JPWO2009038103A1 - High-temperature combustion gas generator from biomass and apparatus for using combustion gas - Google Patents

High-temperature combustion gas generator from biomass and apparatus for using combustion gas Download PDF

Info

Publication number
JPWO2009038103A1
JPWO2009038103A1 JP2009533163A JP2009533163A JPWO2009038103A1 JP WO2009038103 A1 JPWO2009038103 A1 JP WO2009038103A1 JP 2009533163 A JP2009533163 A JP 2009533163A JP 2009533163 A JP2009533163 A JP 2009533163A JP WO2009038103 A1 JPWO2009038103 A1 JP WO2009038103A1
Authority
JP
Japan
Prior art keywords
combustion gas
vertical furnace
grate
air supply
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009533163A
Other languages
Japanese (ja)
Inventor
坂井 正康
正康 坂井
正 横井
正 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIOMASS ENERGY CORPORATION
Original Assignee
BIOMASS ENERGY CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIOMASS ENERGY CORPORATION filed Critical BIOMASS ENERGY CORPORATION
Publication of JPWO2009038103A1 publication Critical patent/JPWO2009038103A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L1/00Passages or apertures for delivering primary air for combustion 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/10Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/002Incineration of waste; Incinerator constructions; Details, accessories or control therefor characterised by their grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/006General arrangement of incineration plant, e.g. flow sheets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • F23G5/245Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber with perforated bottom or grate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/04Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air beyond the fire, i.e. nearer the smoke outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/06Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air into the fire bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/09Mechanical details of gasifiers not otherwise provided for, e.g. sealing means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/158Screws
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0906Physical processes, e.g. shredding, comminuting, chopping, sorting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1606Combustion processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1693Integration of gasification processes with another plant or parts within the plant with storage facilities for intermediate, feed and/or product
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1853Steam reforming, i.e. injection of steam only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2203/00Furnace arrangements
    • F23G2203/40Stationary bed furnace
    • F23G2203/401Stationary bed furnace with support for a grate or perforated plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2203/00Furnace arrangements
    • F23G2203/40Stationary bed furnace
    • F23G2203/403Stationary bed furnace with substantial cylindrical combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2205/00Waste feed arrangements
    • F23G2205/16Waste feed arrangements using chute
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

立型炉(102)と立型炉(102)に誘引通風機(305)を介して連結する煙突(307,510)とからなり、立型炉(102)は上部に設けたバイオマス系可燃物を投入する燃料投入部(127)と、立型炉内に設けた複数の二次空気噴出孔(104)を有する中空の火格子(103)と、火格子より上方において立型炉と接続する1次空気供給管(106)と、1次空気供給管の下方で立型炉または火格子に接続する2次空気供給管(107,123)と、火格子の下部において立型炉と接続する3次空気供給管(108)と、火格子の下部において立型炉と接続する高温燃焼ガス排気管(109)と、立型炉の底部に設けた灰溜(112)とを備え、かつ、火格子より上部の側壁が鉛直面に対し下向きの広がり勾配を持って形成されて、高温燃焼ガス排気管が誘引通風機を介して連結されて煙突に連結する構成とした。Composed of a vertical furnace (102) and a chimney (307, 510) connected to the vertical furnace (102) via an induction fan (305), the vertical furnace (102) is a biomass combustible provided at the top Is connected to the vertical furnace, a hollow grate (103) having a plurality of secondary air ejection holes (104) provided in the vertical furnace, and a vertical furnace above the grate A primary air supply pipe (106), a secondary air supply pipe (107, 123) connected to the vertical furnace or grate below the primary air supply pipe, and a vertical furnace connected to the lower part of the grate A tertiary air supply pipe (108), a high-temperature combustion gas exhaust pipe (109) connected to the vertical furnace at the bottom of the grate, an ash reservoir (112) provided at the bottom of the vertical furnace, and Side wall above the grate is formed with a downward spreading gradient with respect to the vertical plane Is, the high temperature combustion gas exhaust pipe has a configuration that connects to the linked via the induced draft fan and chimney.

Description

本発明は、固形のバイオマス系資源を燃料として助燃料なしに高温で完全燃焼させることによってクリーンな高温燃焼ガスを生成させる高温燃焼ガス発生装置及び燃焼ガスの利用装置に関する。   The present invention relates to a high-temperature combustion gas generator and a combustion gas utilization device that generate clean high-temperature combustion gas by completely burning a solid biomass-based resource at high temperature without using auxiliary fuel.

建築廃材や間伐材、乾燥状態の各種植物などのバイオマス資源を粗く破砕する程度の状態で燃焼ガス発生装置に投入し、これを完全燃焼させてクリーンな高温燃焼ガスを発生させることができれば、賦存量の大きな再生可能型エネルギー資源から有用性の高い熱エネルギーを取り出すことが可能になる。この課題を解決する手段として、例えば、本発明者らの発明による特許文献1に示された縦型の下向移動床式炉の技術がある。   If biomass resources such as building waste, thinned wood, and various types of dried plants are roughly crushed, they can be put into a combustion gas generator and completely burned to generate clean high-temperature combustion gas. It becomes possible to extract highly useful thermal energy from a large amount of renewable energy resources. As means for solving this problem, for example, there is a technology of a vertical down-moving bed furnace shown in Patent Document 1 according to the invention of the present inventors.

この技術は、高温燃焼ガス発生装置炉頂部に原料投入口及び空気吹き込み口、下部に火格子を設置して炉頂部より原料を投入し、火格子付近で補助燃焼装置により着火した後、空気を含有する高温ガスを誘引通風機及び/又は煙突のドラフト効果により上から下へ通過させ、火格子の上方で乾燥、揮発(ガス化)、燃焼及び固定炭素燃焼をスムーズに行うものである。   In this technology, a raw material inlet and an air inlet are installed at the top of the high-temperature combustion gas generator furnace, a grate is installed at the bottom, and raw materials are introduced from the top of the furnace. The hot gas contained is passed from the top to the bottom by the draft effect of the induction fan and / or the chimney, and the drying, volatilization (gasification), combustion and fixed carbon combustion are smoothly performed above the grate.

また、高温燃焼ガス発生装置はバイオマスガスを燃料とした高温の熱を供給することを第1の目的とするが、発生した高熱の燃焼ガスを熱源以外に利用できる潜在的な可能性がある。例えば、燃焼ガス排気中に含まれる炭酸ガスの利用である。燃焼排気ガスの全量または一部分をグリーンハウス植物栽培の成長促進やアルカリ排水の中和剤などに利用できる高品質のガスとすることがその一例である。   The first object of the high-temperature combustion gas generator is to supply high-temperature heat using biomass gas as a fuel. However, there is a possibility that the generated high-temperature combustion gas can be used in addition to the heat source. For example, use of carbon dioxide contained in combustion gas exhaust. One example is to use a high-quality gas that can be used for promoting the growth of green house plant cultivation, neutralizing agent for alkaline drainage, or the like, using the whole or part of the combustion exhaust gas.

植物の温室栽培において、植物は炭酸ガス濃度の上昇によって成長速度が20%以上促進される場合が多いことが知られている。炭酸ガスを温室に供給するために、プロパンガスや灯油を燃料にしてクリーンで炭酸ガスが10%程度含まれる燃焼ガスを作り、これをグリーンハウス内へ供給するようにしている。しかし、これは植物成長促進のために化石燃料を燃焼させて炭酸ガスを発生させるものであり、環境上、社会的に好ましくない。また、同じ目的で、産業用に製造され市場に供給されている炭酸ガスボンベを用いて、グリーンハウス内に補給することも行われている。しかし、この方法では、市場価値の高い高純度の炭酸ガスを数100乃至1000ppmに希釈して用いるものであって、品質と用途の間に大きなギャップがあり費用も上昇する。   In the greenhouse cultivation of plants, it is known that plants often have a growth rate accelerated by 20% or more due to an increase in carbon dioxide concentration. In order to supply carbon dioxide to the greenhouse, propane gas or kerosene is used as fuel to produce a clean combustion gas containing about 10% carbon dioxide, and this is supplied into the green house. However, this is to produce carbon dioxide by burning fossil fuel to promote plant growth, which is not environmentally preferable. In addition, for the same purpose, replenishment in the green house is also performed using a carbon dioxide cylinder manufactured for industrial use and supplied to the market. However, in this method, high-purity carbon dioxide gas with a high market value is diluted to several hundred to 1000 ppm and used, and there is a large gap between quality and application, and costs increase.

特開2006−300501公報JP 2006-300501 A

エネルギーの利用を再生型エネルギーへシフトしていくために、建築廃材や間伐材、乾燥状態の各種植物などのバイオマス系資源を安価でクリーンな高温熱エネルギーとして利用できる技術が求められている。そのために、これらのバイオマス系資源を粗く破砕する程度の固形状態で燃焼し、ダイオキシンなど有害ガスが発生するリスクを持たずにクリーンに完全燃焼させて1000℃を超える高温熱ガスを得ることのできる小規模分散型装置技術の確立が望まれる。しかし、従来の技術はまだ性能面で十分ではなく、原料の燃えカスによる燃焼経路の閉塞や燃焼空気の十分かつ適切な供給などに関して改良すべき課題がある。また、燃焼装置から得られる燃焼ガスを単に熱供給に利用するだけでなく、燃焼排気ガス中の炭酸ガスを一部の産業に利用できる品質に変換できる装置構成が望まれている。   In order to shift the use of energy to renewable energy, there is a need for technology that can use biomass resources such as building waste, thinned wood, and various types of dried plants as clean, high-temperature thermal energy. Therefore, these biomass-based resources can be burned in a solid state to the extent that they are roughly crushed, and can be burned cleanly and completely without the risk of generating harmful gases such as dioxins, resulting in a hot gas exceeding 1000 ° C. Establishment of small-scale distributed equipment technology is desired. However, the conventional technology is not yet sufficient in terms of performance, and there are problems to be improved with respect to, for example, blockage of the combustion path due to raw material residue and sufficient and appropriate supply of combustion air. Further, there is a demand for an apparatus configuration that not only uses combustion gas obtained from a combustion apparatus for heat supply but also converts carbon dioxide in combustion exhaust gas into a quality that can be used in some industries.

