WO2024003977A1 - 鋼製ロールの円筒研削に適した電解ドレッシング装置及び電解ドレッシング方法 - Google Patents

鋼製ロールの円筒研削に適した電解ドレッシング装置及び電解ドレッシング方法 Download PDF

Info

Publication number
WO2024003977A1
WO2024003977A1 PCT/JP2022/025493 JP2022025493W WO2024003977A1 WO 2024003977 A1 WO2024003977 A1 WO 2024003977A1 JP 2022025493 W JP2022025493 W JP 2022025493W WO 2024003977 A1 WO2024003977 A1 WO 2024003977A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
grinding wheel
grinding
electrolytic dressing
power supply
Prior art date
Application number
PCT/JP2022/025493
Other languages
English (en)
French (fr)
Inventor
雄大 田中
和博 梁井
孝 鈴木
保男 三木
太地 岩田
晶彦 藤原
Original Assignee
株式会社シントク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シントク filed Critical 株式会社シントク
Priority to JP2022552495A priority Critical patent/JP7157990B1/ja
Priority to CN202280083074.9A priority patent/CN118401344A/zh
Priority to PCT/JP2022/025493 priority patent/WO2024003977A1/ja
Priority to TW112123752A priority patent/TWI837030B/zh
Publication of WO2024003977A1 publication Critical patent/WO2024003977A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • B23H3/04Electrodes specially adapted therefor or their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/04Treating surfaces of rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces

