JP2008088310A - High temperature carbonization method and high temperature carbonization apparatus - Google Patents

High temperature carbonization method and high temperature carbonization apparatus Download PDF

Info

Publication number
JP2008088310A
JP2008088310A JP2006271368A JP2006271368A JP2008088310A JP 2008088310 A JP2008088310 A JP 2008088310A JP 2006271368 A JP2006271368 A JP 2006271368A JP 2006271368 A JP2006271368 A JP 2006271368A JP 2008088310 A JP2008088310 A JP 2008088310A
Authority
JP
Japan
Prior art keywords
gas
carbonization
combustion
temperature
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006271368A
Other languages
Japanese (ja)
Inventor
Kenji Yamane
山根健司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006271368A priority Critical patent/JP2008088310A/en
Publication of JP2008088310A publication Critical patent/JP2008088310A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high temperature carbonization method for manufacturing a carbonized material of a high quality without consuming a fossil fuel and burning a substance to be treated, and to provide a high temperature carbonization apparatus. <P>SOLUTION: Heating of the substance to be treated is performed by different methods of the first stage of drying, thermal decomposition and carbonization and the second stage at a high temperature for performing carbonization and refining. In the first stage, heating and temperature-rising from an external air temperature to 600°C combinedly uses direct heating and indirect heating by a burning gas of a biomass fuel. Heating and temperature-rising at a high temperature area 600°C to approximately 800°C of the former stage of the second stage is performed by combinedly using indirect heating by the combustion gas of the biomass fuel and direct heating by the combustion gas of the gasified material. At the high temperature area of 800°C to 1,200°C of the latter stage of the second stage, it is performed by combinedly using direct heating by heat generation of a generation furnace gasification reaction of the gasified material and indirect heating by the combustion gas of the generation furnace gas. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、バイオマス資源―木材、竹材、草、食品残渣、畜産廃棄物、ごみ固形燃料(RDF)、木材・紙を含む廃棄物および汚泥などの有機性廃棄物など―から、良質の高温炭素化物(以下、炭化物という)を製造するための高温炭化方法および高温炭化装置に関するものである。 The present invention provides high-quality, high-temperature carbon from biomass resources such as wood, bamboo, grass, food residues, livestock waste, solid waste fuel (RDF), waste containing wood and paper, and organic waste such as sludge. The present invention relates to a high temperature carbonization method and a high temperature carbonization apparatus for producing a chemical (hereinafter referred to as carbide).

炭化装置としては従来から、大きく分けてこれの炭化炉に充填した被処理物を高温の燃焼ガスと直接接触させて加熱する直接加熱方式(直火方式あるいは内燃式ともいう。例えば、特許文献1参照。)と、炭化炉の外壁面を通して炭化炉内の被処理物を間接的に加熱する間接加熱方式があった(例えば、特許文献2参照。)。 Conventionally, as a carbonization apparatus, a direct heating system (also referred to as a direct fire system or an internal combustion system) in which a material to be treated filled in the carbonization furnace is heated in direct contact with a high-temperature combustion gas is also known. And an indirect heating method in which an object to be treated in the carbonization furnace is indirectly heated through the outer wall surface of the carbonization furnace (see, for example, Patent Document 2).

特開2001-247871号公報JP 2001-247871 A 特開2001-316675号公報JP 2001-316675 A

上記のような従来法の直接加熱および間接加熱にはそれぞれ得失があり、例えば直火方式では熱効率はよいが被処理物および炭化物の燃焼量が多くなりそのため炭化物の収率が低下する。とくに600℃以上の高温度の炭化物を得ようとする場合には炭化炉内に送り込む高温の燃焼ガスに伴う空気の量が多くなって、炭化物の燃焼量が著しく増加する欠点があった。また得られた炭化物の表面および内部が部分的に燃焼するため消し炭状態になり、品質を大きく損なうなどの問題もあった。 The direct heating and the indirect heating of the conventional method as described above have advantages and disadvantages. For example, in the direct fire method, the thermal efficiency is good, but the combustion amount of the object to be processed and the carbide increases, and the yield of the carbide decreases. In particular, when trying to obtain a carbide having a high temperature of 600 ° C. or higher, there is a drawback that the amount of air accompanying the high-temperature combustion gas fed into the carbonization furnace increases and the combustion amount of the carbide increases remarkably. Moreover, since the surface and the inside of the obtained carbide are partially burned, there is a problem of being in an extinguished state and greatly degrading the quality.

また間接加熱方式では、燃焼による炭化物の損失を抑制できることから炭化物の収率は高くなるが、炭化炉の壁面を通した間接的な加熱であるため熱伝達が悪く600℃以上の高温度を得難い問題があった。とくに被処理物の内部にまでは熱が伝わりにくく、得られた炭化物の品質に著しいバラツキがあるなどの欠点があった。 The indirect heating method can suppress the loss of carbides due to combustion, so the yield of carbides is high, but because of indirect heating through the wall of the carbonization furnace, heat transfer is poor and it is difficult to obtain a high temperature of 600 ° C or higher. There was a problem. In particular, heat is not easily transmitted to the inside of the object to be processed, and there are disadvantages such as significant variation in the quality of the obtained carbide.

本発明は、従来からのかかる問題の解決を図るとともに、近年、とくに強く要求されるようになってきたことでもあり、有限の化石燃料を一切消費せずに空気とバイオマスのみで効率的な高温炭化が可能な炭化方法および炭化装置を提供するものである。即ち、従来にない直間併用型の加熱方法とし、そしてこれを実現するための特殊構造の炭化装置とすることによって、化石燃料を使用することなく、しかも被処理物や炭化物を燃焼させることなく700℃〜1200℃の高温度が容易に得られるとともに、400℃程度の低温度から1300℃の高温度に至る範囲の目的とする炭化温度を正確に制御できることを目的とするものである。さらには高品質で高機能性の高温炭化物を高収率で製造することも目的とするものである。 The present invention is intended to solve such problems from the past, and has also been particularly strongly demanded in recent years. It is an efficient high-temperature process using only air and biomass without consuming any finite fossil fuel. A carbonization method and a carbonization apparatus capable of carbonization are provided. In other words, by using an unprecedented direct heating method, and by using a carbonization device with a special structure to achieve this, without using fossil fuels, and without burning the object to be processed and the carbides. The object is to easily obtain a high temperature of 700 ° C. to 1200 ° C. and to accurately control a target carbonization temperature ranging from a low temperature of about 400 ° C. to a high temperature of 1300 ° C. It is also an object to produce high-quality and high-functional high-temperature carbides in high yield.

本発明は、長年にわたる炭化炉の開発・設計と豊富な炭化処理の実務経験および課題解決に対する鋭意工夫の結果、見出したもので、前記目的を達成するためには、第一には被処理物を燃焼させることなく、また化石燃料を一切消費することなく、バイオマス燃料の燃焼のみによって乾燥・熱分解・炭化の工程を素直に行わせて600℃程度までの目的温度に昇温させた後均質化を行なう必要のあること、そして第二には、600℃以上1200℃程度までの範囲内に設定された高温度の目的温度に対しては、バイオマスの化学反応で生じる熱を主体的に活用して昇温させて炭素化・精煉の工程を経て均質化を行なう必要のあること、そして第三には、高品質・高機能性の炭化物を得るためには、上記各工程における目的温度を正確に管理する必要のあることに着目してなされたものである。 The present invention has been found as a result of many years of development and design of carbonization furnaces, abundant practical experience in carbonization treatment, and diligent efforts to solve the problems. Without burning any fossil fuels and without consuming any fossil fuels, the process of drying, pyrolysis, and carbonization is performed simply by burning biomass fuel, and then heated to a target temperature of up to about 600 ° C. And, secondly, the heat generated by the chemical reaction of biomass is mainly utilized for the target temperature of high temperature set in the range of 600 ℃ to 1200 ℃. Next, in order to obtain a high-quality and high-functional carbide, the target temperature in each of the above steps must be set. What needs to be managed accurately It was made paying attention to.

具体的には、高温炭化方法に係わる第一の発明は、被処理物の自身の温度もしくは炉内雰囲気の温度を正確に管理しながら、被処理物の加熱を、乾燥・熱分解・炭化を行う第一段階と、炭素化・精煉を行う高温度の第二段階とでは異なる方法で行うことを特定事項とするものである。 Specifically, the first invention related to the high-temperature carbonization method is to accurately control the temperature of the object to be processed or the temperature of the atmosphere in the furnace while heating, heating, drying, pyrolysis, and carbonization of the object to be processed. It is a specific matter that the first stage to be performed is different from the high temperature second stage to perform carbonization and refining.