第7図は、本発明者らによって創作され、実施されている従来の高温燃焼ガス発生装置の概略構造図である。燃焼炉601はシャフト炉形式の固定床であり、燃焼炉下部に火格子603が設けられている。燃料となるバイオマスは10cm程度のチップを適性形状とし、これを燃焼炉601の頂部の燃料投入部627から投入する。   FIG. 7 is a schematic structural diagram of a conventional high-temperature combustion gas generator created and implemented by the present inventors. The combustion furnace 601 is a shaft furnace type fixed bed, and a grate 603 is provided at the lower part of the combustion furnace. Biomass serving as fuel has a chip of about 10 cm in an appropriate shape, and this is introduced from a fuel input part 627 at the top of the combustion furnace 601.

燃焼用の空気が、上部より、1次空気供給管606、火格子603近傍の2次空気供給管607、火格子603の下部にある3次空気供給管608から供給される。燃焼炉601内の空気または燃焼ガスの流れは、高温燃焼ガス排気管609から燃焼ガスが後設される誘引通風機(図示せず)によって煙突(図示せず)へ誘引されている。したがって、燃焼炉601内の空気または燃焼ガスの流れは、下向流となっている。この方式によって、燃焼炉内の燃焼は火格子603の上部近傍で最高燃焼温度に達し、また、幾らかの可燃ガスを含んだ燃焼ガスが火格子下の底部燃焼室611において、3次空気供給管108によって供給される空気によってクリーンにかつ完全燃焼を達成する。   Combustion air is supplied from above from a primary air supply pipe 606, a secondary air supply pipe 607 near the grate 603, and a tertiary air supply pipe 608 located below the grate 603. The flow of air or combustion gas in the combustion furnace 601 is attracted to a chimney (not shown) by an induction fan (not shown) in which the combustion gas is provided from a high-temperature combustion gas exhaust pipe 609. Therefore, the flow of air or combustion gas in the combustion furnace 601 is a downward flow. In this manner, the combustion in the combustion furnace reaches the maximum combustion temperature near the top of the grate 603, and the combustion gas containing some combustible gas is supplied to the bottom combustion chamber 611 below the grate in the tertiary air supply. Clean and complete combustion is achieved by the air supplied by the tube 108.

このとき発生する高温燃焼ガスのガス性状のクリーン度を次の例で示す。
酸素(O) 4.2%
二酸化炭素(CO) 14.6%
塩化水素(HCl) 430ppm
硫化水素(HS) 120ppm
炭化水素(C) 0%
一酸化炭素(CO) 0%
ダイオキシン 検出限界以下
燃焼温度 1220℃
The cleanliness of the gas properties of the high-temperature combustion gas generated at this time is shown in the following example.
Oxygen (O 2 ) 4.2%
Carbon dioxide (CO 2 ) 14.6%
Hydrogen chloride (HCl) 430ppm
Hydrogen sulfide (H 2 S) 120 ppm
Hydrocarbon (C m H n) 0%
Carbon monoxide (CO) 0%
Dioxin below detection limit Combustion temperature 1220 ° C

しかし、この燃焼装置は、立型炉側壁でのブリッジ現象が生じ易く、炉底部へ向けての原料の移動が滞る場合があり、メンテナンスや燃焼残渣詰まりの観点から改善が求められている。   However, this combustion apparatus tends to cause a bridging phenomenon on the side wall of the vertical furnace, and the movement of the raw material toward the bottom of the furnace may stagnate, and improvement is required from the viewpoint of maintenance and clogging of combustion residues.

本発明の目的は、第7図に示される従来の燃焼装置に比べ、投入されたバイオマスを燃焼炉内で円滑に移動させ、かつバイオマスの燃焼状態をより完全な状態に安定させて燃焼する高温燃焼ガス発生装置と、この装置から発生した燃焼ガスの効果的な利用装置を提供することである。
本発明者らは、バイオマスの乾燥、揮発(ガス化)、燃焼及び固定炭素燃焼におけるバイオマスの上昇ベクトルを抑えるように、移動床内を下降する空気の流れを形成することで空気が装置内の横断面全体にわたって広がり、均一に流下するようになり、安定した可燃ガス化、燃焼が継続されることがわかり本発明を完成するに至った。
The object of the present invention is to provide a high temperature that smoothly moves the input biomass in the combustion furnace and stabilizes the combustion state of the biomass in a more complete state as compared with the conventional combustion apparatus shown in FIG. A combustion gas generator and an effective utilization device for the combustion gas generated from this device are provided.
In order to suppress the rising vector of biomass in the drying, volatilization (gasification), combustion, and fixed carbon combustion of biomass, the inventors have formed a flow of air that descends in the moving bed, so that air is contained in the apparatus. It spreads over the entire cross section and flows down uniformly, and it was found that stable combustible gasification and combustion were continued, and the present invention was completed.

本発明の高温ガス発生装置は、立型炉と立型炉に誘引通風機を介して連結する煙突とからなり、立型炉は上部に設けられたバイオマス系可燃物を投入する燃料投入部と、立型炉内に設けられた複数の二次空気噴出孔を有する中空の火格子と、火格子より上方において立型炉と接続する1次空気供給管と、1次空気供給管の下方で立型炉又は火格子に接続する2次空気供給管と、火格子の下部において立型炉と接続する3次空気供給管と、火格子の下部において立型炉と接続する高温燃焼ガス排気管と、立型炉の底部に設けられた灰溜とを備え、かつ、火格子より上部の側壁が鉛直面に対し下向きの広がり勾配を持って形成されており、高温燃焼ガス排気管が誘引通風機を介して連結されて煙突に連結することを特徴とする。   The high-temperature gas generator of the present invention comprises a vertical furnace and a chimney connected to the vertical furnace via an induction fan, and the vertical furnace is provided with a fuel input part for supplying biomass-based combustibles provided at the top. A hollow grate having a plurality of secondary air ejection holes provided in the vertical furnace, a primary air supply pipe connected to the vertical furnace above the grate, and below the primary air supply pipe A secondary air supply pipe connected to the vertical furnace or the grate, a tertiary air supply pipe connected to the vertical furnace at the lower part of the grate, and a high-temperature combustion gas exhaust pipe connected to the vertical furnace at the lower part of the grate And an ash reservoir provided at the bottom of the vertical furnace, and the upper side wall of the grate is formed with a downward spreading gradient with respect to the vertical plane, and the high-temperature combustion gas exhaust pipe has an induced draft It is connected through a machine and connected to a chimney.

本発明の別の構成によれば、高温ガス発生装置は、立型炉と立型炉に誘引通風機を介して連結する煙突とからなり、立型炉は炉側壁をジャケットで囲繞して形成した空間部と、ジャケットに接続するジャケット空気供給管と、ジャケットに接続するジャケット空気循環管と、立型炉の上部に設けられたバイオマス系可燃物を投入する燃料投入部と、立型炉内に設けられた複数の二次空気噴出孔を有する中空の火格子と、火格子より上方において立型炉と接続する1次空気供給管と、1次空気供給管の下方で立型炉又は火格子に接続する2次空気供給管と、火格子の下部において立型炉と接続する3次空気供給管と、火格子の下部において立型炉と接続する高温燃焼ガス排気管と、立型炉の底部に設けられた灰溜とを備え、かつ、火格子より上部の側壁が鉛直面に対し下向きの広がり勾配を持って形成されており、高温燃焼ガス排気管が誘引通風機を介して連結されて煙突に連結し、ジャケット空気循環管が1次空気供給管、2次空気供給管及び3次空気供給管と接続していることを特徴とする。   According to another configuration of the present invention, the high temperature gas generator comprises a vertical furnace and a chimney connected to the vertical furnace via an induction fan, and the vertical furnace is formed by surrounding the furnace side wall with a jacket. Space, a jacket air supply pipe connected to the jacket, a jacket air circulation pipe connected to the jacket, a fuel input part for introducing a biomass-based combustible provided in the upper part of the vertical furnace, and an interior of the vertical furnace A hollow grate having a plurality of secondary air ejection holes provided in the main body, a primary air supply pipe connected to the vertical furnace above the grate, and a vertical furnace or fire below the primary air supply pipe A secondary air supply pipe connected to the grid, a tertiary air supply pipe connected to the vertical furnace at the lower part of the grate, a high-temperature combustion gas exhaust pipe connected to the vertical furnace at the lower part of the grate, and the vertical furnace An ash reservoir provided at the bottom of the grate and above the grate Side wall is formed with a downward spread gradient with respect to the vertical plane, the high-temperature combustion gas exhaust pipe is connected via an induction fan and connected to the chimney, and the jacket air circulation pipe is the primary air supply pipe, It is connected to a secondary air supply pipe and a tertiary air supply pipe.

本発明の燃焼ガス利用装置の第1の態様では、
高温燃焼ガス発生装置と、高温燃焼ガス排気管に燃焼ガス処理装置を連接し、燃焼ガスを植物栽培ハウス内へ補給することを特徴とする。ここで、高温燃焼ガス発生装置は、立型炉と立型炉に誘引通風機を介して連結する煙突とからなり、立型炉は上部に設けられたバイオマス系可燃物を投入する燃料投入部と、立型炉内に設けられた複数の二次空気噴出孔を有する中空の火格子と、火格子より上方において立型炉と接続する1次空気供給管と、1次空気供給管の下方で立型炉又は火格子に接続する2次空気供給管と、火格子の下部において立型炉と接続する3次空気供給管と、火格子の下部において立型炉と接続する高温燃焼ガス排気管と、立型炉の底部に設けられた灰溜とを備え、かつ、火格子より上部の側壁が鉛直面に対し下向きの広がり勾配を持って形成されて、高温燃焼ガス排気管が誘引通風機を介して連結されて煙突に連結することを特徴とする。
In the first aspect of the combustion gas utilization apparatus of the present invention,
A combustion gas processing device is connected to a high-temperature combustion gas generator and a high-temperature combustion gas exhaust pipe, and the combustion gas is supplied into the plant cultivation house. Here, the high-temperature combustion gas generator is composed of a vertical furnace and a chimney connected to the vertical furnace via an induction fan, and the vertical furnace is a fuel input unit for supplying biomass-based combustibles provided at the top. A hollow grate having a plurality of secondary air ejection holes provided in the vertical furnace, a primary air supply pipe connected to the vertical furnace above the grate, and below the primary air supply pipe A secondary air supply pipe connected to the vertical furnace or the grate, a tertiary air supply pipe connected to the vertical furnace at the lower part of the grate, and a high-temperature combustion gas exhaust connected to the vertical furnace at the lower part of the grate And an ash reservoir provided at the bottom of the vertical furnace, and the side wall above the grate is formed with a downward spreading gradient with respect to the vertical plane, and the high-temperature combustion gas exhaust pipe has an induced draft It is connected through a machine and connected to a chimney.

