WO2024004354A1 - Carbide production system and carbide production method - Google Patents

Carbide production system and carbide production method Download PDF

Info

Publication number
WO2024004354A1
WO2024004354A1 PCT/JP2023/015778 JP2023015778W WO2024004354A1 WO 2024004354 A1 WO2024004354 A1 WO 2024004354A1 JP 2023015778 W JP2023015778 W JP 2023015778W WO 2024004354 A1 WO2024004354 A1 WO 2024004354A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
carbide
supply port
combustion
air
Prior art date
Application number
PCT/JP2023/015778
Other languages
French (fr)
Japanese (ja)
Inventor
道則 成澤
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to JP2023553093A priority Critical patent/JP7435921B1/en
Publication of WO2024004354A1 publication Critical patent/WO2024004354A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/18Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with moving charge
    • C10B47/22Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with moving charge in dispersed form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/16Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form
    • C10B49/20Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form in dispersed form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present disclosure relates to a carbide production system and a carbide production method.
  • Patent Document 1 discloses a cylindrical main body, a lid that closes an upper opening of the main body, a partition plate with ventilation holes arranged at a position away from the bottom plate, and a space between the bottom plate and the partition plate.
  • a self-combustion carbonization heat treatment apparatus is disclosed that includes an air supply path that introduces air into an air supply chamber formed in the air supply chamber. Further, Patent Document 1 discloses that a self-combustion carbonization heat treatment apparatus includes a plurality of air supply cylinders with ventilation holes that are erected on a partition plate in communication with the ventilation holes of the partition plate. There is.
  • the above-mentioned self-combustion carbonization heat treatment apparatus generates carbide in a batch manner, and requires separate cooling time and raw material input time when taking out the carbide, so continuous processing is not possible and productivity is low.
  • the raw material spontaneously burns in an oxygen-deficient state, and the raw material is carbonized in the same region as the combustion region. Therefore, the conditions for producing carbides may not be stable. In such a case, the biomass may be burned more than necessary, and the properties of the charred material may become unstable, such as a decrease in the amount of charred material obtained.
  • an object of the present disclosure is to provide a carbide production system and a carbide production method that can continuously produce stable carbide from biomass.
  • a charcoal production system includes a combustion furnace that has a first biomass supply port that supplies a first biomass, and includes a combustion chamber that burns the first biomass with air; and a combustion furnace that is connected to the combustion furnace; It is equipped with a carbide recovery device for recovering generated carbide.
  • the second biomass is heated by combustion of the first biomass through a second biomass supply port provided downstream of the first biomass supply port, and has an oxygen concentration lower than that of air due to the combustion of the first biomass.
  • the carbonized region is supplied with low concentration oxygen gas.
  • the combustion furnace may be a vertical combustion furnace.
  • the combustion chamber may be provided with a second biomass supply port that supplies the second biomass into the combustion chamber.
  • Carbide may be generated within the combustion chamber.
  • the combustion furnace and the carbide recovery device may be connected via a connecting flow path.
  • the connecting channel may be provided with a second biomass supply port for supplying the second biomass into the connecting channel.
  • Carbide may be generated within the connecting channel.
  • the combustion furnace and the carbide recovery device may be connected via a connecting flow path.
  • the connecting channel may be provided with an air supply port for supplying air into the connecting channel.
  • the carbide recovery device may include a cyclone.
  • the carbide production system may further include a gas utilization device that utilizes gas discharged from the carbide recovery device.
  • the carbide may be cooled in the carbide recovery device by gas derived from gas discharged from the carbide recovery device and cooled by heat exchange in the gas utilization device.
  • the carbide production method includes a step of burning the first biomass supplied to the combustion chamber of the combustion furnace with air.
  • the method for producing carbide includes a carbonization region that is downstream of the first biomass, is heated by the combustion of the first biomass, and contains a low-concentration oxygen gas whose oxygen concentration is lower than that of air due to the combustion of the first biomass.
  • the method includes a step of supplying a second biomass to the second biomass.
  • the carbide production method includes a step of recovering carbide produced from the second biomass with a carbide recovery device connected to a combustion furnace.
  • FIG. 1 is a schematic diagram showing a carbide manufacturing system according to one embodiment.
  • FIG. 2 is a schematic diagram showing the state around the second biomass supply port.
  • FIG. 3 is a cross-sectional view of FIG. 2 taken along line III--III.
  • FIG. 4 is a schematic diagram showing the state around the second biomass supply port according to another embodiment.
  • FIG. 5 is a cross-sectional view of FIG. 4 taken along the line VV.
  • FIG. 6 is a schematic diagram showing the state around the second biomass supply port according to another embodiment.
  • FIG. 7 is a cross-sectional view of FIG. 6 taken along line VII-VII.
  • FIG. 8 is a schematic diagram showing a carbide manufacturing system according to one embodiment.
  • FIG. 9 is a schematic diagram showing a carbide manufacturing system according to one embodiment.
  • a carbide manufacturing system 1 First, a carbide manufacturing system 1 according to a first embodiment will be explained using FIGS. 1 to 7.
  • a carbide production system 1 includes a combustion furnace 10 and a carbide recovery device 40.
  • the combustion furnace 10 is configured to burn the first biomass.
  • the carbide recovery device 40 recovers carbide.
  • char is produced from the second biomass.
  • the combustion furnace 10 is a vertical fluidized bed combustion furnace.
  • a vertical combustion furnace is advantageous in that it does not require a large installation area
  • the combustion furnace 10 is not limited to a vertical combustion furnace, and may be a horizontal combustion furnace.
  • the combustion furnace 10 is not limited to a fluidized bed type combustion furnace, but may be a grate type combustion furnace or a rotary type combustion furnace such as a kiln type combustion furnace.
  • the combustion furnace 10 includes a wind box 11 and a combustion chamber 12 provided above the wind box 11 in the vertical direction.
  • the wind box 11 is a room for supplying combustion air.
  • the combustion chamber 12 is a chamber in which the first biomass is burned with air.
  • the wind box 11 and the combustion chamber 12 are separated by an air distribution plate 13.
  • the air distribution plate 13 has a plurality of first air supply holes 14 .
  • the plurality of first air supply holes 14 are first air supply ports that supply air to the combustion chamber 12.
  • the air supplied through the first air supply hole 14 is primary air.
  • the primary air is supplied to the fluidized medium 15 and is mainly used for combustion.
  • Air supplied from the air supply section 20 is supplied to the combustion chamber 12 via the wind box 11 and the plurality of first air supply holes 14.
  • the aeration method of the combustion furnace 10 is a dispersion plate type, but it may be an aeration tube type or a combination thereof.
  • the air supply section 20 is connected to the wind box 11.
  • the air supply section 20 includes an air flow path 21, an air intake port 22, and a blower 23.
  • the air flow path 21 is provided with an air intake port 22 and a blower 23.
  • a flow rate adjusting damper 24 is provided in the air flow path 21 between the air intake port 22 and the blower 23.
  • a flow rate adjustment damper 25 is provided in the air flow path 21 between the blower 23 and the wind box 11. Then, by driving the blower 23 with the flow rate adjustment damper 24 and the flow rate adjustment damper 25 open, air can be continuously supplied to the wind box 11 from the air intake port 22.
  • a fluidizing medium 15 is arranged above the air distribution plate 13.
  • the fluidizing medium 15 may also contain inert particles such as silica sand.
  • the air ratio in the fluidized bed may be about 0.5 to 1.5.
  • the combustion chamber 12 is provided with a second air supply port 16, a first biomass supply port 17, a second biomass supply port 18a, and an exhaust port 19.
  • the second air supply port 16 is a supply port that supplies air to the combustion chamber 12.
  • the second air supply port 16 is provided in a side wall of the combustion chamber 12 .
  • the second air supply port 16 is provided above the first air supply hole 14 in the vertical direction and below the second biomass supply port 18a and the discharge port 19 in the vertical direction.
  • the air supplied through the second air supply port 16 is secondary air.
  • An air flow path 21 is connected to the second air supply port 16.
  • the air flow path 21 branches between the blower 23 and the flow rate adjustment damper 25.
  • the branched air flow path 21 is provided with a flow rate adjustment damper 26 and a flow rate adjustment damper 27.
  • the first biomass supply port 17 is a supply port that supplies the first biomass to the combustion chamber 12. Since the first biomass can be supplied to the combustion chamber 12 via the first biomass supply port 17, the first biomass can be continuously supplied to the combustion chamber 12. Biomass is positioned as a renewable energy, and based on the concept of carbon neutrality, it is believed that burning biomass will not lead to an increase in carbon dioxide released into the atmosphere. By burning the first biomass, the use of fossil fuels can be reduced and the release of carbon dioxide into the atmosphere can be suppressed.
  • the first biomass supply port 17 is provided in the side wall that constitutes the combustion chamber 12.
  • the first biomass supply port 17 is provided above the first air supply hole 14 in the vertical direction.
  • a first biomass supply section 30 that supplies the first biomass to the combustion chamber 12 of the combustion furnace 10 is connected to the first biomass supply port 17 .
  • the first biomass supplied to the combustion chamber 12 by the first biomass supply section 30 is stirred together with the fluidized medium 15 and combusted.
  • the second biomass supply port 18a is a supply port that supplies the second biomass into the combustion chamber 12. When the second biomass is fed into the combustion chamber 12, char is generated within the combustion chamber 12. Since the second biomass can be supplied to the combustion chamber 12 via the second biomass supply port 18a, the second biomass can be continuously supplied to the combustion chamber 12.
  • the second biomass supply port 18a is provided in the side wall of the combustion chamber 12.
  • the second biomass supply port 18a is provided downstream of the first biomass supply port 17. Specifically, the second biomass supply port 18a is provided above the first biomass supply port 17 in the vertical direction. Further, the second biomass supply port 18a is provided downstream of the first air supply hole 14.
  • a second biomass supply section 31 that supplies second biomass to the combustion chamber 12 is connected to the second biomass supply port 18a. The second biomass supplied to the combustion chamber 12 by the second biomass supply section 31 is carbonized as described below, and charred material is generated from the second biomass.
  • the second biomass is heated by combustion of the first biomass through the second biomass supply port 18a, and is delivered to a carbonization region where low-concentration oxygen gas whose oxygen concentration has become lower than air due to the combustion of the first biomass exists. Supplied.
  • the carbonization region is maintained at a temperature and low oxygen concentration suitable for the production of char, and the second biomass is supplied under such a controlled atmosphere.
  • the second biomass is heated by hot gas produced by combustion of the first biomass. Therefore, thermal decomposition of the second biomass proceeds stably, and charcoal can be stably generated from the second biomass.
  • the properties of the generated char vary depending on conditions such as the type and drying state of the second biomass, the amount of second biomass supplied, the temperature of the carbonization region, and the oxygen concentration of the carbonization region. Therefore, depending on the properties of the carbide to be produced, the conditions of the second biomass supply amount, the temperature of the carbonization region, and the oxygen concentration of the carbonization region may be determined in advance through a trial run.
  • the exhaust port 19 is an exhaust port that discharges the gas after the first biomass combustion. When char is generated from the second biomass within the combustion chamber 12, the char is also discharged through the outlet 19. The carbide can be discharged from the discharge port 19 along with the combustion gas whose volume has expanded due to combustion.
  • the discharge port 19 is provided above the first air supply hole 14, the second air supply port 16, the first biomass supply port 17, and the second biomass supply port 18a in the vertical direction. Specifically, the exhaust port 19 is provided in the ceiling of the combustion chamber 12 .
  • the discharge port 19 is connected to the first connection channel 36 .
  • the first biomass and the second biomass may be the same type of biomass, or may be different types of biomass.
  • Biomass may include, for example, organic matter such as wood, herbs, livestock manure, domestic wastewater such as sewage sludge and septic tank sludge, and food waste.
  • the biomass may include at least one of waste biomass and unused biomass.
  • Waste-based biomass may include livestock waste such as chicken manure.
  • the unused biomass may include at least one of inedible parts of agricultural crops, forest residue, bamboo, and bamboo.
  • the inedible part of the agricultural product includes at least one selected from the group consisting of rice husk, rice straw, wheat straw, corn stalk, empty palm fruit bunch (EFB), old palm tree (OPT), and palm kernel husk (PKS). Good too.
  • the biomass may include at least one of herbaceous biomass and woody biomass.
  • the woody biomass may include at least one of thinned wood and pruned branches.
  • biomass includes at least one selected from the group consisting of rice husks, rice straw, wheat straw, chicken manure, corn stalks, bamboo, bamboo, thinned wood, and pruned branches in terms of abundance and weight. It is preferable.
  • the first biomass supply section 30 and the second biomass supply section 31 may each include a continuous supply type supply machine such as a screw feeder and a table feeder. Further, the first biomass supply section 30 and the second biomass supply section 31 may include a weight feeder such as a loss-in-weight type feeder or a positive displacement feeder. Further, the amount of second biomass supplied from the second biomass supply section 31 may be greater than the amount of first biomass supplied from the first biomass supply section 30. The amount of the second biomass supplied from the second biomass supply section 31 may be, for example, 2 times or more and 10 times or less the amount of the first biomass supplied from the first biomass supply section 30.
  • the carbide manufacturing system 1 may include a first crusher 32 and a second crusher 33.
  • the first crusher 32 crushes the first biomass and the second biomass.
  • the second crusher 33 further crushes the second biomass crushed by the first crusher 32.
  • the first biomass can be pulverized into a size suitable for combustion.
  • the second biomass can be easily carbonized and transferred to the charred material recovery device 40. Can be done.
  • the second biomass supplied through the second biomass supply port 18a may be smaller in size than the first biomass supplied through the first biomass supply port 17.
  • the first biomass and the second biomass have optimal sizes, the first biomass and the second biomass do not need to be crushed by the first crusher 32 and the second crusher 33.
  • the carbide production system 1 may include at least one selected from the group consisting of a magnetic separator, a wind separator, and a particle size separator (not shown). These sorters can remove foreign substances such as metal and concrete pieces from the first biomass supplied by the first biomass supply unit 30 and the second biomass supplied by the second biomass supply unit 31.
  • the combustion furnace 10 may include a thermometer 34 that measures the temperature in the combustion chamber 12 above the second air supply port 16 in the vertical direction and below the discharge port 19 in the vertical direction. By measuring the temperature of the carbonization region with the thermometer 34, the carbonization temperature can be easily controlled.
  • the temperature of the carbonized region may be about 700°C to 1200°C. By setting the temperature of the carbonization region to 700° C. or higher, carbonization can easily proceed even if the second biomass contains a large amount of water. Further, by setting the temperature of the carbonization region to 1200° C. or lower, components of the second biomass and the like can be prevented from partially melting and adhering to the inner wall of the combustion furnace 10.
  • the combustion furnace 10 may include an oxygen concentration meter 35 that measures the oxygen concentration in the combustion chamber 12 above the second air supply port 16 in the vertical direction and below the discharge port 19 in the vertical direction. .
  • the oxygen concentration in the carbonized region may be approximately 0% to 7% by volume.
  • carbide can be easily generated even when the second biomass has a large volatile content.
  • the oxygen concentration is set to 7% by volume or less, the production of carbon dioxide is promoted through combustion, and it is possible to suppress a reduction in the residual amount of carbon.
  • the combustion furnace 10 and the carbide recovery device 40 are connected via the first connection flow path 36.
  • the first connection channel 36 is provided with a second biomass supply port 18b that supplies the second biomass into the first connection channel 36.
  • char is produced in the first connecting channel 36.
  • the second biomass is heated by combustion of the first biomass through the second biomass supply port 18b, and low-concentration oxygen gas whose oxygen concentration is lower than air due to the combustion of the first biomass is supplied. It is fed into the charred area that exists.
  • the gas inside the combustion furnace 10 passes through the first connecting flow path 36, so the atmosphere is high temperature and low in oxygen.
  • the second biomass supply port 18b is provided at a substantially central portion of the cylindrical portion of the first connection channel 36 when viewed from the central axis direction.
  • the first connecting flow path 36 includes a first cylindrical pipe 36a that is connected to the combustion furnace 10 and extends in the vertical direction, and a second cylindrical pipe 36b that is connected to the carbide recovery device 40 and extends in the horizontal direction.
  • the first cylindrical tube 36a when viewed from the direction of the central axis of the second cylindrical tube 36b, the first cylindrical tube 36a is placed at a horizontally different position from the central axis of the second cylindrical tube 36b.
  • the cylindrical tube 36a and the second cylindrical tube 36b are connected. Therefore, as shown by the arrows in FIGS.