即ち、前記第一段階においては、外気温から600℃までの加熱・昇温は、木屑などのバイオマス燃料の燃焼ガスと被処理物との接触による直接加熱と、この燃焼ガスによる壁を介しての間接加熱とを併用して行い、前記第二段階の前段の600℃以上800℃程度までの高温度域での加熱・昇温は、壁を介してのバイオマス燃料の燃焼ガスによる間接加熱と、別途に準備したガス化材料を燃焼させて得られた燃焼ガスによる直接加熱との併用で行い、そして前記第二段階の後段の800℃以上1200℃程度の更なる高温度域では、上記ガス化材料の発生炉ガス化反応の発熱による直接加熱と、発生炉ガス化反応で生じた発生炉ガスの燃焼ガスによる壁を介しての間接加熱との併用で行うことを特定事項とするものである。 That is, in the first stage, the heating / heating from the outside temperature to 600 ° C. is performed through direct heating by contact between the combustion gas of biomass fuel such as wood chips and the object to be processed, and through the wall by this combustion gas. Indirect heating of the second stage, the heating / temperature increase in the high temperature range from 600 ° C. to about 800 ° C. in the preceding stage of the second stage is the indirect heating by the combustion gas of the biomass fuel through the wall. , Performed in combination with direct heating with combustion gas obtained by burning separately prepared gasification material, and in the further high temperature range of about 800 ° C to 1200 ° C after the second stage, the above gas It is a specific matter to use both direct heating due to the heat generated from the gasification reaction of the gasifying material and indirect heating through the wall of the combustion gas generated in the gasification reaction of the generating gas. is there.

また、前記第二段階の加熱・昇温に用いる前記別途準備のガス化材料は加熱されて炭化物となるバイオマス、もしくは木炭、竹炭および廃棄物の炭化物などのように既に炭化物となった材料であることを特定事項とするものである。 Further, the separately prepared gasification material used for the heating and temperature raising in the second stage is a biomass that is heated to become carbide, or a material that has already become carbide, such as charcoal, bamboo charcoal, and waste carbide. This is a specific matter.

また、第一の発明を実施するための高温炭化装置に係わる第二の発明の一つ目は、当該炭化装置は、被処理物を充填する炭化室と前記ガス化材料を充填するガス化室などを内蔵する炭化炉、バイオマス燃料、被処理物の熱分解ガスおよび上記ガス化材料の発生炉ガスを燃焼させる燃焼炉、燃焼排ガスを屋外に排出する煙突、熱分解ガスの冷却器、燃焼用空気を加温する空気予熱器、空気を上記燃焼炉および上記ガス化室へ送るための空気ブロアとダクト類、およびこれらを制御する制御機器・装置で構成されていることを特定事項とするものである。 A first aspect of the second invention related to the high-temperature carbonization apparatus for carrying out the first invention is that the carbonization apparatus includes a carbonization chamber for filling an object to be processed and a gasification chamber for filling the gasification material. Combustion furnace that burns biomass fuel, pyrolysis gas of material to be processed and generation gas of the above gasification material, chimney that discharges combustion exhaust gas outdoors, pyrolysis gas cooler, for combustion Specific items include an air preheater for heating air, an air blower and ducts for sending air to the combustion furnace and the gasification chamber, and control devices and devices for controlling them. It is.

また、第一の発明を実施するための高温炭化装置に係わる第二の発明の二つ目として、詳しくは、前記炭化炉は、一側面に開閉扉を有する金属製もしくはセラミックス製の竪型容器であって、その内部は耐熱通気性の金網、多孔板もしくは格子状の棚板で上下方向に四分割された四つの部屋からなることを特定事項とし、最上部の部屋はガス整流室であって複数の整流板と炭化炉ダンパーを備えた燃焼ガス導入口が一箇所配設されており、二番目の部屋は上記ガス化材料を充填するガス化室であって側面にはガス化空気導入口が配設され、そして三番目の部屋は被処理物を充填する炭化室であり、最下室は一箇所にガス排出口を有するガス集合室であることを特定事項とするものである。 As a second aspect of the second invention relating to the high-temperature carbonization apparatus for carrying out the first invention, more specifically, the carbonization furnace is a metal or ceramic vertical container having an open / close door on one side surface. The inside of the room consists of four rooms divided into four parts in the vertical direction by a heat-resistant air-permeable wire mesh, perforated plate or grid-like shelf board, and the uppermost room is a gas rectifying room. A combustion gas inlet having a plurality of rectifying plates and a carbonization furnace damper is provided in one place, the second chamber is a gasification chamber filled with the gasification material, and the side is introduced with gasification air The third chamber is a carbonization chamber filled with an object to be processed, and the lowermost chamber is a gas collecting chamber having a gas discharge port at one place.

また、第一の発明を実施するための高温炭化装置に係わる第二の発明の三つ目は、前記燃焼炉は、外面断熱構造であって上記炭化炉を内蔵するような形態で当該炭化炉の下方に配設されていて、燃焼空気導入口とバイオマス燃料の投入口を有するバイオマス燃料燃焼室、そして被処理物の熱分解ガスおよび前記ガス化材料の発生炉ガスを燃焼させるガス燃焼室、および当該燃焼ガスが上記炭化炉の外壁周辺を均等に通過できる適度の間隔で配設されたガス通路を有し、そして当該燃焼ガスを屋外に排出する煙突が上記燃焼炉の上部付近に配設されていることを特定事項とする。また上記炭化炉の開閉扉の位置に対応した上記燃焼炉の外側面も開閉式に構成されていることを特定事項とするものである。 A third aspect of the second invention related to the high-temperature carbonization apparatus for carrying out the first invention is that the combustion furnace has an outer surface heat insulating structure and incorporates the carbonization furnace. A biomass fuel combustion chamber having a combustion air inlet and a biomass fuel inlet, and a gas combustion chamber for combusting the pyrolysis gas of the object to be treated and the generator gas of the gasification material, And a gas passage arranged at an appropriate interval that allows the combustion gas to pass evenly around the outer wall of the carbonization furnace, and a chimney for discharging the combustion gas to the outside is provided near the top of the combustion furnace. This is a specific matter. It is also a specific matter that the outer surface of the combustion furnace corresponding to the position of the opening / closing door of the carbonization furnace is also configured to be open / closed.

また、第一の発明を実施するための高温炭化装置に係わる第二の発明の四つ目は、前記燃焼炉の煙突には、前記燃焼排ガスの流量を調節する煙突ダンパーと当該燃焼ガスの排熱を回収する前記空気予熱器が配設されていることを特定事項とする。 The fourth aspect of the second invention related to the high-temperature carbonization apparatus for carrying out the first invention is that a chimney of the combustion furnace has a chimney damper for adjusting the flow rate of the combustion exhaust gas and an exhaust of the combustion gas. It is a specific matter that the air preheater for recovering heat is disposed.

また、第一の発明を実施するための高温炭化装置に係わる第二の発明の五つ目は、前記熱分解ガスを冷却器に導入する熱分解ガス導入口は、前記ガス集合室のガス排出口とダクトで連結されており、そして当該冷却器の頂部のガス排出部には、分岐したダクトが配設されていて、一方は前記煙突ダンパーと前記空気予熱器との中間位置の煙道部に、他方は前記燃焼炉のガス燃焼室のガス導入管にそれぞれが一個ずつの冷却器ダンパーを介して連結されていることを特定事項とするものである。なお当該冷却器には冷却水の通水口および排出口と熱分解ガスの凝縮液(木酢液)の排出口が配設されていることは言うまでも無いことである。 A fifth aspect of the second invention related to the high-temperature carbonization apparatus for carrying out the first invention is that the pyrolysis gas inlet for introducing the pyrolysis gas into the cooler is a gas exhaust gas in the gas collecting chamber. A duct is connected to the outlet by a duct, and a branched duct is arranged in the gas discharge part at the top of the cooler, one of which is a flue part at an intermediate position between the chimney damper and the air preheater On the other hand, it is a specific matter that the other is connected to the gas introduction pipe of the gas combustion chamber of the combustion furnace via one cooler damper. Needless to say, the cooler is provided with cooling water passages and discharge ports and a pyrolysis gas condensate (wood vinegar) discharge port.

また、第一の発明を実施するための高温炭化装置に係わる第二の発明の六つ目は、前記ガス化空気導入口および前記燃焼空気導入口は、前記空気予熱器で暖められた空気を送るため、電磁弁もしくは燃焼空気ダンパーを介してそれぞれがダクトと空気ブロアで連結されていることを特定事項とする。 The sixth aspect of the second invention related to the high-temperature carbonization apparatus for carrying out the first invention is that the gasified air inlet and the combustion air inlet are made of air heated by the air preheater. In order to send, it is specified that each is connected by a duct and an air blower via a solenoid valve or a combustion air damper.