本発明の燃焼ガス利用装置の第2の態様では、
立型炉と立型炉に誘引通風機を介して連結する煙突とからなり、立型炉は炉側壁をジャケットで囲繞して形成した空間部と、ジャケットに接続するジャケット空気供給管と、ジャケットに接続するジャケット空気循環管と、立型炉の上部に設けられたバイオマス系可燃物を投入する燃料投入部と、立型炉内に設けられた複数の二次空気噴出孔を有する中空の火格子と、火格子より上方において立型炉と接続する1次空気供給管と、1次空気供給管の下方で立型炉又は火格子に接続する2次空気供給管と、火格子の下部において立型炉と接続する3次空気供給管と、火格子の下部において立型炉と接続する高温燃焼ガス排気管と、立型炉の底部に設けられた灰溜とを備え、かつ、火格子より上部の側壁が鉛直面に対し下向きの広がり勾配を持って形成され、高温燃焼ガス排気管が誘引通風機を介して連結されて煙突に連結し、ジャケット空気循環管が1次空気供給管、2次空気供給管及び3次空気供給管と接続していることを特徴とする。
In the second aspect of the combustion gas utilization apparatus of the present invention,
A vertical furnace and a chimney connected to the vertical furnace via an induction fan. A hollow fire having a jacket air circulation pipe connected to the fuel, a fuel input part for supplying biomass-based combustibles provided at the top of the vertical furnace, and a plurality of secondary air ejection holes provided in the vertical furnace A grid, a primary air supply pipe connected to the vertical furnace above the grate, a secondary air supply pipe connected to the vertical furnace or the grate below the primary air supply pipe, and a lower part of the grate A tertiary air supply pipe connected to the vertical furnace, a high-temperature combustion gas exhaust pipe connected to the vertical furnace at the lower part of the grate, an ash reservoir provided at the bottom of the vertical furnace, and a grate The upper side wall has a downward slope with respect to the vertical plane. Formed, the high temperature combustion gas exhaust pipe is connected to the chimney through the induction fan, and the jacket air circulation pipe is connected to the primary air supply pipe, the secondary air supply pipe and the tertiary air supply pipe It is characterized by that.

上述の燃焼ガス利用装置は、また、高温燃焼ガス発生装置の高温燃焼ガス排気管に燃焼ガス処理装置と、燃焼ガスの炭酸ガス濃度を濃縮する燃焼ガス処理装置とを連接し、燃焼ガスを植物栽培ハウス内へ補給することを特徴とする。   The above-described combustion gas utilization device is also configured such that a combustion gas processing device and a combustion gas processing device for concentrating the carbon dioxide concentration of the combustion gas are connected to the high-temperature combustion gas exhaust pipe of the high-temperature combustion gas generator, and the combustion gas is planted. It is characterized by replenishing the cultivation house.

本発明の高温ガス発生装置により、原料を詰まりなくスムーズに連続的に投入しつつ均質な完全燃焼を達成できるのでメンテナンスや燃焼残渣を少なくすることが可能である。また建築廃材や間伐材、乾燥状態の各種植物などのバイオマス資源を粗く破砕する程度の固形状態で投入し、且つ有害ガスが副生しないかたちで完全燃焼させ、クリーンで高温の熱ガスを発生させることが可能である。すなわち、本発明の高温ガス発生装置により、バイオマス原料は効率よく燃焼するため、発生する燃焼ガスは温度が高くクリーン状態となるので、燃焼ガスを高温熱供給としてだけでなく、温室ハウス内の植物成長促進剤やアルカリ排水の中和剤に利用できるようになる。   The high-temperature gas generator of the present invention can achieve uniform complete combustion while smoothly and continuously charging the raw materials without clogging, so that maintenance and combustion residues can be reduced. In addition, biomass resources such as building waste, thinned wood, and various dry plants are charged in a solid state that can be roughly crushed, and completely burned in a form that does not produce harmful gases as a by-product, generating clean, high-temperature hot gas. It is possible. That is, since the biomass raw material is efficiently burned by the high-temperature gas generator of the present invention, the generated combustion gas has a high temperature and is in a clean state. It can be used as a growth promoter and neutralizer for alkaline wastewater.

高温燃焼ガス発生装置の第1の実施形態に関わる概略構造図である。1 is a schematic structural diagram relating to a first embodiment of a high-temperature combustion gas generator. 高温燃焼ガス発生装置の第2の実施形態に関わる概略構造図である。It is a schematic structure figure in connection with 2nd Embodiment of a high temperature combustion gas generator. 高温燃焼ガス発生装置の第3の実施形態に関わる概略構造図である。It is a schematic structure figure in connection with 3rd Embodiment of a high temperature combustion gas generator. 高温燃焼ガス発生装置第4の実施形態に関わる概略構造図である。It is a schematic structure figure in connection with 4th Embodiment of a high temperature combustion gas generator. 高温燃焼ガス発生装置を用いたバイオマスガス化装置に関わる全体構成例である。It is the whole structural example in connection with the biomass gasification apparatus using a high temperature combustion gas generator. 本発明の高温燃焼ガス発生装置と燃焼排気処理装置とグリーンハウスとを組み合わせた高温燃焼ガスの利用装置の概略構成図である。It is a schematic block diagram of the utilization apparatus of the high temperature combustion gas which combined the high temperature combustion gas generator of this invention, the combustion exhaust processing apparatus, and the greenhouse. 従来の高温燃焼ガス発生装置の概略構造図である。It is a schematic structure figure of the conventional high temperature combustion gas generator.

符号の説明Explanation of symbols

101‥‥高温燃焼ガス発生装置; 102‥‥立型炉; 103‥‥火格子; 104‥‥二次空気噴出孔; 105‥‥バイオマスチップ; 106‥‥1次空気供給管; 107‥‥2次空気供給管; 108‥‥3次空気供給管; 109‥‥高温燃焼ガス排気管; 110‥‥空気供給制御装置; 111‥‥底部燃焼室; 112‥‥灰溜; 113‥‥空気供給管; 120‥‥炉側壁; 121‥‥中空突起; 122‥‥二次空気噴出孔; 123‥‥2次空気供給管; 124‥‥高温燃焼ガス排気管; 125‥‥灰溜り開放部; 127‥‥燃料投入部; 128‥‥ジャケット; 128a‥‥空間部; 129‥‥ジャケット空気循環管; 201‥‥ガス化反応装置; 202‥‥1次ガス化反応室; 203‥‥2次ガス化反応管; 204‥‥スクリューフィーダ; 205‥‥粗粉砕バイオマス; 206‥‥粗粉併走ガス; 207‥‥生成ガス・燃料ガス; 208‥‥粗粉ホッパー; 210‥‥多孔板; 211‥‥断熱材; 212‥‥耐熱隔壁; 213‥‥ガス化剤; 214‥‥灰出し口; 215‥‥燃焼ガス; 301‥‥廃熱ボイラ; 302‥‥反応水; 303‥‥過熱水蒸気; 305‥‥誘引通風機; 307‥‥煙突; 308‥‥ガス化剤代替ガス(二酸化炭素); 401‥‥熱交換器; 402‥‥サイクロン; 403‥‥スクラバー; 404‥‥押込通風機; 405‥‥燃料ガスタンク; 501‥‥ボイラ; 502‥‥冷却器; 503‥‥燃焼ガス処理装置; 504‥‥前処理スクラバー; 505a‥‥吸着剤カラムA; 505b‥‥吸着剤カラムB; 506‥‥ガス分配ヘッダー; 507‥‥グリーンハウス; 508‥‥蒸気(温水); 509‥‥燃焼ガス; 510‥‥煙突; 511‥‥植物成長促進剤   DESCRIPTION OF SYMBOLS 101 ... High temperature combustion gas generator; 102 ... Vertical furnace; 103 ... Grate; 104 ... Secondary air injection hole; 105 ... Biomass chip; 106 ... Primary air supply pipe; Secondary air supply pipe; 108 ... Tertiary air supply pipe; 109 ... High-temperature combustion gas exhaust pipe; 110 ... Air supply control device; 111 ... Bottom combustion chamber; 112 ... Ash reservoir; 120... Furnace side wall; 121 .. Hollow projection; 122 .. Secondary air injection hole; 123... Secondary air supply pipe; 124 ... High-temperature combustion gas exhaust pipe; 129 Fuel jacket, 128a jacket space, 129 jacket air circulation pipe, 201 gasification reactor, 202 primary gasification reaction chamber, 203 secondary gasification 204 ... Screw feeder; 205 ... Coarsely pulverized biomass; 206 ... Coarse powder gas; 207 ... Production gas and fuel gas; 208 ... Coarse powder hopper; 210 ... Perforated plate; 211 ... Heat insulation 212; Heat-resistant partition wall; 213 ... Gasifying agent; 214 ... Ash outlet; 215 ... Combustion gas; 301 ... Waste heat boiler; 302 ... Reaction water; 303 ... Superheated steam; 307 ... chimney; 308 ... gas substitute gas (carbon dioxide); 401 ... heat exchanger; 402 ... cyclone; 403 ... scrubber; 404 ... push-in ventilator; Gas tank; 501 ... Boiler; 502 ... Cooler; 503 ... Combustion gas treatment device; 504 ... Pretreatment scrubber; 505a ... Adsorbent column A 505b ... Adsorbent column B; 506 ... Gas distribution header; 507 ... Greenhouse; 508 ... Steam (warm water); 509 ... Combustion gas; 510 ... Chimney;

