WO2024002388A1 - 内啮合行星齿轮装置及机器人用关节装置 - Google Patents

内啮合行星齿轮装置及机器人用关节装置 Download PDF

Info

Publication number
WO2024002388A1
WO2024002388A1 PCT/CN2023/113224 CN2023113224W WO2024002388A1 WO 2024002388 A1 WO2024002388 A1 WO 2024002388A1 CN 2023113224 W CN2023113224 W CN 2023113224W WO 2024002388 A1 WO2024002388 A1 WO 2024002388A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
planetary gear
input
crankshafts
crankshaft
Prior art date
Application number
PCT/CN2023/113224
Other languages
English (en)
French (fr)
Inventor
王刚
林文捷
峯岸清次
伊佐地毅
Original Assignee
美的集团股份有限公司
广东极亚精机科技有限公司
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美的集团股份有限公司, 广东极亚精机科技有限公司, 广东美的制冷设备有限公司 filed Critical 美的集团股份有限公司
Publication of WO2024002388A1 publication Critical patent/WO2024002388A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • B25J17/02Wrist joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts
    • F16C3/14Features relating to lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear

Definitions

  • the present disclosure generally relates to an internal planetary gear device and a joint device for a robot, and more specifically to an internal planetary gear device and a robot in which a planetary gear having external teeth is disposed inside an internal gear having internal teeth. Use joint devices.
  • an eccentric swing type internal mesh planetary gear device called a separation type is known (for example, see Patent Document 1).
  • a plurality of (for example, three) crankshafts are provided at a position offset from the axis center of the internal gear, and each crankshaft is driven synchronously through the crankshaft gear.
  • the planetary gear (externally toothed gear) swings so that it meshes internally with the internally toothed gear.
  • the planetary gears include a first planetary gear and a second planetary gear.
  • a pair of gear carriers are arranged on both sides of the first planetary gear and the second planetary gear in the axial direction.
  • Each crankshaft is supported on a pair of gear carriers via a pair of tapered roller bearings.
  • the three crankshaft gears that mesh with the input gear rotate in the same direction and at the same speed. Since the crankshafts are splined to each crankshaft gear, the three crankshafts rotate in the same direction and at the same rotation speed while being decelerated by the gear ratio of the input gear and the crankshaft gear.
  • the three first eccentric portions formed at the same position in the axial direction of the three crankshafts rotate synchronously to swing the first planetary gears
  • the three second eccentric portions formed at the same position in the axial direction of the three crankshafts rotate synchronously.
  • the rotation causes the second planetary gear to swing.
  • the first planetary gear and the second planetary gear are each internally meshed with the internal gear.
  • the internally toothed gear has a gear body and an outer pin (pin member).
  • the outer pin (pin member) is rotatably installed in the gear body and constitutes the internal teeth of the internally toothed gear.
  • the number of teeth of the internal gear (the number of external pins) is slightly larger than the number of teeth of each planetary gear. Therefore, every time each planetary gear oscillates once, the first planetary gear and the second planetary gear deviate (rotate) in the circumferential direction relative to the internal gear by an amount corresponding to the tooth number difference, and this rotation becomes the rotation of each crankshaft around the internal gear.
  • the revolution of the gear's axis (rotation axis) is transmitted to a pair of gear carriers. Thereby, the pair of gear carriers can be relatively rotated with respect to the gear body (the housing integrated therewith) about the rotation axis.
  • Patent Document 1 Japanese Patent Application Publication No. 2016-75354
  • each crankshaft is supported on a pair of gear carriers via a pair of tapered roller bearings. This restricts movement in the axial direction. This complicates the structure and makes it difficult to downsize the entire device. The problem.
  • An object of the present disclosure is to provide an internal meshing planetary gear device and a robot joint device that can limit the axial movement of a crankshaft despite having a relatively simple structure.
  • An internal meshing planetary gear device includes an internal gear, a planetary gear, a crankshaft, and an input side gear.
  • the gear carrier and the output side gear carrier cause the planetary gears to rotate relative to the internally toothed gears by swinging the planetary gears.
  • the internally toothed gear has an annular gear body and a plurality of outer pins.
  • the plurality of outer pins are rotatably held in a plurality of inner circumferential grooves formed on an inner circumferential surface of the gear body and constitute the internal teeth.
  • the planetary gears have external teeth partially meshed with the internal teeth.
  • the crankshaft rotates about an axis to swing the planetary gears.
  • the input-side gear carrier and the output-side gear carrier are arranged on both sides of the planet gear in the axial direction along the axis, and rotatably support the crankshaft.
  • the internal meshing planetary gear device also has a limiting structure. The restriction structure restricts the movement of the crankshaft toward both sides in the axial direction only at either one of the input-side gear carrier and the output-side gear carrier.
  • a robot joint device includes: the internal meshing planetary gear device; a first member fixed to the gear body; and a second member accompanying the rotation of the planetary gear relative to the internal gear. Relatively rotates relative to the first member.
  • FIG. 1 is a perspective view showing the schematic structure of an actuator of a ring planetary gear device including a basic structure.
  • FIG. 2 is a schematic exploded perspective view of the internal meshing planetary gear device as viewed from the input side of the rotation shaft.
  • FIG 3 is a schematic exploded perspective view of the internal meshing planetary gear device as viewed from the output side of the rotating shaft.
  • FIG. 4 is a schematic cross-sectional view of the internal meshing planetary gear device.
  • Fig. 5 is a cross-sectional view taken along line A1-A1 of Fig. 4 showing the internal meshing planetary gear device.
  • Fig. 6 is a sectional view taken along line B1-B1 of Fig. 4 showing the internal meshing planetary gear device.
  • FIG. 7 is a schematic cross-sectional view of the internal meshing planetary gear device of Reference Example 1.
  • FIG. 8 is a schematic view of the internal meshing planetary gear device as viewed from the output side of the rotating shaft.
  • FIG. 9 is a schematic perspective view showing the structure around the crankshaft of the internal meshing planetary gear device.
  • FIG. 10 is a schematic exploded perspective view showing the structure around the crankshaft of the internal meshing planetary gear device.
  • FIG. 11 is a schematic perspective view showing the crankshaft of the internal meshing planetary gear device.
  • FIG. 12 shows the main part of the internal meshing planetary gear device, and is a schematic enlarged view of the area Z1 in FIG. 7 .
  • FIG. 13 shows the main part of the internal meshing planetary gear device, and is a schematic enlarged view of the area Z2 in FIG. 7 .
  • FIG. 14 shows the main part of the internal meshing planetary gear device, and is a schematic enlarged view of the area Z1 in FIG. 13 .
  • FIG. 15 is a schematic diagram showing a robot joint device using the internal meshing planetary gear device.
  • FIG. 16 is a schematic cross-sectional view of the ring planetary gear device according to Embodiment 1.
  • FIG. 16 is a schematic cross-sectional view of the ring planetary gear device according to Embodiment 1.
  • FIG. 17 shows the main part of the internal meshing planetary gear device, and is a schematic enlarged view of the area Z1 in FIG. 16 .
  • FIGS. 1 to 4 An outline of the ring planetary gear device 1 having this basic structure will be described with reference to FIGS. 1 to 4 .
  • the drawings referred to in this disclosure are all schematic drawings, and the respective ratios of the sizes and thicknesses of the constituent elements in the drawings do not necessarily reflect actual dimensional ratios.
  • the tooth shape, size, number of teeth, etc. of the internal teeth 21 and the external teeth 31 in FIGS. 1 to 4 are merely schematically shown for explanation, and are not intended to be limited to the shapes shown in the figures.
  • the internal meshing planetary gear device 1 of this basic structure (hereinafter also simply referred to as the "gear device 1") is a gear device including an internal gear 2 and a planetary gear 3.
  • planetary gears 3 are arranged inside an annular internally toothed gear 2 , and by swinging the planetary gears 3 , the planetary gears 3 rotate relative to the internally toothed gear 2 .
  • the ring planetary gear device 1 further includes a bearing member 6 including an outer ring 62 and an inner ring 61 .
  • the inner wheel 61 is disposed inside the outer wheel 62 and is supported to be rotatable relative to the outer wheel 62 .
  • the gear device 1 of this basic structure is a so-called separation type eccentric swing type internal meshing planetary gear device.
  • the gear device 1 of this basic structure includes a plurality of (three in the basic structure) crankshafts (eccentric) arranged at positions offset from the axis center (rotation axis Ax1) of the internally toothed gear 2 .
  • the gear device 1 includes an input shaft 500 disposed on the axis (rotation axis Ax1) of the internal gear 2 with the rotation axis Ax1 as the center; and an input gear 501 formed integrally with the input shaft 500 .
  • Crankshaft gears 502A, 502B, and 502C are spline-connected to the plurality of crankshafts 7A, 7B, and 7C, respectively.
  • crank gears 502A, 502B, and 502C are arranged to mesh with the input gear 501 . Therefore, when the input shaft 500 is driven, the gear device 1 synchronously drives the crankshafts 7A, 7B, and 7C through the input gear 501, thereby causing the planetary gears 3 to swing.
  • the internal gear 2 has internal teeth 21 and is fixed to the outer gear 62 .
  • the internal gear 2 has an annular gear body 22 and a plurality of outer pins 23 .
  • the plurality of outer pins 23 are rotatably held on the inner peripheral surface 221 of the gear body 22 and constitute the internal teeth 21 .
  • the planetary gear 3 has external teeth 31 partially meshed with the internal teeth 21 . That is, inside the internal gear 2 , the planetary gear 3 is incised relative to the internal gear 2 , and a part of the external teeth 31 meshes with a part of the internal teeth 21 .
  • This type of gear device 1 is used to derive rotation corresponding to the rotation component of the planetary gear 3 as rotation of a pair of gear carriers 18 and 19 integrated with the inner wheel 61 of the bearing member 6 .
  • the gear device 1 has the input shaft 500 as the input side and the pair of gear carriers 18 and 19 as the output side, and functions as a gear device with a relatively high reduction ratio. Therefore, in the gear device 1 with this basic structure, in order to transmit the rotation corresponding to the rotation component of the planetary gear 3 to the pair of gear carriers 18 and 19, the plurality of crankshafts 7A and 7B are supported by the pair of gear carriers 18 and 19. 7C.
  • the pair of gear carriers 18 and 19 are arranged on both sides of the planetary gear 3 in the axial direction (direction along the rotation axis Ax1), and rotatably support the crankshafts 7A, 7B, and 7C.
  • each of the crankshafts 7A, 7B, and 7C is inserted into the plurality of openings 33 formed in the planetary gear 3 and rotate relative to the internal gear 2 as the planetary gear 3 rotates. Furthermore, each of the crankshafts 7A, 7B, and 7C has an axial center portion 71 and an eccentric portion 72 that is eccentric with respect to the axial center portion 71 .
  • the pair of gear carriers 18 and 19 rotatably support the axial center portions 71 of the crankshafts 7A, 7B, and 7C, and the eccentric portions 72 of the crankshafts 7A, 7B, and 7C are inserted into the openings 33 of the planetary gears 3 .
  • the oscillation component of the planetary gear 3 that is, the revolution component of the planetary gear 3 is absorbed by the revolution component of the eccentric portion 72 relative to the shaft center portion 71 .
  • the eccentric portion 72 of the axial center portion 71 of each of the crankshafts 7A, 7B, and 7C rotates so as to revolve relative to the axial center portion 71 , thereby absorbing the vibration component of the planetary gear 3 . Therefore, the rotation (rotation component) of the planet gear 3 in addition to the swing component (revolution component) of the planet gear 3 is transmitted to the pair of gear carriers 18 and 19 via the plurality of crankshafts 7A, 7B, and 7C.
  • the gear device 1 with this basic structure constitutes the actuator 100 together with the drive source 101 .
  • the actuator 100 of this basic structure includes the gear device 1 and the drive source 101 .
  • the driving source 101 generates driving force for swinging the planetary gear 3 .
  • the drive source 101 rotates the input shaft 500 about the rotation axis Ax1 to swing the planetary gear 3 .
  • annular refers to a shape like a circle (circle) that forms a space (area) enclosed inside at least when viewed from above, and is not limited to a circular shape (circle) that is a perfect circle when viewed from above. Ring shape), for example, it may also be an elliptical shape, a polygonal shape, etc. Furthermore, for example, even a shape having a bottom like a cup shape is included in the "annular shape" as long as its peripheral wall is annular.
  • the "revolution” mentioned in this disclosure refers to the rotation of an object around a rotation axis other than the central axis passing through the center (center of gravity) of the object.
  • the center of the object will move along the axis centered on the rotation axis. Orbital movement. Therefore, for example, when an object rotates about an eccentric axis parallel to a central axis passing through the center (center of gravity) of the object, the object revolves around the eccentric axis as the rotation axis.
  • the planetary gear 3 revolves around the rotation axis Ax1 in the internal gear 2 by oscillating.
  • one side of the rotation axis Ax1 may be called the “output side” and the other side of the rotation axis Ax1 (the right side in FIG. 4 ) may be called the “input side” .
  • the input shaft 500 is rotated from the “input side” of the rotation axis Ax1
  • the rotation of the pair of gear carriers 18 and 19 is derived from the “output side” of the rotation axis Ax1.
  • “input side” and “output side” are merely labels attached for explanation, and are not intended to limit the positional relationship between the input and the output when viewed from the gear device 1 .
  • the "rotation axis" used in this disclosure refers to a virtual axis (straight line) that becomes the center of the rotational movement of the rotating body. That is, the rotation axis Ax1 is a virtual axis not accompanied by a solid body.
  • the input shaft 500 rotates around the rotation axis Ax1.
  • the internal teeth 21 of the internal gear 2 include a set of a plurality of teeth arranged on the inner peripheral surface 221 of the internal gear 2 (gear body 22).
  • the external teeth 31 of the planetary gear 3 include a set of a plurality of teeth arranged on the outer peripheral surface of the planetary gear 3 .
  • FIG. 1 is a perspective view showing the schematic structure of an actuator 100 including the gear device 1 .
  • the drive source 101 is schematically represented in Figure 1 .
  • FIG. 2 is a schematic exploded perspective view of the gear device 1 viewed from the input side of the rotation axis Ax1.
  • FIG. 3 is a schematic exploded perspective view of the gear device 1 viewed from the output side of the rotation axis Ax1.
  • FIG. 4 is a schematic cross-sectional view of the gear device 1 .
  • Fig. 5 is a cross-sectional view along line A1-A1 in Fig. 4 .
  • Fig. 6 is a sectional view taken along line B1-B1 in Fig. 4 .
  • parts other than the crankshafts 7A, 7B, and 7C are cross-sectional, but hatching is omitted.
  • the gear device 1 with this basic structure includes an internal gear 2 , a planetary gear 3 , a bearing member 6 , a plurality of crankshafts 7A, 7B, and 7C, a pair of gear carriers 18 and 19 , and an input shaft 500 . Furthermore, in this basic structure, the gear device 1 further includes an input gear 501, a plurality of crank gears 502A, 502B, and 502C, a pair of roller bearings 41 and 42, an eccentric bearing 5, and a housing 10.
  • the internal gear 2, the planetary gear 3, the plurality of crankshafts 7A, 7B, 7C, a pair of gear carriers 18, 19, etc., which are components of the gear device 1, are made of stainless steel, cast iron, or mechanical structural materials.
  • Metals such as carbon steel, chromium-molybdenum steel, phosphor bronze or aluminum bronze, or light metals such as aluminum or titanium.
  • the metal (including light metal) packages mentioned here Contains metals that have undergone surface treatment such as nitriding.
  • the gear device 1 As an example of the gear device 1 , an inscribed planetary gear device using a trochoid system tooth profile is illustrated. That is, the gear device 1 of this basic structure includes the inscribed planetary gear 3 having a trochoid system curved tooth profile.
  • the gear device 1 is used in a state where the gear body 22 of the internal gear 2 and the outer ring 62 of the bearing member 6 are fixed to a fixed member such as the housing 10. Accordingly, as the internal gear 2 and the planetary gear 3 rotate relative to each other, the planetary gear 3 rotates relative to the fixed member (housing 10 and the like).
  • the gear device 1 when the gear device 1 is used as the actuator 100 , by applying a rotational force as an input to the input shaft 500 , a pair of gears integrated with the inner ring 61 of the bearing member 6 The frames 18, 19 derive rotational force as output. That is, the gear device 1 operates with the rotation of the input shaft 500 as the input rotation and the rotation of the pair of gear carriers 18 and 19 integrated with the inner wheel 61 as the output rotation. Thus, in the gear device 1, an output rotation that is decelerated at a relatively high reduction ratio with respect to the input rotation is obtained.
  • the driving source 101 is a power generation source such as a motor (electric motor).
  • the power generated by the drive source 101 is transmitted to the input shaft 500 in the gear device 1 .
  • the drive source 101 is connected to the input shaft 500 , and the power generated by the drive source 101 is transmitted to the input shaft 500 . Thereby, the drive source 101 can rotate the input shaft 500.
  • the input-side rotation axis Ax1 and the output-side rotation axis Ax1 are located on the same straight line.
  • the rotation axis Ax1 on the input side and the rotation axis Ax1 on the output side are coaxial.
  • the input-side rotation axis Ax1 is the rotation center of the input shaft 500 that is given input rotation
  • the output-side rotation axis Ax1 is the rotation center of the inner wheel 61 (and the pair of gear carriers 18 and 19 ) that generates the output rotation. That is, in the gear device 1, an output rotation is obtained that is decelerated coaxially with respect to the input rotation at a relatively high reduction ratio.
  • the internally toothed gear 2 is an annular component having internal teeth 21 .
  • the internally toothed gear 2 has an annular shape in which at least the inner peripheral surface is a perfect circle in plan view.
  • Internal teeth 21 are formed on the inner peripheral surface of the annular internally toothed gear 2 along the circumferential direction of the internally toothed gear 2 .
  • the plurality of teeth constituting the internal teeth 21 all have the same shape and are provided at equal pitches over the entire circumferential direction of the inner peripheral surface of the internal gear 2 . That is, the pitch circle of the internal teeth 21 is a perfect circle in plan view.
  • the center of the pitch circle of the internal teeth 21 is located on the rotation axis Ax1.
  • the internally toothed gear 2 has a predetermined thickness in the direction of the rotation axis Ax1.
  • the tooth lines of the internal teeth 21 are all parallel to the rotation axis Ax1.
  • the size of the internal teeth 21 in the tooth line direction is slightly smaller than the thickness direction of the internal tooth gear 2 .
  • the internally toothed gear 2 has an annular (annular) gear body 22 and a plurality of outer pins 23 .
  • the plurality of outer pins 23 are rotatably held on the inner peripheral surface 221 of the gear body 22 and constitute the internal teeth 21 .
  • each of the plurality of outer pins 23 functions as a plurality of teeth constituting the inner teeth 21 .
  • a plurality of inner circumferential grooves 223 are formed on the inner circumferential surface 221 of the gear body 22 over the entire circumferential direction.
  • the plurality of inner peripheral grooves 223 all have the same shape and are provided at equal pitches.
  • the plurality of inner peripheral grooves 223 are all parallel to the rotation axis Ax1 and are formed over the entire length of the gear body 22 in the thickness direction.
  • the plurality of outer pins 23 are combined with the gear body 22 in a manner of being embedded into the plurality of inner circumferential grooves 223 .
  • Each of the plurality of outer pins 23 is held in a rotatable state within the inner peripheral groove 223 .
  • the gear body 22 (together with the outer wheel 62) is fixed to the housing 10.
  • a plurality of fixing holes 222 for fixing are formed in the gear body 22 (see FIG. 5 ).
  • the planetary gear 3 is an annular component having external teeth 31 .
  • the planetary gear 3 has an annular shape in which at least the outer peripheral surface is a perfect circle in plan view.
  • External teeth 31 are formed on the outer peripheral surface of the annular planetary gear 3 along the circumferential direction of the planetary gear 3 .
  • the plurality of teeth constituting the external teeth 31 all have the same shape and are provided at equal pitches over the entire circumferential direction of the outer peripheral surface of the planetary gear 3 . That is, the pitch circle of the external teeth 31 is a perfect circle in plan view.
  • the planetary gear 3 has a predetermined thickness in the direction of the rotation axis Ax1.
  • the external teeth 31 are formed over the entire length of the planetary gear 3 in the thickness direction.
  • the tooth lines of the external teeth 31 are all parallel to the rotation axis Ax1.
  • the external teeth 31 are formed integrally with a metal member that is one body of the planetary gear 3 .
  • the gear device 1 of this basic structure includes a plurality of planetary gears 3 .
  • the gear device 1 includes two planetary gears 3, a first planetary gear 301 and a second planetary gear 302.
  • the two planetary gears 3 are arranged to face each other in a direction parallel to the rotation axis Ax1. That is, the planetary gear 3 includes the first planetary gear 301 and the second planetary gear 302 arranged in a direction parallel to the rotation axis Ax1 (axial direction).
  • the shapes of the first planetary gear 301 and the second planetary gear 302 are the same.
  • These two planetary gears 3 are arranged with a phase difference of 180 degrees around the rotation axis Ax1.
  • the center of the first planetary gear 301 located on the input side of the rotation axis Ax1 (the right side of FIG. 4 ) (the pitch circle of the external teeth 31 The center) C1 is in a state of being deviated (biased) upward in the figure with respect to the rotation axis Ax1.
  • the center C2 of the second planetary gear 302 (the center of the pitch circle of the external teeth 31 ) located on the output side of the rotation axis Ax1 (the left side in FIG. 4 ) is offset toward the downward direction in the figure with respect to the rotation axis Ax1 ( bias) state.
