JP2009068817A - Batch type combustion boiler using woody biomass or carbide as fuel and hot air generating device - Google Patents

Batch type combustion boiler using woody biomass or carbide as fuel and hot air generating device Download PDF

Info

Publication number
JP2009068817A
JP2009068817A JP2007240877A JP2007240877A JP2009068817A JP 2009068817 A JP2009068817 A JP 2009068817A JP 2007240877 A JP2007240877 A JP 2007240877A JP 2007240877 A JP2007240877 A JP 2007240877A JP 2009068817 A JP2009068817 A JP 2009068817A
Authority
JP
Japan
Prior art keywords
combustion
furnace
fuel
air
hot air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007240877A
Other languages
Japanese (ja)
Inventor
Kazuo Miyatani
和雄 宮谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daigo Kogyo Kk
Original Assignee
Daigo Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daigo Kogyo Kk filed Critical Daigo Kogyo Kk
Priority to JP2007240877A priority Critical patent/JP2009068817A/en
Publication of JP2009068817A publication Critical patent/JP2009068817A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Fuel Combustion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boiler capable of combusting solid biomass fuel such as firewood, woody fuel, or carbide by a batch system over a long period of time, easily performing control of a combustion amount, dormancy and recombustion, and obtaining clean exhaust gas, and a hot air generating device with high thermal efficiency using the boiler. <P>SOLUTION: Clean exhaust gas is obtained by means comprising: injecting dried solid biomass fuel by the batch system into a furnace having high heat insulation properties; introducing highly concentrated flue gas generated in primary combustion to a vertical type smoke flue reaction column duct; performing secondary combustion for combusting light weight gas with preheated air; performing primary combustion for combusting flame-resistant gases and ash dust by a burner; and performing quaternary combustion for completely combusting remaining incompletely combusted portions by a honeycomb type catalyst. The combustion amount and the hot air temperature of the furnace are controlled by interlocking carbon monoxide and ash dust in the exhaust gas with combustion conditions of the primary combustion to the quaternary combustion. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、木材、および、木質系バイオマス、あるいは、炭化物をバッチ式燃焼炉にて燃焼することが出来、必要に応じて燃焼量を制御でき、クリーンな温風と排気ガスを得ることが出来る暖房用ボイラ、および、当該ボイラを利用した温風発生装置に関するものである。   INDUSTRIAL APPLICABILITY In the present invention, wood and woody biomass or carbide can be burned in a batch-type combustion furnace, the amount of combustion can be controlled as necessary, and clean hot air and exhaust gas can be obtained. The present invention relates to a heating boiler and a hot air generator using the boiler.

木材、ペレット、チップなど木質系バイオマス燃料や炭化物は、人類の歴史とともにふるくから有用な燃料源として利用されてきており、地球温暖化に関して、炭酸ガス対策上ゼロエミッション型燃料として注目される。木質系材料として、製材端材、木工端材、間伐材、集成端材、建築廃材、農業廃材、土木廃材等の存在が知られているが、これらを燃料として有効に利用することができれば、省エネルギー対策及び地球温暖化対策として大変有用である。 Woody biomass fuels and carbides such as wood, pellets, and chips have been used as a useful fuel source since the history of mankind, and are attracting attention as zero-emission fuels as a measure against carbon dioxide with respect to global warming. As wood-based materials, there are known lumber mills, woodwork mills, thinned lumber, laminated lumber, building scrap, agricultural scrap, civil engineering scrap, etc., but if these can be used effectively as fuel, It is very useful for energy conservation and global warming.

現在、木質系燃料の使用方法として、薪ストーブ、ペレットボイラ、ペレット発電機等おおくの利用方法が知られている。バルクの薪を使う方法では、燃焼状態にあわせて薪燃料を絶え間なく供給することと、薪の積み上げ方や燃え方に応じて燃焼を管理するために常に人手が必要であるという不都合がある。規模の大きい薪蒸気機関や薪ストーブでは、燃料は大きくても5〜10cm程度に切断し機械的手段で連続的な供給がはかられる。また、排煙には不完全燃焼による煤や一酸化炭素等が排出されるので、環境汚染対策が難しいという欠点がある。 At present, many methods of using wood-based fuels are known, such as wood-burning stoves, pellet boilers, and pellet generators. The method using bulk soot has the disadvantages of constantly supplying soot fuel according to the combustion state and always requiring manpower to manage the combustion according to how the soot is stacked and burned. In a large-scale wood steam engine or wood-burning stove, the fuel can be cut to about 5 to 10 cm at most and continuously supplied by mechanical means. In addition, since flue gas such as soot and carbon monoxide due to incomplete combustion is discharged, there is a disadvantage that it is difficult to take measures against environmental pollution.

チップやペレット燃料の利用では、燃料の定量供給が可能になるというメリットがあるが、これらの燃料のかさ密度が低く高密度の熱量が得られないという欠点がある。また、ペレット燃料では、チップ化したのち、加熱してペレットの成型に費やす生産エネルギーとコストが化石エネルギーと比較して無視することが出来ないという問題がある。また、燃焼に伴い、発煙と環境汚染の発生を伴うので、木質系燃料の使用を安易に広げることに問題がある。 The use of chips and pellet fuel has the merit that a fixed amount of fuel can be supplied, but there is a drawback that the bulk density of these fuels is low and a high heat quantity cannot be obtained. In addition, the pellet fuel has a problem that the production energy and the cost for heating and molding the pellet after chipping cannot be ignored as compared with the fossil energy. In addition, there is a problem in easily spreading the use of wood-based fuel because it causes smoke and environmental pollution with combustion.

この改善策として、特許文献1では、暖炉型暖房機の燃焼筺体内の薪の支持板の下に第1バーナを設置し、更に後方に一対のバーナを設置するなど複雑な燃焼系が提案されているが、多数のバーナを用いるのは効果的な方法ではないという問題があるうえに、クリーンな排ガスが得られないという問題がある。特許文献2と特許文献3では、薪燃料を埋薪法という非常に緩慢な方法で燃焼し発煙を抑制する方法が提案されているが、燃焼初期には長時間の発煙が発生するのでこれを処理する必要がある上に、必要な発熱量を得るには大量の酸化触媒と巨大な炉が必要となり、工業的に有用な熱量を取り出すのは困難である。
特開2006−183920号公報 特開2004−245563号公報 特開2003−343840号公報
As an improvement measure, Patent Document 1 proposes a complicated combustion system in which a first burner is installed under the support plate of the firewood in the combustion housing of the fireplace heater, and a pair of burners is further installed behind. However, there are problems that using a large number of burners is not an effective method, and that clean exhaust gas cannot be obtained. In Patent Document 2 and Patent Document 3, a method is proposed in which soot fuel is burned by a very slow method called an embedding method to suppress smoke generation. In addition to being treated, a large amount of an oxidation catalyst and a huge furnace are required to obtain a necessary calorific value, and it is difficult to extract industrially useful heat.
JP 2006-183920 A JP 2004-245563 A JP 2003-343840 A

解決しょうとする問題点は、バルク状木材や木質系燃料を、連続供給方式で燃焼すると、燃焼条件を一定に制御して安定に燃焼することができ、規模の大きさに応じて必要な発熱量を得ることができるが、使用できる燃料は炉に連続供給できるように加工が必要であり、燃焼条件を安定にするために燃料の形状や質を一定になるよう加工しなければならないという問題がある。また、木質系ボイラでは、熱を有効に利用するための設備とクリーンな排ガスを得るための設備を兼ね備えるために、設備が膨大になる上に製造コストや運転コストが化石エネルギーのガスやオイルの利用に比べて高価になり、利用しにくいという問題がある。   The problem to be solved is that when bulk wood and wood-based fuels are burned by a continuous supply method, the burning conditions can be controlled stably and burned stably, and the necessary heat generation according to the size of the scale The amount of fuel that can be obtained, but the fuel that can be used needs to be processed so that it can be continuously supplied to the furnace, and in order to stabilize the combustion conditions, the shape and quality of the fuel must be processed to be constant. There is. In addition, wood-based boilers combine facilities for effective use of heat and facilities for obtaining clean exhaust gas. There is a problem that it is more expensive than use and difficult to use.

大容量のバルク状木材や木質系の燃料を一度に燃やすのではなく、バッチ式で長期にわたり燃焼させるには、投入燃料の一部のみを燃焼させながら最終的には全量を燃やすことが求められる。また、燃焼条件として実用上不可欠な、燃焼状態を自由に変えて必要な燃焼熱を取出したり、発熱を抑えて休眠状態にしたり、再稼動のためには再燃焼状態にする必要があるので、燃焼技術として最も難しい問題の一つになっている。
このような、炉の燃焼を自由に制御できて、効率よく温風を取り出し、排ガスをクリーンに保てるというバッチ式の炉やボイラ、または、有用な小型暖房装置は今までにしられていないという問題があった。このように、木質系固体燃料に必要以上の加工やコストを加えないで、バルクのままで理想的に燃焼できるボイラ技術や応用装置の開発が望まれる。
Rather than burning large-capacity bulk wood and wood-based fuels at once, in order to burn them in batch mode over a long period of time, it is necessary to burn only a portion of the input fuel and eventually burn the entire amount . In addition, it is necessary for practical use as a combustion condition to change the combustion state freely to take out the necessary combustion heat, to suppress the heat generation to make it dormant, and to restart it, it needs to be in a reburning state. It is one of the most difficult problems for combustion technology.
Such a problem that there has never been a batch-type furnace or boiler that can freely control the combustion of the furnace, efficiently extract hot air, and keep the exhaust gas clean, or a useful small heater was there. Thus, it is desired to develop boiler technology and application devices that can be ideally burned in bulk without adding unnecessary processing and cost to the wood-based solid fuel.

