WO2024002338A1 - 定涡旋组件、涡旋压缩机及加工定涡旋组件的方法 - Google Patents

定涡旋组件、涡旋压缩机及加工定涡旋组件的方法 Download PDF

Info

Publication number
WO2024002338A1
WO2024002338A1 PCT/CN2023/104610 CN2023104610W WO2024002338A1 WO 2024002338 A1 WO2024002338 A1 WO 2024002338A1 CN 2023104610 W CN2023104610 W CN 2023104610W WO 2024002338 A1 WO2024002338 A1 WO 2024002338A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixed scroll
fluid
holes
hole
assembly
Prior art date
Application number
PCT/CN2023/104610
Other languages
English (en)
French (fr)
Inventor
刘轩
房元灿
金培
李丽丽
何本东
陈云
Original Assignee
谷轮环境科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202221670020.6U external-priority patent/CN218093424U/zh
Priority claimed from CN202210757840.7A external-priority patent/CN117365944A/zh
Priority claimed from CN202210760032.6A external-priority patent/CN117365954A/zh
Priority claimed from CN202221667261.5U external-priority patent/CN217873271U/zh
Application filed by 谷轮环境科技(苏州)有限公司 filed Critical 谷轮环境科技(苏州)有限公司
Publication of WO2024002338A1 publication Critical patent/WO2024002338A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present disclosure relates to the field of compressors, and in particular to a non-scroll assembly, a scroll compressor including the non-scroll assembly, and a method of processing the non-scroll assembly.
  • the enthalpy-increasing injection hole can be used to replenish refrigerant to a designated position in the compression chamber through the jet enthalpy-increasing injection hole that is in fluid communication with the compression chamber of the scroll compressor to achieve the enthalpy-increasing effect. , improve compressor performance.
  • the jet enthalpy-increasing injection hole is usually machined from the side of the end plate of the fixed scroll component where the fixed scroll is provided.
  • the profile of the fixed scroll must be avoided when drilling, and the enthalpy-enhancing jet injection hole cannot exceed the profile width of the movable scroll of the movable scroll component to prevent the fluid in the corresponding compression chamber from leaking into adjacent to another compression chamber. Therefore, the process flow of processing the air-jet enthalpy-increasing injection holes in the prior art needs to be improved, and the size and flow area of the air-jet enthalpy-increasing injection holes are limited.
  • scroll compressors are often provided with a bypass hole located at the medium-pressure compression chamber to selectively circulate or disconnect the medium-pressure compression chamber from the low-pressure side fluid, so that the scroll does not change.
  • the displacement of the scroll compressor is changed according to the rotation speed of the compressor, while conventional large-horsepower scroll compressors usually do not It will include both variable displacement structure and jet enthalpy increasing structure. If the variable displacement structure and the jet enthalpy increasing structure are simply integrated into a large-horsepower scroll compressor, the number of parts, processing difficulty, and volume will increase, resulting in increased assembly time, overall volume, and cost.
  • Another object of the present disclosure is to increase the flow area of the jet enthalpy-enhancing injection holes in the scroll compressor.
  • Another object of the present disclosure is to integrate the variable displacement structure and the jet enthalpy increasing structure in the scroll compressor to further simplify the structure and processing of the scroll compressor.
  • Another object of the present disclosure is to seal the variable displacement bypass hole and the injection enthalpy-increasing injection hole in the scroll compressor with a common sealing structure, thereby reducing the number of required sealing parts.
  • the fixed scroll component includes an end plate and a fixed scroll extending from a first side of the end plate.
  • the fixed scroll component is provided with a jet enthalpy-enhancing injection hole extending from the upper surface of the fixed scroll component to the compression chamber.
  • the jet enthalpy-increasing fluid outside the compressor including the fixed scroll assembly can be supplied to the compression chamber through the jet enthalpy-enhancing injection hole.
  • the jet enthalpy increasing injection hole has a first end leading to the compression chamber and a second end leading to the outside of the fixed scroll assembly.
  • the sealing assembly is configured to seal the second end of the jet enthalpy increasing jet hole.
  • the jet enthalpy-enhancing jet hole may include a first portion and a second portion.
  • the first portion extends to the first side of the end plate and does not overlap the fixed scroll when viewed in the axial direction of the fixed scroll assembly.
  • the second portion extends through the end plate into the fixed scroll and overlaps the fixed scroll when viewed in the axial direction of the fixed scroll assembly, and the second portion includes a recess formed in the fixed scroll.
  • the jet enthalpy-enhancing jet holes may extend through the end plate from a second side of the end plate opposite the first side.
  • the fixed scroll component may further include a jet enthalpy increasing entrance hole and a jet enthalpy increasing channel connecting the jet enthalpy increasing entrance hole and the jet enthalpy increasing injection hole.
  • the hydraulic diameter of the jet enthalpy increasing injection hole is smaller than or equal to the jet enthalpy increasing injection hole.
  • the hydraulic diameter of the enthalpy channel is smaller than or equal to the jet enthalpy increasing injection hole.
  • the depth of the recess does not exceed the thickness of the fixed scroll. 2/3 of the thickness.
  • the height of the recess along the axial direction of the fixed scroll component is greater than or equal to the hydraulic radius of the jet enthalpy-increasing jet hole.
  • the sealing assembly may include a pressure plate and a sealing gasket.
  • the seal assembly may further include fasteners that secure and compress the sealing gasket and the pressure plate to the upper surface of the fixed scroll component.
  • the fixed scroll component may further include a bypass hole extending from the upper surface of the fixed scroll component to the compression chamber, and the fluid in the compression chamber can be discharged to the low pressure outside the fixed scroll component via the bypass hole. area, the sealing assembly seals both the bypass hole and the injection enthalpy-enhancing injection hole.
  • the non-scroll component may include two or more sets of holes spaced apart in the circumferential direction, wherein each set of holes includes at least one bypass hole and at least one jet enthalpy-enhancing injection hole.