  • the distance ⁇ L1 between the rotation axis Ax1 and the center C1 becomes the eccentricity of the first planetary gear 301 with respect to the rotation axis Ax1
  • the distance ⁇ L2 between the rotation axis Ax1 and the center C2 becomes the eccentricity of the second planetary gear 302 with respect to the rotation axis.
  • the plurality of planetary gears 3 are equally arranged in the circumferential direction centered on the rotation axis Ax1, so that the weight and load balance between the plurality of planetary gears 3 can be achieved.
  • the centers C1 and C2 are located at positions that are rotationally symmetrical at 180 degrees with respect to the rotation axis Ax1.
  • the eccentricity amounts ⁇ L1 and eccentricity ⁇ L2 are in opposite directions when viewed from the rotation axis Ax1, but their absolute values are the same.
  • each of the crankshafts 7A, 7B, and 7C has two eccentric portions 72 with respect to one shaft center portion 71 .
  • the center C0 of the two eccentric portions 72 has an eccentricity amount ⁇ L0 (see FIGS. 5 and 6 ) measured from the center (axis center Ax2) of the axis portion 71 relative to the first planetary gear 301 and the second planetary gear 302 respectively.
  • the eccentricities ⁇ L1 and ⁇ L2 of the rotation axis Ax1 are the same.
  • the shapes of the plurality of crankshafts 7A, 7B, and 7C are the same.
  • the shapes of the plurality of crank gears 502A, 502B, and 502C are also the same.
  • a pair of gear carriers 18 and 19 are arranged on both sides in a direction parallel to the rotation axis Ax1 of the first planetary gear 301 and the second planetary gear 302 (axial direction).
  • the gear carrier 18 located on the input side of the rotation axis Ax1 (right side in FIG. 4 ) is called the “input side gear carrier 18”
  • the gear carrier 18 located on the input side of the rotation axis Ax1 is called “input side gear carrier 18”.
  • the gear carrier 19 on the output side (the left side in FIG. 4 ) is called the "output-side gear carrier 19".
  • crankshaft 7A, 7B, and 7C Both ends of each crankshaft 7A, 7B, and 7C are held by a pair of gear carriers 18 and 19 via roller bearings 41 and 42. That is, each of the crankshafts 7A, 7B, and 7C is held in a rotatable state by the input-side gear carrier 18 and the output-side gear carrier 19 on both sides of the planetary gear 3 in a direction parallel to the rotation axis Ax1 (axial direction). .
  • the eccentric body bearing 5 is attached to the eccentric portion 72 of each of the crankshafts 7A, 7B, and 7C.
  • Three openings 33 corresponding to the three crankshafts 7A, 7B, and 7C are formed in the first planetary gear 301 and the second planetary gear 302, respectively.
  • the eccentric body bearing 5 is accommodated in each opening 33 .
  • the eccentric body bearing 5 is mounted on the first planetary gear 301 and the second planetary gear 302 respectively, and the crankshafts 7A, 7B, and 7C are inserted into the eccentric body bearing 5, so that the eccentric body bearing 5 and the crankshafts 7A, 7B, and 7C are connected to each other.
  • 7C is combined to planetary gear 3.
  • crankshafts 7A, 7B, and 7C are splined to each of the crankshaft gears 502A, 502B, and 502C.
  • the three crankshafts 7A, 7B, and 7C are decelerated at the gear ratio between the input gear 501 and the crankshaft gears 502A, 502B, and 502C. , rotating in the same direction and at the same speed.
  • the three eccentric portions 72 formed at the same position on the input side of the rotation axis Ax1 among the three crankshafts 7A, 7B, and 7C rotate synchronously to swing the first planetary gear 301.
  • the three eccentric portions 72 formed at the same position on the output side of the rotation axis Ax1 among the three crankshafts 7A, 7B, and 7C rotate synchronously to swing the second planetary gear 302.
  • FIGS. 5 and 6 show the states of the first planetary gear 301 and the second planetary gear 302 at a certain point in time.
  • FIG. 5 is a cross-sectional view taken along line A1-A1 in FIG. 4 , showing the first planetary gear 301 .
  • FIG. 6 is a cross-sectional view taken along line B1-B1 in FIG. 4 and shows the second planetary gear 302.
  • the centers C1 and C2 are located at positions that are rotationally symmetrical at approximately 180 degrees with respect to the rotation axis Ax1.
  • the eccentricity amount ⁇ L1 and the eccentricity amount ⁇ L2 are in opposite directions when viewed from the rotation axis Ax1, but their absolute values are approximately the same (both are the eccentricity amounts ⁇ L0).
  • the first planetary gear 301 and the second planetary gear 302 rotate about the rotation axis Ax1 with a phase difference of approximately 180 degrees. (eccentric movement).
  • the plurality of planetary gears 3 are arranged substantially equally in the circumferential direction centered on the rotation axis Ax1, so that the weight and load among the plurality of planetary gears 3 can be balanced.
  • the planetary gears 3 (the first planetary gears 301 and the second planetary gears 302 ) configured in this way are arranged inside the internal gear 2 .
  • the planetary gear 3 is formed one circle smaller than the internally toothed gear 2 in a plan view, and the planetary gear 3 can swing inside the internally toothed gear 2 when combined with the internally toothed gear 2 .
  • external teeth 31 are formed on the outer peripheral surface of the planetary gear 3
  • internal teeth 21 are formed on the inner peripheral surface of the internally toothed gear 2 . Therefore, in a state where the planetary gears 3 are arranged inside the internally toothed gear 2, the external teeth 31 and the internal teeth 21 face each other.
  • the pitch circle of the external teeth 31 is one circle smaller than the pitch circle of the internal teeth 21 . Furthermore, in a state where the first planetary gear 301 is inscribed in the internally toothed gear 2, the center C1 of the pitch circle of the external teeth 31 in the first planetary gear 301 is located away from the center of the pitch circle of the internal teeth 21 (the rotation axis Ax1). deviated from the position by distance ⁇ L1. Similarly, in a state where the second planetary gear 302 is inscribed in the internally toothed gear 2, the center C2 of the pitch circle of the external teeth 31 in the second planetary gear 302 is located away from the center of the pitch circle of the internal teeth 21 (rotation axis Ax1 ) deviates from the position of distance ⁇ L2.
  • both the first planetary gear 301 and the second planetary gear 302 at least part of the external teeth 31 and the internal teeth 21 face each other across a gap. If the difference in the number of teeth between the external teeth 31 and the internal teeth 21 is " 2” or more, the entire circumferential direction will not mesh with each other. However, since the planetary gear 3 swings (revolves) around the rotation axis Ax1 inside the internal gear 2, the external teeth 31 and the internal teeth 21 are partially meshed. That is, as the planetary gears 3 (the first planetary gears 301 and the second planetary gears 302 ) swing around the rotation axis Ax1, as shown in FIGS. 5 and 6 , some of the teeth constituting the external teeth 31 mesh with each other. Some teeth among the plurality of teeth constituting the internal teeth 21 . As a result, in the gear device 1 , part of the external teeth 31 can be meshed with part of the internal teeth 21 .
  • the number of teeth of the internal teeth 21 of the internal gear 2 is greater than the number of teeth of the external teeth 31 of the planetary gear 3 by N (N is a positive integer).
  • N is “2”
  • the number of teeth of the planetary gear 3 (the external teeth 31 ) is smaller than the number of teeth (the internal teeth 21 ) of the internal gear 2 by “2”.
  • the difference in the number of teeth between the planetary gear 3 and the internal gear 2 determines the output rotation speed in the gear device 1 The reduction ratio of the rotation relative to the input rotation.
  • the combined thickness of the first planetary gear 301 and the second planetary gear 302 is smaller than the thickness of the gear body 22 of the internally toothed gear 2 . Furthermore, the size of the tooth line direction of the external teeth 31 (the direction parallel to the rotation axis Ax1) of the first planetary gear 301 and the second planetary gear 302 combined is smaller than the tooth line direction of the internal teeth 21 (the direction parallel to the rotation axis Ax1). direction) size. In other words, in the direction parallel to the rotation axis Ax1, the external teeth 31 of the first planetary gear 301 and the second planetary gear 302 converge within the tooth line range of the internal teeth 21 .
  • first planetary gear 301 and the second planetary gear 302 are each internally meshed with the internal gear 2 . Therefore, every time the first planetary gear 301 and the second planetary gear 302 swing once, the first planetary gear 301 and the second planetary gear 302 will have the same number of teeth (the internal teeth 21 and the external teeth 31 ) relative to the internal gear 2
  • the corresponding phase deviation in the circumferential direction causes rotation.
  • This rotation is transmitted to the pair of gear carriers 18 and 19 as the revolution of the crankshafts 7A, 7B, and 7C around the axis center (rotation axis Ax1) of the internal gear 2.
  • the pair of gear carriers 18 and 19 can be relatively rotated with respect to the gear body (the housing 10 integrated with it) about the rotation axis Ax1.
  • the gear device 1 of this basic structure swings the planetary gears 3 with the plurality of crankshafts 7A, 7B, and 7C arranged at positions offset from the rotation axis Ax1, and obtains a rotational output by utilizing the swinging of the planetary gears 3. That is, in the gear device 1 , when the planetary gear 3 swings and the meshing position of the internal gear 21 and the external gear 31 moves in the circumferential direction of the internal gear 2 , between the two gears (the internal gear 2 and the planetary gear 3 ) Relative rotation corresponding to the tooth number difference between the planetary gear 3 and the internal gear 2 is generated.
  • the planetary gear 3 will rotate (rotate) with the relative rotation of the two gears.
  • the planetary gear 3 obtains a rotational output that is reduced at a relatively high reduction ratio in accordance with the difference in the number of teeth between the two gears.
  • the bearing member 6 has an outer wheel 62 and an inner wheel 61 , and is a component for deriving the output of the gear device 1 as the rotation of the inner wheel 61 relative to the outer wheel 62 .
  • the bearing member 6 has a plurality of rotating bodies 63 in addition to the outer ring 62 and the inner ring 61 (see FIG. 4 ). Both the outer wheel 62 and the inner wheel 61 are annular parts. Both the outer wheel 62 and the inner wheel 61 have a circular ring shape when viewed from above.
  • the inner wheel 61 is one circle smaller than the outer wheel 62 and is arranged inside the outer wheel 62 .
  • the inner diameter of the outer wheel 62 is larger than the outer diameter of the inner wheel 61 , a gap is generated between the inner peripheral surface of the outer wheel 62 and the outer peripheral surface of the inner wheel 61 .
  • the plurality of rotating bodies 63 are arranged in the gap between the outer wheel 62 and the inner wheel 61 .
  • the plurality of rotating bodies 63 are arranged in an array along the circumferential direction of the outer wheel 62 .
  • the plurality of rotating bodies 63 are all metal parts of the same shape, and are provided at equal pitches throughout the circumferential direction of the outer wheel 62 .
  • the bearing member 6 includes a first bearing member 601 and a second bearing member 602 .
  • the first bearing member 601 and the second bearing member 602 each include an angular contact ball bearing.
  • the first bearing member 601 is disposed on the input side (right side of FIG. 4 ) of the rotation axis Ax1 when viewed from the planetary gear 3 , and on the input side of the rotation axis Ax1 when viewed from the planetary gear 3 .
  • the second bearing member 602 is arranged on the output side (left side in FIG. 4 ).
  • the bearing member 6 is configured to respond to a load in the radial direction, a load in the thrust direction (direction along the rotation axis Ax1), and a bending force (bending moment) with respect to the rotation axis Ax1 via the first bearing member 601 and the second bearing member 602. load) can withstand.
  • the first bearing member 601 and the second bearing member 602 are arranged opposite to each other in the direction parallel to the rotation axis Ax1 on both sides of the planetary gear 3 in a direction parallel to the rotation axis Ax1 (axial direction).
  • the bearing member 6 is a "combined angular contact ball bearing” in which a plurality of (here, two) angular contact ball bearings are combined.
  • the first bearing member 601 and the second bearing member 602 are a "back combination type" that carries a load in the thrust direction (direction along the rotation axis Ax1) in which the inner rings 61 approach each other.
  • the first bearing member 601 The second bearing member 602 and the second bearing member 602 are assembled in a state where an appropriate preload is applied to the inner ring 61 by tightening the respective inner rings 61 in a direction close to each other.
  • the input side gear carrier 18 and the output side gear carrier 19 are arranged on both sides of the planetary gear 3 in a direction parallel to the rotation axis Ax1, and pass through the gear carrier hole 34 of the planetary gear 3. (Refer to Figure 4) combined with each other.
  • the input side gear carrier 18 is disposed on the input side (the right side of FIG. 4 ) of the rotation axis Ax1 when viewed from the planetary gear 3 , and is disposed on the output side of the rotation axis Ax1 when viewed from the planetary gear 3 .
  • the output side gear carrier 19 is arranged (left side in FIG. 4 ).
  • the inner ring 61 of the bearing member 6 (each of the first bearing member 601 and the second bearing member 602 ) is fixed to the input side gear carrier 18 and the output side gear carrier 19 .
  • the inner ring of the first bearing member 601 is seamlessly integrated with the input side carrier 18 .
  • the inner ring of the second bearing member 602 is seamlessly integrated with the output-side gear carrier 19 .
  • the output-side carrier 19 has a plurality of (as an example, three) carrier pins 191 protruding from one surface of the output-side carrier 19 toward the input side of the rotation axis Ax1 (see FIG. 2 ).
  • Each of these plurality of carrier pins 191 penetrates a plurality (as an example, three) of carrier holes 34 formed in the planetary gear 3 , and the front ends thereof are fixed to the input side carrier 18 by carrier bolts 192 (see FIG. 7 ).
  • a gap is ensured between the carrier pin 191 and the inner peripheral surface of the carrier hole 34 , and the carrier pin 191 is movable within the carrier hole 34 , that is, relatively movable with respect to the center of the carrier hole 34 . Therefore, when the planetary gear 3 swings, the carrier pin 191 does not contact the inner peripheral surface of the carrier hole 34 .
  • the gear device 1 is used to derive the rotation corresponding to the rotation component of the planetary gear 3 as the rotation of the input-side gear carrier 18 and the output-side gear carrier 19 integrated with the inner wheel 61 of the bearing member 6 . That is, in this basic structure, the relative rotation between the planetary gear 3 and the internal gear 2 is derived from the input side gear carrier 18 and the output side gear carrier 19 .
  • the gear device 1 is used in a state where the outer ring 62 (see FIG. 4 ) of the bearing member 6 is fixed to the housing 10 as a fixing member.
  • the planetary gear 3 is connected to the input-side gear carrier 18 and the output-side gear carrier 19 as rotating members using the plurality of crankshafts 7A, 7B, and 7C, and the gear body 22 is fixed to the fixed member. Therefore, the planetary gear 3 and the internal gear The relative rotation between 2 is derived from the rotating members (the input side gear carrier 18 and the output side gear carrier 19). In other words, in this basic structure, when the planetary gear 3 rotates relative to the gear body 22 , the rotational force of the input-side gear carrier 18 and the output-side gear carrier 19 is derived as output.
  • the housing 10 and the gear body 22 of the internally toothed gear 2 are seamlessly integrated. That is, the gear body 22 as a fixed member and the housing 10 are provided seamlessly and continuously in the direction parallel to the rotation axis Ax1.
  • the housing 10 is cylindrical and constitutes the outer shell of the gear device 1 .
  • the central axis of the cylindrical housing 10 is aligned with the rotation axis Ax1. That is, at least the outer peripheral surface of the housing 10 is a perfect circle centered on the rotation axis Ax1 when viewed from above (viewed from one side in the axial direction).
  • the housing 10 is formed in a cylindrical shape with both end faces open in the axial direction.
  • the gear body 22 of the internal gear 2 is seamlessly integrated with the housing 10, and the housing 10 and the gear body 22 are treated as one component. Therefore, the inner peripheral surface of the housing 10 includes the inner peripheral surface 221 of the gear body 22 .
  • the outer ring 62 of the bearing member 6 is fixed to the housing 10 . That is, the outer ring 62 of the first bearing member 601 is fixed to the input side (right side of FIG. 4 ) of the rotation axis Ax1 when viewed from the gear body 22 in the inner circumferential surface of the housing 10 by being fitted. On the other hand, the outer ring 62 of the second bearing member 602 is fixed to the output side (the left side of FIG. 4 ) of the rotation axis Ax1 when viewed from the gear body 22 in the inner peripheral surface of the housing 10 by fitting.
  • the end surface of the input side (the right side of FIG. 4 ) of the rotation axis Ax1 in the housing 10 is closed by the input side gear carrier 18
  • the end surface of the output side (the left side of FIG. 4 ) of the rotation axis Ax1 in the housing 10 is closed. It is closed by the output side gear carrier 19. Therefore, As shown in FIG. 4 , in the space surrounded by the housing 10 , the input side gear carrier 18 and the output side gear carrier 19 , the planetary gears 3 (the first planetary gear 301 and the second planetary gear 302 ), a plurality of External pin 23 and eccentric body bearing 5 and other parts.
  • Each of the plurality of (three in the basic structure) crankshafts 7A, 7B, and 7C has a shaft center portion 71 and two eccentric portions 72.
  • the axis portion 71 has a cylindrical shape in which at least the outer peripheral surface is a perfect circle in plan view.
  • the axis Ax2, which is the center of the axis portion 71, is parallel to the rotation axis Ax1.
  • Axis centers Ax2 of the plurality of crankshafts 7A, 7B, and 7C are arranged at equal intervals in the circumferential direction on an imaginary circle centered on the rotation axis Ax1.
  • Each eccentric portion 72 has a disk shape in which at least the outer peripheral surface is a perfect circle in plan view.
  • each eccentric portion 72 is arranged parallel to the rotation axis Ax1 and at a position deviated from the rotation axis Ax1 in the radial direction.
  • the distance ⁇ L0 between the axis Ax2 and the center C0 becomes the eccentricity amount of the eccentric portion 72 with respect to the axis portion 71 .
  • the eccentric portion 72 has a flange shape that protrudes from the outer peripheral surface of the axis portion 71 over the entire circumference at a central portion in the longitudinal direction (axial direction) of the axis portion 71 .
  • each of the crankshafts 7A, 7B, and 7C rotates (rotates) about the axis Ax2 through the axis portion 71, so that the eccentric portion 72 performs eccentric movement.
  • the shaft center portion 71 and the two eccentric portions 72 are integrally formed from one metal member, thereby realizing seamless crankshafts 7A, 7B, and 7C.
  • the crankshafts 7A, 7B, and 7C of this shape are assembled to the planetary gear 3 together with the eccentric body bearing 5 . Therefore, when the crankshafts 7A, 7B, and 7C rotate in a state where the eccentric body bearing 5 and the crankshafts 7A, 7B, and 7C are combined with the planetary gear 3, the planetary gear 3 swings around the rotation axis Ax1.
  • the eccentric body bearing 5 has a plurality of rotating bodies 51 (see FIG. 4 ), and is used to absorb the rotation components of the rotation of the crankshafts 7A, 7B, and 7C, and to absorb only the rotation components of the crankshafts 7A, 7B, and 7C.
  • the rotation of 7B and 7C that is, the swing component (revolution component) of the crankshafts 7A, 7B, and 7C, is transmitted to the planetary gear 3 .
  • the plurality of rotating bodies 51 are arranged between the outer peripheral surfaces of the eccentric portions 72 of the crankshafts 7A, 7B, and 7C and the inner peripheral surfaces of the openings 33 of the planetary gears 3 .
  • the eccentric portions 72 of the crankshafts 7A, 7B, and 7C function as the inner rings of the eccentric body bearings 5
  • the inner peripheral surfaces of the openings 33 of the planetary gears 3 function as the outer rings of the eccentric body bearings 5 .
  • crankshafts 7A, 7B, and 7C rotate in a state where the eccentric body bearing 5 and the crankshafts 7A, 7B, and 7C are combined with the planetary gear 3, the planetary gear 3 swings around the rotation axis Ax1.
  • the gear device 1 having the above structure, a rotational force as an input is applied to the input shaft 500 and the input shaft 500 rotates about the rotation axis Ax1.
  • the planetary gear 3 swings (revolves) about the rotation axis Ax1.
  • the planetary gear 3 swings in a state where the inner side of the internal gear 2 is incised with respect to the internal gear 2 and a part of the external teeth 31 meshes with a part of the internal teeth 21 . Therefore, the internal teeth 21 mesh with the external teeth 31 The position moves in the circumferential direction of the internal gear 2 .
  • the reduction ratio R1 is "35".
  • each of the crankshafts 7A, 7B, and 7C rotates one turn (360 degrees) in the clockwise direction about the axis Ax2 (refer to FIGS. 5 and 6 ) of the axis center portion 71 .
  • the pair of gear carriers 18 and 19 rotate counterclockwise around the rotation axis Ax1 by an amount corresponding to the tooth number difference "2" (that is, about 10.3 degrees).
  • such a high reduction ratio R1 can be achieved by a combination of the internal gear 2 and the planetary gear 3 . Furthermore, an appropriate reduction ratio can be achieved between the input gear 501 and the plurality of crank gears 502A, 502B, and 502C in accordance with the number of teeth of the input gear 501 and the crank gears 502A, 502B, and 502C. As a result, the gear device 1 as a whole can achieve a high reduction ratio.
  • the gear device 1 only needs to include at least the internal gear 2 , the planetary gear 3 , the crankshafts 7A, 7B, and 7C, and a pair of gear carriers 18 and 19 .
  • the gear device 1 may further include a spacer 11 .
  • the spacer 11 is arranged between the pair of planetary gears 3 (the first planetary gear 301 and the second planetary gear 302 ) in a direction parallel to the rotation axis Ax1 (axial direction).
  • the internal meshing planetary gear device 1A of this reference example differs from the gear device 1 in the basic structure in the structure around the main crankshafts 7A, 7B, and 7C.
  • the gear device 1A differs from the gear device 1 in the basic structure in the structure around the main crankshafts 7A, 7B, and 7C.
  • FIG. 7 is a schematic cross-sectional view of the gear device 1A.
  • FIG. 8 is a schematic view of the gear device 1A viewed from the output side of the rotation axis Ax1.
  • FIG. 9 is a schematic perspective view of peripheral components of one crankshaft 7A.
  • FIG. 10 is a schematic exploded perspective view of peripheral components of one crankshaft 7A.
  • FIG. 11 is a schematic perspective view of one crankshaft 7A.
  • FIG. 12 is an enlarged view of area Z1 in FIG. 7 .