本発明は、大量の木材及び木質系バルク燃料、または、炭化物をバッチ式炉に投入し長期間燃焼させて、予熱した燃焼用空気量の制御により、燃焼量や休眠状態を制御し、必要により容易に再燃焼できる構造の燃焼炉を用いて、排煙は、高温の反応性ダクト内で二次ガス燃焼、三次補助バーナ燃焼、および、四次ハニカム触媒燃焼により、クリーンな排ガスとし、高い燃焼効率の暖房システムを利用できることを主要な特徴とする。 In the present invention, a large amount of wood and wood-based bulk fuel or carbide is introduced into a batch furnace and burned for a long period of time. By controlling the amount of preheated combustion air, the amount of combustion and dormancy are controlled, and if necessary Using a combustion furnace with a structure that can be easily recombusted, flue gas is made into clean exhaust gas by high-temperature reactive duct, secondary gas combustion, tertiary auxiliary burner combustion, and quaternary honeycomb catalytic combustion, and high combustion The main feature is the availability of an efficient heating system.

本発明になるボイラでは、木材及び木質系バルク燃料や炭化物をバッチ式で長期間燃焼することができ、安価な主燃料とわずかな補助用のオイル燃料を用いてクリーンな排ガスのボイラとして利用でき、温風や温水を発生するのに適した暖房装置が得られるという利点がある。 In the boiler according to the present invention, wood and wood-based bulk fuels and carbides can be burned in a batch system for a long time, and can be used as a clean exhaust gas boiler using inexpensive main fuel and a small amount of auxiliary oil fuel. There is an advantage that a heating device suitable for generating hot air and hot water can be obtained.

本発明になる木材及び木質系バルク燃料または炭化物等を長期間安定に燃焼できるボイラと、該ボイラを温風発生暖房装置として利用する方法について以下に説明する。
用いることのできる炉の形状やサイズに制限はなく、円柱形、角型いずれでも良いが、目的の期間にわたり燃焼させるに十分な燃料を投入できる大きさが必要である。必要な炉のサイズを求めるには、一度に投入できる燃料の全発熱量がよい目安になる。燃料の発熱量は樹木の種類により異なるが、クヌギ、ヒノキ、杉、カシ、ナラ、ラワン、ベイマツ、カラマツなどで、乾燥木材1kgが約0.45リットルの灯油燃料に相当する。したがって、1トンの乾燥木材は約450リットルの灯油燃料の代替エネルギーとして利用できることになる。
A boiler capable of stably burning wood and wood-based bulk fuel or carbide according to the present invention for a long period of time, and a method of using the boiler as a warm air generating and heating device will be described below.
There is no limitation on the shape and size of the furnace that can be used, and either a cylindrical shape or a rectangular shape may be used. However, it is necessary to have a size enough to allow fuel to be burned over a target period. In order to determine the required furnace size, the total calorific value of the fuel that can be charged at one time is a good guide. The calorific value of the fuel varies depending on the type of tree, but 1 kg of dry wood corresponds to about 0.45 liters of kerosene fuel, such as kunugi, hinoki, cedar, oak, oak, lawan, beech and larch. Therefore, 1 ton of dry wood can be used as an alternative energy for about 450 liters of kerosene fuel.

炉室の周辺には、予熱回路を持った燃焼空気用の配管、空気吹き出し口11、炉室出口にある排煙用ダクト2、及び、焚き付け時に発生する炉室の煙を煙突に短絡する煙道を設置する。炉室の内部は、構造強度や燃料の取り扱の容易さから肉厚の金属で作られることが多いが、肉厚の金属の炉は、燃焼熱を拡散し局所的な昇温を妨げ、局部的な場所での自由な燃焼の妨げになる。該炉室内部は、断熱材で構成することにより、燃焼部位の昇温が容易になるとともに保温性が高いので、着火と燃焼温度の維持が容易になり、種火の維持も容易になるという特徴がある。このことは、大容量の燃料の燃焼を部分的に進め発熱量を制御する上で重要な因子の一つとなっている。 In the vicinity of the furnace chamber are piping for combustion air with a preheating circuit, an air outlet 11, a smoke exhaust duct 2 at the outlet of the furnace chamber, and a smoke that short-circuits the smoke in the furnace chamber generated at the time of firing to the chimney Set up the road. The interior of the furnace chamber is often made of thick metal because of its structural strength and ease of fuel handling, but the thick metal furnace diffuses the heat of combustion and prevents local temperature rise. This hinders free burning in local locations. The furnace chamber is made of a heat insulating material, so that it is easy to raise the temperature of the combustion site and has high heat retention, so that ignition and combustion temperature can be easily maintained, and maintenance of the seed fire is also facilitated. There are features. This is one of the important factors in partially controlling the calorific value by partially burning a large volume of fuel.

大量の木材を炉内に設置するには、燃料を投入するために運び込みやすい大口径の扉が必要であり、炉内の燃料の設置にも工夫が必要である。炉室には、各木材を垂直に立てかけるのが良く、短い木材は上に継ぎ足す要領でよい。燃料は、炉容積の75〜85%を占めるまで投入する。しかし、燃料の準備状況によっては、より少ない燃料を用いることもできる。
丸材の場合、隙間が大きくなるので、できるだけ稠密構造をとるように並べる。しかし、角材の場合、燃焼時に空気や燃焼ガスが対流し易いよう、少し隙間をもたせてやるのが肝要である。例えば、15cm角の材木では、密着を避けて約1cmの隙間があれば十分である。また、燃料を積み上げた上部・中心部手前には火が付き易い焚き付け用に細い薪を、更にチップや枯れ枝などを積む。
必ずしも上に説明するように燃料を設置しなくても燃焼させることができるが、燃料の投入量が少ないと長期間、または、高い発熱量で炉を燃やし続けることができなくなるので、使用条件にあわせて燃料を準備するのがよい。
In order to install a large amount of wood in the furnace, a large-diameter door that is easy to carry in to supply fuel is required, and it is also necessary to devise the installation of fuel in the furnace. In the furnace room, each piece of wood should stand vertically, and short pieces of wood can be added up. Fuel is charged until it accounts for 75-85% of the furnace volume. However, depending on the fuel preparation situation, less fuel can be used.
In the case of round materials, the gaps become large, so arrange them as close as possible to a dense structure. However, in the case of a square bar, it is important to provide a little gap so that air and combustion gas are easily convected during combustion. For example, in the case of a 15 cm square timber, a gap of about 1 cm is sufficient to avoid close contact. In addition, the top of the fuel and the front of the center are loaded with thin firewood for burning, and chips and dead branches.
Although it can be burned without installing fuel as explained above, if the amount of fuel input is small, the furnace cannot be burned for a long time or with a high calorific value. It is better to prepare fuel.

燃料には、良く乾燥した木質燃料を用いることが望ましい。最も望ましいのは絶乾状態の木質燃料、または、炭などの炭化物であり、木質燃料では木の種類により15〜20wt%以下の水分まで乾燥したものがよい。水分の多い燃料は、乾燥し着火するまでに多くの熱を無駄に消費することになるうえに、不完全燃焼により多くの水分と煙を発生する。煙に含まれる水分は、水蒸気または水分の多い木酢液として排出することになるが、燃焼効率が大幅に落ちるうえに、着火と消火に関して燃焼の制御を難くするので、湿った燃料の使用を避けることが望ましい。
炉温をあげ燃料の乾燥を促進するため、煙突の排煙16の一部を循環用ダンパ17を開いて燃焼用フアンの吸気口から供給される外気と混合し、炉室に供給して、炉室の昇温と省エネルギーを促進するのがよい。排煙の循環量は、酸素量が少ないので50%以下がよく、より望ましくは30%以下が好んで用いられる。
It is desirable to use a well-dried wood fuel as the fuel. The most desirable is an absolutely dry wood fuel or a charcoal such as charcoal, and the wood fuel is preferably dried to a moisture of 15 to 20 wt% or less depending on the kind of the wood. A fuel with a lot of water consumes a lot of heat before it dries and ignites, and generates a lot of moisture and smoke due to incomplete combustion. The moisture contained in the smoke will be discharged as water vapor or a high-moisture pyroligneous acid solution, but the combustion efficiency will be greatly reduced, and it will be difficult to control the combustion for ignition and extinction, so avoid the use of wet fuel It is desirable.
In order to increase the furnace temperature and promote the drying of the fuel, a part of the flue gas 16 of the chimney is mixed with the outside air supplied from the intake port of the combustion fan by opening the circulation damper 17 and supplied to the furnace chamber. It is better to promote the temperature rise and energy saving of the furnace chamber. The circulation amount of the flue gas is preferably 50% or less, more preferably 30% or less, because the amount of oxygen is small.

