WO2021070467A1 - Phase difference layer-attached polarization plate and organic electro luminescence display device using same - Google Patents

Phase difference layer-attached polarization plate and organic electro luminescence display device using same Download PDF

Info

Publication number
WO2021070467A1
WO2021070467A1 PCT/JP2020/030573 JP2020030573W WO2021070467A1 WO 2021070467 A1 WO2021070467 A1 WO 2021070467A1 JP 2020030573 W JP2020030573 W JP 2020030573W WO 2021070467 A1 WO2021070467 A1 WO 2021070467A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polarizing plate
moisture permeability
retardation layer
protective layer
Prior art date
Application number
PCT/JP2020/030573
Other languages
French (fr)
Japanese (ja)
Inventor
寛 友久
後藤 周作
一生 田中
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020087156A external-priority patent/JP2021063975A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020227011468A priority Critical patent/KR20220076468A/en
Priority to CN202080070457.3A priority patent/CN114502998A/en
Publication of WO2021070467A1 publication Critical patent/WO2021070467A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details

Definitions

  • the present invention relates to a polarizing plate with a retardation layer and an organic electroluminescence (EL) display device using the same.
  • the present invention has been made to solve the above-mentioned conventional problems, and a main object thereof is to provide a polarizing plate with a retardation layer in which decolorization is remarkably suppressed when applied to an organic EL display device. is there.
  • the polarizing plate with a retardation layer of the present invention comprises a polarizing plate, a polarizing plate including a protective layer at least on the viewing side of the polarizing element, and a retardation layer arranged on the side opposite to the viewing side of the polarizing plate.
  • Moisture permeability of the protective layer of the viewing side is a 200g / m 2 ⁇ 24h or more, greater than the moisture permeability of the retardation layer.
  • the polarizing plate includes a protective layer only on the visual side.
  • the difference between the moisture permeability of the moisture permeability and the retardation layer of the protective layer of the viewing side is 200g / m 2 ⁇ 24h or more.
  • the polarizing plate further includes another protective layer on the side opposite to the visible side of the polarizer, and the moisture permeability of the protective layer on the visible side is the moisture permeability of the other protective layer and the moisture permeability of the other protective layer.
  • the moisture permeability of the retardation layer is larger than the smaller one.
  • the retardation layer is an orientation-solidified layer of a liquid crystal compound, and the moisture permeability of the protective layer on the visible side is larger than the moisture permeability of the other protective layer.
  • the difference between the moisture permeability of the protective layer on the visible side, the moisture permeability of the other protective layer, and the moisture permeability of the retardation layer, whichever is smaller, is 200 g / m 2.
  • the moisture permeability of the further protective layer is not more than 150g / m 2 ⁇ 24h.
  • the thickness of the polarizer is 8 ⁇ m or less.
  • the total thickness of the polarizing plate with a retardation layer is 20 ⁇ m or more and 100 ⁇ m or less.
  • an organic electroluminescent display device is provided. This organic electroluminescence display device includes the above-mentioned polarizing plate with a retardation layer.
  • the moisture permeability of the protective layer on the viewing side is the moisture permeability of the protective layer (if present) on the opposite side to the viewing side and the moisture permeability of the retardation layer.
  • Refractive index (nx, ny, nz) "Nx" is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and "ny” is the in-plane direction orthogonal to the slow-phase axis (that is, the phase-advance axis direction). Is the refractive index of, and "nz” is the refractive index in the thickness direction.
  • In-plane phase difference (Re) “Re ( ⁇ )” is an in-plane phase difference measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Re (550) is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C.
  • Phase difference in the thickness direction (Rth) is a phase difference in the thickness direction measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Rth (550) is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C.
  • FIG. 1 is a schematic cross-sectional view of the polarizing plate with a retardation layer according to one embodiment of the present invention.
  • the polarizing plate 100 with a retardation layer in the illustrated example typically has a polarizing plate 10 and a retardation layer 20 in this order from the viewing side.
  • the polarizing plate 10 includes a polarizing element 11 and a protective layer (visible side protective layer) 12 at least on the viewing side of the polarizing element 11.
  • the protective layer (inner protective layer) 13 is provided on the side opposite to the visible side of the polarizer 11, but the protective layer 13 may be omitted depending on the purpose or the like.
  • the protective layer 13 may be omitted.
  • the retardation layer 20 is an orientation-solidified layer of a liquid crystal compound
  • a protective layer 13 is typically provided. Practically, an adhesive layer (not shown) is provided on the side opposite to the polarizing plate 10 of the retardation layer 20 (that is, as the outermost layer on the side opposite to the viewing side), and the polarizing plate with the retardation layer is organic. It is said that it can be pasted on an EL cell.
  • a release film is temporarily adhered to the surface of the pressure-sensitive adhesive layer until a polarizing plate with a retardation layer is used.
  • the release film By temporarily attaching the release film, the pressure-sensitive adhesive layer can be protected and a roll of the polarizing plate with a retardation layer can be formed.
  • the moisture permeability of the protective layer 12 is larger than the moisture permeability of the protective layer 13 (if present) and the moisture permeability of the retardation layer 20 whichever is smaller. Specifically: (1) When the protective layer 13 is omitted, the moisture permeability of the protective layer 12 is larger than the moisture permeability of the retardation layer 20; (2) When the protective layer 13 is present. , The moisture permeability of the protective layer 12 is larger than the moisture permeability of the protective layer 13 and the moisture permeability of the retardation layer 20, whichever is smaller; (3) The protective layer 13 is present and the retardation layer 20 is present.
  • the moisture permeability of the protective layer 12 is larger than the moisture permeability of the protective layer 13.
  • the present inventors faced a new problem that the polarizing plate with a retardation layer is decolorized when the polarizing plate with a retardation layer is applied to an organic EL display device, and as a result of diligent studies on the problem, the decolorization was performed. It was discovered that the cause was ammonia (substantially ammonium ions) generated from the organic EL panel.
  • the protective layer of the polarizer is designed to reduce the moisture permeability of the outer (visual side) protective layer because the main purpose is to protect the polarizer from moisture (water vapor).
  • the embodiment of the present invention is based on such a technical idea completely opposite to the common general technical knowledge in the art.
  • the difference between the smaller moisture permeability of the moisture permeability and moisture permeability of the phase difference layer 20 of the moisture permeability and the protective layer 13 of the protective layer 12 (if present) is preferably 200g / m 2 ⁇ 24h or more, more preferably 220g / m 2 ⁇ 24h or more, more preferably 250g / m 2 ⁇ 24h or more, and particularly preferably 300g / m 2 ⁇ 24h or more.
  • the upper limit of the difference may be, for example, 600g / m 2 ⁇ 24h. When the difference is within such a range, decolorization of the polarizing plate with a retardation layer can be suppressed more satisfactorily.
  • Moisture permeability of the protective layer 12 is 200g / m 2 ⁇ 24h or more, preferably 300g / m 2 ⁇ 24h or more, more preferably 330g / m 2 ⁇ 24h or more, more preferably 360 g / m 2 ⁇ 24h or more, particularly preferably 400 g / m 2 ⁇ 24h or more.
  • the upper limit of the moisture permeability of the protective layer 12 may be, for example, 650g / m 2 ⁇ 24h.
  • Moisture permeability of the protective layer 13 is preferably not more than 150g / m 2 ⁇ 24h, more preferably not more than 100g / m 2 ⁇ 24h, more preferably at 70g / m 2 ⁇ 24h or less, particularly preferably 50g / m is 2 ⁇ 24h or less.
  • Moisture permeability of the protective layer 13 is preferably as low, the lower limit can be, for example, 5g / m 2 ⁇ 24h.
  • the moisture permeability of the retardation layer 20 is preferably not more than 150g / m 2 ⁇ 24h, more preferably not more than 100g / m 2 ⁇ 24h, more preferably less 70g / m 2 ⁇ 24h, most preferably not more than 50g / m 2 ⁇ 24h.
  • the moisture permeability can be measured according to JIS Z 0208.
  • the total thickness of the polarizing plate with a retardation layer is preferably 120 ⁇ m or less, more preferably 100 ⁇ m or less, and further preferably 80 ⁇ m or less.
  • the lower limit of the total thickness is preferably 20 ⁇ m, more preferably 45 ⁇ m.
  • a polarizing plate with a retardation layer having such a total thickness can have extremely excellent flexibility and bending durability.
  • the polarizing plate with a retardation layer can be particularly preferably applied to a curved organic EL display device and / or a bendable or bendable organic EL display device.
  • the polarizing plate with a retardation layer may further include other optical functional layers.
  • the type, characteristics, number, combination, arrangement position, and the like of the optical functional layers that can be provided on the polarizing plate with the retardation layer can be appropriately set according to the purpose.
  • the polarizing plate with a retardation layer may further have a conductive layer or an isotropic base material with a conductive layer (neither is shown).
  • the conductive layer or the isotropic base material with the conductive layer is typically provided on the outside of the retardation layer 20 (opposite to the polarizing plate 10).
  • the polarizing plate with a retardation layer can be applied to a so-called inner touch panel type input display device in which a touch sensor is incorporated between the organic EL cell and the polarizing plate. ..
  • the polarizing plate with a retardation layer may further include other retardation layers.
  • the optical characteristics for example, refractive index characteristics, in-plane retardation, Nz coefficient, photoelastic coefficient
  • thickness, arrangement position, and the like of other retardation layers can be appropriately set according to the purpose.
  • the polarizing plate with a retardation layer may be single-wafered or elongated.
  • the term "long” means an elongated shape having a length sufficiently long with respect to the width, and for example, an elongated shape having a length of 10 times or more, preferably 20 times or more with respect to the width. Including.
  • the long-shaped polarizing plate with a retardation layer can be wound in a roll shape.
  • Polarizing plate B-1 Polarizer
  • any suitable polarizer can be adopted.
  • the resin film forming the polarizer may be a single-layer resin film or a laminated body having two or more layers.
  • the polarizer composed of a single-layer resin film include a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer system partially saponified film.
  • a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer system partially saponified film.
  • PVA polyvinyl alcohol
  • a partially formalized PVA-based film ethylene / vinyl acetate copolymer system partially saponified film
  • examples thereof include those which have been dyed and stretched with a bicolor substance such as iodine or a bicolor dye, and polyene-based oriented films such as a dehydrated product of PVA and a dehydrogenated product of polyvinyl chloride.
  • the above-mentioned dyeing with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution.
  • the draw ratio of the uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment or while dyeing. Alternatively, it may be stretched and then dyed. If necessary, the PVA-based film is subjected to a swelling treatment, a cross-linking treatment, a washing treatment, a drying treatment and the like.
  • the polarizer obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin.
  • Examples thereof include a polarizer obtained by using a laminate with a PVA-based resin layer coated and formed on a base material.
  • the polarizer obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying the resin base material.
  • stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further include, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution.
  • a high temperature eg, 95 ° C. or higher
  • the obtained resin substrate / polarizer laminate may be used as it is (that is, the resin substrate may be used as a protective layer for the polarizer), and the resin substrate is peeled off from the resin substrate / polarizer laminate. Then, an arbitrary appropriate protective layer according to the purpose may be laminated on the peeled surface. Details of the method for producing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. The entire description of these publications is incorporated herein by reference.
  • the thickness of the polarizer is preferably 15 ⁇ m or less, more preferably 12 ⁇ m or less, further preferably 10 ⁇ m or less, and particularly preferably 8 ⁇ m or less.
  • the thickness of the polarizer is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and further preferably 3 ⁇ m or more.
  • the polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the simple substance transmittance of the polarizer is, for example, 41.5% to 46.0%, preferably 43.0% to 46.0%, and preferably 44.5% to 46.0%.
  • the degree of polarization of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
  • the visible side protective layer 12 and the inner protective layer 13 are each composed of any suitable film that can be used as a protective layer for the polarizer as long as it has the above-mentioned moisture permeability.
  • Typical materials constituting the inner protective layer 13 include cycloolefin resins such as polycarbonate, (meth) acrylic resins, polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), and polyester resins such as polyethylene terephthalate (PEN). Examples thereof include polyolefin resins such as polyethylene and polycarbonate resins.
  • a typical example of the (meth) acrylic resin is a (meth) acrylic resin having a lactone ring structure.
  • the inner protective layer 13 is preferably composed of a cycloolefin-based resin.
  • Typical examples of the material constituting the visible side protective layer 12 include a cellulosic resin such as triacetyl cellulose (TAC) and a resin capable of forming a microporous film (for example, a polyurethane resin).
  • the polarizing plate with a retardation layer is typically arranged on the visible side of the organic EL display device, and the protective layer 12 is arranged on the visible side thereof. Therefore, the protective layer 12 may be subjected to surface treatment such as hard coat treatment, antireflection treatment, anti-sticking treatment, and anti-glare treatment, if necessary. Further / or, if necessary, the protective layer 12 is provided with a process for improving visibility when visually recognizing through polarized sunglasses (typically, a (elliptical) circularly polarized light function is provided, and an ultra-high phase difference is provided. May be given). By performing such a process, excellent visibility can be realized even when the display screen is visually recognized through a polarized lens such as polarized sunglasses. Therefore, the polarizing plate with a retardation layer can be suitably applied to an organic EL display device that can be used outdoors.