  • FIG. 13 is an enlarged view of area Z2 in FIG. 7 .
  • FIG. 14 is an enlarged view of the area Z1 of FIG. 13 .
  • the gear device 1A of this reference example further includes a plurality of oil seals 121 and 122 and the like.
  • the oil seal 121 blocks the gap between the housing 10 and the outer peripheral surface of the output-side gear carrier 19 .
  • the oil seal 122 seals the center hole 193 formed in the center of the output side gear carrier 19 .
  • the lubricant holding space 17 is constituted by the space sealed by the plurality of oil seals 121, 122 and the like.
  • the lubricant holding space 17 includes the space between the inner ring 61 and the outer ring 62 of the bearing member 6 . Furthermore, the lubricant holding space 17 accommodates a plurality of outer pins 23 , the planetary gears 3 , a pair of roller bearings 41 and 42 , the eccentric body bearing 5 , and the like.
  • lubricant is injected into the lubricant holding space 17 .
  • the lubricant is a liquid and can flow in the lubricant holding space 17 . Therefore, when the gear device 1 is used, the lubricant enters, for example, the meshing portion between the internal teeth 21 including the plurality of external pins 23 and the external teeth 31 of the planetary gear 3 .
  • the "liquid” used in this disclosure includes liquid or gel-like substances.
  • gel-like here refers to a state having intermediate properties between a liquid and a solid, and includes a colloid state including both a liquid phase and a solid phase.
  • gels or sols such as emulsions in which the dispersant is in a liquid phase and the dispersion in the liquid phase, and suspensions in which the dispersion is in a solid phase
  • gel state states called gels or sols, such as emulsions in which the dispersant is in a liquid phase and the dispersion in the liquid phase, and suspensions in which the dispersion is in a solid phase
  • gel state states called gels or sols, such as emulsions in which the dispersant is in a liquid phase and the dispersion in the liquid phase, and suspensions in which the dispersion is in a solid phase
  • the lubricant is liquid lubricating oil (oil).
  • the gear device 1A of this reference example further includes a pair of covers 13 and 14 attached to both sides of the pair of gear carriers 18 and 19 in the axial direction.
  • the cover 13 located on the input side of the rotation axis Ax1 (right side in FIG. 7 ) is called the “input side cover 13”
  • the cover 13 located on the output side of the rotation axis Ax1 is called “input side cover 13”.
  • the cover 14 (on the left side in Figure 7) is called the "output" Outlet side cover 14".
  • the material of the pair of covers 13 and 14 is metal such as stainless steel, cast iron, carbon steel or chromium-molybdenum steel for mechanical structure, or metal that has been heat-treated.
  • the input side cover 13 is formed in a disk shape centered on the rotation axis Ax1.
  • at least the outer peripheral surface of the input side cover 13 is a perfect circle centered on the rotation axis Ax1 in plan view (viewed from one side in the axial direction).
  • the outer diameter of the input side cover 13 is smaller than the outer diameter of the input side gear carrier 18 .
  • the input side cover 13 is attached to the input side gear carrier 18 from the outside, that is, from the side opposite to the planetary gear 3 (right side in FIG. 7 ) when viewed from the input side gear carrier 18 .
  • the output side cover 14 is formed in a disk shape centered on the rotation axis Ax1.
  • at least the outer peripheral surface of the output side cover 14 is a perfect circle centered on the rotation axis Ax1 in plan view (viewed from one side in the axial direction).
  • the outer diameter of the output side cover 14 is one circle smaller than the outer diameter of the output side gear carrier 19 .
  • the output side cover 14 is attached to the output side gear carrier 19 from the outside, that is, from the side opposite to the planetary gear 3 (the left side in FIG. 7 ) when viewed from the output side gear carrier 19 .
  • the pair of covers 13 and 14 are detachably attached to the pair of gear carriers 18 and 19. That is, the input side cover 13 is detachably attached to the input side gear carrier 18 , and the output side cover 14 is detachably attached to the output side gear carrier 19 .
  • each cover 13 and 14 is attached to each gear frame 18 and 19 through a plurality of fixing bolts 142 (see FIG. 8 ). Therefore, by removing the plurality of fixing bolts 142, each cover 13, 14 can be detached from each gear carrier 18, 19.
  • a plurality of through holes 194 (see FIG. 7 ) provided in the output-side gear carrier 19 are provided.
  • Hole 141 That is, the output side gear carrier 19 is provided with a plurality of mounting holes 194 (female threads) for fixing the target member. Therefore, a plurality of through holes 141 are also formed in the output side cover 14 attached to the outside of the output side gear carrier 19 at positions corresponding to the plurality of attachment holes 194 .
  • the number of mounting holes 194 and through holes 141 increases. Furthermore, the arrangement and number of the mounting holes 194 and the through holes 141 must be consistent with the target member.
  • the shaft hole 131 (see FIG. 7 ) through which the crankshafts 7A, 7B, and 7C pass is provided only in the input side cover 13 of the pair of covers 13 and 14. That is, the input side cover 13 is provided with a plurality of shaft holes 131 corresponding to the plurality of crankshafts 7A, 7B, and 7C.
  • the shaft center portion 71 of each crankshaft 7A, 7B, and 7C is inserted into each shaft hole 131.
  • the inner diameter of each shaft hole 131 is set one circle larger than the outer diameter of the shaft center portion 71 to prevent the shaft center portion 71 from contacting the inner peripheral surface of the shaft hole 131 .
  • crankshaft 7A, 7B, 7C the gear device 1A of this reference example adopts the structure shown in FIG. 9-11.
  • crankshaft 7A will be explained as an example, but the same structure is also adopted for the crankshafts 7B and 7C.
  • the crankshaft 7A has the flange portion 73 between the two eccentric portions 72 in the axial direction along the axis axis Ax2.
  • the flange portion 73 has a disk shape centered on the axis Ax2, and at least the outer peripheral surface is a perfect circle in plan view.
  • the outer diameter of the flange portion 73 is set larger than the outer diameter of the eccentric portion 72 , and the flange portion 73 has a flange shape protruding from the outer peripheral surface of the eccentric portion 72 over the entire circumference.
  • the shaft center portion 71, the two eccentric portions 72, and the flange portion 73 are seamlessly integrated.
  • crankshaft 7A since the crankshaft 7A has two eccentric portions 72 with respect to one axis center portion 71, it has step portions 70 at at least two locations in the axial direction. That is, the diameter of the crankshaft 7A is not uniform over its entire length. The diameter changes at least between the axis center portion 71 and each eccentric portion 72 , so that two step portions 70 are generated in this portion. In other words, the end surfaces of each eccentric portion 72 facing axially outward (that is, on the opposite side to the flange portion 73 ) are respectively the step portions 70 .
  • the diameter of the axis center portion 71 of the crankshaft 7A is smaller at both axial end portions than at the axial center portion. Therefore, step portions 70 are also generated at locations where the diameter of the shaft center portion 71 changes. As a result, the crankshaft 7A has step portions 70 at four locations in the axial direction.
  • first step portion 701 and the second step portion 702 are end surfaces facing the input side of the rotation axis Ax1
  • the third step portion 703 and the fourth step portion 704 are end surfaces facing the output side of the rotation axis Ax1.
  • the end portion of the shaft center portion 71 that is closer to the input side of the rotation axis Ax1 than the first step portion 701 constitutes a mounting portion 74 for mounting the crank gear 502A.
  • a pair of roller bearings 41 and 42, a pair of eccentric body bearings 5, washers 81 to 85, and a retaining ring 86 are assembled to this crankshaft 7A. That is, the eccentric body bearings 5 are respectively attached to the two eccentric portions 72 of the crankshaft 7A. Furthermore, a pair of roller bearings 41 and 42 are mounted on the axis center portion 71 of the crankshaft 7A at positions on both sides of the two eccentric portions 72 in the axial direction. Furthermore, a groove 75 for inserting the retaining ring 86 is formed in the end portion of the shaft center portion 71 of the crankshaft 7A that is closer to the output side of the rotation axis Ax1 than the fourth step portion 704 (the left side in FIG. 7 ). . Therefore, the retaining ring 86 is attached to the output-side end of the rotation axis Ax1 in the shaft center portion 71 .
  • the washer 81 On the input side of the rotation axis Ax1 when viewed from the flange portion 73 (the right side in FIG. 7 ), the washer 81 , the eccentric body bearing 5 , the washer 82 , and Roller bearing 41.
  • the washer 83 On the output side of the rotation axis Ax1 when viewed from the flange portion 73 (the left side in FIG. 7 ), the washer 83 , the eccentric body bearing 5 , and the washer 84 are installed in order from the flange portion 73 side. , roller bearing 42, washer 85, retaining ring 86.
  • the washer 81 is interposed between the flange portion 73 and the eccentric body bearing 5
  • the washer 82 is interposed between the eccentric body bearing 5 and the roller bearing 41 .
  • a washer 83 is interposed between the flange portion 73 and the eccentric body bearing 5
  • a washer 84 is interposed between the eccentric body bearing 5 and the roller bearing 42 .
  • the roller bearing 42 comes into contact with the retaining ring 86 via the washer 85 , thereby restricting the movement toward the output side of the rotation axis Ax1 .
  • the eccentric portion 72 is inserted into the washers 81 and 83 respectively, and the axial center portion 71 is inserted into the washers 82 and 84 respectively.
  • the washer 82 is interposed between the second step portion 702 of the crankshaft 7A and the roller bearing 41 .
  • the washer 84 is interposed between the third step portion 703 of the crankshaft 7A and the roller bearing 42 .
  • the washer 85 is interposed between the fourth step portion 704 of the crankshaft 7A and the retaining ring 86 .
  • These washers 81 to 85 are made of metal, for example, and function as a track wheel (track plate) that reduces friction between both members.
  • the gear device 1A of this reference example is provided with a restriction structure 9 that restricts the axial movement of each of the crankshafts 7A, 7B, and 7C. That is, in the gear device 1A of this reference example, the restriction structure 9 restricts the axial movement of the crankshafts 7A, 7B, and 7C.
  • the "axial direction” mentioned in this disclosure refers to the direction along the axis Ax2 of the crankshafts 7A, 7B, and 7C, particularly the direction (thrust direction) parallel to the axis Ax2 of the crankshafts 7A, 7B, and 7C.
  • restrictive movement in this disclosure refers to imposing certain restrictions on movement, including not only completely prohibiting movement, but also limiting the range of movement or making it difficult to move. That is, in this reference example, the restriction structure 9 is provided, thereby restricting the movement of the crankshafts 7A, 7B, and 7C in the axial direction along the axis Ax2 of the crankshafts 7A, 7B, and 7C.
  • the restriction structure 9 prohibits the crankshafts 7A, 7B, and 7C on both sides (the input side of the rotation axis Ax1) and the other side (the output side of the rotation axis Ax1) in the axial direction. of movement. That is, in the example of FIG. 8 , the restriction structure prohibits both the movement of the crankshafts 7A, 7B, and 7C toward the right in the figure and the movement toward the left in the figure with respect to the pair of gear carriers 18 and 19 . Thereby, the positions of the crankshafts 7A, 7B, and 7C in the axial direction (relative to the pair of gear carriers 18 and 19) are positioned at fixed positions.
  • the restriction structure 9 includes a pair of covers 13 and 14 installed on both sides of the pair of gear carriers 18 and 19 in the axial direction.
  • the gear device 1A uses the input side cover 13 and the output side cover 14 to restrict the crankshafts 7A, 7A, and 7A. Axial movement of 7B and 7C.
  • the gear device 1A of this reference example includes a first restriction structure 91 that restricts the movement of the crankshafts 7A, 7B, and 7C in one side of the axial direction (the right side in FIG. 8 ) and a first restriction structure 91 that restricts the movement of the crankshafts 7A, 7B, and 7C in the axial direction.
  • the moving second restriction structure 92 on the other side serves as the restriction structure 9 .
  • the input side cover 13 is included in the first restriction structure 91 and receives the force F1 acting from the crankshafts 7A, 7B, 7C toward one of the axial directions (the right side in FIG. 8 ), thereby restricting the crankshafts 7A, 7B. , 7C moves toward one side of the axis.
  • the output side cover 14 is included in the second restriction structure 92 and receives the force F2 acting from the crankshafts 7A, 7B, and 7C toward the other axial side (leftward in FIG. 8 ), thereby restricting the crankshafts 7A, 7B, and 7C. 7B and 7C move toward the other side of the axis.
  • the first restriction structure 91 includes the first step portion 701 between the input side cover 13 and the crankshafts 7A, 7B, and 7C.
  • the first step portion 701 of the crankshafts 7A, 7B, and 7C on the input side (right side in FIG. 8 ) facing the rotation axis Ax1 comes into contact with the portion of the input side cover 13 facing the rotation axis Ax1.
  • the shaft hole 131 on the output side (the left side in FIG. 8 )
  • the movement of the crankshafts 7A, 7B, and 7C toward one of the axial directions is restricted.
  • the first step portion 701 of the crankshafts 7A, 7B, and 7C comes into contact with the input side cover 13 attached to the input side gear carrier 18, thereby inhibiting the movement of the crankshafts 7A, 7B, and 7C toward one of the axial directions. .
  • the second restriction structure 92 includes the output-side cover 14 and the output-side end surface 76 of the rotation axis Ax1 of the crankshafts 7A, 7B, and 7C. According to this second restriction structure 92 , the end surfaces 76 of the crankshafts 7A, 7B, and 7C facing the output side (left side in FIG. 8 ) of the crankshafts 7A, 7B, and 7C come into contact with the input side of the output-side cover 14 facing the rotation axis Ax1 ( FIG. 8), the movement of the crankshafts 7A, 7B, and 7C toward the other axial side (the left side in FIG. 8) is restricted.
  • crankshafts 7A, 7B, and 7C come into contact with the output side cover 14 attached to the output side gear carrier 19, thereby prohibiting the movement of the crankshafts 7A, 7B, and 7C toward the other side in the axial direction.
  • the parts of the crankshafts 7A, 7B, and 7C other than the end surfaces (the second step portion 702 and the third step portion 703 ) of the eccentric portion 72 are in contact with the pair of covers 13 and 14 parts. That is, the restriction structure 9 is located axially further outward than the stepped portions 702 and 703 including the end surfaces of the eccentric portion 72 of the crankshafts 7A, 7B, and 7C, and is in contact with the end surfaces (first stepped portion 701 ) facing axially outward. or end surface 76) to limit the axial movement of the crankshafts 7A, 7B, and 7C. Therefore, friction does not occur in the step portions 702 and 703 including the end surfaces of the eccentric portion 72 due to contact with the pair of covers 13 and 14 , etc., and wear and the like of the step portions 702 and 703 can be reduced.
  • the gear device 1A of this reference example includes an internal gear 2, a planetary gear 3, a crankshaft 7A, 7B, and 7C, and a pair of gear carriers 18 and 19.
  • the internally toothed gear 2 has an annular gear body 22 and a plurality of outer pins 23 that are rotatably held in a plurality of inner circumferential grooves 223 formed in the inner circumferential surface 221 of the gear body 22 and constitute the internal teeth 21 .
  • the planetary gear 3 has external teeth 31 partially meshed with the internal teeth 21 .
  • the crankshafts 7A, 7B, and 7C have step portions 70 at at least two locations along the axial direction of the axis Ax2, and the planetary gears 3 are oscillated by rotating about the axis Ax2.
  • a pair of gear carriers 18 and 19 are arranged on both sides of the planetary gear 3 in the axial direction, and rotatably support the crankshafts 7A, 7B, and 7C.
  • lubrication passages S1 through which lubricant passes are formed between the step portion 70 and the pair of gear carriers 18 and 19 .
  • the lubrication passage S1 is ensured between the step portion 70 and the pair of carriers 18 and 19 .
  • lubricant can be circulated through the lubrication passage S1 in the gear device 1A, thereby improving the lubrication state of the pair of roller bearings 41, 42, the pair of eccentric body bearings 5, and the like.
  • the dotted arrows conceptually illustrate how the lubricant flows (circulates) in the lubrication passage S1 .
  • the lubrication passage S1 is formed in the lubricant holding space 17 into which lubricant is injected.
  • "lubricant shortage" in which the lubricant is insufficient or depleted is less likely to occur around the crankshafts 7A, 7B, and 7C, so that more than a certain amount of lubricant is always supplied.
  • the lubricant circulates through the lubrication passage S1. This allows the lubricant to be rotated around the crankshafts 7A, 7B, and 7C at any time, thereby suppressing deterioration of the lubricant.
  • the gear device 1A of this reference example is less likely to suffer a decrease in reliability, especially when used for a long period of time, and therefore contributes to the improvement of transmission efficiency, longevity, and performance of the gear device 1A.
  • the lubrication passage S1 includes a radial passage S11 that allows lubricant to pass in a radial direction orthogonal to the axial direction. That is, as shown in FIG. 14 which is a schematic enlarged view of the area Z1 in FIG. 13 , the lubrication passage S1 formed between the step portion 70 and the pair of gear carriers 18 and 19 at least includes a method for causing the lubricant to flow in the radial direction (radial direction). ) passes through the radial passage S11. Thereby, when the crankshafts 7A, 7B, and 7C rotate, the lubricant is passed in the radial direction by centrifugal force, and the lubricant can be efficiently circulated through the lubrication passage S1.
  • a gap exists between the step portions 702 and 703 and at least one of the pair of gear carriers 18 and 19 in the axial direction, and the lubrication passage S1 includes the gap.
  • the step portions 702 and 703 including at least the end surfaces of the eccentric portion 72 are not used as the restricting structure 9. Therefore, the step portions 702 and 703 can be combined with the pair of gear carriers 18 and 19. There is a gap between them, and this gap is used as a part of the lubrication passage S1.
  • the gaps respectively generated between the step portions 702 and 703 and the pair of gear carriers 18 and 19 constitute a part of the lubrication passage S1.
  • the lubrication passage S1 includes a groove portion 80 (see FIG. 10 ) formed in the plate-shaped component (washers 82 and 84 ) on the surface facing the gear carriers 18 and 19 . That is, as shown in FIG. 10 , in the washers 81 to 84 , groove portions 80 extending in the radial direction are formed on the surfaces facing axially outward (the carriers 18 and 19 side). Here, it is preferable to form a plurality of groove portions 80 in each of the washers 81 to 84.
  • each of the washers 81 to 84 four groove portions 80 are formed in each of the washers 81 to 84.
  • the four groove portions 80 are arranged at equal intervals. in the circumferential direction of each of the washers 81 to 84.
  • lubricant flows through the groove portion 80, and the groove portion 80 is included in the lubrication passage S1.
  • the cross-sectional area of the lubricating passage S1 can be enlarged, and the lubricant can circulate more easily.
  • connection passage S2 that connects a plurality of lubrication passages S1 formed around the plurality of crankshafts 7A, 7B, and 7C. Accordingly, the lubricant can be circulated between the plurality of crankshafts 7A, 7B, and 7C, and the lubricant can be circulated throughout the entire gear device 1A. Therefore, further improvement in the lubrication state can be expected.
  • grooves 133 and 143 are formed on the surface facing inward in the axial direction (the surface on the planetary gear 3 side).
  • the grooves 133 and 143 are annular grooves centered on the rotation axis Ax1 and formed so as to pass the roller bearings 41 and 42 respectively supporting the plurality of crankshafts 7A, 7B and 7C in a plan view (see FIG. 8 ). Therefore, the lubrication passage S1 including the plurality (here, three) of the roller bearings 41 is connected by the connection passage S2 including the groove 133 of the input side cover 13 . Similarly, the lubrication passage S1 including the plurality (here, three) of the roller bearings 42 is connected by the connection passage S2 including the groove 143 of the output side cover 14 .
  • the gear device 1A of this reference example includes an input gear 501 that rotates about the rotation axis Ax1 and a plurality of crank gears 502A, 502B, and 502C.
  • the plurality of crank gears 502A, 502B, and 502C are arranged around the input gear 501 so as to mesh with the input gear 501, and rotate synchronously with each other when the input gear 501 rotates.
  • a plurality of crankshafts 7A, 7B, and 7C are provided in one-to-one correspondence with the plurality of crankshaft gears 502A, 502B, and 502C.
  • the plurality of crankshafts 7A, 7B, and 7C rotate together with the plurality of crankshaft gears 502A, 502B, and 502C to swing the planetary gears 3 about the rotation axis Ax1.
  • the axial movement of the plurality of crankshafts 7A, 7B, and 7C can be restricted. Furthermore, by circulating the lubricant around the plurality of crankshafts 7A, 7B, and 7C, the lubrication state can be improved.
  • the gear device 1A of this reference example constitutes a robot joint device 200 together with the first member 201 and the second member 202 .
  • the robot joint device 200 of this reference example includes the gear device 1A, the first member 201 and the second member 202 .
  • the first member 201 is fixed to the gear body 22 .
  • the second member 202 relatively rotates relative to the first member 201 as the planetary gear 3 rotates relative to the internal gear 2 .
  • FIG. 15 is a schematic cross-sectional view of the robot joint device 200.
  • FIG. 15 schematically shows the first member 201, the second member 202, and the drive source 101.
  • the robot joint device 200 configured in this manner functions as a joint device by relatively rotating the first member 201 and the second member 202 about the rotation axis Ax1.
  • the input shaft 500 of the gear device 1A is driven by the drive source 101, so that the first member 201 and the second member 202 relatively rotate.
  • the rotation (input rotation) generated by the drive source 101 is decelerated at a relatively high reduction ratio in the gear device 1A, thereby driving the first member 201 or the second member 202 with a relatively high torque. That is, the first member 201 and the second member 202 connected by the gear device 1A can perform flexion and extension movements around the rotation axis Ax1.
  • the robot joint device 200 is used in a robot such as a horizontal articulated robot (SCARA type robot), for example.
  • SCARA type robot horizontal articulated robot
  • the robot joint device 200 is not limited to a horizontal multi-joint robot, and may be used for, for example, industrial robots other than horizontal multi-joint robots or robots other than industrial robots.