炉室に燃料および焚き付けの準備ができたならば点火作業に移る。薪燃料に点火するには、大量の空気が必要なので、前扉に設けた点火用小扉を明け、また、炉室から煙が煙突に直行できるように設けられている煙道扉を開き、燃焼空気フアン10を最大に回転して最大量の空気を炉室に導入し、炉内の空気の流れを活発にする。
次に、排煙ダクト中段にある補助バーナ4を点火し、ダクトの余熱を開始する。補助バーナの安定な動作を確認したならば、薪燃料の点火作業に移る。
更に、点火用小窓から、用意した焚き付けに応じて、マッチ、ライター、トーチバーナ等適切なものを使って焚き付けに点火する。点火後、十分に焚き付けが燃え出し、煙が煙突に抜けることや薪燃料に着火したのを確認した後、点火用小窓を閉め、煙道を閉じる。これにより、炉室の煙は排煙ダクトを経て煙突へ抜けることになる。炉室用の覗き窓から火が薪燃料に着火したのを確認しておくのがよい。この段階で煙突の排煙がクリーンでないならば排煙センサによりフアン10の速度は適切なレベルに制御される。
When the furnace chamber is ready for fuel and fueling, the ignition operation is started.点火 Since a large amount of air is required to ignite the fuel, open the small door for ignition provided on the front door, and open the flue door provided so that smoke can go straight to the chimney from the furnace chamber, The combustion air fan 10 is rotated to the maximum to introduce the maximum amount of air into the furnace chamber, and the air flow in the furnace is activated.
Next, the auxiliary burner 4 in the middle stage of the smoke exhaust duct is ignited, and the residual heat of the duct is started. After confirming the stable operation of the auxiliary burner, move on to the soot fuel ignition operation.
Furthermore, from a small window for ignition, according to the prepared lighting, the appropriate lighting such as a match, lighter, torch burner, etc. is used to ignite the lighting. After ignition, it is confirmed that the fire has burned out sufficiently, smoke has escaped into the chimney, and the soot fuel has ignited, then the ignition window is closed and the flue is closed. As a result, the smoke in the furnace chamber passes through the smoke exhaust duct to the chimney. It is good to confirm that fire has ignited the soot fuel from the observation window for the furnace chamber. If the chimney exhaust is not clean at this stage, the speed of the fan 10 is controlled to an appropriate level by the smoke sensor.

本発明による燃焼方法で大量の木材をバッチ式で長期間燃焼させるにあたり、燃料の燃焼状態は時間とともに大きく変化する。焚き付け開始後の燃焼状態を、「初期燃焼状態」、「おき火燃焼状態」、「休眠状態」、および、「再燃焼状態」に分けることができる。 When a large amount of wood is burned in a batch manner for a long period of time by the combustion method according to the present invention, the combustion state of the fuel changes greatly with time. The combustion state after the start of sowing can be divided into an “initial combustion state”, an “open flame combustion state”, a “dormant state”, and a “reburning state”.

初期燃焼状態では、燃料に着火して火炎が燃え上がるのは燃料の一部にすぎなく、その周辺では温度不足と酸素不足のため火炎は見られず煙を出して燻ぶり続けており、所謂不完全燃焼の状態が大部分を占めている。初期燃焼状態ではこのように不完全燃焼による煙の発生が多く、煙は高濃度になっている。この状態で、燃焼フアン10の回転数を上げ燃焼空気を増やすと、燃焼は一層加速されて煙の発生は一層増加する。他方、燃焼空気を減らすと、酸素不足のため発煙が減り、火は消える方向に進み火力は落ちる。 In the initial combustion state, only a part of the fuel is ignited by the fuel and the flames are burned up. The state of complete combustion accounts for the majority. In the initial combustion state, the generation of smoke due to incomplete combustion is large, and the smoke has a high concentration. In this state, if the rotational speed of the combustion fan 10 is increased and the combustion air is increased, the combustion is further accelerated and the generation of smoke is further increased. On the other hand, if the combustion air is reduced, the smoke is reduced due to lack of oxygen, the fire goes out and the thermal power drops.

煙には燃焼し易い軽量ガス類の、水素、メタン、エタン類、および、一酸化炭素等の他に、空気より重いフエノール類、ピッチ類、煤、煤塵等が多量に含まれている。フエノール類、ピッチ類、煤、煤塵等は、着火しにくい上に、熱分解するのが容易でない難燃成分である。本発明では、この様な排煙を完全に燃焼させ、熱分解を促進させてクリーンな排煙を得るための燃焼システムと、経済性に優れたボイラを提供するものである。 In addition to hydrogen, methane, ethanes, carbon monoxide, etc., which are light gases that are easy to burn, smoke contains a large amount of phenols, pitches, soot, dust, etc. that are heavier than air. Phenols, pitches, soot, dust, and the like are flame retardant components that are not easily ignited and are not easily pyrolyzed. In the present invention, a combustion system for completely burning such flue gas and promoting thermal decomposition to obtain clean flue gas, and a boiler excellent in economy are provided.

排煙を浄化し、クリーンにするため、長い縦型の排煙ダクトを設け、排煙処理用の高温反応塔を考案した。その方法の第一は、炉室内の一次燃焼による排煙は、初めに、排煙ダクト2の最下部の煙道入り口に設置された二次燃焼部にはいり、燃焼効率を上げるために、高温空気によって二次燃焼をおこなう。フアン1から炉内に導入される空気は、炉室の燃焼炎や煙によって加熱された予熱用配管内を通過し、高温になって二次燃焼用空気となって排煙ダクトの最下部でノズル13から吹き出し、着火しやすい軽量ガス類を中心に二次燃焼を起こさせ、「ガス燃焼部」を形成する。軽量ガスが燃えることにより、ガス燃焼部のダクト温度が高温になるとともに、難燃成分のフエノール類、ピッチ類、煤、煤塵等が加熱されて次の三次燃焼部へ移行する。 In order to purify and clean the flue gas, a long vertical flue duct was installed and a high-temperature reaction tower for flue gas treatment was devised. The first of the methods is that the flue gas from the primary combustion in the furnace chamber first enters the secondary combustion section installed at the lowermost flue entrance of the flue duct 2 to increase the combustion efficiency. Secondary combustion is performed by air. The air introduced from the fan 1 into the furnace passes through the preheating pipe heated by the combustion flame and smoke in the furnace chamber, becomes high temperature and becomes the secondary combustion air, at the bottom of the flue duct. Secondary combustion is caused mainly by lightweight gases that are blown out from the nozzle 13 and easily ignited to form a “gas combustion section”. When the light gas burns, the duct temperature of the gas combustion section becomes high, and the flame retardant components such as phenols, pitches, soot, dust, etc. are heated to move to the next tertiary combustion section.

二次燃焼部で燃え残った難燃成分のフエノール類、ピッチ類、煤、煤塵等は、補助オイルバーナの高温燃焼ボックス部14に入り、酸素過剰気味のオイルバーナ炎〜900℃の火炎のもとで、より強い燃焼条件下で強力に酸化される。この過程は三次燃焼と呼び、難燃性のフエノール類、ピッチ類、未分解の煤類、煤塵などを酸化分解する。この燃焼過程は二次燃焼過程と密接に関連して、効果的な熱分解を進めるものである。
三次燃焼用のバーナには、ガスバーナ、灯油バーナ、リサイクルオイルバーナ、重油バーナ等いずれのバーナも使用することができるが、小型で使いよく、安定動作に優れた燃料費の低いものが好んで用いられる。
The flame retardant component phenols, pitches, soot, dust, etc., remaining in the secondary combustion section enter the high-temperature combustion box section 14 of the auxiliary oil burner, and the oil burner flame with an excess oxygen atmosphere to 900 ° C. And is strongly oxidized under stronger combustion conditions. This process is called tertiary combustion, and oxidatively decomposes flame retardant phenols, pitches, undecomposed soot and soot. This combustion process is closely related to the secondary combustion process and promotes effective thermal decomposition.
As the burner for tertiary combustion, any burner such as gas burner, kerosene burner, recycle oil burner, heavy oil burner, etc. can be used, but the one that is small and easy to use, excellent in stable operation and low fuel cost is preferred. It is done.

三次燃焼を経ると大部分の排煙の酸化分解が進むが、火炎による反応場では化学反応が必ずしも均一に起こるわけではなく、一部の未反応部分や未分解部分が残り易い。従って、三次燃焼による未燃焼分は、四次燃焼過程で更に緻密で厳密な熱処理を行う必要がある。この目的のために、排煙を、高温になったセラミックス製ハニカム酸化触媒の微細な反応セルを通過させることにより、均一に燃焼し、熱分解して、微量の難燃成分も完全に燃焼できるように、反応温度、反応場、および、触媒の性能を工夫した。
二次燃焼から四次燃焼を経た高温の排ガスは、フインチュウブ熱交換器に入り外気を加熱して急激に温度が下がり200℃以下になって煙突から排出される。この排ガスを急冷する機構により、燃料にフェノール類とハロゲン類が混入しているとき発生しやすいダイオキシン類を安全に熱分解することができる。
Although most of the flue gas undergoes oxidative decomposition after the tertiary combustion, the chemical reaction does not always occur uniformly in the reaction field by the flame, and some unreacted parts and undecomposed parts are likely to remain. Therefore, the unburned portion resulting from the tertiary combustion needs to be subjected to a more precise and strict heat treatment in the fourth combustion process. For this purpose, the flue gas is passed through a fine reaction cell of a ceramic honeycomb oxidation catalyst that has become hot, so that it can be burned uniformly, pyrolyzed, and even a small amount of flame-retardant components can be burned completely. Thus, the reaction temperature, reaction field, and catalyst performance were devised.
High-temperature exhaust gas that has undergone secondary combustion to quaternary combustion enters the Finchub heat exchanger, heats the outside air, rapidly decreases in temperature to 200 ° C. or less, and is discharged from the chimney. By this mechanism for rapidly cooling the exhaust gas, dioxins that are easily generated when phenols and halogens are mixed in the fuel can be safely pyrolyzed.