以下、図面に基づき、本発明の幾つかの実施の形態を詳細に説明する。
<第一実施形態>
第1図は、本実施形態の立型炉を示す図である。
本発明の高温燃焼ガス発生装置の第一実施形態は、立型炉102と該立型炉102に誘引通風機305を介して連結する煙突(図5では307、図6では510で示す)とからなり、上記立型炉102は上部に設けられたバイオマス系可燃物を投入する燃料投入部127と、上記立型炉102内に設けられた複数の二次空気噴出孔104を有する中空の火格子103と、該火格子103より上方において上記立型炉102と接続する1次空気供給管106と、上記火格子103及び1次空気供給管の下方で上記立型炉に接続する2次空気供給管107,123と、上記火格子103の下部において上記立型炉102と接続する3次空気供給管108と、火格子103の下部において上記立型炉102と接続する高温燃焼ガス排気管109と、上記立型炉102の底部に設けられた灰溜112とを備え、かつ、火格子103より上部の側壁が鉛直面に対し下向きの広がり勾配を持って形成されて、上記高温燃焼ガス排気管109が誘引通風機305(図5参照)を介して連結されて煙突307,510に連結することを特徴とする高温燃焼ガス発生装置を示す。
Hereinafter, several embodiments of the present invention will be described in detail with reference to the drawings.
<First embodiment>
FIG. 1 is a view showing a vertical furnace of the present embodiment.
The first embodiment of the high-temperature combustion gas generator of the present invention includes a vertical furnace 102 and a chimney (indicated as 307 in FIG. 5 and 510 in FIG. 6) connected to the vertical furnace 102 via an induction fan 305. The vertical furnace 102 is a hollow fire having a fuel input part 127 for supplying biomass-based combustibles provided in the upper part and a plurality of secondary air ejection holes 104 provided in the vertical furnace 102. A grid 103, a primary air supply pipe 106 connected to the vertical furnace 102 above the grate 103, and secondary air connected to the vertical furnace below the grate 103 and the primary air supply pipe Supply pipes 107 and 123, a tertiary air supply pipe 108 connected to the vertical furnace 102 at the lower part of the grate 103, and a high-temperature combustion gas exhaust pipe 109 connected to the vertical furnace 102 at the lower part of the grate 103 When, An ash reservoir 112 provided at the bottom of the vertical furnace 102, and the upper side wall of the grate 103 is formed with a downward spreading gradient with respect to the vertical plane, so that the high-temperature combustion gas exhaust pipe 109 is provided. Is connected to the chimneys 307 and 510 through the induction fan 305 (see FIG. 5), and shows a high-temperature combustion gas generator.

ここで、立型炉102の炉側壁120は、炉側壁面積の60%以上にわたって、炉側壁120が鉛直面に対し下向きの広がり勾配αを持って形成されていることが望ましい。勾配αは、限定されるものではないが、好ましくは、2度から15度の範囲である。   Here, it is desirable that the furnace side wall 120 of the vertical furnace 102 is formed so that the furnace side wall 120 has a downward spread gradient α with respect to the vertical plane over 60% or more of the furnace side wall area. The gradient α is not limited, but is preferably in the range of 2 to 15 degrees.

立型炉102の炉側壁120が鉛直面に対し2度以上の下向き末広がり勾配を有することにより、投入された原料が炉側壁120に付着堆積してブリッジ現象を招来する問題が解消される。また、下向き末広がり勾配を形成する炉側壁120が鉛直面に対してなす角度を15度以下に抑えられているので、原料が上から下へ順次移動する。したがって、原料が乾燥状態、揮発(ガス化)状態、燃焼状態及び固定炭素燃焼状態と効率的に変化するので、燃焼が効率的に進められ、高温燃焼ガス発生装置としての機能が十分に維持される。   Since the furnace side wall 120 of the vertical furnace 102 has a downwardly widening gradient of 2 degrees or more with respect to the vertical plane, the problem that the introduced raw material adheres and accumulates on the furnace side wall 120 and causes a bridge phenomenon is solved. Moreover, since the angle formed by the furnace side wall 120 forming the downward end-spreading gradient with respect to the vertical plane is suppressed to 15 degrees or less, the raw material sequentially moves from top to bottom. Therefore, since the raw material is efficiently changed into a dry state, a volatile (gasification) state, a combustion state, and a fixed carbon combustion state, the combustion is efficiently advanced and the function as a high-temperature combustion gas generator is sufficiently maintained. The

上記構成によれば、安い加工コストで得られる建築廃材等のバイオマスは小片のまま炉内へ投入され、ダウンドラフトの気流と同じ向きに上から下へ順次移動し、1次空気供給管106、2次空気供給管107,123、3次空気供給管108から供給される空気によって、乾燥と燃焼が順次効率よく進行する。特に、立型炉102に接続する2次空気供給管123から供給される空気がバイオマスを分散させるので、火格子103上にバイオマスが固まって積層することを防ぐことになる。また高温の火炎にさらされる火格子103を冷却する効果もあり、表面温度が下げられることで火格子の機械的な耐久性が保たれる。3次空気供給管から供給される空気は、バイオマスの燃焼効率を高めるのみならず、高温燃焼ガス排気管109に流れ込む燃焼ガスの温度を調整することにもなる。このようにして、燃焼温度は800℃を十分に超え多くは1000℃を超えるため、ダイオキシンの発生リスクが排除される。   According to the above configuration, biomass such as building waste obtained at a low processing cost is put into the furnace as small pieces, and sequentially moves from top to bottom in the same direction as the downdraft airflow, the primary air supply pipe 106, By the air supplied from the secondary air supply pipes 107 and 123 and the tertiary air supply pipe 108, the drying and the combustion proceed sequentially and efficiently. In particular, since the air supplied from the secondary air supply pipe 123 connected to the vertical furnace 102 disperses the biomass, the biomass is prevented from being solidified and stacked on the grate 103. It also has an effect of cooling the grate 103 exposed to a high-temperature flame, and the mechanical durability of the grate is maintained by lowering the surface temperature. The air supplied from the tertiary air supply pipe not only increases the combustion efficiency of biomass, but also adjusts the temperature of the combustion gas flowing into the high-temperature combustion gas exhaust pipe 109. In this way, the combustion temperature sufficiently exceeds 800 ° C., and more than 1000 ° C., thus eliminating the risk of dioxin generation.

なお、本実施形態では、火格子103は、立型炉102の底部に設けられた灰溜112より上方に設置されている。1次空気供給管106は、火格子103より上方の位置で立型炉102の炉側壁120に接続して立型炉102に空気供給管113から空気を供給し、2次空気供給管107は、火格子103近傍の炉側壁120に接続しており、2次空気供給管123は、火格子103に接続して立型炉102に空気供給管113から空気を供給する。3次空気供給管108は、火格子103より下方かつ灰溜112より上方の位置で立型炉102の炉側壁120に接続して立型炉102に空気供給管113から空気を供給する。また、1次空気供給管106、2次空気供給管107,123及び3次空気供給管108を立型炉102と接続する前に、空気供給管113の途中に空気予熱器を設け、供給する空気を予め加熱しておいてもよい。   In the present embodiment, the grate 103 is installed above the ash reservoir 112 provided at the bottom of the vertical furnace 102. The primary air supply pipe 106 is connected to the furnace side wall 120 of the vertical furnace 102 at a position above the grate 103 to supply air from the air supply pipe 113 to the vertical furnace 102, and the secondary air supply pipe 107 is The secondary air supply pipe 123 is connected to the grate 103 and supplies air from the air supply pipe 113 to the vertical furnace 102. The tertiary air supply pipe 108 is connected to the furnace side wall 120 of the vertical furnace 102 at a position below the grate 103 and above the ash reservoir 112, and supplies air from the air supply pipe 113 to the vertical furnace 102. Further, before connecting the primary air supply pipe 106, the secondary air supply pipes 107, 123 and the tertiary air supply pipe 108 to the vertical furnace 102, an air preheater is provided in the middle of the air supply pipe 113 and supplied. The air may be preheated.

以上述べたように、本発明の高温燃焼ガス発生装置は、一般に利用し難いかたちのバイオマス原料を高温且つクリーンな燃焼ガスに転換して各種ボイラの代替燃料として利用することを可能にし、さらに、外熱型バイオマスガス化装置の外熱供給源とするなど活用の幅を広げ、バイオマス資源利用の道を広く開くことを可能にする。   As described above, the high-temperature combustion gas generator of the present invention makes it possible to convert a biomass material that is generally difficult to use into a high-temperature and clean combustion gas and use it as an alternative fuel for various boilers. Expanding the range of use, such as using an external heat type biomass gasifier as an external heat source, will open the way for using biomass resources.

<第二実施形態>
第2図に第二実施形態の立型炉を示す。
第一実施形態と異なる点は、火格子103の形状である。本実施形態において、火格子103は、表面に複数の二次空気噴出孔104,122を配した角錐形または円錐形の中空突起121を有し、頂点を上向きに配して立型炉102に設けられている。なお、火格子103は、その内側に空気通路を備える構造を有しており、例えば全体を中空構造としてもよい。また、火格子103には、2次空気供給管107が接続している。
<Second embodiment>
FIG. 2 shows the vertical furnace of the second embodiment.
The difference from the first embodiment is the shape of the grate 103. In the present embodiment, the grate 103 has a pyramidal or conical hollow protrusion 121 having a plurality of secondary air ejection holes 104 and 122 on the surface thereof, and the apex is arranged upward to form the vertical furnace 102. Is provided. In addition, the grate 103 has a structure provided with an air passage inside thereof, and for example, the whole may have a hollow structure. A secondary air supply pipe 107 is connected to the grate 103.

実施形態2において、1次空気供給管、2次空気供給管及び3次空気供給管は、上記実施形態1と同じく立型炉102に設けられ、好ましくは、立型炉102に接続する前に、空気供給管113の途中において予熱器と接続している。   In the second embodiment, the primary air supply pipe, the secondary air supply pipe, and the tertiary air supply pipe are provided in the vertical furnace 102 as in the first embodiment, and preferably before being connected to the vertical furnace 102. In the middle of the air supply pipe 113, the preheater is connected.