  • the first connecting flow path 36 is configured so that the gas sent from the combustion furnace 10 flows spirally within the second cylindrical pipe 36b.
  • the second biomass supply port 18b is connected to the first connection flow path 36 so as to substantially coincide with the central axis of the second cylindrical pipe 36b. Therefore, the second biomass is supplied to the center of the spirally flowing gas and flows spirally. Thereby, the residence distance of the second biomass can be increased.
  • the position where the second biomass supply port 18b is provided is not limited to such a configuration.
  • the second biomass supply port 18b may be provided on the side wall of the second cylindrical pipe 36b.
  • the supplied second biomass falls into the second cylindrical pipe 36b. That is, the second biomass is easily entrained in the internal spiral flow, and biomass with a relatively large particle size is also difficult to fall into the fluidized bed of the combustion furnace 10, so that stable combustion conditions can be maintained within the combustion furnace 10. .
  • the particle size of the biomass to be supplied can be increased, the degree of freedom in producing carbide can be expanded.
  • first cylindrical tube 36a extends in the vertical direction and the second cylindrical tube 36b extends in the horizontal direction
  • the present invention is not limited to such a configuration.
  • the second cylindrical pipe 36b may be provided so as to be inclined downward in the vertical direction from the connection part with the first cylindrical pipe 36a toward the carbide recovery device 40.
  • the first cylindrical tube 36a and the second cylindrical tube 36b have a cylindrical shape, but may have an elliptical shape, for example.
  • the first cylindrical pipe 36a and the second cylindrical pipe 36b are connected to form an angular L-shape, but the first connection channel 36 has a curved part.
  • the first cylindrical tube 36a and the second cylindrical tube 36b may be connected via.
  • the second biomass supply port 18 includes a second biomass supply port 18a provided in the combustion chamber 12 and a second biomass supply port 18b provided in the first connection channel 36.
  • the second biomass supply port 18 may include only either the second biomass supply port 18a or the second biomass supply port 18b. That is, the second biomass supply port 18 only needs to include at least one of the second biomass supply port 18a and the second biomass supply port 18b.
  • the first connection channel 36 may be provided with a third air supply port 37 that supplies air into the first connection channel 36.
  • the temperature within the first connection flow path 36 may become low as energy is consumed by thermally decomposing the second biomass. Further, when the second biomass contains a large amount of water, thermal energy is used to vaporize the water, and the temperature inside the first connecting channel 36 may become low. Therefore, by supplying air into the first connecting channel 36 from the third air supply port 37 and burning a part of the second biomass in the first connecting channel 36, the air in the first connecting channel 36 is A decrease in temperature can be suppressed. Thereby, the inside of the first connection channel 36 can be maintained at a temperature suitable for carbonization.
  • the third air supply port 37 may be provided in the first connection channel 36 at a position closer to the second biomass supply port 18b than the carbide recovery device 40. Thereby, it is possible to suppress unevenness in the temperature within the first connecting channel 36 from the second biomass supply port 18b to the carbide recovery device 40.
  • the air flow path 21 is connected to the third air supply port 37.
  • the air flow path 21 branches between the blower 23 and the flow rate adjustment damper 25.
  • the branched air flow path 21 is provided with a flow rate adjustment damper 26 and a flow rate adjustment damper 28. Then, by driving the blower 23 with the flow rate adjustment damper 24, the flow rate adjustment damper 26, and the flow rate adjustment damper 28 open, air is transferred from the air intake port 22 through the third air supply port 37 to the first connection flow path. 36 can be fed continuously.
  • the carbide recovery device 40 is connected to the combustion furnace 10 and recovers the carbide generated from the second biomass.
  • the carbide recovery device 40 may be a powder recovery device such as a bag filter, in this embodiment, the carbide recovery device 40 includes a cyclone.
  • a cyclone is a device that separates and collects carbides using centrifugal force. Gaseous tar derived from thermal decomposition of biomass in the combustion furnace 10 is also supplied to the char recovery device 40 . Since a cyclone can separate gas and carbide without using a filter in a high temperature state where tar does not condense, carbide with little tar attached can be easily recovered.
  • the cyclone has a supply port 41 to which gas in which carbide is dispersed is supplied, a main body part 42 that centrifugally separates the carbide, a dust collection chamber 43 that collects the carbide, and a cylindrical part that discharges the gas from which the carbide has been removed.
  • a discharge pipe 44 is included.
  • the main body portion 42 includes a cylindrical portion 42a disposed at an upper portion and a conical portion 42b provided vertically below the cylindrical portion 42a.
  • the discharge pipe 44 is arranged inside the cylindrical portion 42a.
  • the carbide falls inside the main body 42 and is collected in the dust collection chamber 43.
  • the gas from which the carbide has been removed is discharged from the carbide recovery device 40 through the exhaust pipe 44 .
  • a double damper 45 in which two dampers are connected is connected to the dust collection chamber 43.
  • Each damper includes a lid 46, and by opening one lid 46 and closing the other lid 46, carbide can be removed from the carbide recovery device 40 without introducing atmospheric air.
  • a rotary take-out device such as a rotary valve may be used.
  • a water sealing device connected to the main body portion 42 may be used as the extraction device.
  • the water seal device may include a water storage tank for storing water. Since one end of the main body part 42 is sealed with water in the water storage tank, the carbide separated in the main body part 42 comes into contact with the water in the water storage tank and is cooled. Note that the above extraction device may be applied to a carbide recovery device 40 other than a cyclone.
  • the recovered charcoal contains carbon derived from the second biomass. By carbonizing the second biomass without burning it, it is possible to suppress the release of carbon dioxide into the atmosphere.
  • the obtained carbide may be used, for example, as a backfill material in the remains of a quarry. In such a case, the same effect as CCS (carbon dioxide capture and storage) can be obtained.
  • Carbide can also sequester carbon into soil. When used in agricultural fields such as fields, charcoal can not only sequester carbon but also act as a soil conditioner. Since the carbide production system 1 according to the present embodiment can stably control the temperature and oxygen concentration in the carbonization region, the amount of carbon in the carbide and components such as nitrogen, phosphorus, and potassium, which are essential nutrients for plants, can be controlled stably. The amount can also be adjusted arbitrarily. Further, since carbide absorbs light and is easily heated, it may be used as a snow melting agent. Moreover, the carbide can also be used as a deodorizing agent.
  • the carbide production system 1 may further include a gas utilization device 50 that utilizes gas discharged from the carbide recovery device 40.
  • the gas utilization device 50 includes a boiler.
  • the gas utilization device 50 includes an exhaust heat recovery boiler 51.
  • the exhaust heat recovery boiler 51 recovers the heat of the gas discharged from the carbide recovery device 40 by heat exchange to generate at least one of steam and hot water.
  • the heat recovered by the exhaust heat recovery boiler 51 can be used as thermal energy in a factory or the like.
  • the gas utilization device 50 is connected to the carbide recovery device 40 via a second connection flow path 52.
  • a fourth air supply port 53 is provided in the second connection channel 52 .
  • the air flow path 21 is connected to the fourth air supply port 53 .
  • the air flow path 21 branches between the blower 23 and the flow rate adjustment damper 25.
  • the branched air flow path 21 is provided with a flow rate adjustment damper 26 and a flow rate adjustment damper 29. Then, by driving the blower 23 with the flow rate adjustment damper 24, the flow rate adjustment damper 26, and the flow rate adjustment damper 29 open, air is transferred from the air intake port 22 through the fourth air supply port 53 to the second connecting flow path. 52 can be continuously supplied. By supplying air into the second connection flow path 52, the remaining combustible components can be burned.
  • the carbide manufacturing system 1 may include a thermometer 54 that is provided downstream of the fourth air supply port 53 and measures the temperature inside the second connection channel 52. Thereby, the temperature of the gas supplied to the gas utilization device 50 can be managed. Further, the carbide production system 1 may include an oxygen concentration meter 55 that is provided downstream of the fourth air supply port 53 and measures the oxygen concentration inside the second connection channel 52. Thereby, the oxygen concentration of the gas supplied to the gas utilization device 50 can be managed.
  • the ash separator 56 is connected to the exhaust heat recovery boiler 51.
  • the ash separator 56 removes ash from the gas discharged from the exhaust heat recovery boiler 51.
  • a cyclone 57 is connected to the ash separator 56.
  • the gas from which ash has been separated by the ash separator 56 is supplied to a cyclone 57. Since there is a possibility that a trace amount of fine particles remain in the gas supplied to the cyclone 57, the fine particles can be separated by the cyclone 57 and then released into the atmosphere.
  • the gas outlet of the cyclone 57 is connected to the dust collection chamber 43 of the carbide recovery device 40 via a cooling gas flow path 58.
  • a flow rate adjusting damper 59 and a circulation cooling fan 60 are provided in the cooling gas passage 58 .
  • Gas is then supplied from the cyclone 57 to the carbide recovery device 40 by driving the circulation cooling fan 60 with the flow rate adjustment damper 59 open. Therefore, the carbide is cooled in the carbide recovery device 40 by gas derived from the gas discharged from the carbide recovery device 40 and cooled by heat exchange in the gas utilization device 50.
  • the carbide that has just been recovered by the carbide recovery device 40 is at a high temperature, and if it comes into contact with air, there is a risk that it will be burned by the oxygen in the air.
  • the oxygen concentration of the gas discharged from the carbide recovery device 40 is low. Further, the heat of the gas discharged from the carbide recovery device 40 is recovered and cooled by the gas utilization device 50. Therefore, by using such a gas to cool the recovered carbide, the carbide can be cooled without separately preparing a cooling gas with a low oxygen concentration.
  • gas with a low oxygen concentration may be introduced into the carbide recovery device 40 at a low temperature of 200° C. or lower using a cooling device (not shown) without using the gas utilization device 50 as in this embodiment.
  • a cooling device not shown
  • Such a configuration also makes it possible to suppress combustion of the carbide recovered by the carbide recovery device 40.
  • the water sealing device since the carbide can be cooled with water, the carbide can be cooled without using low-temperature gas with a low oxygen concentration.
  • the carbide production system 1 includes the combustion furnace 10 that has the first biomass supply port 17 that supplies the first biomass and includes the combustion chamber 12 that burns the first biomass with air. There is.
  • the carbide production system 1 includes a carbide recovery device 40 that is connected to the combustion furnace 10 and recovers carbide produced from the second biomass.
  • the second biomass is heated by combustion of the first biomass through the second biomass supply port 18, and is transferred to a carbonization region where low-concentration oxygen gas whose oxygen concentration has become lower than air due to the combustion of the first biomass exists. Supplied.
  • the second biomass supply port 18 is provided downstream of the first biomass supply port 17 .
  • the method for producing carbide includes a step of burning the first biomass supplied to the combustion chamber 12 of the combustion furnace 10 with air.
  • the method for producing carbide includes a carbonization region that is downstream of the first biomass, is heated by the combustion of the first biomass, and contains a low-concentration oxygen gas whose oxygen concentration is lower than that of air due to the combustion of the first biomass.
  • the method includes a step of supplying a second biomass to the second biomass.
  • the carbide production method includes a step of recovering carbide produced from the second biomass using a carbide recovery device 40 connected to the combustion furnace 10 .
  • stable carbide can be continuously produced from biomass.
  • biomass raw materials such as rice husks have different moisture concentrations and properties depending on storage conditions, but according to the carbide production system 1 according to the present embodiment, a stable high-temperature atmosphere can be controlled and maintained.
  • FIG. 8 a carbide manufacturing system 1 according to a second embodiment will be described using FIG. 8.
  • the carbide manufacturing system 1 according to the second embodiment differs from the carbide manufacturing system 1 according to the first embodiment in the form of the gas utilization device 50.
  • the carbide production system 1 according to the second embodiment is the same as the first embodiment in other respects, so the explanation will be omitted.
  • the gas utilization device 50 includes an exhaust heat recovery boiler 70.
  • the carbide production system 1 also includes a turbine 72 , a generator 73 , an air-cooled steam condenser 74 , and a condensate tank 75 .
  • a second connection flow path 52 is connected to the exhaust heat recovery boiler 70.
  • the exhaust heat recovery boiler 70 recovers the heat of the gas discharged from the carbide recovery device 40 by heat exchange, and generates steam.
  • the water vapor whose volume has expanded as water vapor passes through the turbine 72 and is used as power to rotate the turbine 72.
  • the turbine 72 is mechanically connected to a generator 73, and is provided so that the generator 73 generates electric power by rotation of the turbine 72.
  • Steam discharged from the turbine 72 is supplied to an air-cooled steam condenser 74.
  • the water vapor supplied to the air-cooled steam condenser 74 is cooled and condensed, and the condensed water is stored in a condensate tank 75. Water in the condensate tank 75 is supplied to the exhaust heat recovery boiler 70 by driving the pump 76 and circulated therein.
  • the gas discharge port of the exhaust heat recovery boiler 70 is connected to the dust collection chamber 43 of the carbide recovery device 40 via a cooling gas flow path 77.
  • a bag filter 78 , a flow rate adjustment damper 79 , an induction fan 80 , a flow rate adjustment damper 81 , and a circulation cooling fan 82 are connected to the cooling gas flow path 77 from the gas outlet of the exhaust heat recovery boiler 70 to the carbide recovery device. They are provided in this order toward the 40 dust collection chambers 43. Particulates in the gas discharged from the exhaust heat recovery boiler 70 are collected by a bag filter 78.
  • stable carbide can be continuously produced from biomass, and power can also be generated.
  • FIG. 9 a carbide manufacturing system 1 according to a third embodiment will be described using FIG. 9.
  • the carbide manufacturing system 1 according to the third embodiment differs from the carbide manufacturing system 1 according to the first embodiment in the form of the gas utilization device 50.
  • the carbide manufacturing system 1 according to the third embodiment is the same as the first embodiment in other respects, so the explanation will be omitted.
  • the gas utilization device 50 includes a coal-fired boiler 90. Further, the carbide production system 1 according to the present embodiment includes a cyclone 97.
  • the coal-fired boiler 90 is a boiler that uses coal as fuel.
  • a coal feeder 92 supplies coal to a combustion chamber 91 of a coal-fired boiler 90, and an air supply unit 93 supplies air.
  • the air supply section 93 includes an air intake port 94, a flow rate adjustment damper 95, and a blower 96, and by driving the blower 96 with the flow rate adjustment damper 95 open, air intake is performed. Air is supplied to the combustion chamber 91 through the port 94 .
  • a second connection flow path 52 is connected to the coal-fired boiler 90.
  • the fourth air supply port 53 is provided at a position closer to the coal-fired boiler 90 than the carbide recovery device 40 in the second connection flow path 52. Therefore, the combustible components discharged from the carbide recovery device 40 can be burned in the coal-fired boiler 90. Since this combustion heat can be recovered by heat exchange in the coal-fired boiler 90, the amount of coal used in the coal-fired boiler 90 can be reduced. Note that instead of the coal-fired boiler 90, a heavy oil-fired boiler or a gas-fired boiler may be used. Even in such a case, fossil fuel consumption can be reduced.
  • the gas outlet of the coal-fired boiler 90 is connected to a cyclone 97.
  • the gas in the combustion chamber 91 is cooled by heat exchange, and the cooled gas passes through the cyclone 97.
  • particulates are collected and some gas is released from the cyclone 97 into the atmosphere.
  • the cyclone 97 and the dust collection chamber 43 of the carbide recovery device 40 are connected via a cooling gas flow path 98.
  • a flow rate adjusting damper 99 and a circulation cooling fan 100 are provided in the cooling gas passage 98 . Then, by driving the circulation cooling fan 100 with the flow rate adjustment damper 99 open, a part of the gas from which particulates have been removed is supplied to the dust collection chamber 43 of the carbide recovery device 40. Therefore, the carbide is cooled in the carbide recovery device 40 by gas derived from the gas discharged from the carbide recovery device 40 and cooled by heat exchange in the gas utilization device 50.
  • stable carbide can be continuously produced from biomass, and the use of coal required for the coal-fired boiler 90 can also be reduced.
  • one blower 23 is used to supply air to the carbide manufacturing system 1 through a plurality of air supply ports.
  • a blower may be disposed upstream of each flow rate adjusting damper, and air may be supplied to the carbide manufacturing system 1 through each air supply port.
  • Goal 15 “Take urgent measures to reduce climate change and its impacts”
  • Goal 15 “Protect, restore and promote the sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification and can contribute to "preventing and reversing the degradation of biodiversity and halting the loss of biodiversity.”
  • Carbide production system 10 Combustion furnace 12 Combustion chamber 17 First biomass supply port 18 Second biomass supply port 36 First connection channel 37 Third air supply port 40 Carbide recovery device 50 Gas utilization device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Coke Industry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The carbide production system (1) comprises a combustion furnace (10) that contains a combustion chamber (12) having a first biomass supply port (17) that supplies a first biomass and combusts the first biomass in air and a carbide recovery device (40), connected to the combustion furnace (10), that recovers carbide generated from a second biomass. The second biomass is heated by the combustion of the first biomass via a second biomass supply port (18) provided downstream from the first biomass supply port (17) and is supplied to a carbonization zone where low-concentration oxygen gas, having a lower oxygen concentration than air, is present due to combustion of the first biomass.