また、第一の発明を実施するための高温炭化装置に係わる第二の発明の七つ目は、前記ガス燃焼室には、前記熱分解ガスおよび前記発生炉ガスへの円滑な着火をなすための補助燃料タンクと燃焼バーナーおよび補助燃焼空気ブロアなどの燃焼セットが配設されていることを特定事項とする。 A seventh aspect of the second invention related to the high-temperature carbonization apparatus for carrying out the first invention is that the gas combustion chamber is configured to smoothly ignite the pyrolysis gas and the generator gas. It is a specific matter that an auxiliary fuel tank and a combustion set such as a combustion burner and an auxiliary combustion air blower are provided.

また、第一の発明を実施するための高温炭化装置に係わる第二の発明の八つ目は、前記炭化室、前記ガス化室および前記ガス燃焼室には、それぞれの室内温度を検出するための温度センサーが配設されており、これらはそれぞれ前記ガス化空気ブロア、前記燃焼空気ブロアおよび前記補助燃焼空気ブロアと制御機器とに連結されていることを特定事項とする。 An eighth aspect of the second invention related to the high-temperature carbonization apparatus for carrying out the first invention is to detect the respective indoor temperatures in the carbonization chamber, the gasification chamber and the gas combustion chamber. These temperature sensors are provided, which are specified as being connected to the gasified air blower, the combustion air blower, the auxiliary combustion air blower and the control device, respectively.

また、上記燃焼炉には、バイオマス燃料の投入と燃焼灰の取出しのための蓋が配設されており、そして前記燃焼炉および前記冷却器にはそれぞれメンテナンス用の蓋付開口部が配設されていることも特定事項となる。 The combustion furnace is provided with a lid for charging biomass fuel and taking out the combustion ash, and the combustion furnace and the cooler are each provided with an opening with a lid for maintenance. It is also a specific matter.

以上、説明したように、高温炭化方法に係わる第一の発明および高温炭化装置に係わる第二の発明によれば、化石燃料を消費することなく、また被処理物を燃焼させることなく、高温炭化が可能となって高品質・高機能性の高温炭化物を高収率で製造することができる。 As described above, according to the first invention related to the high temperature carbonization method and the second invention related to the high temperature carbonization apparatus, the high temperature carbonization can be performed without consuming the fossil fuel and without burning the workpiece. And high quality and high functionality high temperature carbides can be produced in high yield.

具体的には、木材の炭化は乾燥・熱分解・木炭化・炭素化精煉の工程を辿る物理・化学的変化であって、乾燥工程は水分の蒸発であるため雰囲気は100℃程度の温度でよく、高温度を必要としない。また木材が乾燥を終えて130℃〜150℃程度になると熱分解が徐々に始まり、その後、急速な熱分解が起こる。この熱分解は発熱反応であるため木材の内部温度は400℃〜500℃程度にまで到達する。したがって被処理物を400℃〜500℃程度に昇温させるには高い熱量を必要とせず、熱分解の起爆剤になる程度の少ない熱量でよい、しかも加熱温度は500℃程度の低温度であることから、この熱量は500℃〜600℃程度のバイオマス燃料の燃焼ガスとの接触で容易に得られるものである。さらに600℃に昇温させようとするための加熱・昇温においても、若干火力を強めた600℃〜700℃程度のバイオマスの燃焼ガスで充分である。しかしながらこれ以上の高温度の燃焼ガスを得ようとすれば過剰の空気を導入した高燃焼を行なわねばならない。そうすると被処理物は既に炭化しており、この過剰空気を含む高温燃焼ガスと接触させた加熱を行うと炭化物は部分的に燃焼することになって、品質を著しく損なう結果となる。また壁を介しての間接加熱を行なおうとしても、壁からの熱伝達率は極めて低く高々700℃程度ましか昇温しないことになる。しかも、熱効率が低いため大量のバイオマス燃料を必要とし大変不経済となる。したがって600℃以上の高温度に加熱昇温させるには低温度・低熱量のバイオマス燃料の燃焼ガスでは著しく困難であるため、他の高温度・高熱量の熱源が必要とされる。 Specifically, the carbonization of wood is a physical and chemical change that goes through the processes of drying, pyrolysis, wood carbonization, and carbonization, and the drying process is evaporation of moisture, so the atmosphere is at a temperature of about 100 ° C. Well, does not require high temperatures. Moreover, when the wood finishes drying and reaches about 130 ° C. to 150 ° C., thermal decomposition gradually begins, and then rapid thermal decomposition occurs. Since this pyrolysis is an exothermic reaction, the internal temperature of the wood reaches about 400 ° C to 500 ° C. Therefore, in order to raise the temperature of the object to be processed to about 400 ° C. to 500 ° C., a high amount of heat is not required, and a small amount of heat can be used as an initiator for thermal decomposition, and the heating temperature is as low as about 500 ° C. Therefore, this calorie | heat amount is easily obtained by contact with the combustion gas of biomass fuel of about 500 to 600 degreeC. Further, in the heating / temperature increase for increasing the temperature to 600 ° C., a biomass combustion gas of about 600 ° C. to 700 ° C. with slightly increased thermal power is sufficient. However, in order to obtain combustion gas at a higher temperature than this, high combustion must be performed by introducing excess air. As a result, the object to be treated has already been carbonized, and when heated in contact with the high-temperature combustion gas containing excess air, the carbide is partially burned, resulting in a significant loss of quality. Even if indirect heating is performed through the wall, the heat transfer rate from the wall is extremely low, and the temperature rises to about 700 ° C. at most. Moreover, since the thermal efficiency is low, a large amount of biomass fuel is required, which is very uneconomical. Therefore, it is extremely difficult to raise the temperature to a high temperature of 600 ° C. or higher by using a combustion gas of a low temperature / low calorie biomass fuel, so another heat source having a high temperature / high calorie is required.

炭化炉内のガス化室および炭化室にそれぞれ充填されたガス化材料および被処理物は600℃となった段階では既に炭化物であり、これらの炭化物に空気を送り部分燃焼させるとその熱量で速やか炭化物は600℃以上に昇温することができる。ところがガス化材料の炭化物のみに少量の空気を与えて部分燃焼させ燃焼熱を発生させると、この熱量で容器状の炭化炉内は急激に昇温して行く。即ち炭化炉内の被処理物の炭化物を燃焼させることなく、この炭化物を容易に600℃以上の高温度に昇温させることとなる。 The gasification material and the material to be treated filled in the gasification chamber and the carbonization chamber in the carbonization furnace are already carbides at the stage when the temperature reaches 600 ° C. The carbide can be heated to 600 ° C. or higher. However, when a small amount of air is given only to the carbide of the gasification material to cause partial combustion to generate combustion heat, the temperature inside the container-like carbonization furnace is rapidly increased by this amount of heat. That is, the carbide is easily heated to a high temperature of 600 ° C. or higher without burning the carbide of the object to be processed in the carbonization furnace.

前記ガス化材料の炭化物に少量の空気を断続的に与え続けるとこのガス化材料の炭化物は部分燃焼で次第に昇温して容易に700℃以上の800℃〜850℃程度になり、同時に被処理物の炭化物の温度も800℃〜850℃近くに昇温する。また、このとき不完全燃焼させるだけの少量空気を供給すると、上記ガス化材料の炭化物は発生炉ガス化反応を起こして多量のCOガスを含む高熱量の可燃性ガス(発生炉ガス)を発生してくる。 If a small amount of air is intermittently given to the carbide of the gasification material, the carbide of the gasification material gradually increases in temperature by partial combustion and easily reaches about 800 ° C. to 850 ° C. of 700 ° C. or more. The temperature of the carbide of the product is also raised to near 800 ° C to 850 ° C. In addition, if a small amount of air is supplied to cause incomplete combustion at this time, the carbide of the gasification material causes a gasification reaction in the generator and generates a high-heat combustible gas (generation furnace gas) containing a large amount of CO gas. Come on.