  • the gear device 1A of this reference example is not limited to the robot joint device 200.
  • the gear device 1A may be used as a wheel device such as an in-wheel motor for vehicles such as an Automated Guided Vehicle (AGV).
  • AGV Automated Guided Vehicle
  • Reference Example 1 is just one of various reference examples of the present disclosure. As long as the purpose of this disclosure can be achieved, Reference Example 1 can be variously modified according to design and the like. Furthermore, the drawings referred to in this disclosure are all schematic drawings, and the respective ratios of the sizes and thicknesses of the constituent elements in the drawings do not necessarily reflect actual dimensional ratios. Modifications of Reference Example 1 are listed below. The modifications described below can be appropriately combined and applied.
  • crankshafts 7A, 7B, and 7C are not limited to "3" and may be 2 or 4 or more. Furthermore, if there is only one crankshaft, an eccentric swing-type internal meshing planetary gear device in which the rotation axis Ax1 coincides with the axis center Ax2 of the crankshaft can be realized instead of a separate type. At this time, by driving the crankshaft, the planetary gear 3 swings, so that the pair of gear carriers 18 and 19 can be relatively rotated with respect to the gear body 22 about the rotation axis Ax1.
  • the gear device 1A having two planetary gears 3 is illustrated, but the gear device 1A may include three or more planetary gears 3 .
  • the gear device 1A may include three or more planetary gears 3 .
  • the gear device 1A may include only one planetary gear 3 .
  • two of the three planetary gears 3 may be in the same phase, and the remaining one planetary gear 3 may be in phase around the rotation axis Ax1. 180 degree phase Poor configuration.
  • the bearing member 6 may be a crossed roller bearing, a deep groove ball bearing, a four-point contact ball bearing, or the like.
  • the number of teeth of the input gear 501, the number of teeth of the crank gears 502A, 502B, and 502C, the number of external pins 23 (the number of teeth of the internal teeth 21), the number of teeth of the external teeth 31, etc. explained in Reference Example 1 are just examples and can be changed appropriately.
  • eccentric body bearing 5 is not limited to a roller bearing, but may also be a deep groove ball bearing or an angular contact ball bearing.
  • each component of the gear device 1A is not limited to metal, but may also be resin such as engineering plastic.
  • the gear device 1A only needs to be able to derive the relative rotation between the inner ring 61 and the outer ring 62 of the bearing member 6 as an output, and is not limited to the inner ring 61 (the input side gear carrier 18 and the output side gear carrier 19).
  • the rotational force of the structure is derived as output.
  • the rotational force of the outer wheel 62 (housing 10) that rotates relative to the inner wheel 61 may be derived as an output.
  • the end surface 76 of the output side of the rotation axis Ax1 of the crankshafts 7A, 7B, and 7C is directly in contact with the output side cover 14, but the structure is not limited to this, and it may also be between the end surface 76 and the output side cover 14.
  • Plate-shaped parts such as spacer members are arranged.
  • the output side cover 14 when the output side cover 14 is installed, by adjusting the thickness (and/or the number of pieces) of the plate-shaped parts, the gap between the end surface 76 and the output side cover 14 can be adjusted in the axial direction, thereby adjusting the crankshaft 7A, The "play" in the axial direction of 7B and 7C.
  • the plate-shaped component functions as a track wheel (track plate) that reduces friction between the end surface 76 and the output side cover 14 .
  • the lubricant is not limited to a liquid substance such as lubricating oil (oil), but may also be a gel-like substance such as grease.
  • the internal meshing planetary gear device 1B (hereinafter simply referred to as “gear device 1B”) of this embodiment differs from the gear device 1A of Reference Example 1 in that the output side cover 14 is omitted.
  • the same structures as those in Reference Example 1 are denoted by the same reference numerals and descriptions are appropriately omitted.
  • Fig. 16 is a schematic cross-sectional view of the gear device 1B.
  • FIG. 17 is an enlarged schematic view of the area Z1 in FIG. 16 , and a partial enlarged view is shown in a pop-up frame.
  • the input side cover 13, the retaining ring 87, and the washer 88 are used instead of the output side cover 14 to restrict the movement of the crankshafts 7A, 7B, and 7C toward the other side in the axial direction. Furthermore, the movement of each of the crankshafts 7A, 7B, and 7C toward one side in the axial direction is restricted by the input side cover 13 and the step portion (first step portion 701), as in Reference Example 1.
  • the gear device 1B includes the internal gear 2 , the planetary gear 3 , the crankshafts 7A, 7B, and 7C, and the input side gear carrier 18 and the output side gear carrier 19 .
  • the planetary gear 3 is oscillated relative to the internal gear 3 by swinging the planetary gear 3 . 2 relative rotation.
  • the internally toothed gear 2 has an annular gear body 22 and a plurality of outer pins 23 that are rotatably held in a plurality of inner circumferential grooves 223 formed in the inner circumferential surface 221 of the gear body 22 and constitute the internal teeth 21 .
  • the planetary gear 3 has external teeth 31 partially meshed with the internal teeth 21 .
  • the crankshafts 7A, 7B, and 7C rotate about the axis Ax2 to swing the planetary gear 3 .
  • the input side gear carrier 18 and the output side gear carrier 19 are arranged on both sides of the planetary gear 3 in the axial direction along the axis Ax2, and rotatably support the crankshafts 7A, 7B, and 7C.
  • the gear device 1B further includes a restriction structure 9 .
  • the restriction structure 9 restricts the movement of the crankshafts 7A, 7B, and 7C toward both sides in the axial direction only at any one of the input-side gear carrier 18 and the output-side gear carrier 19 .
  • the movement of the crankshafts 7A, 7B, and 7C toward both sides (one side and the other side) in the axial direction is restricted only at either one of the input side gear carrier 18 and the output side gear carrier 19 .
  • the direction of the crankshafts 7A, 7B, and 7C is restricted only at the input-side gear carrier 18 among the input-side gear carrier 18 and the output-side gear carrier 19 .
  • the output side gear carrier 19 is not used to limit the axial movement of the crankshafts 7A, 7B, and 7C.
  • the gear device 1B even if only the input side cover 13 is used instead of the output side cover 14, the movement of the crankshafts 7A, 7B, and 7C toward both sides in the axial direction can be restricted.
  • the gear device 1B there is no need to use a tapered roller bearing or the output side cover 14 installed on the output side gear carrier 19 (or the input side cover 13 installed on the input side gear carrier 18), although it is relatively simple. structure, but can limit the axial movement of the crankshafts 7A, 7B, and 7C. Therefore, according to the structure of this embodiment, looseness, transmission loss, etc. caused by the axial movement of the crankshafts 7A, 7B, and 7C can be reduced.
  • the gear device 1B of this embodiment has the following advantages over the gear device 1A of Reference Example 1. That is, the depth of the plurality of mounting holes 194 provided in the output-side gear carrier 19 can be ensured to be deep corresponding to the thickness of the output-side cover 14 , making it easy to improve the mounting strength of the target member to the output-side gear carrier 19 . Furthermore, since the output side cover 14 provided with the plurality of through holes 141 corresponding to the plurality of mounting holes 194 is omitted, there is no need to adjust the arrangement and number of the through holes 141 according to the target member. Furthermore, since the fixing bolts 142 (see FIG. 8 ) for attaching the output-side cover 14 to the output-side gear carrier 19 are not required, the mounting holes 194 can be provided without interfering with the fixing bolts 142 .
  • the retaining ring 87 for fixing the crankshaft gears 502A, 502B, and 502C to the crankshafts 7A, 7B, and 7C indirectly contacts the input side cover 13 via the washer 88 . That is, in order to position the crankshaft gears 502A, 502B, and 502C relative to the crankshafts 7A, 7B, and 7C in the axial direction, the input side of the rotation axis Ax1 in each of the crankshafts 7A, 7B, and 7C (the right side in FIG. 16 ) A pair of buckles 87 and 89 are installed at the end.
  • the pair of retaining rings 87 and 89 axially clamps the crankshaft gears 502A, 502B, and 502C to limit the axial movement of the crankshaft gears 502A, 502B, and 502C relative to the crankshafts 7A, 7B, and 7C.
  • the retaining ring 87 located on the output side of the rotation axis Ax1 (the left side in FIG. 16 ), that is, on the input side cover 13 side when viewed from the crank gears 502A, 502B, 502C, indirectly contacts the The input side cover 13 restricts the movement of the crankshafts 7A, 7B, and 7C toward the other side in the axial direction.
  • the retaining ring 87 attached to the crankshafts 7A, 7B, and 7C indirectly contacts the surface of the input side cover 13 on the input side (right side in FIG. 16 ) of the rotation axis Ax1 and around the shaft hole 131 .
  • the step portion 70 (the first step portion 701 ) of the crankshafts 7A, 7B, and 7C contacts the surface of the output side (the left side in FIG. 17 ) of the rotation axis Ax1 in the input side cover 13 and is the shaft. around hole 131.
  • the restriction structure 9 includes the input side cover 13 , and the input side cover 13 is sandwiched between the retaining ring 87 and the step portion 70 to restrict the axial movement of the crankshafts 7A, 7B, and 7C relative to the input side gear carrier 18 .
  • the first restriction structure 91 includes the first step portion 701 between the input side cover 13 and the crankshafts 7A, 7B, and 7C, similarly to Reference Example 1.
  • the first step portion 701 of the crankshafts 7A, 7B, and 7C facing the input side of the rotation axis Ax1 comes into contact with the shaft hole on the surface of the input side cover 13 facing the output side of the rotation axis Ax1 131, thereby limiting the movement of the crankshafts 7A, 7B, and 7C toward one of the axial directions.
  • the first step portion 701 of the crankshafts 7A, 7B, and 7C comes into contact with the input side cover 13 attached to the input side gear carrier 18, thereby inhibiting the movement of the crankshafts 7A, 7B, and 7C toward one of the axial directions. .
  • the input side cover 13 attached to the input side gear carrier 18 receives the force F1 acting from the crankshafts 7A, 7B, and 7C toward one of the axial directions (the right side in FIG. 17 ), thereby prohibiting the crankshafts 7A, 7B, and 7C from moving. 7C moves toward one side of the axis.
  • the parts other than the end surfaces (second step portion 702 ) of the eccentric portion 72 of the crankshafts 7A, 7B, and 7C are in contact with the input side cover 13 . That is, the first restriction structure 91 is positioned axially outward (right side in FIG. 17 ) from the end surface (second step portion 702 ) of the eccentric portion 72 of the crankshafts 7A, 7B, 7C and faces in the axial direction.
  • the outer step portion (first step portion 701 ) directly or indirectly contacts the input side cover 13 , thereby restricting the movement of the crankshafts 7A, 7B, and 7C toward one of the axial directions.
  • the first step portion 701 is directly in contact with the input side cover 13, but the structure is not limited to this.
  • the first step portion 701 may also be in indirect contact with the input side cover 13 via a gasket or the like.
  • the second restriction structure 92 includes the input side cover 13 , the buckle 87 and the washer 88 . According to this second restriction structure 92, the surface of the buckle 87 facing the output side of the rotation axis Ax1 comes into contact (indirectly via the washer 88) with the input side of the input side cover 13 facing the rotation axis Ax1 (right in FIG. 17 side), thereby restricting the movement of the crankshafts 7A, 7B, and 7C toward the other axial side (the left side in FIG. 17 ). That is, the input side cover 13 receives the force F2 acting from the retaining ring 87 toward the other axial side (the left side in FIG. 17 ) via the washer 88 , thereby prohibiting the crankshafts 7A, 7B, and 7C from moving toward the other axial side. of movement.
  • the restriction structure 9 includes the input side cover 13 attached to the input side carrier 18 on the opposite side to the planetary gear 3 in the axial direction.
  • a pair of protrusions (the first step portion 701 and the retaining ring 87 ) provided on the outer peripheral surfaces of the crankshafts 7A, 7B, and 7C, the movement of the crankshafts 7A, 7B, and 7C in the axial direction is restricted. . Therefore, the movement of the crankshafts 7A, 7B, and 7C in the axial direction can be reliably restricted.
  • the pair of protrusions provided on the outer peripheral surfaces of the crankshafts 7A, 7B, and 7C are not limited to the first step portion 701 and the retaining ring 87.
  • they may be a pair of retaining rings mounted on the crankshafts 7A, 7B, and 7C. It may be a rib or the like provided integrally with the shaft center portion 71 on a part of the outer peripheral surface of the crankshafts 7A, 7B, and 7C.
  • the input side cover 13 in the restriction structure 9 is detachably mounted to the input side gear carrier 18 . That is, the input side cover 13 is a member independent of the input side gear carrier 18 and is attached to the input side gear carrier 18 when the gear device 1B is assembled. Therefore, when assembling the gear device 1B, the crankshafts 7A, 7B, and 7C can be restricted by inserting the crankshafts 7A, 7B, and 7C from the input side gear carrier 18 side and then mounting the input side cover 13 to the input side gear carrier 18. axial movement. Therefore, by adjusting the mounting position of the input side cover 13 relative to the input side gear carrier 18, the axial "play" of the crankshafts 7A, 7B, and 7C can be adjusted.
  • a spacer member 132 is interposed between the input side gear carrier 18 and the input side cover 13 .
  • the gasket member 132 is, for example, a metal thin plate member. That is, in the axial direction, the input side cover 13 is in contact with the input side gear carrier 18 via the spacer member 132 . Therefore, when the input side cover 13 is installed, by adjusting the thickness (and/or the number of pieces) of the gasket member 132, the gap between the first step portion 701 and the input side cover 13 can be adjusted in the axial direction, thereby The "play" of the crankshafts 7A, 7B, and 7C in the axial direction can be adjusted.
  • the step portion 70 (first step portion 701 ) and the retaining ring 87 of the crankshafts 7A, 7B, and 7C are in direct or indirect contact with the gear carrier mounted on the input side. 18 of the input side cover 13, thereby restricting the axial movement of the crankshafts 7A, 7B, and 7C. That is, the movement of the crankshafts 7A, 7B, and 7C in the axial direction is restricted not by the input side carrier 18 but by the input side cover 13 .
  • the input side cover 13 is detachably mounted on the input side gear carrier 18 and is therefore independent of the input side gear carrier 18 .
  • the step portion 70 at two locations (the second step portion 702 and the third step portion 703 ) is connected to the input-side gear carrier 18 and the output-side gear carrier. 19, lubrication passages S1 are respectively formed for passing lubricant. Therefore, the lubrication conditions of the pair of roller bearings 41, the pair of eccentric body bearings 5, etc. are improved, and lubrication failure is less likely to occur. Therefore, even when the gear device 1B is used for a long period of time, the loss due to friction can be reduced, and the life of the gear device 1B can be easily extended. In short, it is difficult for the gear device 1B of this embodiment to be used especially for a long period of time. This will cause a decrease in reliability, and therefore also contributes to improvement in transmission efficiency, longer life, and higher performance of the gear device 1B.
  • the gear device 1B of this embodiment is equipped with the input gear 501 which rotates about the rotation axis Ax1, and the some crankshaft gear 502A, 502B, 502C similarly to Reference Example 1.
  • the plurality of crank gears 502A, 502B, and 502C are arranged around the input gear 501 so as to mesh with the input gear 501, and rotate synchronously with each other when the input gear 501 rotates.
  • a plurality of crankshafts 7A, 7B, and 7C are provided in one-to-one correspondence with the plurality of crankshaft gears 502A, 502B, and 502C.
  • the plurality of crankshafts 7A, 7B, and 7C rotate together with the plurality of crankshaft gears 502A, 502B, and 502C to swing the planetary gears 3 about the rotation axis Ax1.
  • the axial movement of the plurality of crankshafts 7A, 7B, and 7C can be restricted. Furthermore, by circulating the lubricant around the plurality of crankshafts 7A, 7B, and 7C, the lubrication state can be improved.
  • the restriction structure 9 is provided only in the input side gear carrier 18 of the input side gear carrier 18 and the output side gear carrier 19 (strictly speaking, it is the input side cover 13 attached to the input side gear carrier 18).
  • the movement of the crankshafts 7A, 7B, and 7C toward both sides (one side and the other side) in the axial direction is restricted, but it is not limited to this structure. That is, the restriction structure 9 only needs to restrict the movement of the crankshafts 7A, 7B, and 7C toward both sides in the axial direction at any one of the input-side gear carrier 18 and the output-side gear carrier 19 .
  • the restriction structure 9 may be a structure that restricts the movement of the crankshafts 7A, 7B, and 7C in the axial direction only at the output side gear carrier 19 .
  • the output-side gear carrier 19 can not only directly restrict the axial movement of the crankshafts 7A, 7B, and 7C, but also restrict the axial movement of the crankshafts 7A, 7B, and 7C through, for example, the output-side cover 14 installed on the output-side gear carrier 19 move towards.
  • the mounting structures of the crankshaft gears 502A, 502B, and 502C are less likely to interfere with the restriction structure 9 .
  • Embodiment 1 The structure (including modifications) of Embodiment 1 can be combined appropriately with the various structures (including modifications) described in Reference Example 1.
  • the internal meshing planetary gear device (1, 1A, 1B) of the first form includes an internal gear (2), a planetary gear (3), a crankshaft (7A, 7B, 7C), and an input side gear carrier. (18) and the output side gear carrier (19) swing the planet gear (3) to cause the planet gear (3) to rotate relative to the internal gear (2).
  • the internal gear (2) has an annular gear body (22) and a plurality of outer pins (23), which are held in a rotatable state by a plurality of pins formed on the inner peripheral surface (221) of the gear body (22).
  • the inner circumferential groove (223) is in the inner peripheral groove (223) and forms the inner tooth (21).
  • the planet gear (3) has external teeth (31) partially meshed with the internal teeth (21).
  • the crankshaft (7A, 7B, 7C) rotates about the axis (Ax2) to swing the planetary gear (3).
  • the input-side gear carrier (18) and the output-side gear carrier (19) are arranged on both sides of the planetary gear (3) in the axial direction along the axis (Ax2), and rotatably support the crankshafts (7A, 7B, 7C).
  • the internal meshing planetary gear unit (1, 1A, 1B) also has a limiting structure (9).
  • the restriction structure (9) restricts the movement of the crankshaft (7A, 7B, 7C) toward both sides in the axial direction only at any one of the input-side gear carrier (18) and the output-side gear carrier (19).
  • the crankshaft (7A, 7B, 7C) can be restricted from axially facing both sides (one side and the other side) only at any one of the input side gear carrier (18) and the output side gear carrier (19). ) movement.
  • the internal meshing planetary gear device (1, 1A, 1B) there is no need to use a tapered roller bearing, etc., and although the structure is relatively simple, the axial movement of the crankshaft (7A, 7B, 7C) can be restricted. Therefore, looseness and transmission loss caused by the axial movement of the crankshaft (7A, 7B, 7C) can be reduced.
  • the second form of the internal meshing planetary gear device (1, 1A, 1B) is that in the first form, the restriction structure (9) includes a planetary gear (3) mounted on the input side gear carrier (18) in the axial direction. is the input side cover (13) on the opposite side.
  • the restriction structure (9) restricts the movement of the crankshaft (7A, 7B, 7C) in the axial direction by sandwiching the input side cover (13) between a pair of protrusions provided on the outer peripheral surface of the crankshaft (7A, 7B, 7C).
  • the movement of the crankshaft (7A, 7B, 7C) in the axial direction can be reliably restricted.
  • the input side cover (13) is detachably attached to the input side gear carrier (18).
  • crankshaft (7A, 7B, 7C) when assembling the internal meshing planetary gear unit (1, 1A, 1B), etc., insert the crankshaft (7A, 7B, 7C) from the input side gear carrier (18) side, and then install the input side cover (13) to the input side gear carrier (18), thereby limiting the axial movement of the crankshaft (7A, 7B, 7C).
  • the fourth form of the internal meshing planetary gear device (1, 1A, 1B) is that in the first form, the restriction structure (9) restricts the crankshaft (7A, 7B, 7C) in the axial direction only at the output side gear carrier (19). of movement.
  • the mounting structure of the members (crankshaft gears 502A, 502B, 502C, etc.) mounted on the input side of the crankshaft (7A, 7B, 7C) is less likely to interfere with the restriction structure (9).
  • crankshaft (7A, 7B, 7C) has a step in at least two places in the axial direction. Ministry(70). Lubricating passages (S1) through which lubricant passes are formed between the two step portions (70) and the input-side gear carrier (18) and the output-side gear carrier (19).
  • the lubricant can be circulated by utilizing the clearance between the step portion (70) and the input-side gear carrier (18) and the output-side gear carrier (19) in the axial direction.
  • the sixth aspect of the internal meshing planetary gear device (1, 1A, 1B) is any one of the first to fifth aspects, further including: an input gear (501) rotating about the rotation axis (Ax1); And a plurality of crankshaft gears (502A, 502B, 502C) are arranged around the input gear (501) to mesh with the input gear (501), and rotate synchronously with each other when the input gear (501) rotates.
  • a plurality of crankshafts (7A, 7B, 7C) are provided in one-to-one correspondence with a plurality of crankshaft gears (502A, 502B, 502C).
  • the plurality of crankshafts (7A, 7B, 7C) rotate together with the plurality of crankshaft gears (502A, 502B, 502C), and the planetary gears (3) are oscillated around the rotation axis (Ax1).
  • the axial movement of the crankshaft (7A, 7B, 7C) can be restricted although the structure is relatively simple.
  • a seventh aspect of the robot joint device (200) includes: an internal meshing planetary gear device (1, 1A, 1B) of any one of the first to sixth aspects; and a first member (201) fixed to the gear body. (22); and the second member (202), which rotates relative to the first member (201) as the planetary gear (3) rotates relative to the internal gear (2).
  • crankshaft (7A, 7B, 7C) Although it is a relatively simple structure, it can restrict the axial movement of the crankshaft (7A, 7B, 7C).
  • the structures of the second to seventh forms are not essential for the internal meshing planetary gear device (1, 1A, 1B) and can be omitted as appropriate.