Definitions

  • the present invention relates to an electrolytic dressing device and an electrolytic dressing method suitable for cylindrical grinding of steel rolls for rolling.
  • steel rolling rolls such as cast steel and tool steel (die steel, high speed steel).
  • hot rolling which involves rolling hot materials, the material is heated and is at a high temperature, making it soft.
  • the purpose of hot rolling is to reduce the thickness of the material by crushing the material as much as possible during high temperatures.
  • Large diameter cast steel rolls are used for hot rolling. After hot rolling, it is shaped into plates and coils, resulting in thick plate products.
  • Cold rolling is the process of rolling a hot-rolled plate product into a thin plate or ribbon product. The plates and coils have already been cooled and are at room temperature. The strength of the material is higher at room temperature than at high temperature, and the force required for rolling is greater.
  • the rolls used for cold rolling are made of higher-strength steel that can match the strength of the raw material. Therefore, high alloy tool steels such as die steel and high speed steel are also used. By using a high alloy, the roll is given higher strength and toughness, making it possible to roll high-strength materials.
  • polished band steel such as high-strength stainless steel is used for springs, etc., and can be said to be a typical high-hardness material.
  • High-alloy high-speed steel rolls are suitable for cold rolling, but repeated cold rolling requires periodic regrinding. However, since high-speed steel has high strength and toughness, re-grinding is a difficult process.
  • high-speed steel which has a greater number and amount of added alloying elements than die steel, is often used for rolling when manufacturing thin plates and ribbons of high-strength stainless steel, as described above.
  • high-speed steel rolls By rolling with high-speed steel rolls, the surface quality of the plate or strip after rolling is good and a beautiful appearance can be obtained.
  • high-speed steel rolls have poor grindability and are therefore used less frequently than die steel, which poses a problem for the widespread use of high-speed steel rolls. Improving the re-grinding process for rolling rolls will also improve the quality of metal plates and strips.
  • FIG. 7 shows a typical configuration of a conventional electrolytic dressing device.
  • the grinding device disclosed in Patent Document 1 includes a grindstone for grinding a workpiece, an electrolytic dressing electrode whose electrode surfaces face each other across a gap in which the grinding surface of the grindstone and the grinding fluid are interposed, and a grinding fluid is interposed therebetween.
  • the grinding wheel is equipped with a power source that energizes the grindstone and the electrolytic dressing electrode, and the workpiece is ground while electrolytically dressing the surface of the grindstone.
  • the conventional technique disclosed in Patent Document 1 involves electrolytically dressing the grindstone itself, and does not electrolytically remove the grinding powder adhering to the surface of the grindstone.
  • the electrodes used in conventional electrolytic dressing devices as shown in Figure 7 are metal blocks, which are heavy and difficult to manufacture, transport, and install, and are expensive. .
  • an object of the present invention is to provide an electrolytic dressing device and an electrolytic dressing method suitable for cylindrical grinding of steel rolls.
  • an electrolytic dressing device includes: a conductive grinding wheel used for grinding a steel roll for rolling; an electrode facing the grinding wheel with a gap; and the grinding wheel and the electrode.
  • An electrolysis system that supplies electrically conductive grinding liquid to the gap between the grinding wheel and the electrode to electrolytically remove grinding powder from the steel roll that adheres to the surface of the grinding wheel during grinding.
  • the electrode has a surface facing the grinding wheel made of a thin metal plate, and a portion other than the surface facing the grinding wheel made of an insulating material.
  • the inside of the electrode is configured to be hollow, and the thin plate is provided with a plurality of minute grinding liquid supply holes, and the grinding liquid may be supplied to the gap through the inside of the electrode and the grinding liquid supply holes.
  • the inside of the electrode is divided by at least one partition, and the diameter of the grinding fluid supply hole corresponds to the inside of the electrode that is divided into large parts by the partition, and the electrode that is divided into small parts by the partition.
  • the grinding fluid supply hole may be formed differently depending on the inside of the grinding fluid supply hole.
  • the same electrode as the first electrode is further provided as a second electrode at a position different from the first electrode so as to face the grinding wheel with a gap, and the power source is connected to the grinding wheel.
  • the power source is connected to the grinding wheel.
  • power may be supplied to the second electrode.
  • Either one of the electrodes may be provided vertically above the grinding wheel.
  • Either one of the electrodes may be provided vertically below the grinding wheel.
  • the outer race further includes a conductive bearing whose outer race is electrically connected to a power source by a power supply line, and the bearing is fixed to the shaft of the grinding wheel so as to be able to conduct electricity, and power is supplied from the power source to the grinding wheel through the bearing. Also good.
  • the bonding material for the grinding wheel may be a metal resin bonding material in which the resin bonding material contains metal fibers to impart electrical conductivity.
  • the grinding wheel may have a grit of #400 to #2,000.
  • the abrasive grains of the grinding wheel may be CBN abrasive grains.
  • the arc length of the thin plate may exceed 15% of the circumferential length of the grinding wheel.
  • an electrolytic dressing device and an electrolytic dressing method suitable for cylindrical grinding of steel rolls it is possible to provide an electrolytic dressing device and an electrolytic dressing method suitable for cylindrical grinding of steel rolls.
  • FIG. 1 is a diagram showing the configuration of an electrolytic dressing device 100 according to a first embodiment of the present invention.
  • the electrolytic dressing device 100 includes a grinding wheel 102, an electrode 103, and a power source 104.
  • reference numeral 101 is a steel roll for rolling.
  • reference numeral 105 is a grinding fluid supply source (tank)
  • reference numeral 106 is a nozzle for discharging the grinding fluid, which is connected to the grinding fluid supply source (tank) by a tube (hose).
  • the grinding wheel 102 is a cylindrical conductive grinding wheel used for grinding the steel roll 101, and is rotationally driven by a rotating shaft supported by a device such as a cylindrical grinder (not shown).
  • a device such as a cylindrical grinder (not shown).
  • Various existing bond materials can be used as the bond material for the grinding wheel 102, but since the metal bond is hard, it may repel the steel roll and cause defects such as tataki on the surface of the steel roll. Therefore, as the bonding material for the grinding wheel 102, a metal resin bonding material in which the resin bonding material contains metal fibers to impart electrical conductivity (electroconductivity) is suitable.
  • the grit of the grinding wheel 102 various existing grits can be used, but as a result of extensive experiments by the applicant, the grit is in the range of #200 to #4,000, more specifically in the range of #400 to #2,000. It was found that this is suitable.
  • the counts (grain sizes) described in this specification are JIS R 6001-1:2017 (particle size of abrasive for grinding wheels - Part 1: Coarse grains) and JIS R 6001-2:2017 (grinding wheels).
  • the particle size of abrasives for use in grinding materials - Part 2: Fine powder) and the notation commonly used in the industry that manufactures and sells grinding wheels shall be followed or conformed to.
  • Various existing types of abrasive grains can be used as the abrasive grains for the grinding wheel 102, but as a result of intensive experiments by the applicant of the present application, it has been found that CBN is suitable.
  • the electrode 103 is an electrode for electrolytically removing grinding powder from the steel roll 101 adhering to the surface of the grinding wheel 102.
  • the electrode 103 is block-shaped as shown in the figure, and has an electrode surface with an arcuate cross section.
  • This electrode surface has a long rectangular shape facing the outer circumferential surface of the grinding wheel 102, and has a gap between it and the outer circumferential surface of the grinding wheel 102, for example, from 0.5 mm to 7.0 mm, to allow the presence of conductive grinding fluid. It is formed in the shape of a cylindrical inner circumferential surface so that a gap of about 100 degrees is formed.
  • FIG. 1 shows a state in which the electrodes 103 are provided side by side with the grinding wheel 102, the position where the electrodes 103 are provided is not limited to this.
  • FIGS. 2A to 2C are a front view of the electrode 103
  • FIG. 2B is a side view of the electrode 103
  • FIG. 2C is a cross-sectional view of the electrode 103 taken along the line AA.
  • the surface of the electrode 103 facing the grinding wheel 102 that is, the electrode surface having an arcuate cross section, is constituted by a thin metal plate 201.
  • the electrode 103 is made of an insulating material 200 in a portion other than the surface facing the grinding wheel 102 .
  • various metals such as titanium and copper can be used.
  • the width of the thin plate 201 (the width in the lateral direction in FIG. 2B) is preferably the same as or larger than the width of the grinding wheel 102.
  • various plastics such as vinyl chloride and polycarbonate can be used.
  • the length of the electrode surface in the circumferential direction is the circumferential length (outer circumferential length) of the grinding wheel 102. It has been found that good effects can be obtained when the ratio of the thin plate 201 covering the grinding wheel 102 in the circumferential direction exceeds 15%.
  • the power source 104 is a power source that supplies (powers) the grinding wheel 102 and the electrodes 103 with appropriate voltage and current according to the grinding conditions.
  • various types of power sources can be applied, such as a DC power source, a DC pulse power source, an AC power source, and a bipolar amplifier.
  • power is supplied to the electrode 103 (thin plate 201) via a power supply line (wiring) 108, and to the grinding wheel 102 via a power supply line (wiring) 109.
  • power may be supplied to the grinding wheel 102 by a brush provided at the tip of the power supply line 109, but if power is supplied via a power supply attachment 107 (bearing 301) described later, Power can be supplied more stably.
  • FIGS. 3A and 3B are a side view of the attachment 107
  • FIG. 3B is a front view of the attachment 107.
  • the attachment 107 includes a bearing 301 as a main component, and a sleeve 300 that accommodates the bearing 301 inside.
  • the sleeve 300 may be omitted as appropriate.
  • the bearing 301 is electrically conductive and is fixed to the shaft (rotary shaft) of the grinding wheel 102 so as to be electrically conductive.
  • Providing electrical conductivity (current conductivity) to the bearing 301 is achieved, for example, by using conductive (current conductivity) grease when assembling the bearing 301.
  • the bearing 301 is electrically connected to the power supply 104 by fixing the power supply line (wiring) 109 to the outer race.