上記構成によれば、円錐形または角錐形の中空突起121が火格子上の炉中央部に存在するため、上方から落下してきた原料は炉中央部を避けてその周囲に分散することになる。また、堆積する原料の中央に向けて2次空気供給管107,123の複数の2次空気噴出孔104、122から空気が供給されるために、原料の隅々にまで空気が供給されて燃焼状態がより完全で安定したものになる。   According to the above configuration, since the conical or pyramidal hollow protrusions 121 are present in the center of the furnace on the grate, the raw material falling from above is dispersed around the furnace avoiding the center of the furnace. Further, since air is supplied from the plurality of secondary air ejection holes 104 and 122 of the secondary air supply pipes 107 and 123 toward the center of the raw material to be deposited, air is supplied to every corner of the raw material and burned. The state becomes more complete and stable.

<第三実施形態>
第3図は、第三実施形態の立型炉を示す。
立型炉102と立型炉102に誘引通風機305(図5参照)を介して連結する煙突(図5では307、図6では510で示す)とからなり、立型炉102は炉側壁120の外側をジャケット128で囲繞して形成した空間部128aと、ジャケット128に接続するジャケット空気供給管113と、ジャケット128に接続するジャケット空気循環管129と、立型炉102の上部に設けられたバイオマス系可燃物を投入する燃料投入部127と、立型炉102内に設けられた複数の二次空気噴出孔104,122を有する中空の火格子103と、火格子103より上方において立型炉102と接続する1次空気供給管106と、1次空気供給管106の下方で立型炉102及び火格子103に接続する2次空気供給管107,123と、火格子103の下部において立型炉102と接続する3次空気供給管108と、火格子103の下部において立型炉102と接続する高温燃焼ガス排気管124と、立型炉102の底部に設けられた灰溜112とを備え、かつ、火格子103より上部の炉側壁120が鉛直面に対し下向きの広がり勾配を持って形成され、高温燃焼ガス排気管124が誘引通風機305を介して連結されて煙突(図5では307、図6では510で示す)に連結し、ジャケット空気循環管129が1次空気供給管106、2次空気供給管107及び3次空気供給管108と接続していることを特徴とする。なお、1次空気供給管106、2次空気供給管107及び3次空気供給管108は、空間部128aを貫通して立型炉102と接続している。
<Third embodiment>
FIG. 3 shows the vertical furnace of the third embodiment.
The vertical furnace 102 is composed of a chimney (indicated by 307 in FIG. 5 and 510 in FIG. 6) connected to the vertical furnace 102 via an induction fan 305 (see FIG. 5). Are provided in the upper part of the vertical furnace 102, a space 128a formed by surrounding the outside of the jacket 128 with a jacket 128, a jacket air supply pipe 113 connected to the jacket 128, a jacket air circulation pipe 129 connected to the jacket 128, and the like. A fuel charging unit 127 for charging biomass-based combustibles, a hollow grate 103 having a plurality of secondary air ejection holes 104 and 122 provided in the vertical furnace 102, and a vertical furnace above the grate 103 A primary air supply pipe 106 connected to 102, and secondary air supply pipes 107 and 123 connected to the vertical furnace 102 and the grate 103 below the primary air supply pipe 106, A tertiary air supply pipe 108 connected to the vertical furnace 102 at the lower part of the grid 103, a high-temperature combustion gas exhaust pipe 124 connected to the vertical furnace 102 at the lower part of the grate 103, and a bottom part of the vertical furnace 102. The furnace side wall 120 above the grate 103 is formed with a downward spreading gradient with respect to the vertical plane, and the high-temperature combustion gas exhaust pipe 124 is connected via the induction fan 305. The jacket air circulation pipe 129 is connected to the primary air supply pipe 106, the secondary air supply pipe 107, and the tertiary air supply pipe 108. The jacket air circulation pipe 129 is connected to the chimney (indicated by reference numeral 307 in FIG. It is characterized by that. The primary air supply pipe 106, the secondary air supply pipe 107, and the tertiary air supply pipe 108 pass through the space 128a and are connected to the vertical furnace 102.

第三実施形態では、立型炉102の外周にジャケット128が設けられ、空間部128aが形成されている。ジャケット128には、ジャケット空気供給管113が接続されている。空間部128aは、ジャケット空気供給管113から供給される空気を加熱するために設けられているので、立型炉102の下部に接続されている。また、ジャケット128の上部にはジャケット空気循環管129が接続されて、ジャケット空気循環管129は、1次空気供給管106、2次空気供給管107及び3次空気供給管108に接続している。
上記の構成により、燃焼用の空気は、ジャケット128に接続するジャケット空気供給管113から空間部128aに導入され、空間部128a内において立型炉102から発生する燃焼熱によって加熱されて、ジャケット空気循環管129に流れる。そして、加熱された空気は、ジャケット空気循環管129に接続した1次空気供給管106、2次空気供給管107及び3次空気供給管108からそれぞれ立型炉102に供給される。
ジャケット128と空間部128aにより、立型炉102からの熱放散が減少し、また供給空気温度の上昇により立型炉102での燃焼温度が上昇する。なお、空気の一部のみをジャケットに通すことでも良い。例えば、2次空気のみをジャケットに通すなど、配分は自由に選択し得る。上記構成によって、前述した予熱の効果が得られるとともに、大気への放射熱を防止し、設備の簡素化と設置スペースが節約できる。
In 3rd embodiment, the jacket 128 is provided in the outer periphery of the vertical furnace 102, and the space part 128a is formed. A jacket air supply pipe 113 is connected to the jacket 128. The space 128 a is provided to heat the air supplied from the jacket air supply pipe 113, and is connected to the lower portion of the vertical furnace 102. A jacket air circulation pipe 129 is connected to the upper portion of the jacket 128, and the jacket air circulation pipe 129 is connected to the primary air supply pipe 106, the secondary air supply pipe 107, and the tertiary air supply pipe 108. .
With the above configuration, combustion air is introduced into the space portion 128a from the jacket air supply pipe 113 connected to the jacket 128, and is heated by the combustion heat generated from the vertical furnace 102 in the space portion 128a. It flows to the circulation pipe 129. The heated air is supplied to the vertical furnace 102 from a primary air supply pipe 106, a secondary air supply pipe 107, and a tertiary air supply pipe 108 connected to the jacket air circulation pipe 129, respectively.
Due to the jacket 128 and the space portion 128a, heat dissipation from the vertical furnace 102 is reduced, and the combustion temperature in the vertical furnace 102 is increased by an increase in the supply air temperature. Note that only a part of the air may be passed through the jacket. For example, the distribution can be freely selected, such as passing only secondary air through the jacket. With the above-described configuration, the above-described preheating effect can be obtained, radiation heat to the atmosphere can be prevented, equipment can be simplified, and installation space can be saved.

<第四実施形態>
図4は、燃焼ガス排気口を炉本体の底部に下向きに設けることを特徴とする第四実施形態を示す。すなわち、灰溜112の中央部近傍に灰溜開放部125を設け、灰溜開放部125に高温燃焼ガス排気管124を連接することで、燃焼ガスを灰溜112の下方から取り出しできる構造としたものである。
<Fourth embodiment>
FIG. 4 shows a fourth embodiment characterized in that the combustion gas exhaust port is provided downward at the bottom of the furnace body. In other words, an ash reservoir opening 125 is provided near the center of the ash reservoir 112, and a high-temperature combustion gas exhaust pipe 124 is connected to the ash reservoir opening 125 so that the combustion gas can be taken out from below the ash reservoir 112. Is.

実施形態1〜3と異なり、高温燃焼ガス排気管124が立型炉102の中心軸近傍に位置するため、ダウンドラフトのガス流れが炉中心軸を中心に軸対象となり、流れの偏りがなくなる。したがって、立型炉102における燃焼状態が軸対象の均一な状態になり、燃焼状態と排気の流れが改善される。その結果、火格子上部の燃焼状態を偏らせる悪影響が発生せずに理想的な燃焼状態を実現することができるので、一層有利な高温燃焼ガス発生装置が提供できる。   Unlike the first to third embodiments, since the high-temperature combustion gas exhaust pipe 124 is located in the vicinity of the central axis of the vertical furnace 102, the downdraft gas flow becomes an axis object around the furnace central axis, and there is no flow unevenness. Therefore, the combustion state in the vertical furnace 102 becomes a uniform state of the axial target, and the combustion state and the flow of exhaust are improved. As a result, an ideal combustion state can be realized without causing the adverse effect of biasing the combustion state above the grate, so that a more advantageous high-temperature combustion gas generator can be provided.

<第五実施形態>
図5は、第五の実施形態に係る高温燃焼ガス発生装置を用いたバイオマスガス化装置の全体構成例である。
バイオマス破砕燃料を高温燃焼ガス発生装置101で燃焼し、900℃を超える高温でクリーンな燃焼ガスを発生させ、この燃焼ガスを高温燃焼ガス排気管109を介して、ガス化反応装置201へ送り、ガス化反応装置201内の1次ガス化反応室202とこれに連結されている2次ガス化反応管203を外壁面から加熱する。
<Fifth embodiment>
FIG. 5 is an overall configuration example of a biomass gasifier using the high-temperature combustion gas generator according to the fifth embodiment.
Biomass crushed fuel is combusted in the high-temperature combustion gas generator 101, clean combustion gas is generated at a high temperature exceeding 900 ° C., and this combustion gas is sent to the gasification reactor 201 via the high-temperature combustion gas exhaust pipe 109. The primary gasification reaction chamber 202 in the gasification reaction apparatus 201 and the secondary gasification reaction tube 203 connected thereto are heated from the outer wall surface.

また、1次ガス化反応室202へは燃焼ガスを利用して廃熱ボイラ301で発生させた反応水302の過熱水蒸気303を底部から供給する。1次ガス化反応室202の上部から、ガス化原料となる粗粉砕バイオマス205をスクリューフィーダ204から落下供給する。1次ガス化反応室202の内部では粗粉砕バイオマス205とガス化剤としての過熱水蒸気がガス化反応室壁からの輻射熱を化学反応熱として吸収し、水蒸気改質反応によってガス化が行われる。このとき、ガス化反応に触媒は使用しない。   Also, superheated steam 303 of reaction water 302 generated in the waste heat boiler 301 is supplied from the bottom to the primary gasification reaction chamber 202 using combustion gas. From the upper part of the primary gasification reaction chamber 202, coarsely pulverized biomass 205 as a gasification raw material is dropped and supplied from a screw feeder 204. Inside the primary gasification reaction chamber 202, coarsely pulverized biomass 205 and superheated steam as a gasifying agent absorb radiant heat from the gasification reaction chamber wall as chemical reaction heat, and gasification is performed by a steam reforming reaction. At this time, no catalyst is used for the gasification reaction.