また、前記発生炉ガスを前記ガス燃焼室に導入して燃焼させると、前記炭化炉を外部から間接加熱することになり、炭化室の被処理物はその燃焼熱量によっても間接的に加熱される。上記炭化炉や上記炭化室および上記ガス化室の材質を高温耐熱性とすれば、被処理物の炭化物を燃焼させることなく、1000℃以上最高1200℃程度まで容易に昇温させることができる。 Further, when the generating furnace gas is introduced into the gas combustion chamber and burned, the carbonization furnace is indirectly heated from the outside, and the object to be treated in the carbonization chamber is also indirectly heated by the amount of combustion heat. . If the carbonization furnace, the carbonization chamber, and the gasification chamber are made of high-temperature heat resistance, the temperature can be easily raised to 1000 ° C. or higher and about 1200 ° C. without burning the carbide of the object to be processed.

また、前記ガス化材料は化石燃料と同程度の高熱量の可燃性ガスを発生す犠牲材料となっているため、有限資源である高熱量の化石燃料を全く必要とせず高温度が得られる結果となり、地球環境にもやさしい方式といえる。
ここで、石炭、コークス、泥炭などをガス化材料として用いることも本発明において有効であることは言うまでもない。
In addition, since the gasified material is a sacrificial material that generates a flammable gas with a high calorific value similar to that of fossil fuel, a high temperature can be obtained without requiring a high caloric fossil fuel that is a finite resource. Therefore, it can be said that the system is friendly to the global environment.
Here, it goes without saying that it is also effective in the present invention to use coal, coke, peat or the like as the gasification material.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係わる高温炭化装置を示したもので、1は4つに分割された部屋を持つ竪型容器の炭化炉、2は被処理物を充填する炭化室、3はガス化材料を充填するガス化室、4は炭化炉内に流入する燃焼ガスを均等に分配するガス整流室、5は炭化室を出るガスが集まるガス集合室、6はバイオマス燃料や熱分解ガスおよび発生炉ガスを燃焼させる燃焼炉で、61はバイオマス燃料の燃焼室、61aはバイオマス燃料、61bはバイオマス燃料かご、62は熱分解ガスや発生炉ガスを燃焼させるガス燃焼室、63は燃焼ガスの通路となるガス通路、64はバイオマス燃料の蓋付投入口、65は蓋付燃焼灰取出口、66はメンテナンス用の蓋付開口部、6aは燃焼空気導入口、6bはガス燃焼室62へのガス導入管である。7は燃焼排ガスを屋外に排出する煙突、8は熱分解ガスの冷却器、8aは熱分解ガス導入口で、ガス集合室のガス排出口51とダクト511で連結されている。81は冷却器8の頂部ガス排出部に配設された分岐ダクトで、ダクト811とダクト812に分岐しており、ダクト811は上記煙突7と、ダクト812は上記ガス燃焼室62のガス導入管6bとそれぞれ連結されている。また上記例冷却器8には冷却水の通水口、排出口および熱分解ガスの凝縮液排出口が配設されている。9は空気予熱器、10は補助燃料タンク、101は補助燃料の燃焼バーナー、102は送油管である。B1は燃焼空気ブロア、B2はガス化空気ブロア、B3は補助燃焼空気ブロア、D1は燃焼空気ダンパー、D2は炭化炉ダンパー、D3は煙突ダンパー、D4、 D5は冷却器ダンパー、そしてT1、T2、T3は温度センサーとなる熱電対温度計、Z1、Z2は電磁開閉弁である。また、311、611は前記空気予熱器9で暖められた空気を前記ガス化室3および前記バイオマス燃料の燃焼室61へ送気するためのそれぞれのダクトである。   FIG. 1 shows a high-temperature carbonization apparatus according to an embodiment of the present invention, wherein 1 is a vertical vessel carbonization furnace having a chamber divided into four, 2 is a carbonization chamber for filling an object to be treated, 3 Is a gasification chamber filled with gasification material, 4 is a gas rectification chamber that evenly distributes the combustion gas flowing into the carbonization furnace, 5 is a gas collection chamber where the gas exiting the carbonization chamber collects, 6 is biomass fuel and pyrolysis 61 is a combustion chamber for biomass fuel, 61a is a biomass fuel, 61b is a biomass fuel basket, 62 is a gas combustion chamber for combusting pyrolysis gas and generator gas, and 63 is a combustion chamber Gas passage serving as a gas passage, 64 is an inlet with a lid for biomass fuel, 65 is a combustion ash removal outlet with a lid, 66 is an opening with a lid for maintenance, 6a is a combustion air inlet, 6b is a gas combustion chamber 62 This is a gas introduction pipe. 7 is a chimney for discharging combustion exhaust gas to the outdoors, 8 is a pyrolysis gas cooler, 8a is a pyrolysis gas inlet, and is connected to the gas exhaust port 51 of the gas collecting chamber by a duct 511. 81 is a branch duct disposed in the top gas discharge portion of the cooler 8 and branches into a duct 811 and a duct 812. The duct 811 is the chimney 7 and the duct 812 is a gas introduction pipe of the gas combustion chamber 62. 6b, respectively. The cooler 8 is provided with a cooling water passage, a discharge port, and a condensate discharge port for pyrolysis gas. 9 is an air preheater, 10 is an auxiliary fuel tank, 101 is a combustion burner for auxiliary fuel, and 102 is an oil feed pipe. B1 is combustion air blower, B2 is gasification air blower, B3 is auxiliary combustion air blower, D1 is combustion air damper, D2 is carbonization furnace damper, D3 is chimney damper, D4, D5 is cooler damper, and T1, T2, T3 is a thermocouple thermometer serving as a temperature sensor, and Z1 and Z2 are electromagnetic on-off valves. Reference numerals 311 and 611 denote ducts for sending the air warmed by the air preheater 9 to the gasification chamber 3 and the biomass fuel combustion chamber 61.

また、図2は、図1の高温炭化装置における前記竪型容器の炭化炉1を示すもので、1a、1b、1cは炭化炉1を4つに分割して仕切る耐熱通気性の金網、多孔板もしくは格子状の棚板、11は棚板1a 上に充填配設された被処理物、12は同じく棚板1b 上に充填配設されたガス化材料、13は開閉扉で上記炭化室2の被処理物11および上記ガス化室3のガス化材料12の出し入れのときに開閉される。3aは上記ガス化室に空気を導入するためのガス化空気導入口、4aは燃焼ガス導入口、4bは適度に傾斜し、漸次高さの異なった複数のガス整流板、D2は上記炭化炉1へ導入する燃焼ガスの流量調節に用いる炭化炉ダンパーで上記燃焼ガス導入口4aに回転可能に配設されている。51は前記ガス集合室5に集められた燃焼ガス、熱分解ガスおよび発生炉ガスのガス排出口である。 FIG. 2 shows the carbonization furnace 1 of the vertical vessel in the high-temperature carbonization apparatus of FIG. 1, wherein 1a, 1b and 1c are a heat-resistant and air-permeable wire mesh and a porous structure which divide the carbonization furnace 1 into four parts. A plate or grid-like shelf board, 11 is an object to be treated and filled on the shelf board 1a, 12 is a gasification material also filled and arranged on the shelf board 1b, 13 is an open / close door, and the carbonization chamber 2 The object to be processed 11 and the gasification material 12 in the gasification chamber 3 are opened and closed. 3a is a gasification air introduction port for introducing air into the gasification chamber, 4a is a combustion gas introduction port, 4b is a plurality of gas rectifying plates that are moderately inclined and gradually different in height, and D2 is the carbonization furnace A carbonization furnace damper used for adjusting the flow rate of the combustion gas introduced to 1 is rotatably disposed at the combustion gas inlet 4a. Reference numeral 51 denotes gas discharge ports for the combustion gas, pyrolysis gas, and generator gas collected in the gas collecting chamber 5.

以下、本発明の高温炭化装置における炭化処理工程と、それに応じた制御について説明する。 Hereinafter, the carbonization process in the high temperature carbonization apparatus of this invention and the control according to it are demonstrated.

図3は、本発明の実施形態に係わる全炭化処理工程の設定変化特性の一例を示すもので、乾燥工程、熱分解・炭化・均質化工程の第一段階と、炭素化・精煉・均質化工程の第二段階、および冷却工程の各工程における被処理物もしくは炭化室の温度と経過時間の関係を示した温度スケジュールである。 FIG. 3 shows an example of setting change characteristics of the entire carbonization treatment process according to the embodiment of the present invention. The first stage of the drying process, pyrolysis / carbonization / homogenization process, and carbonization / refining / homogenization It is the temperature schedule which showed the relationship between the temperature of the to-be-processed object or carbonization chamber in each process of the 2nd step of a process, and a cooling process, and elapsed time.

この図3に示した温度スケジュールに従って、1000℃で高温炭化処理するときの加熱方法と、その制御方法を、被処理物を木材の丸太とした場合について説明する。 A heating method when performing high-temperature carbonization treatment at 1000 ° C. in accordance with the temperature schedule shown in FIG. 3 and a control method thereof will be described in the case where an object to be processed is a wood log.