  • the method of fixing the power supply line (wiring) 109 to the outer race is not particularly limited, and for example, the method of fixing the power supply line (wiring) 109 by inserting it into a hole as shown in reference numeral 302, or the method of fixing the power supply line (wiring) 109 to the outer race by soldering.
  • a method of directly fixing it to is applicable.
  • the electrode 103 is fixed so as to face the conductive grinding wheel 102 used for grinding the steel roll 101 with a gap that allows the interposition of the conductive grinding fluid.
  • grinding liquid is supplied from the nozzle 106 to the gap between the grinding wheel 102 and the electrode 103, and power is supplied to the grinding wheel 102 and the electrode 103 from the power source 104.
  • the grinding powder of the steel roll 101 adhering to the surface of the grinding wheel 102 during the grinding process is continuously electrolytically removed (electrolytic dressing), and the abrasive grains of the grinding wheel 102 are maintained in contact with the steel roll 101. This improves grindability.
  • a conductive bearing 301 whose outer race is electrically connected to the power source 104 through a power supply line (wiring) 109 is prepared, and the shaft of the grinding wheel 102 is provided so as to be able to conduct electricity. By supplying power to the grinding wheel 102 from the power source 104, stable power supply is possible.
  • FIG. 4 is a diagram showing the configuration of an electrolytic dressing device 400 according to a second embodiment of the present invention.
  • the electrolytic dressing device 400 includes a grinding wheel 102, an electrode 401, and a power source 104.
  • the steel roll 101, the grinding wheel 102, the power supply 104, the grinding fluid supply source (tank) 105, the attachment 107, the power supply line (wiring) 108, and the power supply line (wiring) 109 are the same as those in the first embodiment.
  • the electrode 401 is an electrode for electrolytically removing grinding powder from the steel roll 101 adhering to the surface of the grinding wheel 102.
  • the electrode 401 has a block shape as shown in the figure, and has an electrode surface having an arcuate cross section.
  • This electrode surface has a long rectangular shape facing the outer circumferential surface of the grinding wheel 102, and has a gap between it and the outer circumferential surface of the grinding wheel 102, for example, from 0.5 mm to 7.0 mm, to allow the presence of conductive grinding fluid. It is formed in the shape of a cylindrical inner circumferential surface so that a gap of about 100 degrees is formed.
  • FIG. 4 shows a state in which the electrode 401 is provided side by side with the grinding wheel 102, the position where the electrode 401 is provided is not limited to this.
  • FIG. 5A is a front view of the electrode 401
  • FIG. 5B is a side view of the electrode 401
  • FIG. 5C is a sectional view of the electrode 401 taken along the line BB.
  • the surface of the electrode 401 facing the grinding wheel 102 that is, the electrode surface having an arcuate cross section
  • the electrode 401 is made of an insulating material 500 in a portion other than the surface facing the grinding wheel 102 .
  • various metals such as titanium and copper can be used.
  • the width of the thin plate 502 (the width in the lateral direction in FIG.
  • the electrode 401 is significantly lighter in weight than conventional electrodes that are entirely made of metal, and also improves manufacturability, portability and installation, and reduces costs. The effect of this can be obtained.
  • the size of the electrode surface is not particularly limited, as a result of intensive experiments by the applicant, the length of the electrode surface in the circumferential direction, that is, the arc length of the thin plate 502 is the circumferential length (outer circumferential length) of the grinding wheel 102. It has been found that good effects can be obtained when the ratio of the thin plate 502 covering the grinding wheel 102 in the circumferential direction exceeds 15%.
  • the electrode 401 has a hollow interior 504, at least one grinding fluid inlet 501 is provided in the insulating material 500, and a plurality of minute grinding fluid supply holes 503 in the thin plate 502.
  • the electrode 103 differs from the electrode 103 according to the first embodiment in that the electrode 103 is provided with the electrode 103 of the first embodiment.
  • the grinding liquid inlet 501 is an opening for introducing the grinding liquid into the interior 504 of the electrode 401, and is connected to a grinding liquid supply source (tank) through a tube (hose).
  • the grinding fluid inlet 501 is provided on the front of the electrode 401, it may be provided on other surfaces such as the back.
  • the grinding fluid is uniformly supplied to the gap between the grinding wheel 102 and the electrode 401 by passing through the inside 504 of the electrode 401 and the grinding fluid supply hole 503 (grinding fluid supply process).
  • the hole diameter can be made smaller as the grinding fluid supply hole 503 is located lower (the hole diameter is larger as the grinding fluid supply hole 503 is located higher).
  • the electrode 401 can also have a form as shown in FIG. 5D. That is, at least one partition wall 505 that divides the interior 504 of the electrode 401 can be provided in the interior 504 of the electrode 401 .
  • the partition wall 505 By providing the partition wall 505 inside the electrode 401, the rigidity of the electrode 401 can be increased, and the grinding fluid introduced from the grinding fluid inlet 501 can be distributed in a well-balanced manner inside the electrode 401 inside 504. .
  • the grinding fluid supply hole 503 (03L) corresponding to the interior 504 (504L) that is largely divided by the partition 505, and the partition
  • the hole diameter of the grinding liquid supply hole 503 can be set to be different depending on the size of the grinding liquid supply hole 503 (503S) corresponding to the interior 504 (504S) which is divided into smaller parts by 505.
  • the grinding fluid supply hole 503 (503L) corresponding to the interior 504 (504L) that is largely divided by the partition 505 has a small hole diameter, and the grinding fluid supply hole 503 that corresponds to the interior 504 (504S) that is divided into small parts by the partition 505 is made small.
  • the internal space 504 (504L), which is largely divided by the partition wall 505, is divided into smaller parts by the partition wall 505 and the corresponding grinding fluid supply hole 503 (503L).
  • the grinding liquid supply hole 503 (503S) By making the diameter of the grinding liquid supply hole 503 (503S) different from that of the grinding liquid supply hole 503 (503S) corresponding to the inside 504 (504S), the grinding liquid can be supplied to the gap between the grinding wheel 102 and the electrode 401. It is possible to eliminate the non-uniformity of
  • the grinding powder of the steel roll 101 adhering to the surface of the grinding wheel 102 during grinding is continuously electrolytically removed (electrolytic dressing ), the abrasive grains of the grinding wheel 102 can be kept in contact with the steel roll 101, and the grindability is improved.
  • a conductive bearing 301 whose outer race is electrically connected to a power source 104 via a power supply line (wiring) 109 is prepared. If the shaft of the grinding wheel 102 is provided so as to be energized, and power is supplied from the power source 104 to the grinding wheel 102 via the bearing 301, stable power supply is possible.
  • the electrode 401 is an electrode (first electrode) for electrolytically removing grinding powder from the steel roll 101 adhering to the surface of the grinding wheel 102.
  • the configuration of the electrode 401 is similar to that of the second embodiment. Note that although FIG. 6A shows a state in which the electrode 401 is provided side by side with the grinding wheel 102, the position where the electrode 401 is provided is not limited to this. Further, in this embodiment, the electrode 401 according to the second embodiment is used as the first electrode, but the first electrode may be the electrode 103 according to the first embodiment.
  • the electrode 601 is an electrode (second electrode) having the same configuration as the electrode 401 serving as the first electrode.
  • the electrode 601 as the second electrode is provided at a different position from the electrode 401 as the first electrode so as to face the grinding wheel 102 with a gap (second electrode installation step). Note that although FIG. 6A shows a state in which the electrode 601 is provided vertically below the grinding wheel 102, the position where the electrode 601 is provided is not limited to this.
  • the power supply 104 supplies power to the electrode 601 (second electrode) instead of the grinding wheel 102 via the power supply line (wiring) 109 (power supply switching step).
  • the grinding powder of the steel roll 101 adhering to the surface of the grinding wheel 102 during grinding is continuously electrolytically removed (electrolytic dressing ), the abrasive grains of the grinding wheel 102 can be kept in contact with the steel roll 101, and the grindability is improved.
  • power is supplied from the power supply 104 to the electrode 401 (first electrode) and the electrode 601 (second electrode), power can be supplied directly by a brush to the rotating grinding wheel 102 or via the bearing 301. This eliminates the need for a full power supply.
  • the positions where the electrode 401 (first electrode) and the electrode 601 (second electrode) are provided are not particularly limited, but if one of the electrodes is provided vertically below the grinding wheel 102, It does not compress the surrounding space and can be easily installed by simply placing the electrodes. Furthermore, if one of the electrodes is provided vertically above the grinding wheel 102 as in the modification shown in FIG. 6B, gravity can be used to connect the grinding wheel 102 and the electrodes like a shower. Grinding fluid can be efficiently supplied to the gap.
  • fine grooves through which the grinding liquid can flow can be formed on the electrode surface, so that the grinding liquid supplied from the grinding liquid supply hole 503 can flow through the grooves and reach the entire electrode surface. This further increases the uniformity of supply of the grinding liquid to the gap between the grinding wheel and the electrode.
  • the frequency of use of high-speed steel for rolling rolls is increased, and the difficulty in manufacturing plates and strips with highly functional surfaces is reduced.
  • the electrolytic dressing device and electrolytic dressing method according to the present invention can also be applied to high-performance rolls other than tool steel (for example, carbide rolls and ceramic rolls).
  • high-performance rolls other than tool steel for example, carbide rolls and ceramic rolls.
  • the possibility of cold rolling hard and tough materials will expand, and the applications of high hardness and tough materials other than stainless steel will expand.
  • a material having higher strength and toughness than steel for example, a superalloy
  • Electrolytic dressing device 101 Steel roll 102 Grinding wheel 103 Electrode (first electrode) 104 Power supply 105 Grinding fluid supply source (tank) 106 Nozzle 107 Attachment 108 Power supply line (wiring) 109 Power supply line (wiring) 200 Insulating material 201 Thin plate 300 Sleeve 301 Bearing 302 Hole 400 Electrolytic dressing device 401 Electrode (first electrode) 500 Insulating material 501 Grinding fluid inlet 502 Thin plate 503 Grinding fluid supply hole 503L Grinding fluid supply hole 503S Grinding fluid supply hole 504 Inside (internal space) 504L interior (internal space) 504S interior (internal space) 505 Partition 600 Electrolytic dressing device 601 Electrode (second electrode) 700 Electrolytic dressing device 701 Electrode 702 DC power supply 703 Power supply line (wiring) 704 Power supply line (wiring)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