  • polarized sunglasses typically, a (elliptical) circularly polarized light function is provided, and an ultra-high phase difference is provided. May be
  • the thickness of the protective layer 12 can be appropriately set according to the desired moisture permeability.
  • the thickness of the protective layer 12 is preferably 10 ⁇ m to 80 ⁇ m, more preferably 15 ⁇ m to 70 ⁇ m, and even more preferably 20 ⁇ m to 50 ⁇ m.
  • the thickness of the protective layer 12 is a thickness including the thickness of the surface treatment layer.
  • the protective layer 13 is preferably optically isotropic in one embodiment.
  • optically isotropic means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is -10 nm to +10 nm.
  • the thickness of the protective layer 13 can also be appropriately set according to the desired moisture permeability.
  • the thickness of the protective layer 13 is preferably 10 ⁇ m to 80 ⁇ m, more preferably 20 ⁇ m to 70 ⁇ m, and even more preferably 30 ⁇ m to 50 ⁇ m.
  • the protective layer 13 may be preferably omitted from the viewpoint of thinning.
  • phase difference layer 20 may be a single layer or may have a laminated structure (substantially a two-layer structure).
  • the retardation layer 20 can typically function as a ⁇ / 4 plate.
  • the retardation layer is typically provided to impart antireflection characteristics to an organic EL display device.
  • the in-plane retardation Re (550) of the retardation layer is preferably 100 nm to 190 nm, more preferably 110 nm to 170 nm, and even more preferably 120 nm to 160 nm.
  • the Nz coefficient of the retardation layer is preferably 0.9 to 1.5, and more preferably 0.9 to 1.3. By satisfying such a relationship, an organic EL display device having a very excellent reflected hue can be obtained.
  • the retardation layer When the retardation layer is a single layer, the retardation layer preferably exhibits a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light.
  • the Re (450) / Re (550) of the retardation layer is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less. With such a configuration, very excellent antireflection characteristics can be realized.
  • the angle formed by the slow axis of the retardation layer and the absorption axis of the polarizer is preferably 40 ° to 50 °, more preferably 42 ° to 48 °, and even more preferably about 45 °.
  • an organic EL display device having very excellent antireflection characteristics can be obtained by using the retardation layer as a ⁇ / 4 plate as described above.
  • the retardation layer can be made of any suitable material as long as the above characteristics can be satisfied.
  • the retardation layer may be a stretched film of a resin film, or may be an orientation-solidifying layer of a liquid crystal compound (hereinafter, a liquid crystal alignment solidification layer).
  • the resin constituting the resin film include a polycarbonate-based resin or a polyester carbonate-based resin (hereinafter, may be simply referred to as a polycarbonate-based resin).
  • a polycarbonate-based resin any suitable polycarbonate-based resin can be used as long as the desired moisture permeability can be obtained.
  • the polycarbonate-based resin contains a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, an alicyclic diol, an alicyclic dimethanol, di, tri or polyethylene glycol, and an alkylene.
  • the polycarbonate-based resin is a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, a structural unit derived from an alicyclic dimethanol, and / or di, tri or polyethylene glycol.
  • the polycarbonate-based resin may contain structural units derived from other dihydroxy compounds, if necessary.
  • the retardation layer can be formed by stretching a film made of the above-mentioned polycarbonate resin under arbitrary suitable stretching conditions.
  • a film made of the above-mentioned polycarbonate resin under arbitrary suitable stretching conditions.
  • the retardation layer is a liquid crystal oriented solidified layer
  • the difference between nx and ny of the obtained retardation layer can be remarkably increased as compared with the non-liquid crystal material by using the liquid crystal compound, so that the desired surface can be obtained.
  • the thickness of the retardation layer for obtaining the inner retardation can be remarkably reduced.
  • the term "aligned solidified layer” refers to a layer in which a liquid crystal compound is oriented in a predetermined direction within the layer and the oriented state is fixed.
  • the "oriented solidified layer” is a concept including an oriented cured layer obtained by curing a liquid crystal monomer.
  • the rod-shaped liquid crystal compounds are typically oriented in a state of being aligned in the slow axis direction of the retardation layer (homogeneous orientation).
  • specific examples of the liquid crystal compound and details of the method for forming the liquid crystal oriented solidified layer are described in, for example, JP-A-2006-163343 and JP-A-2006-178389. The descriptions in these publications are incorporated herein by reference.
  • the thickness of the retardation layer can be typically set to a thickness that can properly function as a ⁇ / 4 plate.
  • the thickness of the retardation layer can be, for example, 10 ⁇ m to 60 ⁇ m.
  • the thickness of the retardation layer can be, for example, 1 ⁇ m to 5 ⁇ m.
  • the retardation layer When the retardation layer has a laminated structure, the retardation layer typically has a two-layer structure of a first liquid crystal oriented solidified layer and a second liquid crystal oriented solidified layer.
  • either one of the first liquid crystal oriented solidified layer or the second liquid crystal oriented solidified layer can function as a ⁇ / 2 plate, and the other can function as a ⁇ / 4 plate.
  • the case where the first liquid crystal oriented solidified layer can function as a ⁇ / 2 plate and the second liquid crystal oriented solidified layer can function as a ⁇ / 4 plate will be described, but these may be reversed. ..
  • the thickness of the first liquid crystal oriented solidified layer can be adjusted so as to obtain a desired in-plane phase difference of the ⁇ / 2 plate, and can be, for example, 2.0 ⁇ m to 4.0 ⁇ m.
  • the thickness of the second liquid crystal oriented solidified layer can be adjusted so as to obtain the desired in-plane phase difference of the ⁇ / 4 plate, and can be, for example, 1.0 ⁇ m to 2.5 ⁇ m.
  • the in-plane retardation Re (550) of the first liquid crystal oriented solidified layer is preferably 200 nm to 300 nm, more preferably 230 nm to 290 nm, and further preferably 250 nm to 280 nm.
  • the in-plane retardation Re (550) of the second liquid crystal oriented solidified layer is preferably 100 nm to 190 nm, more preferably 110 nm to 170 nm, and further preferably 120 nm to 160 nm.
  • the angle formed by the slow axis of the first liquid crystal oriented solidified layer and the absorption axis of the polarizer is preferably 10 ° to 20 °, more preferably 12 ° to 18 °, and even more preferably about 15 °. Is.
  • the angle formed by the slow axis of the second liquid crystal oriented solidified layer and the absorption axis of the polarizer is preferably 70 ° to 80 °, more preferably 72 ° to 78 °, and even more preferably about 75 °. Is. With such a configuration, it is possible to obtain characteristics close to the ideal reverse wavelength dispersion characteristic, and as a result, it is possible to realize extremely excellent antireflection characteristics.
  • an embodiment of the present invention includes an organic EL display device using such a polarizing plate with a retardation layer.
  • the organic EL display device according to the embodiment of the present invention includes the polarizing plate with a retardation layer according to the above items A to C on the visible side thereof.
  • the polarizing plate with a retardation layer is laminated so that the retardation layer is on the organic EL cell side (the polarizing plate is on the visual recognition side).
  • the organic EL display device has a curved shape (substantially a curved display screen) and / or is bendable or bendable.
  • the present inventors use a polarizing plate with a retardation layer due to ammonia (substantially ammonium ions) generated from the organic EL panel.
  • ammonia substantially ammonium ions
  • Polarization degree P (%) ⁇ (Tp-Tc) / (Tp + Tc) ⁇ 1/2 ⁇ 100 (3) Moisture Permeability Measured according to JIS Z 0208. Specifically, the protective layer or the retardation layer (the film constituting the layer) used in Examples and Comparative Examples was cut out in a circle of 10 cm ⁇ and used as a measurement sample. The moisture permeability of this measurement sample was measured using "MOCON" manufactured by Hitachi, Ltd. under the test conditions of 40 ° C. and 92% RH. (4) Ammonia decolorization test 10 g of a 10% aqueous ammonia solution was placed in a glass bottle (cylindrical shape having a diameter of 30 mm and a depth of 50 mm).
  • the distance from the liquid level of the aqueous ammonia solution to the mouth (upper end) of the glass bottle was about 30 mm.
  • the polarizing plates with retardation layers obtained in Examples and Comparative Examples were cut out to a size of 15 mm ⁇ 15 mm, and an adhesive layer was provided on the retardation layer side to use as measurement data.
  • the measurement material was attached to the edge of the mouth of the glass bottle via the adhesive layer so that the mouth of the glass bottle was completely covered with this measurement material and steam did not leak through the gap.
  • the glass bottle covered with the measurement material was heated at 60 ° C. for 2 hours.
  • thermoplastic resin base material an amorphous isophthal copolymer polyethylene terephthalate film (thickness: 100 ⁇ m) having a long shape, a water absorption of 0.75%, and a Tg of about 75 ° C. was used.
  • One side of the resin base material was corona-treated.
  • a PVA aqueous solution (coating solution) was prepared by dissolving 13 parts by weight of potassium iodide in water.
  • the PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 ⁇ m to prepare a laminate.
  • the obtained laminate was uniaxially stretched at the free end 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130 ° C. (aerial auxiliary stretching treatment). Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C.
  • HC-TAC film was attached to the surface of the polarizer of the resin base material / polarizer laminate obtained above via an ultraviolet curable adhesive. Specifically, the curable adhesive was coated so as to have a thickness of 1.0 ⁇ m, and bonded using a roll machine. Then, UV light was irradiated from the HC-TAC film side to cure the adhesive.
  • the HC-TAC film is a film in which a hard coat (HC) layer (thickness 7 ⁇ m) is formed on a triacetyl cellulose (TAC) film (thickness 25 ⁇ m), and the TAC film is attached so as to be on the polarizer side. I matched it.
  • a cycloolefin-based resin film (thickness 13 ⁇ m: hereinafter, COP film) was attached to the peeled surface in the same manner as described above.
  • Moisture permeability of HC-TAC film was 427g / m 2 ⁇ 24h, moisture permeability of the COP film was 35g / m 2 ⁇ 24h.
  • a polarizing plate having a structure of a visible side protective layer (HC-TAC film) / a polarizer / another protective layer (COP film) was obtained.
  • the temperature rise and depressurization in the second reactor were started, and the internal temperature was 240 ° C. and the pressure was 0.2 kPa in 50 minutes. Then, the polymerization was allowed to proceed until the stirring power became a predetermined value. When the predetermined power was reached, nitrogen was introduced into the reactor to repressurize, the produced polyester carbonate-based resin was extruded into water, and the strands were cut to obtain pellets.
  • the Re (550) of the obtained retardation film was 141 nm, the Re (450) / Re (550) was 0.82, and the Nz coefficient was 1.12. Further, the moisture permeability of the obtained retardation film was 75g / m 2 ⁇ 24h.
  • Example 2 1. Preparation of Polarizing Plate A polarizing plate was prepared in the same manner as in Example 1.
  • liquid crystal oriented solidified layer constituting the retardation layer 55 parts of the compound represented by the formula (I), 25 parts of the compound represented by the formula (II), and 20 parts of the compound represented by the formula (III) are cyclopenta. After adding to 400 parts of non (CPN), heat to 60 ° C. to dissolve by stirring, and after confirmation of dissolution, return to room temperature, and return to room temperature, 3 parts of Irgacure 907 (manufactured by BASF Japan Co., Ltd.), Megafuck F- 0.2 part of 554 (manufactured by DIC Corporation) and 0.1 part of p-methoxyphenol (MEHQ) were added, and the mixture was further stirred to obtain a solution. The solution was clear and uniform.
  • the obtained solution was filtered through a 0.20 ⁇ m membrane filter to obtain a polymerizable composition.
  • a polyimide solution for an alignment film was applied to a glass substrate having a thickness of 0.7 mm by a spin coating method, dried at 100 ° C. for 10 minutes, and then fired at 200 ° C. for 60 minutes to obtain a coating film. ..
  • the obtained coating film was subjected to a rubbing treatment to form an alignment film. The rubbing treatment was performed using a commercially available rubbing device.
  • the polymerizable composition obtained above was applied to a base material (substantially an alignment film) by a spin coating method, and dried at 100 ° C. for 2 minutes.
  • the obtained coating film was cooled to room temperature and then irradiated with ultraviolet rays at an intensity of 30 mW / cm 2 for 30 seconds using a high-pressure mercury lamp to obtain a liquid crystal oriented solidified layer.
  • the in-plane retardation Re (550) of the liquid crystal oriented solidified layer was 130 nm.
  • the Re (450) / Re (550) of the liquid crystal oriented solidified layer was 0.851, showing the inverse dispersion wavelength characteristic.
  • Example 3 A polarizing plate with a retardation layer was obtained in the same manner as in Example 1 except that a separate protective layer was not provided. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 4 A polarizing plate with a retardation layer was obtained with the structure shown in Table 1 for the viewing side protective layer, the polarizer, another protective layer, and the retardation layer.
  • the obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 1 A resin base material / polarizer laminate was produced in the same manner as in Example 1. An HC-COP film was attached to the surface of the polarizer of the obtained resin base material / polarizer laminate in the same manner as in Example 1.
  • the HC-COP film is a film in which a hard coat (HC) layer (thickness 2 ⁇ m) is formed on a COP film (thickness 25 ⁇ m), and the COP film is bonded so as to be on the polarizer side.
  • the resin base material was peeled off, and a COP film similar to that in Example 1 was attached to the peeled surface in the same manner as in Example 1.
  • Moisture permeability of HC-COP film is 17g / m 2 ⁇ 24h, moisture permeability of the COP film was 35g / m 2 ⁇ 24h.
  • a polarizing plate having a structure of a visible side protective layer (HC-COP film) / a polarizer / another protective layer (COP film) was obtained.
  • the following procedure was the same as in Example 1 to obtain a polarizing plate with a retardation layer.
  • the obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • the polarizing plate with a retardation layer of the present invention is suitably used as an antireflection circular polarizing plate of an organic EL display device.
  • Polarizing plate 11 Polarizer 12 Protective layer 13 Protective layer 20 Phase difference layer 100 Polarizing plate with retardation layer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided is a phase difference layer-attached polarization plate which has remarkably suppressed decoloring when applied to an organic EL display device. This phase difference layer-attached polarization plate has: a polarization plate including a polarizer and a protective layer disposed at least on a viewing side of the polarizer; and a phase difference layer disposed on the reverse side of the viewing side of the polarization plate. The moisture permeability of the protective layer on the viewing side is at least 200 g/m2•24h, and is greater than the moisture permeability of the phase difference layer.