  • the non-scroll component may include two or more sets of holes spaced apart in the circumferential direction, wherein each set of holes includes at least one bypass hole and at least one jet enthalpy-enhancing injection hole.
  • the seal assembly may include a piston disposed in the bypass hole and capable of being in a first position allowing the corresponding compression chamber to be in fluid communication with the low pressure region and a second position preventing the corresponding compression chamber from being in fluid communication with the low pressure region. Move between locations.
  • the upper surface of the fixed scroll component may be provided with a communication groove that connects the bypass holes or the bypass holes in each group of holes to each other and to the high-pressure area.
  • the pressure of the fluid in the high-pressure area is greater than
  • the pressure of the fluid in the compression chamber communicates with the bypass hole, and the communication groove is sealed by a sealing assembly at the upper surface of the fixed scroll component.
  • the non-scroll component may further include a vent slot configured to enable all bypass holes or bypass holes in each group of holes to communicate with each other and with the low pressure region via the vent slot.
  • Yet another aspect of the present disclosure provides a method of processing a fixed scroll assembly according to the above aspect.
  • the method includes: machining in the fixed scroll component at least one section extending from an upper surface of the fixed scroll component to the compression chamber.
  • a jet enthalpy-enhancing injection hole wherein the jet enthalpy-enhancing fluid outside the compressor including the fixed scroll assembly can be supplied to the compression chamber through the jet enthalpy-enhancing injection hole, and the jet enthalpy-increasing injection hole has a first outlet leading to the compression chamber. end and a second end leading to the exterior of the fixed scroll assembly; and a machined seal assembly configured to seal the second end of the jet enthalpy enhancement injection hole.
  • Non-orbiting scroll assembly including a non-orbiting scroll component and a sealing assembly.
  • the fixed scroll component is provided with an end plate and a fixed scroll extending from one side of the end plate.
  • the fixed scroll component is provided with at least one group of holes, and each group of holes includes a bypass hole and an injection enthalpy-increasing injection hole.
  • the fluid in the compression chamber can be discharged to a low-pressure area outside the fixed scroll component through the bypass hole.
  • the jet enthalpy-enhancing fluid external to the compressor including the fixed scroll assembly can be supplied into the compression chamber via the jet enthalpy-enhancing injection hole.
  • the sealing assembly is configured to seal a group of the at least one group of holes.
  • the non-scroll component may include two or more sets of holes spaced apart in the circumferential direction.
  • the seal assembly may include a piston.
  • the piston is disposed in the bypass bore and is movable between a first position allowing the respective compression chamber to be in fluid communication with the low pressure region and a second position preventing the respective compression chamber from being in fluid communication with the low pressure region.
  • the orbiting scroll assembly may also include a fluid control device.
  • the fluid control device is configured to control the pressure difference between the upper part and the lower part of the piston by introducing fluid with a predetermined pressure to the upper part of the piston, so as to control the movement of the piston.
  • the fixed scroll component may further include a fluid passage connecting the bypass hole to a high-pressure area, where the pressure of the fluid in the high-pressure area is greater than the pressure of the fluid in the compression chamber connected to the bypass hole.
  • the fluid control device may include a valve configured to selectively connect or disconnect the fluid passage to change the pressure difference above and below the piston.
  • the upper surface of the fixed scroll component may be provided with a communication groove that allows all bypass holes or the bypass holes in each group of holes to communicate with each other and with at least one of the fluid channels.
  • the communication groove can be sealed by a sealing assembly.
  • the fluid channel may include a first fluid channel and a second fluid channel.
  • the first fluid channel extends from the outer peripheral surface of the fixed scroll member to the high-pressure area
  • the second fluid channel extends from the outer peripheral surface of the fixed scroll member to the communication groove.
  • the valve is located between the first fluid channel and the second fluid channel.
  • bypass holes and the enthalpy-enhancing injection injection holes may extend from the upper surface of the end plate to the corresponding compression chamber.
  • the fluid control device may be provided on the peripheral surface of the end plate.
  • a recess may be provided on the upper surface of the end plate, and an exhaust groove may be provided on the side wall of the recess.
  • the exhaust slot is configured to enable all bypass holes or bypass holes in each group of holes to communicate with each other and with the low-pressure area via the exhaust slot.
  • the non-scroll component may include a hub protruding from an upper surface of the end plate in an axial direction, and the bypass hole and the jet enthalpy-increasing injection hole may extend from the upper surface of the hub to the corresponding compression chamber.
  • the fluid control device may be provided on the peripheral surface of the hub.
  • an exhaust groove may be provided on the outer peripheral surface of the hub.
  • the exhaust slot is configured to enable all bypass holes or bypass holes in each group of holes to communicate with each other and with the low-pressure area via the exhaust slot.
  • the fixed scroll component may further include a jet enthalpy increasing entrance hole and a jet enthalpy increasing channel.
  • the jet enthalpy increasing entrance hole is positioned at the outer peripheral surface of the end plate, and the jet enthalpy increasing channel extends inside the end plate and connects the jet enthalpy increasing entrance hole and the jet enthalpy increasing injection hole.
  • the jet enthalpy-enhancing jet holes may include recesses formed in the fixed scroll.
  • the sealing assembly may include a sealing gasket and a pressure plate covering and sealing the bypass hole and the jet enthalpy-enhancing jet hole.
  • the seal assembly may further include fasteners to secure the seal gasket and pressure plate to the fixed scroll component.
  • Another aspect of the present disclosure provides a scroll compressor including the fixed scroll assembly according to the above aspect.
  • the non-orbiting scroll assembly may include a non-orbiting scroll component having a non-orbiting scroll and an end plate.
  • the method includes machining at least one set of holes in the non-scroll component, each of the at least one set of holes including a bypass hole and a jet enthalpy-enhancing injection hole.
  • the fluid in the compression chamber can be discharged to a low-pressure area outside the fixed scroll component through the bypass hole.
  • the jet enthalpy-enhancing fluid external to the compressor including the fixed scroll assembly can be supplied into the compression chamber via the jet enthalpy-enhancing injection holes; and a sealing assembly for sealing a set of the at least one set of holes is machined.