先ずは運転準備として、図3の温度スケジュールの温度に対応した各時間:t0〜t7を設定する。炭化炉1内の炭化室2には丸太である被処理物11を、ガス化室3にはガス化材料12として端材などの木屑を、燃焼室61のバイオマス燃料かご61bには端材などのバイオマス燃料61aを、それぞれの所定量を充填して後、炭化炉1の開閉扉13と燃焼炉6の開閉扉(図示省略)および燃焼室61の蓋付投入口64を閉じる。そして炭化炉ダンパーD2と冷却器ダンパーD4を全開し、煙突ダンパーD3と一方の冷却器ダンパーD5を全閉にしておく。   First, as operation preparation, each time: t0 to t7 corresponding to the temperature of the temperature schedule of FIG. 3 is set. The carbonized chamber 2 in the carbonization furnace 1 is treated with a log 11, the gasification chamber 3 is made of wood chips such as offcuts as the gasification material 12, and the biomass fuel basket 61 b in the combustion chamber 61 is made of offcuts etc. After filling each predetermined amount of biomass fuel 61a, the open / close door 13 of the carbonization furnace 1, the open / close door (not shown) of the combustion furnace 6, and the inlet 64 with the lid of the combustion chamber 61 are closed. Then, the carbonization furnace damper D2 and the cooler damper D4 are fully opened, and the chimney damper D3 and one of the cooler dampers D5 are fully closed.

次いで、バイオマス燃料61aに着火して、燃焼空気ブロアB1を稼働させて適度の空気を送気しながら上記バイオマス燃料を少しずつ燃焼させて行く。そうするとバイオマス燃料の燃焼ガスは炭化炉周辺のガス通路63を通って炭化炉内に流入し行き、充填されたガス化材料12および被処理物11のそれぞれの間隙を通ってガス化室5に集合する。このとき燃焼ガスの熱によって炭化炉の外壁面や炭化炉内のガス化材料12および被処理物11は加熱されて次第に昇温して行く。このときの炭化室内の温度もしくは被処理物11の温度および昇温速度の制御はバイオマス燃料61aの燃焼量を制御することによって行なうが、この燃焼量の制御は、温度センサーT1で炭化室内の温度もしくは被処理物11の温度を検出しながら、燃焼空気ダンパーD1の開度調節による送気量の増減で行なう。   Next, the biomass fuel 61a is ignited, the combustion air blower B1 is operated, and the biomass fuel is combusted little by little while supplying appropriate air. Then, the combustion gas of the biomass fuel flows into the carbonization furnace through the gas passage 63 around the carbonization furnace, and gathers in the gasification chamber 5 through the gaps between the filled gasification material 12 and the workpiece 11. To do. At this time, the heat of the combustion gas heats the outer wall surface of the carbonization furnace, the gasification material 12 in the carbonization furnace, and the workpiece 11 and gradually raises the temperature. At this time, the temperature in the carbonization chamber or the temperature of the workpiece 11 and the rate of temperature increase are controlled by controlling the combustion amount of the biomass fuel 61a. The combustion amount is controlled by the temperature sensor T1. Alternatively, it is performed by increasing or decreasing the amount of air supplied by adjusting the opening degree of the combustion air damper D1 while detecting the temperature of the object 11 to be processed.

炭化室内の温度が、t1時間経過後100℃程度に到達したら、この温度をt2時間まで保持して被処理物11の充分な乾燥を行なう。このときガス化材料12も同様に乾燥して行くこととなる。なお効率的な運転とするためには、このt2時間は予備試験などで予め求めておく。   When the temperature in the carbonization chamber reaches about 100 ° C. after elapse of t1 time, the temperature of the processing object 11 is sufficiently dried by maintaining this temperature for t2 hours. At this time, the gasification material 12 is also dried in the same manner. In order to achieve efficient operation, this t2 time is obtained in advance by a preliminary test or the like.

この過程で水分を含む燃焼ガスはガス集合室5に集められ、蒸発水分とともにガス排出口51とダクト511を通って冷却器8に入り冷却される。ここで水分は凝縮して冷却器の下部タンクに貯まり、凝縮しない燃焼ガスの気体成分はダクト81、ダンパーD4およびダクト811を経て煙突7に送られて屋外に排出される。   In this process, the combustion gas containing moisture is collected in the gas collecting chamber 5 and is cooled together with the evaporated moisture into the cooler 8 through the gas outlet 51 and the duct 511. Here, the moisture is condensed and stored in the lower tank of the cooler, and the gaseous component of the combustion gas which is not condensed is sent to the chimney 7 through the duct 81, the damper D4 and the duct 811 and discharged to the outdoors.

乾燥工程が終了(t2時間経過)すると熱分解・炭化工程に入り、被処理物11の温度は徐々に上昇し始めて130℃〜150℃に到達し、被処理物11の表面から熱分解が起こってくる。このとき、煙突ダンパーD3を半開、冷却器ダンパーD4を全閉、冷却器ダンパーD5を全開にしておく。上記温度がさらに上昇して200℃〜300℃になると熱分解ガスの発生量が顕著になり、炭化も著しく進行してくる。このときの熱分解反応は発熱反応であるため被処理物11の内部にはこの熱分解熱が蓄熱されて、被処理物全体の温度は急激に上昇して400℃〜500℃程度に到達する。この熱分解反応に並行してバイオマス燃料の燃焼ガスで加熱を続けると炭化炉内と被処理物11およびガス化材料12は600℃程度に到達(t3時間経過)して炭化物の木炭となる。この熱分解・炭化工程では、熱分解ガスを含む燃焼ガスは冷却器8に入り冷却され、熱分解ガスの一部は木酢液となるが、他の熱分解ガスは燃焼ガスとともに冷却器ダンパーD5、ダクト812を通って冷却ガス導入口6bからガス燃焼炉62に入る。そして熱分解ガスに含まれる可燃性ガスはここで燃焼処理され、バイオマス燃料の燃焼ガスとともに燃焼ガス通路63を通って煙突ダンパーD3を経て煙突7より屋外に排出される。このときの燃焼ガスの一部は炭化炉ダンパーD2より再び炭化炉1内に導入されて、炉内の加熱に使用されることになる。   When the drying process is complete (t2 hours have elapsed), the thermal decomposition / carbonization process starts, the temperature of the object 11 begins to rise gradually, reaches 130 ° C to 150 ° C, and thermal decomposition occurs from the surface of the object 11 Come. At this time, the chimney damper D3 is half-opened, the cooler damper D4 is fully closed, and the cooler damper D5 is fully opened. When the temperature further rises to 200 ° C. to 300 ° C., the amount of pyrolysis gas generated becomes significant, and carbonization proceeds significantly. Since the thermal decomposition reaction at this time is an exothermic reaction, the thermal decomposition heat is stored inside the object to be processed 11, and the temperature of the entire object to be processed increases rapidly to reach about 400 ° C. to 500 ° C. . When heating with the combustion gas of biomass fuel is continued in parallel with this pyrolysis reaction, the inside of the carbonizing furnace, the object 11 and the gasification material 12 reach about 600 ° C. (t3 hours have elapsed) to become charcoal charcoal. In this pyrolysis / carbonization process, the combustion gas containing the pyrolysis gas enters the cooler 8 and is cooled, and a part of the pyrolysis gas becomes the pyroligneous acid liquid, but the other pyrolysis gas together with the combustion gas is a cooler damper D5. The gas combustion furnace 62 is entered from the cooling gas inlet 6b through the duct 812. The combustible gas contained in the pyrolysis gas is combusted here, and is discharged together with the biomass fuel combustion gas through the combustion gas passage 63 and through the chimney damper D3 to the outside from the chimney 7. A part of the combustion gas at this time is again introduced into the carbonization furnace 1 from the carbonization furnace damper D2, and is used for heating in the furnace.

この後、炭化室2内の被処理物11が均質の木炭に炭化されるよう、この600℃の温度をt4時間経過後まで保持する。木炭になれば熱の伝導性もよくなり比較的速やかに同一温度になるため、この保持時間は通常なら1.5時間〜2時間程度でよい(第一段階終了)。   Thereafter, the temperature of 600 ° C. is maintained until t4 hours have elapsed so that the object 11 in the carbonization chamber 2 is carbonized into homogeneous charcoal. If charcoal is used, the heat conductivity is improved and the temperature is relatively quickly reached. Therefore, this holding time is usually about 1.5 to 2 hours (end of the first stage).