Description

炭化物製造システム及び炭化物製造方法Carbide production system and carbide production method
 本開示は、炭化物製造システム及び炭化物製造方法に関する。 The present disclosure relates to a carbide production system and a carbide production method.
 従来、バイオマスを加熱することにより炭化物を製造する方法が知られている。バイオマスから炭化物を製造することにより、バイオマス中の炭素が炭化物として固定されるため、バイオマスを燃焼した場合と比較し、大気中への二酸化炭素の放出を抑制することができる。 Conventionally, methods of producing charcoal by heating biomass have been known. By producing charred material from biomass, the carbon in the biomass is fixed as charred material, so it is possible to suppress the release of carbon dioxide into the atmosphere compared to when biomass is burned.
 特許文献1には、筒状の本体部と、本体部の上方開口部を閉止する蓋体と、底板から離れた位置に配置された通気孔付きの隔壁板と、底板と隔壁板との間に形成された給気室に空気を導入する給気経路とを備える自燃炭化熱処理装置が開示されている。また、特許文献1には、自燃炭化熱処理装置が、隔壁板の通気孔と連通した状態で隔壁板上に立設された通気孔付きの複数の給気用筒体を備えることが開示されている。 Patent Document 1 discloses a cylindrical main body, a lid that closes an upper opening of the main body, a partition plate with ventilation holes arranged at a position away from the bottom plate, and a space between the bottom plate and the partition plate. A self-combustion carbonization heat treatment apparatus is disclosed that includes an air supply path that introduces air into an air supply chamber formed in the air supply chamber. Further, Patent Document 1 discloses that a self-combustion carbonization heat treatment apparatus includes a plurality of air supply cylinders with ventilation holes that are erected on a partition plate in communication with the ventilation holes of the partition plate. There is.
特許第6285588号公報Patent No. 6285588
 上記自燃炭化熱処理装置は、バッチ式で炭化物を生成しており、炭化物取り出し時の冷却時間、原料投入時間が別々に必要となるため、連続処理ができず、生産性が低い。また、上記自燃炭化熱処理装置では、原料が酸素不足状態で自発燃焼し、燃焼領域と同じ領域で原料が炭化される。そのため、炭化物を生成するための条件が安定しないおそれがある。このような場合、バイオマスが必要以上に燃焼してしまい、得られる炭化物の量が低減するなど、炭化物の性状が安定しないおそれがある。 The above-mentioned self-combustion carbonization heat treatment apparatus generates carbide in a batch manner, and requires separate cooling time and raw material input time when taking out the carbide, so continuous processing is not possible and productivity is low. In addition, in the self-combustion carbonization heat treatment apparatus, the raw material spontaneously burns in an oxygen-deficient state, and the raw material is carbonized in the same region as the combustion region. Therefore, the conditions for producing carbides may not be stable. In such a case, the biomass may be burned more than necessary, and the properties of the charred material may become unstable, such as a decrease in the amount of charred material obtained.
 そこで、本開示は、バイオマスから安定した炭化物を連続的に製造することが可能な炭化物製造システム及び炭化物製造方法を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a carbide production system and a carbide production method that can continuously produce stable carbide from biomass.
 本開示に係る炭化物製造システムは、第1バイオマスを供給する第1バイオマス供給口を有し、第1バイオマスを空気で燃焼する燃焼室を含む燃焼炉と、燃焼炉と接続され、第2バイオマスから生成された炭化物を回収する炭化物回収装置とを備えている。第2バイオマスは、第1バイオマス供給口よりも下流に設けられた第2バイオマス供給口を介し、第1バイオマスの燃焼によって加熱され、かつ、第1バイオマスの燃焼によって空気よりも酸素濃度が低くなった低濃度酸素ガスが存在する炭化領域に供給される。 A charcoal production system according to the present disclosure includes a combustion furnace that has a first biomass supply port that supplies a first biomass, and includes a combustion chamber that burns the first biomass with air; and a combustion furnace that is connected to the combustion furnace; It is equipped with a carbide recovery device for recovering generated carbide. The second biomass is heated by combustion of the first biomass through a second biomass supply port provided downstream of the first biomass supply port, and has an oxygen concentration lower than that of air due to the combustion of the first biomass. The carbonized region is supplied with low concentration oxygen gas.
 燃焼炉は竪型燃焼炉であってもよい。 The combustion furnace may be a vertical combustion furnace.
 燃焼室には第2バイオマスを燃焼室内に供給する第2バイオマス供給口が設けられてもよい。炭化物は燃焼室内で生成されてもよい。 The combustion chamber may be provided with a second biomass supply port that supplies the second biomass into the combustion chamber. Carbide may be generated within the combustion chamber.
 燃焼炉と炭化物回収装置とは接続流路を介して接続されていてもよい。接続流路には第2バイオマスを接続流路内に供給する第2バイオマス供給口が設けられていてもよい。炭化物は接続流路内で生成されてもよい。 The combustion furnace and the carbide recovery device may be connected via a connecting flow path. The connecting channel may be provided with a second biomass supply port for supplying the second biomass into the connecting channel. Carbide may be generated within the connecting channel.
 燃焼炉と炭化物回収装置とは接続流路を介して接続されてもよい。接続流路には空気を接続流路内に供給する空気供給口が設けられていてもよい。 The combustion furnace and the carbide recovery device may be connected via a connecting flow path. The connecting channel may be provided with an air supply port for supplying air into the connecting channel.
 炭化物回収装置はサイクロンを含んでいてもよい。 The carbide recovery device may include a cyclone.
 炭化物製造システムは炭化物回収装置から排出されたガスを利用するガス利用装置をさらに備えていてもよい。炭化物は、炭化物回収装置において、炭化物回収装置から排出されたガスに由来し、ガス利用装置で熱交換によって冷却されたガスにより冷却されてもよい。 The carbide production system may further include a gas utilization device that utilizes gas discharged from the carbide recovery device. The carbide may be cooled in the carbide recovery device by gas derived from gas discharged from the carbide recovery device and cooled by heat exchange in the gas utilization device.
 本開示に係る炭化物製造方法は、燃焼炉の燃焼室に供給された第1バイオマスを空気で燃焼する工程を含んでいる。炭化物製造方法は、第1バイオマスよりも下流であって、第1バイオマスの燃焼によって加熱され、かつ、第1バイオマスの燃焼によって空気よりも酸素濃度が低くなった低濃度酸素ガスが存在する炭化領域に第2バイオマスを供給する工程を含んでいる。炭化物製造方法は、燃焼炉と接続された炭化物回収装置で第2バイオマスから生成された炭化物を回収する工程を含んでいる。 The carbide production method according to the present disclosure includes a step of burning the first biomass supplied to the combustion chamber of the combustion furnace with air. The method for producing carbide includes a carbonization region that is downstream of the first biomass, is heated by the combustion of the first biomass, and contains a low-concentration oxygen gas whose oxygen concentration is lower than that of air due to the combustion of the first biomass. The method includes a step of supplying a second biomass to the second biomass. The carbide production method includes a step of recovering carbide produced from the second biomass with a carbide recovery device connected to a combustion furnace.
 本開示によれば、バイオマスから安定した炭化物を連続的に製造することが可能な炭化物製造システム及び炭化物製造方法を提供することができる。 According to the present disclosure, it is possible to provide a carbide production system and a carbide production method that can continuously produce stable carbide from biomass.
図1は、一実施形態に係る炭化物製造システムを示す概略図である。FIG. 1 is a schematic diagram showing a carbide manufacturing system according to one embodiment. 図2は、第2バイオマス供給口の付近の状態を示す概略図である。FIG. 2 is a schematic diagram showing the state around the second biomass supply port. 図3は、図2をIII-III線で切断した断面図である。FIG. 3 is a cross-sectional view of FIG. 2 taken along line III--III. 図4は、別の実施形態に係る第2バイオマス供給口の付近の状態を示す概略図である。FIG. 4 is a schematic diagram showing the state around the second biomass supply port according to another embodiment. 図5は、図4をV-V線で切断した断面図である。FIG. 5 is a cross-sectional view of FIG. 4 taken along the line VV. 図6は、別の実施形態に係る第2バイオマス供給口の付近の状態を示す概略図である。FIG. 6 is a schematic diagram showing the state around the second biomass supply port according to another embodiment. 図7は、図6をVII-VII線で切断した断面図である。FIG. 7 is a cross-sectional view of FIG. 6 taken along line VII-VII. 図8は、一実施形態に係る炭化物製造システムを示す概略図である。FIG. 8 is a schematic diagram showing a carbide manufacturing system according to one embodiment. 図9は、一実施形態に係る炭化物製造システムを示す概略図である。FIG. 9 is a schematic diagram showing a carbide manufacturing system according to one embodiment.
 以下、いくつかの例示的な実施形態について、図面を参照して説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, some exemplary embodiments will be described with reference to the drawings. Note that the dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios.
 [第1実施形態]
 まず、第1実施形態に係る炭化物製造システム1について図1~図7を用いて説明する。図1に示すように、本実施形態に係る炭化物製造システム1は、燃焼炉10と、炭化物回収装置40とを備えている。燃焼炉10は、第1バイオマスが燃焼するように構成されている。炭化物回収装置40は、炭化物を回収する。後述するように、炭化物は第2バイオマスから生成される。
[First embodiment]
First, a carbide manufacturing system 1 according to a first embodiment will be explained using FIGS. 1 to 7. As shown in FIG. 1, a carbide production system 1 according to the present embodiment includes a combustion furnace 10 and a carbide recovery device 40. The combustion furnace 10 is configured to burn the first biomass. The carbide recovery device 40 recovers carbide. As described below, char is produced from the second biomass.
 燃焼炉10は、本実施形態においては、竪型の流動層式燃焼炉である。なお、竪型燃焼炉は多くの設置面積を必要としない点で優れているが、燃焼炉10は、竪型燃焼炉に限られず、横型燃焼炉であってもよい。また、燃焼炉10は、流動層式燃焼炉に限定されず、火格子式燃焼炉、又はキルン式燃焼炉のような回転式燃焼炉であってもよい。 In this embodiment, the combustion furnace 10 is a vertical fluidized bed combustion furnace. Although a vertical combustion furnace is advantageous in that it does not require a large installation area, the combustion furnace 10 is not limited to a vertical combustion furnace, and may be a horizontal combustion furnace. Further, the combustion furnace 10 is not limited to a fluidized bed type combustion furnace, but may be a grate type combustion furnace or a rotary type combustion furnace such as a kiln type combustion furnace.
 燃焼炉10は、風箱11と、風箱11よりも鉛直方向上側に設けられた燃焼室12とを含んでいる。風箱11は、燃焼用空気を供給するための部屋である。燃焼室12は、第1バイオマスを空気で燃焼する部屋である。風箱11と燃焼室12とは、空気分散板13によって区画されている。空気分散板13は、複数の第1空気供給孔14を有している。 The combustion furnace 10 includes a wind box 11 and a combustion chamber 12 provided above the wind box 11 in the vertical direction. The wind box 11 is a room for supplying combustion air. The combustion chamber 12 is a chamber in which the first biomass is burned with air. The wind box 11 and the combustion chamber 12 are separated by an air distribution plate 13. The air distribution plate 13 has a plurality of first air supply holes 14 .
 複数の第1空気供給孔14は、空気を燃焼室12に供給する第1空気供給口である。第1空気供給孔14を介して供給される空気は、一次空気である。一次空気は、流動媒体15に供給され、主として燃焼に用いられる。空気供給部20から供給された空気は、風箱11及び複数の第1空気供給孔14を介して燃焼室12に供給される。なお、本実施形態では、燃焼炉10の散気方式は、分散板式であるが、散気管式であってもよく、これらの組み合わせであってもよい。 The plurality of first air supply holes 14 are first air supply ports that supply air to the combustion chamber 12. The air supplied through the first air supply hole 14 is primary air. The primary air is supplied to the fluidized medium 15 and is mainly used for combustion. Air supplied from the air supply section 20 is supplied to the combustion chamber 12 via the wind box 11 and the plurality of first air supply holes 14. In this embodiment, the aeration method of the combustion furnace 10 is a dispersion plate type, but it may be an aeration tube type or a combination thereof.
 風箱11には空気供給部20が接続されている。空気供給部20は、空気流路21と、空気取り込み口22と、送風機23とを含んでいる。空気流路21には、空気取り込み口22と送風機23とが設けられている。また、空気流路21には、空気取り込み口22と送風機23との間に流量調整ダンパ24が設けられている。また、空気流路21には、送風機23と風箱11との間に流量調整ダンパ25が設けられている。そして、流量調整ダンパ24及び流量調整ダンパ25を開いた状態で送風機23を駆動することにより、空気を空気取り込み口22から風箱11に連続的に供給することができる。 An air supply section 20 is connected to the wind box 11. The air supply section 20 includes an air flow path 21, an air intake port 22, and a blower 23. The air flow path 21 is provided with an air intake port 22 and a blower 23. Further, a flow rate adjusting damper 24 is provided in the air flow path 21 between the air intake port 22 and the blower 23. Further, a flow rate adjustment damper 25 is provided in the air flow path 21 between the blower 23 and the wind box 11. Then, by driving the blower 23 with the flow rate adjustment damper 24 and the flow rate adjustment damper 25 open, air can be continuously supplied to the wind box 11 from the air intake port 22.
 燃焼室12内において、空気分散板13の上には流動媒体15が配置されている。流動媒体15は、珪砂などの不活性粒子を含んでいてもよい。空気分散板13の第1空気供給孔14を介し、空気が風箱11から燃焼室12へ供給されると、流動媒体15は流動状態となり、流動層を形成する。流動層における空気比は、0.5~1.5程度であってもよい。 In the combustion chamber 12, a fluidizing medium 15 is arranged above the air distribution plate 13. The fluidizing medium 15 may also contain inert particles such as silica sand. When air is supplied from the wind box 11 to the combustion chamber 12 through the first air supply hole 14 of the air distribution plate 13, the fluidized medium 15 becomes fluidized and forms a fluidized bed. The air ratio in the fluidized bed may be about 0.5 to 1.5.
 燃焼室12には、第2空気供給口16と、第1バイオマス供給口17と、第2バイオマス供給口18aと、排出口19とが設けられている。 The combustion chamber 12 is provided with a second air supply port 16, a first biomass supply port 17, a second biomass supply port 18a, and an exhaust port 19.
 第2空気供給口16は、空気を燃焼室12に供給する供給口である。第2空気供給口16は、燃焼室12を構成する側壁に設けられている。第2空気供給口16は、第1空気供給孔14よりも鉛直方向上側であって、第2バイオマス供給口18a及び排出口19よりも鉛直方向下側に設けられている。第2空気供給口16を介して供給される空気は、二次空気である。二次空気を燃焼室12に供給することにより、一次空気による燃焼温度よりも高い温度で段階燃焼することができるため、熱により流動媒体15が固着するのを抑制することができる。また、二次空気により、後述する炭化領域の酸素濃度を調整することもできる。 The second air supply port 16 is a supply port that supplies air to the combustion chamber 12. The second air supply port 16 is provided in a side wall of the combustion chamber 12 . The second air supply port 16 is provided above the first air supply hole 14 in the vertical direction and below the second biomass supply port 18a and the discharge port 19 in the vertical direction. The air supplied through the second air supply port 16 is secondary air. By supplying secondary air to the combustion chamber 12, staged combustion can be performed at a temperature higher than the combustion temperature of the primary air, so that it is possible to suppress the fluidized medium 15 from sticking due to heat. Further, the oxygen concentration in the carbonization region, which will be described later, can also be adjusted using secondary air.
 第2空気供給口16には、空気流路21が接続されている。空気流路21は、送風機23と流量調整ダンパ25との間において分岐している。分岐した空気流路21には、流量調整ダンパ26と、流量調整ダンパ27とが設けられている。そして、流量調整ダンパ24、流量調整ダンパ26及び流量調整ダンパ27を開いた状態で送風機23を駆動することにより、空気取り込み口22から第2空気供給口16を介して空気を燃焼室12に連続的に供給することができる。 An air flow path 21 is connected to the second air supply port 16. The air flow path 21 branches between the blower 23 and the flow rate adjustment damper 25. The branched air flow path 21 is provided with a flow rate adjustment damper 26 and a flow rate adjustment damper 27. By driving the blower 23 with the flow rate adjustment damper 24, flow rate adjustment damper 26, and flow rate adjustment damper 27 open, air is continuously supplied to the combustion chamber 12 from the air intake port 22 through the second air supply port 16. can be supplied.
 第1バイオマス供給口17は、第1バイオマスを燃焼室12に供給する供給口である。第1バイオマス供給口17を介して第1バイオマスを燃焼室12に供給することができるため、第1バイオマスを燃焼室12に連続的に供給することができる。バイオマスは再生可能エネルギーとして位置づけられており、カーボンニュートラルの考え方から、バイオマスを燃焼しても大気中へ放出される二酸化炭素の増加につながらないと考えられている。第1バイオマスが燃焼することにより、化石燃料の使用を低減することができ、大気中への二酸化炭素の放出を抑制することができる。 The first biomass supply port 17 is a supply port that supplies the first biomass to the combustion chamber 12. Since the first biomass can be supplied to the combustion chamber 12 via the first biomass supply port 17, the first biomass can be continuously supplied to the combustion chamber 12. Biomass is positioned as a renewable energy, and based on the concept of carbon neutrality, it is believed that burning biomass will not lead to an increase in carbon dioxide released into the atmosphere. By burning the first biomass, the use of fossil fuels can be reduced and the release of carbon dioxide into the atmosphere can be suppressed.