  • machining the at least one set of holes may include machining bypass holes and injection enthalpy-enhancing injection holes from the upper surface of the end plate toward the corresponding compression chamber.
  • the method may further include: providing a recess on the upper surface of the end plate, and providing an exhaust groove on a side wall of the recess for connecting each set of bypass holes and communicating with the low-pressure area.
  • the fixed scroll component includes a hub protruding from an upper surface of the end plate in an axial direction
  • processing the at least one set of holes includes: processing a bypass hole from the upper surface of the hub toward the corresponding compression chamber and Jet enthalpy increasing jet hole.
  • the method may further include: machining a communication groove on the upper surface of the hub so that each group of bypass holes or all bypass holes communicate with each other and can communicate with the high-pressure area, where the fluid in the high-pressure area The pressure is greater than the pressure of the fluid in the compression chamber connected to the bypass hole.
  • the method may further include: machining an exhaust groove on the outer peripheral surface of the hub that communicates each set of bypass holes or all bypass holes with each other and with the low-pressure area.
  • FIG. 1 shows a perspective view of a compression mechanism of a scroll compressor according to one embodiment of the present disclosure
  • Figure 2 shows an exploded view of the fixed scroll assembly of Figure 1;
  • Figures 3 to 5 respectively show a side view, a top view and a bottom view of the fixed scroll component in Figure 1;
  • Figure 6 shows a cross-sectional view of the compression mechanism in Figure 1 taken along line A-A in Figure 3;
  • Figure 7 shows a cross-sectional view of the compression mechanism in Figure 1 taken along line B-B in Figure 6;
  • Figure 8 shows an enlarged view of area C in Figure 7;
  • FIG. 9 shows a perspective view of a compression mechanism of a scroll compressor according to another embodiment of the present disclosure.
  • Figure 10 shows an exploded view of the fixed scroll assembly of Figure 9;
  • FIG. 11 shows a perspective view of a compression mechanism of a scroll compressor according to another embodiment of the present disclosure. picture
  • Figure 12 shows an exploded view of the fixed scroll assembly of Figure 11;
  • Figures 13 to 15 respectively show the front view, top view and bottom view of the fixed scroll component in Figure 11;
  • Figure 17 shows a cross-sectional view of the compression mechanism in Figure 11 taken along line BX-BX in Figure 16;
  • Figure 18 shows a rear view of the fixed scroll component of Figure 11;
  • Figure 19 shows a cross-sectional view of the fixed scroll component in Figure 11 taken along line CX-CX in Figure 18;
  • Figure 20 shows a cross-sectional view of the fixed scroll component in Figure 11 taken along line DX-DX in Figure 19;
  • Figure 21 shows a cross-sectional view of the fixed scroll component in Figure 11 taken along line EX-EX in Figure 19;
  • FIG. 23 shows a perspective view of a compression mechanism of a scroll compressor according to another embodiment of the present disclosure.
  • Figure 24 shows an exploded view of the fixed scroll assembly of Figure 23;
  • Figure 25 shows a side view of the non-orbiting scroll component of Figure 23;
  • Figure 26 shows a cross-sectional view of the non-orbiting scroll component taken along a vertical plane passing through the axis of the first fluid passage shown in Figure 25;
  • Figure 27 shows a cross-sectional view of the non-orbiting scroll component taken along a vertical plane passing through the axis of the second fluid passage shown in Figure 25.
  • Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those skilled in the art. Numerous specific details are set forth, such as examples of specific components, devices, and methods, in order to provide a thorough understanding of the various embodiments of the disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and should not be construed to limit the scope of the disclosure. In some exemplary embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
  • the scroll compressor may include a casing, a compression mechanism 1 accommodated in the casing, a driving mechanism for driving the compression mechanism 1, and the like.
  • a compression mechanism 1 accommodated in the casing
  • a driving mechanism for driving the compression mechanism 1 and the like.
  • only the compression mechanism 1 and the corresponding sealing assembly of the scroll compressor are shown in this article, and other well-known structures of the scroll compressor are not shown.
  • FIG. 1 shows a perspective view of a compression mechanism 1 of a scroll compressor according to one embodiment of the present disclosure.
  • the compression mechanism 1 of the scroll compressor includes an orbiting scroll member 10 and a fixed scroll member 20 that cooperate with each other to form a compression chamber.
  • FIG. 2 shows an exploded view of the non-orbiting scroll assembly in FIG. 1 .
  • the non-orbiting scroll assembly may include a non-orbiting scroll component 20 and a sealing component 40 connected to the non-orbiting scroll component 20 .
  • 3 to 5 respectively show a side view, a top view, and a bottom view of the fixed scroll component 20
  • FIG. 6 shows a cross-sectional view of the compression mechanism 1 of the scroll compressor taken along line A-A in FIG. 3
  • FIG. 7 A cross-sectional view of the compression mechanism 1 of the scroll compressor taken along line B-B in FIG. 6 is shown.
  • the fixed scroll member 20 includes an end plate 21 and a fixed scroll 22 extending in the axial direction from a first side of the end plate 21 , that is, a lower surface 21 b of the end plate 21 .
  • the fixed scroll member 20 may further include a hub 23 protruding in the axial direction from an opposite second side of the end plate 21 , that is, an upper surface 21 a opposite the lower surface 21 b.
  • the orbiting scroll member 10 includes an end plate 11 and an orbiting scroll 12 protruding from an upper surface 11 a of the end plate 11 in the axial direction.
  • the driving mechanism drives the orbiting scroll member 10 to orbit relative to the fixed scroll member 20 , and the orbiting scroll 12 and the fixed scroll 22 mesh with each other to form a series of spiral scrolls from the radially outer side toward the radial direction.
  • the inner volume of the compression chamber gradually decreases.
  • the fixed scroll 22 defines a spiral fluid compression path. The fluid to be compressed flows in from the radial outside of the spiral fluid compression path, and after being compressed, flows from the exhaust port located substantially in the center of the end plate 21 21c outflow.