油煙、有機溶剤、一酸化炭素、臭気等を浄化するには触媒の利用が知られているが、木質系の排煙は、炭化水素類、フエノール類、ピッチ類、油煙、カーボン、塵埃等を大量に含んでおり、これらを浄化処理するのは、ジーゼルエンジンの排ガス処理以上に困難な課題が多い。しかし、以下に説明するように、耐熱性のハニカム触媒を用いることにより、均一な高温の反応場を確保できたことと、700℃〜800℃の高温と酸化雰囲気下で高濃度の油煙、煤、塵埃類を浄化することができた。このこうな耐熱性ハニカム触媒にはジーゼルエンジン用として圧損の低いSiC製のハニカムフイルターが知られているが、当該目的に有用な触媒の一つとして酸化金属製の触媒ハニカムが経済的にも有用である。例として、長峰製作所製NAハニカムをあげることができる。 The use of catalysts is known to purify oily smoke, organic solvents, carbon monoxide, odors, etc., but wood-based exhaust smoke can be used to remove hydrocarbons, phenols, pitches, oily smoke, carbon, dust, etc. A large amount is included, and there are many more difficult problems to purify these than the exhaust gas treatment of diesel engines. However, as described below, by using a heat-resistant honeycomb catalyst, a uniform high-temperature reaction field could be secured, and high-concentration oil smoke, soot and soot at a high temperature of 700 to 800 ° C. and in an oxidizing atmosphere. Dust was able to be purified. As such a heat-resistant honeycomb catalyst, a SiC honeycomb filter with low pressure loss is known for diesel engines. However, a catalyst honeycomb made of metal oxide is economically useful as one of the catalysts useful for this purpose. It is. As an example, NA NA Honeycomb manufactured by Nagamine Seisakusho can be mentioned.

一次燃焼〜四次燃焼過程を経た排煙濃度の高い初期燃焼過程の排煙で、一酸化炭素は10ppm以下に、煤塵濃度は0.1g/Nm3以下に抑制することができた。大気汚染防止法による環境基準の一酸化炭素は10ppm以下とされ、重油ボイラ等(当該ボイラに比べ排ガスがはるかに多い40,000Nm/hクラス)の煤塵排出基準は0.30g/Nm(一般地域)である。このように、本発明になるバイオマスボイラでは、環境基準として求められる指定数値以下のクリーンな排ガスが得られるようになった。 In the flue gas in the initial combustion process with a high flue gas concentration through the primary combustion to the quaternary combustion process, carbon monoxide was suppressed to 10 ppm or less and the soot concentration was suppressed to 0.1 g / Nm 3 or less. The environmental standard carbon monoxide by the Air Pollution Control Act is 10 ppm or less, and the soot emission standard of heavy oil boilers (40,000 Nm 3 / h class with much exhaust gas compared to the boiler) is 0.30 g / Nm 3 ( General area). As described above, in the biomass boiler according to the present invention, clean exhaust gas having a value equal to or less than a specified numerical value required as an environmental standard can be obtained.

炉への燃焼空気の供給量が限界を超えると、煙は高濃度になり、排煙ダクトを通過後も完全な燃焼状態が得られず、一酸化炭素、ピッチ類、煤煙等を煙突から排出する原因となる。この場合、炉は燃焼能力を超えており、当該ダクトの排煙浄化限界を超えているので、燃焼空気の供給量を抑制する必要がある。 If the supply amount of combustion air to the furnace exceeds the limit, the smoke becomes high concentration, and a complete combustion state cannot be obtained even after passing through the smoke exhaust duct, and carbon monoxide, pitches, soot, etc. are discharged from the chimney. Cause. In this case, since the furnace exceeds the combustion capacity and exceeds the flue gas purification limit of the duct, it is necessary to suppress the supply amount of the combustion air.

煙突の排煙を光センサでモニタし煤煙量や一酸化炭素の量が基準値を超える過燃焼状態になると、燃焼は炉能力の上限に達したとして、最大燃焼量として律則される。この場合、吸入フアンの速度は許容最大値に達しているので、速度を下げて燃焼空気を減らすとともに燃焼量を下げることによりクリーンな排煙条件を満たすことができる。また、温風の温度と設定温度との差を基準にして、燃焼量、つまり、燃焼フアンの速度を制御する。燃焼フアンの許容最大速度が昇温速度の限界とすることにより、安定な燃焼条件とクリーンな排ガスを得るために必要な制御系を完成することができる。 When the smoke emission from the chimney is monitored with an optical sensor and the amount of soot and carbon monoxide exceeds the reference value, the combustion is regulated as the maximum combustion amount assuming that the upper limit of the furnace capacity is reached. In this case, since the speed of the intake fan has reached the allowable maximum value, it is possible to satisfy the clean smoke exhaustion condition by reducing the speed to reduce the combustion air and the combustion amount. Further, the combustion amount, that is, the speed of the combustion fan is controlled based on the difference between the temperature of the hot air and the set temperature. By setting the allowable maximum speed of the combustion fan as the limit of the temperature rising speed, a control system necessary for obtaining stable combustion conditions and clean exhaust gas can be completed.

煙の多い初期燃焼状態が24〜36時間継続すると、炉はおき火燃焼状態に移行する。この状態では、大部分の薪燃料の表面が炭化しており、空気が当たると容易に赤化して燃焼する状態になっていて、炭火燃焼と薪燃焼の混合状態になり、後になるほど炭火燃焼の割合が増え、油煙や煤煙等の発生は少なくなる。このため、おき火燃焼では一酸化炭素成分が増えるが煤塵量は少なく排煙のクリーン化は容易になる。二次燃焼ガスは減少しガス燃焼部の温度は低くなり、排煙もクリーンになるため三次燃焼用の補助バーナの使用は間歇的になり使用時間は半減するが、四次燃焼のハニカム触媒の温度が約700℃以上になることが望ましい。このように、おき火燃焼状態では、上に示した排煙処理に関する二次燃焼、三次燃焼、及び、四次燃焼を経ることにより、クリーンな排気ガスを容易に維持することができる。 If the initial combustion state with a lot of smoke continues for 24 to 36 hours, the furnace shifts to the open fire combustion state. In this state, the surface of most of the soot fuel is carbonized, and when it hits the air, it is easily reddish and combusted, and it becomes a mixed state of charcoal combustion and soot combustion, and later, The ratio will increase and the generation of oil smoke and soot will decrease. For this reason, the carbon monoxide component increases in the open flame combustion, but the amount of soot is small and it is easy to clean the flue gas. The secondary combustion gas decreases, the temperature of the gas combustion section decreases, and the flue gas becomes clean, so the use of the auxiliary burner for tertiary combustion is intermittent and the usage time is halved. The temperature is desirably about 700 ° C. or higher. Thus, in the open flame combustion state, clean exhaust gas can be easily maintained through the secondary combustion, the tertiary combustion, and the quaternary combustion related to the above-described flue gas treatment.

炉の燃焼量を低くして、外気に比べて温風の温度差を数℃上げる程度になると、燃焼用空気の吹き込み量は僅かになる。この場合、補助バーナは休止し、ガス燃焼部における二次燃焼と触媒による四次燃焼により排ガスはクリーンに保たれていることが多い。 When the combustion amount of the furnace is lowered and the temperature difference of the hot air is increased by several degrees C. compared to the outside air, the amount of combustion air blown becomes small. In this case, the auxiliary burner is stopped and the exhaust gas is often kept clean by secondary combustion in the gas combustion section and quaternary combustion by the catalyst.

次に、炉の熱出力を最小にする休眠状態について説明する。本発明になるボイラの利用にあたり、熱出力の制御の可否が重要な要素の一つになっている。電気、ガス燃料、石油燃料等は、必要なときに点火と消火を繰り返すことができるが、バッチ式固体燃料を使用するボイラでは、燃焼と消火を短時間に繰り返すことはできない。したがって、炉の燃焼状態を休眠させたり再燃焼させたりする機能が大変重要な機能になる。 Next, a dormant state that minimizes the heat output of the furnace will be described. In using the boiler according to the present invention, whether or not the heat output can be controlled is one of the important factors. Electricity, gas fuel, petroleum fuel, and the like can be repeatedly ignited and extinguished when necessary, but a boiler using a batch type solid fuel cannot repeat combustion and extinguishing in a short time. Therefore, the function of putting the combustion state of the furnace to sleep or reburning is a very important function.