Description

位相差層付偏光板およびそれを用いた有機エレクトロルミネセンス表示装置Polarizing plate with retardation layer and organic electroluminescence display device using it
 本発明は、位相差層付偏光板およびそれを用いた有機エレクトロルミネセンス(EL)表示装置に関する。 The present invention relates to a polarizing plate with a retardation layer and an organic electroluminescence (EL) display device using the same.
 近年、薄型ディスプレイの普及と共に、有機ELパネルを搭載したディスプレイ(有機EL表示装置)が提案されている。有機ELパネルは反射性の高い金属層を有するため、外光反射や背景の映り込み等の問題を生じやすい。そこで、円偏光板を視認側に設けることにより、これらの問題を防ぐことが知られている(例えば、特許文献1~3)。しかし、有機EL表示装置に設けられた円偏光板は脱色しやすいという問題がある。 In recent years, with the spread of thin displays, displays equipped with organic EL panels (organic EL display devices) have been proposed. Since the organic EL panel has a highly reflective metal layer, problems such as reflection of external light and reflection of the background are likely to occur. Therefore, it is known that these problems can be prevented by providing a circular polarizing plate on the visual side (for example, Patent Documents 1 to 3). However, there is a problem that the circular polarizing plate provided in the organic EL display device is easily decolorized.
特開2003-311239号公報Japanese Unexamined Patent Publication No. 2003-31239 特開2002-372622号公報JP-A-2002-372622 特許第3325560号公報Japanese Patent No. 3325560
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、有機EL表示装置に適用した場合に脱色が顕著に抑制された位相差層付偏光板を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and a main object thereof is to provide a polarizing plate with a retardation layer in which decolorization is remarkably suppressed when applied to an organic EL display device. is there.
 本発明の位相差層付偏光板は、偏光子と該偏光子の少なくとも視認側に保護層とを含む偏光板と、該偏光板の視認側と反対側に配置された位相差層と、を有する。該視認側の保護層の透湿度は200g/m・24h以上であり、かつ、該位相差層の透湿度よりも大きい。
 1つの実施形態においては、上記偏光板は、視認側のみに保護層を含む。
 1つの実施形態においては、上記視認側の保護層の透湿度と上記位相差層の透湿度との差は200g/m・24h以上である。
 1つの実施形態においては、上記偏光板は、上記偏光子の視認側と反対側に別の保護層をさらに含み、上記視認側の保護層の透湿度は、該別の保護層の透湿度および上記位相差層の透湿度のうち小さいほうの透湿度よりも大きい。1つの実施形態においては、上記位相差層は液晶化合物の配向固化層であり、上記視認側の保護層の透湿度は上記別の保護層の透湿度よりも大きい。1つの実施形態においては、上記視認側の保護層の透湿度と上記別の保護層の透湿度および上記位相差層の透湿度のうち小さいほうの透湿度との差は、200g/m・24h以上である。
 1つの実施形態においては、上記別の保護層の透湿度は150g/m・24h以下である。
 1つの実施形態においては、上記偏光子の厚みは8μm以下である。
 1つの実施形態においては、上記位相差層付偏光板の総厚みは、20μm以上100μm以下である。
 本発明の別の局面によれば、有機エレクトロルミネセンス表示装置が提供される。この有機エレクトロルミネセンス表示装置は、上記の位相差層付偏光板を備える。
The polarizing plate with a retardation layer of the present invention comprises a polarizing plate, a polarizing plate including a protective layer at least on the viewing side of the polarizing element, and a retardation layer arranged on the side opposite to the viewing side of the polarizing plate. Have. Moisture permeability of the protective layer of the viewing side is a 200g / m 2 · 24h or more, greater than the moisture permeability of the retardation layer.
In one embodiment, the polarizing plate includes a protective layer only on the visual side.
In one embodiment, the difference between the moisture permeability of the moisture permeability and the retardation layer of the protective layer of the viewing side is 200g / m 2 · 24h or more.
In one embodiment, the polarizing plate further includes another protective layer on the side opposite to the visible side of the polarizer, and the moisture permeability of the protective layer on the visible side is the moisture permeability of the other protective layer and the moisture permeability of the other protective layer. The moisture permeability of the retardation layer is larger than the smaller one. In one embodiment, the retardation layer is an orientation-solidified layer of a liquid crystal compound, and the moisture permeability of the protective layer on the visible side is larger than the moisture permeability of the other protective layer. In one embodiment, the difference between the moisture permeability of the protective layer on the visible side, the moisture permeability of the other protective layer, and the moisture permeability of the retardation layer, whichever is smaller, is 200 g / m 2. It is 24 hours or more.
In one embodiment, the moisture permeability of the further protective layer is not more than 150g / m 2 · 24h.
In one embodiment, the thickness of the polarizer is 8 μm or less.
In one embodiment, the total thickness of the polarizing plate with a retardation layer is 20 μm or more and 100 μm or less.
According to another aspect of the present invention, an organic electroluminescent display device is provided. This organic electroluminescence display device includes the above-mentioned polarizing plate with a retardation layer.
 本発明の実施形態によれば、位相差層付偏光板において、視認側保護層の透湿度を視認側と反対側の保護層(存在する場合)の透湿度および位相差層の透湿度のうち小さいほうの透湿度よりも大きくすることにより、有機EL表示装置に適用した場合に脱色が顕著に抑制された位相差層付偏光板を実現することができる。 According to the embodiment of the present invention, in the polarizing plate with a retardation layer, the moisture permeability of the protective layer on the viewing side is the moisture permeability of the protective layer (if present) on the opposite side to the viewing side and the moisture permeability of the retardation layer. By making the moisture permeability larger than the smaller one, it is possible to realize a polarizing plate with a retardation layer in which decolorization is remarkably suppressed when applied to an organic EL display device.
本発明の1つの実施形態による位相差層付偏光板の概略断面図である。It is schematic cross-sectional view of the polarizing plate with a retardation layer by one Embodiment of this invention.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
 本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
(Definition of terms and symbols)
Definitions of terms and symbols herein are as follows.
(1) Refractive index (nx, ny, nz)
"Nx" is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and "ny" is the in-plane direction orthogonal to the slow-phase axis (that is, the phase-advance axis direction). Is the refractive index of, and "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
“Re (λ)” is an in-plane phase difference measured with light having a wavelength of λ nm at 23 ° C. For example, "Re (550)" is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C. Re (λ) is obtained by the formula: Re (λ) = (nx−ny) × d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in the thickness direction (Rth)
“Rth (λ)” is a phase difference in the thickness direction measured with light having a wavelength of λ nm at 23 ° C. For example, "Rth (550)" is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C. Rth (λ) is obtained by the formula: Rth (λ) = (nx−nz) × d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is obtained by Nz = Rth / Re.
(5) Angle When referring to an angle herein, the angle includes both clockwise and counterclockwise with respect to the reference direction. Therefore, for example, "45 °" means ± 45 °.
A.位相差層付偏光板の全体構成
 図1は、本発明の1つの実施形態による位相差層付偏光板の概略断面図である。図示例の位相差層付偏光板100は、代表的には、偏光板10と位相差層20とを視認側からこの順に有する。偏光板10は、偏光子11と偏光子11の少なくとも視認側に保護層(視認側保護層)12とを含む。図示例では、偏光子11の視認側と反対側に保護層(内側保護層)13が設けられているが、保護層13は目的等に応じて省略されてもよい。例えば、位相差層20が樹脂フィルムの延伸フィルムで構成され、偏光子の保護層を兼ねることができる場合には、保護層13は省略され得る。一方、位相差層20が液晶化合物の配向固化層である場合には、代表的には、保護層13が設けられる。実用的には、位相差層20の偏光板10と反対側に(すなわち、視認側と反対側の最外層として)粘着剤層(図示せず)が設けられ、位相差層付偏光板は有機ELセルに貼り付け可能とされている。さらに、粘着剤層の表面には、位相差層付偏光板が使用に供されるまで、剥離フィルムが仮着されていることが好ましい。剥離フィルムを仮着することにより、粘着剤層を保護するとともに、位相差層付偏光板のロール形成が可能となる。
A. Overall Configuration of Polarizing Plate with Difference Layer FIG. 1 is a schematic cross-sectional view of the polarizing plate with a retardation layer according to one embodiment of the present invention. The polarizing plate 100 with a retardation layer in the illustrated example typically has a polarizing plate 10 and a retardation layer 20 in this order from the viewing side. The polarizing plate 10 includes a polarizing element 11 and a protective layer (visible side protective layer) 12 at least on the viewing side of the polarizing element 11. In the illustrated example, the protective layer (inner protective layer) 13 is provided on the side opposite to the visible side of the polarizer 11, but the protective layer 13 may be omitted depending on the purpose or the like. For example, if the retardation layer 20 is made of a stretched film of a resin film and can also serve as a protective layer for a polarizer, the protective layer 13 may be omitted. On the other hand, when the retardation layer 20 is an orientation-solidified layer of a liquid crystal compound, a protective layer 13 is typically provided. Practically, an adhesive layer (not shown) is provided on the side opposite to the polarizing plate 10 of the retardation layer 20 (that is, as the outermost layer on the side opposite to the viewing side), and the polarizing plate with the retardation layer is organic. It is said that it can be pasted on an EL cell. Further, it is preferable that a release film is temporarily adhered to the surface of the pressure-sensitive adhesive layer until a polarizing plate with a retardation layer is used. By temporarily attaching the release film, the pressure-sensitive adhesive layer can be protected and a roll of the polarizing plate with a retardation layer can be formed.
 本発明の実施形態においては、保護層12の透湿度は、保護層13(存在する場合)の透湿度および位相差層20の透湿度のうち小さいほうの透湿度よりも大きい。具体的には以下のとおりである:(1)保護層13が省略される場合、保護層12の透湿度は位相差層20の透湿度よりも大きく;(2)保護層13が存在する場合、保護層12の透湿度は保護層13の透湿度および位相差層20の透湿度のうち小さいほうの透湿度よりも大きく;(3)保護層13が存在し、かつ、位相差層20が液晶化合物の配向固化層である場合には、保護層12の透湿度は保護層13の透湿度よりも大きい。本発明者らは、位相差層付偏光板を有機EL表示装置に適用した場合に、位相差層付偏光板が脱色するという新たな課題に直面し、当該課題について鋭意検討した結果、脱色の原因は、有機ELパネルから発生するアンモニア(実質的には、アンモニウムイオン)であることを発見した。さらに、アンモニアによる脱色を抑制する手段について鋭意検討した結果、偏光子に侵入するアンモニウムイオンをできる限り遮断し、かつ、侵入してしまったアンモニウムイオンをできる限り排出することにより、当該脱色を顕著に抑制できることを発見した。このような知見に基づき、視認側と反対側(有機ELパネル側)の保護層または位相差層の透湿度を小さくすることにより偏光子に侵入するアンモニウムイオンをできる限り遮断し、視認側(有機ELパネルから遠い側)の透湿度を大きくすることにより侵入してしまったアンモニウムイオンをできる限り排出することを実現し、当該新たな課題を解決した。なお、偏光子の保護層は偏光子を水分(水蒸気)から保護することを主目的とすることに起因して、外側(視認側)の保護層の透湿度を小さくするよう設計されるところ、本発明の実施形態は、このような当業界の技術常識とは全く逆の技術的思想に基づくものである。 In the embodiment of the present invention, the moisture permeability of the protective layer 12 is larger than the moisture permeability of the protective layer 13 (if present) and the moisture permeability of the retardation layer 20 whichever is smaller. Specifically: (1) When the protective layer 13 is omitted, the moisture permeability of the protective layer 12 is larger than the moisture permeability of the retardation layer 20; (2) When the protective layer 13 is present. , The moisture permeability of the protective layer 12 is larger than the moisture permeability of the protective layer 13 and the moisture permeability of the retardation layer 20, whichever is smaller; (3) The protective layer 13 is present and the retardation layer 20 is present. In the case of the oriented solidified layer of the liquid crystal compound, the moisture permeability of the protective layer 12 is larger than the moisture permeability of the protective layer 13. The present inventors faced a new problem that the polarizing plate with a retardation layer is decolorized when the polarizing plate with a retardation layer is applied to an organic EL display device, and as a result of diligent studies on the problem, the decolorization was performed. It was discovered that the cause was ammonia (substantially ammonium ions) generated from the organic EL panel. Furthermore, as a result of diligent studies on means for suppressing decolorization due to ammonia, the decolorization is remarkable by blocking the ammonium ions that have invaded the polarizer as much as possible and discharging the ammonium ions that have invaded as much as possible. I found that it can be suppressed. Based on these findings, by reducing the moisture permeability of the protective layer or retardation layer on the side opposite to the viewing side (organic EL panel side), ammonium ions that invade the polarizer are blocked as much as possible, and the viewing side (organic). By increasing the moisture permeability on the side far from the EL panel), it was possible to discharge as much ammonium ions as possible that had invaded, and this new problem was solved. The protective layer of the polarizer is designed to reduce the moisture permeability of the outer (visual side) protective layer because the main purpose is to protect the polarizer from moisture (water vapor). The embodiment of the present invention is based on such a technical idea completely opposite to the common general technical knowledge in the art.