  • the fixed scroll component 20 includes a jet enthalpy increasing entrance hole 24 formed at the outer peripheral surface 21 d of the end plate 21 , extending downwardly through the end plate 21 from the upper surface 21 a of the end plate 21 to the compression hole.
  • the jet enthalpy increasing injection hole 25 of the cavity and the jet enthalpy increasing channel 26 extend inside the end plate 21 and connect the jet enthalpy increasing incident hole 24 and the jet enthalpy increasing injection hole 25 .
  • the fixed scroll member 20 includes two jet enthalpy-increasing injection holes 25 spaced apart in the circumferential direction of the fixed scroll member 20 .
  • any number of jet enthalpy-enhancing jet holes may be provided.
  • the jet enthalpy increasing injection hole 25 has a first end 25 a leading to the compression chamber and a second end 25 b leading to the outside of the fixed scroll assembly.
  • the enthalpy-enhancing injection hole 25 is located on the lower surface 21b of the end plate 21
  • the first end 25 a at the end plate 25 is in fluid communication with the compression chamber, and the second end 25 b of the enthalpy-enhancing injection hole 25 located at the upper surface 21 a of the end plate 21 is sealed by the sealing assembly 40 .
  • the sealing assembly 40 may include a pressure plate 41 and a sealing gasket 42 for covering and sealing the injection enthalpy-enhancing injection hole 25 , wherein the sealing gasket 42 is positioned between the pressure plate 41 and the injection enthalpy-enhancing injection hole 25 between.
  • the sealing assembly 40 may also include a plurality of bolts 43 that pass through corresponding bolt holes formed in the sealing gasket 42, the pressure plate 41 and the upper surface 21a of the end plate 21 to fix the sealing gasket 42 and the pressure plate 41 to the end plate. The upper surface 21a of the plate 21 is pressed tightly.
  • any other suitable fastener may be used.
  • the jet enthalpy increasing injection hole 25 includes a first part that does not overlap with the fixed scroll 22 when viewed in the axial direction, and a second part that overlaps with the fixed scroll 22 when viewed in the axial direction.
  • the second portion extends through the end plate into the fixed scroll 22 .
  • the second part of the jet enthalpy increasing injection hole 25 includes a recess 25 c formed by removing part of the material from the lower surface 21 b of the end plate 21 of the fixed scroll 22 toward the fixed scroll 22 .
  • FIG. 8 shows an enlarged view of area C in FIG. 7 .
  • Shown herein are the jet enthalpy-enhancing injection holes 25 and the jet enthalpy-enhancing channels 26 having circular cross-sections.
  • the diameter D1 of the jet enthalpy increasing injection hole 25 is smaller than or equal to the diameter D2 of the jet enthalpy increasing channel 26 .
  • the flow path of the jet enthalpy-increasing fluid can have a constant flow area.
  • the depth W1 of the recess 25c formed by removing part of the material from the fixed scroll 22 does not exceed 2/3 of the thickness W2 of the fixed scroll 22, to ensure that the fixed scroll 22 is still Has sufficient stiffness.
  • the height H of the recessed portion 25c along the axial direction is greater than or equal to the radius of the enthalpy-enhancing jet injection hole 25, that is, H ⁇ 1/2D1, in order to achieve the largest possible flow area.
  • holes or passages such as jet enthalpy increasing entrance holes, jet enthalpy increasing injection holes, jet enthalpy increasing channels, bypass holes, etc. herein are illustrated as having circular cross-sections, it should be understood that the present disclosure Not limited to specific hole types and channel shapes. In other embodiments, any other suitably shaped holes or channels may be used.
  • the diameter or radius of the hole or channel described herein should be understood to be the hydraulic diameter or hydraulic radius of the hole or channel. Hydraulic diameter It refers to the ratio of four times the flow cross-sectional area of a hole or channel to the perimeter. The hydraulic radius is the ratio of the flow cross-sectional area of a hole or channel to the perimeter.
  • the jet enthalpy-increasing injection hole is usually drilled from the lower surface 21b of the end plate 21 of the fixed scroll component 20 (that is, from the profile side of the fixed scroll 22), which requires
  • the jet enthalpy-increasing injection hole must avoid the profile line of the fixed scroll 22 and cannot exceed the profile line width of the movable scroll 12 to prevent the fluid in the compression chamber in fluid communication with the jet enthalpy-increasing injection hole from leaking to another adjacent one. Compression chamber. Therefore, the size and flow area of the enthalpy-enhancing jet injection holes in the prior art are limited.
  • the corresponding maximum size L1 of the hole increases the depth W1 of the recess 25c formed by removing part of the material from the fixed scroll 22, which depth W1 may be 2/3 of the thickness W2 of the fixed scroll 22.
  • the scroll compressor may also include a variable displacement structure integrated with the jet enthalpy increasing structure to change the displacement of the scroll compressor without changing the rotational speed of the scroll compressor.
  • the fixed scroll component 20 further includes one or more bypass holes 27 arranged adjacent to the jet enthalpy increasing injection holes 25 .
  • the bypass hole 27 is located approximately at the middle of the spiral fluid compression path shown in FIG. 5 , and extends from the upper surface 21 a of the end plate 21 across the lower surface 21 b, thereby extending through the end plate 21 to the compression chamber.
  • the bypass holes 27 and the enthalpy-enhancing injection injection holes 25 are arranged in groups at the upper surface 21 a of the end plate 21 and can be sealed by a common sealing assembly 40 .
  • each group of bypass holes 27 includes three bypass holes 27 .
  • any number and group of Count of bypass holes By selectively fluidly communicating or disconnecting the bypass hole 27 from the low pressure region external to the fixed scroll member 20, the displacement of the scroll compressor may be varied. When the bypass hole 27 is blocked, the scroll compressor operates at full load; when the bypass hole 27 is fluidly connected to the outside of the fixed scroll component 20, the corresponding compression chamber is fluidly connected to the low-pressure area of the scroll compressor. When connected, the scroll compressor operates at partial load.