初期燃焼状態とおき火燃焼状態のいずれにおいても炉室内は正圧になっていて、燃焼空気フアンを停止すると排煙がファンを逆流する。この逆流に打ち勝つようにフアンの回転速度を調整し、十分時間が経過すると、例えば30〜60分後、フアンは最低の速度または停止状態に近づく。また、フアン10の動作を最低速度に保つことにより、炉は休眠状態に入り、後に燃焼空気を炉内に供給するまで休眠状態を維持できる。この様に、炉の休眠状態の間わずかな吸気を続けることにより火種は保存されており、必要になって燃焼空気を供給すると、容易に再燃焼をはかることができる。しかし、休眠時間が何日にもわたり長くなると火種は維持されるが小さくなるので、再燃焼時に燃え上がるまで時間がかかる傾向がある。短期に再燃焼の効果をあげたい時、燃焼し易い焚き付けを追加投入することにより急速に再燃させることが出来る。 In both the initial combustion state and the fire combustion state, the furnace chamber is at a positive pressure, and when the combustion air fan is stopped, the flue gas flows backward through the fan. When the rotational speed of the fan is adjusted so as to overcome this reverse flow and sufficient time has passed, the fan approaches the minimum speed or stopped state after 30 to 60 minutes, for example. Further, by keeping the operation of the fan 10 at the minimum speed, the furnace can enter a dormant state and can remain dormant until combustion air is supplied into the furnace later. In this way, the fire type is preserved by continuing a slight inspiration during the dormant state of the furnace, and recombustion can be easily performed if combustion air is supplied when necessary. However, if the dormant time is prolonged for many days, the fire type is maintained but becomes small, so it tends to take time to burn up at the time of reburning. When the effect of reburning is desired in a short period of time, it can be rapidly reburned by adding a burner that is easy to burn.

温風の発生と取り出し方法は、重要である。温風フアン8で炉の天井開口部20から外気を吸入し、炉室の周囲201とダクトの周囲202で加温できる2つの流路を設ける。一般に炉室部の表面温度とダクト部の表面温度や熱交換量は異なるので、熱量のバランスを図るため外気の分流量は炉室の後方上部に設置したダンパ18により調節する。 The method of generating and taking out hot air is important. Two flow paths are provided that allow the outside air to be sucked in from the ceiling opening 20 of the furnace with the hot air fan 8 and heated at the furnace chamber periphery 201 and the duct periphery 202. In general, the surface temperature of the furnace chamber is different from the surface temperature of the duct and the amount of heat exchange. Therefore, in order to balance the amount of heat, the partial flow rate of the outside air is adjusted by a damper 18 installed at the upper rear part of the furnace chamber.

炉室天井部で加温された外気は、更に炉側面のフインチュウブ熱交換器を経て加温され炉室側面の下部に達し100℃以下の熱風201となる。熱風201は、炉体正面のルーバ22から取り入れたミキシング用外気22と混合して、適切な温度の温風220となる。他方、炉室天井部で加温された外気20は、排気ダクト部を経て熱風202となり、ダクト側面のダンパ211から吸入される外気21と混合され、適切な温度の温風210となり、温風フアン8により炉外へ供給される。 The outside air heated at the furnace chamber ceiling is further heated through a furnace tube heat exchanger on the side of the furnace, reaches the lower part of the side of the furnace chamber, and becomes hot air 201 at 100 ° C. or lower. The hot air 201 is mixed with the mixing outside air 22 taken from the louver 22 in front of the furnace body to become hot air 220 having an appropriate temperature. On the other hand, the outside air 20 heated in the furnace chamber ceiling portion becomes hot air 202 through the exhaust duct portion and is mixed with the outside air 21 sucked from the damper 211 on the side surface of the duct to become hot air 210 having an appropriate temperature. It is supplied to the outside of the furnace by the fan 8.

温風フアン8を停止すると、炉には蓄熱作用が働き、炉室の表面温度やダクトの表面温度が異常に上昇する。このような蓄熱による異常温度上昇の発生を防ぐには温風フアン8を常に動かしておくことにより、異常昇温を防ぐことができる。つまり、温風フアン8には、温風を発生するときの燃焼時の通常運転モードと、風量の少ない非燃焼時のアイドリング運転モードをもたせ、アイドリングモードでは発生する温風を炉外へ排出して炉内の蓄熱を防止することにより、容易に安定な炉温と温風を維持できることがわかった。 When the hot air fan 8 is stopped, the furnace has a heat storage action, and the surface temperature of the furnace chamber and the surface temperature of the duct rise abnormally. In order to prevent the occurrence of such an abnormal temperature rise due to heat storage, the warm air fan 8 is always moved to prevent abnormal temperature rise. That is, the warm air fan 8 has a normal operation mode during combustion when generating warm air and an idling operation mode during non-combustion when the air volume is small, and the generated warm air is discharged outside the furnace in the idling mode. It was found that stable furnace temperature and warm air can be easily maintained by preventing heat storage in the furnace.

二次燃焼に灯油バーナを利用した場合のエネルギー配分について説明する。炉の燃料投入量を1バッチ当たり1,000kgにたいして、1バッチ当たり10日燃焼させる場合、日量40万kcalの発熱量になる。この熱量は灯油換算で日量45Lに相当する。補助バーナのオイル消費量は、1日に平均12時間炉を運転するとし、小型の灯油バーナ(1.5リットル/時)を用いて、点火時間は平均50%で間歇的に灯油を焚くので、灯油を日量約1.5L/h x 12h x 0.5 = 9L使用することになる。したがって、小型炉(1,000kg/バッチ)が発生する全熱量にたいし、薪燃料は45/(45+9)=83%の熱量を代替できることになる。また、中型炉(2,000kg/バッチ)の場合、蒔により発生する全熱量は灯油換算で日量90L相当であり、同じ小型バーナを利用できるので、91%が薪燃料で代替される。このように、本発明の固体バイオマスボイラはエネルギー分野における代替効果が大きい。 Energy distribution when a kerosene burner is used for secondary combustion will be described. If the fuel input to the furnace is 1,000 kg per batch and burning for 10 days per batch, the calorific value is 400,000 kcal per day. This amount of heat corresponds to a daily amount of 45 L in terms of kerosene. The oil consumption of the auxiliary burner is assumed to operate the furnace for an average of 12 hours a day, and the kerosene is burned intermittently with an average ignition time of 50% using a small kerosene burner (1.5 liters / hour). Will use about 1.5L / hx 12h x 0.5 = 9L per day. Therefore, dredged fuel can replace 45 / (45 + 9) = 83% of the amount of heat with respect to the total amount of heat generated by the small furnace (1,000 kg / batch). In the case of a medium-sized furnace (2,000 kg / batch), the total amount of heat generated by soot is equivalent to 90 L per day in terms of kerosene, and the same small burner can be used, so 91% is replaced by soot fuel. Thus, the solid biomass boiler of the present invention has a great alternative effect in the energy field.

炉の燃焼期間は、燃料の消費量に依存する。暖房温度や加熱するハウスのサイズによるので、灯油相当量の発熱エネルギーで判断するのがよい。薪燃料500〜800kgを1日10時間燃焼して、発熱量によりバッチあたり7日、10日、20日と自由に運転することができた。
当該ボイラや温風発生器を利用すると、木酢液と木灰が炉低に集まる。木酢液の量は樹種や乾燥状態によるが、よく乾燥した建築材料1トン当たり約10リットル程度が得られた。また、炉を1バッチ分燃焼すると、木灰が炉底の灰取皿に燃料の1〜2wt%たまる。木酢液はビニールハウス内や耕作地の消毒に利用され、木灰は、肥料として利用される。
The combustion period of the furnace depends on the amount of fuel consumed. Because it depends on the heating temperature and the size of the house to be heated, it is better to make a judgment based on the amount of heat energy equivalent to kerosene. 500-800 kg of soot fuel was burned for 10 hours a day, and the fuel could be operated freely for 7 days, 10 days, and 20 days per batch depending on the calorific value.
When using the boiler or the hot air generator, the wood vinegar and wood ash are collected at the furnace low. Although the amount of wood vinegar depends on the tree species and dry state, about 10 liters per ton of well-dried building material was obtained. Moreover, when the furnace is burned for one batch, 1-2% by weight of fuel is accumulated in the ash collecting tray at the bottom of the furnace. Wood vinegar is used for disinfecting greenhouses and cultivated land, and wood ash is used as fertilizer.

本発明になるバイオマスボイラと温風発生機は、グリーンハウス、ビニールハウス、畜舎等の農業用、乾燥設備などの工業用、病院、老人ハウス、学校、保育所等の公共施設、寒冷地では家屋、作業所、融雪用等の暖房用として、柔軟に使用されることがみこまれる。 Biomass boilers and hot air generators according to the present invention are used for agriculture such as green houses, plastic houses, livestock barns, industrial facilities such as drying facilities, public facilities such as hospitals, nursing homes, schools, nurseries, and houses in cold regions. It is expected to be used flexibly for heating such as work place and snow melting.