次いで第二段階の前段に入るが、バイオマス燃料61aの燃焼ガスの熱量では炉内を600℃以上に昇温させることは困難であるため、被処理物11の近傍に配設されていて既に炭化物(木炭)となっているガス化材料12を部分的に燃焼させ、その燃焼熱で被処理物11を昇温させるようにする。これを行なうには、先ずは低熱量の燃焼ガスが炭化炉内に多量に導入されないように炭化炉ダンパーD2を全閉にする。その後ガス化空気導入口3aから少量の空気を断続的に導入してガス化材料12に酸素を与える。そうするとガス化材料12は少しずつ燃焼してガス化材料自身が昇温して高温度になり、同時に高温度の燃焼ガスを発生する。そしてほぼ密閉容器状となっている炭化炉1の内部全体が直接加熱されて昇温して被処理物11も600℃以上に昇温することとなり、目的とする炭化温度に到達させることができる。このときのガス化室3の温度管理は温度センサーT2で行ない、ガス化空気ブロアB2および電磁開閉弁Z1と連動させて必要量の空気をガス化室3に供給するようにする。またここで炭化室2の温度もしくは被処理物11の温度を検出する温度センサーT1とガス化空気ブロアB2および電磁開閉弁Z1を連動させて炭化室2の温度もしくは被処理物11の温度を制御することもできる。また、この段階では煙突ダンパーD3は全開にしておくが、ガス燃焼室62の内部圧力を検出して煙突ダンパーD3の開度を調節してもよい。なおこのときの操作によって上記ガス化室3内に起こる主反応は次式(1)のとおりである。
C + O2 + 3.76N2 CO2 + 3.76N2 + 97.0kcal (1)
木炭 空気 排ガス
Next, the second stage is entered, but it is difficult to raise the temperature inside the furnace to 600 ° C. or higher with the amount of combustion gas of the biomass fuel 61a. The gasification material 12 that is (charcoal) is partially burned, and the temperature of the object to be treated 11 is increased by the combustion heat. To do this, first, the carbonization furnace damper D2 is fully closed so that a low amount of combustion gas is not introduced into the carbonization furnace in large quantities. Thereafter, a small amount of air is intermittently introduced from the gasification air inlet 3 a to give oxygen to the gasification material 12. Then, the gasification material 12 is burned little by little, and the gasification material itself is heated to a high temperature, and at the same time, a high-temperature combustion gas is generated. Then, the entire inside of the carbonization furnace 1 having a substantially sealed container shape is directly heated to raise the temperature, and the object to be treated 11 is also raised to 600 ° C. or more, so that the intended carbonization temperature can be reached. . The temperature control of the gasification chamber 3 at this time is performed by the temperature sensor T2, and a necessary amount of air is supplied to the gasification chamber 3 in conjunction with the gasification air blower B2 and the electromagnetic on-off valve Z1. In addition, the temperature sensor T1 for detecting the temperature of the carbonizing chamber 2 or the temperature of the workpiece 11 is linked with the gasified air blower B2 and the electromagnetic on-off valve Z1 to control the temperature of the carbonizing chamber 2 or the temperature of the workpiece 11. You can also At this stage, the chimney damper D3 is fully opened, but the internal pressure of the gas combustion chamber 62 may be detected to adjust the opening degree of the chimney damper D3. The main reaction that occurs in the gasification chamber 3 by the operation at this time is represented by the following equation (1).
C + O2 + 3.76N2 CO2 + 3.76N2 + 97.0kcal (1)
Charcoal air exhaust gas

ガス化室3の内部温度が800℃〜850℃に到達した第二段階の後階では、なおも断続的もしくは連続的に少量空気を導入し続けると、次式(2)および(3)に示す発生炉ガス化反応が起こって大量の可燃性ガス(COガス)が発生する。この可燃性ガスの発生量は供給する空気量と比例関係にあり、ガス化空気ブロアB2および電磁開閉弁Z1の調節によって制御することできる。
2C + O2 + 3.76N2 2CO + 3.76N2 + 58.0kcal (2)
木炭 空気 可燃ガス
C + CO2 CO − 40.8kcal (3)
木炭 排ガス 可燃ガス
In the latter stage of the second stage where the internal temperature of the gasification chamber 3 has reached 800 ° C. to 850 ° C., if a small amount of air continues to be introduced intermittently or continuously, the following equations (2) and (3) A large amount of combustible gas (CO gas) is generated by the reactor gasification reaction shown. The amount of the combustible gas generated is proportional to the amount of air to be supplied, and can be controlled by adjusting the gasified air blower B2 and the electromagnetic on-off valve Z1.
2C + O2 + 3.76N2 2CO + 3.76N2 + 58.0kcal (2)
Charcoal Air Combustible gas
C + CO2 CO-40.8kcal (3)
Charcoal exhaust gas Combustible gas

前記式(2)および(3)で発生した可燃性ガス(COガス)は、上記炭化室2内では空気不足から燃焼せずにガス集合室5のガス排出口51を出てダクト511、冷却器8、冷却器ダンパーD5、ダクト812およびガス導入管6bを経てガス燃焼室62に送られる。ここでは補助燃焼空気ブロアB3によって充分な空気が与えられてこの可燃性ガスは燃焼することになり、炭化炉1の外壁面を加熱する。   The combustible gas (CO gas) generated in the above formulas (2) and (3) exits the gas discharge port 51 of the gas collecting chamber 5 without being burned in the carbonization chamber 2 due to air shortage, and is cooled by the duct 511. It is sent to the gas combustion chamber 62 through the vessel 8, the cooler damper D5, the duct 812 and the gas introduction pipe 6b. Here, sufficient air is given by the auxiliary combustion air blower B3 and the combustible gas is burned, and the outer wall surface of the carbonization furnace 1 is heated.

このように、第二段階においても炭化室2の被処理物11を、燃焼させることなく、また特別の化石燃料を消費することなしに、前記ガス化材料の発生炉ガス化反応で生じる熱および可燃性ガスによって直接加熱および間接加熱して850℃以上の高温度に昇温させ、目的とする炭化温度の1000℃に到達させることができる。なおこの温度は最高1200℃にも到達させることができるものである。 Thus, in the second stage, the heat generated in the gasification reaction of the gasification material can be performed without burning the workpiece 11 in the carbonization chamber 2 and without consuming special fossil fuel. Direct heating and indirect heating with a combustible gas can raise the temperature to a high temperature of 850 ° C. or higher and reach the target carbonization temperature of 1000 ° C. This temperature can reach as high as 1200 ° C.

被処理物11がここで設定した1000℃の温度に到達(t5時間経過後)したならば、被処理物11の均質化を行なうため所定時間(1.5時間〜2時間程度)この1000℃の温度を保持する。 If the workpiece 11 reaches the temperature of 1000 ° C set here (after t5 hours), the temperature of the 1000 ° C for a predetermined time (about 1.5 hours to 2 hours) to homogenize the workpiece 11 Hold.

この均質化工程後(t6時間経過後)を経ると炭化処理は終了したことになり、ガス化空気ブロアB2を停止させてガス化室3への空気の導入を止める。その後しばらくの間、燃焼空気ブロアB1および補助燃焼空気ブロアB3稼働させて、燃焼炉6内に滞留している可燃性ガスを外部に排出させながら、炭化炉1の自然冷却を行なう。   After this homogenization step (after the elapse of t6 hours), the carbonization process is completed, and the gasification air blower B2 is stopped to stop the introduction of air into the gasification chamber 3. After a while, the combustion air blower B1 and the auxiliary combustion air blower B3 are operated, and the carbonization furnace 1 is naturally cooled while discharging the combustible gas remaining in the combustion furnace 6 to the outside.

炭化室の温度が100℃程度に下がる(t7時間経過後)と、燃焼炉6の開閉扉(図示省略)および炭化炉1の開閉扉13を開いて内部にある木炭を外部に取出す。自然冷却のときは通常なら1日〜2日を経過すれば100℃程度になるが、炭化炉ダンパーD2を全閉にした状態で燃焼空気ブロアB1を全稼働させて空気を送り炭化炉の外壁を強制冷却することもできる。この場合には半日〜1日で炉内を取出し温度にまで下げることができる。   When the temperature of the carbonization chamber drops to about 100 ° C. (after the elapse of t7 hours), the open / close door (not shown) of the combustion furnace 6 and the open / close door 13 of the carbonization furnace 1 are opened to take out the charcoal inside. During natural cooling, it usually reaches about 100 ° C after 1 to 2 days. However, with the carbonization furnace damper D2 fully closed, the combustion air blower B1 is fully operated and air is sent to the outer wall of the carbonization furnace. Can also be forced-cooled. In this case, the inside of the furnace can be taken out and lowered to the temperature in half a day to one day.