  • an exhaust groove 28 is provided on the side of each group of bypass holes 27, and the exhaust groove 28 extends to each bypass hole of the group of bypass holes 27, so that the group of bypass holes 27 can be bypassed.
  • Each of the bypass holes in the holes 27 can communicate with each other and with the outside of the fixed scroll member 20 via the exhaust groove 28 .
  • the exhaust groove 28 is provided on the side wall 21f of the recess 21e that is concave downward from the upper surface 21a of the end plate 21 and adjacent to the bypass hole 27.
  • seal assembly 40 may also include a piston 44 .
  • a communication groove 29 may also be provided on the upper surface 21 a of the end plate 21 of the fixed scroll component 20 , and the communication groove 29 is arranged in each bypass hole in each group of bypass holes 27 around and connect the group of bypass holes together.
  • the communication groove 29 also allows the bypass hole 27 to be in fluid communication with a high-pressure area where the pressure of the fluid in the high-pressure area is greater than the pressure of the fluid in the compression chamber connected to the corresponding bypass hole 27 .
  • the bypass hole 27 and the communication groove 29 are covered and sealed by the pressure plate 41 and the sealing gasket 42 on the upper surface 21 a of the end plate 21 .
  • fluid with a predetermined pressure can be introduced to the upper surfaces of all pistons 44 in a group of bypass holes 27 at the same time, thereby changing the pressure difference between the upper and lower parts of the pistons 44, so as to control each group of bypass holes at the same time. Movement of all pistons 44 in 27.
  • a communication groove connecting all the bypass holes may also be provided.
  • the scroll compressor may further include a fluid control device 50 for introducing fluid with a predetermined pressure to the upper surface of the piston 44 to control the piston by controlling the pressure difference between the upper and lower parts of the piston 44 . 44 movement, thereby controlling the scroll compressor to switch between the full load working state and the partial load working state.
  • the fluid control device 50 includes a solenoid valve.
  • the fluid control device 50 may also include any other suitable valves and/or other mechanisms.
  • the end plate 21 of the non-scroll component 20 is provided with a first fluid channel 31 , a second fluid channel 32 and a third fluid channel 33 for connecting with the fluid control device 50 .
  • a recess 21g for receiving and placing the fluid control device 50 is provided on the outer peripheral surface 21d of the end plate 21, and the first fluid channel 31, the second fluid channel 32 and the third fluid channel 33 are located at the recess 21g. It extends from the outer peripheral surface 21d of the end plate 21 to the inside of the end plate 21.
  • the first fluid channel 31 extends to a predetermined high pressure area in the compression chamber. This high-pressure area can be positioned radially inside the bypass holes 27 on the spiral fluid compression path of the fixed scroll component 20 , that is, the high-pressure area is closer to the fixed scroll than each of the bypass holes 27 center of part 20.
  • the pressure of the fluid at the high-pressure area is greater than the pressure of the fluid in the compression chamber in fluid communication with the bypass hole 27 .
  • the second fluid channel 32 and the third fluid channel 33 are respectively in fluid communication with the corresponding communication grooves 29 of the two sets of bypass holes 27 .
  • the fluid control device 50 is disposed between the first fluid channel 31 , the second fluid channel 32 , and the third fluid channel 33 , and is configured to selectively control the first fluid channel 31 , the second fluid channel 32 , and the third fluid channel 33 . Fluid connection or disconnection.
  • the high-pressure fluid from the high-pressure area passes through the first fluid channel 31 , the second fluid channel 32 , the third fluid channel 33 and the communication groove 29 It flows into the piston chamber 27a of the bypass hole 27 and acts on the upper surface of the piston 44.
  • the pressure above the piston 44 is greater than the pressure below.
  • the piston 44 drops to the second position and blocks the connection between the bypass hole 27 and the exhaust groove 28. fluid connection.
  • FIGS. 9-10 illustrate a scroll compressor according to another embodiment of the present disclosure.
  • the following description will mainly focus on the differences between the scroll compressor and the scroll compressor described above, wherein the same or corresponding features or components are designated by the same reference numerals with a prime mark.
  • FIG. 9 shows a perspective view of the compression mechanism 1' of the scroll compressor.
  • the compression mechanism 1' includes an orbiting scroll member 10' and a fixed scroll member 20' that cooperate with each other to form a compression chamber.
  • FIG. 10 shows an exploded view of the non-orbiting scroll assembly in FIG. 9 , which may include the non-orbiting scroll component 20 ′ and a sealing assembly 40 ′ and/or a fluid control device 50 connected to the non-orbiting scroll component 20 ′. '.
  • the fixed scroll component 20' includes two jet enthalpy-enhancing injection holes 25' spaced apart from each other and two sets of bypass holes 27' arranged adjacent to each jet enthalpy-increasing injection hole 25'.
  • Each jet The enthalpy increasing injection hole 25' and the bypass hole 27' extend downward from the upper surface 23a' of the hub 23' of the fixed scroll component 20', through the hub 23' and the end plate 21' until they are in fluid communication with the compression chamber.
  • each jet enthalpy-enhancing injection hole 25' may include a first portion that does not overlap with the fixed scroll when viewed in the axial direction and a second portion that overlaps with the fixed scroll when viewed in the axial direction. The second part extends through the end plate 21' into the fixed scroll (not shown) to expand the flow area of the jet enthalpy-enhancing jet hole 25'.
  • the jet enthalpy increasing entrance hole (not shown) is also formed at the outer peripheral surface 21d' of the end plate 21' of the fixed scroll component 20'
  • a jet enthalpy increasing channel (not shown) connecting the jet enthalpy increasing incident hole and the jet enthalpy increasing injection hole 25' is also formed inside the end plate 21' of the fixed scroll component 20'.
  • the jet enthalpy increasing entrance hole and the jet enthalpy increasing channel may also be arranged at other locations, such as on the hub of the fixed scroll component.
  • the sealing assembly 40' includes a generally annular pressure plate 41' and a sealing gasket 42'.
  • the pressure plate 41' and the sealing gasket 42' cover the upper surface 23a' of the hub 23', and cover and seal all the injection enthalpy-increasing injection holes. 25' and bypass hole 27'.