測定方法
燃焼排ガス成分の測定には光明理化学工業(株)の燃焼管理テスタSEM−103を用いて、ガス温度〔0〜1200℃〕、酸素(0.0〜22.0%)、一酸化炭素(0〜2000ppm)、一酸化窒素(0〜2000ppm)を測定した。また、煤塵濃度はスモークテスタ(KANE MSP)を用いJIS Z 8808法による煤塵量をバッカラッカ指数から求めた。
Measuring method Combustion exhaust gas components are measured by using a combustion management tester SEM-103 of Komyo Chemical Co., Ltd., gas temperature [0-1200 ° C], oxygen (0.0-22.0%), carbon monoxide. (0 to 2000 ppm) and nitric oxide (0 to 2000 ppm) were measured. The dust concentration was determined from the baccarat index by using a smoke tester (KANE MSP) and the amount of dust according to JIS Z 8808 method.

以下、本発明を実施例に基づいて更に具体的に説明するが、以下に説明する内容は、あくまで一つの例であり、本発明が、以下に述べる内容によって、何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples. However, the contents described below are merely examples, and the present invention is not limited to the contents described below.

図1は本発明になる木材または木質系バイオマスあるいは炭化物燃料の燃焼用のボイラと温風発生機能を備えた温風暖房装置の概念図である。 FIG. 1 is a conceptual diagram of a boiler for burning wood or woody biomass or carbide fuel according to the present invention and a warm air heating device having a function of generating warm air.

炉室1は1.1m3の容積をもっており、建材用木材である5寸角、5寸x10寸角の乾燥した建築端材を燃料として約700kgを投入した。同じ材料を焚き付け用に太さ3〜5cm程度に割った薪を約2kg中央上部に置き、更に、小枝と古新聞数枚をこれらの薪の間に置き、正面の炉室扉を閉じた。 Furnace room 1 has a volume of 1.1 m 3 , and about 700 kg of fuel was used as dry building scraps of 5 and 10 x 10 square timber, which is wood for building materials. A cocoon of about 3 to 5 cm in thickness for the same material was placed in the upper center of about 2 kg, and a twig and several old newspapers were placed between these caskets, and the front furnace chamber door was closed.

先ず、吸入フアン10を最大速度に設定して最大量の燃焼空気を炉室に導入し、炉室と煙突をつなぐ短絡路となる煙道を開き、炉内の空気の流れを活発にした。次に、補助バーナを点火し、ダクトの余熱を開始する。バーナの安定な動作を確認したのち、炉室扉の点火用小窓を開き、カセットガストーチバーナにて焚き付けに点火した。炉内に火が広がり、薪に着火するのを待ちながら、排煙ダクト中段にある補助バーナ4を点火し、バーナボックスの上段に設けた触媒7やダクトの予熱をすすめ、薪への着火を確認した後、着火用小窓を閉じて煙道を閉じた。 First, the suction fan 10 was set to the maximum speed, the maximum amount of combustion air was introduced into the furnace chamber, the flue that becomes a short circuit connecting the furnace chamber and the chimney was opened, and the flow of air in the furnace was activated. Next, the auxiliary burner is ignited and the residual heat of the duct is started. After confirming the stable operation of the burner, the ignition window on the furnace chamber door was opened, and the cassette gas torch burner was used to ignite it. While waiting for the fire to spread in the furnace and ignite the soot, the auxiliary burner 4 in the middle stage of the smoke exhaust duct is ignited, the catalyst 7 and the duct provided in the upper stage of the burner box are preheated, and the soot is ignited. After confirmation, the small ignition window was closed and the flue was closed.

燃焼空気フアンからの燃焼空気11は炉内の薪燃料の燃焼を促進するが、着火初期の初期燃焼状態では炉本体の温度、ひいては、薪の温度や薪の乾燥状態が十分に進行していないので、燃焼が安定するまで10〜15分程度そのままで燃焼状態を維持してやる必要がある。排煙の強さが維持されているならば着火は順調に進んでいる目安になる。この時期、煙突から出る煙は目視出来るほど濃いのが普通なので、直ちに燃焼空気フアンの速度を定常値(〜50%能力)に下げ、ガス燃焼部13の二次燃焼温度が600〜850℃、触媒燃焼部15の四次燃焼温度が700〜850℃になるように燃焼空気フアンの速度を下げた。この操作により、煙突の排煙16は目視できない程度に透明になった。この間、着火から20〜30分経過していた。 Combustion air 11 from the combustion air fan promotes combustion of soot fuel in the furnace, but in the initial combustion state in the early stage of ignition, the temperature of the furnace body, and thus the temperature of the soot and the soot drying state are not sufficiently advanced. Therefore, it is necessary to maintain the combustion state as it is for about 10 to 15 minutes until the combustion becomes stable. If the strength of the flue gas is maintained, the ignition will be a good guideline. At this time, the smoke coming out of the chimney is usually dark enough to be visually recognized, so the speed of the combustion air fan is immediately reduced to a steady value (˜50% capacity), and the secondary combustion temperature of the gas combustion unit 13 is 600 to 8500 ° C. The speed of the combustion air fan was lowered so that the quaternary combustion temperature of the catalyst combustion section 15 would be 700 to 8500C. By this operation, the flue gas 16 in the chimney became transparent to the extent that it cannot be seen. During this time, 20 to 30 minutes had elapsed since ignition.

排気ダクトで高温燃焼した排煙は、水平接続ダクト15を経てフインチューブ熱交換器5に達し、この中で急速に冷却されて煙突6へ排出する。煙突への排出温度は100℃〜150℃であった。排煙温度がこのように低いのは、燃焼熱が効率よく外気の加熱に使われており、燃焼熱が高効率で温風に変換されていることを示している。 The flue gas burned at a high temperature in the exhaust duct reaches the fin tube heat exchanger 5 through the horizontal connection duct 15, and is quickly cooled and discharged to the chimney 6. The discharge temperature to the chimney was 100 ° C to 150 ° C. The low smoke emission temperature indicates that the combustion heat is efficiently used to heat the outside air, and that the combustion heat is converted into hot air with high efficiency.

燃焼ガスモニターにて煙突からの排ガスの温度と排ガス成分を、クリーンな排ガスを得るうえで最も厳しい着火後から4時間後の初期燃焼状態における測定値を以下に示す。
二次燃焼温度:834℃、 四次燃焼温度:792℃、 外気:25℃、 温風:40℃、
煙突排気:104℃、
酸素:20.4%、 CO:0ppm、 NO:0ppm、 煤塵:<0.06g/Nm3
The following shows measured values of the exhaust gas temperature and exhaust gas components from the chimney in the initial combustion state 4 hours after the most severe ignition to obtain clean exhaust gas.
Secondary combustion temperature: 834 ° C, Fourth combustion temperature: 792 ° C, Outside air: 25 ° C, Hot air: 40 ° C,
Chimney exhaust: 104 ° C,
Oxygen: 20.4%, CO: 0 ppm, NO: 0 ppm, dust: <0.06 g / Nm 3

温風用フアン8(最大定格3000m/h)を駆動すると、約20℃の外気は炉室天井部中央の吸入孔20より流入して炉室天井表面201で加温され、一部はフインチュウブ5にて更に加温され約70℃の熱風となり、また一部はダクト部表面で加温されて熱風となった。それぞれの熱風は途中で外気21&22と混合して約40℃の温風25として炉外に供給された。熱風の温度は吸入孔のダンパ20と炉の燃焼量で決まり、温風の温度は熱風と外気との混合量で決まる。混合ダンパ22&211の開閉量は自動および手動で調節できる構造を用いた。 When the hot air fan 8 (maximum rating 3000 m 3 / h) is driven, outside air of about 20 ° C. flows from the suction hole 20 in the center of the furnace chamber ceiling and is heated by the furnace chamber ceiling surface 201, and a part of the fin The tube 5 was further heated to become hot air of about 70 ° C., and part of the air was heated on the duct surface to become hot air. Each hot air was mixed with outside air 21 & 22 along the way, and was supplied to the outside of the furnace as warm air 25 of about 40 ° C. The temperature of the hot air is determined by the amount of combustion in the damper 20 of the suction hole and the furnace, and the temperature of the hot air is determined by the mixing amount of the hot air and the outside air. A structure in which the opening / closing amounts of the mixing dampers 22 & 211 can be adjusted automatically and manually was used.

比較例1
二次燃焼効果を調べるため、二次燃焼用ガス燃焼バーナへの予備加熱燃焼空気を停止して運転を続けた。その結果、排ガスの一酸化炭素は5ppmに、煤塵量は0.1g/Nm3に増加した。
Comparative Example 1
In order to investigate the secondary combustion effect, the preheated combustion air to the gas combustion burner for secondary combustion was stopped and the operation was continued. As a result, the carbon monoxide in the exhaust gas increased to 5 ppm and the amount of dust increased to 0.1 g / Nm 3 .

比較例2
三次燃焼部の補助バーナの効果を調べるため、補助バーナの点火を中止し、燃焼運転を続けた。その結果、30分後には三次燃焼部のバーナボックス部と触媒部の温度が低下し、触媒の目詰まりが進行し、ダクト機能が損なわれた。
Comparative Example 2
In order to investigate the effect of the auxiliary burner in the tertiary combustion section, the ignition of the auxiliary burner was stopped and the combustion operation was continued. As a result, after 30 minutes, the temperature of the burner box part and the catalyst part of the tertiary combustion part decreased, the clogging of the catalyst progressed, and the duct function was impaired.