 第1バイオマス供給口17は、燃焼室12を構成する側壁に設けられている。第1バイオマス供給口17は、第1空気供給孔14よりも鉛直方向上側に設けられている。第1バイオマス供給口17には、第1バイオマスを燃焼炉10の燃焼室12に供給する第1バイオマス供給部30が接続されている。第1バイオマス供給部30によって燃焼室12に供給された第1バイオマスは、流動媒体15と一緒に撹拌され、燃焼される。 The first biomass supply port 17 is provided in the side wall that constitutes the combustion chamber 12. The first biomass supply port 17 is provided above the first air supply hole 14 in the vertical direction. A first biomass supply section 30 that supplies the first biomass to the combustion chamber 12 of the combustion furnace 10 is connected to the first biomass supply port 17 . The first biomass supplied to the combustion chamber 12 by the first biomass supply section 30 is stirred together with the fluidized medium 15 and combusted.
 第2バイオマス供給口18aは、第2バイオマスを燃焼室12内に供給する供給口である。第2バイオマスを燃焼室12内に供給する場合、炭化物は燃焼室12内で生成される。第2バイオマス供給口18aを介して第2バイオマスを燃焼室12に供給することができるため、第2バイオマスを燃焼室12に連続的に供給することができる。第2バイオマス供給口18aは、燃焼室12を構成する側壁に設けられている。第2バイオマス供給口18aは、第1バイオマス供給口17よりも下流に設けられている。具体的には、第2バイオマス供給口18aは、第1バイオマス供給口17よりも鉛直方向上側に設けられている。また、第2バイオマス供給口18aは、第1空気供給孔14よりも下流に設けられている。第2バイオマス供給口18aには、第2バイオマスを燃焼室12に供給する第2バイオマス供給部31が接続されている。第2バイオマス供給部31によって燃焼室12に供給された第2バイオマスは、後述するように炭化され、第2バイオマスから炭化物が生成される。 The second biomass supply port 18a is a supply port that supplies the second biomass into the combustion chamber 12. When the second biomass is fed into the combustion chamber 12, char is generated within the combustion chamber 12. Since the second biomass can be supplied to the combustion chamber 12 via the second biomass supply port 18a, the second biomass can be continuously supplied to the combustion chamber 12. The second biomass supply port 18a is provided in the side wall of the combustion chamber 12. The second biomass supply port 18a is provided downstream of the first biomass supply port 17. Specifically, the second biomass supply port 18a is provided above the first biomass supply port 17 in the vertical direction. Further, the second biomass supply port 18a is provided downstream of the first air supply hole 14. A second biomass supply section 31 that supplies second biomass to the combustion chamber 12 is connected to the second biomass supply port 18a. The second biomass supplied to the combustion chamber 12 by the second biomass supply section 31 is carbonized as described below, and charred material is generated from the second biomass.
 第2バイオマスは、第2バイオマス供給口18aを介し、第1バイオマスの燃焼によって加熱され、かつ、第1バイオマスの燃焼によって空気よりも酸素濃度が低くなった低濃度酸素ガスが存在する炭化領域に供給される。炭化領域は、炭化物の生成に適した温度かつ低い酸素濃度に維持されており、このような制御された雰囲気下に第2バイオマスが供給される。第2バイオマスは第1バイオマスの燃焼によって生成された高温ガスにより加熱される。そのため、第2バイオマスの熱分解が安定的に進行し、第2バイオマスから炭化物を安定的に生成することができる。 The second biomass is heated by combustion of the first biomass through the second biomass supply port 18a, and is delivered to a carbonization region where low-concentration oxygen gas whose oxygen concentration has become lower than air due to the combustion of the first biomass exists. Supplied. The carbonization region is maintained at a temperature and low oxygen concentration suitable for the production of char, and the second biomass is supplied under such a controlled atmosphere. The second biomass is heated by hot gas produced by combustion of the first biomass. Therefore, thermal decomposition of the second biomass proceeds stably, and charcoal can be stably generated from the second biomass.
 生成される炭化物の性状は、第2バイオマスの種類及び乾燥状態、第2バイオマス供給量、炭化領域の温度、及び炭化領域の酸素濃度などの条件によって変化する。そのため、製造したい炭化物の性状に応じ、第2バイオマス供給量、炭化領域の温度、及び炭化領域の酸素濃度の条件を事前に試運転にて決定しておいてもよい。 The properties of the generated char vary depending on conditions such as the type and drying state of the second biomass, the amount of second biomass supplied, the temperature of the carbonization region, and the oxygen concentration of the carbonization region. Therefore, depending on the properties of the carbide to be produced, the conditions of the second biomass supply amount, the temperature of the carbonization region, and the oxygen concentration of the carbonization region may be determined in advance through a trial run.
 排出口19は、第1バイオマス燃焼後のガスを排出する排出口である。燃焼室12内で第2バイオマスから炭化物が生成される場合、炭化物も排出口19を介して排出される。炭化物は、燃焼によって体積が膨張した燃焼ガスに乗って、排出口19から排出することができる。排出口19は、第1空気供給孔14、第2空気供給口16及び第1バイオマス供給口17及び第2バイオマス供給口18aよりも鉛直方向上側に設けられている。具体的には、排出口19は、燃焼室12を構成する天井に設けられている。排出口19は、第1接続流路36と接続されている。 The exhaust port 19 is an exhaust port that discharges the gas after the first biomass combustion. When char is generated from the second biomass within the combustion chamber 12, the char is also discharged through the outlet 19. The carbide can be discharged from the discharge port 19 along with the combustion gas whose volume has expanded due to combustion. The discharge port 19 is provided above the first air supply hole 14, the second air supply port 16, the first biomass supply port 17, and the second biomass supply port 18a in the vertical direction. Specifically, the exhaust port 19 is provided in the ceiling of the combustion chamber 12 . The discharge port 19 is connected to the first connection channel 36 .
 第1バイオマス及び第2バイオマスは同じ種類のバイオマスであってもよく、それぞれ異なる種類のバイオマスであってもよい。バイオマスは、例えば、木材、草本、家畜排せつ物、下水汚泥及び浄化槽汚泥などの生活排水、並びに食品廃棄物などの有機物を含んでいてもよい。バイオマスは、廃棄物系バイオマス及び未利用系バイオマスの少なくともいずれか一方を含んでいてもよい。廃棄物系バイオマスは、鶏糞のような家畜排泄物を含んでいてもよい。未利用系バイオマスは、農作物非食用部、林地残材、竹及び笹の少なくともいずれか一方を含んでいてもよい。農作物非食用部は、もみ殻、稲わら、麦わら、トウモロコシ茎、パーム空果房(EFB)、パーム古木(OPT)及びパーム核殻(PKS)からなる群より選択される少なくとも一種を含んでいてもよい。バイオマスは、草本系バイオマス及び木質バイオマスの少なくともいずれか一方を含んでいてもよい。木質バイオマスは、間伐材及び剪定枝の少なくともいずれか一方を含んでいてもよい。これらの中でも、バイオマスは、存在量及び重量の観点から、もみ殻、稲わら、麦わら、鶏糞,トウモロコシ茎、竹、笹、間伐材及び剪定枝からなる群より選択される少なくとも一種を含んでいることが好ましい。 The first biomass and the second biomass may be the same type of biomass, or may be different types of biomass. Biomass may include, for example, organic matter such as wood, herbs, livestock manure, domestic wastewater such as sewage sludge and septic tank sludge, and food waste. The biomass may include at least one of waste biomass and unused biomass. Waste-based biomass may include livestock waste such as chicken manure. The unused biomass may include at least one of inedible parts of agricultural crops, forest residue, bamboo, and bamboo. The inedible part of the agricultural product includes at least one selected from the group consisting of rice husk, rice straw, wheat straw, corn stalk, empty palm fruit bunch (EFB), old palm tree (OPT), and palm kernel husk (PKS). Good too. The biomass may include at least one of herbaceous biomass and woody biomass. The woody biomass may include at least one of thinned wood and pruned branches. Among these, biomass includes at least one selected from the group consisting of rice husks, rice straw, wheat straw, chicken manure, corn stalks, bamboo, bamboo, thinned wood, and pruned branches in terms of abundance and weight. It is preferable.
 第1バイオマス供給部30及び第2バイオマス供給部31は、スクリューフィーダ及びテーブルフィーダなどのような連続供給方式の供給機をそれぞれ含んでいてもよい。また、第1バイオマス供給部30及び第2バイオマス供給部31は、ロスインウェイト式のような重量式フィーダ又は容積式フィーダを含んでいてもよい。また、第2バイオマス供給部31から供給される第2バイオマスの量は、第1バイオマス供給部30から供給される第1バイオマスの量よりも多くてもよい。第2バイオマス供給部31から供給される第2バイオマスの量は、第1バイオマス供給部30から供給される第1バイオマスの量に対し、例えば2倍以上10倍以下であってもよい。 The first biomass supply section 30 and the second biomass supply section 31 may each include a continuous supply type supply machine such as a screw feeder and a table feeder. Further, the first biomass supply section 30 and the second biomass supply section 31 may include a weight feeder such as a loss-in-weight type feeder or a positive displacement feeder. Further, the amount of second biomass supplied from the second biomass supply section 31 may be greater than the amount of first biomass supplied from the first biomass supply section 30. The amount of the second biomass supplied from the second biomass supply section 31 may be, for example, 2 times or more and 10 times or less the amount of the first biomass supplied from the first biomass supply section 30.
 炭化物製造システム1は、第1粉砕機32と、第2粉砕機33とを含んでいてもよい。第1粉砕機32は、第1バイオマス及び第2バイオマスを粉砕している。第2粉砕機33は、第1粉砕機32で粉砕した第2バイオマスをさらに粉砕している。第1粉砕機32で第1バイオマスを粉砕することにより、第1バイオマスを燃焼に適した大きさに粉砕することができる。また、第1粉砕機32及び第2粉砕機33で第2バイオマスを粉砕し、粒子径を小さくすることにより、第2バイオマスの炭化を容易にし、炭化物回収装置40への移送を容易にすることができる。第2バイオマス供給口18aを介して供給される第2バイオマスは、第1バイオマス供給口17を介して供給される第1バイオマスよりも小さいサイズであってもよい。なお、第1バイオマス及び第2バイオマスが最適な大きさである場合、第1バイオマス及び第2バイオマスを第1粉砕機32及び第2粉砕機33で粉砕しなくてもよい。 The carbide manufacturing system 1 may include a first crusher 32 and a second crusher 33. The first crusher 32 crushes the first biomass and the second biomass. The second crusher 33 further crushes the second biomass crushed by the first crusher 32. By pulverizing the first biomass with the first pulverizer 32, the first biomass can be pulverized into a size suitable for combustion. Furthermore, by pulverizing the second biomass with the first pulverizer 32 and the second pulverizer 33 to reduce the particle size, the second biomass can be easily carbonized and transferred to the charred material recovery device 40. Can be done. The second biomass supplied through the second biomass supply port 18a may be smaller in size than the first biomass supplied through the first biomass supply port 17. In addition, when the first biomass and the second biomass have optimal sizes, the first biomass and the second biomass do not need to be crushed by the first crusher 32 and the second crusher 33.
 炭化物製造システム1は、図示しない磁力選別機、風力選別機及び粒度選別機からなる群より選択される少なくとも一種を備えていてもよい。これらの選別機により、第1バイオマス供給部30で供給される第1バイオマス及び第2バイオマス供給部31で供給される第2バイオマスから、金属やコンクリート片などの異物を除去することができる。 The carbide production system 1 may include at least one selected from the group consisting of a magnetic separator, a wind separator, and a particle size separator (not shown). These sorters can remove foreign substances such as metal and concrete pieces from the first biomass supplied by the first biomass supply unit 30 and the second biomass supplied by the second biomass supply unit 31.
 燃焼炉10は、燃焼室12において、第2空気供給口16よりも鉛直方向上側であって、排出口19よりも鉛直方向下側の温度を測定する温度計34を含んでいてもよい。温度計34によって炭化領域の温度を測定することにより、炭化温度を容易に制御することができる。炭化領域の温度は、700℃~1200℃程度であってもよい。炭化領域の温度を700℃以上にすることにより、第2バイオマスに水分が多く含まれる場合であっても、炭化を容易に進行させることができる。また、炭化領域の温度を1200℃以下とすることにより、第2バイオマスの成分などが部分的に溶融し、燃焼炉10の内壁に付着するのを抑制することができる。 The combustion furnace 10 may include a thermometer 34 that measures the temperature in the combustion chamber 12 above the second air supply port 16 in the vertical direction and below the discharge port 19 in the vertical direction. By measuring the temperature of the carbonization region with the thermometer 34, the carbonization temperature can be easily controlled. The temperature of the carbonized region may be about 700°C to 1200°C. By setting the temperature of the carbonization region to 700° C. or higher, carbonization can easily proceed even if the second biomass contains a large amount of water. Further, by setting the temperature of the carbonization region to 1200° C. or lower, components of the second biomass and the like can be prevented from partially melting and adhering to the inner wall of the combustion furnace 10.
 燃焼炉10は、燃焼室12において、第2空気供給口16よりも鉛直方向上側であって、排出口19よりも鉛直方向下側の酸素濃度を測定する酸素濃度計35を含んでいてもよい。酸素濃度計35によって炭化領域の酸素濃度を測定することにより、酸素濃度を容易に制御することができる。炭化領域の酸素濃度は、0体積%~7体積%程度であってもよい。酸素濃度を0体積%以上とすることにより、第2バイオマスの揮発分が多い場合であっても、炭化物を容易に生成することができる。また、酸素濃度を7体積%以下とすることにより、燃焼によって二酸化炭素の生成が促進され、炭素の残存量が低減するのを抑制することができる。 The combustion furnace 10 may include an oxygen concentration meter 35 that measures the oxygen concentration in the combustion chamber 12 above the second air supply port 16 in the vertical direction and below the discharge port 19 in the vertical direction. . By measuring the oxygen concentration in the carbonized region with the oxygen concentration meter 35, the oxygen concentration can be easily controlled. The oxygen concentration in the carbonized region may be approximately 0% to 7% by volume. By setting the oxygen concentration to 0% by volume or more, carbide can be easily generated even when the second biomass has a large volatile content. Further, by setting the oxygen concentration to 7% by volume or less, the production of carbon dioxide is promoted through combustion, and it is possible to suppress a reduction in the residual amount of carbon.
 燃焼炉10と炭化物回収装置40とは第1接続流路36を介して接続されている。第1接続流路36には、第2バイオマスを第1接続流路36内に供給する第2バイオマス供給口18bが設けられている。第2バイオマスが第1接続流路36内に供給される場合、炭化物は第1接続流路36内で生成される。具体的には、第2バイオマスは、第2バイオマス供給口18bを介し、第1バイオマスの燃焼によって加熱され、かつ、第1バイオマスの燃焼によって空気よりも酸素濃度が低くなった低濃度酸素ガスが存在する炭化領域に供給される。第1接続流路36内は、燃焼炉10内のガスが通過するため、高温かつ低酸素雰囲気となっている。このような雰囲気下に第2バイオマスを供給することにより、第2バイオマス供給口18aを介して第2バイオマスを燃焼室12内に供給した場合と同様に、第2バイオマスから炭化物を安定的に生成することができる。 The combustion furnace 10 and the carbide recovery device 40 are connected via the first connection flow path 36. The first connection channel 36 is provided with a second biomass supply port 18b that supplies the second biomass into the first connection channel 36. When the second biomass is fed into the first connecting channel 36, char is produced in the first connecting channel 36. Specifically, the second biomass is heated by combustion of the first biomass through the second biomass supply port 18b, and low-concentration oxygen gas whose oxygen concentration is lower than air due to the combustion of the first biomass is supplied. It is fed into the charred area that exists. The gas inside the combustion furnace 10 passes through the first connecting flow path 36, so the atmosphere is high temperature and low in oxygen. By supplying the second biomass under such an atmosphere, charcoal can be stably generated from the second biomass in the same way as when the second biomass is supplied into the combustion chamber 12 through the second biomass supply port 18a. can do.
 なお、本実施形態では、図2及び図3に示すように、第1接続流路36の円筒部分の中心軸方向からみて略中央部分に第2バイオマス供給口18bが設けられている。第1接続流路36は、燃焼炉10と接続され、鉛直方向に延びる第1円筒管36aと、炭化物回収装置40と接続され、水平方向に延びる第2円筒管36bとを含んでいる。図3に示すように、第2円筒管36bの中心軸の方向から見て、第1円筒管36aの中心軸が第2円筒管36bの中心軸と水平方向に異なる位置になるように第1円筒管36aと第2円筒管36bとが接続されている。そのため、図2及び図3の矢印で示すように、第1接続流路36は、燃焼炉10から送られてきたガスが第2円筒管36b内を螺旋状に流れるように構成されている。そして、第2円筒管36bの中心軸の方向から見て、第2バイオマス供給口18bは第2円筒管36bの中心軸と概ね一致するように第1接続流路36に接続されている。そのため、第2バイオマスは、螺旋状に流れるガスの中心部に供給され、螺旋状に流れる。これにより、第2バイオマスの滞留距離を長くすることができる。 In this embodiment, as shown in FIGS. 2 and 3, the second biomass supply port 18b is provided at a substantially central portion of the cylindrical portion of the first connection channel 36 when viewed from the central axis direction. The first connecting flow path 36 includes a first cylindrical pipe 36a that is connected to the combustion furnace 10 and extends in the vertical direction, and a second cylindrical pipe 36b that is connected to the carbide recovery device 40 and extends in the horizontal direction. As shown in FIG. 3, when viewed from the direction of the central axis of the second cylindrical tube 36b, the first cylindrical tube 36a is placed at a horizontally different position from the central axis of the second cylindrical tube 36b. The cylindrical tube 36a and the second cylindrical tube 36b are connected. Therefore, as shown by the arrows in FIGS. 2 and 3, the first connecting flow path 36 is configured so that the gas sent from the combustion furnace 10 flows spirally within the second cylindrical pipe 36b. When viewed from the direction of the central axis of the second cylindrical pipe 36b, the second biomass supply port 18b is connected to the first connection flow path 36 so as to substantially coincide with the central axis of the second cylindrical pipe 36b. Therefore, the second biomass is supplied to the center of the spirally flowing gas and flows spirally. Thereby, the residence distance of the second biomass can be increased.