  • the sealing assembly 40' may also include a plurality of bolts 43' or other fastening structures that secure and compress the pressure plate 41' and the sealing gasket 42' to the upper surface 23a' of the hub 23', as well as a plurality of bolts 43' that can be installed in each bypass hole.
  • the piston 44' moves up and down in the piston chamber 27a' of 27'.
  • the fluid control device 50 ′ is arranged on the outer peripheral surface 23 b ′ of the hub portion 23 ′ of the fixed scroll member 20 ′.
  • the first fluid channel 31' and the second fluid channel 32' for connecting with the fluid control device 50' extend from the outer peripheral surface 23b' of the hub 23' to the inside of the hub 23'.
  • the first fluid passage 31' is in fluid communication with a predetermined high-pressure region in the compression chamber that is closer to the center of the fixed scroll member 20' than each of the bypass holes 27'.
  • the second fluid channel 32' is in fluid communication with the communication groove 29' that communicates with all the bypass holes 27'.
  • the fluid control device 50' is disposed between the first fluid channel 31' and the second fluid channel 32' and is configured to selectively connect the first fluid channel 31' and the second fluid channel.
  • the passage 32' is fluidly connected or disconnected, thereby changing the pressure difference between the upper and lower parts of the piston 44' so that the piston 44' moves up and down in the piston chamber 27a' of the bypass hole 27', thereby controlling the scroll compressor to operate at full speed. Switch between load working status and partial load working status.
  • the method may include machining at least one jet enthalpy-enhancing injection hole in the non-scroll component extending from an upper surface of the non-scroll component to the compression chamber, through which the jet enthalpy-enhancing fluid external to the compressor including the fixed scroll assembly can pass a jet enthalpy increasing injection hole is supplied into the compression chamber, the jet enthalpy increasing injection hole has a first end leading to the compression chamber and a second end leading to the exterior of the fixed scroll assembly; and a machining seal assembly configured to The second end of the jet enthalpy increasing jet hole is sealed.
  • the method may also include corresponding steps of processing features such as bypass holes, exhaust grooves, communication grooves, etc. in the aforementioned embodiments. The above steps do not necessarily need to be performed in the order described in this article.
  • the jet enthalpy-increasing injection hole is drilled from the upper surface of the fixed scroll member (for example, the upper surface of the end plate or the upper surface of the hub), and a part of the thickness of the fixed scroll can be used.
  • Arranging the jet enthalpy-enhancing injection holes can significantly simplify the processing of the fixed scroll assembly, and can significantly increase the size and flow area of the jet enthalpy-enhancing injection holes without damaging the sealing performance of the scroll compressor.
  • the hydraulic diameter of the jet enthalpy-enhancing injection hole of the scroll compressor according to the embodiment of the present disclosure can be increased by at least one time, and the flow area of the jet enthalpy-enhancing injection hole can be increased by at least four times.
  • the present disclosure integrates the design of the jet enthalpy increasing structure and the variable displacement structure of the scroll compressor, so that the jet enthalpy increasing injection hole and the bypass hole can be sealed by a common sealing component. This simplifies the construction and machining of the scroll compressor and reduces the number of seals required.
  • the injection enthalpy increasing injection hole and the bypass hole are arranged on the upper surface of the hub of the fixed scroll component and a single communication groove is provided to connect all the bypass holes.
  • a single pressure plate and a single sealing gasket can be used to seal each holes and communication grooves, thereby further simplifying the structure and machining process of the scroll compressor and further reducing the number of required sealing parts.
  • the scroll compressor may include a casing, a compression mechanism 1X accommodated in the casing, a driving mechanism for driving the compression mechanism, and the like.
  • a compression mechanism 1X of the scroll compressor is shown herein, and other known structures of the scroll compressor are not shown.
  • FIG. 11 shows a perspective view of the compression mechanism 1X of the scroll compressor according to one embodiment of the present disclosure.
  • the compression mechanism 1X of the scroll compressor includes an orbiting scroll member 10X and a fixed scroll member 20X that cooperate with each other to form a compression chamber.
  • FIG. 12 shows an exploded view of the non-orbiting scroll assembly of FIG. 11 including the non-orbiting scroll component 20X.
  • the non-orbiting scroll assembly may include a non-orbiting scroll component 20X and a sealing assembly 40X connected to the non-orbiting scroll component 20X.
  • 13 to 15 respectively show a front view, a top view and a bottom view of the fixed scroll member 20X;
  • FIGS. 16 and 17 show cross-sectional views of the compression mechanism 1X of the scroll compressor.
  • the fixed scroll member 20X includes an end plate 21X and a fixed scroll 22X extending in the axial direction from the lower surface 21bX of the end plate 21X.
  • the fixed scroll member 20X may further include a hub portion 23X protruding in the axial direction from the upper surface 21aX of the end plate 21X.
  • the orbiting scroll member 10X includes an end plate 11X and an orbiting scroll 12X extending in the axial direction from the upper surface 11aX of the end plate 11X.
  • the driving mechanism drives the orbiting scroll member 10X to orbit relative to the fixed scroll member 20X, and the orbiting scroll 12X and the fixed scroll 22X mesh with each other to form a series of movable scrolls 10X from the radially outer side toward the radial direction.
  • the inner volume of the compression chamber gradually decreases.
  • the fixed scroll 22X defines a spiral fluid compression path.
  • bypass holes 24X extending downwardly from the upper surface 21aX of the end plate 21X through the end plate 21X to the compression chamber are provided.
  • two groups of bypass holes spaced apart in the circumferential direction are provided, and each group of bypass holes includes three bypass holes 24X.
  • any number and groups of bypass holes may be provided.
  • the shape of the bypass hole may be circular or in any other suitable shape.
  • an exhaust groove 25X is provided on the side of each group of bypass holes 24X, and the exhaust groove 25X extends to each bypass hole of the group of bypass holes 24X, so that the group of bypass holes 24X can be bypassed.