 保護層12の透湿度と保護層13(存在する場合)の透湿度および位相差層20の透湿度のうち小さいほうの透湿度との差は、好ましくは200g/m・24h以上であり、より好ましくは220g/m・24h以上であり、さらに好ましくは250g/m・24h以上であり、特に好ましくは300g/m・24h以上である。当該差の上限は、例えば600g/m・24hであり得る。当該差がこのような範囲であれば、位相差層付偏光板の脱色をさらに良好に抑制することができる。 The difference between the smaller moisture permeability of the moisture permeability and moisture permeability of the phase difference layer 20 of the moisture permeability and the protective layer 13 of the protective layer 12 (if present) is preferably 200g / m 2 · 24h or more, more preferably 220g / m 2 · 24h or more, more preferably 250g / m 2 · 24h or more, and particularly preferably 300g / m 2 · 24h or more. The upper limit of the difference may be, for example, 600g / m 2 · 24h. When the difference is within such a range, decolorization of the polarizing plate with a retardation layer can be suppressed more satisfactorily.
 保護層12の透湿度は、200g/m・24h以上であり、好ましくは300g/m・24h以上であり、より好ましくは330g/m・24h以上であり、さらに好ましくは360g/m・24h以上であり、特に好ましくは400g/m・24h以上である。保護層12の透湿度の上限は、例えば650g/m・24hであり得る。保護層13の透湿度は、好ましくは150g/m・24h以下であり、より好ましくは100g/m・24h以下であり、さらに好ましくは70g/m・24h以下であり、特に好ましくは50g/m・24h以下である。保護層13の透湿度は低いほど好ましく、その下限は、例えば5g/m・24hであり得る。保護層13が存在しない場合、あるいは、位相差層20の透湿度が保護層13の透湿度よりも小さい場合、位相差層20の透湿度は、好ましくは150g/m・24h以下であり、より好ましくは100g/m・24h以下であり、さらに好ましくは70g/m・24h以下であり、特に好ましくは50g/m・24h以下である。位相差層20の透湿度は低いほど好ましく、その下限は、例えば5g/m・24hであり得る。保護層12および13ならびに位相差層20の透湿度がこのような範囲であれば、上記の透湿度の差を所望の範囲とすることが容易である。なお、透湿度は、JIS Z 0208に準じて測定され得る。 Moisture permeability of the protective layer 12 is 200g / m 2 · 24h or more, preferably 300g / m 2 · 24h or more, more preferably 330g / m 2 · 24h or more, more preferably 360 g / m 2 · 24h or more, particularly preferably 400 g / m 2 · 24h or more. The upper limit of the moisture permeability of the protective layer 12 may be, for example, 650g / m 2 · 24h. Moisture permeability of the protective layer 13 is preferably not more than 150g / m 2 · 24h, more preferably not more than 100g / m 2 · 24h, more preferably at 70g / m 2 · 24h or less, particularly preferably 50g / m is 2 · 24h or less. Moisture permeability of the protective layer 13 is preferably as low, the lower limit can be, for example, 5g / m 2 · 24h. If the protective layer 13 is not present or, if the moisture permeability of the phase difference layer 20 is smaller than the moisture permeability of the protective layer 13, the moisture permeability of the retardation layer 20 is preferably not more than 150g / m 2 · 24h, more preferably not more than 100g / m 2 · 24h, more preferably less 70g / m 2 · 24h, most preferably not more than 50g / m 2 · 24h. Moisture permeability preferably as low retardation layer 20, the lower limit can be, for example, 5g / m 2 · 24h. If the moisture permeability of the protective layers 12 and 13 and the retardation layer 20 is within such a range, it is easy to set the above difference in moisture permeability to a desired range. The moisture permeability can be measured according to JIS Z 0208.
 位相差層付偏光板の総厚みは、好ましくは120μm以下であり、より好ましくは100μm以下であり、さらに好ましくは80μm以下である。総厚みの下限は、好ましくは20μmであり、より好ましくは45μmである。このような総厚みを有する位相差層付偏光板は、きわめて優れた可撓性および折り曲げ耐久性を有し得る。その結果、位相差層付偏光板は、湾曲した有機EL表示装置および/または屈曲もしくは折り曲げ可能な有機EL表示装置に特に好適に適用され得る。 The total thickness of the polarizing plate with a retardation layer is preferably 120 μm or less, more preferably 100 μm or less, and further preferably 80 μm or less. The lower limit of the total thickness is preferably 20 μm, more preferably 45 μm. A polarizing plate with a retardation layer having such a total thickness can have extremely excellent flexibility and bending durability. As a result, the polarizing plate with a retardation layer can be particularly preferably applied to a curved organic EL display device and / or a bendable or bendable organic EL display device.
 位相差層付偏光板は、その他の光学機能層をさらに含んでいてもよい。位相差層付偏光板に設けられ得る光学機能層の種類、特性、数、組み合わせ、配置位置等は、目的に応じて適切に設定され得る。例えば、位相差層付偏光板は、導電層または導電層付等方性基材をさらに有していてもよい(いずれも図示せず)。導電層または導電層付等方性基材は、代表的には、位相差層20の外側(偏光板10と反対側)に設けられる。導電層または導電層付等方性基材が設けられる場合、位相差層付偏光板は、有機ELセルと偏光板との間にタッチセンサが組み込まれた、いわゆるインナータッチパネル型入力表示装置に適用され得る。また例えば、位相差層付偏光板は、その他の位相差層をさらに含んでいてもよい。その他の位相差層の光学的特性(例えば、屈折率特性、面内位相差、Nz係数、光弾性係数)、厚み、配置位置等は、目的に応じて適切に設定され得る。 The polarizing plate with a retardation layer may further include other optical functional layers. The type, characteristics, number, combination, arrangement position, and the like of the optical functional layers that can be provided on the polarizing plate with the retardation layer can be appropriately set according to the purpose. For example, the polarizing plate with a retardation layer may further have a conductive layer or an isotropic base material with a conductive layer (neither is shown). The conductive layer or the isotropic base material with the conductive layer is typically provided on the outside of the retardation layer 20 (opposite to the polarizing plate 10). When a conductive layer or an isotropic substrate with a conductive layer is provided, the polarizing plate with a retardation layer can be applied to a so-called inner touch panel type input display device in which a touch sensor is incorporated between the organic EL cell and the polarizing plate. .. Further, for example, the polarizing plate with a retardation layer may further include other retardation layers. The optical characteristics (for example, refractive index characteristics, in-plane retardation, Nz coefficient, photoelastic coefficient), thickness, arrangement position, and the like of other retardation layers can be appropriately set according to the purpose.
 位相差層付偏光板は、枚葉状であってもよく長尺状であってもよい。本明細書において「長尺状」とは、幅に対して長さが十分に長い細長形状を意味し、例えば、幅に対して長さが10倍以上、好ましくは20倍以上の細長形状を含む。長尺状の位相差層付偏光板は、ロール状に巻回可能である。 The polarizing plate with a retardation layer may be single-wafered or elongated. As used herein, the term "long" means an elongated shape having a length sufficiently long with respect to the width, and for example, an elongated shape having a length of 10 times or more, preferably 20 times or more with respect to the width. Including. The long-shaped polarizing plate with a retardation layer can be wound in a roll shape.
 以下、位相差層付偏光板の構成要素について、より詳細に説明する。 Hereinafter, the components of the polarizing plate with a retardation layer will be described in more detail.
B.偏光板
B-1.偏光子
 偏光子11としては、任意の適切な偏光子が採用され得る。例えば、偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。
B. Polarizing plate B-1. Polarizer As the polarizer 11, any suitable polarizer can be adopted. For example, the resin film forming the polarizer may be a single-layer resin film or a laminated body having two or more layers.
 単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。 Specific examples of the polarizer composed of a single-layer resin film include a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer system partially saponified film. Examples thereof include those which have been dyed and stretched with a bicolor substance such as iodine or a bicolor dye, and polyene-based oriented films such as a dehydrated product of PVA and a dehydrogenated product of polyvinyl chloride. Preferably, since the PVA-based film is excellent in optical properties, a polarizer obtained by dyeing a PVA-based film with iodine and uniaxially stretching the film is used.
 上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。 The above-mentioned dyeing with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution. The draw ratio of the uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment or while dyeing. Alternatively, it may be stretched and then dyed. If necessary, the PVA-based film is subjected to a swelling treatment, a cross-linking treatment, a washing treatment, a drying treatment and the like. For example, by immersing the PVA-based film in water and washing it with water before dyeing, it is possible not only to clean the dirt on the surface of the PVA-based film and the blocking inhibitor, but also to swell the PVA-based film to prevent uneven dyeing. Can be prevented.
 積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報、特許第6470455号に記載されている。これらの公報は、その全体の記載が本明細書に参考として援用される。 Specific examples of the polarizer obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin. Examples thereof include a polarizer obtained by using a laminate with a PVA-based resin layer coated and formed on a base material. The polarizer obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying the resin base material. It is produced by forming a PVA-based resin layer on the resin layer to obtain a laminate of a resin base material and a PVA-based resin layer; and stretching and dyeing the laminate to use the PVA-based resin layer as a polarizer. obtain. In the present embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further include, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution. The obtained resin substrate / polarizer laminate may be used as it is (that is, the resin substrate may be used as a protective layer for the polarizer), and the resin substrate is peeled off from the resin substrate / polarizer laminate. Then, an arbitrary appropriate protective layer according to the purpose may be laminated on the peeled surface. Details of the method for producing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. The entire description of these publications is incorporated herein by reference.
 偏光子の厚みは、好ましくは15μm以下であり、より好ましくは12μm以下であり、さらに好ましくは10μm以下であり、特に好ましくは8μm以下である。一方、偏光子の厚みは、好ましくは1μm以上であり、より好ましくは2μm以上であり、さらに好ましくは3μm以上である。偏光子の厚みがこのような範囲であれば、加熱時のカールを良好に抑制することができ、および、良好な加熱時の外観耐久性が得られる。 The thickness of the polarizer is preferably 15 μm or less, more preferably 12 μm or less, further preferably 10 μm or less, and particularly preferably 8 μm or less. On the other hand, the thickness of the polarizer is preferably 1 μm or more, more preferably 2 μm or more, and further preferably 3 μm or more. When the thickness of the polarizer is in such a range, curling during heating can be satisfactorily suppressed, and good appearance durability during heating can be obtained.
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、例えば41.5%~46.0%であり、好ましくは43.0%~46.0%であり、好ましくは44.5%~46.0%である。偏光子の偏光度は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 The polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The simple substance transmittance of the polarizer is, for example, 41.5% to 46.0%, preferably 43.0% to 46.0%, and preferably 44.5% to 46.0%. The degree of polarization of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
B-2.保護層
 視認側保護層12および内側保護層13(存在する場合)は、それぞれ、上記のような透湿度を有する限りにおいて、偏光子の保護層として使用できる任意の適切なフィルムで構成される。内側保護層13を構成する材料としては、代表的には、ポリノルボルネン等のシクロオレフィン系樹脂、(メタ)アクリル系樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル系樹脂、ポリエチレン等のポリオレフィン系樹脂、ポリカーボネート系樹脂が挙げられる。(メタ)アクリル系樹脂の代表例としては、ラクトン環構造を有する(メタ)アクリル系樹脂が挙げられる。ラクトン環構造を有する(メタ)アクリル系樹脂は、例えば、特開2000-230016号公報、特開2001-151814号公報、特開2002-120326号公報、特開2002-254544号公報、特開2005-146084号公報に記載されている。これらの公報は、本明細書に参考として援用されている。内側保護層13は、好ましくはシクロオレフィン系樹脂で構成される。視認側保護層12を構成する材料としては、代表的には、トリアセチルセルロース(TAC)等のセルロース系樹脂、微多孔質フィルムを形成し得る樹脂(例えば、ポリウレタン系樹脂)が挙げられる。
B-2. Protective Layer The visible side protective layer 12 and the inner protective layer 13 (if any) are each composed of any suitable film that can be used as a protective layer for the polarizer as long as it has the above-mentioned moisture permeability. Typical materials constituting the inner protective layer 13 include cycloolefin resins such as polycarbonate, (meth) acrylic resins, polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), and polyester resins such as polyethylene terephthalate (PEN). Examples thereof include polyolefin resins such as polyethylene and polycarbonate resins. A typical example of the (meth) acrylic resin is a (meth) acrylic resin having a lactone ring structure. Examples of the (meth) acrylic resin having a lactone ring structure include JP-A-2000-230016, JP-A-2001-151814, JP-A-2002-120326, JP-A-2002-254544, and JP-A-2005. It is described in Japanese Patent Application Laid-Open No. 146804. These publications are incorporated herein by reference. The inner protective layer 13 is preferably composed of a cycloolefin-based resin. Typical examples of the material constituting the visible side protective layer 12 include a cellulosic resin such as triacetyl cellulose (TAC) and a resin capable of forming a microporous film (for example, a polyurethane resin).