 ただし、第1接続流路36において、第2バイオマス供給口18bが設けられる位置はこのような形態に限定されない。例えば図4及び図5に示すように、第2バイオマス供給口18bは、第2円筒管36bの側壁に設けられていてもよい。第2バイオマス供給口18bが第2円筒管36bの側壁に設けられていると、供給された第2バイオマスが第2円筒管36b内に落下する。すなわち、内部の螺旋状流れに第2バイオマスが同伴されやすくなり、比較的粒度の大きいバイオマスも燃焼炉10の流動層に落下しにくいため、燃焼炉10内で安定した燃焼条件を保つことができる。また、供給するバイオマスの粒度を大きくすることができるため、炭化物製造の自由度を広げることができる。 However, in the first connection channel 36, the position where the second biomass supply port 18b is provided is not limited to such a configuration. For example, as shown in FIGS. 4 and 5, the second biomass supply port 18b may be provided on the side wall of the second cylindrical pipe 36b. When the second biomass supply port 18b is provided on the side wall of the second cylindrical pipe 36b, the supplied second biomass falls into the second cylindrical pipe 36b. That is, the second biomass is easily entrained in the internal spiral flow, and biomass with a relatively large particle size is also difficult to fall into the fluidized bed of the combustion furnace 10, so that stable combustion conditions can be maintained within the combustion furnace 10. . Furthermore, since the particle size of the biomass to be supplied can be increased, the degree of freedom in producing carbide can be expanded.
 また、第1円筒管36aは垂直方向に延び、第2円筒管36bは水平方向に延びているが、このような形態に限定されない。例えば図6及び図7に示すように、第2円筒管36bは、第1円筒管36aとの接続部から炭化物回収装置40に向かうにつれ、鉛直方向下側に傾くように設けられていてもよい。また、本実施形態では、第1円筒管36a及び第2円筒管36bは、円筒状をしているが、例えば楕円筒状の形状をしていてもよい。また、本実施形態では、第1円筒管36aと第2円筒管36bとが接続されて角張ったL字状をしているが、第1接続流路36は、湾曲部を有し、湾曲部を介して第1円筒管36aと第2円筒管36bとが接続されていてもよい。 Furthermore, although the first cylindrical tube 36a extends in the vertical direction and the second cylindrical tube 36b extends in the horizontal direction, the present invention is not limited to such a configuration. For example, as shown in FIGS. 6 and 7, the second cylindrical pipe 36b may be provided so as to be inclined downward in the vertical direction from the connection part with the first cylindrical pipe 36a toward the carbide recovery device 40. . Further, in this embodiment, the first cylindrical tube 36a and the second cylindrical tube 36b have a cylindrical shape, but may have an elliptical shape, for example. Furthermore, in the present embodiment, the first cylindrical pipe 36a and the second cylindrical pipe 36b are connected to form an angular L-shape, but the first connection channel 36 has a curved part. The first cylindrical tube 36a and the second cylindrical tube 36b may be connected via.
 また、本実施形態では、第2バイオマス供給口18は、燃焼室12に設けられた第2バイオマス供給口18aと、第1接続流路36に設けられた第2バイオマス供給口18bとを含んでいる。しかしながら、第2バイオマス供給口18は、第2バイオマス供給口18a又は第2バイオマス供給口18bのいずれか一方のみを含んでいてもよい。すなわち、第2バイオマス供給口18は、第2バイオマス供給口18a及び第2バイオマス供給口18bの少なくともいずれか一方を含んでいればよい。 Furthermore, in the present embodiment, the second biomass supply port 18 includes a second biomass supply port 18a provided in the combustion chamber 12 and a second biomass supply port 18b provided in the first connection channel 36. There is. However, the second biomass supply port 18 may include only either the second biomass supply port 18a or the second biomass supply port 18b. That is, the second biomass supply port 18 only needs to include at least one of the second biomass supply port 18a and the second biomass supply port 18b.
 図1に示すように、第1接続流路36には、空気を第1接続流路36内に供給する第3空気供給口37が設けられていてもよい。第1接続流路36内の温度は、第2バイオマスを熱分解することによってエネルギーが消費され、低くなる場合がある。また、第2バイオマスが水分を多く含む場合、水分の気化に熱エネルギーが使用され、第1接続流路36内の温度が低くなる場合がある。そこで、第3空気供給口37から第1接続流路36内に空気を供給し、第1接続流路36内で第2バイオマスの一部を燃焼することにより、第1接続流路36内の温度の低下を抑制することができる。これにより、第1接続流路36内を炭化に適した温度に維持することができる。 As shown in FIG. 1, the first connection channel 36 may be provided with a third air supply port 37 that supplies air into the first connection channel 36. The temperature within the first connection flow path 36 may become low as energy is consumed by thermally decomposing the second biomass. Further, when the second biomass contains a large amount of water, thermal energy is used to vaporize the water, and the temperature inside the first connecting channel 36 may become low. Therefore, by supplying air into the first connecting channel 36 from the third air supply port 37 and burning a part of the second biomass in the first connecting channel 36, the air in the first connecting channel 36 is A decrease in temperature can be suppressed. Thereby, the inside of the first connection channel 36 can be maintained at a temperature suitable for carbonization.
 第3空気供給口37は、第1接続流路36において、炭化物回収装置40よりも第2バイオマス供給口18bに近い位置に設けられていてもよい。これにより、第2バイオマス供給口18bから炭化物回収装置40に至るまでの第1接続流路36内の温度にムラが生じるのを抑制することができる。 The third air supply port 37 may be provided in the first connection channel 36 at a position closer to the second biomass supply port 18b than the carbide recovery device 40. Thereby, it is possible to suppress unevenness in the temperature within the first connecting channel 36 from the second biomass supply port 18b to the carbide recovery device 40.
 第3空気供給口37には、空気流路21が接続されている。空気流路21は、送風機23と流量調整ダンパ25との間において分岐している。分岐した空気流路21には、流量調整ダンパ26と、流量調整ダンパ28とが設けられている。そして、流量調整ダンパ24、流量調整ダンパ26及び流量調整ダンパ28を開いた状態で送風機23を駆動することにより、空気取り込み口22から第3空気供給口37を介して空気を第1接続流路36内に連続的に供給することができる。 The air flow path 21 is connected to the third air supply port 37. The air flow path 21 branches between the blower 23 and the flow rate adjustment damper 25. The branched air flow path 21 is provided with a flow rate adjustment damper 26 and a flow rate adjustment damper 28. Then, by driving the blower 23 with the flow rate adjustment damper 24, the flow rate adjustment damper 26, and the flow rate adjustment damper 28 open, air is transferred from the air intake port 22 through the third air supply port 37 to the first connection flow path. 36 can be fed continuously.
 炭化物回収装置40は、燃焼炉10と接続され、第2バイオマスから生成された炭化物を回収する。炭化物回収装置40はバグフィルタなどのような粉末回収装置であってもよいが、本実施形態では炭化物回収装置40はサイクロンを含んでいる。サイクロンは、炭化物を遠心力によって分離捕集する装置である。炭化物回収装置40には、燃焼炉10でのバイオマスの熱分解に由来するガス状のタールも供給される。サイクロンはタールが凝縮しない高温状態でフィルタを介さずにガスと炭化物とを分離することができるため、タールの付着が少ない炭化物を容易に回収することができる。 The carbide recovery device 40 is connected to the combustion furnace 10 and recovers the carbide generated from the second biomass. Although the carbide recovery device 40 may be a powder recovery device such as a bag filter, in this embodiment, the carbide recovery device 40 includes a cyclone. A cyclone is a device that separates and collects carbides using centrifugal force. Gaseous tar derived from thermal decomposition of biomass in the combustion furnace 10 is also supplied to the char recovery device 40 . Since a cyclone can separate gas and carbide without using a filter in a high temperature state where tar does not condense, carbide with little tar attached can be easily recovered.
 サイクロンは、炭化物が分散されたガスが供給される供給口41と、炭化物を遠心分離する本体部42と、炭化物を収集する集塵室43と、炭化物が除去されたガスを排出する円筒状の排出管44とを含んでいる。本体部42は、上部に配置された円筒部42aと、円筒部42aよりも鉛直方向下側に設けられた円錐部42bとを有している。排出管44は、円筒部42aの内側に配置されている。炭化物は、本体部42内を落下し、集塵室43内に収集される。炭化物が除去されたガスは、排出管44を通じて炭化物回収装置40から排出される。 The cyclone has a supply port 41 to which gas in which carbide is dispersed is supplied, a main body part 42 that centrifugally separates the carbide, a dust collection chamber 43 that collects the carbide, and a cylindrical part that discharges the gas from which the carbide has been removed. A discharge pipe 44 is included. The main body portion 42 includes a cylindrical portion 42a disposed at an upper portion and a conical portion 42b provided vertically below the cylindrical portion 42a. The discharge pipe 44 is arranged inside the cylindrical portion 42a. The carbide falls inside the main body 42 and is collected in the dust collection chamber 43. The gas from which the carbide has been removed is discharged from the carbide recovery device 40 through the exhaust pipe 44 .
 集塵室43には、2つのダンパが連なった二重ダンパ45が接続されている。各ダンパは蓋46を含んでおり、一方の蓋46を開き、もう一方の蓋46を閉じることにより、大気中の空気が入らないように炭化物回収装置40から炭化物を取り出すことができる。なお、二重ダンパ45に代え、ロータリーバルブなどのような回転式の取出し装置を用いてもよい。また、取出し装置として本体部42に接続された水封装置を用いてもよい。水封装置は水を貯水する貯水タンクを含んでいてもよい。本体部42の一端は貯水タンクの水で封じられるため、本体部42で分離された炭化物は貯水タンク内の水に接触して冷却される。なお、上記取出し装置はサイクロン以外の炭化物回収装置40に適用してもよい。 A double damper 45 in which two dampers are connected is connected to the dust collection chamber 43. Each damper includes a lid 46, and by opening one lid 46 and closing the other lid 46, carbide can be removed from the carbide recovery device 40 without introducing atmospheric air. Note that, instead of the double damper 45, a rotary take-out device such as a rotary valve may be used. Further, a water sealing device connected to the main body portion 42 may be used as the extraction device. The water seal device may include a water storage tank for storing water. Since one end of the main body part 42 is sealed with water in the water storage tank, the carbide separated in the main body part 42 comes into contact with the water in the water storage tank and is cooled. Note that the above extraction device may be applied to a carbide recovery device 40 other than a cyclone.
 回収された炭化物は、第2バイオマスに由来する炭素を有している。第2バイオマスを燃焼せずに炭化することにより、大気中への二酸化炭素の放出を抑制することができる。得られた炭化物は、例えば採石場の採石跡に埋め戻し材として利用してもよい。このような場合、CCS(二酸化炭素回収・貯留)と同様の効果が得られる。また、炭化物は、土壌へ炭素隔離することもできる。炭化物は、田畑などの農地で用いる場合、炭素隔離に加え、土壌改良材としての役割も果たす。本実施形態に係る炭化物製造システム1は、炭化領域の温度及び酸素濃度を安定的に制御することができるため、炭化物中の炭素量、植物に必須の栄養素である窒素、リン及びカリウムなどの成分量を任意に調整することもできる。また、炭化物は、光を吸収して加熱しやすいため、融雪剤として用いてもよい。また、炭化物は、脱臭剤として用いることもできる。 The recovered charcoal contains carbon derived from the second biomass. By carbonizing the second biomass without burning it, it is possible to suppress the release of carbon dioxide into the atmosphere. The obtained carbide may be used, for example, as a backfill material in the remains of a quarry. In such a case, the same effect as CCS (carbon dioxide capture and storage) can be obtained. Carbide can also sequester carbon into soil. When used in agricultural fields such as fields, charcoal can not only sequester carbon but also act as a soil conditioner. Since the carbide production system 1 according to the present embodiment can stably control the temperature and oxygen concentration in the carbonization region, the amount of carbon in the carbide and components such as nitrogen, phosphorus, and potassium, which are essential nutrients for plants, can be controlled stably. The amount can also be adjusted arbitrarily. Further, since carbide absorbs light and is easily heated, it may be used as a snow melting agent. Moreover, the carbide can also be used as a deodorizing agent.
 炭化物製造システム1は、炭化物回収装置40から排出されたガスを利用するガス利用装置50をさらに備えていてもよい。本実施形態において、ガス利用装置50はボイラを含んでいる。具体的には、ガス利用装置50は排熱回収ボイラ51を含んでいる。排熱回収ボイラ51は、炭化物回収装置40から排出されたガスの熱を熱交換によって回収して水蒸気及び温水の少なくともいずれか一方を生成する。排熱回収ボイラ51で回収された熱は、工場などで熱エネルギーとして利用することができる。 The carbide production system 1 may further include a gas utilization device 50 that utilizes gas discharged from the carbide recovery device 40. In this embodiment, the gas utilization device 50 includes a boiler. Specifically, the gas utilization device 50 includes an exhaust heat recovery boiler 51. The exhaust heat recovery boiler 51 recovers the heat of the gas discharged from the carbide recovery device 40 by heat exchange to generate at least one of steam and hot water. The heat recovered by the exhaust heat recovery boiler 51 can be used as thermal energy in a factory or the like.
 ガス利用装置50は、炭化物回収装置40と第2接続流路52を介して接続されている。第2接続流路52には第4空気供給口53が設けられている。第4空気供給口53には、空気流路21が接続されている。空気流路21は、送風機23と流量調整ダンパ25との間において分岐している。分岐した空気流路21には、流量調整ダンパ26と、流量調整ダンパ29とが設けられている。そして、流量調整ダンパ24、流量調整ダンパ26及び流量調整ダンパ29を開いた状態で送風機23を駆動することにより、空気取り込み口22から第4空気供給口53を介して空気を第2接続流路52に連続的に供給することができる。空気が第2接続流路52内に供給されることにより、残存した可燃成分を燃焼させることができる。 The gas utilization device 50 is connected to the carbide recovery device 40 via a second connection flow path 52. A fourth air supply port 53 is provided in the second connection channel 52 . The air flow path 21 is connected to the fourth air supply port 53 . The air flow path 21 branches between the blower 23 and the flow rate adjustment damper 25. The branched air flow path 21 is provided with a flow rate adjustment damper 26 and a flow rate adjustment damper 29. Then, by driving the blower 23 with the flow rate adjustment damper 24, the flow rate adjustment damper 26, and the flow rate adjustment damper 29 open, air is transferred from the air intake port 22 through the fourth air supply port 53 to the second connecting flow path. 52 can be continuously supplied. By supplying air into the second connection flow path 52, the remaining combustible components can be burned.
 炭化物製造システム1は、第4空気供給口53よりも下流に設けられ、第2接続流路52の内部の温度を測定する温度計54を備えていてもよい。これにより、ガス利用装置50に供給されるガスの温度を管理することができる。また、炭化物製造システム1は、第4空気供給口53よりも下流に設けられ、第2接続流路52の内部の酸素濃度を測定する酸素濃度計55を備えていてもよい。これにより、ガス利用装置50に供給されるガスの酸素濃度を管理することができる。 The carbide manufacturing system 1 may include a thermometer 54 that is provided downstream of the fourth air supply port 53 and measures the temperature inside the second connection channel 52. Thereby, the temperature of the gas supplied to the gas utilization device 50 can be managed. Further, the carbide production system 1 may include an oxygen concentration meter 55 that is provided downstream of the fourth air supply port 53 and measures the oxygen concentration inside the second connection channel 52. Thereby, the oxygen concentration of the gas supplied to the gas utilization device 50 can be managed.
 灰分離装置56は排熱回収ボイラ51に接続されている。灰分離装置56は排熱回収ボイラ51から排出されたガスから灰分を除去する。灰分離装置56にはサイクロン57が接続されている。灰分離装置56で灰分が分離されたガスは、サイクロン57に供給される。サイクロン57に供給されるガスには微量の微粒子が残存しているおそれがあるため、微粒子をサイクロン57で分離した後に大気中に放出することができる。 The ash separator 56 is connected to the exhaust heat recovery boiler 51. The ash separator 56 removes ash from the gas discharged from the exhaust heat recovery boiler 51. A cyclone 57 is connected to the ash separator 56. The gas from which ash has been separated by the ash separator 56 is supplied to a cyclone 57. Since there is a possibility that a trace amount of fine particles remain in the gas supplied to the cyclone 57, the fine particles can be separated by the cyclone 57 and then released into the atmosphere.