鋼製ロールの円筒研削に適した電解ドレッシング装置及び電解ドレッシング方法を提供する。 圧延用の鋼製ロールの研削加工に用いる導電性の研削砥石と、研削砥石と間隙をもって対向する電極と、研削砥石及び電極に給電する電源と、を備え、研削砥石と電極との間の間隙に導電性の研削液を供給して研削加工中の研削砥石の表面に付着した鋼製ロールの研削粉を電解除去する電解ドレッシング装置であって、電極は、研削砥石に対向する面が金属製の薄板で構成され、研削砥石に対向する面以外の部分が絶縁材料で構成される。

Description

鋼製ロールの円筒研削に適した電解ドレッシング装置及び電解ドレッシング方法
 本発明は、圧延用の鋼製ロールの円筒研削に適した電解ドレッシング装置及び電解ドレッシング方法に関する。
 鋼製圧延ロールには鋳鋼、工具鋼(ダイス鋼、ハイス鋼)などの種類がある。熱い素材を圧延する熱間圧延は素材が加熱され高温のため軟らかい。熱間圧延は高温の間にできるだけ素材を潰して板厚を下げるのを目的とする。熱間圧延には大径の鋳鋼ロールが使用される。熱間圧延後は板やコイルの形状になり、厚板製品となる。熱間圧延後の厚板製品を、薄板や薄帯の製品にするための圧延が冷間圧延である。板やコイルは既に冷却されており室温になっている。素材は高温より室温の方が高強度で圧延に要する力も大きい。冷間圧延に使われるロールは素材の強度に負けない、より高強度の鋼で造られる。そのため、ダイス鋼やハイス鋼といった高合金の工具鋼も使用される。高合金とすることでロールはより高強度と強靭性が付与され、高強度材の圧延を可能とする。特に高強度のステンレス鋼などの磨き帯鋼はバネなどに使用されるもので、代表的な高硬度の材料と言える。これを冷間圧延するためには高合金のハイス鋼ロールが適しているが、繰り返し冷間圧延するには定期的に再研削が必要となる。しかしながら、ハイス鋼は高強度かつ強靭性なので、再研削は難加工工程となっている。
 鋼製ロールで板や帯の素材を圧延すると素材とロールが接触する面には跡が残る。この跡をそのままにしておけば引き続き圧延される素材に形状不良や疵が発生し不具合となる。そのためロールは定期的に再研削される。しかしながらダイス鋼やハイス鋼は高強度、強靭性のため研削砥石表面にロール研削粉が付着して目詰まりを起こしやすく、研削が難くなる。これにより、1本のロールを研削するのに長時間を要する課題が存在していた。研削性が悪いと研削効率が下がり、結果として板や帯の生産効率も落ちる。特にダイス鋼よりも添加合金元素数と添加量の多いハイス鋼は、上述のように素材自体が高強度のステンレス鋼の薄板や薄帯を製造する際の圧延に用いられることが多い。ハイス鋼ロールにより圧延すれば、圧延後の板や帯の表面性状が良く、美麗な外観を得ることができる。しかし上述のようにハイス鋼ロールは研削性が悪いため、ダイス鋼と比べて使用される頻度が低く、ハイス鋼ロールが普及する上での課題となっている。圧延ロールの再研削の工程を改善することで、金属の板、帯の製品の品質を向上させることにもつながる。
 上述の研削性を向上する技術として、研削加工と同時に(インプロセスで)砥石の表面を電解ドレッシングする技術が存在する。従来の電解ドレッシング装置の典型的な構成を示したのが図7である。また、例えば、特許文献1に開示される技術も存在する。特許文献1に開示される研削加工装置は、ワークを研削加工する砥石と、砥石の研削面と研削液を介在させる間隙を隔てて電極面が対向する電解ドレッシング用電極と、研削液を介在して砥石と電解ドレッシング用電極とを通電する電源とを備え、砥石の表面を電解ドレッシングしつつワークを研削加工するものである。しかしながら、特許文献1に開示されるような従来の技術は、砥石そのものを電解ドレッシングするものであり、砥石の表面に付着した研削粉を電解により除去するものではなかった。
 また、図7に示されるような従来の電解ドレッシング装置に用いられる電極は金属製のブロックであったため、重量があるために製作性、可搬性や設置性が悪く、高いコストも要していた。
特開2010-234474号公報
 そこで、本発明は、鋼製ロールの円筒研削に適した電解ドレッシング装置及び電解ドレッシング方法を提供することを目的とする。
 上記の課題を解決するために、本発明に係る電解ドレッシング装置は、圧延用の鋼製ロールの研削加工に用いる導電性の研削砥石と、研削砥石と間隙をもって対向する電極と、研削砥石及び電極に給電する電源と、を備え、研削砥石と電極との間の間隙に導電性の研削液を供給して研削加工中の研削砥石の表面に付着した鋼製ロールの研削粉を電解除去する電解ドレッシング装置であって、電極は、研削砥石に対向する面が金属製の薄板で構成され、研削砥石に対向する面以外の部分が絶縁材料で構成される。
 電極は、その内部が中空に構成され、薄板は、複数の微小な研削液供給孔を備え、研削液は、電極の内部及び研削液供給孔を通過して間隙に供給されても良い。
 電極の内部は、少なくとも一つの隔壁によって分割されており、研削液供給孔は、その孔径が、隔壁によって大きく分割された電極の内部に対応する研削液供給孔と、隔壁によって小さく分割された電極の内部に対応する研削液供給孔とで異なるように形成されても良い。
 上述の電極を第1電極としたときに、第1電極とは異なる位置に研削砥石と間隙をもって対向するようにして、第1電極と同じ電極を第2電極として更に備え、電源は、研削砥石に代えて第2電極に給電しても良い。
 どちらか一方の電極が、研削砥石の鉛直上方に設けられても良い。
 どちらか一方の電極が、研削砥石の鉛直下方に設けられても良い。
 アウターレースが給電線によって電源と電気的に接続される導電性を備えたベアリングを更に備え、ベアリングは、研削砥石の軸に通電可能に固定され、ベアリングを介して電源から研削砥石に給電しても良い。
 研削砥石のボンド材は、レジンボンド材に金属ファイバーを含有させて通電性を付与したメタルレジンボンド材でも良い。
 研削砥石は、その番手が♯400から♯2,000のものでも良い。
 研削砥石は、その砥粒がCBN砥粒でも良い。
 薄板は、その円弧長が研削砥石の円周長の15パーセントを超えても良い。
 また、本発明に係る電解ドレッシング方法は、圧延用の鋼製ロールの研削加工に用いる導電性の研削砥石と、研削砥石と間隙をもって対向する電極との間の間隙に導電性の研削液を供給し、研削砥石と電極とに電源より給電して、研削加工中の研削砥石の表面に付着した鋼製ロールの研削粉を電解除去する電解ドレッシング方法であって、電極は、研削砥石に対向する面が複数の微小な研削液供給孔を備える金属製の薄板で構成され、研削砥石に対向する面以外の部分が絶縁材料で中空に構成されており、研削液を、電極の内部及び研削液供給孔を通して間隙に供給する研削液供給工程を備える。
 上述の電極を第1電極としたときに、第1電極とは異なる位置に、研削砥石と間隙をもって対向するようにして、第1電極と同じ電極を第2電極として設置する第2電極設置工程と、研削砥石への給電を第2電極への給電に切り替える給電切替工程と、を更に備えても良い。
 アウターレースが給電線によって電源と電気的に接続される導電性を備えたベアリングを準備する給電用ベアリング準備工程と、ベアリングを、研削砥石の軸に通電可能に設ける給電用ベアリング設置工程と、を更に備え、ベアリングを介して電源から砥石に給電しても良い。
 本発明によれば、鋼製ロールの円筒研削に適した電解ドレッシング装置及び電解ドレッシング方法を提供できる。
本発明の第一実施形態に係る電解ドレッシング装置の構成を示した図である。 本発明の第一実施形態に係る電極を示した図(正面図)である。 本発明の第一実施形態に係る電極を示した図(側面図)である。 本発明の第一実施形態に係る電極を示した図(A-A線断面図)である。 本発明の第一実施形態に係るアタッチメントを示した図(側面図)である。 本発明の第一実施形態に係るアタッチメントを示した図(正面図)である。 本発明の第二実施形態に係る電解ドレッシング装置の構成を示した図である。 本発明の第二実施形態に係る電極を示した図(正面図)である。 本発明の第二実施形態に係る電極を示した図(側面図)である。 本発明の第二実施形態に係る電極を示した図(B-B線断面図)である。 本発明の第二実施形態に係る電極の変形例を示した図(B-B線断面図)である。 本発明の第三実施形態に係る電解ドレッシング装置の構成を示した図である。 本発明の第三実施形態に係る電解ドレッシング装置の変形例の構成を示した図である。 従来の電解ドレッシング装置の構成の一例を示した図である。
 以下、本発明に係る電解ドレッシング装置及び電解ドレッシング方法を説明する。なお、各図を通して、同一の参照符号が付されているものは、同一または同等のものである。
 まず、本発明の第一実施形態に係る電解ドレッシング装置100について説明する。