 位相差層付偏光板は、後述するように代表的には有機EL表示装置の視認側に配置され、保護層12は、その視認側に配置される。したがって、保護層12には、必要に応じて、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。さらに/あるいは、保護層12には、必要に応じて、偏光サングラスを介して視認する場合の視認性を改善する処理(代表的には、(楕)円偏光機能を付与すること、超高位相差を付与すること)が施されていてもよい。このような処理を施すことにより、偏光サングラス等の偏光レンズを介して表示画面を視認した場合でも、優れた視認性を実現することができる。したがって、位相差層付偏光板は、屋外で用いられ得る有機EL表示装置にも好適に適用され得る。 As will be described later, the polarizing plate with a retardation layer is typically arranged on the visible side of the organic EL display device, and the protective layer 12 is arranged on the visible side thereof. Therefore, the protective layer 12 may be subjected to surface treatment such as hard coat treatment, antireflection treatment, anti-sticking treatment, and anti-glare treatment, if necessary. Further / or, if necessary, the protective layer 12 is provided with a process for improving visibility when visually recognizing through polarized sunglasses (typically, a (elliptical) circularly polarized light function is provided, and an ultra-high phase difference is provided. May be given). By performing such a process, excellent visibility can be realized even when the display screen is visually recognized through a polarized lens such as polarized sunglasses. Therefore, the polarizing plate with a retardation layer can be suitably applied to an organic EL display device that can be used outdoors.
 保護層12の厚みは、所望の透湿度に応じて適切に設定され得る。保護層12の厚みは、好ましくは10μm~80μm、より好ましくは15μm~70μm、さらに好ましくは20μm~50μmである。なお、表面処理が施されている場合、保護層12の厚みは、表面処理層の厚みを含めた厚みである。 The thickness of the protective layer 12 can be appropriately set according to the desired moisture permeability. The thickness of the protective layer 12 is preferably 10 μm to 80 μm, more preferably 15 μm to 70 μm, and even more preferably 20 μm to 50 μm. When the surface treatment is applied, the thickness of the protective layer 12 is a thickness including the thickness of the surface treatment layer.
 保護層13は、1つの実施形態においては、光学的に等方性であることが好ましい。本明細書において「光学的に等方性である」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-10nm~+10nmであることをいう。保護層13の厚みもまた、所望の透湿度に応じて適切に設定され得る。保護層13の厚みは、好ましくは10μm~80μm、より好ましくは20μm~70μm、さらに好ましくは30μm~50μmである。位相差層20が樹脂フィルムの延伸フィルムである場合、薄型化の観点から、保護層13は好ましくは省略され得る。 The protective layer 13 is preferably optically isotropic in one embodiment. As used herein, "optically isotropic" means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is -10 nm to +10 nm. Say. The thickness of the protective layer 13 can also be appropriately set according to the desired moisture permeability. The thickness of the protective layer 13 is preferably 10 μm to 80 μm, more preferably 20 μm to 70 μm, and even more preferably 30 μm to 50 μm. When the retardation layer 20 is a stretched film of a resin film, the protective layer 13 may be preferably omitted from the viewpoint of thinning.
C.位相差層
 位相差層20は、単一層であってもよく、積層構造(実質的には、2層構造)を有していてもよい。
C. Phase difference layer The phase difference layer 20 may be a single layer or may have a laminated structure (substantially a two-layer structure).
 位相差層20が単一層である場合、位相差層20は代表的にはλ/4板として機能し得る。位相差層は、代表的には有機EL表示装置に反射防止特性を付与するために設けられる。位相差層は、代表的には、屈折率特性がnx>ny=nzの関係を示す。位相差層の面内位相差Re(550)は、好ましくは100nm~190nmであり、より好ましくは110nm~170nmであり、さらに好ましくは120nm~160nmである。なお、ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny>nzまたはny<nzとなる場合があり得る。 When the retardation layer 20 is a single layer, the retardation layer 20 can typically function as a λ / 4 plate. The retardation layer is typically provided to impart antireflection characteristics to an organic EL display device. The retardation layer typically shows a relationship in which the refractive index characteristic is nx> ny = nz. The in-plane retardation Re (550) of the retardation layer is preferably 100 nm to 190 nm, more preferably 110 nm to 170 nm, and even more preferably 120 nm to 160 nm. Here, "ny = nz" includes not only the case where ny and nz are completely equal, but also the case where they are substantially equal. Therefore, ny> nz or ny <nz may occur within a range that does not impair the effects of the present invention.
 位相差層のNz係数は、好ましくは0.9~1.5であり、より好ましくは0.9~1.3である。このような関係を満たすことにより、非常に優れた反射色相を有する有機EL表示装置が得られ得る。 The Nz coefficient of the retardation layer is preferably 0.9 to 1.5, and more preferably 0.9 to 1.3. By satisfying such a relationship, an organic EL display device having a very excellent reflected hue can be obtained.
 位相差層が単一層である場合、位相差層は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。この場合、位相差層のRe(450)/Re(550)は、好ましくは0.8以上1未満であり、より好ましくは0.8以上0.95以下である。このような構成であれば、非常に優れた反射防止特性を実現することができる。 When the retardation layer is a single layer, the retardation layer preferably exhibits a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light. In this case, the Re (450) / Re (550) of the retardation layer is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less. With such a configuration, very excellent antireflection characteristics can be realized.
 位相差層の遅相軸と偏光子の吸収軸とのなす角度は、好ましくは40°~50°であり、より好ましくは42°~48°であり、さらに好ましくは約45°である。角度がこのような範囲であれば、上記のように位相差層をλ/4板とすることにより、非常に優れた反射防止特性を有する有機EL表示装置が得られ得る。 The angle formed by the slow axis of the retardation layer and the absorption axis of the polarizer is preferably 40 ° to 50 °, more preferably 42 ° to 48 °, and even more preferably about 45 °. When the angle is in such a range, an organic EL display device having very excellent antireflection characteristics can be obtained by using the retardation layer as a λ / 4 plate as described above.
 位相差層は、上記のような特性を満足し得る限りにおいて、任意の適切な材料で構成され得る。具体的には、位相差層は、樹脂フィルムの延伸フィルムであってもよく、液晶化合物の配向固化層(以下、液晶配向固化層)であってもよい。 The retardation layer can be made of any suitable material as long as the above characteristics can be satisfied. Specifically, the retardation layer may be a stretched film of a resin film, or may be an orientation-solidifying layer of a liquid crystal compound (hereinafter, a liquid crystal alignment solidification layer).
 位相差層が樹脂フィルムの延伸フィルムである場合、樹脂フィルムを構成する樹脂の代表例としては、ポリカーボネート系樹脂またはポリエステルカーボネート系樹脂(以下、単にポリカーボネート系樹脂と称する場合がある)が挙げられる。ポリカーボネート系樹脂としては、所望の透湿度が得られる限りにおいて、任意の適切なポリカーボネート系樹脂を用いることができる。例えば、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジオール、脂環式ジメタノール、ジ、トリまたはポリエチレングリコール、ならびに、アルキレングリコールまたはスピログリコールからなる群から選択される少なくとも1つのジヒドロキシ化合物に由来する構造単位と、を含む。好ましくは、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジメタノールに由来する構造単位ならびに/あるいはジ、トリまたはポリエチレングリコールに由来する構造単位と、を含み;さらに好ましくは、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、ジ、トリまたはポリエチレングリコールに由来する構造単位と、を含む。ポリカーボネート系樹脂は、必要に応じてその他のジヒドロキシ化合物に由来する構造単位を含んでいてもよい。位相差層は、上記のようなポリカーボネート系樹脂で構成されるフィルムを、任意の適切な延伸条件で延伸することにより形成され得る。なお、ポリカーボネート系樹脂および位相差層の形成方法の詳細は、例えば、特開2014-10291号公報、特開2014-26266号公報、特開2015-212816号公報、特開2015-212817号公報、特開2015-212818号公報、特開2017-54093号公報、特開2018-60014号公報に記載されている。これらの公報の記載は本明細書に参考として援用される。 When the retardation layer is a stretched film of a resin film, typical examples of the resin constituting the resin film include a polycarbonate-based resin or a polyester carbonate-based resin (hereinafter, may be simply referred to as a polycarbonate-based resin). As the polycarbonate-based resin, any suitable polycarbonate-based resin can be used as long as the desired moisture permeability can be obtained. For example, the polycarbonate-based resin contains a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, an alicyclic diol, an alicyclic dimethanol, di, tri or polyethylene glycol, and an alkylene. Includes structural units derived from at least one dihydroxy compound selected from the group consisting of glycols or spiroglycols. Preferably, the polycarbonate-based resin is a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, a structural unit derived from an alicyclic dimethanol, and / or di, tri or polyethylene glycol. Includes structural units derived from; more preferably structural units derived from fluorene dihydroxy compounds, structural units derived from isosorbide dihydroxy compounds, and structural units derived from di, tri or polyethylene glycol. .. The polycarbonate-based resin may contain structural units derived from other dihydroxy compounds, if necessary. The retardation layer can be formed by stretching a film made of the above-mentioned polycarbonate resin under arbitrary suitable stretching conditions. For details on the method for forming the polycarbonate resin and the retardation layer, see, for example, JP-A-2014-10291, JP-A-2014-226666, JP-A-2015-212816, JP-A-2015-212817. It is described in JP-A-2015-212818, JP-A-2017-54093, and JP-A-2018-60014. The descriptions in these publications are incorporated herein by reference.
 位相差層が液晶配向固化層である場合、液晶化合物を用いることにより、得られる位相差層のnxとnyとの差を非液晶材料に比べて格段に大きくすることができるので、所望の面内位相差を得るための位相差層の厚みを格段に小さくすることができる。その結果、位相差層付偏光板(結果として、有機EL表示装置)のさらなる薄型化を実現することができる。本明細書において「配向固化層」とは、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層をいう。なお、「配向固化層」は、液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。本実施形態においては、代表的には、棒状の液晶化合物が位相差層の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。液晶化合物の具体例および液晶配向固化層の形成方法の詳細は、例えば、特開2006-163343号公報、特開2006-178389号公報に記載されている。これらの公報の記載は本明細書に参考として援用される。 When the retardation layer is a liquid crystal oriented solidified layer, the difference between nx and ny of the obtained retardation layer can be remarkably increased as compared with the non-liquid crystal material by using the liquid crystal compound, so that the desired surface can be obtained. The thickness of the retardation layer for obtaining the inner retardation can be remarkably reduced. As a result, it is possible to further reduce the thickness of the polarizing plate with a retardation layer (as a result, the organic EL display device). As used herein, the term "aligned solidified layer" refers to a layer in which a liquid crystal compound is oriented in a predetermined direction within the layer and the oriented state is fixed. The "oriented solidified layer" is a concept including an oriented cured layer obtained by curing a liquid crystal monomer. In the present embodiment, the rod-shaped liquid crystal compounds are typically oriented in a state of being aligned in the slow axis direction of the retardation layer (homogeneous orientation). Specific examples of the liquid crystal compound and details of the method for forming the liquid crystal oriented solidified layer are described in, for example, JP-A-2006-163343 and JP-A-2006-178389. The descriptions in these publications are incorporated herein by reference.
 位相差層の厚みは、代表的には、λ/4板として適切に機能し得る厚みに設定され得る。位相差層が樹脂フィルムの延伸フィルムである場合、位相差層の厚みは、例えば10μm~60μmであり得る。位相差層が液晶配向固化層である場合、位相差層の厚みは、例えば1μm~5μmであり得る。 The thickness of the retardation layer can be typically set to a thickness that can properly function as a λ / 4 plate. When the retardation layer is a stretched film of a resin film, the thickness of the retardation layer can be, for example, 10 μm to 60 μm. When the retardation layer is a liquid crystal oriented solidification layer, the thickness of the retardation layer can be, for example, 1 μm to 5 μm.