 サイクロン57のガス排出口は、炭化物回収装置40の集塵室43と冷却ガス流路58を介して接続されている。冷却ガス流路58には流量調整ダンパ59及び循環冷却ファン60が設けられている。そして、流量調整ダンパ59を開いた状態で循環冷却ファン60を駆動することにより、サイクロン57から炭化物回収装置40にガスが供給される。そのため、炭化物は、炭化物回収装置40において、炭化物回収装置40から排出されたガスに由来し、ガス利用装置50で熱交換によって冷却されたガスにより冷却される。炭化物回収装置40で回収されたばかりの炭化物は、高温であり、空気と触れると、空気中の酸素によって燃焼してしまうおそれがある。しかしながら、炭化物回収装置40から排出されたガスの酸素濃度は低い。また、炭化物回収装置40から排出されたガスの熱は、ガス利用装置50によって回収されて冷却される。そのため、このようなガスを回収された炭化物の冷却に用いることにより、低酸素濃度の冷却用ガスを別途準備しなくても、炭化物を冷却することができる。 The gas outlet of the cyclone 57 is connected to the dust collection chamber 43 of the carbide recovery device 40 via a cooling gas flow path 58. A flow rate adjusting damper 59 and a circulation cooling fan 60 are provided in the cooling gas passage 58 . Gas is then supplied from the cyclone 57 to the carbide recovery device 40 by driving the circulation cooling fan 60 with the flow rate adjustment damper 59 open. Therefore, the carbide is cooled in the carbide recovery device 40 by gas derived from the gas discharged from the carbide recovery device 40 and cooled by heat exchange in the gas utilization device 50. The carbide that has just been recovered by the carbide recovery device 40 is at a high temperature, and if it comes into contact with air, there is a risk that it will be burned by the oxygen in the air. However, the oxygen concentration of the gas discharged from the carbide recovery device 40 is low. Further, the heat of the gas discharged from the carbide recovery device 40 is recovered and cooled by the gas utilization device 50. Therefore, by using such a gas to cool the recovered carbide, the carbide can be cooled without separately preparing a cooling gas with a low oxygen concentration.
 なお、本実施形態のようなガス利用装置50を利用せず、図示しない冷却装置により、酸素濃度が低いガスを200℃以下の低温で炭化物回収装置40に導入してもよい。このような構成によっても、炭化物回収装置40で回収された炭化物の燃焼を抑制することができる。また、上述したような水封装置を用いる場合には、炭化物を水によって冷却することができるため、酸素濃度が低い低温ガスを用いずに炭化物を冷却することができる。 Note that gas with a low oxygen concentration may be introduced into the carbide recovery device 40 at a low temperature of 200° C. or lower using a cooling device (not shown) without using the gas utilization device 50 as in this embodiment. Such a configuration also makes it possible to suppress combustion of the carbide recovered by the carbide recovery device 40. Further, when using the water sealing device as described above, since the carbide can be cooled with water, the carbide can be cooled without using low-temperature gas with a low oxygen concentration.
 以上の通り、本実施形態に係る炭化物製造システム1は、第1バイオマスを供給する第1バイオマス供給口17を有し、第1バイオマスを空気で燃焼する燃焼室12を含む燃焼炉10を備えている。炭化物製造システム1は、燃焼炉10と接続され、第2バイオマスから生成された炭化物を回収する炭化物回収装置40を備えている。第2バイオマスは、第2バイオマス供給口18を介し、第1バイオマスの燃焼によって加熱され、かつ、第1バイオマスの燃焼によって空気よりも酸素濃度が低くなった低濃度酸素ガスが存在する炭化領域に供給される。第2バイオマス供給口18は、第1バイオマス供給口17よりも下流に設けられている。 As described above, the carbide production system 1 according to the present embodiment includes the combustion furnace 10 that has the first biomass supply port 17 that supplies the first biomass and includes the combustion chamber 12 that burns the first biomass with air. There is. The carbide production system 1 includes a carbide recovery device 40 that is connected to the combustion furnace 10 and recovers carbide produced from the second biomass. The second biomass is heated by combustion of the first biomass through the second biomass supply port 18, and is transferred to a carbonization region where low-concentration oxygen gas whose oxygen concentration has become lower than air due to the combustion of the first biomass exists. Supplied. The second biomass supply port 18 is provided downstream of the first biomass supply port 17 .
 また、本実施形態に係る炭化物製造方法は、燃焼炉10の燃焼室12に供給された第1バイオマスを空気で燃焼する工程を含んでいる。炭化物製造方法は、第1バイオマスよりも下流であって、第1バイオマスの燃焼によって加熱され、かつ、第1バイオマスの燃焼によって空気よりも酸素濃度が低くなった低濃度酸素ガスが存在する炭化領域に第2バイオマスを供給する工程を含んでいる。炭化物製造方法は、燃焼炉10と接続された炭化物回収装置40で第2バイオマスから生成された炭化物を回収する工程を含んでいる。 Furthermore, the method for producing carbide according to the present embodiment includes a step of burning the first biomass supplied to the combustion chamber 12 of the combustion furnace 10 with air. The method for producing carbide includes a carbonization region that is downstream of the first biomass, is heated by the combustion of the first biomass, and contains a low-concentration oxygen gas whose oxygen concentration is lower than that of air due to the combustion of the first biomass. The method includes a step of supplying a second biomass to the second biomass. The carbide production method includes a step of recovering carbide produced from the second biomass using a carbide recovery device 40 connected to the combustion furnace 10 .
 そのため、本実施形態に係る炭化物製造システム1によれば、バイオマスから安定した炭化物を連続的に製造することができる。例えば,もみ殻などのバイオマス原料は保管状態により水分濃度が異なり、性状が変化するが、本実施形態に係る炭化物製造システム1によれば、安定した高温雰囲気を制御して維持できる。 Therefore, according to the carbide production system 1 according to the present embodiment, stable carbide can be continuously produced from biomass. For example, biomass raw materials such as rice husks have different moisture concentrations and properties depending on storage conditions, but according to the carbide production system 1 according to the present embodiment, a stable high-temperature atmosphere can be controlled and maintained.
 [第2実施形態]
 次に、第2実施形態に係る炭化物製造システム1について図8を用いて説明する。第2実施形態に係る炭化物製造システム1は、第1実施形態に係る炭化物製造システム1と比較し、ガス利用装置50の形態が異なっている。第2実施形態に係る炭化物製造システム1は、これ以外の点については第1実施形態と同様であるため説明を省略する。
[Second embodiment]
Next, a carbide manufacturing system 1 according to a second embodiment will be described using FIG. 8. The carbide manufacturing system 1 according to the second embodiment differs from the carbide manufacturing system 1 according to the first embodiment in the form of the gas utilization device 50. The carbide production system 1 according to the second embodiment is the same as the first embodiment in other respects, so the explanation will be omitted.
 図8に示すように、本実施形態に係るガス利用装置50は、排熱回収ボイラ70を備えている。また、炭化物製造システム1は、タービン72と、発電機73と、空冷式蒸気復水器74と、復水タンク75とを備えている。 As shown in FIG. 8, the gas utilization device 50 according to the present embodiment includes an exhaust heat recovery boiler 70. The carbide production system 1 also includes a turbine 72 , a generator 73 , an air-cooled steam condenser 74 , and a condensate tank 75 .
 排熱回収ボイラ70には、第2接続流路52が接続されている。排熱回収ボイラ70は、炭化物回収装置40から排出されたガスの熱を熱交換によって回収し、水蒸気を生成する。水蒸気となって体積が膨張した水蒸気は、タービン72を通過し、タービン72を回転させる動力として用いられる。タービン72は、発電機73と機械的に接続されており、タービン72の回転によって発電機73が発電するように設けられている。タービン72から排出された水蒸気は、空冷式蒸気復水器74に供給される。空冷式蒸気復水器74に供給された水蒸気は冷却されて凝縮し、凝縮した水は復水タンク75に貯水される。復水タンク75内の水は、ポンプ76の駆動によって排熱回収ボイラ70に供給され、循環する。 A second connection flow path 52 is connected to the exhaust heat recovery boiler 70. The exhaust heat recovery boiler 70 recovers the heat of the gas discharged from the carbide recovery device 40 by heat exchange, and generates steam. The water vapor whose volume has expanded as water vapor passes through the turbine 72 and is used as power to rotate the turbine 72. The turbine 72 is mechanically connected to a generator 73, and is provided so that the generator 73 generates electric power by rotation of the turbine 72. Steam discharged from the turbine 72 is supplied to an air-cooled steam condenser 74. The water vapor supplied to the air-cooled steam condenser 74 is cooled and condensed, and the condensed water is stored in a condensate tank 75. Water in the condensate tank 75 is supplied to the exhaust heat recovery boiler 70 by driving the pump 76 and circulated therein.
 排熱回収ボイラ70のガス排出口は、炭化物回収装置40の集塵室43と冷却ガス流路77を介して接続されている。冷却ガス流路77には、バグフィルタ78と、流量調整ダンパ79と、誘引ファン80と、流量調整ダンパ81と、循環冷却ファン82とが、排熱回収ボイラ70のガス排出口から炭化物回収装置40の集塵室43に向かってこの順番で設けられている。排熱回収ボイラ70から排出されたガス中の微粒子は、バグフィルタ78で集塵される。そして、流量調整ダンパ79を開いた状態で誘引ファン80を駆動することにより、微粒子が取り除かれたガスの一部は、煙突83から大気中へ排出される。また、流量調整ダンパ81を開いた状態で循環冷却ファン82を駆動することにより、微粒子が取り除かれたガスの一部は、炭化物回収装置40の集塵室43に供給される。そのため、炭化物は、炭化物回収装置40において、炭化物回収装置40から排出されたガスに由来し、ガス利用装置50で熱交換によって冷却されたガスにより冷却される。 The gas discharge port of the exhaust heat recovery boiler 70 is connected to the dust collection chamber 43 of the carbide recovery device 40 via a cooling gas flow path 77. A bag filter 78 , a flow rate adjustment damper 79 , an induction fan 80 , a flow rate adjustment damper 81 , and a circulation cooling fan 82 are connected to the cooling gas flow path 77 from the gas outlet of the exhaust heat recovery boiler 70 to the carbide recovery device. They are provided in this order toward the 40 dust collection chambers 43. Particulates in the gas discharged from the exhaust heat recovery boiler 70 are collected by a bag filter 78. Then, by driving the induction fan 80 with the flow rate adjustment damper 79 open, a part of the gas from which particulates have been removed is discharged into the atmosphere from the chimney 83. Further, by driving the circulation cooling fan 82 with the flow rate adjustment damper 81 open, a part of the gas from which particulates have been removed is supplied to the dust collection chamber 43 of the carbide recovery device 40 . Therefore, the carbide is cooled in the carbide recovery device 40 by gas derived from the gas discharged from the carbide recovery device 40 and cooled by heat exchange in the gas utilization device 50.
 本実施形態に係る炭化物製造システム1によれば、バイオマスから安定した炭化物を連続的に製造することができ、発電することもできる。 According to the carbide production system 1 according to the present embodiment, stable carbide can be continuously produced from biomass, and power can also be generated.
 [第3実施形態]
 次に、第3実施形態に係る炭化物製造システム1について図9を用いて説明する。第3実施形態に係る炭化物製造システム1は、第1実施形態に係る炭化物製造システム1と比較し、ガス利用装置50の形態が異なっている。第3実施形態に係る炭化物製造システム1は、これ以外の点については第1実施形態と同様であるため説明を省略する。
[Third embodiment]
Next, a carbide manufacturing system 1 according to a third embodiment will be described using FIG. 9. The carbide manufacturing system 1 according to the third embodiment differs from the carbide manufacturing system 1 according to the first embodiment in the form of the gas utilization device 50. The carbide manufacturing system 1 according to the third embodiment is the same as the first embodiment in other respects, so the explanation will be omitted.
 図9に示すように、本実施形態に係るガス利用装置50は、石炭焚きボイラ90を備えている。また、本実施形態に係る炭化物製造システム1は、サイクロン97を備えている。 As shown in FIG. 9, the gas utilization device 50 according to this embodiment includes a coal-fired boiler 90. Further, the carbide production system 1 according to the present embodiment includes a cyclone 97.
 石炭焚きボイラ90は、石炭を燃料とするボイラである。石炭焚きボイラ90の燃焼室91には、石炭供給機92によって石炭が供給され、空気供給部93によって空気が供給される。具体的には、空気供給部93は、空気取り込み口94と、流量調整ダンパ95と、送風機96とを含んでおり、流量調整ダンパ95を開いた状態で送風機96を駆動することにより、空気取り込み口94から燃焼室91に空気が供給される。 The coal-fired boiler 90 is a boiler that uses coal as fuel. A coal feeder 92 supplies coal to a combustion chamber 91 of a coal-fired boiler 90, and an air supply unit 93 supplies air. Specifically, the air supply section 93 includes an air intake port 94, a flow rate adjustment damper 95, and a blower 96, and by driving the blower 96 with the flow rate adjustment damper 95 open, air intake is performed. Air is supplied to the combustion chamber 91 through the port 94 .
 石炭焚きボイラ90には、第2接続流路52が接続されている。本実施形態では、第1実施形態と異なり、第4空気供給口53は、第2接続流路52において、炭化物回収装置40よりも石炭焚きボイラ90に近い位置に設けられている。そのため、炭化物回収装置40から排出された可燃成分を石炭焚きボイラ90内で燃焼させることができる。この燃焼熱を石炭焚きボイラ90で熱交換によって回収することができるため、石炭焚きボイラ90で使用される石炭を削減することができる。なお、石炭焚きボイラ90に代え、重油焚きボイラ又はガス焚きボイラを用いてもよい。このような場合であっても、化石燃料を削減することができる。 A second connection flow path 52 is connected to the coal-fired boiler 90. In this embodiment, unlike the first embodiment, the fourth air supply port 53 is provided at a position closer to the coal-fired boiler 90 than the carbide recovery device 40 in the second connection flow path 52. Therefore, the combustible components discharged from the carbide recovery device 40 can be burned in the coal-fired boiler 90. Since this combustion heat can be recovered by heat exchange in the coal-fired boiler 90, the amount of coal used in the coal-fired boiler 90 can be reduced. Note that instead of the coal-fired boiler 90, a heavy oil-fired boiler or a gas-fired boiler may be used. Even in such a case, fossil fuel consumption can be reduced.
 石炭焚きボイラ90のガス排出口は、サイクロン97と接続されている。燃焼室91内のガスは、熱交換によって冷却され、冷却されたガスがサイクロン97を通過する。サイクロン97では、微粒子が集塵され、一部のガスがサイクロン97から大気中へ放出される。 The gas outlet of the coal-fired boiler 90 is connected to a cyclone 97. The gas in the combustion chamber 91 is cooled by heat exchange, and the cooled gas passes through the cyclone 97. In the cyclone 97, particulates are collected and some gas is released from the cyclone 97 into the atmosphere.
 サイクロン97と炭化物回収装置40の集塵室43とは、冷却ガス流路98を介して接続されている。冷却ガス流路98には、流量調整ダンパ99と循環冷却ファン100とが設けられている。そして、流量調整ダンパ99を開いた状態で循環冷却ファン100を駆動することにより、微粒子が取り除かれたガスの一部は、炭化物回収装置40の集塵室43に供給される。そのため、炭化物は、炭化物回収装置40において、炭化物回収装置40から排出されたガスに由来し、ガス利用装置50で熱交換によって冷却されたガスにより冷却される。 The cyclone 97 and the dust collection chamber 43 of the carbide recovery device 40 are connected via a cooling gas flow path 98. A flow rate adjusting damper 99 and a circulation cooling fan 100 are provided in the cooling gas passage 98 . Then, by driving the circulation cooling fan 100 with the flow rate adjustment damper 99 open, a part of the gas from which particulates have been removed is supplied to the dust collection chamber 43 of the carbide recovery device 40. Therefore, the carbide is cooled in the carbide recovery device 40 by gas derived from the gas discharged from the carbide recovery device 40 and cooled by heat exchange in the gas utilization device 50.
 本実施形態に係る炭化物製造システム1によれば、バイオマスから安定した炭化物を連続的に製造することができ、石炭焚きボイラ90に必要な石炭の使用を低減することもできる。 According to the carbide production system 1 according to the present embodiment, stable carbide can be continuously produced from biomass, and the use of coal required for the coal-fired boiler 90 can also be reduced.
 なお、第1実施形態から第3実施形態では、1つの送風機23を用い、空気を複数の空気供給口を介して炭化物製造システム1に供給している。しかしながら、流量調整ダンパの上流に送風機をそれぞれ配置し、各々の空気供給口を介して空気を炭化物製造システム1に供給してもよい。 Note that in the first to third embodiments, one blower 23 is used to supply air to the carbide manufacturing system 1 through a plurality of air supply ports. However, a blower may be disposed upstream of each flow rate adjusting damper, and air may be supplied to the carbide manufacturing system 1 through each air supply port.
 特願2022-102517号(出願日:2022年6月27日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2022-102517 (filing date: June 27, 2022) are incorporated herein by reference.
 いくつかの実施形態を説明したが、上記開示内容に基づいて実施形態の修正または変形をすることが可能である。上記実施形態のすべての構成要素、及び請求の範囲に記載されたすべての特徴は、それらが互いに矛盾しない限り、個々に抜き出して組み合わせてもよい。 Although several embodiments have been described, it is possible to modify or transform the embodiments based on the content disclosed above. All components of the embodiments described above and all features recited in the claims may be extracted individually and combined insofar as they are not inconsistent with each other.
 本開示は、例えば、国際連合が主導する持続可能な開発目標(SDGs)の目標2「飢餓を終わらせ、食料安全保障及び栄養改善を実現し、持続可能な農業を促進する」、目標13「気候変動及びその影響を軽減するための緊急対策を講じる」、及び目標15「陸域生態系の保護、回復、持続可能な利用の推進、持続可能な森林の経営、砂漠化への対処並びに土地の劣化の阻止・回復及び生物多様性の損失を阻止する」に貢献することができる。 This disclosure applies, for example, to Goal 2 "End hunger, achieve food security and improved nutrition, and promote sustainable agriculture" and Goal 13 "End hunger, achieve food security and improved nutrition, and promote sustainable agriculture" of the Sustainable Development Goals (SDGs) led by the United Nations. Goal 15: “Take urgent measures to reduce climate change and its impacts” and Goal 15: “Protect, restore and promote the sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification and can contribute to "preventing and reversing the degradation of biodiversity and halting the loss of biodiversity."
 1   炭化物製造システム
 10  燃焼炉
 12  燃焼室
 17  第1バイオマス供給口
 18  第2バイオマス供給口
 36  第1接続流路
 37  第3空気供給口
 40  炭化物回収装置
 50  ガス利用装置
1 Carbide production system 10 Combustion furnace 12 Combustion chamber 17 First biomass supply port 18 Second biomass supply port 36 First connection channel 37 Third air supply port 40 Carbide recovery device 50 Gas utilization device