なお、本発明は前記実施形態に限定されるものではなく、その他種々の実施形態を包含するものである。即ち、前記実施形態では炭化炉1と燃焼炉6を一体型としたが、両者をそれぞれ独立した個別炉として両者を別置型としてもよい。また、ガス化室3を炭化室2の近傍に配置せず、炭化炉1とは離れた位置もしくは別置きとして燃焼炉6の外に配設してもよいし、また、炭化室2とガス化室3とは独立した別容器としてダクト類で接続し断熱構造の同一容器内、もしくは同一燃焼炉内に配設してもよい。また、前記炭化炉1もしくは炭化室2を着脱式として燃焼炉6の外部に取出すようにしてもよい。さらにはまた、ダクト511を直接ガス導入管6bに接続するように配設して木酢液を採らないようにしてもよく、この場合にはダクトD3を開放状態に維持しておく。いずれにしても前記実施形態と同様の思想・考え方となる。   In addition, this invention is not limited to the said embodiment, Other various embodiment is included. That is, in the said embodiment, although the carbonization furnace 1 and the combustion furnace 6 were made into the integral type, both may be made into a separate type, and both may be set as a separate type. Further, the gasification chamber 3 may not be disposed in the vicinity of the carbonization chamber 2 but may be disposed outside the combustion furnace 6 at a position separated from the carbonization furnace 1 or separately from the carbonization furnace 1. It may be connected as a separate container independent of the chemical conversion chamber 3 by ducts and disposed in the same container having a heat insulating structure or in the same combustion furnace. Further, the carbonization furnace 1 or the carbonization chamber 2 may be detachable and taken out of the combustion furnace 6. Furthermore, the duct 511 may be arranged so as to be directly connected to the gas introduction pipe 6b so that the vinegar liquid is not taken. In this case, the duct D3 is kept open. In any case, the idea and concept are the same as in the above embodiment.

本発明の実施形態に係わる高温炭化装置を示す説明図である。It is explanatory drawing which shows the high temperature carbonization apparatus concerning embodiment of this invention. 本発明の実施形態に係わる高温炭化装置図1の竪型炭化炉を示す説明図である。FIG. 2 is an explanatory view showing the vertical carbonization furnace of FIG. 1 according to an embodiment of the present invention. 本発明の実施形態に係わる全炭化処理工程の設定変化特性の一例を示すもので、被処理物もしくは炭化室の温度の関係を経過時間に対して示した温度スケジュールである。An example of the setting change characteristic of the all carbonization process concerning embodiment of this invention is shown, and is the temperature schedule which showed the relationship of the temperature of a to-be-processed object or a carbonization chamber with respect to elapsed time.

符号の説明Explanation of symbols

1 炭化炉
11 被処理物
12 ガス化材料
2 炭化室
3 ガス化室
3a ガス化空気導入口
4 ガス整流室
5 ガス集合室
51 ガス排出口
6 燃焼炉
61 バイオマス燃料の燃焼室
61a バイオマス燃料
62 ガス燃焼室
7 煙突
8 熱分解ガス冷却器
9 空気予熱器
B1、B2、B3 空気ブロア
D1、D2、D3、D4、D5 ダンパー
T1、T2、T3 温度センサー
Z1 Z2 電磁開閉弁
1 Carbonization furnace
11 Workpiece
12 Gasification material 2 Carbonization chamber 3 Gasification chamber
3a Gasification air inlet 4 Gas rectifying chamber 5 Gas collecting chamber
51 Gas outlet 6 Combustion furnace
61 Biomass fuel combustion chamber
61a Biomass fuel
62 Gas combustion chamber 7 Chimney 8 Pyrolysis gas cooler 9 Air preheater
B1, B2, B3 Air blower
D1, D2, D3, D4, D5 damper
T1, T2, T3 temperature sensors
Z1 Z2 Solenoid open / close valve

Claims (8)

バッチ式炭化装置であって、被処理物の温度もしくは炉内温度を管理しながら、被処理物の加熱を、乾燥・熱分解・炭化を行う第一段階と、炭素化・精煉を行う第二段階とでは異なる方法で行なうことを特徴とする高温炭化方法。 A batch-type carbonization device that controls the temperature of the object to be processed or the temperature in the furnace, and heats the object to be processed in the first stage of drying, pyrolysis and carbonization, and the second stage of carbonization and refining. A high-temperature carbonization method characterized in that it is carried out by a method different from the stage. 請求項1記載の高温炭化方法であって、前記第一段階において、外気温から600℃までの加熱は被処理物とバイオマス燃料の燃焼ガスとを接触させた直接加熱と、当該燃焼ガスによる間接加熱を併用して行い、前記第二段階の前段の600℃以上800℃程度までの加熱はバイオマス燃料の燃焼ガスによる間接加熱と、別途準備のガス化材料の燃焼ガスによる直接加熱の併用で行い、そして前記第二段階の後段の800℃以上1200℃程度では、上記ガス化材料の発生炉ガス化反応の発熱による直接加熱と、発生炉ガス化反応で生じた発生炉ガスの燃焼ガスによる間接加熱の併用で行うことを特徴とする高温炭化方法。 2. The high-temperature carbonization method according to claim 1, wherein in the first stage, the heating from the outside temperature to 600 ° C. is performed by directly heating the object to be treated and the combustion gas of biomass fuel, and indirectly by the combustion gas. Heating is performed in combination, and heating up to about 600 ° C to about 800 ° C in the first stage of the second stage is performed by using indirect heating with a combustion gas of biomass fuel and direct heating with a separately prepared gasification material combustion gas. In the latter stage of the second stage, at 800 ° C. or more and about 1200 ° C., direct heating by the heat generated by the gasification reaction of the gasification material and indirect by the combustion gas of the gas generated from the gasification reaction of the generator A high-temperature carbonization method characterized by being performed in combination with heating. 請求項2記載の高温炭化方法であって、前記第二段階の加熱に用いるガス化材料はバイオマス、もしくは木炭、竹炭、および廃棄物の炭化物であることを特徴とする高温炭化方法。 3. The high temperature carbonization method according to claim 2, wherein the gasification material used for the second stage heating is biomass or charcoal of charcoal, bamboo charcoal, and waste. バッチ式炭化装置であって、当該炭化装置は、炭化炉を内蔵する形態で当該炭化炉の下方に配設された外面断熱構造の燃焼炉と一体型に形成されていて、燃焼空気導入口、バイオマス燃料投入口、バイオマス燃料燃焼室、熱分解ガスおよび発生炉ガスのガス燃焼室、上記炭化炉の外壁周辺に適度の間隔で配設されたガス通路、上記燃焼炉の上部付近にあって空気予熱器と煙突ダンパーを配設された煙突、および上記炭化炉付近の一つの外側面に配設された開閉扉を有する当該燃焼炉と、そして熱分解ガスの冷却器、空気ブロア、ダクト、空気と燃焼ガスの流量調節ダンパー、および温度センサーと制御機器で構成されていることを特徴とする高温炭化装置。 It is a batch type carbonization device, and the carbonization device is formed integrally with a combustion furnace having an outer surface heat insulating structure disposed below the carbonization furnace in a form incorporating the carbonization furnace, and a combustion air inlet, Biomass fuel inlet, biomass fuel combustion chamber, gas combustion chamber for pyrolysis gas and generator gas, gas passages arranged at appropriate intervals around the outer wall of the carbonization furnace, and air near the top of the combustion furnace A chimney having a preheater and a chimney damper, and a combustion furnace having an open / close door disposed on one outer surface near the carbonization furnace, and a pyrolysis gas cooler, air blower, duct, air And a combustion gas flow control damper, a temperature sensor and a control device. 請求項4記載の高温炭化装置であって、前記炭化炉は、一側面に開閉扉を有する耐熱性金属もしくはセラミックス製の竪型容器であり、その内部は通気性で耐熱性の金網、多孔板もしくは格子状の棚板で上下方向に四分割された四室からなり、最上部室は内部に複数の整流板を配設したガス整流室であって炭化炉ダンパーを備えた燃焼ガス導入口が一箇所配設されており、二番目室は上記ガス化材料を充填するガス化室であって側面にはガス化空気導入口が配設され、そして三番目室は被処理物を充填する炭化室であって、最下室は一箇所にガス排出口を有するガス集合室で構成されていることを特徴とする高温炭化装置。 5. The high-temperature carbonization apparatus according to claim 4, wherein the carbonization furnace is a vertical container made of a heat-resistant metal or ceramic having an open / close door on one side, and the inside thereof is a breathable and heat-resistant wire mesh, a perforated plate Alternatively, it consists of four chambers divided into four in the vertical direction by a grid-like shelf plate, and the uppermost chamber is a gas rectifying chamber in which a plurality of rectifying plates are arranged, and has a single combustion gas introduction port equipped with a carbonization furnace damper. The second chamber is a gasification chamber filled with the gasification material, the gasified air introduction port is disposed on the side surface, and the third chamber is a carbonization chamber filled with an object to be processed. In the high temperature carbonization apparatus, the lowermost chamber is constituted by a gas collecting chamber having a gas discharge port at one place. 請求項4記載の高温炭化装置であって、前記熱分解ガスの冷却器と前記ガス集合室のガス排出口とはダクトで連結されており、当該冷却器の頂部のガス排出部には、分岐したダクトが配設されていて、一方は前記煙突ダンパーと前記空気予熱器の中間位置の煙道部に、他方は前記燃焼炉のガス燃焼室にそれぞれが一個ずつのダンパーを介して連結されていることを特徴とする高温炭化装置。 5. The high-temperature carbonization apparatus according to claim 4, wherein the pyrolysis gas cooler and the gas discharge port of the gas collecting chamber are connected by a duct, and the gas discharge portion at the top of the cooler has a branch. One duct is connected to the flue portion at an intermediate position between the chimney damper and the air preheater, and the other is connected to the gas combustion chamber of the combustion furnace via one damper. A high-temperature carbonization apparatus characterized by comprising: 請求項4記載の高温炭化装置であって、前記ガス化空気導入口と前記空気予熱器は電磁弁とガス化空気ブロアを介して、そして前記燃焼空気導入口と前記空気予熱器は燃焼空気ブロアと燃焼空気ダンパーを介して、それぞれがダクトで連結されていることを特徴とする高温炭化装置。 5. The high-temperature carbonization apparatus according to claim 4, wherein the gasified air inlet and the air preheater are connected via a solenoid valve and a gasified air blower, and the combustion air inlet and the air preheater are a combustion air blower. And a combustion air damper, each of which is connected by a duct. 請求項4および請求項5記載の高温炭化装置であって、前記炭化室、前記ガス化室および前記ガス燃焼室には、それぞれの室内温度を検出するための温度センサーが配設されており、前記炭化室は前記燃焼空気ブロアの燃焼空気ダンパーと、前記ガス化室は前記ガス化空気ブロアの電磁開閉弁と、そして前記ガス燃焼室は補助燃焼空気ブロアの電磁開閉弁と、それぞれの制御機器に連結されていることを特徴とする高温炭化装置。 The high-temperature carbonization apparatus according to claim 4 and claim 5, wherein temperature sensors for detecting respective indoor temperatures are arranged in the carbonization chamber, the gasification chamber, and the gas combustion chamber, The carbonization chamber is a combustion air damper of the combustion air blower, the gasification chamber is an electromagnetic on-off valve of the gasification air blower, and the gas combustion chamber is an electromagnetic on-off valve of an auxiliary combustion air blower. A high-temperature carbonization apparatus characterized by being connected to
JP2006271368A 2006-10-03 2006-10-03 High temperature carbonization method and high temperature carbonization apparatus Pending JP2008088310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006271368A JP2008088310A (en) 2006-10-03 2006-10-03 High temperature carbonization method and high temperature carbonization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006271368A JP2008088310A (en) 2006-10-03 2006-10-03 High temperature carbonization method and high temperature carbonization apparatus

