (en) * 2005-02-02 2006-09-14 Mitsubishi Gas Chem Co Inc Polyester film, manufacturing method thereof, and use thereof
JP2014062183A (en) * 2012-09-21 2014-04-10 Polyplastics Co Wholly aromatic polyester and polyester resin composition, and polyester molded article
JP2014227430A (en) * 2013-05-18 2014-12-08 三菱樹脂株式会社 Optical polyester film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI383003B (en) * 2005-02-02 2013-01-21 Mitsubishi Gas Chemical Co Polyester film, the process thereof, and the use thereof
JP2011252048A (en) 2010-06-01 2011-12-15 Mitsubishi Plastics Inc Polyester film for protecting polarizing plate
TWI423999B (en) * 2011-11-25 2014-01-21 Ind Tech Res Inst Amorphous copolyesters and flexible substrates and optical films utilizing the same
JP5643441B2 (en) * 2011-11-29 2014-12-17 帝人デュポンフィルム株式会社 Biaxially stretched laminated polyester film, infrared shielding structure for laminated glass comprising the same, and laminated glass comprising the same
JP5997996B2 (en) 2012-09-27 2016-09-28 三菱樹脂株式会社 Biaxially stretched polyester film for polarizing plate
JP6365300B2 (en) * 2013-05-21 2018-08-01 東レ株式会社 Laminated film and polarizing plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189125A (en) * 2000-12-21 2002-07-05 Toray Ind Inc Polyester film used to be stick with polarizer film
JP2005272656A (en) * 2004-03-25 2005-10-06 Kanebo Ltd Manufacturing method of polyester resin and molded article made of the same
JP2006241446A (en) * 2005-02-02 2006-09-14 Mitsubishi Gas Chem Co Inc Polyester film, manufacturing method thereof, and use thereof
JP2014062183A (en) * 2012-09-21 2014-04-10 Polyplastics Co Wholly aromatic polyester and polyester resin composition, and polyester molded article
JP2014227430A (en) * 2013-05-18 2014-12-08 三菱樹脂株式会社 Optical polyester film

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018181655A1 (en) * 2017-03-31 2020-02-06 東洋紡株式会社 Liquid crystal display, polarizing plate and polarizer protective film
JP7261738B2 (en) 2017-03-31 2023-04-20 東洋紡株式会社 Liquid crystal displays, polarizers and protective films for polarizers
WO2019189221A1 (en) * 2018-03-27 2019-10-03 大日本印刷株式会社 Polyethylene terephthalate film for cell packaging material, cell packaging material, method for manufacturing cell packaging material, and cell
JP7456378B2 (en) 2018-03-27 2024-03-27 大日本印刷株式会社 Polyethylene terephthalate film for battery packaging material, battery packaging material, manufacturing method of battery packaging material, and battery
JPWO2019189221A1 (en) * 2018-03-27 2021-04-22 大日本印刷株式会社 Polyethylene terephthalate film for battery packaging materials, battery packaging materials, battery packaging material manufacturing methods and batteries
WO2020071282A1 (en) * 2018-10-02 2020-04-09 東洋紡株式会社 Liquid crystal display device, polarization plate and polarizer protection film
US11635653B2 (en) 2018-10-02 2023-04-25 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
JP7111180B2 (en) 2019-07-31 2022-08-02 Jfeスチール株式会社 RESIN-COATED METAL PLATE, CONTAINER, AND EVALUATION METHOD
JPWO2021020548A1 (en) * 2019-07-31 2021-09-13 Jfeスチール株式会社 Resin-coated metal plate, container, and evaluation method
WO2021020548A1 (en) * 2019-07-31 2021-02-04 Jfeスチール株式会社 Resin-coated metal plate, container, and evaluation method
WO2022024494A1 (en) * 2020-07-30 2022-02-03 日東電工株式会社 Polarizer-protecting polyester film and polarizing plate including said polyester film
WO2022024492A1 (en) * 2020-07-30 2022-02-03 日東電工株式会社 Polyester film for polarizer protection and polarizing plate comprising said polyester film
WO2022024493A1 (en) * 2020-07-30 2022-02-03 日東電工株式会社 Polyester film for protecting polarizer and polarizing plate including said polyester film
WO2024004773A1 (en) * 2022-06-27 2024-01-04 東レ株式会社 Film for back face plate and polyester film, and image display apparatus and device with film for back face plate or polyester film mounted therein

Also Published As

Publication number Publication date
JP6729365B2 (en) 2020-07-22
CN107108927B (en) 2020-09-01
TWI686432B (en) 2020-03-01
CN107108927A (en) 2017-08-29
KR20170129094A (en) 2017-11-24
KR102589506B1 (en) 2023-10-16
TW201641550A (en) 2016-12-01
JPWO2016147767A1 (en) 2017-12-21

Similar Documents

Publication Publication Date Title
JP6729365B2 (en) Optical polyester film and polarizing plate using the same
JP6617561B2 (en) Laminated polyester film and polarizing plate using the same
TWI383003B (en) Polyester film, the process thereof, and the use thereof
JP5380029B2 (en) Liquid crystal display
KR102054269B1 (en) Polarizing plate, image display device, and method for improving light-place contrast in image display device
JP2015232120A (en) Polyester film for optical use, and polarizing plate and transparent conductive film using the same
JP2017067819A (en) Optical polyester film and polarizing plate using the same, and transparent conductive film
JP7459868B2 (en) Antireflection circularly polarizing plate and image display device using the same
JP2007279243A (en) Method for producing polarizing plate, polarizing plate and image display device
TW201940324A (en) Electroluminescent display device
JP2016001305A (en) Optical polyester film and polarizing plate using the same, and transparent conductive film
JP6808924B2 (en) Polyester film for optics, polarizing plate using it, transparent conductive film
JP2014228594A (en) Polarizing plate used for image display device, image display device, and method for improving contrast in bright place in image display device
JP2015215593A (en) Optical polyester film, and polarization plate and transparent conductive film using the same
JP2022054571A (en) Biaxially-oriented polyester film
JP6540211B2 (en) Optical polyester film, polarizing plate using the same, transparent conductive film
KR101947838B1 (en) Laminated base material, laminated body, polarizing plate, liquid crystal display panel, and image display device
KR20160037117A (en) Optical film, polarizing plate equipped with the optical film, liquid crystal display device, and method for producing an optical film
JP5640417B2 (en) Biaxially stretched polyester film for curable resin lamination
JP2015232121A (en) Polyester film for optical use, and polarizing plate and transparent conductive film using the same
JP2016001304A (en) Optical polyester film and polarizing plate using the same, and transparent conductive film
JP6291830B2 (en) Multilayer laminated film
JP2017067820A (en) Optical polyester film and polarizing plate using the same, and transparent conductive film
JP7088420B2 (en) Liquid crystal display device
JP2017067822A (en) Optical polyester film and polarizing plate using the same, and transparent conductive film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016508880

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177013188

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764598

Country of ref document: EP

Kind code of ref document: A1