Abstract

一种内啮合行星齿轮装置及机器人用关节装置,虽然结构相对较简单,但能限制曲轴的轴向移动。内啮合行星齿轮装置(1B)具备内齿齿轮(2)、行星齿轮(3)、输入侧齿轮架(18)及输出侧齿轮架(19)、以及限制结构(9),曲轴(7A)通过以轴心为中心旋转而使行星齿轮(3)摆动,输入侧齿轮架(18)及输出侧齿轮架(19)配置在行星齿轮(3)的沿着轴心的轴向的两侧,可旋转地支撑曲轴(7A),限制结构(9)仅在输入侧齿轮架(18)与输出侧齿轮架(19)的任一齿轮架处限制曲轴(7A)朝向轴向上的两侧的移动。

Description

内啮合行星齿轮装置及机器人用关节装置 技术领域
本公开一般涉及一种内啮合行星齿轮装置及机器人用关节装置,更详细而言,涉及一种在具有内齿的内齿齿轮的内侧配置具有外齿的行星齿轮的内啮合行星齿轮装置及机器人用关节装置。
背景技术
作为相关技术,已知有被称作分离型的偏心摆动型内啮合行星齿轮装置(例如参照专利文献1)。在相关技术的内啮合行星齿轮装置中,具备配置在从内齿齿轮的轴心偏移的位置的多个(例如3个)曲轴,通过曲轴齿轮来同步地驱动各曲轴,由此,一边使行星齿轮(外齿齿轮)摆动一边使其内啮合于内齿齿轮。
行星齿轮包含第1行星齿轮及第2行星齿轮。在第1行星齿轮及第2行星齿轮的轴向两侧配置有一对齿轮架。各曲轴经由一对圆锥滚子轴承支撑于一对齿轮架。当输入齿轮旋转时,与所述输入齿轮同时啮合的3个曲轴齿轮朝同一方向以同一转速旋转。由于在各曲轴齿轮花键连结着曲轴,因此3个曲轴在以输入齿轮与曲轴齿轮的齿数比受到减速的状态下朝同一方向以同一转速旋转。其结果,形成在3个曲轴的轴向同位置的3个第1偏心部同步旋转而使第1行星齿轮摆动,并且分别形成在3个曲轴的轴向同位置的3个第2偏心部同步旋转而使第2行星齿轮摆动。
第1行星齿轮及第2行星齿轮分别内啮合于内齿齿轮。内齿齿轮具有齿轮本体及外销(销构件),所述外销(销构件)被可旋转地装入至齿轮本体,构成所述内齿齿轮的内齿。此处,内齿齿轮的齿数(外销的根数)稍多于各行星齿轮的齿数。因此,每当各行星齿轮摆动1次时,第1行星齿轮及第2行星齿轮相对于内齿齿轮而圆周方向的相位偏离(自转)与齿数差相应的量,该自转作为各曲轴绕内齿齿轮的轴心(旋转轴)的公转而传递至一对齿轮架。由此,能够以旋转轴为中心使一对齿轮架相对于齿轮本体(与其一体化的壳体)相对旋转。
[现有技术文献]
[专利文献]
专利文献1:日本专利特开2016-75354号公报
发明内容
[发明所要解决的问题]
所述相关技术的结构中,各曲轴经由一对圆锥滚子轴承而支撑于一对齿轮架,由此,朝向轴向的移动受到限制,因此存在结构变得复杂,难以实现装置整体的小型化的问题。
本公开的目的在于提供一种虽为相对较简单的结构,但能限制曲轴的轴向移动的内啮合行星齿轮装置及机器人用关节装置。
[解决问题的技术手段]
本公开的一形态的内啮合行星齿轮装置具备内齿齿轮、行星齿轮、曲轴以及输入侧齿 轮架及输出侧齿轮架,通过使所述行星齿轮摆动而使所述行星齿轮相对于所述内齿齿轮相对旋转。所述内齿齿轮具有环状的齿轮本体与多个外销,所述多个外销以可自转的状态被保持在形成于所述齿轮本体的内周面的多个内周槽中且构成内齿。所述行星齿轮具有局部啮合于所述内齿的外齿。所述曲轴通过以轴心为中心旋转而使所述行星齿轮摆动。所述输入侧齿轮架及所述输出侧齿轮架配置在所述行星齿轮的沿着所述轴心的轴向的两侧,可旋转地支撑所述曲轴。所述内啮合行星齿轮装置还具备限制结构。所述限制结构仅在所述输入侧齿轮架与所述输出侧齿轮架的任一齿轮架处限制所述曲轴朝向所述轴向上的两侧的移动。
本公开的一形态的机器人用关节装置具备:所述内啮合行星齿轮装置;第1构件,被固定于所述齿轮本体;以及第2构件,伴随所述行星齿轮相对于所述内齿齿轮的相对旋转而相对于所述第1构件相对旋转。
[发明的效果]
根据本公开,可提供一种虽为相对较简单的结构,但能抑制曲轴的轴向移动的内啮合行星齿轮装置及机器人用关节装置。
附图说明
图1是表示包含基本结构的内啮合行星齿轮装置的致动器的概略结构的立体图。
图2是从旋转轴的输入侧观察上述内啮合行星齿轮装置的概略分解立体图。
图3是从旋转轴的输出侧观察上述内啮合行星齿轮装置的概略分解立体图。
图4是上述内啮合行星齿轮装置的概略剖视图。
图5是表示上述内啮合行星齿轮装置的、图4的A1-A1线剖视图。
图6是表示上述内啮合行星齿轮装置的、图4的B1-B1线剖视图。
图7是参考例1的内啮合行星齿轮装置的概略剖视图。
图8是从旋转轴的输出侧观察上述内啮合行星齿轮装置的概略图。
图9是表示上述内啮合行星齿轮装置的曲轴周边的结构的概略立体图。
图10是表示上述内啮合行星齿轮装置的曲轴周边的结构的概略分解立体图。
图11是表示上述内啮合行星齿轮装置的曲轴的概略立体图。
图12表示上述内啮合行星齿轮装置的主要部分,是图7的区域Z1的概略放大图。
图13表示上述内啮合行星齿轮装置的主要部分,是图7的区域Z2的概略放大图。
图14表示上述内啮合行星齿轮装置的主要部分,是图13的区域Z1的概略放大图。
图15是表示使用上述内啮合行星齿轮装置的机器人用关节装置的概略图。
图16是实施方式1的内啮合行星齿轮装置的概略剖视图。
图17表示上述内啮合行星齿轮装置的主要部分,是图16的区域Z1的概略放大图。
具体实施方式
(基本结构)
(1)概要
以下,关于本基本结构的内啮合行星齿轮装置1的概要,参照图1~图4进行说明。本公开中参照的附图均为示意性的图,图中的各构成元件的大小及厚度各自之比未必反映的是实际的尺寸比。例如,图1~图4中的内齿21及外齿31的齿形、尺寸及齿数等均不过是为了说明而示意性地表示,并非旨在限定于所图示的形状。
本基本结构的内啮合行星齿轮装置1(以下也简称作“齿轮装置1”)是具备内齿齿轮2及行星齿轮3的齿轮装置。此齿轮装置1中,在环状的内齿齿轮2的内侧配置有行星齿轮3,通过使行星齿轮3摆动而使行星齿轮3相对于内齿齿轮2相对旋转。而且,内啮合行星齿轮装置1还具备具有外轮62及内轮61的轴承构件6。内轮61配置在外轮62的内侧,相对于外轮62可相对旋转地受到支撑。尤其,本基本结构的齿轮装置1是被称作分离型的偏心摆动型内啮合行星齿轮装置。
本基本结构的齿轮装置1如图1~图4所示,具备配置在从内齿齿轮2的轴心(旋转轴Ax1)偏移的位置的多个(基本结构中为3个)曲轴(偏心轴)7A、7B、7C。进而,齿轮装置1具备:输入轴500,配置在内齿齿轮2的轴心(旋转轴Ax1)上且以旋转轴Ax1为中心;以及输入齿轮501,与输入轴500一体地形成。在多个曲轴7A、7B、7C,分别花键连结有曲轴齿轮502A、502B、502C。这些多个(基本结构中为3个)曲轴齿轮502A、502B、502C以啮合于输入齿轮501的方式而配置。因此,齿轮装置1在输入轴500受到驱动时,通过输入齿轮501来同步地驱动曲轴7A、7B、7C,由此使行星齿轮3摆动。
内齿齿轮2具有内齿21,且被固定于外轮62。尤其,在本基本结构中,内齿齿轮2具有环状的齿轮本体22与多个外销23。多个外销23以可自转的状态被保持在齿轮本体22的内周面221且构成内齿21。行星齿轮3具有局部啮合于内齿21的外齿31。即,在内齿齿轮2的内侧,行星齿轮3相对于内齿齿轮2而内切,成为外齿31的一部分啮合于内齿21的一部分的状态。在此状态下,当多个曲轴7A、7B、7C受到驱动时,行星齿轮3摆动,内齿21与外齿31的啮合位置沿内齿齿轮2的圆周方向移动,在两齿轮(内齿齿轮2及行星齿轮3)之间产生跟行星齿轮3与内齿齿轮2的齿数差相应的相对旋转。此处,若内齿齿轮2被固定,则伴随两齿轮的相对旋转,行星齿轮3将旋转(自转)。其结果,从行星齿轮3获得对应于两齿轮的齿数差而以相对较高的减速比受到减速的旋转输出。
此种齿轮装置1被用来将相当于行星齿轮3的自转成分的旋转作为与轴承构件6的内轮61一体化的一对齿轮架18、19的旋转而导出。由此,齿轮装置1将输入轴500作为输入侧,将一对齿轮架18、19作为输出侧,而作为相对较高的减速比的齿轮装置发挥功能。因此,本基本结构的齿轮装置1中,为了将相当于行星齿轮3的自转成分的旋转传递至一对齿轮架18、19,利用一对齿轮架18、19支撑着多个曲轴7A、7B、7C。一对齿轮架18、19配置在行星齿轮3的轴向(沿着旋转轴Ax1的方向)的两侧,可旋转地支撑各曲轴7A、7B、7C。
此处,多个曲轴7A、7B、7C在被分别插入至形成于行星齿轮3的多个开口部33的状态下,伴随行星齿轮3的旋转而相对于内齿齿轮2相对旋转。而且,各曲轴7A、7B、7C具有轴心部71与相对于轴心部71而偏心的偏心部72。一对齿轮架18、19可旋转地支撑各曲轴7A、7B、7C中的轴心部71,各曲轴7A、7B、7C的偏心部72被插入至行星齿轮3的开口部33。因此,行星齿轮3的摆动成分即行星齿轮3的公转成分被偏心部72相对于轴心部71的公转成分吸收。换言之,各曲轴7A、7B、7C的轴心部71的偏心部72分别以相对于轴心部71而公转的方式旋转,由此来吸收行星齿轮3的摆动成分。因此,通过多个曲轴7A、7B、7C,除了行星齿轮3的摆动成分(公转成分)以外的、行星齿轮3的旋转(自转成分)被传递至一对齿轮架18、19。
而且,本基本结构的齿轮装置1如图1所示,与驱动源101一同构成致动器100。换言 之,本基本结构的致动器100具备齿轮装置1及驱动源101。驱动源101产生用于使行星齿轮3摆动的驱动力。具体而言,驱动源101通过以旋转轴Ax1为中心使输入轴500旋转而使行星齿轮3摆动。
(2)定义
本公开中所说的“环状”是指至少在俯视时形成被包围在内侧的空间(区域)的、圆圈(圈)那样的形状,并不限于在俯视时为正圆的圆形状(圆环状),例如也可为椭圆形状及多边形状等。进而,例如即便是像杯状那样具有底部的形状,只要其周壁为环状,则也包含在“环状”中。
本公开中所说的“公转”是指某物体绕通过该物体的中心(重心)的中心轴以外的旋转轴回转,当某物体公转时,该物体的中心将沿着以旋转轴为中心的公转轨道移动。因此,例如当某物体以与通过该物体的中心(重心)的中心轴平行的偏心轴为中心旋转时,该物体将以偏心轴为旋转轴而公转。作为一例,行星齿轮3通过摆动,而以绕旋转轴Ax1回转的方式在内齿齿轮2内公转。
而且,本公开中,有时将旋转轴Ax1的其中一侧(图4的左侧)称作“输出侧”,将旋转轴Ax1的另一侧(图4的右侧)称作“输入侧”。图4的示例中,从旋转轴Ax1的“输入侧”对输入轴500给予旋转,从旋转轴Ax1的“输出侧”导出一对齿轮架18、19的旋转。但是,“输入侧”及“输出侧”不过是为了说明而附注的标签,并非旨在限定从齿轮装置1观察的、输入及输出的位置关系。
本公开中所说的“旋转轴”是指成为旋转体的旋转运动中心的假想性的轴(直线)。即,旋转轴Ax1是未伴随实体的假想轴。输入轴500以旋转轴Ax1为中心进行旋转运动。
本公开中所说的“内齿”及“外齿”各自并非单个“齿”,而是指多个“齿”的集合(群)。即,内齿齿轮2的内齿21包含配置在内齿齿轮2(齿轮本体22)的内周面221的多个齿的集合。同样地,行星齿轮3的外齿31包含配置在行星齿轮3的外周面的多个齿的集合。
(3)结构
以下,关于本基本结构的内啮合行星齿轮装置1的详细结构,参照图1~图6来进行说明。
图1是表示包含齿轮装置1的致动器100的概略结构的立体图。图1中示意性地表示了驱动源101。图2是从旋转轴Ax1的输入侧观察齿轮装置1的概略分解立体图。图3是从旋转轴Ax1的输出侧观察齿轮装置1的概略分解立体图。图4是齿轮装置1的概略剖视图。图5是图4的A1-A1线剖视图。图6是图4的B1-B1线剖视图。但是,图5及图6中,对于曲轴7A、7B、7C以外的零件,尽管是剖面但省略了影线。
(3.1)整体结构
本基本结构的齿轮装置1如图1~图4所示,具备内齿齿轮2、行星齿轮3、轴承构件6、多个曲轴7A、7B、7C、一对齿轮架18、19及输入轴500。而且,在本基本结构中,齿轮装置1还具备输入齿轮501、多个曲轴齿轮502A、502B、502C、一对滚柱轴承41、42、偏心体轴承5及壳体10。在本基本结构中,作为齿轮装置1的构成元件的内齿齿轮2、行星齿轮3、多个曲轴7A、7B、7C及一对齿轮架18、19等的材质为不锈钢、铸铁、机械结构用碳钢、铬钼钢、磷青铜或铝青铜等金属、或者铝或钛等轻金属。此处所说的金属(包含轻金属)包 含实施了氮化处理等表面处理的金属。
而且,在本基本结构中,作为齿轮装置1的一例,例示使用次摆线系齿形的内切式行星齿轮装置。即,本基本结构的齿轮装置1具备具有次摆线系曲线齿形的内切式行星齿轮3。
而且,在本基本结构中,作为一例,齿轮装置1是在内齿齿轮2的齿轮本体22与轴承构件6的外轮62一同被固定于壳体10等固定构件的状态下使用。由此,伴随内齿齿轮2与行星齿轮3的相对旋转,行星齿轮3将相对于固定构件(壳体10等)相对旋转。
进而,在本基本结构中,在将齿轮装置1用于致动器100的情况下,通过对输入轴500施加作为输入的旋转力,从与轴承构件6的内轮61一体化的一对齿轮架18、19导出作为输出的旋转力。即,齿轮装置1是将输入轴500的旋转作为输入旋转,将与内轮61一体化的一对齿轮架18、19的旋转作为输出旋转来运行。由此,在齿轮装置1中,将获得相对于输入旋转而以相对较高的减速比受到减速的输出旋转。
驱动源101为马达(电动机)等动力产生源。由驱动源101产生的动力被传递至齿轮装置1中的输入轴500。具体而言,驱动源101连接于输入轴500,由驱动源101产生的动力被传递至输入轴500。由此,驱动源101能够使输入轴500旋转。
进而,在本基本结构的齿轮装置1中,如图4所示,输入侧的旋转轴Ax1与输出侧的旋转轴Ax1位于同一直线上。换言之,输入侧的旋转轴Ax1与输出侧的旋转轴Ax1为同轴。此处,输入侧的旋转轴Ax1是被给予输入旋转的输入轴500的旋转中心,输出侧的旋转轴Ax1是产生输出旋转的内轮61(以及一对齿轮架18、19)的旋转中心。即,在齿轮装置1中,将获得在同轴上相对于输入旋转而以相对较高的减速比受到减速的输出旋转。
内齿齿轮2如图5及图6所示,为具有内齿21的环状零件。在本基本结构中,内齿齿轮2具有至少内周面在俯视时为正圆的圆环状。在圆环状的内齿齿轮2的内周面,沿着内齿齿轮2的圆周方向形成有内齿21。构成内齿21的多个齿全部为同一形状,且等节距地设在内齿齿轮2的内周面中的圆周方向的整个区域。即,内齿21的节圆在俯视时为正圆。内齿21的节圆的中心位于旋转轴Ax1上。而且,内齿齿轮2在旋转轴Ax1的方向上具有规定的厚度。内齿21的齿线均与旋转轴Ax1平行。内齿21的齿线方向的尺寸稍小于内齿齿轮2的厚度方向。
此处,如上所述,内齿齿轮2具有环状(圆环状)的齿轮本体22与多个外销23。多个外销23以可自转的状态被保持在齿轮本体22的内周面221且构成内齿21。换言之,多个外销23分别作为构成内齿21的多个齿发挥功能。具体而言,在齿轮本体22的内周面221,如图2所示,在圆周方向的整个区域形成有多个内周槽223。多个内周槽223全部为同一形状,且等节距地设置。多个内周槽223均与旋转轴Ax1平行,且遍及齿轮本体22的厚度方向的全长而形成。多个外销23以嵌入至多个内周槽223的方式组合至齿轮本体22。多个外销23各自在内周槽223内以可自转的状态受到保持。而且,齿轮本体22(与外轮62一同)被固定于壳体10。进而,在齿轮本体22,形成有固定用的多个固定孔222(参照图5)。
行星齿轮3如图5及图6所示,为具有外齿31的环状零件。在本基本结构中,行星齿轮3具有至少外周面在俯视时为正圆的圆环状。在圆环状的行星齿轮3的外周面,沿着行星齿轮3的圆周方向形成有外齿31。构成外齿31的多个齿全部为同一形状,且等节距地设在行星齿轮3的外周面中的圆周方向的整个区域。即,外齿31的节圆在俯视时为正圆。而且, 行星齿轮3在旋转轴Ax1的方向上具有规定的厚度。外齿31均是遍及行星齿轮3的厚度方向的全长而形成。外齿31的齿线均与旋转轴Ax1平行。在行星齿轮3中,不同于内齿齿轮2,外齿31是由与行星齿轮3的本体为一个的金属构件一体地形成。
而且,本基本结构的齿轮装置1具备多个行星齿轮3。具体而言,齿轮装置1具备第1行星齿轮301与第2行星齿轮302这2个行星齿轮3。2个行星齿轮3以在与旋转轴Ax1平行的方向上相向的方式而配置。即,行星齿轮3包含沿与旋转轴Ax1平行的方向(轴向)排列的第1行星齿轮301及第2行星齿轮302。第1行星齿轮301及第2行星齿轮302的形状自身相同。
这2个行星齿轮3(第1行星齿轮301及第2行星齿轮302)绕旋转轴Ax1以180度的相位差而配置。图4的示例中,第1行星齿轮301及第2行星齿轮302中的、位于旋转轴Ax1的输入侧(图4的右侧)的第1行星齿轮301的中心(外齿31的节圆的中心)C1处于相对于旋转轴Ax1而朝图的上方偏离(偏倚)的状态。另一方面,位于旋转轴Ax1的输出侧(图4的左侧)的第2行星齿轮302的中心(外齿31的节圆的中心)C2处于相对于旋转轴Ax1而朝图的下方偏离(偏倚)的状态。此处,旋转轴Ax1与中心C1之间的距离ΔL1成为第1行星齿轮301相对于旋转轴Ax1的偏心量,旋转轴Ax1与中心C2之间的距离ΔL2成为第2行星齿轮302相对于旋转轴Ax1的偏心量。这样,多个行星齿轮3在以旋转轴Ax1为中心的周向上均等地配置,由此能够取得多个行星齿轮3间的重量与载荷的平衡。
在第1行星齿轮301与第2行星齿轮302中,其中心C1、C2位于相对于旋转轴Ax1成180度旋转对称的位置。在本基本结构中,关于偏心量ΔL1与偏心量ΔL2,从旋转轴Ax1观察的方向为相反,但其绝对值相同。
更详细而言,各曲轴7A、7B、7C分别相对于1个轴心部71而具有2个偏心部72。这2个偏心部72的中心C0从轴心部71的中心(轴心Ax2)计起的偏心量ΔL0(参照图5及图6)分别与第1行星齿轮301及第2行星齿轮302相对于旋转轴Ax1的偏心量ΔL1、ΔL2相同。多个曲轴7A、7B、7C的形状自身相同。关于多个曲轴齿轮502A、502B、502C,其形状自身也相同。
而且,在与第1行星齿轮301及第2行星齿轮302的旋转轴Ax1平行的方向(轴向)的两侧,配置有一对齿轮架18、19。在将一对齿轮架18、19彼此区分的情况下,将位于旋转轴Ax1的输入侧(图4中为右侧)的齿轮架18称作“输入侧齿轮架18”,将位于旋转轴Ax1的输出侧(图4中为左侧)的齿轮架19称作“输出侧齿轮架19”。各曲轴7A、7B、7C的两端部经由滚柱轴承41、42被保持于一对齿轮架18、19。即,各曲轴7A、7B、7C相对于行星齿轮3而在与旋转轴Ax1平行的方向(轴向)的两侧,以可自转的状态被保持于输入侧齿轮架18及输出侧齿轮架19。
在各曲轴7A、7B、7C的偏心部72,安装有偏心体轴承5。在第1行星齿轮301及第2行星齿轮302分别形成有与3个曲轴7A、7B、7C对应的3个开口部33。并且,在各开口部33中收容偏心体轴承5。换言之,在第1行星齿轮301及第2行星齿轮302分别安装偏心体轴承5,通过将各曲轴7A、7B、7C插入至偏心体轴承5,从而将偏心体轴承5及各曲轴7A、7B、7C组合至行星齿轮3。在偏心体轴承5及曲轴7A、7B、7C被组合至行星齿轮3的状态下,当各曲轴7A、7B、7C旋转时,行星齿轮3绕旋转轴Ax1摆动。
根据以上说明的结构,通过对输入轴500施加作为输入的旋转力而输入轴500以旋转轴Ax1为中心旋转,从而该旋转力从输入齿轮501被分配给多个曲轴7A、7B、7C。即,当输入齿轮501旋转时,与所述输入齿轮501同时啮合的3个曲轴齿轮502A、502B、502C朝同一方向以同一转速旋转。在各曲轴齿轮502A、502B、502C花键连结有曲轴7A、7B、7C,因此3个曲轴7A、7B、7C在以输入齿轮501与曲轴齿轮502A、502B、502C的齿数比受到减速的状态下,朝同一方向以同一转速旋转。其结果,形成在3个曲轴7A、7B、7C中的旋转轴Ax1的输入侧的同位置的3个偏心部72同步地旋转而使第1行星齿轮301摆动。进而,形成在3个曲轴7A、7B、7C中的旋转轴Ax1的输出侧的同位置的3个偏心部72同步地旋转而使第2行星齿轮302摆动。
图5及图6表示某时间点的第1行星齿轮301及第2行星齿轮302的状态。图5是图4的A1-A1线剖视图,表示第1行星齿轮301。图6是图4的B1-B1线剖视图,表示第2行星齿轮302。如图5及图6所示,在第1行星齿轮301与第2行星齿轮302中,其中心C1、C2位于相对于旋转轴Ax1成大致180度旋转对称的位置。在本基本结构中,关于偏心量ΔL1与偏心量ΔL2,从旋转轴Ax1观察的方向为相反,但其绝对值大致相同(均为偏心量ΔL0)。根据所述的结构,通过轴心部71以轴心Ax2为中心旋转(自转),第1行星齿轮301及第2行星齿轮302绕旋转轴Ax1以大致180度的相位差而绕旋转轴Ax1旋转(偏心运动)。并且,多个行星齿轮3在以旋转轴Ax1为中心的周向上大致均等地配置,由此能够取得多个行星齿轮3间的重量与载荷的平衡。
像这样构成的行星齿轮3(第1行星齿轮301及第2行星齿轮302)配置在内齿齿轮2的内侧。在俯视时,行星齿轮3形成得比内齿齿轮2小一圈,行星齿轮3在与内齿齿轮2组合的状态下,能够在内齿齿轮2的内侧摆动。此处,在行星齿轮3的外周面形成有外齿31,在内齿齿轮2的内周面形成有内齿21。因此,在内齿齿轮2的内侧配置有行星齿轮3的状态下,外齿31与内齿21彼此相向。
进而,外齿31的节圆比内齿21的节圆小一圈。并且,在第1行星齿轮301内切于内齿齿轮2的状态下,第1行星齿轮301中的外齿31的节圆的中心C1位于从内齿21的节圆的中心(旋转轴Ax1)偏离了距离ΔL1的位置。同样地,在第2行星齿轮302内切于内齿齿轮2的状态下,第2行星齿轮302中的外齿31的节圆的中心C2位于从内齿21的节圆的中心(旋转轴Ax1)偏离了距离ΔL2的位置。
因此,在第1行星齿轮301及第2行星齿轮302的任一者中,外齿31与内齿21均有至少一部分隔着间隙而相向,若外齿31与内齿21的齿数差为“2”以上,则圆周方向的整体便不会相互啮合。但是,行星齿轮3在内齿齿轮2的内侧绕旋转轴Ax1摆动(公转),因此外齿31与内齿21将局部啮合。即,通过行星齿轮3(第1行星齿轮301及第2行星齿轮302)绕旋转轴Ax1摆动,从而如图5及图6所示,构成外齿31的多个齿中的一部分齿将啮合于构成内齿21的多个齿中的一部分齿。结果,在齿轮装置1中,能够使外齿31的一部分啮合于内齿21的一部分。
此处,内齿齿轮2中的内齿21的齿数比行星齿轮3的外齿31的齿数多N(N为正整数)。在本基本结构中,作为一例,N为“2”,行星齿轮3的(外齿31的)齿数比内齿齿轮2的(内齿21的)齿数少“2”。此种行星齿轮3与内齿齿轮2的齿数差规定齿轮装置1中的输出旋 转相对于输入旋转的减速比。
而且,在本基本结构中,作为一例,使第1行星齿轮301及第2行星齿轮302合起来的厚度小于内齿齿轮2中的齿轮本体22的厚度。进而,使第1行星齿轮301及第2行星齿轮302合起来的外齿31的齿线方向(与旋转轴Ax1平行的方向)的尺寸小于内齿21的齿线方向(与旋转轴Ax1平行的方向)的尺寸。换言之,在与旋转轴Ax1平行的方向上,第1行星齿轮301及第2行星齿轮302的外齿31将收敛在内齿21的齿线范围内。
此处,第1行星齿轮301及第2行星齿轮302分别内啮合于内齿齿轮2。因此,每当第1行星齿轮301及第2行星齿轮302摆动一次时,第1行星齿轮301及第2行星齿轮302将相对于内齿齿轮2产生与(内齿21与外齿31的)齿数差相应的圆周方向的相位偏离而自转。该自转作为各曲轴7A、7B、7C绕内齿齿轮2的轴心(旋转轴Ax1)的公转而传递至一对齿轮架18、19。由此,能够以旋转轴Ax1为中心使一对齿轮架18、19相对于齿轮本体(与其一体化的壳体10)相对旋转。