比較例3
四次燃焼部の効果を調べるため、四次燃焼用の触媒7を取り除き、燃焼運転を行った。その結果、排ガスの一酸化炭素は10ppm、煤塵は0.1g/Nm3と増加した。
Comparative Example 3
In order to investigate the effect of the quaternary combustion section, the catalyst for quaternary combustion 7 was removed and a combustion operation was performed. As a result, the carbon monoxide in the exhaust gas increased to 10 ppm, and the dust increased to 0.1 g / Nm 3 .

四次燃焼部の触媒から出た排ガスの温度は700℃以上であるが、フインチュウブ熱交換器を出ると、排ガスの温度は200℃以下になり、フインチュウブ内で急速に冷却されることがわかった。   The temperature of exhaust gas from the catalyst in the quaternary combustion section is 700 ° C or higher, but the temperature of the exhaust gas will be 200 ° C or lower when leaving the heat exchanger, and it will be cooled rapidly in the fin tube. all right.

このように、炉内における一次燃焼12、反応性ダクト最下部における二次燃焼13、補助バーナによる三次燃焼14、および、ハニカム触媒による四次燃焼15を経ることにより、固形バイオマスの燃焼排気をクリーンな排ガスにできるシステムが得られた。おき火燃焼状態になると、排ガスの煙濃度は大幅に減少し、補助バーナの点火時間は、大幅に短縮され、バッチ平均で、約50%であった。
フエノール類等ハロゲンイオンが共存するとダイオキシン生成の危険があるとされるが、この場合にも十分な高温分解を経た排ガスが、フインチュウブの熱交換器を経て安全でクリーンな排ガスが得られるシステムが構築された。
In this way, the solid combustion combustion exhaust gas is cleaned by going through the primary combustion 12 in the furnace, the secondary combustion 13 at the lowermost part of the reactive duct, the tertiary combustion 14 by the auxiliary burner, and the quaternary combustion 15 by the honeycomb catalyst. A system that can produce a simple exhaust gas was obtained. When it was in the open flame combustion state, the smoke concentration of the exhaust gas was greatly reduced, and the ignition time of the auxiliary burner was greatly shortened, and the batch average was about 50%.
When halogen ions such as phenols coexist, there is a risk of dioxin formation, but in this case as well, there is a system in which exhaust gas that has undergone sufficient high-temperature decomposition can be obtained through a heat exchanger of Fintub to obtain safe and clean exhaust gas. It was constructed.

本発明になるボイラと温風発生器は、安価な木質系固形燃料、特に、製材所端材、木工所端材、集成材端材、廃建材、間伐材等を、バッチ式で安全に燃焼することができるうえに、廃材の環境問題の解決に貢献し、温暖化ガスの自然循環可能な環境に優しい暖房装置としての利用が期待される。 The boiler and hot air generator according to the present invention safely burns inexpensive wood-based solid fuel, especially lumber mill edge, woodwork mill edge, laminated lumber edge, waste building material, thinned wood, etc. In addition, it can contribute to solving environmental problems of waste materials and is expected to be used as an environmentally friendly heating device that can naturally circulate greenhouse gases.

本発明によれば、石油系化石燃料に代わって、安価な木質系固形燃料をバッチ式で燃焼することができるボイラとして、農業用ビニールハウス、花卉栽培用グリーンハウス、公衆浴場、病院、老人ホーム、学校、集会所、家畜飼育場、畜舎、乾燥場、融雪用等に広く利用されることが期待される。 According to the present invention, instead of petroleum-based fossil fuel, as an boiler capable of burning inexpensive wood-based solid fuel in a batch system, an agricultural plastic greenhouse, a green house for flower cultivation, a public bath, a hospital, a nursing home It is expected to be widely used for schools, meetinghouses, livestock farms, barns, drying grounds, and snowmelts.

本発明の薪、木質系燃料、あるいは、炭化物等の木質系固形バイオマス燃料を燃やしてクリーンな排ガスが得られる、バッチ式燃焼ボイラを組み合わせた温風発生装置の構造概念図Structural conceptual diagram of a hot air generator combined with a batch-type combustion boiler that can produce clean exhaust gas by burning wood solid biomass fuel such as firewood, wood fuel or carbide of the present invention

符号の説明Explanation of symbols

1 炉室
2 ダクト
3 バーナボックス
4 バーナ
5 フインチューブ熱交換器
6 煙突
7 ハニカム触媒
8 温風フアン
10 燃焼空気用フアン
11 炉内燃焼空気
12 炉内燃焼排ガス
13 二次燃焼用ノズルと二次燃焼部
14 三次燃焼部
15 四次燃焼後排煙
16 排煙
17 排煙循環部
20 外気導入部1
21 外気導入部2
22 外気導入部3
201 炉室表面部エアーカーティンの流れ
220 炉室表面部熱風
202 ダクト表面部エアーカーティンの流れ
210 ダクト表面部熱風
25 温風供給部
DESCRIPTION OF SYMBOLS 1 Furnace 2 Duct 3 Burner box 4 Burner 5 Fin tube heat exchanger 6 Chimney 7 Honeycomb catalyst 8 Warm air fan 10 Fan for combustion air 11 Combustion air 12 Furnace combustion air 13 Secondary combustion nozzle and secondary combustion Part 14 Tertiary combustion part 15 Exhaust after the fourth combustion 16 Flue gas 17 Flue gas circulation part 20 Outside air introduction part 1
21 Outside air introduction part 2
22 Outside air introduction part 3
201 Furnace Chamber Surface Air Curtain Flow 220 Furnace Chamber Surface Hot Air 202 Duct Surface Air Curtain Flow 210 Duct Surface Hot Air 25 Hot Air Supply Unit

Claims (7)

木質系燃料、あるいは、炭化物をバッチ式で燃焼する炉であり、該燃焼炉では、高度の不完全燃焼を示す初期燃焼状態と燃料の炭化が進み軽度の不完全燃焼を示すおき火燃焼状態にかかわらず、予熱した燃焼空気の供給量を制御することにより燃焼と発熱量の制御をおこない、最小の燃焼時には休眠状態におくことができ且つ再燃用の火種を維持することが出来る事を特徴とする、バイオマス暖房用ボイラとその構造。 It is a furnace that burns wood-based fuels or carbides in a batch system. In this combustion furnace, an initial combustion state showing a high degree of incomplete combustion and a fire-burning state showing a slight incomplete combustion due to progress of carbonization of the fuel. Regardless of this, it is possible to control the combustion and heat generation by controlling the supply amount of preheated combustion air, and to be able to stay in a dormant state at the time of minimum combustion and to maintain the fire type for recombustion. A biomass heating boiler and its structure. 該暖房用ボイラでは、一次燃焼室は断熱性の高い炉壁で構成され、排煙口には一次燃焼で発生する高い濃度の排煙を処理する縦型の反応ダクトが接続され、該ダクトの入り口部には二次燃焼用に余熱空気で燃やす軽量ガス燃焼用バーナを設置し、ダクト中段には三次燃焼用として難燃性のガス類と煤塵を燃やす補助バーナと燃焼ボックス部を設置し、更に、ダクト最上段に四次燃焼用としてハニカム型酸化触媒による燃焼部が設置されることを特徴とする、排煙浄化構造。 In the heating boiler, the primary combustion chamber is constituted by a furnace wall having high heat insulation properties, and a vertical reaction duct for treating high-concentration flue gas generated by the primary combustion is connected to the smoke exhaust port. A lightweight gas combustion burner that burns with preheated air for secondary combustion is installed at the entrance, and an auxiliary burner and combustion box section that burns flame-retardant gases and soot is installed in the middle stage of the duct, Furthermore, a flue gas purifying structure characterized in that a combustion part by a honeycomb type oxidation catalyst is installed at the uppermost stage of the duct for quaternary combustion. 該反応ダクトの熱容量は低く、容易に800℃以上に昇温できる保温構造を持ち、該反応ダクトを通過した高温の排ガスは、外気を加熱する熱交換器を経て200℃以下に急激に冷却され、一酸化炭素や煤塵の少ないクリーンな排ガスとなって煙突から放出されることを特徴とする、バイオマス暖房用ボイラ。     The reaction duct has a low heat capacity and has a heat retaining structure that can easily be raised to 800 ° C. or higher, and the high-temperature exhaust gas that has passed through the reaction duct is rapidly cooled to 200 ° C. or less via a heat exchanger that heats the outside air. A biomass heating boiler characterized by being discharged from a chimney as a clean exhaust gas with little carbon monoxide and dust. 温度の低い外気は、炉体天井部の吸引口から供給され、炉室表面、ダクト表面、および、熱交換で加熱されたのち、外気と混合されて、適切な温度の温風を供給できることを特徴とする、温風発生機構。 The low-temperature outside air is supplied from the suction port of the furnace body ceiling, heated by the furnace chamber surface, duct surface, and heat exchange, and then mixed with the outside air to supply hot air at an appropriate temperature. A feature of hot air generation. 温風供給フアンは、温風を発生するときの通常運転モードと少なくとも風量の少ないアイドリング運転モードを持ち、アイドリングモードでは発生する温風を炉外へ排出して炉内の蓄熱を防止し、炉温を安定に維持できることを特徴とする、温風供給方法。 The hot air supply fan has a normal operation mode for generating hot air and an idling operation mode with at least a small air volume. In the idling mode, the generated hot air is discharged outside the furnace to prevent heat accumulation in the furnace. A method for supplying warm air, characterized in that the temperature can be stably maintained. 該ボイラの煙突中の排ガスは、光センサにて一酸化炭素ガスと煤塵成分がモニタされ、該センサ出力により、吸入ファンによる燃焼空気量の制御と補助バーナによる三次燃焼を制御できることを特徴とする、燃焼と排煙制御機構。 The exhaust gas in the boiler chimney is monitored for carbon monoxide gas and dust components by an optical sensor, and the output of the sensor can control the amount of combustion air by an intake fan and tertiary combustion by an auxiliary burner. , Combustion and smoke control mechanism. 該煙突の排ガスの一部は、燃焼用フアンの吸気口から供給される外気と混合されて、炉室に供給され、炉室の昇温と省エネルギーに寄与できることを特徴とする、燃焼機構。   A combustion mechanism characterized in that a part of the flue gas of the chimney is mixed with the outside air supplied from the intake port of the combustion fan and supplied to the furnace chamber to contribute to the temperature rise and energy saving of the furnace chamber.
JP2007240877A 2007-09-18 2007-09-18 Batch type combustion boiler using woody biomass or carbide as fuel and hot air generating device Pending JP2009068817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007240877A JP2009068817A (en) 2007-09-18 2007-09-18 Batch type combustion boiler using woody biomass or carbide as fuel and hot air generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007240877A JP2009068817A (en) 2007-09-18 2007-09-18 Batch type combustion boiler using woody biomass or carbide as fuel and hot air generating device