 図1は、本発明の第一実施形態に係る電解ドレッシング装置100の構成を示した図である。電解ドレッシング装置100は、研削砥石102と、電極103と、電源104とを備えている。なお、参照符号101は圧延用の鋼製ロールである。また、参照符号105は研削液供給源(タンク)、参照符号106は研削液を吐出するノズルであり、チューブ(ホース)によって研削液供給源(タンク)に接続されている。
 研削砥石102は、鋼製ロール101の研削加工に用いる円柱状の導電性の砥石であり、図示しない円筒研削盤等の装置に支持された回転軸によって回転駆動される。研削砥石102のボンド材としては既存の種々のものが適用可能だが、メタルボンドは硬いために鋼製ロールと反発し合い、鋼製ロールの表面にタタキのような欠陥が生じる場合がある。そのため、研削砥石102のボンド材としては、レジンボンド材に金属ファイバーを含有させて通電性(導電性)を付与したメタルレジンボンド材が好適である。研削砥石102の番手としては既存の種々の番手が適用可能だが、本願出願人が鋭意実験した結果、♯200から♯4,000の範囲、より限定するならば#400から#2,000の範囲が好適であるとの知見を得た。なお、本明細書に記載する番手(粒度)は、JIS R 6001-1:2017(研削といし用研削材の粒度-第1部:粗粒)及びJIS R 6001-2:2017(研削といし用研削材の粒度-第2部:微粉)、並びに、研削砥石を製造及び販売する業界で通常使用されている表記に従う又は準ずる。研削砥石102の砥粒としては既存の種々の種類が適用可能だが、本願出願人が鋭意実験した結果、CBNが好適であるとの知見を得た。
 電極103は、研削砥石102の表面に付着した鋼製ロール101の研削粉を電解除去するための電極である。電極103は、図示されるようにブロック状であって、断面円弧状の電極面を備えている。この電極面は、研削砥石102の外周面と対向する長い矩形で、且つ、研削砥石102の外周面との間に導電性の研削液の介在を許容する間隙、例えば0.5mmから7.0mm程度の間隙が形成されるように円筒内周面状に形成されている。なお、図1では電極103が研削砥石102の横に並ぶようにして設けられた状態を示しているが、電極103を設ける位置はこれに限定されない。
 ここで、図2A乃至図2Cを参照しながら、電極103について更に説明する。図2Aは電極103の正面図であり、図2Bは電極103の側面図であり、図2Cは電極103のA-A線断面図である。図示されるように、電極103は、研削砥石102に対向する面、即ち断面円弧状の電極面が、金属製の薄板201によって構成されている。また、電極103は、研削砥石102に対向する面以外の部分が、絶縁材料200で構成されている。薄板201の具体的な素材としては、チタン、銅など種々の金属が適用可能である。薄板201の巾(図2Bにおける横方向の幅)は、研削砥石102の巾と同じかそれ以上であることが好ましい。絶縁材料200の具体的な材料としては、例えば塩化ビニル、ポリカーボネートなど種々のプラスチックが適用可能である。電極103を以上に述べた構成とすることで、全体が金属で構成されていた従来の電極と比較して大幅に軽量化される他、製作性、可搬性や設置性の向上やコストの削減の効果が得られる。なお、電極面の大きさについては特に限定されないが、本願出願人が鋭意実験した結果、電極面の周方向の長さ、即ち薄板201の円弧長が研削砥石102の円周長(外周長)の15パーセントを超える(即ち、周方向において薄板201が研削砥石102をカバーする比率が15パーセントを超える)場合に良好な効果が得られるとの知見を得た。
 電源104は、研削条件に応じた適正な電圧、電流を研削砥石102及び電極103に供給(給電)する電源である。電源104としては、直流電源、直流パルス電源、交流電源、バイポーラ増幅器など種々の方式の電源が適用可能である。本実施形態では、電極103(薄板201)に対しては給電線(配線)108を介して、研削砥石102に対しては給電線(配線)109を介して給電が行われる。なお、研削砥石102に対しては、給電線109の先端に設けられるブラシによって給電が行われても良いが、後述する給電用のアタッチメント107(ベアリング301)を介して給電する形態とすれば、より安定して給電することができる。
 次に、図3A及び図3Bを参照しながら、砥石102への安定した給電を可能とするアタッチメント107について説明する。図3Aはアタッチメント107の側面図であり、図3Bはアタッチメント107の正面図である。図示されるように、アタッチメント107は、主要部品としてベアリング301を備えており、また、ベアリング301を内部に収容するスリーブ300を備えている。ただし、スリーブ300は適宜省略しても良い。ベアリング301は導電性(通電性)を備えており、研削砥石102の軸(回転軸)に通電可能に固定されるものである。ベアリング301への導電性(通電性)の付与は、例えばベアリング301を組み立てる際に導電性(通電性)のグリスを用いることにより実現される。ベアリング301は、給電線(配線)109がアウターレースに対して固定されることにより、電源104と電気的に接続される。給電線(配線)109をアウターレースに対して固定する方法は特に限定されず、例えば参照符号302に示すような穴に給電線(配線)109を差し込んで固定する方法や、半田付けによってアウターレースに対して直接固定する方法が適用可能である。ベアリング301を介して研削砥石102に対して給電する形態とすることで、使用に伴って消耗するブラシによる給電と比較して、安定した給電が可能となる。また、廃棄部品の削減の効果も得られる。
 以上のとおり説明した電解ドレッシング装置100の動作について説明する。まず、鋼製ロール101の研削加工に用いる導電性の研削砥石102に対して、導電性の研削液の介在を許容する間隙をもって対向するようにして電極103を固定する。続いて、研削砥石102と電極103との間隙にノズル106から研削液を供給し、電源104より研削砥石102と電極103とに給電する。これにより、研削加工中の研削砥石102の表面に付着した鋼製ロール101の研削粉が連続的に電解除去(電解ドレッシング)され、研削砥石102の砥粒が鋼製ロール101と接する状態を保つことができ、研削性が向上する。なお、アウターレースが給電線(配線)109によって電源104と電気的に接続された導電性(通電性)のベアリング301を準備して研削砥石102の軸に通電可能に設け、ベアリング301を介して電源104から研削砥石102に給電すれば、安定した給電が可能となる。
 次に、本発明の第二実施形態に係る電解ドレッシング装置400について説明する。
 図4は、本発明の第二実施形態に係る電解ドレッシング装置400の構成を示した図である。電解ドレッシング装置400は、研削砥石102と、電極401と、電源104とを備えている。鋼製ロール101、研削砥石102、電源104、研削液供給源(タンク)105、アタッチメント107、給電線(配線)108及び給電線(配線)109は、第一実施形態と同様である。
 電極401は、研削砥石102の表面に付着した鋼製ロール101の研削粉を電解除去するための電極である。電極401は、図示されるようにブロック状であって、断面円弧状の電極面を備えている。この電極面は、研削砥石102の外周面と対向する長い矩形で、且つ、研削砥石102の外周面との間に導電性の研削液の介在を許容する間隙、例えば0.5mmから7.0mm程度の間隙が形成されるように円筒内周面状に形成されている。なお、図4では電極401が研削砥石102の横に並ぶようにして設けられた状態を示しているが、電極401を設ける位置はこれに限定されない。
 次に、図5A乃至図5Cを参照しながら、電極401について更に説明する。図5Aは電極401の正面図であり、図5Bは電極401の側面図であり、図5Cは電極401のB-B線断面図である。図示されるように、電極401は、研削砥石102に対向する面、即ち断面円弧状の電極面が、金属製の薄板502によって構成されている。また、電極401は、研削砥石102に対向する面以外の部分が、絶縁材料500で構成されている。薄板502の具体的な素材としては、チタン、銅など種々の金属が適用可能である。薄板502の巾(図5Bにおける横方向の幅)は、研削砥石102の巾と同じかそれ以上であることが好ましい。絶縁材料500の具体的な材料としては、例えば塩化ビニル、ポリカーボネートなど種々のプラスチックが適用可能である。電極401を以上に述べた構成とすることで、全体が金属で構成されていた従来の電極と比較して大幅に軽量化される他、製作性、可搬性や設置性の向上やコストの削減の効果が得られる。なお、電極面の大きさについては特に限定されないが、本願出願人が鋭意実験した結果、電極面の周方向の長さ、即ち薄板502の円弧長が研削砥石102の円周長(外周長)の15パーセントを超える(即ち、周方向において薄板502が研削砥石102をカバーする比率が15パーセントを超える)場合に良好な効果が得られるとの知見を得た。