总之,本基本结构的齿轮装置1以配置在从旋转轴Ax1偏移的位置的多个曲轴7A、7B、7C使行星齿轮3摆动,利用行星齿轮3的摆动获得旋转输出。即,在齿轮装置1中,当行星齿轮3摆动而内齿21与外齿31的啮合位置沿内齿齿轮2的圆周方向移动时,在两齿轮(内齿齿轮2及行星齿轮3)之间产生跟行星齿轮3与内齿齿轮2的齿数差相应的相对旋转。此处,若内齿齿轮2被固定,则行星齿轮3将伴随两齿轮的相对旋转而旋转(自转)。其结果,从行星齿轮3获得对应于两齿轮的齿数差而以相对较高的减速比受到减速的旋转输出。
轴承构件6具有外轮62及内轮61,是用于将齿轮装置1的输出作为内轮61相对于外轮62的旋转而导出的零件。轴承构件6除了外轮62及内轮61以外,还具有多个转动体63(参照图4)。外轮62及内轮61均为环状的零件。外轮62及内轮61均具有俯视为正圆的圆环状。内轮61比外轮62小一圈,且配置在外轮62的内侧。此处,由于外轮62的内径大于内轮61的外径,因此在外轮62的内周面与内轮61的外周面之间产生间隙。
多个转动体63配置在外轮62与内轮61之间的间隙内。多个转动体63沿外轮62的圆周方向排列配置。多个转动体63全部为同一形状的金属零件,且等节距地设在外轮62的圆周方向的整个区域。
更详细而言,本基本结构的齿轮装置1中,轴承构件6包含第1轴承构件601及第2轴承构件602。第1轴承构件601及第2轴承构件602分别包含角接触球轴承。具体而言,如图4所示,在从行星齿轮3观察时为旋转轴Ax1的输入侧(图4的右侧)配置第1轴承构件601,在从行星齿轮3观察时为旋转轴Ax1的输出侧(图4的左侧)配置第2轴承构件602。轴承构件6构成为,借助第1轴承构件601及第2轴承构件602,对于径方向的载荷、推力方向(沿着旋转轴Ax1的方向)的载荷以及相对于旋转轴Ax1的弯曲力(弯曲力矩载荷)均能够耐受。
此处,第1轴承构件601及第2轴承构件602相对于行星齿轮3而在与旋转轴Ax1平行的方向(轴向)的两侧,在与旋转轴Ax1平行的方向上彼此反向地配置。即,轴承构件6是将多个(此处为2个)角接触球轴承组合而成的“组合角接触球轴承”。此处,作为一例,第1轴承构件601及第2轴承构件602是承载各自的内轮61彼此接近的方向的推力方向(沿着旋转轴Ax1的方向)的载荷的“背面组合型”。进而,齿轮装置1中,第1轴承构件601 及第2轴承构件602是在通过朝使各自的内轮61彼此接近的方向紧固而使适当的预压作用于内轮61的状态下组合。
而且,本基本结构的齿轮装置1中,输入侧齿轮架18及输出侧齿轮架19相对于行星齿轮3而配置在与旋转轴Ax1平行的方向的两侧,通过行星齿轮3的齿轮架孔34(参照图4)彼此结合。具体而言,如图4所示,在从行星齿轮3观察为旋转轴Ax1的输入侧(图4的右侧)配置输入侧齿轮架18,在从行星齿轮3观察为旋转轴Ax1的输出侧(图4的左侧)配置输出侧齿轮架19。轴承构件6(第1轴承构件601及第2轴承构件602各自)的内轮61相对于输入侧齿轮架18及输出侧齿轮架19而固定。在本基本结构中,作为一例,第1轴承构件601的内轮与输入侧齿轮架18无缝地一体化。同样地,第2轴承构件602的内轮与输出侧齿轮架19无缝地一体化。
输出侧齿轮架19具有从输出侧齿轮架19的一表面朝向旋转轴Ax1的输入侧突出的多个(作为一例为3个)齿轮架销191(参照图2)。这些多个齿轮架销191分别贯穿形成于行星齿轮3的多个(作为一例为3个)齿轮架孔34,其前端通过齿轮架螺栓192(参照图7)固定至输入侧齿轮架18。此处,在齿轮架销191与齿轮架孔34的内周面之间确保间隙,齿轮架销191能够在齿轮架孔34内移动,即能够相对于齿轮架孔34的中心而相对地移动。由此,当行星齿轮3摆动时,齿轮架销191不会接触到齿轮架孔34的内周面。
通过所述结构,齿轮装置1被用来将相当于行星齿轮3的自转成分的旋转作为与轴承构件6的内轮61一体化的输入侧齿轮架18及输出侧齿轮架19的旋转而导出。即,在本基本结构中,行星齿轮3与内齿齿轮2之间的相对旋转从输入侧齿轮架18及输出侧齿轮架19被导出。在本基本结构中,作为一例,齿轮装置1是在轴承构件6的外轮62(参照图4)被固定于作为固定构件的壳体10的状态下使用。即,行星齿轮3利用多个曲轴7A、7B、7C而与作为旋转构件的输入侧齿轮架18及输出侧齿轮架19连结,齿轮本体22被固定于固定构件,因此行星齿轮3与内齿齿轮2之间的相对旋转从旋转构件(输入侧齿轮架18及输出侧齿轮架19)被导出。换言之,在本基本结构中构成为,当行星齿轮3相对于齿轮本体22相对旋转时,将输入侧齿轮架18及输出侧齿轮架19的旋转力作为输出而导出。
进而,在本基本结构中,壳体10与内齿齿轮2的齿轮本体22无缝地一体化。即,在与旋转轴Ax1平行的方向上,作为固定构件的齿轮本体22与壳体10无缝地连续而设。
更详细而言,壳体10为圆筒状,构成齿轮装置1的外廓。在本基本结构中,圆筒状的壳体10的中心轴构成为与旋转轴Ax1一致。即,壳体10的至少外周面在俯视时(从轴向的其中一侧观察时)为以旋转轴Ax1为中心的正圆。壳体10形成为轴向的两端面开口的圆筒状。此处,内齿齿轮2的齿轮本体22与壳体10无缝地一体化,壳体10及齿轮本体22被作为一个零件来处理。因此,壳体10的内周面包含齿轮本体22的内周面221。进而,轴承构件6的外轮62被固定于壳体10。即,第1轴承构件601的外轮62通过嵌入而固定于壳体10的内周面中的、从齿轮本体22观察为旋转轴Ax1的输入侧(图4的右侧)。另一方面,第2轴承构件602的外轮62通过嵌入而固定于壳体10的内周面中的、从齿轮本体22观察为旋转轴Ax1的输出侧(图4的左侧)。
进而,壳体10中的旋转轴Ax1的输入侧(图4的右侧)的端面被输入侧齿轮架18封闭,壳体10中的旋转轴Ax1的输出侧(图4的左侧)的端面被输出侧齿轮架19封闭。因此, 如图4所示,在由壳体10、输入侧齿轮架18及输出侧齿轮架19所围成的空间内,收容行星齿轮3(第1行星齿轮301及第2行星齿轮302)、多个外销23及偏心体轴承5等零件。
多个(基本结构中为3个)曲轴7A、7B、7C各自具有轴心部71及2个偏心部72。轴心部71具有至少外周面在俯视时为正圆的圆筒状。轴心部71的中心即轴心Ax2与旋转轴Ax1平行。多个曲轴7A、7B、7C的轴心Ax2沿圆周方向等间隔地配置在以旋转轴Ax1为中心的假想圆上。各偏心部72具有至少外周面在俯视时为正圆的圆盘状。各偏心部72的中心(中心轴)C0配置在与旋转轴Ax1平行且从旋转轴Ax1朝径向偏离的位置。此处,轴心Ax2与中心C0之间的距离ΔL0(参照图5及图6)成为偏心部72相对于轴心部71的偏心量。偏心部72呈在轴心部71的长边方向(轴向)的中央部从轴心部71的外周面遍及整周而突出的凸缘形状。根据所述的结构,各曲轴7A、7B、7C通过轴心部71以轴心Ax2为中心旋转(自转),从而偏心部72进行偏心运动。
在本基本结构中,轴心部71及2个偏心部72是由1个金属构件一体地形成,由此实现无缝的曲轴7A、7B、7C。此种形状的曲轴7A、7B、7C与偏心体轴承5一同被组合至行星齿轮3。因此,在偏心体轴承5及曲轴7A、7B、7C被组合至行星齿轮3的状态下,当曲轴7A、7B、7C旋转时,行星齿轮3绕旋转轴Ax1摆动。
偏心体轴承5具有多个转动体51(参照图4),是用于吸收曲轴7A、7B、7C的旋转中的自转成分而仅将除了曲轴7A、7B、7C的自转成分以外的曲轴7A、7B、7C的旋转即曲轴7A、7B、7C的摆动成分(公转成分)传递至行星齿轮3的零件。多个转动体51配置在各曲轴7A、7B、7C的偏心部72的外周面与行星齿轮3的各开口部33的内周面之间。即,各曲轴7A、7B、7C的偏心部72作为偏心体轴承5的内轮发挥功能,行星齿轮3的各开口部33的内周面作为偏心体轴承5的外轮发挥功能。
在偏心体轴承5及多个曲轴7A、7B、7C被组合至行星齿轮3的状态下,当各曲轴7A、7B、7C旋转时,偏心体轴承5绕轴心Ax2旋转(偏心运动)。此时,曲轴7A、7B、7C的自转成分被偏心体轴承5吸收。因此,仅除了曲轴7A、7B、7C的自转成分以外的曲轴7A、7B、7C的旋转即曲轴7A、7B、7C的摆动成分(公转成分)通过偏心体轴承5而传递至行星齿轮3。因而,在偏心体轴承5及曲轴7A、7B、7C被组合至行星齿轮3的状态下,当曲轴7A、7B、7C旋转时,行星齿轮3绕旋转轴Ax1摆动。
在所述结构的齿轮装置1中,对输入轴500施加作为输入的旋转力而输入轴500以旋转轴Ax1为中心旋转,由此,行星齿轮3绕旋转轴Ax1摆动(公转)。此时,行星齿轮3在内齿齿轮2的内侧相对于内齿齿轮2而内切且外齿31的一部分啮合于内齿21的一部分的状态下摆动,因此内齿21与外齿31的啮合位置沿内齿齿轮2的圆周方向移动。由此,在两齿轮(内齿齿轮2及行星齿轮3)之间产生跟行星齿轮3与内齿齿轮2的齿数差相应的相对旋转。并且,除了行星齿轮3的摆动成分(公转成分)以外的、行星齿轮3的旋转(自转成分)通过多个曲轴7A、7B、7C而传递至一对齿轮架18、19。其结果,从一对齿轮架18、19获得对应于两齿轮的齿数差而以相对较高的减速比受到减速的旋转输出。
此外,在本基本结构的齿轮装置1中,如上所述,内齿齿轮2与行星齿轮3的齿数差规定齿轮装置1中的输出旋转相对于输入旋转的减速比。即,当设内齿齿轮2的齿数为“V1”、行星齿轮3的齿数为“V2”时,减速比R1以下述式1表示。
R1=V2/(V1-V2)   (式1)
总之,内齿齿轮2与行星齿轮3的齿数差(V1-V2)越小,则减速比R1越大。作为一例,内齿齿轮2的齿数V1为“72”,行星齿轮3的齿数V2为“70”,其齿数差(V1-V2)为“2”,因此根据所述式1,减速比R1为“35”。此时,当从旋转轴Ax1的输入侧观察,各曲轴7A、7B、7C以轴心部71的轴心Ax2(参照图5及图6)为中心朝顺时针方向旋转1圈(360度)时,一对齿轮架18、19以旋转轴Ax1为中心朝逆时针方向旋转与齿数差“2”相应的量(即约10.3度)。
根据本基本结构的齿轮装置1,像这样高的减速比R1能够利用内齿齿轮2及行星齿轮3的组合来实现。进而,在输入齿轮501与多个曲轴齿轮502A、502B、502C之间,也能够对应于输入齿轮501及曲轴齿轮502A、502B、502C的齿数而实现适当的减速比。结果,作为齿轮装置1整体,能够实现高减速比。
而且,齿轮装置1只要至少具备内齿齿轮2、行星齿轮3、曲轴7A、7B、7C与一对齿轮架18、19即可,例如也可如图4所示进而具备隔片11。隔片11是在与旋转轴Ax1平行的方向(轴向)上配置于一对行星齿轮3(第1行星齿轮301及第2行星齿轮302)之间。
(参考例1)
本参考例的内啮合行星齿轮装置1A(以下也简称作“齿轮装置1A”)如图7~图14所示,主要曲轴7A、7B、7C周边的结构与基本结构的齿轮装置1不同。以下,对于与基本结构同样的结构,标注相同的符号并适当省略说明。图7是齿轮装置1A的概略剖视图。图8是从旋转轴Ax1的输出侧观察齿轮装置1A的概略图。图9是1个曲轴7A的周边构件的概略立体图。图10是1个曲轴7A的周边构件的概略分解立体图。图11是1个曲轴7A的概略立体图。图12是图7的区域Z1的放大图。图13是图7的区域Z2的放大图。图14是图13的区域Z1的放大图。
本参考例的齿轮装置1A如图7所示,还具备多个油封121、122等。油封121封堵壳体10与输出侧齿轮架19的外周面之间的间隙。油封122封堵形成于输出侧齿轮架19的中央部的中央孔193。由这些多个油封121、122等所密闭的空间构成润滑剂保持空间17。润滑剂保持空间17包含轴承构件6的内轮61与外轮62之间的空间。进而,在润滑剂保持空间17内,收容多个外销23、行星齿轮3、一对滚柱轴承41、42及偏心体轴承5等。
并且,在润滑剂保持空间17内注入有润滑剂。润滑剂为液体,可在润滑剂保持空间内17流动。因此,在齿轮装置1的使用时,润滑剂进入例如包含多个外销23的内齿21与行星齿轮3的外齿31的啮合部位。本公开中所说的“液体”包含液状或凝胶状的物质。此处所说的“凝胶状”是指具有液体与固体的中间性质的状态,包括包含液相与固相这两种相的胶体(colloid)状态。例如,分散剂为液相且分散体为液相的乳剂(emulsion)、分散体为固相的悬浮液(suspension)等被称作凝胶(gel)或溶胶(sol)的状态包含在“凝胶状”中。而且,分散剂为固相且分散体为液相的状态也包含在“凝胶状”中。在本基本结构中,作为一例,润滑剂为液状的润滑油(油)。
本参考例的齿轮装置1A还具备被安装于一对齿轮架18、19的轴向两侧的一对罩13、14。在将一对罩13、14彼此区分的情况下,将位于旋转轴Ax1的输入侧(图7中为右侧)的罩13称作“输入侧罩13”,将位于旋转轴Ax1的输出侧(图7中为左侧)的罩14称作“输 出侧罩14”。本参考例中,一对罩13、14的材质是不锈钢、铸铁、机械结构用碳钢或铬钼钢等金属、或者对其实施了热处理的金属。
输入侧罩13形成为以旋转轴Ax1为中心的圆盘状。此处,输入侧罩13的至少外周面在俯视时(从轴向的其中一侧观察时)为以旋转轴Ax1为中心的正圆。输入侧罩13的外径比输入侧齿轮架18的外径小一圈。输入侧罩13从外侧,即从自输入侧齿轮架18观察时与行星齿轮3为相反侧(图7中为右侧)安装至输入侧齿轮架18。
输出侧罩14形成为以旋转轴Ax1为中心的圆盘状。此处,输出侧罩14的至少外周面在俯视时(从轴向的其中一侧观察时)为以旋转轴Ax1为中心的正圆。输出侧罩14的外径比输出侧齿轮架19的外径小一圈。输出侧罩14从外侧,即从自输出侧齿轮架19观察时与行星齿轮3为相反侧(图7中为左侧)安装至输出侧齿轮架19。
此处,一对罩13、14可拆卸地安装于一对齿轮架18、19。即,输入侧罩13可拆卸地安装于输入侧齿轮架18,输出侧罩14可拆卸地安装于输出侧齿轮架19。本参考例中,作为一例,各罩13、14通过多个固定螺栓142(参照图8)安装于各齿轮架18、19。因此,通过拆除多个固定螺栓142,各罩13、14可从各齿轮架18、19拆卸。
此处,在一对罩13、14中的输出侧罩14中,如图8所示,与设在输出侧齿轮架19的多个安装孔194(参照图7)一致地设有多个通孔141。即,在输出侧齿轮架19,设有用于固定对象构件的多个安装孔194(母螺纹)。因此,在被安装于输出侧齿轮架19的外侧的输出侧罩14中,也在与这些多个安装孔194对应的位置形成多个通孔141。尤其,在从输出侧齿轮架19将高扭矩传递至对象构件的情况下,安装孔194及通孔141的个数变多。而且,关于安装孔194及通孔141的配置及个数,必须与对象构件一致。
另一方面,使各曲轴7A、7B、7C穿过的轴孔131(参照图7)仅设在一对罩13、14中的输入侧罩13。即,在输入侧罩13,与多个曲轴7A、7B、7C对应地设有多个轴孔131。各曲轴7A、7B、7C的轴心部71被插入至各轴孔131。此处,各轴孔131的内径被设定得比轴心部71的外径大一圈,以免轴心部71接触到轴孔131的内周面。
此外,关于各曲轴7A、7B、7C的周边结构,若作进一步详细说明,则本参考例的齿轮装置1A采用了图9~图11所示的结构。此处,以曲轴7A为例进行说明,但对于曲轴7B、7C也采用同样的结构。
即,曲轴7A在沿着轴心Ax2的轴向上的2个偏心部72之间具有凸缘部73。凸缘部73为以轴心Ax2为中心的圆盘状,至少外周面在俯视时为正圆。凸缘部73的外径被设定得比偏心部72的外径大一圈,凸缘部73呈从偏心部72的外周面遍及整周而突出的凸缘形状。本参考例中,作为一例,轴心部71、2个偏心部72及凸缘部73无缝地一体化。
此处,曲轴7A相对于1个轴心部71而具有2个偏心部72,因此在轴向的至少2处部位具有阶差部70。即,曲轴7A的直径并非遍及其全长而均匀,至少在轴心部71与各偏心部72之间直径发生变化,因此在此部分产生2个阶差部70。换言之,各偏心部72中的朝向轴向外侧(即与凸缘部73为相反侧)的端面分别为阶差部70。
本参考例中,曲轴7A的轴心部71在轴向的两端部直径比轴向的中央部小。因此,在轴心部71的直径发生变化的部位,也分别产生阶差部70。结果,曲轴7A在轴向的四处部位具有阶差部70。此处,在区分各阶差部70的情况下,从旋转轴Ax1的输入侧(图7中为右 侧)起依序分别设为第1阶差部701、第2阶差部702、第3阶差部703、第4阶差部704。即,第1阶差部701及第2阶差部702是朝向旋转轴Ax1的输入侧的端面,第3阶差部703及第4阶差部704是朝向旋转轴Ax1的输出侧的端面。轴心部71中的、比第1阶差部701更靠旋转轴Ax1的输入侧的端部构成用于安装曲轴齿轮502A的安装部74。
一对滚柱轴承41、42、一对偏心体轴承5、垫圈81~85及扣环86被组合至此种曲轴7A。即,在曲轴7A的2个偏心部72,分别安装偏心体轴承5。而且,在曲轴7A的轴心部71中的、在轴向上处于2个偏心部72的两侧的位置,安装一对滚柱轴承41、42。进而,在曲轴7A的轴心部71中的、比第4阶差部704更靠旋转轴Ax1的输出侧(图7中为左侧)的端部,形成有用于嵌入扣环86的槽75。因此,在轴心部71中的旋转轴Ax1的输出侧的端部,安装扣环86。
此处,在从凸缘部73观察为旋转轴Ax1的输入侧(图7中为右侧),以从凸缘部73侧依序排列的方式安装垫圈81、偏心体轴承5、垫圈82、滚柱轴承41。另一方面,在从凸缘部73观察为旋转轴Ax1的输出侧(图7中为左侧),以从凸缘部73侧依序排列的方式安装垫圈83、偏心体轴承5、垫圈84、滚柱轴承42、垫圈85、扣环86。因此,在从凸缘部73观察为旋转轴Ax1的输入侧,垫圈81介隔在凸缘部73与偏心体轴承5之间,垫圈82介隔在偏心体轴承5与滚柱轴承41之间。在从凸缘部73观察为旋转轴Ax1的输出侧,垫圈83介隔在凸缘部73与偏心体轴承5之间,垫圈84介隔在偏心体轴承5与滚柱轴承42之间。进而,滚柱轴承42经由垫圈85接触至扣环86,由此,朝向旋转轴Ax1的输出侧的移动受到限制。
更详细而言,偏心部72分别插入至垫圈81、83,轴心部71分别插入至垫圈82、84。此处,垫圈82介隔在曲轴7A的第2阶差部702与滚柱轴承41之间。另一方面,垫圈84介隔在曲轴7A的第3阶差部703与滚柱轴承42之间。进而,垫圈85介隔在曲轴7A的第4阶差部704与扣环86之间。这些垫圈81~85例如为金属制,作为降低两构件间的摩擦的轨道轮(轨道盘)发挥功能。
此外,本参考例的齿轮装置1A如图12所示,具备限制各曲轴7A、7B、7C的轴向移动的限制结构9。即,在本参考例的齿轮装置1A中,限制结构9限制曲轴7A、7B、7C的轴向移动。本公开中所说的“轴向”是指沿着曲轴7A、7B、7C的轴心Ax2的方向,尤其是与曲轴7A、7B、7C的轴心Ax2平行的方向(推力方向)。而且,本公开中所说的“限制移动”是指对于移动实施某些限制,不仅包括完全禁止移动,也包括限制移动范围或者使其难以移动等。即,在本参考例中,设有限制结构9,由此,在沿着曲轴7A、7B、7C的轴心Ax2的轴向上,曲轴7A、7B、7C的移动受到限制。
在本参考例中,作为一例,限制结构9关于轴向的其中一侧(旋转轴Ax1的输入侧)及另一侧(旋转轴Ax1的输出侧)这两侧,禁止曲轴7A、7B、7C的移动。即,在图8的示例中,限制结构相对于一对齿轮架18、19而对曲轴7A、7B、7C朝向图中右方的移动以及朝向图中左方的移动均予以禁止。由此,轴向上的曲轴7A、7B、7C的位置(相对于一对齿轮架18、19)被定位至固定位置。
具体而言,在本参考例中,限制结构9包含被安装于一对齿轮架18、19的轴向两侧的一对罩13、14。总之,齿轮装置1A使用所述的输入侧罩13及输出侧罩14来限制各曲轴7A、 7B、7C的轴向移动。尤其,本参考例的齿轮装置1A具备限制曲轴7A、7B、7C朝向轴向其中一侧(图8中为右方)的移动的第1限制结构91与限制曲轴7A、7B、7C朝向轴向另一侧(图8中为左方)的移动的第2限制结构92,来作为限制结构9。
此处,输入侧罩13包含在第1限制结构91中,通过承受从曲轴7A、7B、7C朝向轴向其中一侧(图8中为右方)作用的力F1,从而限制曲轴7A、7B、7C朝向轴向其中一侧的移动。另一方面,输出侧罩14包含在第2限制结构92中,通过承受从曲轴7A、7B、7C朝向轴向另一侧(图8中为左方)作用的力F2,从而限制曲轴7A、7B、7C朝向轴向另一侧的移动。
更详细而言,第1限制结构91包含输入侧罩13与曲轴7A、7B、7C的第1阶差部701。根据此种第1限制结构91,曲轴7A、7B、7C的朝向旋转轴Ax1的输入侧(图8中为右侧)的第1阶差部701接触至输入侧罩13的朝向旋转轴Ax1的输出侧(图8中为左侧)的面上的轴孔131的周围,由此,曲轴7A、7B、7C朝向轴向其中一侧(图8中为右方)的移动受到限制。即,曲轴7A、7B、7C的第1阶差部701接触至被安装于输入侧齿轮架18的输入侧罩13,由此,曲轴7A、7B、7C朝向轴向其中一侧的移动被禁止。
第2限制结构92包含输出侧罩14与曲轴7A、7B、7C的旋转轴Ax1的输出侧的端面76。根据此种第2限制结构92,曲轴7A、7B、7C的朝向旋转轴Ax1的输出侧(图8中为左侧)的端面76接触至输出侧罩14的朝向旋转轴Ax1的输入侧(图8中为右侧)的面,由此,曲轴7A、7B、7C朝向轴向另一侧(图8中为左方)的移动受到限制。即,曲轴7A、7B、7C的端面76接触至被安装于输出侧齿轮架19的输出侧罩14,由此,曲轴7A、7B、7C朝向轴向另一侧的移动被禁止。
此处,在限制结构9中,接触至一对罩13、14的是曲轴7A、7B、7C中的除了偏心部72的端面(第2阶差部702及第3阶差部703)以外的部位。即,限制结构9比起曲轴7A、7B、7C中的包含偏心部72的端面的阶差部702、703位于轴向更外侧,通过接触至朝向轴向外侧的端面(第1阶差部701或端面76)来限制曲轴7A、7B、7C的轴向移动。因此,在包含偏心部72的端面的阶差部702、703中,不会因接触至一对罩13、14等而产生摩擦,能够降低所述阶差部702、703的磨损等。
此外,本参考例的齿轮装置1A具备内齿齿轮2、行星齿轮3、曲轴7A、7B、7C及一对齿轮架18、19,通过使行星齿轮3摆动,从而使行星齿轮3相对于内齿齿轮2相对旋转。内齿齿轮2具有:环状的齿轮本体22;以及多个外销23,以可自转的状态被保持在形成于齿轮本体22的内周面221的多个内周槽223中且构成内齿21。行星齿轮3具有局部啮合于内齿21的外齿31。曲轴7A、7B、7C在沿着轴心Ax2的轴向的至少2处部位具有阶差部70,通过以轴心Ax2为中心旋转而使行星齿轮3摆动。一对齿轮架18、19配置在行星齿轮3的轴向两侧,可旋转地支撑曲轴7A、7B、7C。此处,如图13所示,在阶差部70与一对齿轮架18、19之间,分别形成有使润滑剂通过的润滑通路S1。
即,在本参考例中,在阶差部70与一对齿轮架18、19之间确保了润滑通路S1。通过确保此种润滑通路S1,在齿轮装置1A中,能够使润滑剂通过润滑通路S1而循环,从而能够改善一对滚柱轴承41、42及一对偏心体轴承5等的润滑状态。图13中,以虚线箭头概念性地表示了润滑剂在润滑通路S1中流动(循环)的样子。
本参考例中,润滑通路S1形成在被注入润滑剂的润滑剂保持空间17内。通过形成此种润滑通路S1,在曲轴7A、7B、7C周边,难以产生润滑剂不足或枯竭的“缺润滑剂”,从而始终供给一定量以上的润滑剂。并且,与润滑剂停滞在固定位置的结构相比,润滑剂通过润滑通路S1而循环,由此,在曲轴7A、7B、7C周边,随时进行润滑剂的轮换,从而能够抑制润滑剂的劣化。