ガス化反応装置201の外壁の内面は断熱材211で囲われている。ガス化反応装置201内には、バイオマスの1次ガス化反応室202とこれに連結された2次ガス化反応管203が設けられており、粗粉ホッパー208より粗粉砕バイオマス205がスクリューフィーダ204によって上部から落下供給される。一方、1次ガス化反応室202の底部から、廃熱ボイラ301によって反応水302を加熱して得られた過熱水蒸気303がバイオマスのガス化剤213として供給される。   The inner surface of the outer wall of the gasification reaction apparatus 201 is surrounded by a heat insulating material 211. In the gasification reaction apparatus 201, a primary gasification reaction chamber 202 for biomass and a secondary gasification reaction tube 203 connected to the biomass are provided, and coarsely pulverized biomass 205 is transferred from a coarse hopper 208 to a screw feeder 204. Is supplied by dropping from the top. On the other hand, superheated steam 303 obtained by heating the reaction water 302 with the waste heat boiler 301 is supplied as a biomass gasifying agent 213 from the bottom of the primary gasification reaction chamber 202.

1次ガス化反応室202では粗粉砕バイオマス205とガス化剤213とが該反応室壁からの熱ふく射によって化学反応を起こし、H、CO、CH、C、COなどの生成ガス207を生成する。
ここで、1次ガス化反応室202内の下部中間位置にセラミックスフォーム材またはパンチング銅板材などによる多孔板210が設けられており、粗粉砕バイオマス205中の略3mm以上の粗粒は該多孔板上に止まって長秒時間でガス化反応が進む。1次ガス化反応室202でガス化された生成ガスは若干のすす・タールを残すことがあるため、2次ガス化反応管203に送り、すす・タールの残分をガス化剤によって再分解・ガス化させ、クリーンな生成ガスに仕上げて、燃料ガスとして利用に供する。
In the primary gasification reaction chamber 202, the coarsely pulverized biomass 205 and the gasifying agent 213 cause a chemical reaction by thermal radiation from the reaction chamber wall, and H 2 , CO, CH 4 , C 2 H 4 , CO 2, etc. A product gas 207 is generated.
Here, a porous plate 210 made of a ceramic foam material or a punched copper plate material or the like is provided at a lower intermediate position in the primary gasification reaction chamber 202, and coarse particles of approximately 3 mm or more in the coarsely pulverized biomass 205 are formed in the porous plate. The gasification reaction proceeds in a long time after stopping at the top. Since the product gas gasified in the primary gasification reaction chamber 202 may leave some soot and tar, it is sent to the secondary gasification reaction tube 203 and the soot and tar residue is re-decomposed by the gasifying agent.・ Gasified and finished to a clean product gas for use as fuel gas.

1次ガス化反応室202と2次ガス化反応管203は熱ふく射遮断を目的とした耐熱隔壁212で区切られ、1次ガス化反応室202の周囲を高温に維持する。高温燃焼ガスは、まず1次ガス化反応室202を加熱し、その次に2次ガス化反応管203を加熱する。2ガス化反応管203の温度は反応室202よりも若干温度が低くて良いので、生成ガスの水素成分を増やすために反応室202の温度をより高く維持したいときにとくに効果がある。   The primary gasification reaction chamber 202 and the secondary gasification reaction tube 203 are separated by a heat-resistant partition wall 212 for the purpose of blocking heat radiation, and the periphery of the primary gasification reaction chamber 202 is maintained at a high temperature. The high-temperature combustion gas first heats the primary gasification reaction chamber 202 and then heats the secondary gasification reaction tube 203. Since the temperature of the two-gasification reaction tube 203 may be slightly lower than that of the reaction chamber 202, it is particularly effective when it is desired to keep the temperature of the reaction chamber 202 higher in order to increase the hydrogen component of the product gas.

ガス化反応室で発生した生成ガス207はタール・すすのガス化反応をさらに進めるため、2次ガス化反応管203へ送られ、ここでさらに反応させたのち、燃料ガスタンク405へ送られる。なお、2次ガス化反応管203と燃料ガスタンク405の間には、廃熱回収の熱交換器401、灰・すすの除去用のサイクロン402、残分水蒸気除去用の水スプレ・スクラバー403、燃料ガスタンク405へ生成ガス(燃料ガス)207を送る押込送風機404が設けられている。   The product gas 207 generated in the gasification reaction chamber is sent to the secondary gasification reaction tube 203 for further progressing the gasification reaction of tar and soot, and further reacted here, and then sent to the fuel gas tank 405. Between the secondary gasification reaction tube 203 and the fuel gas tank 405, a heat exchanger 401 for waste heat recovery, a cyclone 402 for removing ash / soot, a water spray / scrubber 403 for removing residual water vapor, fuel A forced air blower 404 that sends the generated gas (fuel gas) 207 to the gas tank 405 is provided.

燃料ガスタンク405に貯えられた生成ガス207および押込通風機から直接送られる生成ガス207は、エンジン発電、タービン発電、石油代替燃料ガス、化学合成原料合成ガスなど高品質な燃料ガスとして利用される。一方、ガス化反応炉でガス化反応に利用された高温燃焼ガスは、廃熱ボイラ301で過熱水蒸気を発生させたあと誘引通風機305によって煙突307より大気に放出されるが、大気放出の前にさらに熱を再利用してもよい。   The product gas 207 stored in the fuel gas tank 405 and the product gas 207 directly sent from the forced air blower are used as high-quality fuel gas such as engine power generation, turbine power generation, petroleum alternative fuel gas, and chemically synthesized raw material synthesis gas. On the other hand, the high-temperature combustion gas used for the gasification reaction in the gasification reaction furnace generates superheated steam in the waste heat boiler 301 and then is released from the chimney 307 to the atmosphere by the induction fan 305. In addition, heat may be reused.

<第六実施形態>
図6は、高温燃焼ガス発生装置に温室栽培用のグリーンハウスを組み合わせた概略構成図である。図6に示すように、高温燃焼ガスの熱はボイラ501で熱交換(熱回収)され蒸気または温水を発生する。熱交換後の燃焼ガスはさらに冷却器502により温度を下げられ、燃焼ガス処理装置503に送られる。
<Sixth embodiment>
FIG. 6 is a schematic configuration diagram in which a high temperature combustion gas generator is combined with a greenhouse for greenhouse cultivation. As shown in FIG. 6, the heat of the high-temperature combustion gas is subjected to heat exchange (heat recovery) in a boiler 501 to generate steam or hot water. The temperature of the combustion gas after the heat exchange is further lowered by the cooler 502 and sent to the combustion gas processing device 503.

燃焼ガス中の微量成分である硫黄酸化物、塩化水素、あるいは窒素酸化物を十分許容できる濃度まで低減すれば、人が長時間働くグリーンハウス内に直接補給することが可能になる。また、燃焼ガス中には炭酸ガス濃度が10%程度含まれているので、ハウス内の炭酸ガス濃度を数百ppm上げる目的を果たすことが可能となる。さらに、この場合、原料自体が再生可能型エネルギーであるので、地球温暖化対策としても好ましい。   If the sulfur oxide, hydrogen chloride, or nitrogen oxide, which is a trace component in the combustion gas, is reduced to a sufficiently acceptable concentration, it can be directly replenished into a green house where a person works for a long time. In addition, since the combustion gas contains about 10% carbon dioxide concentration, the purpose of raising the carbon dioxide concentration in the house by several hundred ppm can be achieved. Furthermore, in this case, since the raw material itself is renewable energy, it is preferable as a countermeasure against global warming.

本発明の高温燃焼ガス発生装置に、燃焼ガスに含まれる微量の硫黄酸化物、塩化水素または窒素酸化物などの有害成分を低減または除去する燃焼ガス処理装置を付属させ、処理済みの燃焼ガスを栽培植物成長促進剤として植物栽培ハウス内へ補給することが可能となる。   The high-temperature combustion gas generator of the present invention is provided with a combustion gas treatment device that reduces or removes a trace amount of sulfur oxide, hydrogen chloride, or nitrogen oxide contained in the combustion gas. It becomes possible to replenish the plant cultivation house as a cultivation plant growth promoter.

燃焼ガスは、燃焼ガス処理装置503の中で、硫黄酸化物と塩化水素などを前処理スクラバー504で予備的に洗い落としたあと、多孔質吸着剤が充填された一対の吸着剤カラム505a、505bを吸着ニーズに応じて複数対組み合わせて構成されたシステムへ導入される。ここで、硫黄酸化物、塩化水素および窒素酸化物などの微量有害成分をさらに吸着除去しつつ、炭酸ガスを選択的に吸着再生する。炭酸ガス以外の成分が系外へ失われるので、高濃度の炭酸ガスが得られて製品ラインへ送られる。ここで得られた製品ガスは植物成長促進剤511としてガス分配ヘッダー506を経由してグリーンハウス507の空気中に補給される。例えば、補給前のハウス内炭酸ガス濃度370ppmは補給後に最大1000ppmに増強される。   In the combustion gas processing apparatus 503, the combustion gas is preliminarily washed away with sulfur oxide, hydrogen chloride, and the like by the pretreatment scrubber 504, and then the pair of adsorbent columns 505a and 505b filled with the porous adsorbent are used. Introduced into a system configured by combining multiple pairs according to adsorption needs. Here, the carbon dioxide gas is selectively adsorbed and regenerated while further removing a trace amount of harmful components such as sulfur oxide, hydrogen chloride and nitrogen oxide. Since components other than carbon dioxide are lost outside the system, a high concentration of carbon dioxide is obtained and sent to the product line. The product gas obtained here is replenished into the air of the green house 507 via the gas distribution header 506 as a plant growth promoter 511. For example, the carbon dioxide concentration in the house before replenishment is increased to a maximum of 1000 ppm after replenishment.