 ここで、電極401は、その内部504が中空に構成されている点、研削液導入口501が絶縁材料500に少なくとも一つ設けられている点及び薄板502に複数の微小な研削液供給孔503が設けられている点が、第一実施形態に係る電極103と異なっている。研削液導入口501は、電極401の内部504に研削液を導入するための開口であり、チューブ(ホース)によって研削液供給源(タンク)に接続されている。なお、電極401においては研削液導入口501が正面に設けられているが、背面など他の面に設けられても良い。電極401を以上に述べた構成とすることで、電極401の内部504及び研削液供給孔503を通過して、研削砥石102と電極401との間隙に研削液が均一に供給される(研削液供給工程)。これにより、電極面における研削液の流れの局所的な不均一が解消され、研削砥石102の表面性状を一定に保つことができる。なお、電極401を図4に示すような位置に設けるときは、下方の研削液供給孔503ほど孔径を小さく(上方の研削液供給孔503ほど孔径を大きく)することができる。下方の研削液供給孔503ほど孔径を小さくすることで、下方から上方にかけての研削液の供給の不均一を解消することができる。
 また、電極401は、図5Dに示すような形態とすることもできる。即ち、電極401の内部504に、内部504を分割する隔壁505を少なくとも一つ設けることができる。電極401の内部504に隔壁505を設けることで、電極401の剛性を高めることができる他、研削液導入口501より導入された研削液を、電極401の内部504においてバランスよく分布させることができる。また、隔壁505によって電極401の内部504が異なる大きさ(容積)に分割されるときは、隔壁505によって大きく分割された内部504(504L)に対応する研削液供給孔503(503L)と、隔壁505によって小さく分割された内部504(504S)に対応する研削液供給孔503(503S)とで、研削液供給孔503の孔径を異なる大きさとすることができる。例えば、隔壁505によって大きく分割された内部504(504L)に対応する研削液供給孔503(503L)を小さな孔径とし、隔壁505によって小さく分割された内部504(504S)に対応する研削液供給孔503(503S)を大きな孔径とすることができる。この反対も可能である。電極401を設ける位置、向きや角度、研削液の粘度などの条件に応じて、隔壁505によって大きく分割された内部504(504L)に対応する研削液供給孔503(503L)と隔壁505によって小さく分割された内部504(504S)に対応する研削液供給孔503(503S)とで研削液供給孔503の孔径を異なる大きさとすることで、研削砥石102と電極401との間隙への研削液の供給の不均一を解消することができる。
 以上のとおり説明した本発明の第二実施形態に係る電解ドレッシング装置400によれば、研削加工中の研削砥石102の表面に付着した鋼製ロール101の研削粉が連続的に電解除去(電解ドレッシング)され、研削砥石102の砥粒が鋼製ロール101と接する状態を保つことができ、研削性が向上する。なお、本発明の第一実施形態に係る電解ドレッシング装置100と同様に、アウターレースが給電線(配線)109によって電源104と電気的に接続された導電性(通電性)のベアリング301を準備して研削砥石102の軸に通電可能に設け、ベアリング301を介して電源104から研削砥石102に給電すれば、安定した給電が可能となる。
 次に、本発明の第三実施形態に係る電解ドレッシング装置600について説明する。
 図6Aは、本発明の第三実施形態に係る電解ドレッシング装置600の構成を示した図である。電解ドレッシング装置600は、研削砥石102と、電極401と、電極601と、電源104とを備えている。電極401は、第一実施形態と同様である。また、鋼製ロール101、研削砥石102、電源104、研削液供給源(タンク)105及び給電線(配線)108は、第一実施形態と同様である。
 電極401は、研削砥石102の表面に付着した鋼製ロール101の研削粉を電解除去するための電極(第1電極)である。電極401の構成は第二実施形態と同様である。なお、図6Aでは電極401が研削砥石102の横に並ぶようにして設けられた状態を示しているが、電極401を設ける位置はこれに限定されない。また、本実施形態では第二実施形態に係る電極401を第1電極としているが、第1電極は、第一実施形態に係る電極103でも良い。
 電極601は、第1電極としての電極401と同じ構成からなる電極(第2電極)である。第2電極としての電極601は、第1電極としての電極401とは異なる位置に、研削砥石102と間隙をもって対向するように設けられている(第2電極設置工程)。なお、図6Aでは電極601が研削砥石102の鉛直下方に設けられた状態を示しているが、電極601を設ける位置はこれに限定されない。
 本発明の第三実施形態に係る電解ドレッシング装置600では、電源104は給電線(配線)109を介して、研削砥石102に代えて電極601(第2電極)に給電する(給電切替工程)。
 以上のとおり説明した本発明の第三実施形態に係る電解ドレッシング装置600によれば、研削加工中の研削砥石102の表面に付着した鋼製ロール101の研削粉が連続的に電解除去(電解ドレッシング)され、研削砥石102の砥粒が鋼製ロール101と接する状態を保つことができ、研削性が向上する。また、電源104からの給電先を電極401(第1電極)及び電極601(第2電極)としたことで、回転駆動する研削砥石102に対してのブラシによる直接的な給電やベアリング301を介しての給電が不要となる。
 ここで、電極401(第1電極)及び電極601(第2電極)を設ける位置は特に限定されないが、どちらか一方の電極を研削砥石102の鉛直下方に設けることとすれば、研削砥石102の周囲の空間を圧迫することがなく、また、電極を置くだけで容易に設置することができる。また、図6Bに示す変形例のように、どちらか一方の電極を研削砥石102の鉛直上方に設けることとすれば、言うなればシャワーのように重力を利用して、研削砥石102と電極との間隙に研削液を効率良く供給することができる。
 以上、本発明の好適な実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の改変が可能である。
 例えば、研削液が流れることができる細かい溝を電極面に形成し、研削液供給孔503から供給された研削液が溝を伝って電極面の全体に行き届くようにすることができる。これにより、研削砥石と電極との間隙への研削液の供給の均一性がより高まる。
 本発明に係る電解ドレッシング装置及び電解ドレッシング方法によれば、ハイス鋼の圧延ロールへの使用頻度が拡大し、高機能表面を有する板および帯の製造の難易度が下がる。また、本発明に係る電解ドレッシング装置及び電解ドレッシング方法は、工具鋼以外の高機能ロール(例えば超硬ロールやセラミックロール)への応用も可能である。また、本発明に係る電解ドレッシング装置及び電解ドレッシング方法によれば、ステンレス鋼などの高硬度、強靭性の材料を冷間圧延する場面において表面品質の向上が可能となる他、ステンレス鋼以外の高硬度、強靭性の材料を冷間圧延する可能性が拡大し、ステンレス鋼以外の高硬度、強靭性の材料の用途が拡大する。また、本発明に係る電解ドレッシング装置及び電解ドレッシング方法によれば、鋼よりも高強度、高靭性の材料(例えば超合金)を熱間圧延ロールの材料として利用する可能性が生じる。
 100  電解ドレッシング装置
 101  鋼製ロール
 102  研削砥石
 103  電極(第1電極)
 104  電源
 105  研削液供給源(タンク)
 106  ノズル
 107  アタッチメント
 108  給電線(配線)
 109  給電線(配線)
 200  絶縁材料
 201  薄板
 300  スリーブ
 301  ベアリング
 302  穴
 400  電解ドレッシング装置
 401  電極(第1電極)
 500  絶縁材料
 501  研削液導入口
 502  薄板
 503  研削液供給孔
 503L 研削液供給孔
 503S 研削液供給孔
 504  内部(内部空間)
 504L 内部(内部空間)
 504S 内部(内部空間)
 505  隔壁
 600  電解ドレッシング装置
 601  電極(第2電極)
 700  電解ドレッシング装置
 701  電極
 702  直流電源
 703  給電線(配線)
 704  給電線(配線)