 位相差層が積層構造を有する場合、位相差層は、代表的には、第1の液晶配向固化層と第2の液晶配向固化層の2層構造を有する。この場合、第1の液晶配向固化層または第2の液晶配向固化層のいずれか一方はλ/2板として機能し得、他方はλ/4板として機能し得る。ここでは、第1の液晶配向固化層がλ/2板として機能し得、第2の液晶配向固化層がλ/4板として機能し得る場合を説明するが、これらは逆であってもよい。第1の液晶配向固化層の厚みは、λ/2板の所望の面内位相差が得られるよう調整され得、例えば2.0μm~4.0μmであり得る。第2の液晶配向固化層の厚みは、λ/4板の所望の面内位相差が得られるよう調整され得、例えば1.0μm~2.5μmであり得る。第1の液晶配向固化層の面内位相差Re(550)は、好ましくは200nm~300nmであり、より好ましくは230nm~290nmであり、さらに好ましくは250nm~280nmである。第2の液晶配向固化層の面内位相差Re(550)は、上記のとおり、好ましくは100nm~190nmであり、より好ましくは110nm~170nmであり、さらに好ましくは120nm~160nmである。第1の液晶配向固化層の遅相軸と偏光子の吸収軸とのなす角度は、好ましくは10°~20°であり、より好ましくは12°~18°であり、さらに好ましくは約15°である。第2の液晶配向固化層の遅相軸と偏光子の吸収軸とのなす角度は、好ましくは70°~80°であり、より好ましくは72°~78°であり、さらに好ましくは約75°である。このような構成であれば、理想的な逆波長分散特性に近い特性を得ることが可能であり、結果として、非常に優れた反射防止特性を実現することができる。 When the retardation layer has a laminated structure, the retardation layer typically has a two-layer structure of a first liquid crystal oriented solidified layer and a second liquid crystal oriented solidified layer. In this case, either one of the first liquid crystal oriented solidified layer or the second liquid crystal oriented solidified layer can function as a λ / 2 plate, and the other can function as a λ / 4 plate. Here, the case where the first liquid crystal oriented solidified layer can function as a λ / 2 plate and the second liquid crystal oriented solidified layer can function as a λ / 4 plate will be described, but these may be reversed. .. The thickness of the first liquid crystal oriented solidified layer can be adjusted so as to obtain a desired in-plane phase difference of the λ / 2 plate, and can be, for example, 2.0 μm to 4.0 μm. The thickness of the second liquid crystal oriented solidified layer can be adjusted so as to obtain the desired in-plane phase difference of the λ / 4 plate, and can be, for example, 1.0 μm to 2.5 μm. The in-plane retardation Re (550) of the first liquid crystal oriented solidified layer is preferably 200 nm to 300 nm, more preferably 230 nm to 290 nm, and further preferably 250 nm to 280 nm. As described above, the in-plane retardation Re (550) of the second liquid crystal oriented solidified layer is preferably 100 nm to 190 nm, more preferably 110 nm to 170 nm, and further preferably 120 nm to 160 nm. The angle formed by the slow axis of the first liquid crystal oriented solidified layer and the absorption axis of the polarizer is preferably 10 ° to 20 °, more preferably 12 ° to 18 °, and even more preferably about 15 °. Is. The angle formed by the slow axis of the second liquid crystal oriented solidified layer and the absorption axis of the polarizer is preferably 70 ° to 80 °, more preferably 72 ° to 78 °, and even more preferably about 75 °. Is. With such a configuration, it is possible to obtain characteristics close to the ideal reverse wavelength dispersion characteristic, and as a result, it is possible to realize extremely excellent antireflection characteristics.
D.画像表示装置
 上記A項からC項に記載の位相差層付偏光板は、有機EL表示装置に適用され得る。したがって、本発明の実施形態は、そのような位相差層付偏光板を用いた有機EL表示装置を包含する。本発明の実施形態による有機EL表示装置は、その視認側に上記A項からC項に記載の位相差層付偏光板を備える。位相差層付偏光板は、位相差層が有機ELセル側となるように(偏光板が視認側となるように)積層されている。1つの実施形態においては、有機EL表示装置は、湾曲した形状(実質的には、湾曲した表示画面)を有し、および/または、屈曲もしくは折り曲げ可能である。上記のとおり、本発明者らは、位相差層付偏光板を有機EL表示装置に適用した場合に、有機ELパネルから発生するアンモニア(実質的には、アンモニウムイオン)により位相差層付偏光板が脱色するという新たな課題を発見し、上記A項からC項に記載の位相差層付偏光板により当該課題を解決した。すなわち、有機EL表示装置において、本発明の実施形態による位相差層付偏光板の効果が顕著である。
D. Image display device The polarizing plate with a retardation layer according to the above items A to C can be applied to an organic EL display device. Therefore, an embodiment of the present invention includes an organic EL display device using such a polarizing plate with a retardation layer. The organic EL display device according to the embodiment of the present invention includes the polarizing plate with a retardation layer according to the above items A to C on the visible side thereof. The polarizing plate with a retardation layer is laminated so that the retardation layer is on the organic EL cell side (the polarizing plate is on the visual recognition side). In one embodiment, the organic EL display device has a curved shape (substantially a curved display screen) and / or is bendable or bendable. As described above, when the polarizing plate with a retardation layer is applied to an organic EL display device, the present inventors use a polarizing plate with a retardation layer due to ammonia (substantially ammonium ions) generated from the organic EL panel. Discovered a new problem of decolorization, and solved the problem by the polarizing plate with a retardation layer according to the above items A to C. That is, in the organic EL display device, the effect of the polarizing plate with a retardation layer according to the embodiment of the present invention is remarkable.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。
(1)厚み
 10μm以下の厚みは、干渉膜厚計(大塚電子社製、製品名「MCPD-3000」)を用いて測定した。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
(2)単体透過率および偏光度
 実施例および比較例に用いた偏光板について、紫外可視分光光度計(大塚電子社製「LPF-2000」)を用いて測定した単体透過率Ts、平行透過率Tp、直交透過率Tcをそれぞれ、偏光子のTs、TpおよびTcとした。これらのTs、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。得られたTpおよびTcから、下記式により偏光度Pを求めた。
   偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
(3)透湿度
 JIS Z 0208に準じて測定した。具体的には、実施例および比較例で用いた保護層または位相差層(を構成するフィルム)を10cmΦの円状に切り出し、測定試料とした。この測定試料について、日立製作所社製「MOCON」を用いて、40℃、92%RHの試験条件で透湿度を測定した。
(4)アンモニア脱色試験
 ガラス瓶(直径30mmおよび深さ50mmの円筒状)に10%アンモニア水溶液10gを入れた。このとき、アンモニア水溶液の液面からガラス瓶の口(上端)までの距離は約30mmであった。実施例および比較例で得られた位相差層付偏光板を15mm×15mmサイズに切り出し、位相差層側に粘着剤層を設けて測定資料とした。この測定資料でガラス瓶の口がすべて覆われるようにして、かつ、蒸気が隙間から漏れないようにして、粘着剤層を介してガラス瓶の口の縁に測定資料を貼り合わせた。測定資料で覆われたガラス瓶を60℃で2時間加熱した。位相差層付偏光板(実質的には、偏光子)の加熱前の偏光度をP、加熱後の偏光度をP20として、下記式からΔPを算出した。ΔPが小さいほど、アンモニアによる脱色が抑制されていることを意味する。
   ΔP=P20-P
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measurement method of each characteristic is as follows. Unless otherwise specified, "parts" and "%" in Examples and Comparative Examples are based on weight.
(1) Thickness The thickness of 10 μm or less was measured using an interference film thickness meter (manufactured by Otsuka Electronics Co., Ltd., product name “MCPD-3000”). The thickness exceeding 10 μm was measured using a digital micrometer (manufactured by Anritsu, product name “KC-351C”).
(2) Single-unit transmittance and polarization degree The single-unit transmittance Ts and parallel transmittance measured using an ultraviolet-visible spectrophotometer (“LPF-2000” manufactured by Otsuka Electronics Co., Ltd.) for the polarizing plates used in Examples and Comparative Examples. The Tp and the orthogonal transmittance Tc were defined as the polarizers Ts, Tp and Tc, respectively. These Ts, Tp and Tc are Y values measured by the JIS Z8701 2 degree field of view (C light source) and corrected for luminosity factor. From the obtained Tp and Tc, the degree of polarization P was determined by the following formula.
Polarization degree P (%) = {(Tp-Tc) / (Tp + Tc)} 1/2 × 100
(3) Moisture Permeability Measured according to JIS Z 0208. Specifically, the protective layer or the retardation layer (the film constituting the layer) used in Examples and Comparative Examples was cut out in a circle of 10 cmΦ and used as a measurement sample. The moisture permeability of this measurement sample was measured using "MOCON" manufactured by Hitachi, Ltd. under the test conditions of 40 ° C. and 92% RH.
(4) Ammonia decolorization test 10 g of a 10% aqueous ammonia solution was placed in a glass bottle (cylindrical shape having a diameter of 30 mm and a depth of 50 mm). At this time, the distance from the liquid level of the aqueous ammonia solution to the mouth (upper end) of the glass bottle was about 30 mm. The polarizing plates with retardation layers obtained in Examples and Comparative Examples were cut out to a size of 15 mm × 15 mm, and an adhesive layer was provided on the retardation layer side to use as measurement data. The measurement material was attached to the edge of the mouth of the glass bottle via the adhesive layer so that the mouth of the glass bottle was completely covered with this measurement material and steam did not leak through the gap. The glass bottle covered with the measurement material was heated at 60 ° C. for 2 hours. ΔP was calculated from the following formula , where P 0 was the degree of polarization of the polarizing plate with a retardation layer (substantially, the polarizer) before heating and P 20 was the degree of polarization after heating. The smaller ΔP, the more the decolorization by ammonia is suppressed.
ΔP = P 20 −P 0
[実施例1]
1.偏光子の作製
 熱可塑性樹脂基材として、長尺状で、吸水率0.75%、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用いた。樹脂基材の片面に、コロナ処理を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマーZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光膜の単体透過率(Ts)が43.0%となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4.0重量%、ヨウ化カリウム5.0重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、90℃に保たれたオーブン中で乾燥しながら、表面温度が75℃に保たれたSUS製の加熱ロールに約2秒接触させた(乾燥収縮処理)。乾燥収縮処理による積層体の幅方向の収縮率は5.2%であった。
 このようにして、樹脂基材上に厚み5μmの偏光子を形成した。
[Example 1]
1. 1. Preparation of Polarizer As the thermoplastic resin base material, an amorphous isophthal copolymer polyethylene terephthalate film (thickness: 100 μm) having a long shape, a water absorption of 0.75%, and a Tg of about 75 ° C. was used. One side of the resin base material was corona-treated.
100 weight of PVA-based resin in which polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimer Z410") are mixed at a ratio of 9: 1. A PVA aqueous solution (coating solution) was prepared by dissolving 13 parts by weight of potassium iodide in water.
The PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 μm to prepare a laminate.
The obtained laminate was uniaxially stretched at the free end 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130 ° C. (aerial auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, the finally obtained polarizing film was placed in a dyeing bath having a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water). Immersion was carried out for 60 seconds while adjusting the concentration so that the simple substance transmittance (Ts) was 43.0% (dyeing treatment).
Then, it was immersed in a cross-linked bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
Then, while immersing the laminate in a boric acid aqueous solution (boric acid concentration 4.0% by weight, potassium iodide 5.0% by weight) at a liquid temperature of 70 ° C., the rolls having different peripheral speeds are subjected to the longitudinal direction (longitudinal direction). ) Was uniaxially stretched so that the total stretching ratio was 5.5 times (underwater stretching treatment).
Then, the laminate was immersed in a washing bath at a liquid temperature of 20 ° C. (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
Then, while drying in an oven kept at 90 ° C., it was brought into contact with a heating roll made of SUS whose surface temperature was kept at 75 ° C. for about 2 seconds (dry shrinkage treatment). The shrinkage rate in the width direction of the laminated body by the drying shrinkage treatment was 5.2%.
In this way, a polarizer having a thickness of 5 μm was formed on the resin base material.
2.偏光板の作製
 上記で得られた樹脂基材/偏光子の積層体の偏光子表面に、紫外線硬化型接着剤を介してHC-TACフィルムを貼り合わせた。具体的には、硬化型接着剤の厚みが1.0μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光線をHC-TACフィルム側から照射して接着剤を硬化させた。なお、HC-TACフィルムは、トリアセチルセルロース(TAC)フィルム(厚み25μm)にハードコート(HC)層(厚み7μm)が形成されたフィルムであり、TACフィルムが偏光子側となるようにして貼り合わせた。次いで、樹脂基材を剥離し、当該剥離面にシクロオレフィン系樹脂フィルム(厚み13μm:以下、COPフィルム)を上記と同様にして貼り合わせた。HC-TACフィルムの透湿度は427g/m・24hであり、COPフィルムの透湿度は35g/m・24hであった。このようにして、視認側保護層(HC-TACフィルム)/偏光子/別の保護層(COPフィルム)の構成を有する偏光板を得た。
2. Preparation of Polarizing Plate An HC-TAC film was attached to the surface of the polarizer of the resin base material / polarizer laminate obtained above via an ultraviolet curable adhesive. Specifically, the curable adhesive was coated so as to have a thickness of 1.0 μm, and bonded using a roll machine. Then, UV light was irradiated from the HC-TAC film side to cure the adhesive. The HC-TAC film is a film in which a hard coat (HC) layer (thickness 7 μm) is formed on a triacetyl cellulose (TAC) film (thickness 25 μm), and the TAC film is attached so as to be on the polarizer side. I matched it. Next, the resin base material was peeled off, and a cycloolefin-based resin film (thickness 13 μm: hereinafter, COP film) was attached to the peeled surface in the same manner as described above. Moisture permeability of HC-TAC film was 427g / m 2 · 24h, moisture permeability of the COP film was 35g / m 2 · 24h. In this way, a polarizing plate having a structure of a visible side protective layer (HC-TAC film) / a polarizer / another protective layer (COP film) was obtained.
3.位相差層を構成する位相差フィルムの作製
3-1.ポリエステルカーボネート系樹脂の重合
 撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン29.60質量部(0.046mol)、イソソルビド(ISB)29.21質量部(0.200mol)、スピログリコール(SPG)42.28質量部(0.139mol)、ジフェニルカーボネート(DPC)63.77質量部(0.298mol)及び触媒として酢酸カルシウム1水和物1.19×10-2質量部(6.78×10-5mol)を仕込んだ。反応器内を減圧窒素置換した後、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、生成したポリエステルカーボネート系樹脂を水中に押し出し、ストランドをカッティングしてペレットを得た。