  • Each of the bypass holes in the hole 24X can communicate with each other and with the outside of the fixed scroll member 20X via the exhaust groove 25X.
  • the exhaust groove 25X is provided on the side wall 21eX of the recess 21dX that is recessed downward from the upper surface 21aX of the end plate 21X and adjacent to the bypass hole 24X.
  • FIG. 16 shows a cross-sectional view of the compression mechanism 1X of the scroll compressor taken along the line AX-AX in FIG. 13
  • FIG. 17 shows the compression mechanism 1X of the scroll compressor taken along the line BX-BX in FIG. 16 cross-sectional view.
  • the fixed scroll member 20X may further include a jet enthalpy increasing entrance hole 26X formed at the outer peripheral surface 21fX of the end plate 21X and extending downward from the upper surface 21aX of the end plate 21X through the end plate 21X.
  • the jet enthalpy increasing injection hole 27X to the compression chamber and the jet enthalpy increasing channel 28X extend inside the end plate 21X and connect the jet enthalpy increasing incident hole 26X and the jet enthalpy increasing injection hole 27X.
  • the fixed scroll component 20X includes two jet enthalpy-increasing injection holes 27X, each of which is positioned near a group of bypass holes 24X. In other embodiments, any number of jet enthalpy-enhancing jet holes may be provided. As shown in FIG.
  • opening 27aX of the injection enthalpy-increasing injection hole 27X located on the upper surface 21aX of the end plate 21X is sealed, and the opening 27aX of the injection enthalpy-increasing injection hole 27X is located on the lower surface of the end plate 21X. Opening 27bX at 21bX is in fluid communication with the compression chamber.
  • the jet enthalpy-enhancing injection hole 27X extends from the upper surface 21aX of the end plate 21X across the lower surface 21bX and extends into the fixed scroll 22X, so that the jet enthalpy-increasing injection hole 27
  • the scroll 22X has a recessed portion 27cX formed by removing part of the material.
  • the jet enthalpy-increasing injection hole is usually drilled from the lower surface 21bX of the end plate 21X, which requires that the jet enthalpy-increasing injection hole must avoid the fixed scroll 22X and cannot exceed the profile width of the movable scroll 12X, so as to Prevent fluid in the compression chamber fluidly connected with the jet enthalpy-increasing jet hole from leaking to another adjacent compression chamber. Therefore, the hole diameter and flow area of the enthalpy-enhancing jet injection hole in the prior art are limited.
  • the air jet enthalpy increasing injection hole 27X is drilled from the upper surface 21aX of the end plate 21X, and a part of the thickness of the fixed scroll 22X can be used to arrange the air jet enthalpy increasing injection hole 27X, which can significantly Increase the hole diameter and flow area of the jet enthalpy-increasing jet hole 27X.
  • the bypass hole 24X for realizing the variable displacement function of the compressor and the injection enthalpy-increasing injection hole 27X for realizing the injection enthalpy-increasing function are adjacent to each other and arranged in groups, so they can be sealed by a common sealing structure. Achieve proper sealing of these holes.
  • the non-scroll assembly of the scroll compressor may include a seal assembly 40X.
  • the sealing assembly 40X may include a pressure plate 41X and a sealing gasket 42X for covering and sealing the bypass hole 24X and the jet enthalpy increasing injection hole 27X, wherein the sealing gasket 42X is positioned between the pressure plate 41X, the bypass hole 24X and the jet enthalpy increasing injection hole. Between 27X. seal group Piece 40X may also include a plurality of bolts 43X that pass through corresponding bolt holes formed in the sealing gasket 42X, the pressure plate 41X, and the upper surface 21aX of the end plate 21X to secure the sealing gasket 42X and the pressure plate 41X to the end plate. The upper surface of 21X is 21aX and pressed. In addition to bolts 43X, any other suitable fastener may be used.
  • Seal assembly 40X may also include a piston 44X.
  • the piston 44X is disposed in the bypass hole 24X and can move up and down to selectively fluidly connect or disconnect the compression chamber from the low pressure area.
  • the sealing assembly 40X is used to seal groups of holes, including bypass holes and jet enthalpy-enhancing injection holes adjacent to each other. That is, a single sealing assembly may be used to seal one group of holes, more than one group of holes, or all groups of holes. This can significantly reduce the number of sealing components, simplify and compact the sealing structure, and reduce assembly time.
  • the fixed scroll assembly of the scroll compressor may also include a fluid control device 50X for introducing fluid with a predetermined pressure to the upper surface of the piston 44X, by controlling the upper and lower pressure of the piston 44X.
  • the pressure difference controls the movement of the piston 44X, thereby controlling the scroll compressor to switch between a full load working state and a partial load working state.
  • the fluid control device 50X includes a solenoid valve.
  • fluid control device 50X may also include any other suitable valves and/or other mechanisms.
  • Figure 18 shows a rear view of the fixed scroll component 20X
  • Figure 19 shows a cross-sectional view of the fixed scroll component 20X taken along line CX-CX in Figure 18
  • Figure 20 shows a cross-sectional view of the fixed scroll component 20X along the line A cross-sectional view taken along line DX-DX in Figure 19
  • Figure 21 shows a cross-sectional view taken along line EX-EX in Figure 19 of the fixed scroll component 20X
  • Figure 22 shows a compression mechanism 1X of the scroll compressor along A cross-sectional view taken along line FX-FX in Figure 19.
  • the end plate 21X of the fixed scroll member 20X is provided with a first fluid channel 31X, a second fluid channel 32X and a third fluid channel extending from the outer peripheral surface 21fX of the end plate 21X to the inside of the end plate 21X.
  • Channel 33X As shown in FIGS. 19 and 20 , the first fluid channel 31X may include a transverse extension section 31aX and a pressure tapping hole 31bX extending to the lower surface 21bX of the end plate 21X at the inner end of the transverse extension section 31aX.
  • the first fluid channel The pressure tapping hole 31bX of 31X is in fluid communication with the high pressure area.