因而,一对滚柱轴承41、42及一对偏心体轴承5等的润滑状态得到改善,难以产生润滑不良。因此,即便在长期使用齿轮装置1A的情况下,也能够降低因摩擦造成的损失,容易实现齿轮装置1A的长寿命化。总之,本参考例的齿轮装置1A尤其在长期使用时也难以产生可靠性的下降,因而甚而也有助于齿轮装置1A的传递效率的改善、长寿命化及高性能化。
此处,在本参考例中,润滑通路S1包含使润滑剂沿与轴向正交的径向通过的径向通路S11。即,如作为图13的区域Z1的概略放大图的图14所示,形成在阶差部70与一对齿轮架18、19之间的润滑通路S1至少包含使润滑剂沿径向(径方向)通过的径向通路S11。由此,在曲轴7A、7B、7C的旋转时,通过离心力来使润滑剂沿径向通过,从而能够通过润滑通路S1来使润滑剂有效率地循环。
而且,在本参考例中,在轴向上,在阶差部702、703与一对齿轮架18、19中的至少一个齿轮架18、19之间存在间隙,润滑通路S1包含所述间隙。在本参考例中,如上所述,至少包含偏心部72的端面的阶差部702、703未用作限制结构9,因此可在所述阶差部702、703与一对齿轮架18、19之间设有间隙,并将该间隙作为润滑通路S1的一部分。在本参考例中,作为一例,在阶差部702、703与一对齿轮架18、19这两者之间分别产生的间隙构成润滑通路S1的一部分。
进而,在本参考例中,还具备配置在阶差部70与一对齿轮架18、19之间的板状零件(垫圈82、84)。润滑通路S1包含形成在板状零件(垫圈82、84)中的与齿轮架18、19的相向面上的槽部80(参照图10)。即,如图10所示,在垫圈81~84中,在朝向轴向外侧(齿轮架18、19侧)的面上,形成有沿径向延伸的槽部80。此处,优选对各垫圈81~84形成多个槽部80,在本参考例中,作为一例,对各垫圈81~84形成有4个槽部80。4个槽部80等间隔地配置在各垫圈81~84的周向上。通过设置此种槽部80,润滑剂通过槽部80内而流动,槽部80被包含在润滑通路S1中。其结果,与无槽部80的情况相比,能够扩大润滑通路S1的剖面积,润滑剂变得更容易循环。
而且,在像本参考例这样具备多个曲轴7A、7B、7C的情况下,优选设置将分别形成在这些多个曲轴7A、7B、7C的周边的多个润滑通路S1予以连结的连结通路S2。由此,能够在多个曲轴7A、7B、7C间使润滑剂循环,从而使润滑剂在整个齿轮装置1A中循环,因此能够期待润滑状态的进一步改善。
具体而言,如图7所示,在一对罩13、14的各自中,在朝向轴向内侧的面(行星齿轮3侧的面)上形成有槽133、143。槽133、143是在俯视时以使分别支撑多个曲轴7A、7B、7C的滚柱轴承41、42通过的方式而形成的、以旋转轴Ax1为中心的圆环状的槽(参照图8)。因此,包含多个(此处为3个)滚柱轴承41的润滑通路S1通过包含输入侧罩13的槽133的连结通路S2而连结。同样地,包含多个(此处为3个)滚柱轴承42的润滑通路S1通过包含输出侧罩14的槽143的连结通路S2而连结。
而且,本参考例的齿轮装置1A具备以旋转轴Ax1为中心旋转的输入齿轮501与多个曲轴齿轮502A、502B、502C。多个曲轴齿轮502A、502B、502C以与输入齿轮501啮合的方式配置在输入齿轮501的周围,在输入齿轮501的旋转时彼此同步地旋转。曲轴7A、7B、7C以与多个曲轴齿轮502A、502B、502C一一对应的方式设有多个。多个曲轴7A、7B、7C与多个曲轴齿轮502A、502B、502C一同旋转,以旋转轴Ax1为中心使行星齿轮3摆动。
这样,在具有多个曲轴7A、7B、7C的分离类的齿轮装置1A中,能够限制多个曲轴7A、7B、7C的轴向移动。进而,通过使润滑剂在多个曲轴7A、7B、7C的周边循环,能够实现润滑状态的提高。
本参考例的齿轮装置1A如图15所示,与第1构件201及第2构件202一同构成机器人用关节装置200。换言之,本参考例的机器人用关节装置200具备齿轮装置1A、第1构件201及第2构件202。第1构件201被固定于齿轮本体22。第2构件202伴随行星齿轮3相对于内齿齿轮2的相对旋转而相对于第1构件201相对旋转。图15是机器人用关节装置200的概略剖视图。而且,图15中,示意性地表示了第1构件201、第2构件202及驱动源101。
像这样构成的机器人用关节装置200通过第1构件201与第2构件202以旋转轴Ax1为中心相对旋转,从而作为关节装置发挥功能。此处,通过利用驱动源101来驱动齿轮装置1A的输入轴500,第1构件201与第2构件202相对旋转。此时,由驱动源101所产生的旋转(输入旋转)在齿轮装置1A中以相对较高的减速比受到减速,从而以相对较高的扭矩来驱动第1构件201或第2构件202。即,利用齿轮装置1A而连结的第1构件201与第2构件202能够以旋转轴Ax1为中心进行屈伸动作。
机器人用关节装置200例如被用于水平多关节机器人(SCARA型机器人)之类的机器人。进而,机器人用关节装置200并不限于水平多关节机器人,例如也可被用于水平多关节机器人以外的工业机器人或工业用以外的机器人等。而且,本参考例的齿轮装置1A并不限于机器人用关节装置200,例如也可作为轮内马达等车轮装置而被用于无人搬运车(Automated Guided Vehicle,AGV)等车辆。
<变形例>
参考例1不过是本公开的各种参考例之一。只要能够达成本公开的目的,则参考例1可根据设计等来进行各种变更。而且,本公开中参照的附图均为示意性的图,图中的各构成元件的大小及厚度各自之比未必反映的是实际的尺寸比。以下列举参考例1的变形例。以下说明的变形例可适当组合起来应用。
曲轴7A、7B、7C的个数并不限于“3”,也可为2或4以上。进而,若曲轴仅为1个,则可实现旋转轴Ax1与曲轴的轴心Ax2一致的偏心摆动型的内啮合行星齿轮装置,而非分离型。此时,通过驱动曲轴,行星齿轮3摆动,从而能够以旋转轴Ax1为中心使一对齿轮架18、19相对于齿轮本体22相对旋转。
而且,参考例1中,例示了行星齿轮3为2个的类型的齿轮装置1A,但齿轮装置1A也可具备3个以上的行星齿轮3。例如,在齿轮装置1A具备3个行星齿轮3的情况下,优选这3个行星齿轮3绕旋转轴Ax1以120度的相位差而配置。而且,齿轮装置1A也可仅具备1个行星齿轮3。或者,在齿轮装置1A具备3个行星齿轮3的情况下,也可为:这3个行星齿轮3中的2个行星齿轮3为同相位,且剩余的1个行星齿轮3绕旋转轴Ax1以180度的相位 差而配置。
而且,轴承构件6也可为交叉滚子轴承,还可为深沟球轴承或四点接触球轴承等。
而且,参考例1中说明的输入齿轮501的齿数、曲轴齿轮502A、502B、502C的齿数、外销23的数量(内齿21的齿数)及外齿31的齿数等不过是一例,可适当变更。
而且,偏心体轴承5并不限于滚柱轴承,例如也可为深沟球轴承或角接触球轴承等。
而且,齿轮装置1A的各构成元件的材质并不限于金属,例如也可为工程塑料等树脂。
而且,齿轮装置1A只要能够将轴承构件6的内轮61与外轮62之间的相对旋转作为输出而导出即可,并不限于将内轮61(输入侧齿轮架18及输出侧齿轮架19)的旋转力作为输出而导出的结构。例如,也可将相对于内轮61相对旋转的外轮62(壳体10)的旋转力作为输出而导出。
而且,参考例1中,曲轴7A、7B、7C的旋转轴Ax1的输出侧的端面76直接接触至输出侧罩14,但并不限于此结构,也可在端面76与输出侧罩14之间配置有例如垫片构件等板状零件。此时,在安装输出侧罩14时,通过调整板状零件的厚度(及/或片数),能够在轴向上调节端面76与输出侧罩14之间的间隙,从而能够调节曲轴7A、7B、7C的轴向上的“游隙”。进而,板状零件作为降低端面76与输出侧罩14之间的摩擦的轨道轮(轨道盘)发挥功能。
而且,润滑剂并不限于润滑油(油)等液状的物质,也可为润滑脂等凝胶状的物质。
(实施方式1)
如图16及图17所示,本实施方式的内啮合行星齿轮装置1B(以下也简称作“齿轮装置1B”)与参考例1的齿轮装置1A的不同之处在于,省略了输出侧罩14(参照图7)。以下,对于与参考例1同样的结构,标注相同的符号并适当省略说明。图16是齿轮装置1B的概略剖视图。图17是将图16的区域Z1放大的概略图,在弹框内表示局部放大图。
本实施方式的齿轮装置1B中,取代输出侧罩14而利用输入侧罩13、扣环87及垫圈88来限制各曲轴7A、7B、7C朝向轴向另一侧的移动。而且,对于各曲轴7A、7B、7C朝向轴向其中一侧的移动,与参考例1同样,利用输入侧罩13及阶差部(第1阶差部701)来进行限制。
即,齿轮装置1B具备内齿齿轮2、行星齿轮3、曲轴7A、7B、7C以及输入侧齿轮架18及输出侧齿轮架19,通过使行星齿轮3摆动而使行星齿轮3相对于内齿齿轮2相对旋转。内齿齿轮2具有:环状的齿轮本体22;以及多个外销23,以可自转的状态被保持在形成于齿轮本体22的内周面221的多个内周槽223中且构成内齿21。行星齿轮3具有局部啮合于内齿21的外齿31。曲轴7A、7B、7C通过以轴心Ax2为中心旋转而使行星齿轮3摆动。输入侧齿轮架18及输出侧齿轮架19配置在行星齿轮3的沿着轴心Ax2的轴向的两侧,可旋转地支撑曲轴7A、7B、7C。此处,齿轮装置1B如图17所示,还具备限制结构9。限制结构9仅在输入侧齿轮架18与输出侧齿轮架19的任一齿轮架处限制曲轴7A、7B、7C朝向轴向上的两侧的移动。
这样,在本实施方式中,仅在输入侧齿轮架18与输出侧齿轮架19的任一齿轮架处限制曲轴7A、7B、7C朝向轴向两侧(其中一侧及另一侧)的移动。在本实施方式中,特别是仅在输入侧齿轮架18与输出侧齿轮架19中的输入侧齿轮架18处限制曲轴7A、7B、7C朝向 轴向两侧的移动,输出侧齿轮架19不用于曲轴7A、7B、7C的轴向移动的限制。即,在齿轮装置1B中,取代输出侧罩14,即便仅为输入侧罩13,也可限制曲轴7A、7B、7C朝向轴向两侧的移动。结果,在齿轮装置1B中,无须使用圆锥滚子轴承或被安装于输出侧齿轮架19的输出侧罩14(或者被安装于输入侧齿轮架18的输入侧罩13),虽为相对较简单的结构,但能限制曲轴7A、7B、7C的轴向移动。因此,根据本实施方式的结构,能够降低因曲轴7A、7B、7C沿轴向移动造成的松动及传递损失等。
而且,本实施方式的齿轮装置1B与参考例1的齿轮装置1A相比,具有如下的优点。即,与输出侧罩14的厚度相应地,能够将设在输出侧齿轮架19的多个安装孔194的深度确保得深,容易实现对象构件相对于输出侧齿轮架19的安装强度的提高。进而,由于省略了设有与多个安装孔194对应的多个通孔141的输出侧罩14,因此不需要根据对象构件来调节通孔141的配置及个数。而且,不需要用于将输出侧罩14安装至输出侧齿轮架19的固定螺栓142(参照图8),因此能够不与固定螺栓142发生干涉地设置安装孔194。
具体而言,在本实施方式中,用于将各曲轴齿轮502A、502B、502C固定至各曲轴7A、7B、7C的扣环87经由垫圈88而间接地接触至输入侧罩13。即,为了在轴向上进行曲轴齿轮502A、502B、502C相对于曲轴7A、7B、7C的定位,在各曲轴7A、7B、7C中的旋转轴Ax1的输入侧(图16中为右侧)的端部安装有一对扣环87、89。一对扣环87、89通过在轴向上夹住曲轴齿轮502A、502B、502C而限制曲轴齿轮502A、502B、502C相对于曲轴7A、7B、7C的轴向移动。通过这些一对扣环87、89中位于旋转轴Ax1的输出侧(图16中为左侧)、即从曲轴齿轮502A、502B、502C观察为输入侧罩13侧的扣环87间接地接触至输入侧罩13,从而限制各曲轴7A、7B、7C朝向轴向另一侧的移动。
这样,被安装于曲轴7A、7B、7C的扣环87间接地接触至输入侧罩13中的旋转轴Ax1的输入侧(图16中为右侧)的面且为轴孔131的周围。另一方面,曲轴7A、7B、7C的阶差部70(第1阶差部701)接触至输入侧罩13中的旋转轴Ax1的输出侧(图17中为左侧)的面且为轴孔131的周围。由此,被安装于输入侧齿轮架18的输入侧罩13被扣环87与阶差部70(第1阶差部701)夹住,从而限制各曲轴7A、7B、7C的轴向移动。总之,限制结构9包含输入侧罩13,通过将输入侧罩13夹在扣环87与阶差部70之间而限制曲轴7A、7B、7C相对于输入侧齿轮架18的轴向移动。
更详细而言,如图17所示,第1限制结构91与参考例1同样,包含输入侧罩13与曲轴7A、7B、7C的第1阶差部701。根据此种第1限制结构91,曲轴7A、7B、7C的朝向旋转轴Ax1的输入侧的第1阶差部701接触至输入侧罩13的朝向旋转轴Ax1的输出侧的面上的轴孔131的周围,由此,曲轴7A、7B、7C朝向轴向其中一侧的移动受到限制。即,曲轴7A、7B、7C的第1阶差部701接触至被安装于输入侧齿轮架18的输入侧罩13,由此,曲轴7A、7B、7C朝向轴向其中一侧的移动被禁止。换言之,安装于输入侧齿轮架18的输入侧罩13承受从曲轴7A、7B、7C朝向轴向其中一侧(图17中为右方)作用的力F1,由此来禁止曲轴7A、7B、7C朝向轴向其中一侧的移动。
总之,在第1限制结构91中,接触至输入侧罩13的是曲轴7A、7B、7C中的偏心部72的端面(第2阶差部702)以外的部位。即,第1限制结构91使位于比曲轴7A、7B、7C中的偏心部72的端面(第2阶差部702)更靠轴向外侧(图17中为右侧)的位置且朝向轴向 外侧的阶差部(第1阶差部701)直接或间接地接触至输入侧罩13,由此来限制曲轴7A、7B、7C朝向轴向其中一侧的移动。因此,在包含偏心部72的端面的第2阶差部702中,不会因接触至输入侧罩13而产生摩擦,能够降低所述阶差部702的磨损等。本实施方式中,使第1阶差部701直接接触至输入侧罩13,但并不限于此结构,第1阶差部701也可经由垫圈等而间接地接触至输入侧罩13。
第2限制结构92包含输入侧罩13、扣环87及垫圈88。根据此种第2限制结构92,扣环87的朝向旋转轴Ax1的输出侧的面(经由垫圈88而间接地)接触至输入侧罩13的朝向旋转轴Ax1的输入侧(图17中为右侧)的面,由此,曲轴7A、7B、7C朝向轴向另一侧(图17中为左方)的移动受到限制。即,输入侧罩13经由垫圈88来承受从扣环87朝向轴向另一侧(图17中为左方)作用的力F2,由此来禁止曲轴7A、7B、7C朝向轴向另一侧的移动。
即,在本实施方式中,限制结构9包含被安装于输入侧齿轮架18的轴向上的与行星齿轮3为相反侧的输入侧罩13。通过将输入侧罩13夹在设置于曲轴7A、7B、7C的外周面的一对突起(第1阶差部701及扣环87)间,从而限制曲轴7A、7B、7C朝向轴向的移动。因此,可确实地限制曲轴7A、7B、7C朝向轴向的移动。但是,设置于曲轴7A、7B、7C的外周面的一对突起并不限于第一阶差部701及扣环87,例如可为被安装于曲轴7A、7B、7C的一对扣环,也可为与轴心部71一体地设置于曲轴7A、7B、7C的外周面的一部分的肋部等。
而且,在本实施方式中,限制结构9中的输入侧罩13可拆卸地安装至输入侧齿轮架18。即,输入侧罩13是与输入侧齿轮架18独立的构件,在齿轮装置1B的装配时安装至输入侧齿轮架18。因此,在齿轮装置1B的装配时,从输入侧齿轮架18侧插入曲轴7A、7B、7C后,将输入侧罩13安装至输入侧齿轮架18,由此才能够限制曲轴7A、7B、7C的轴向移动。因而,通过调节输入侧罩13相对于输入侧齿轮架18的安装位置,能够调节曲轴7A、7B、7C的轴向的“游隙”。
此处,优选如图17的弹框内所示,在输入侧齿轮架18与输入侧罩13之间介装有垫片构件132。垫片构件132例如为金属制的薄板构件。即,在轴向上,输入侧罩13经由垫片构件132而接触至输入侧齿轮架18。由此,在安装输入侧罩13时,通过调节垫片构件132的厚度(及/或片数),能够在轴向上调节第1阶差部701与输入侧罩13之间的间隙,从而能够调节曲轴7A、7B、7C在轴向上的“游隙”。
进而,在本实施方式中,在限制结构9中,曲轴7A、7B、7C的阶差部70(第1阶差部701)及扣环87直接或间接地接触至被安装于输入侧齿轮架18的输入侧罩13,由此,曲轴7A、7B、7C的轴向移动受到限制。即,曲轴7A、7B、7C并非被输入侧齿轮架18,而是被输入侧罩13限制朝向轴向的移动。输入侧罩13可拆卸地安装于输入侧齿轮架18,因此与输入侧齿轮架18独立。因此,既能限制曲轴7A、7B、7C朝向轴向两侧的移动,又能在阶差部70与一对齿轮架18、19之间分别确保成为使润滑剂通过的润滑通路S1的一部分的间隙。
因而,在本实施方式中,与参考例1同样地,在2处部位的阶差部70(第2阶差部702及第3阶差部703)与输入侧齿轮架18及输出侧齿轮架19之间,分别形成有使润滑剂通过的润滑通路S1。因此,一对滚柱轴承41及一对偏心体轴承5等的润滑状态得到改善,难以产生润滑不良。因此,即便在长期使用齿轮装置1B的情况下,也能够降低摩擦造成的损失,容易实现齿轮装置1B的长寿命化。总之,本实施方式的齿轮装置1B尤其在长期使用时也难 以产生可靠性的下降,因此甚而也有助于齿轮装置1B的传递效率的改善、长寿命化及高性能化。
而且,本实施方式的齿轮装置1B与参考例1同样地,具备以旋转轴Ax1为中心旋转的输入齿轮501与多个曲轴齿轮502A、502B、502C。多个曲轴齿轮502A、502B、502C以与输入齿轮501啮合的方式配置在输入齿轮501的周围,在输入齿轮501的旋转时彼此同步地旋转。曲轴7A、7B、7C以与多个曲轴齿轮502A、502B、502C一一对应的方式设有多个。多个曲轴7A、7B、7C与多个曲轴齿轮502A、502B、502C一同旋转,以旋转轴Ax1为中心使行星齿轮3摆动。
这样,在具有多个曲轴7A、7B、7C的分离型的齿轮装置1B中,能够限制多个曲轴7A、7B、7C的轴向移动。进而,通过使润滑剂在多个曲轴7A、7B、7C的周边循环,能够实现润滑状态的提高。
此外,在实施方式1中,限制结构9仅在输入侧齿轮架18与输出侧齿轮架19中的输入侧齿轮架18(严密而言为被安装于输入侧齿轮架18的输入侧罩13)处限制曲轴7A、7B、7C朝向轴向两侧(其中一侧及另一侧)的移动,但并不限于此结构。即,限制结构9只要仅在输入侧齿轮架18与输出侧齿轮架19的任一齿轮架处限制曲轴7A、7B、7C朝向轴向两侧的移动即可。
因此,例如,限制结构9也可为仅在输出侧齿轮架19处限制曲轴7A、7B、7C朝向轴向的移动的结构。此时,输出侧齿轮架19不仅可直接限制曲轴7A、7B、7C的轴向移动,而且可通过例如被安装于输出侧齿轮架19的输出侧罩14而限制曲轴7A、7B、7C的轴向移动。根据此结构,曲轴齿轮502A、502B、502C的安装结构等与限制结构9不易产生干涉。
实施方式1的结构(包含变形例)可与参考例1中说明的各种结构(包含变形例)适当组合起来采用。
(总结)
如以上所说明的那样,第1形态的内啮合行星齿轮装置(1、1A、1B)具备内齿齿轮(2)、行星齿轮(3)、曲轴(7A、7B、7C)以及输入侧齿轮架(18)及输出侧齿轮架(19),通过使行星齿轮(3)摆动而使行星齿轮(3)相对于内齿齿轮(2)相对旋转。内齿齿轮(2)具有:环状的齿轮本体(22);以及多个外销(23),以可自转的状态被保持在形成于齿轮本体(22)的内周面(221)的多个内周槽(223)中且构成内齿(21)。行星齿轮(3)具有局部啮合于内齿(21)的外齿(31)。曲轴(7A、7B、7C)通过以轴心(Ax2)为中心旋转而使行星齿轮(3)摆动。输入侧齿轮架(18)及输出侧齿轮架(19)配置在行星齿轮(3)的沿着轴心(Ax2)的轴向的两侧,可旋转地支撑曲轴(7A、7B、7C)。内啮合行星齿轮装置(1、1A、1B)还具备限制结构(9)。限制结构(9)仅在输入侧齿轮架(18)与输出侧齿轮架(19)的任一齿轮架处限制曲轴(7A、7B、7C)朝向轴向上的两侧的移动。
根据此形态,可仅在输入侧齿轮架(18)与输出侧齿轮架(19)的任一齿轮架处限制曲轴(7A、7B、7C)朝向轴向两侧(其中一侧及另一侧)的移动。结果,在内啮合行星齿轮装置(1、1A、1B)中,无须使用圆锥滚子轴承等,虽为相对较简单的结构,但能限制曲轴(7A、7B、7C)的轴向移动。因此,能够降低因曲轴(7A、7B、7C)沿轴向移动造成的松动及传递损失等。
第2形态的内啮合行星齿轮装置(1、1A、1B)是在第1形态中,限制结构(9)包含被安装于输入侧齿轮架(18)的轴向上的与行星齿轮(3)为相反侧的输入侧罩(13)。限制结构(9)通过将输入侧罩(13)夹在设置于曲轴(7A、7B、7C)的外周面的一对突起间,从而限制曲轴(7A、7B、7C)朝向轴向的移动。
根据此形态,可确实地限制曲轴(7A、7B、7C)朝向轴向的移动。
第3形态的内啮合行星齿轮装置(1、1A、1B)是在第2形态中,输入侧罩(13)可拆卸地安装至输入侧齿轮架(18)。
根据此形态,在内啮合行星齿轮装置(1、1A、1B)的装配等时,从输入侧齿轮架(18)侧插入曲轴(7A、7B、7C)后,将输入侧罩(13)安装至输入侧齿轮架(18),由此才能够限制曲轴(7A、7B、7C)的轴向移动。
第4形态的内啮合行星齿轮装置(1、1A、1B)是在第1形态中,限制结构(9)仅在输出侧齿轮架(19)处限制曲轴(7A、7B、7C)朝向轴向的移动。
根据此形态,被安装于曲轴(7A、7B、7C)的输入侧的构件(曲轴齿轮502A、502B、502C等)的安装结构等与限制结构(9)不易产生干涉。
第5形态的内啮合行星齿轮装置(1、1A、1B)是在第1~第4形态中的任一形态中,曲轴(7A、7B、7C)在轴向的至少2处部位具有阶差部(70)。在2处部位的阶差部(70)与输入侧齿轮架(18)及输出侧齿轮架(19)之间,分别形成有使润滑剂通过的润滑通路(S1)。
根据此形态,能够利用轴向上的、阶差部(70)与输入侧齿轮架(18)及输出侧齿轮架(19)之间的间隙来使润滑剂循环。
第6形态的内啮合行星齿轮装置(1、1A、1B)是在第1~第5形态中的任一形态中,还具备:输入齿轮(501),以旋转轴(Ax1)为中心旋转;以及多个曲轴齿轮(502A、502B、502C),以与输入齿轮(501)啮合的方式配置在输入齿轮(501)的周围,在输入齿轮(501)的旋转时,彼此同步地旋转。曲轴(7A、7B、7C)以与多个曲轴齿轮(502A、502B、502C)一一对应的方式设有多个。多个曲轴(7A、7B、7C)与多个曲轴齿轮(502A、502B、502C)一同旋转,以旋转轴(Ax1)为中心使行星齿轮(3)摆动。
根据此形态,在分离型的内啮合行星齿轮装置(1、1A、1B)中,虽为相对较简单的结构,但能限制曲轴(7A、7B、7C)的轴向移动。
第7形态的机器人用关节装置(200)具备:第1~第6形态中的任一形态的内啮合行星齿轮装置(1、1A、1B);第1构件(201),被固定于齿轮本体(22);以及第2构件(202),伴随行星齿轮(3)相对于内齿齿轮(2)的相对旋转而相对于第1构件(201)相对旋转。
根据此形态,虽为相对较简单的结构,但能限制曲轴(7A、7B、7C)的轴向移动。
关于第2~第7形态的结构,并非内啮合行星齿轮装置(1、1A、1B)必需的结构,可适当省略。
[符号的说明]
1、1A、1B:内啮合行星齿轮装置
2:内齿齿轮
3:行星齿轮
7A、7B、7C:曲轴
9:限制结构
13:输入侧罩
18:输入侧齿轮架
19:输出侧齿轮架
21:内齿
22:齿轮本体
23:外销
31:外齿
70、701、702、703、704:阶差部(突起)
87:扣环(突起)
200:机器人用关节装置
201:第1构件
202:第2构件
221:(齿轮本体的)内周面
223:内周槽
501:输入齿轮
502A、502B、502C:曲轴齿轮
Ax1:旋转轴
Ax2:轴心
S1:润滑通路