3. 3. Preparation of retardation film constituting the retardation layer 3-1. Polymerization of polyester carbonate-based resin Polymerization was carried out using a batch polymerization apparatus consisting of two vertical reactors equipped with a stirring blade and a reflux condenser controlled at 100 ° C. Bis [9- (2-phenoxycarbonylethyl) fluorene-9-yl] methane 29.60 parts by mass (0.046 mol), isosorbide (ISB) 29.21 parts by mass (0.200 mol), spiroglycol (SPG) 42 .28 parts by weight (0.139 mol), diphenyl carbonate (DPC) 63.77 parts by weight (0.298 mol) and calcium acetate monohydrate 1.19 × 10 -2 parts by weight as a catalyst (6.78 × 10 - 5 mol) was charged. After substituting nitrogen under reduced pressure in the reactor, heating was performed with a heat medium, and stirring was started when the internal temperature reached 100 ° C. The internal temperature was brought to 220 ° C. 40 minutes after the start of the temperature rise, and the depressurization was started at the same time as controlling to maintain this temperature, and the temperature was adjusted to 13.3 kPa 90 minutes after reaching 220 ° C. The phenol vapor produced as a by-product of the polymerization reaction was guided to a reflux condenser at 100 ° C., the monomer component contained in a small amount in the phenol vapor was returned to the reactor, and the uncondensed phenol vapor was guided to a condenser at 45 ° C. for recovery. Nitrogen was introduced into the first reactor and the pressure was once restored to atmospheric pressure, and then the oligomerized reaction solution in the first reactor was transferred to the second reactor. Then, the temperature rise and depressurization in the second reactor were started, and the internal temperature was 240 ° C. and the pressure was 0.2 kPa in 50 minutes. Then, the polymerization was allowed to proceed until the stirring power became a predetermined value. When the predetermined power was reached, nitrogen was introduced into the reactor to repressurize, the produced polyester carbonate-based resin was extruded into water, and the strands were cut to obtain pellets.
3-2.位相差フィルムの作製
 得られたポリエステルカーボネート系樹脂(ペレット)を80℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー設定温度:250℃)、Tダイ(幅200mm、設定温度:250℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み135μmの長尺状の樹脂フィルムを作製した。得られた長尺状の樹脂フィルムを、幅方向に、延伸温度133℃、延伸倍率2.8倍で延伸し、厚み47μmの位相差フィルムを得た。得られた位相差フィルムのRe(550)は141nmであり、Re(450)/Re(550)は0.82であり、Nz係数は1.12であった。また、得られた位相差フィルムの透湿度は75g/m・24hであった。
3-2. Preparation of retardation film After vacuum-drying the obtained polyester carbonate resin (pellets) at 80 ° C for 5 hours, a single-screw extruder (manufactured by Toshiba Machine Co., Ltd., cylinder set temperature: 250 ° C), T-die (width 200 mm) , Set temperature: 250 ° C.), chill roll (set temperature: 120 to 130 ° C.), and a film forming apparatus equipped with a winder was used to prepare a long resin film having a thickness of 135 μm. The obtained long resin film was stretched in the width direction at a stretching temperature of 133 ° C. and a stretching ratio of 2.8 times to obtain a retardation film having a thickness of 47 μm. The Re (550) of the obtained retardation film was 141 nm, the Re (450) / Re (550) was 0.82, and the Nz coefficient was 1.12. Further, the moisture permeability of the obtained retardation film was 75g / m 2 · 24h.
4.位相差層付偏光板の作製
 上記2.で得られた偏光板の別の保護層(COPフィルム)表面に、上記3.で得られた位相差フィルムを、アクリル系粘着剤(厚み5μm)を介して貼り合わせた。このとき、偏光子の吸収軸と位相差フィルムの遅相軸とが45°の角度をなすようにして貼り合わせた。このようにして、視認側保護層(HC-TACフィルム)/偏光子/別の保護層(COPフィルム)/粘着剤層/位相差層の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは112μmであった。さらに、得られた位相差層付偏光板を上記(4)の評価に供した。結果を表1に示す。
4. Fabrication of polarizing plate with retardation layer 2. On the surface of another protective layer (COP film) of the polarizing plate obtained in 3. above. The retardation film obtained in (1) was bonded via an acrylic pressure-sensitive adhesive (thickness: 5 μm). At this time, the absorption axis of the polarizer and the slow axis of the retardation film were bonded so as to form an angle of 45 °. In this way, a polarizing plate with a retardation layer having a structure of a visible side protective layer (HC-TAC film) / a polarizer / another protective layer (COP film) / an adhesive layer / a retardation layer was obtained. The total thickness of the obtained polarizing plate with a retardation layer was 112 μm. Further, the obtained polarizing plate with a retardation layer was subjected to the evaluation of (4) above. The results are shown in Table 1.
[実施例2]
1.偏光板の作製
 実施例1と同様にして偏光板を作製した。
[Example 2]
1. 1. Preparation of Polarizing Plate A polarizing plate was prepared in the same manner as in Example 1.
2.位相差層を構成する液晶配向固化層の作製
 式(I)で表される化合物55部、式(II)で表される化合物25部、式(III)で表される化合物20部をシクロペンタノン(CPN)400部に加えた後、60℃に加温、撹拌して溶解させ、溶解が確認された後、室温に戻し、イルガキュア907(BASFジャパン株式会社製)3部、メガファックF-554(DIC株式会社製)0.2部、p-メトキシフェノール(MEHQ)0.1部を加えて、さらに撹拌を行い、溶液を得た。溶液は、透明で均一であった。得られた溶液を0.20μmのメンブランフィルターでろ過し、重合性組成物を得た。一方、配向膜用ポリイミド溶液を厚さ0.7mmのガラス基材にスピンコート法を用いて塗布し、100℃で10分乾燥した後、200℃で60分焼成することにより塗膜を得た。得られた塗膜をラビング処理し、配向膜を形成した。ラビング処理は、市販のラビング装置を用いて行った。基材(実質的には、配向膜)に、上記で得られた重合性組成物をスピンコート法で塗布し、100℃で2分乾燥した。得られた塗布膜を室温まで冷却した後、高圧水銀ランプを用いて、30mW/cmの強度で30秒間紫外線を照射して液晶配向固化層を得た。液晶配向固化層の面内位相差Re(550)は130nmであった。また、液晶配向固化層のRe(450)/Re(550)は0.851であり、逆分散波長特性を示した。
2. Preparation of liquid crystal oriented solidified layer constituting the retardation layer 55 parts of the compound represented by the formula (I), 25 parts of the compound represented by the formula (II), and 20 parts of the compound represented by the formula (III) are cyclopenta. After adding to 400 parts of non (CPN), heat to 60 ° C. to dissolve by stirring, and after confirmation of dissolution, return to room temperature, and return to room temperature, 3 parts of Irgacure 907 (manufactured by BASF Japan Co., Ltd.), Megafuck F- 0.2 part of 554 (manufactured by DIC Corporation) and 0.1 part of p-methoxyphenol (MEHQ) were added, and the mixture was further stirred to obtain a solution. The solution was clear and uniform. The obtained solution was filtered through a 0.20 μm membrane filter to obtain a polymerizable composition. On the other hand, a polyimide solution for an alignment film was applied to a glass substrate having a thickness of 0.7 mm by a spin coating method, dried at 100 ° C. for 10 minutes, and then fired at 200 ° C. for 60 minutes to obtain a coating film. .. The obtained coating film was subjected to a rubbing treatment to form an alignment film. The rubbing treatment was performed using a commercially available rubbing device. The polymerizable composition obtained above was applied to a base material (substantially an alignment film) by a spin coating method, and dried at 100 ° C. for 2 minutes. The obtained coating film was cooled to room temperature and then irradiated with ultraviolet rays at an intensity of 30 mW / cm 2 for 30 seconds using a high-pressure mercury lamp to obtain a liquid crystal oriented solidified layer. The in-plane retardation Re (550) of the liquid crystal oriented solidified layer was 130 nm. The Re (450) / Re (550) of the liquid crystal oriented solidified layer was 0.851, showing the inverse dispersion wavelength characteristic.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
3.位相差層付偏光板の作製
 上記1.で得られた偏光板の別の保護層(COPフィルム)表面に、上記2.で得られた液晶配向固化層を転写した。このとき、偏光子の吸収軸と液晶配向固化層の遅相軸とのなす角度が45°になるようにして転写(貼り合わせ)を行った。なお、転写(貼り合わせ)は、紫外線硬化型接着剤(厚み1.0μm)を介して行った。このようにして、視認側保護層(HC-TACフィルム)/偏光子/別の保護層(COPフィルム)/接着剤層/位相差層(液晶配向固化層)の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板を実施例1と同様の評価に供した。結果を表1に示す。
3. 3. Fabrication of polarizing plate with retardation layer 1. On the surface of another protective layer (COP film) of the polarizing plate obtained in 2. above. The liquid crystal oriented solidified layer obtained in the above was transferred. At this time, transfer (bonding) was performed so that the angle formed by the absorption axis of the polarizer and the slow axis of the liquid crystal oriented solidified layer was 45 °. The transfer (bonding) was carried out via an ultraviolet curable adhesive (thickness 1.0 μm). In this way, polarized light with a retardation layer having a structure of a visible side protective layer (HC-TAC film) / a polarizing element / another protective layer (COP film) / an adhesive layer / a retardation layer (liquid crystal oriented solidifying layer). I got a board. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
[実施例3]
 別の保護層を設けなかったこと以外は実施例1と同様にして位相差層付偏光板を得た。得られた位相差層付偏光板を実施例1と同様の評価に供した。結果を表1に示す。
[Example 3]
A polarizing plate with a retardation layer was obtained in the same manner as in Example 1 except that a separate protective layer was not provided. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
[実施例4~6]
 視認側保護層、偏光子、別の保護層および位相差層を表1に示す構成として位相差層付偏光板を得た。得られた位相差層付偏光板を実施例1と同様の評価に供した。結果を表1に示す。
[Examples 4 to 6]
A polarizing plate with a retardation layer was obtained with the structure shown in Table 1 for the viewing side protective layer, the polarizer, another protective layer, and the retardation layer. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
[比較例1]
 実施例1と同様にして樹脂基材/偏光子の積層体を作製した。得られた樹脂基材/偏光子の積層体の偏光子表面に、実施例1と同様にしてHC-COPフィルムを貼り合わせた。HC-COPフィルムは、COPフィルム(厚み25μm)にハードコート(HC)層(厚み2μm)が形成されたフィルムであり、COPフィルムが偏光子側となるようにして貼り合わせた。次いで、樹脂基材を剥離し、当該剥離面に実施例1と同様のCOPフィルムを実施例1と同様にして貼り合わせた。HC-COPフィルムの透湿度は17g/m・24hであり、COPフィルムの透湿度は35g/m・24hであった。このようにして、視認側保護層(HC-COPフィルム)/偏光子/別の保護層(COPフィルム)の構成を有する偏光板を得た。以下の手順は実施例1と同様にして位相差層付偏光板を得た。得られた位相差層付偏光板を実施例1と同様の評価に供した。結果を表1に示す。
[Comparative Example 1]
A resin base material / polarizer laminate was produced in the same manner as in Example 1. An HC-COP film was attached to the surface of the polarizer of the obtained resin base material / polarizer laminate in the same manner as in Example 1. The HC-COP film is a film in which a hard coat (HC) layer (thickness 2 μm) is formed on a COP film (thickness 25 μm), and the COP film is bonded so as to be on the polarizer side. Next, the resin base material was peeled off, and a COP film similar to that in Example 1 was attached to the peeled surface in the same manner as in Example 1. Moisture permeability of HC-COP film is 17g / m 2 · 24h, moisture permeability of the COP film was 35g / m 2 · 24h. In this way, a polarizing plate having a structure of a visible side protective layer (HC-COP film) / a polarizer / another protective layer (COP film) was obtained. The following procedure was the same as in Example 1 to obtain a polarizing plate with a retardation layer. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
[比較例2~10]
 視認側保護層、偏光子、別の保護層および位相差層を表1に示す構成として位相差層付偏光板を得た。得られた位相差層付偏光板を実施例1と同様の評価に供した。結果を表1に示す。
[Comparative Examples 2 to 10]
A polarizing plate with a retardation layer was obtained with the structure shown in Table 1 for the viewing side protective layer, the polarizer, another protective layer, and the retardation layer. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
[評価]
 表1から明らかなように、本発明の実施例によれば、アンモニアに曝されても偏光度がほとんど変化しない(すなわち、脱色しない)位相差層付偏光板を得ることができる。すなわち、本発明の実施例によれば、有機EL表示装置に適用した場合に脱色が抑制された位相差層付偏光板を実現できることがわかる。一方、比較例の位相差層付偏光板は偏光機能が大幅に減少し、その過半数は偏光機能がほとんど消失している。
[Evaluation]
As is clear from Table 1, according to the examples of the present invention, it is possible to obtain a polarizing plate with a retardation layer in which the degree of polarization hardly changes (that is, does not decolorize) even when exposed to ammonia. That is, according to the embodiment of the present invention, it can be seen that a polarizing plate with a retardation layer in which decolorization is suppressed can be realized when applied to an organic EL display device. On the other hand, the polarizing plate with a retardation layer in the comparative example has a significantly reduced polarization function, and the majority of the polarizing plates have almost no polarization function.
 本発明の位相差層付偏光板は、有機EL表示装置の反射防止用円偏光板として好適に用いられる。 The polarizing plate with a retardation layer of the present invention is suitably used as an antireflection circular polarizing plate of an organic EL display device.
 10   偏光板
 11   偏光子
 12   保護層
 13   保護層
 20   位相差層
100   位相差層付偏光板
 