Claims (8)

  1.  第1バイオマスを供給する第1バイオマス供給口を有し、前記第1バイオマスを空気で燃焼する燃焼室を含む燃焼炉と、
     前記燃焼炉と接続され、第2バイオマスから生成された炭化物を回収する炭化物回収装置と、
     を備え、
     前記第2バイオマスは、前記第1バイオマス供給口よりも下流に設けられた第2バイオマス供給口を介し、前記第1バイオマスの燃焼によって加熱され、かつ、前記第1バイオマスの燃焼によって前記空気よりも酸素濃度が低くなった低濃度酸素ガスが存在する炭化領域に供給される、炭化物製造システム。
    A combustion furnace including a combustion chamber that has a first biomass supply port that supplies a first biomass and burns the first biomass with air;
    A carbide recovery device connected to the combustion furnace and recovering carbide generated from the second biomass;
    Equipped with
    The second biomass is heated by combustion of the first biomass through a second biomass supply port provided downstream of the first biomass supply port, and the second biomass is heated by combustion of the first biomass to generate more than the air. A carbide production system in which low-concentration oxygen gas with a low oxygen concentration is supplied to the carbonization region.
  2.  前記燃焼炉は竪型燃焼炉である、請求項1に記載の炭化物製造システム。 The carbide manufacturing system according to claim 1, wherein the combustion furnace is a vertical combustion furnace.
  3.  前記燃焼室には前記第2バイオマスを前記燃焼室内に供給する前記第2バイオマス供給口が設けられ、
     前記炭化物は前記燃焼室内で生成される、請求項1又は2に記載の炭化物製造システム。
    The combustion chamber is provided with the second biomass supply port for supplying the second biomass into the combustion chamber,
    The carbide production system according to claim 1 or 2, wherein the carbide is generated within the combustion chamber.
  4.  前記燃焼炉と前記炭化物回収装置とは接続流路を介して接続され、
     前記接続流路には前記第2バイオマスを前記接続流路内に供給する前記第2バイオマス供給口が設けられ、
     前記炭化物は前記接続流路内で生成される、請求項1~3のいずれか一項に記載の炭化物製造システム。
    The combustion furnace and the carbide recovery device are connected via a connecting flow path,
    The connecting channel is provided with the second biomass supply port for supplying the second biomass into the connecting channel,
    The carbide production system according to any one of claims 1 to 3, wherein the carbide is produced within the connecting flow path.
  5.  前記燃焼炉と前記炭化物回収装置とは接続流路を介して接続され、
     前記接続流路には空気を前記接続流路内に供給する空気供給口が設けられている、請求項1~4のいずれか一項に記載の炭化物製造システム。
    The combustion furnace and the carbide recovery device are connected via a connecting flow path,
    The carbide manufacturing system according to any one of claims 1 to 4, wherein the connecting channel is provided with an air supply port for supplying air into the connecting channel.
  6.  前記炭化物回収装置はサイクロンを含む、請求項1~5のいずれか一項に記載の炭化物製造システム。 The carbide production system according to any one of claims 1 to 5, wherein the carbide recovery device includes a cyclone.
  7.  前記炭化物回収装置から排出されたガスを利用するガス利用装置をさらに備え、
     前記炭化物は、前記炭化物回収装置において、前記炭化物回収装置から排出されたガスに由来し、前記ガス利用装置で熱交換によって冷却されたガスにより冷却される、請求項1~
    6のいずれか一項に記載の炭化物製造システム。
    Further comprising a gas utilization device that utilizes gas discharged from the carbide recovery device,
    The carbide is cooled in the carbide recovery device by gas derived from gas discharged from the carbide recovery device and cooled by heat exchange in the gas utilization device.
    6. The carbide production system according to any one of 6.
  8.  燃焼炉の燃焼室に供給された第1バイオマスを空気で燃焼する工程と、
     前記第1バイオマスよりも下流であって、前記第1バイオマスの燃焼によって加熱され、かつ、前記第1バイオマスの燃焼によって前記空気よりも酸素濃度が低くなった低濃度酸素ガスが存在する炭化領域に第2バイオマスを供給する工程と、
     前記燃焼炉と接続された炭化物回収装置で前記第2バイオマスから生成された炭化物を回収する工程と、
     を含む、炭化物製造方法。
    a step of burning the first biomass supplied to the combustion chamber of the combustion furnace with air;
    In a carbonization region that is downstream of the first biomass and is heated by the combustion of the first biomass, and in which there is a low-concentration oxygen gas whose oxygen concentration is lower than that of the air due to the combustion of the first biomass. a step of supplying a second biomass;
    Recovering the carbide generated from the second biomass with a carbide recovery device connected to the combustion furnace;
    A carbide manufacturing method, including:
PCT/JP2023/015778 2022-06-27 2023-04-20 Carbide production system and carbide production method WO2024004354A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023553093A JP7435921B1 (en) 2022-06-27 2023-04-20 Carbide production system and carbide production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-102517 2022-06-27
JP2022102517 2022-06-27