高温燃焼ガスにはSO約100ppm、HCl約200ppm、NO約200ppmが含まれるが、排気処理の後、植物成長促進剤511としては、SOが約10ppm、HClが約20ppm、NOが約20ppmに低減される。The high-temperature combustion gas contains SO 2 of about 100 ppm, HCl of about 200 ppm, and NO X of about 200 ppm. After the exhaust treatment, as the plant growth promoter 511, SO 2 of about 10 ppm, HCl of about 20 ppm, and NO X of Reduced to about 20 ppm.

一方、炭酸ガス濃度は高温燃焼ガス中に10vol%含まれていたものが、植物成長促進剤511としては炭酸ガスのみ選択的に濃度60vol%に濃縮されている。これがグリーンハウス内で最大1000ppm(0.1%に相当)に、すなわち600倍に希釈される。その結果、計算上、SOが0.016ppm、HClが0.03ppm、NOが0.03ppmとなり、人に対しても十分に安全である。植物は、炭酸ガス濃度が通常の370ppm程度から1000ppm以上になれば成長速度が1.25倍程度速まると言われており、本発明によって、バイオマスのような再生可能型資源を用いて高温熱供給と同時に栽培植物の成長を著しく促進させることが可能になる。On the other hand, the carbon dioxide concentration contained in the high-temperature combustion gas is 10 vol%, but as the plant growth promoter 511, only the carbon dioxide gas is selectively concentrated to a concentration of 60 vol%. This is diluted to a maximum of 1000 ppm (corresponding to 0.1%) in the green house, that is, 600 times. As a result, computational, SO 2 is 0.016 ppm, HCl is 0.03ppm, NO X is 0.03ppm next is sufficiently safe for humans. Plants are said to grow at a rate of about 1.25 times when the carbon dioxide concentration is increased from about 370 ppm to 1000 ppm or more. According to the present invention, high-temperature heat supply is performed using renewable resources such as biomass. At the same time, the growth of cultivated plants can be significantly promoted.

上記構成によれば、炭酸ガス濃度を処理前の10%程度に対して2倍以上、言い換えれば20%以上の濃度、好ましくは50%以上の濃度に上げるので、ハウス内の炭酸ガス濃度を上げるために補給すべきガス流量を半分以下にすることが可能となるだけでなく、ハウス内への硫黄酸化物、塩化水素または窒素酸化物の侵入量を大幅に低減して人への安全性をさらに確かなものにすることができる。   According to the above configuration, the carbon dioxide gas concentration is increased to at least twice the concentration of about 10% before processing, in other words, to a concentration of 20% or more, preferably 50% or more. In addition to making it possible to reduce the gas flow rate to be replenished to less than half, the amount of sulfur oxide, hydrogen chloride, or nitrogen oxide entering the house is greatly reduced, improving human safety. It can be made even more certain.

なお、燃焼ガス処理装置503の吸着剤カラム505a,505bに導入している吸着剤は、主として多孔質吸着剤の組み合わせから構成される。   The adsorbent introduced into the adsorbent columns 505a and 505b of the combustion gas processing apparatus 503 is mainly composed of a combination of porous adsorbents.

以上述べたように、高温燃焼ガス処理装置をグリーンハウスと組み合わせることによって、バイオマス資源を燃焼した燃焼ガスを植物の成長促進に必要な炭酸ガスの供給に利用することが可能になる。   As described above, by combining the high-temperature combustion gas processing apparatus with the green house, the combustion gas obtained by burning the biomass resources can be used for supplying carbon dioxide necessary for promoting the growth of plants.

本発明によれば、建築廃材や間伐材、乾燥状態の各種植物などを粗く破砕する程度の固形状態で投入し、有害ガスを副生せずに完全燃焼させ、高温の熱ガスを発生させることができるので、再生可能型エネルギー資源から有用性の高い熱エネルギーを効果的に取り出すことが可能になる。また、同時に燃焼ガス中の炭酸ガスを有効利用できるようになる。   According to the present invention, building waste, thinned wood, various dried plants are charged in a solid state that roughly crushed, and completely burns without generating by-product harmful gas to generate high-temperature hot gas. Therefore, it is possible to effectively extract highly useful thermal energy from renewable energy resources. At the same time, the carbon dioxide in the combustion gas can be used effectively.

Claims (14)

立型炉と該立型炉に誘引通風機を介して連結する煙突とからなり、上記立型炉は上部に設けられたバイオマス系可燃物を投入する燃料投入部と、上記立型炉内に設けられた複数の二次空気噴出孔を有する中空の火格子と、該火格子より上方において上記立型炉と接続する1次空気供給管と、1次空気供給管の下方で上記立型炉又は上記火格子に接続する2次空気供給管と、上記火格子の下部において上記立型炉と接続する3次空気供給管と、火格子の下部において上記立型炉と接続する高温燃焼ガス排気管と、上記立型炉の底部に設けられた灰溜とを備え、かつ、火格子より上部の側壁が鉛直面に対し下向きの広がり勾配を持って形成されており、上記高温燃焼ガス排気管が誘引通風機を介して連結されて煙突に連結することを特徴とする、高温燃焼ガス発生装置。   The vertical furnace comprises a vertical furnace and a chimney connected to the vertical furnace via an induction fan, and the vertical furnace is provided with a fuel input part for injecting biomass-based combustibles provided in the upper part, and in the vertical furnace A hollow grate having a plurality of secondary air ejection holes provided, a primary air supply pipe connected to the vertical furnace above the grate, and the vertical furnace below the primary air supply pipe Or a secondary air supply pipe connected to the grate, a tertiary air supply pipe connected to the vertical furnace at the lower part of the grate, and a high-temperature combustion gas exhaust connected to the vertical furnace at the lower part of the grate A high-temperature combustion gas exhaust pipe comprising a pipe and an ash reservoir provided at the bottom of the vertical furnace, and a side wall above the grate is formed with a downward spreading gradient with respect to a vertical plane. Is connected to the chimney through an induction fan, Temperature combustion gas generation apparatus. 前記立型炉の側壁は、側壁面積の60%以上にわたって、側壁が鉛直面に対し下向きの広がり勾配を持って形成されていることを特徴とする、請求の範囲1に記載の高温燃焼ガス発生装置。   2. The high-temperature combustion gas generation according to claim 1, wherein the side wall of the vertical furnace is formed so as to have a downward spreading gradient with respect to a vertical plane over 60% or more of the side wall area. apparatus. 前記火格子は、複数の2次空気供給孔が配された角錐形または円錐形の中空突起を有し、該中空突起の頂点を上向きに配して設けられていることを特徴とする、請求の範囲1に記載の高温燃焼ガス発生装置。   The grate has a pyramidal or conical hollow protrusion provided with a plurality of secondary air supply holes, and is provided with an apex of the hollow protrusion facing upward. The high-temperature combustion gas generator according to claim 1. 前記中空突起の2次空気供給孔から前記立型炉に2次空気を供給することを特徴とする、請求の範囲3に記載の高温燃焼ガス発生装置。   The high-temperature combustion gas generator according to claim 3, wherein secondary air is supplied to the vertical furnace from a secondary air supply hole of the hollow protrusion. 1次空気、2次空気または3次空気の全量または一部を炉内へ吹き込む前に空気予熱器で予熱することを特徴とする、請求の範囲1記載の高温燃焼ガス発生装置。   The high-temperature combustion gas generator according to claim 1, wherein the primary air, the secondary air, or the tertiary air is preheated by an air preheater before blowing all or part of the primary air, secondary air, or tertiary air into the furnace. 立型炉と該立型炉に誘引通風機を介して連結する煙突とからなり、上記立型炉は炉側壁をジャケットで囲繞して形成した空間部と、上記ジャケットに接続するジャケット空気供給管と、上記ジャケットに接続するジャケット空気循環管と、上記立型炉の上部に設けられたバイオマス系可燃物を投入する燃料投入部と、上記立型炉内に設けられた複数の二次空気噴出孔を有する中空の火格子と、該火格子より上方において上記立型炉と接続する1次空気供給管と、該1次空気供給管の下方で上記立型炉又は上記火格子に接続する2次空気供給管と、上記火格子の下部において上記立型炉と接続する3次空気供給管と、火格子の下部において上記立型炉と接続する高温燃焼ガス排気管と、上記立型炉の底部に設けられた灰溜とを備え、かつ、火格子より上部の側壁が鉛直面に対し下向きの広がり勾配を持って形成されており、上記高温燃焼ガス排気管が誘引通風機を介して連結されて煙突に連結し、ジャケット空気循環管が1次空気供給管、2次空気供給管及び3次空気供給管と接続していることを特徴とする、高温燃焼ガス発生装置。   The vertical furnace comprises a vertical furnace and a chimney connected to the vertical furnace via an induction fan, and the vertical furnace is formed by surrounding a furnace side wall with a jacket, and a jacket air supply pipe connected to the jacket A jacket air circulation pipe connected to the jacket, a fuel input part for supplying a biomass-based combustible provided in the upper part of the vertical furnace, and a plurality of secondary air jets provided in the vertical furnace A hollow grate having a hole, a primary air supply pipe connected to the vertical furnace above the grate, and 2 connected to the vertical furnace or the grate below the primary air supply pipe A secondary air supply pipe, a tertiary air supply pipe connected to the vertical furnace at the lower part of the grate, a high-temperature combustion gas exhaust pipe connected to the vertical furnace at the lower part of the grate, and the vertical furnace It has an ash reservoir provided at the bottom, and has a fire rating The upper side wall is formed with a downward spreading gradient with respect to the vertical plane, the high-temperature combustion gas exhaust pipe is connected via an induction fan and connected to the chimney, and the jacket air circulation pipe is the primary air A high-temperature combustion gas generator, which is connected to a supply pipe, a secondary air supply pipe, and a tertiary air supply pipe. 前記燃焼ガス排気供給管を前記立型炉の底部に下向きに設けることを特徴とする、請求の範囲1又は6に記載の高温燃焼ガス発生装置。   7. The high-temperature combustion gas generator according to claim 1, wherein the combustion gas exhaust supply pipe is provided downward on a bottom portion of the vertical furnace. 前記灰溜の中央部近傍に灰溜開放部を設け、該灰溜開放部に高温燃焼ガス排気管を連接したことを特徴とする、請求の範囲7に記載の高温燃焼ガス発生装置。   8. The high-temperature combustion gas generator according to claim 7, wherein an ash reservoir opening is provided near the center of the ash reservoir, and a high-temperature combustion gas exhaust pipe is connected to the ash reservoir opening. 請求の範囲1又は6に記載の高温燃焼ガス発生装置の高温燃焼ガス排気管に燃焼ガス処理装置を連接し、燃焼ガスを植物栽培ハウス内へ補給することを特徴とする、燃焼ガス利用装置。   A combustion gas utilization device, wherein a combustion gas treatment device is connected to the high temperature combustion gas exhaust pipe of the high temperature combustion gas generator according to claim 1 or 6 to replenish the combustion gas into the plant cultivation house. 請求の範囲1又は6に記載の高温燃焼ガス発生装置の高温燃焼ガス排気管に燃焼ガス処理装置と、燃焼ガスの炭酸ガス濃度を濃縮する燃焼ガス処理装置とを連接し、燃焼ガスを植物栽培ハウス内へ補給することを特徴とする、燃焼ガスの利用装置。   A combustion gas processing device and a combustion gas processing device for concentrating the carbon dioxide concentration of the combustion gas are connected to the high-temperature combustion gas exhaust pipe of the high-temperature combustion gas generator according to claim 1 or 6, and the combustion gas is cultivated in plants. An apparatus for using combustion gas, characterized by replenishing the inside of the house. 前記燃焼ガス処理装置の吸着剤カラムが主として多孔質吸着剤の組み合わせから構成されることを特徴とする、請求の範囲9または10に記載の燃焼ガスの利用システム。   The combustion gas utilization system according to claim 9 or 10, wherein the adsorbent column of the combustion gas processing apparatus is mainly composed of a combination of porous adsorbents. バイオマス系可燃物を完全燃焼させて得られた燃焼ガスの排気系統に、燃焼ガス中の微量の硫黄酸化物、塩化水素または窒素酸化物などの有害成分を低減または除去する燃焼ガス処理装置を付属し、該処理済み燃焼ガスを栽培植物成長促進剤として植物栽培ハウス内へ補給する補給装置を有することを特徴とする、燃焼ガスの利用システム。   Combustion gas treatment equipment that reduces or eliminates trace amounts of sulfur oxides, hydrogen chloride, nitrogen oxides, etc. in the combustion gas is attached to the exhaust system of combustion gas obtained by completely burning biomass combustibles And a combustion gas utilization system comprising a replenishing device that replenishes the treated combustion gas into a plant cultivation house as a cultivated plant growth promoter. バイオマス系可燃物を完全燃焼させて得られた燃焼ガスの排気系統に、燃焼ガス中の微量の硫黄酸化物、塩化水素または窒素酸化物などの有害成分を低減または除去するとともに、該燃焼ガスの炭酸ガス濃度を濃縮する燃焼ガス処理装置を付属し、該処理済み燃焼ガスを栽培植物成長促進剤として植物栽培ハウス内へ補給する補給装置を有することを特徴とする、燃焼ガスの利用システム。   A combustion gas exhaust system obtained by completely burning a biomass combustible material reduces or removes trace amounts of harmful components such as sulfur oxide, hydrogen chloride or nitrogen oxide in the combustion gas, and A combustion gas utilization system comprising a combustion gas treatment device for concentrating carbon dioxide gas concentration, and a replenishment device for replenishing the treated combustion gas into a plant cultivation house as a cultivated plant growth promoter. 前記燃焼ガス処理装置が主として多孔質吸着剤の組み合わせから構成されることを特徴とする、請求の範囲12または13に記載の燃焼ガスの利用システム。   The combustion gas utilization system according to claim 12 or 13, wherein the combustion gas processing device is mainly composed of a combination of porous adsorbents.
JP2009533163A 2007-09-21 2008-09-17 High-temperature combustion gas generator from biomass and apparatus for using combustion gas Pending JPWO2009038103A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007246067 2007-09-21
JP2007246067 2007-09-21
PCT/JP2008/066782 WO2009038103A1 (en) 2007-09-21 2008-09-17 High-temperature combustion gas generator from biomass and combustion gas utilizing device