Publications (1)

Publication Number Publication Date
JP2008088310A true JP2008088310A (en) 2008-04-17

Family

ID=39372788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271368A Pending JP2008088310A (en) 2006-10-03 2006-10-03 High temperature carbonization method and high temperature carbonization apparatus

Country Status (1)

Country Link
JP (1) JP2008088310A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249600A (en) * 2008-04-10 2009-10-29 Yanmar Co Ltd Gasification apparatus, biomass gasification system, and method for stopping operation of gasification apparatus in the biomass gasification system
JP2010155913A (en) * 2008-12-26 2010-07-15 Ono Kensetsu:Kk Method for producing incomplete combustion gas of arbores, incomplete combustion gas, wood vinegar, snow thawing agent, method for producing metal formate mixture, and metal formate mixture
CN107289788A (en) * 2017-07-08 2017-10-24 深圳市汇美新科技有限公司 Continuous vacuum stove
CN107513437A (en) * 2017-10-13 2017-12-26 国科洁能(北京)科技有限公司 A kind of Horizontal type circulating fluid bed gasification process and device
CN114752396A (en) * 2022-04-19 2022-07-15 昆明理工大学 Device for carbonizing biomass by coupling magnetic oxygen low-nitrogen combustion with magnetic oxygen low-nitrogen combustion
CN116160528A (en) * 2023-02-16 2023-05-26 集美大学 Environment-friendly bamboo carbonization system and carbonization method thereof
WO2024004354A1 (en) * 2022-06-27 2024-01-04 株式会社Ihi Carbide production system and carbide production method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249600A (en) * 2008-04-10 2009-10-29 Yanmar Co Ltd Gasification apparatus, biomass gasification system, and method for stopping operation of gasification apparatus in the biomass gasification system
JP2010155913A (en) * 2008-12-26 2010-07-15 Ono Kensetsu:Kk Method for producing incomplete combustion gas of arbores, incomplete combustion gas, wood vinegar, snow thawing agent, method for producing metal formate mixture, and metal formate mixture
CN107289788A (en) * 2017-07-08 2017-10-24 深圳市汇美新科技有限公司 Continuous vacuum stove
CN107513437A (en) * 2017-10-13 2017-12-26 国科洁能(北京)科技有限公司 A kind of Horizontal type circulating fluid bed gasification process and device
CN114752396A (en) * 2022-04-19 2022-07-15 昆明理工大学 Device for carbonizing biomass by coupling magnetic oxygen low-nitrogen combustion with magnetic oxygen low-nitrogen combustion
CN114752396B (en) * 2022-04-19 2024-05-10 昆明理工大学 Device for coupling magnetic oxygen low-nitrogen combustion with biomass carbonization
WO2024004354A1 (en) * 2022-06-27 2024-01-04 株式会社Ihi Carbide production system and carbide production method
JP7435921B1 (en) 2022-06-27 2024-02-21 株式会社Ihi Carbide production system and carbide production method
CN116160528A (en) * 2023-02-16 2023-05-26 集美大学 Environment-friendly bamboo carbonization system and carbonization method thereof

Similar Documents

Publication Publication Date Title
US8845772B2 (en) Process and system for syngas production from biomass materials
JP2008088310A (en) High temperature carbonization method and high temperature carbonization apparatus
EP3030838B1 (en) Apparatus for generating energy by gasification
JP2009068817A (en) Batch type combustion boiler using woody biomass or carbide as fuel and hot air generating device
CN104487550B (en) Improvement in waste process
US20080281133A1 (en) Three-Stage Gasification - Biomass-to-Electricity Process with an Acetylene Process
JPWO2009038103A1 (en) High-temperature combustion gas generator from biomass and apparatus for using combustion gas
CN106338068A (en) Household garbage pyrolysis and gasification processing system
JP2011080664A (en) Method and device for thermal-decomposing, carbonizing, and gasifying waste
JP2007146016A (en) Carbonization furnace for woody material
JP2008063363A (en) Gasification furnace and gasification furnace system
CN102746902A (en) Gasification method of organic wastes and special gasification furnace
Getahun et al. Design and development of household gasifier cooking stoves: natural versus forced draft
CN101592335B (en) Tobacco stem waste gasification system device and production technology thereof
KR101185745B1 (en) Carbonized rice-hulls burner
RU2536719C2 (en) Method of enrichment of alternative, carbon-containing, low calorie wastes for use in furnace plants
JP5748333B2 (en) Electric heating biomass gasifier
JP7231528B2 (en) Batch type carbonization equipment
EA036674B1 (en) Plant for producing biocoal and corresponding process
CN106123010A (en) A kind of combustion method of biomass fuel
JP4993460B2 (en) Method for thermal decomposition of carbonaceous raw materials
JP2017014474A (en) Biomass feedstock gasifier of continuous thermochemistry type
RU2657042C2 (en) Method for producing a combustible gas from a solid fuel and reactor for its implementation
KR101775015B1 (en) Combustion apparatus using charcoal kiln
JP3477572B2 (en) Stoves and boilers that also serve as carbonization furnaces