Publications (1)

Publication Number Publication Date
WO2024004354A1 true WO2024004354A1 (en) 2024-01-04

Family

ID=89381903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015778 WO2024004354A1 (en) 2022-06-27 2023-04-20 Carbide production system and carbide production method

Country Status (2)

Country Link
JP (1) JP7435921B1 (en)
WO (1) WO2024004354A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070234A (en) * 2004-09-01 2006-03-16 Kenji Takeuchi Furnace utilizing biomass for various purposes
JP2006124496A (en) * 2004-10-28 2006-05-18 Nippon Steel Corp Device and method for thermally co-decomposing coal with biomass
JP2007136396A (en) * 2005-11-21 2007-06-07 Nippon Steel Engineering Co Ltd Waste material treatment method and waste material treatment device
JP2008088310A (en) * 2006-10-03 2008-04-17 Kenji Yamane High temperature carbonization method and high temperature carbonization apparatus
JP2011184567A (en) * 2010-03-09 2011-09-22 Jfe Engineering Corp Apparatus and method for carbonization of biomass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070234A (en) * 2004-09-01 2006-03-16 Kenji Takeuchi Furnace utilizing biomass for various purposes
JP2006124496A (en) * 2004-10-28 2006-05-18 Nippon Steel Corp Device and method for thermally co-decomposing coal with biomass
JP2007136396A (en) * 2005-11-21 2007-06-07 Nippon Steel Engineering Co Ltd Waste material treatment method and waste material treatment device
JP2008088310A (en) * 2006-10-03 2008-04-17 Kenji Yamane High temperature carbonization method and high temperature carbonization apparatus
JP2011184567A (en) * 2010-03-09 2011-09-22 Jfe Engineering Corp Apparatus and method for carbonization of biomass

Also Published As

Publication number Publication date
JP7435921B1 (en) 2024-02-21

Similar Documents

Publication Publication Date Title
WO2010047283A1 (en) Apparatus for carbonization and method of carbonization
AU2005295110A1 (en) Method of enhancing the quality of high-moisture materials using system heat sources
US9562204B2 (en) Method and apparatus for pelletizing blends of biomass materials for use as fuel
CN105588127B (en) Using the boiler combustion system of biomass gasification device
KR101888582B1 (en) Manufacturing assembly and manufacturing method of biochar using biomass
JP3199755U (en) Efficient combustion equipment using vegetable fuel
JP2009191085A (en) Method and system for manufacturing solid fuel, and solid fuel
JP4855539B2 (en) Biomass utilization apparatus using pulverized coal combustion boiler and biomass utilization method using the same
CN113958935A (en) Flexibility transformation system for low-load operation of coal-fired power plant boiler
CN205261533U (en) Boiler combustion system
JP5767084B2 (en) Fluid carbonization method of raw materials containing plant organic matter
JP7435921B1 (en) Carbide production system and carbide production method
JP5319450B2 (en) Fluidized bed heat treatment apparatus and method
JP4719712B2 (en) Horticultural house heating device with wood burning combustion furnace
CN105371280B (en) The apparatus and method that a kind of solid waste organic substance cleaning is burned
US20130291771A1 (en) Method and system for delivering heat through gasification of biomass
CN104479742B (en) Biomass gas preparation system
CN110330992A (en) Thermal power station's destructive distillation coal system and method, product of coal and boiler load adjusting method
CN101408340A (en) Boiler with two times of gasification combustion function and capable of being supplied with 'various grains'
KR101005850B1 (en) Apparatus for Drying and Carbonating Combustibile or organic Waste
CN210193786U (en) Agricultural and forestry waste low-temperature pyrolysis high-heat value granular fuel production equipment
CN1116383C (en) Composite biomass gasification furnace and its gas preparation method
CN107937039A (en) A kind of biomass gasifying furnace start and stop technique for coupling coal unit
EP2543718A1 (en) An integrated process for firing of biomass and/or waste in existing solid fuel fired power plants, and a solid fuel power plant for firing of biomass and/or waste materials
EP2912150B1 (en) Method and apparatus for pelletizing blends of biomass materials for use as fuel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830807

Country of ref document: EP

Kind code of ref document: A1