Claims (7)

  1. 一种内啮合行星齿轮装置,具备:
    内齿齿轮,具有环状的齿轮本体与多个外销,所述多个外销以可自转的状态被保持在形成于所述齿轮本体的内周面的多个内周槽中且构成内齿;
    行星齿轮,具有局部啮合于所述内齿的外齿;
    曲轴,通过以轴心为中心旋转而使所述行星齿轮摆动;以及
    输入侧齿轮架及输出侧齿轮架,配置在所述行星齿轮的沿着所述轴心的轴向的两侧,可旋转地支撑所述曲轴,
    通过使所述行星齿轮摆动而使所述行星齿轮相对于所述内齿齿轮相对旋转,
    所述内啮合行星齿轮装置还具备限制结构,所述限制结构仅在所述输入侧齿轮架与所述输出侧齿轮架的任一齿轮架处限制所述曲轴朝向所述轴向上的两侧的移动。
  2. 根据权利要求1所述的内啮合行星齿轮装置,其中
    所述限制结构包含被安装于所述输入侧齿轮架的所述轴向上的与所述行星齿轮为相反侧的输入侧罩,通过将所述输入侧罩夹在设置于所述曲轴的外周面的一对突起间,从而限制所述曲轴朝向所述轴向的移动。
  3. 根据权利要求2所述的内啮合行星齿轮装置,其中
    所述输入侧罩可拆卸地安装至所述输入侧齿轮架。
  4. 根据权利要求1所述的内啮合行星齿轮装置,其中
    所述限制结构仅在所述输出侧齿轮架处限制所述曲轴朝向所述轴向的移动。
  5. 根据权利要求1或2所述的内啮合行星齿轮装置,其中
    所述曲轴在所述轴向的至少2处部位具有阶差部,
    在所述2处部位的阶差部与所述输入侧齿轮架及所述输出侧齿轮架之间,分别形成有使润滑剂通过的润滑通路。
  6. 根据权利要求1或2所述的内啮合行星齿轮装置,还具备:
    输入齿轮,以旋转轴为中心旋转;以及
    多个曲轴齿轮,以与所述输入齿轮啮合的方式配置在所述输入齿轮的周围,在所述输入齿轮的旋转时彼此同步地旋转,
    所述曲轴以与所述多个曲轴齿轮一一对应的方式设有多个,
    所述多个曲轴与所述多个曲轴齿轮一同旋转,以所述旋转轴为中心使所述行星齿轮摆动。
  7. 一种机器人用关节装置,具备:
    权利要求1或2所述的内啮合行星齿轮装置;
    第1构件,被固定于所述齿轮本体;以及
    第2构件,伴随所述行星齿轮相对于所述内齿齿轮的相对旋转而相对于所述第1构件相对旋转。
PCT/CN2023/113224 2022-06-27 2023-08-16 内啮合行星齿轮装置及机器人用关节装置 WO2024002388A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-102309 2022-06-27
JP2022102309A JP7299384B1 (ja) 2022-06-27 2022-06-27 内接噛合遊星歯車装置及びロボット用関節装置

Publications (1)

Publication Number Publication Date
WO2024002388A1 true WO2024002388A1 (zh) 2024-01-04

Family

ID=86900674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113224 WO2024002388A1 (zh) 2022-06-27 2023-08-16 内啮合行星齿轮装置及机器人用关节装置

Country Status (2)

Country Link
JP (1) JP7299384B1 (zh)
WO (1) WO2024002388A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7299384B1 (ja) * 2022-06-27 2023-06-27 美的集団股▲フン▼有限公司 内接噛合遊星歯車装置及びロボット用関節装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102686906A (zh) * 2010-01-08 2012-09-19 住友重机械工业株式会社 摆动内啮合型的行星齿轮装置
CN103836168A (zh) * 2012-11-26 2014-06-04 住友重机械工业株式会社 行星齿轮装置
CN108571567A (zh) * 2017-03-10 2018-09-25 住友重机械工业株式会社 行星齿轮装置
US20220049758A1 (en) * 2018-09-10 2022-02-17 Valeo Systèmes d'Essuyage Mechanical reduction gearing and associated geared motor
JP7299384B1 (ja) * 2022-06-27 2023-06-27 美的集団股▲フン▼有限公司 内接噛合遊星歯車装置及びロボット用関節装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4466903B2 (ja) 2003-02-07 2010-05-26 ナブテスコ株式会社 回転体及び減速機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102686906A (zh) * 2010-01-08 2012-09-19 住友重机械工业株式会社 摆动内啮合型的行星齿轮装置
CN103836168A (zh) * 2012-11-26 2014-06-04 住友重机械工业株式会社 行星齿轮装置
CN108571567A (zh) * 2017-03-10 2018-09-25 住友重机械工业株式会社 行星齿轮装置
US20220049758A1 (en) * 2018-09-10 2022-02-17 Valeo Systèmes d'Essuyage Mechanical reduction gearing and associated geared motor
JP7299384B1 (ja) * 2022-06-27 2023-06-27 美的集団股▲フン▼有限公司 内接噛合遊星歯車装置及びロボット用関節装置

Also Published As

Publication number Publication date
JP2024003284A (ja) 2024-01-15
JP7299384B1 (ja) 2023-06-27

Similar Documents

Publication Publication Date Title
JP5438297B2 (ja) 偏心揺動型歯車装置
WO2024002388A1 (zh) 内啮合行星齿轮装置及机器人用关节装置
JP7273781B2 (ja) 内接噛合遊星歯車装置
JP2024003286A (ja) 内接噛合遊星歯車装置及びロボット用関節装置
JP2024003287A (ja) 内接噛合遊星歯車装置及びロボット用関節装置
JP2024003285A (ja) 内接噛合遊星歯車装置及びロボット用関節装置
JP7299373B1 (ja) 内接噛合遊星歯車装置及びロボット用関節装置
JP7474210B2 (ja) 内接噛合遊星歯車装置及びロボット用関節装置
JP7474209B2 (ja) 内接噛合遊星歯車装置及びロボット用関節装置
JP7463266B2 (ja) 内接噛合遊星歯車装置、及びその製造方法
WO2023056759A1 (zh) 内啮合行星齿轮装置和机器人用关节装置
JP7368344B2 (ja) 内接噛合遊星歯車装置及びアクチュエータ
JP2023100292A (ja) 内接噛合遊星歯車装置及びロボット用関節装置
WO2022227560A1 (zh) 内啮合行星齿轮装置及机器人用关节装置
JP7273782B2 (ja) 内接噛合遊星歯車装置、車輪装置及び車両
WO2022041716A1 (zh) 内啮合行星齿轮装置、车轮装置及车辆
JP2022169213A (ja) 内接噛合遊星歯車装置、ロボット用関節装置、メンテナンス方法及び内接噛合遊星歯車装置の製造方法
JP2023169990A (ja) 内接噛合遊星歯車装置、ロボット用関節装置及び波動歯車装置
JP2023169989A (ja) 内接噛合遊星歯車装置、ロボット用関節装置及び波動歯車装置
JP2022027406A (ja) 内接噛合遊星歯車装置及びアクチュエータ
JP2024043451A (ja) 歯車装置及びロボット用関節装置
CN117927615A (zh) 齿轮部件、内啮合行星齿轮装置以及机器人用关节装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830550

Country of ref document: EP

Kind code of ref document: A1