10 Polarizing plate 11 Polarizer 12 Protective layer 13 Protective layer 20 Phase difference layer 100 Polarizing plate with retardation layer

Claims (10)

  1.  偏光子と該偏光子の少なくとも視認側に保護層とを含む偏光板と、該偏光板の視認側と反対側に配置された位相差層と、を有し、
     該視認側の保護層の透湿度が200g/m・24h以上であり、かつ、該位相差層の透湿度よりも大きい、
     位相差層付偏光板。
    It has a polarizing element, a polarizing plate including a protective layer at least on the viewing side of the polarizing element, and a retardation layer arranged on the side opposite to the viewing side of the polarizing plate.
    Moisture permeability of the protective layer of the viewing side is at 200g / m 2 · 24h or more, greater than the moisture permeability of the retardation layer,
    Polarizing plate with retardation layer.
  2.  前記偏光板が、視認側のみに保護層を含む、請求項1に記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 1, wherein the polarizing plate includes a protective layer only on the visual side.
  3.  前記視認側の保護層の透湿度と前記位相差層の透湿度との差が200g/m・24h以上である、請求項1または2に記載の位相差層付偏光板。 The difference between the moisture permeability of the moisture permeability of the viewer side protective layer and the retardation layer is the 200 g / m 2 · 24h or more, according to claim 1 or 2 retardation layer with the polarizing plate according to.
  4.  前記偏光板が、前記偏光子の視認側と反対側に別の保護層をさらに含み、
     前記視認側の保護層の透湿度が、該別の保護層の透湿度および前記位相差層の透湿度のうち小さいほうの透湿度よりも大きい、
     請求項1に記載の位相差層付偏光板。
    The polarizing plate further includes another protective layer on the side opposite to the visible side of the polarizer.
    The moisture permeability of the protective layer on the visual side is larger than the moisture permeability of the other protective layer and the moisture permeability of the retardation layer, whichever is smaller.
    The polarizing plate with a retardation layer according to claim 1.
  5.  前記位相差層が液晶化合物の配向固化層であり、前記視認側の保護層の透湿度が前記別の保護層の透湿度よりも大きい、請求項4に記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 4, wherein the retardation layer is an orientation-solidified layer of a liquid crystal compound, and the moisture permeability of the protective layer on the visible side is larger than the moisture permeability of the other protective layer.
  6.  前記視認側の保護層の透湿度と前記別の保護層の透湿度および前記位相差層の透湿度のうち小さいほうの透湿度との差が、200g/m・24h以上である、請求項4または5に記載の位相差層付偏光板。 The difference between the smaller moisture permeability of the moisture permeability of the moisture permeability and the retardation layer of the further protective layer and moisture permeability of the protective layer of the viewing side is a 200g / m 2 · 24h or more, claim 4. The polarizing plate with a retardation layer according to 4 or 5.
  7.  前記別の保護層の透湿度が150g/m・24h以下である、請求項3から6のいずれかに記載の位相差層付偏光板。 It said further moisture permeability of the protective layer is not more than 150g / m 2 · 24h, the phase difference layer with a polarizing plate according to any of claims 3 to 6.
  8.  前記偏光子の厚みが8μm以下である、請求項1から7のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to any one of claims 1 to 7, wherein the thickness of the polarizer is 8 μm or less.
  9.  総厚みが20μm以上100μm以下である、請求項1から8のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to any one of claims 1 to 8, wherein the total thickness is 20 μm or more and 100 μm or less.
  10.  請求項1から9のいずれかに記載の位相差層付偏光板を備える、有機エレクトロルミネセンス表示装置。
     
    An organic electroluminescence display device comprising the polarizing plate with a retardation layer according to any one of claims 1 to 9.
PCT/JP2020/030573 2019-10-10 2020-08-11 Phase difference layer-attached polarization plate and organic electro luminescence display device using same WO2021070467A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227011468A KR20220076468A (en) 2019-10-10 2020-08-11 Polarizing plate with retardation layer and organic electroluminescent display device using same
CN202080070457.3A CN114502998A (en) 2019-10-10 2020-08-11 Polarizing plate with retardation layer and organic electroluminescent display device using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-186856 2019-10-10
JP2019186856 2019-10-10
JP2020087156A JP2021063975A (en) 2019-10-10 2020-05-19 Polarizing plate with retardation layer and organic electroluminescence display device using the same
JP2020-087156 2020-05-19

Publications (1)

Publication Number Publication Date
WO2021070467A1 true WO2021070467A1 (en) 2021-04-15

Family

ID=75437828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030573 WO2021070467A1 (en) 2019-10-10 2020-08-11 Phase difference layer-attached polarization plate and organic electro luminescence display device using same

Country Status (3)

Country Link
KR (1) KR20220076468A (en)
CN (1) CN114502998A (en)
WO (1) WO2021070467A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107394A1 (en) * 2020-11-20 2022-05-27 日東電工株式会社 Phase difference layer-equipped phase difference layer-equipped polarizing plate and organic electroluminescence display device using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005309394A (en) * 2004-03-25 2005-11-04 Nitto Denko Corp Manufacturing method for polarizing plate, polarizing plate and picture display device using the polarizing plate
JP2005338736A (en) * 2004-05-31 2005-12-08 Fuji Photo Film Co Ltd Polarizer plate, optical compensation film incorporating polarizer plate, liquid crystal display and light emitting display device
JP2017111432A (en) * 2015-12-10 2017-06-22 日東電工株式会社 Circular polarizing plate and flexible image display device using the same
WO2019123948A1 (en) * 2017-12-19 2019-06-27 日東電工株式会社 Phase difference plate, polarizing plate having optical compensation layer, image display device, and image display device having touch panel
WO2019123947A1 (en) * 2017-12-19 2019-06-27 日東電工株式会社 Phase difference film, polarizer with optical compensation layer, image display device, and image display device with touch panel
JP2019148734A (en) * 2018-02-28 2019-09-05 住友化学株式会社 Circularly polarizing plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW424154B (en) 1998-10-30 2001-03-01 Teijin Ltd Phase film and optical device using same
JP2002372622A (en) 2001-06-14 2002-12-26 Nitto Denko Corp Composite optical retardation plate, circularly polarizing plate and liquid crystal display, organic el display device
JP2003311239A (en) 2002-04-23 2003-11-05 Matsushita Electric Works Ltd Apparatus for treating garbage
JP6159290B2 (en) * 2013-10-31 2017-07-05 日東電工株式会社 Liquid crystal panel and polarizer laminate used for the liquid crystal panel
JP6937169B2 (en) * 2017-06-09 2021-09-22 日東電工株式会社 Polarizing plate with retardation layer and image display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005309394A (en) * 2004-03-25 2005-11-04 Nitto Denko Corp Manufacturing method for polarizing plate, polarizing plate and picture display device using the polarizing plate
JP2005338736A (en) * 2004-05-31 2005-12-08 Fuji Photo Film Co Ltd Polarizer plate, optical compensation film incorporating polarizer plate, liquid crystal display and light emitting display device
JP2017111432A (en) * 2015-12-10 2017-06-22 日東電工株式会社 Circular polarizing plate and flexible image display device using the same
WO2019123948A1 (en) * 2017-12-19 2019-06-27 日東電工株式会社 Phase difference plate, polarizing plate having optical compensation layer, image display device, and image display device having touch panel
WO2019123947A1 (en) * 2017-12-19 2019-06-27 日東電工株式会社 Phase difference film, polarizer with optical compensation layer, image display device, and image display device with touch panel
JP2019148734A (en) * 2018-02-28 2019-09-05 住友化学株式会社 Circularly polarizing plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107394A1 (en) * 2020-11-20 2022-05-27 日東電工株式会社 Phase difference layer-equipped phase difference layer-equipped polarizing plate and organic electroluminescence display device using same

Also Published As

Publication number Publication date
CN114502998A (en) 2022-05-13
KR20220076468A (en) 2022-06-08

Similar Documents

Publication Publication Date Title
JP6920047B2 (en) Circularly polarizing plate and flexible image display device using it
JP7294908B2 (en) Polarizing plate with retardation layer and image display device using the same
WO2021070525A1 (en) Polarizing plate with phase difference layer and adhesive layer and organic electro luminescence display device using same
JP7281025B2 (en) Method for manufacturing polarizing film
JP7321005B2 (en) Polarizing plate with retardation layer and image display device using the same
JP2021063975A (en) Polarizing plate with retardation layer and organic electroluminescence display device using the same
JP2020064291A (en) Polarizing plate with phase difference layer and image display device using the same
WO2021070467A1 (en) Phase difference layer-attached polarization plate and organic electro luminescence display device using same
JP7294909B2 (en) Polarizing plate with retardation layer and image display device using the same
JP2020064280A (en) Polarizing plate with phase difference layer and image display device using the same
JP6797499B2 (en) Polarizing plate with retardation layer and image display device using it
JP6804168B2 (en) Polarizing plate with retardation layer and image display device using it
JP7321004B2 (en) Polarizing plate with retardation layer and image display device using the same
WO2022107394A1 (en) Phase difference layer-equipped phase difference layer-equipped polarizing plate and organic electroluminescence display device using same
WO2022244301A1 (en) Circular polarizing plate and image display device using same
WO2023063129A1 (en) Retardation layer–equipped polarizing plate and image display device using same
WO2023132148A1 (en) Polarizing plate and organic electroluminescent display device
JP7240270B2 (en) Polarizing plate with retardation layer and image display device using the same
WO2022091471A1 (en) Retardation-layer-equipped polarizing plate, and image display device
JP2022141116A (en) Polarizing plate with retardation layers
JP2022106205A (en) Laminate and method for manufacturing polarizing plate with retardation layer
JP2024029094A (en) Polarizing plate
JP2023111234A (en) Optical laminate and image display device
JP2020115225A (en) Polarizing plate with retardation layer, and image display device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20873393

Country of ref document: EP

Kind code of ref document: A1