Publications (1)

Publication Number Publication Date
JP2009068817A true JP2009068817A (en) 2009-04-02

Family

ID=40605264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007240877A Pending JP2009068817A (en) 2007-09-18 2007-09-18 Batch type combustion boiler using woody biomass or carbide as fuel and hot air generating device

Country Status (1)

Country Link
JP (1) JP2009068817A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102087046A (en) * 2011-01-26 2011-06-08 刘龙庆 Hot-water hot-air double-purpose machine
CN102168886A (en) * 2010-12-30 2011-08-31 河南农业大学 Combustion furnace for flue-cured bulk curing barn
WO2012026950A1 (en) * 2010-08-26 2012-03-01 Peter Scott Natural draft curing system
CN102506417A (en) * 2011-11-15 2012-06-20 安徽环态炉业有限公司 Combustion process for biomass boiler
JP2013531775A (en) * 2010-05-27 2013-08-08 ハヨン チャン Firewood boiler
CN103322676A (en) * 2013-05-22 2013-09-25 浙江光炎节能环保科技股份有限公司 Biomass fuel hot blast device
CN103759416A (en) * 2014-01-11 2014-04-30 孙长杰 Cabinet type biomass hot blast stove
CN105333608A (en) * 2014-08-08 2016-02-17 天津市凯普森冷暖设备有限公司 Biomass warm air blower
JP2016050744A (en) * 2014-09-02 2016-04-11 清本鐵工株式会社 Hot air generating device
JP2016057048A (en) * 2014-09-08 2016-04-21 航 青木 Wood chip burning thermal medium oil burner
CN106595040A (en) * 2016-12-13 2017-04-26 延吉日明生物质热能科技有限公司 Biomass-particle horizontal atmospheric-pressure water boiler
CN106765318A (en) * 2016-11-30 2017-05-31 河北乾昇节能科技发展有限公司 Greenhouse novel biomass heats carburetting gasification furnace
CN107588544A (en) * 2017-09-30 2018-01-16 台山市合利生物质科技有限公司 Biomass fuel blast heater
CN111925223A (en) * 2020-08-22 2020-11-13 郑州经纬科技实业有限公司 Preparation method of active magnesium aluminate spinel powder
CN112048872A (en) * 2020-09-27 2020-12-08 昆山市腾隆金属制造有限公司 High-intelligent self-cleaning environment-friendly energy-saving shaping dryer
CN117109012B (en) * 2023-09-26 2024-04-19 北京石油化工学院 Incinerator control method, device, equipment and storage medium

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013531775A (en) * 2010-05-27 2013-08-08 ハヨン チャン Firewood boiler
WO2012026950A1 (en) * 2010-08-26 2012-03-01 Peter Scott Natural draft curing system
CN102168886A (en) * 2010-12-30 2011-08-31 河南农业大学 Combustion furnace for flue-cured bulk curing barn
CN102087046A (en) * 2011-01-26 2011-06-08 刘龙庆 Hot-water hot-air double-purpose machine
CN102506417A (en) * 2011-11-15 2012-06-20 安徽环态炉业有限公司 Combustion process for biomass boiler
CN103322676A (en) * 2013-05-22 2013-09-25 浙江光炎节能环保科技股份有限公司 Biomass fuel hot blast device
CN103759416A (en) * 2014-01-11 2014-04-30 孙长杰 Cabinet type biomass hot blast stove
CN105333608B (en) * 2014-08-08 2019-01-22 天津市凯普森冷暖设备有限公司 A kind of biomass warm-air drier
CN105333608A (en) * 2014-08-08 2016-02-17 天津市凯普森冷暖设备有限公司 Biomass warm air blower
JP2016050744A (en) * 2014-09-02 2016-04-11 清本鐵工株式会社 Hot air generating device
JP2016057048A (en) * 2014-09-08 2016-04-21 航 青木 Wood chip burning thermal medium oil burner
CN106765318A (en) * 2016-11-30 2017-05-31 河北乾昇节能科技发展有限公司 Greenhouse novel biomass heats carburetting gasification furnace
CN106595040A (en) * 2016-12-13 2017-04-26 延吉日明生物质热能科技有限公司 Biomass-particle horizontal atmospheric-pressure water boiler
CN107588544A (en) * 2017-09-30 2018-01-16 台山市合利生物质科技有限公司 Biomass fuel blast heater
CN111925223A (en) * 2020-08-22 2020-11-13 郑州经纬科技实业有限公司 Preparation method of active magnesium aluminate spinel powder
CN111925223B (en) * 2020-08-22 2023-03-24 郑州经纬科技实业有限公司 Preparation method of active magnesium aluminate spinel powder
CN112048872A (en) * 2020-09-27 2020-12-08 昆山市腾隆金属制造有限公司 High-intelligent self-cleaning environment-friendly energy-saving shaping dryer
CN117109012B (en) * 2023-09-26 2024-04-19 北京石油化工学院 Incinerator control method, device, equipment and storage medium

Similar Documents

Publication Publication Date Title
JP2009068817A (en) Batch type combustion boiler using woody biomass or carbide as fuel and hot air generating device
CN103742946A (en) Downdraft biomass gasification combustion cooking and heating furnace
WO2012088659A1 (en) Preventing slag-bonding stove
JP2014037955A (en) Device for continuously producing warm water using woodchip biomass as fuel
JP2008088310A (en) High temperature carbonization method and high temperature carbonization apparatus
JP6232539B2 (en) Solid fuel combustion apparatus, solid fuel combustion method, gas heating apparatus, liquid heating apparatus, power generation system, and cooling system
KR101527682B1 (en) Clean Pellet Stove of High Efficiency
EP3438528A1 (en) Solid fuel combustion device, solid fuel combustion method, gas heating device, liquid heating device, power generation system, and cooling system
CN205535842U (en) Two room heat accumulation after burner of domestic waste
CN107062206A (en) Direct combustion system and its application occur for biological fuel gas
JP6232540B2 (en) Solid fuel combustion apparatus, solid fuel combustion method, gas heating apparatus, liquid heating apparatus, power generation system, and cooling system
KR101185745B1 (en) Carbonized rice-hulls burner
CN201437987U (en) Waste gas incinerator
AU2020100195A4 (en) An improved combustion system
JP6277475B2 (en) Solid fuel combustion apparatus, solid fuel combustion method, gas heating apparatus, liquid heating apparatus, power generation system, and cooling system
Cioca et al. Local environmental impact of wood combustion in agro-tourism structures
CN111336529A (en) Waste gas collection and multiple combustion system generated by environment-friendly machine-made charcoal production line
CN105805756A (en) Environment-friendly efficient pyrolysis device for garbage
CN201225671Y (en) Multiple-fuel environment protection energy-saving type cooking-heating two-purpose stove
JP5838430B1 (en) Combustion device and boiler
JP3477572B2 (en) Stoves and boilers that also serve as carbonization furnaces
JP3479628B2 (en) Carbonization equipment
CN102944005B (en) Biomass high-temperature pyrolysis gasification combustor
CN212157193U (en) Waste gas collection and multiple combustion system generated by environment-friendly machine-made charcoal production line
CN214619571U (en) Solid waste comprehensive treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100914

Free format text: JAPANESE INTERMEDIATE CODE: A621

A072 Dismissal of procedure

Effective date: 20120306

Free format text: JAPANESE INTERMEDIATE CODE: A073