Publications (1)

Publication Number Publication Date
JPWO2009038103A1 true JPWO2009038103A1 (en) 2011-01-06

Family

ID=40467913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009533163A Pending JPWO2009038103A1 (en) 2007-09-21 2008-09-17 High-temperature combustion gas generator from biomass and apparatus for using combustion gas

Country Status (2)

Country Link
JP (1) JPWO2009038103A1 (en)
WO (1) WO2009038103A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112963837A (en) * 2021-02-08 2021-06-15 湖州明境环保科技有限公司 Dangerous waste incineration fly ash self-cleaning device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578469B2 (en) * 2010-07-09 2014-08-27 独立行政法人産業技術総合研究所 Carbon dioxide supply system for horticultural facilities by pressure swing method using carbon dioxide in combustion exhaust gas
ITMI20120855A1 (en) * 2012-05-17 2013-11-18 Greengate S R L ENERGY GENERATION SYSTEM STARTING FROM BIOMASS AND PRODUCTION OF VEGETABLE SUBSTANCES
CN107676773A (en) * 2017-11-03 2018-02-09 合肥依科普工业设备有限公司 A kind of hot cigarette generating means
CN108105783A (en) * 2018-01-29 2018-06-01 深圳市地质局(深圳市地质灾害应急抢险技术中心) Oxygen blast burning zero discharge treatment garbage apparatus
JP7112074B2 (en) * 2018-08-01 2022-08-03 矢橋工業株式会社 plant cultivation system
CN110068139A (en) * 2019-04-23 2019-07-30 山东正信德环保科技发展有限公司 Temp auto-controlled biomass boiler
CN110043924A (en) * 2019-04-23 2019-07-23 山东正信德环保科技发展有限公司 The dedicated fire grate of biomass fuel furnace
CN110173683B (en) * 2019-06-04 2024-02-13 河南中烟工业有限责任公司 Biomass particle fuel ellipsoidal combustion gasification integrated furnace for flue-cured tobacco
DK3754255T3 (en) * 2019-06-18 2021-08-23 Doosan Lentjes Gmbh Solid material incinerators
JP7435285B2 (en) 2020-06-15 2024-02-21 株式会社Ihi Combustion exhaust gas treatment equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5093473U (en) * 1973-12-26 1975-08-06
JPS58169303U (en) * 1982-05-04 1983-11-11 大阪瓦斯株式会社 Solid fuel combustion equipment
JPS6234612U (en) * 1985-08-19 1987-02-28
JPH11207126A (en) * 1998-01-20 1999-08-03 Inst Of Research & Innovation Method to separate and recover c02 and nox from gas containing nox and low concentration c02
JP2002257311A (en) * 2001-03-02 2002-09-11 Rikyu:Kk Carbonizer for wood, etc., and pyrolytic furnace used for it, and cooling recovery system
JP2006191876A (en) * 2005-01-14 2006-07-27 Mitsubishi Heavy Ind Ltd System for utilizing biomass
JP2006300501A (en) * 2005-04-20 2006-11-02 Nagasaki Kogyosho:Kk Downward moving bed type furnace

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5093473U (en) * 1973-12-26 1975-08-06
JPS58169303U (en) * 1982-05-04 1983-11-11 大阪瓦斯株式会社 Solid fuel combustion equipment
JPS6234612U (en) * 1985-08-19 1987-02-28
JPH11207126A (en) * 1998-01-20 1999-08-03 Inst Of Research & Innovation Method to separate and recover c02 and nox from gas containing nox and low concentration c02
JP2002257311A (en) * 2001-03-02 2002-09-11 Rikyu:Kk Carbonizer for wood, etc., and pyrolytic furnace used for it, and cooling recovery system
JP2006191876A (en) * 2005-01-14 2006-07-27 Mitsubishi Heavy Ind Ltd System for utilizing biomass
JP2006300501A (en) * 2005-04-20 2006-11-02 Nagasaki Kogyosho:Kk Downward moving bed type furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112963837A (en) * 2021-02-08 2021-06-15 湖州明境环保科技有限公司 Dangerous waste incineration fly ash self-cleaning device
CN112963837B (en) * 2021-02-08 2022-05-17 湖州明境环保科技有限公司 Dangerous waste incineration fly ash self-cleaning device

Also Published As

Publication number Publication date
WO2009038103A1 (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JPWO2009038103A1 (en) High-temperature combustion gas generator from biomass and apparatus for using combustion gas
JP5631313B2 (en) Thermal reactor
JP6824745B2 (en) Carbonization furnace and pyrolysis furnace, as well as water gas generation system, hydrogen gas generation system, and power generation system
KR20090026348A (en) Method of controlling an apparatus for generating electric power and apparatus for use in said method
EP3514454A1 (en) Pyrolysis boiler
JP2007127330A (en) Cogeneration method and system using carbonization furnace
JP4400467B2 (en) Method and apparatus for burning hydrous waste
JP2008088310A (en) High temperature carbonization method and high temperature carbonization apparatus
KR101354938B1 (en) Fluidized bed combustor
JP2011042697A (en) Circulating fluidized bed type gasification method and apparatus
JP2011042726A (en) Circulating fluidized bed type gasification method and apparatus
RU2697912C1 (en) Method of producing generator gas from solid municipal and organic wastes and a combined gas generator of an inverted gasification process for its implementation
JP5873115B2 (en) Biomass combustion equipment
JP4241578B2 (en) Method and apparatus for burning hydrous waste
JP5699523B2 (en) Gas generation amount control method and gas generation amount control device
JP5469878B2 (en) Carbide combustion apparatus and method
JP2014125578A (en) Production method and apparatus of generated gas, and generating apparatus of high temperature combustion gas
Zarzycki et al. Analysis of coal dust combustion and gasification in the cyclone furnace
CN109370664A (en) A kind of saturated vapor processing process for biomass fuel power generation
JP5812575B2 (en) Boiler equipment
JP7341386B2 (en) How to rebuild a biomass processing system
KR102536908B1 (en) fluidization system for biomass
RU2349623C1 (en) Pyrolysis reactor for powdered coal
JP2004347274A (en) Waste treatment device
JP5969540B2 (en) Gasification combustion method for combustibles

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120814