Claims (14)

  1.  圧延用の鋼製ロールの研削加工に用いる導電性の研削砥石と、
     前記研削砥石と間隙をもって対向する電極と、
     前記研削砥石及び前記電極に給電する電源と、を備え、
     前記研削砥石と前記電極との間の前記間隙に導電性の研削液を供給して前記研削加工中の前記研削砥石の表面に付着した前記鋼製ロールの研削粉を電解除去する電解ドレッシング装置であって、
     前記電極は、前記研削砥石に対向する面が金属製の薄板で構成され、前記研削砥石に対向する面以外の部分が絶縁材料で構成される、
     電解ドレッシング装置。
  2.  請求項1に記載の電解ドレッシング装置において、
     前記電極は、その内部が中空に構成され、
     前記薄板は、複数の微小な研削液供給孔を備え、
     前記研削液は、前記電極の内部及び前記研削液供給孔を通過して前記間隙に供給される、
     電解ドレッシング装置。
  3.  請求項2に記載の電解ドレッシング装置において、
     前記電極の内部は、少なくとも一つの隔壁によって分割されており、
     前記研削液供給孔は、その孔径が、前記隔壁によって大きく分割された前記電極の内部に対応する研削液供給孔と、前記隔壁によって小さく分割された前記電極の内部に対応する研削液供給孔とで異なるように形成されている、
     電解ドレッシング装置。
  4.  請求項1乃至3の何れか一項に記載の電解ドレッシング装置において、
     前記電極を第1電極としたときに、該第1電極とは異なる位置に前記研削砥石と間隙をもって対向するようにして、該第1電極と同じ電極を第2電極として更に備え、
     前記電源は、前記研削砥石に代えて前記第2電極に給電する、
     電解ドレッシング装置。
  5.  請求項4に記載の電解ドレッシング装置において、
     どちらか一方の電極が、前記研削砥石の鉛直上方に設けられる、
     電解ドレッシング装置。
  6.  請求項4に記載の電解ドレッシング装置において、
     どちらか一方の電極が、前記研削砥石の鉛直下方に設けられる、
     電解ドレッシング装置。
  7.  請求項1乃至3の何れか一項に記載の電解ドレッシング装置において、
     アウターレースが給電線によって前記電源と電気的に接続される導電性を備えたベアリングを更に備え、
     前記ベアリングは、前記研削砥石の軸に通電可能に固定され、
     前記ベアリングを介して前記電源から前記研削砥石に給電する、
     電解ドレッシング装置。
  8.  請求項1乃至3の何れか一項に記載の電解ドレッシング装置において、
     前記研削砥石のボンド材は、レジンボンド材に金属ファイバーを含有させて通電性を付与したメタルレジンボンド材である、
     電解ドレッシング装置。
  9.  請求項1乃至3の何れか一項に記載の電解ドレッシング装置において、
     前記研削砥石は、その番手が♯400から♯2,000のものである、
     電解ドレッシング装置。
  10.  請求項1乃至3の何れか一項に記載の電解ドレッシング装置において、
     前記研削砥石は、その砥粒がCBN砥粒である、
     電解ドレッシング装置。
  11.  請求項1乃至3の何れか一項に記載の電解ドレッシング装置において、
     前記薄板は、その円弧長が前記研削砥石の円周長の15パーセントを超える、
     電解ドレッシング装置。
  12.  圧延用の鋼製ロールの研削加工に用いる導電性の研削砥石と、前記研削砥石と間隙をもって対向する電極との間の前記間隙に導電性の研削液を供給し、前記研削砥石と前記電極とに電源より給電して、前記研削加工中の前記研削砥石の表面に付着した前記鋼製ロールの研削粉を電解除去する電解ドレッシング方法であって、
     前記電極は、前記研削砥石に対向する面が複数の微小な研削液供給孔を備える金属製の薄板で構成され、前記研削砥石に対向する面以外の部分が絶縁材料で中空に構成されており、
     前記研削液を、前記電極の内部及び前記研削液供給孔を通して前記間隙に供給する研削液供給工程を備える、
     電解ドレッシング方法。
  13.  請求項12に記載の電解ドレッシング方法において、
     前記電極を第1電極としたときに、該第1電極とは異なる位置に、前記研削砥石と間隙をもって対向するようにして、該第1電極と同じ電極を第2電極として設置する第2電極設置工程と、
     前記研削砥石への給電を前記第2電極への給電に切り替える給電切替工程と、を更に備える、
     電解ドレッシング方法。
  14.  請求項12に記載の電解ドレッシング方法において、
     アウターレースが給電線によって前記電源と電気的に接続される導電性を備えたベアリングを準備する給電用ベアリング準備工程と、
     前記ベアリングを、前記研削砥石の軸に通電可能に設ける給電用ベアリング設置工程と、を更に備え、
     前記ベアリングを介して前記電源から前記砥石に給電する、
     電解ドレッシング方法。
PCT/JP2022/025493 2022-06-27 2022-06-27 鋼製ロールの円筒研削に適した電解ドレッシング装置及び電解ドレッシング方法 WO2024003977A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022552495A JP7157990B1 (ja) 2022-06-27 2022-06-27 鋼製ロールの円筒研削に適した電解ドレッシング方法
CN202280083074.9A CN118401344A (zh) 2022-06-27 2022-06-27 适合于钢制辊的圆筒磨削的电解修整装置及电解修整方法
PCT/JP2022/025493 WO2024003977A1 (ja) 2022-06-27 2022-06-27 鋼製ロールの円筒研削に適した電解ドレッシング装置及び電解ドレッシング方法
TW112123752A TWI837030B (zh) 2022-06-27 2023-06-27 適用於鋼輥的圓筒研磨之電解修整裝置及電解修整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025493 WO2024003977A1 (ja) 2022-06-27 2022-06-27 鋼製ロールの円筒研削に適した電解ドレッシング装置及び電解ドレッシング方法

Publications (1)

Publication Number Publication Date
WO2024003977A1 true WO2024003977A1 (ja) 2024-01-04

Family

ID=83691982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025493 WO2024003977A1 (ja) 2022-06-27 2022-06-27 鋼製ロールの円筒研削に適した電解ドレッシング装置及び電解ドレッシング方法

Country Status (4)

Country Link
JP (1) JP7157990B1 (ja)
CN (1) CN118401344A (ja)
TW (1) TWI837030B (ja)
WO (1) WO2024003977A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7374542B1 (ja) * 2023-03-10 2023-11-07 株式会社シントク 鋼製ロールの円筒研削に適した電解ドレッシング装置及び電解ドレッシング方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS468783Y1 (ja) * 1967-06-23 1971-03-29
JPS5932315A (ja) * 1982-08-12 1984-02-21 株式会社 サタケ コ−ドリ−ル
JPH01175160U (ja) * 1988-05-26 1989-12-13
JPH07132458A (ja) * 1993-11-04 1995-05-23 Nippon Steel Corp 砥石ドレッシング方法
JPH0733554U (ja) * 1993-12-10 1995-06-20 セイコー精機株式会社 電解インプロセスドレッシング用電極
JP2001252869A (ja) * 2000-03-09 2001-09-18 Inst Of Physical & Chemical Res リムーバブル電極
KR101490745B1 (ko) * 2014-12-01 2015-02-06 주식회사 21세기 전해 인프로세스 드레싱 연삭장치
JP2019021549A (ja) * 2017-07-20 2019-02-07 株式会社小糸製作所 ランプユニット

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3214694B2 (ja) * 1997-12-02 2001-10-02 理化学研究所 動圧発生電極
JP5932315B2 (ja) 2011-12-02 2016-06-08 キヤノン株式会社 ストロボ装置およびカメラシステム
TWI669189B (zh) * 2018-10-23 2019-08-21 財團法人金屬工業研究發展中心 砂輪除屑削銳裝置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS468783Y1 (ja) * 1967-06-23 1971-03-29
JPS5932315A (ja) * 1982-08-12 1984-02-21 株式会社 サタケ コ−ドリ−ル
JPH01175160U (ja) * 1988-05-26 1989-12-13
JPH07132458A (ja) * 1993-11-04 1995-05-23 Nippon Steel Corp 砥石ドレッシング方法
JPH0733554U (ja) * 1993-12-10 1995-06-20 セイコー精機株式会社 電解インプロセスドレッシング用電極
JP2001252869A (ja) * 2000-03-09 2001-09-18 Inst Of Physical & Chemical Res リムーバブル電極
KR101490745B1 (ko) * 2014-12-01 2015-02-06 주식회사 21세기 전해 인프로세스 드레싱 연삭장치
JP2019021549A (ja) * 2017-07-20 2019-02-07 株式会社小糸製作所 ランプユニット

Also Published As

Publication number Publication date
TW202400331A (zh) 2024-01-01
TWI837030B (zh) 2024-03-21
CN118401344A (zh) 2024-07-26
JP7157990B1 (ja) 2022-10-21
JPWO2024003977A1 (ja) 2024-01-04

Similar Documents

Publication Publication Date Title
Lim et al. A fundamental study on the mechanism of electrolytic in-process dressing (ELID) grinding
US4956056A (en) Method of abrasive electroerosion grinding
WO2024003977A1 (ja) 鋼製ロールの円筒研削に適した電解ドレッシング装置及び電解ドレッシング方法
JP2009172707A (ja) 研削装置及び研削方法
US5868607A (en) Electrolytic in-process dressing method, electrolytic in process dressing apparatus and grindstone
Klink Wire electro discharge trueing and dressing of fine grinding wheels
EP2270263A1 (en) Stainless steel and surface treatment method for stainless steel
Qian et al. Precision internal grinding with a metal-bonded diamond grinding wheel
Qian et al. Cylindrical grinding of bearing steel with electrolytic in-process dressing
CN101298122A (zh) 一种复杂型面刀具的加工方法
KR970003491B1 (ko) 도전성 연마석의 드렛싱 방법, 드렛싱 시스템 및 드렛싱전극
JP7374542B1 (ja) 鋼製ロールの円筒研削に適した電解ドレッシング装置及び電解ドレッシング方法
Wu et al. ELID groove grinding of ball-bearing raceway and the accuracy durability of the grinding wheel
JPH10175165A (ja) メタルボンド砥石を用いたセンタレス研削方法及びその装置
KR101900531B1 (ko) 강재의 제조 방법
US3236009A (en) Apparatus for surfacing
JPH01188266A (ja) 研削加工装置
JP5394962B2 (ja) 研削装置及び研削方法
JP2846056B2 (ja) 研削装置および研削方法
JPH06720A (ja) 円筒工作物外面の電解複合研磨方法
CN220240920U (zh) 一种改善磨削纹路粗糙度的轧辊磨床
Ohmori et al. Highly efficient and precision fabrication of cylindrical parts from hard materials with the application of ELID (electrolytic in-process dressing)
JPH07132458A (ja) 砥石ドレッシング方法
Sudiarso et al. In-Process Electrical Dressing of Metal-Bonded Diamond Grinding Wheels.
JPH0866869A (ja) セグメント砥石ユニット

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022552495

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949256

Country of ref document: EP

Kind code of ref document: A1