  • the pressure tapping hole 31bX may be positioned radially inward of the bypass hole 24X, that is, the pressure tapping hole 31bX is smaller than each bypass hole in the bypass hole 24X. Through hole are closer to the center of the fixed scroll component 20X.
  • the second fluid channel 32X and the third fluid channel 33X respectively correspond to a group of bypass holes 24X.
  • the second fluid channel 32X may include a transverse extension section 32aX and a communication hole 32bX extending to an upper surface 21aX of the end plate 21X at an inner end of the transverse extension section 32aX.
  • the third fluid channel 33X may include a transverse extension section 33aX and a communication hole 33bX extending to the upper surface 21aX of the end plate 21X at the inner end of the transverse extension section 33aX.
  • the upper surface 21aX of the plate 21X is also provided with a communication groove 38X that communicates the set of bypass holes 24X with each other and with the communication hole 33bX.
  • the aperture of the upper portion of each bypass hole 24X is slightly larger than the aperture of the lower portion.
  • the upper portion of the bypass hole 24X defines a piston chamber 24aX for accommodating the piston 44X.
  • the piston 44X can be positioned within the piston chamber 24aX. It moves up and down and can block the lower part of the bypass hole 24X.
  • the communication holes 32bX, 33bX and the communication grooves 36X, 38X are covered and sealed by the pressure plate 41X and the sealing gasket 42X, and the fluid from the second fluid channel 32X and the third fluid channel 33X can pass through the communication grooves 36X, 38X respectively. Flows into the corresponding piston cavity 24aX and acts on the upper surface of the piston 44X.
  • the fluid control device 50X is arranged on the outer peripheral surface 21fX of the end plate 21X of the fixed scroll member 20X and is located between the first fluid channel 31X, the second fluid channel 32X, and the third fluid channel 33X. .
  • a recess 21gX for accommodating the fluid control device 50X is formed on the outer peripheral surface 21fX of the end plate 21X.
  • the fluid control device 50X is configured to selectively fluidly connect or disconnect the first fluid channel 31X with the second fluid channel 32X and the third fluid channel 33X, thereby changing the pressure difference between the upper and lower parts of the piston 44X, and utilizing the pressure difference control The piston 44X moves up and down.
  • the piston 44X is moveable between a first position that allows the corresponding compression chamber to be in fluid communication with a low pressure region external to the non-scroll component 20X and a second position that is to prevent the corresponding compression chamber from being in fluid communication with the low pressure region.
  • Figure 22 schematically illustrates simultaneously a first position of the piston 44X (see left piston 44X in Figure 22) and a second position of the piston 44X (see right piston 44X in Figure 22).
  • the fluid control device 50X is a solenoid valve
  • the solenoid valve when the solenoid valve is powered off, the solenoid valve makes the first fluid channel 31X fluidly communicate with the second fluid channel 32X and the third fluid channel 33X, from the pressure hole 31bX corresponding to The high-pressure fluid in the high-pressure area flows through the first fluid channel 31X, the second fluid channel 32X and the communication groove 36X into the piston chamber 24aX of each bypass hole 24X in the corresponding set of bypass holes 24X, and at the same time, from The high-pressure fluid in the high-pressure area corresponding to the pressure hole 31bX passes through The fluid flows from the first fluid channel 31X, the third fluid channel 33X and the communication groove 38X to the piston chamber 24aX of each corresponding bypass hole 24X in the other group of bypass holes 24X.
  • the pressure above each piston 44X corresponds to the pressure of the fluid at the pressure tapping hole 31bX
  • the pressure below each piston 44X corresponds to the pressure of the fluid in the compression chamber in fluid communication with the corresponding bypass hole 24X. Since the pressure hole 31bX is closer to the center of the fixed scroll component 20X than each bypass hole 24X on the spiral fluid compression path, the pressure of the fluid in the high-pressure area corresponding to the pressure hole 31bX is greater than that of each bypass hole 24X.
  • the pressure of the fluid in the compression chamber in fluid communication with the bypass hole 24X that is, the pressure above the piston 44X is greater than the pressure below the piston 44X. Therefore, the piston 44X is forced by the high-pressure fluid above it to drop to its second position, thereby blocking the bypass hole 24X and the exhaust groove 25X, as shown in the right half of FIG. 22 .
  • the solenoid valve When the solenoid valve is energized, the solenoid valve disconnects the first fluid channel 31X from the second fluid channel 32X and the third fluid channel 33X. At this time, the high-pressure fluid located above the piston 44X in the piston chamber 24aX of each bypass hole 24X is discharged through the fluid path in the solenoid valve, so that the pressure below the piston 44X is greater than the pressure above the piston 44X. Therefore, the piston 44X moves upward to its first position, so that the bypass hole 24X is in fluid communication with the exhaust groove 25X, and the fluid in the corresponding compression chamber can flow out through the bypass hole 24X and the exhaust groove 25X, as shown in the left half of Figure 22 arrow in the section.
  • FIG. 23 to 27 illustrate a compression mechanism 1X' of a scroll compressor according to another embodiment of the present disclosure.
  • the following description will mainly focus on the differences between the compression mechanism 1X' and the compression mechanism 1X described above, wherein the same or corresponding features or components are designated by the same reference numerals with a prime mark.
  • FIG. 23 shows a perspective view of the compression mechanism 1X' of the scroll compressor.
  • the compression mechanism 1X' includes an orbiting scroll member 10X' and a fixed scroll member 20X' that cooperate with each other to form a compression chamber.
  • Figure 24 shows an exploded view of the non-orbiting scroll assembly of Figure 23, which may include a non-orbiting scroll component 20X', a seal assembly 40X' connected to the non-orbiting scroll component 20X', and a fluid control device 50X'.
  • the fixed scroll component 20X' includes two sets of bypass holes 24X' spaced apart from each other and an injection enthalpy-increasing injection hole 27X' arranged adjacent to each set of bypass holes 24X'.
  • a bypass hole 24X' and an injection enthalpy increasing injection hole 27X' extend downward from the upper surface 23aX' of the hub 23X' of the fixed scroll component 20X', through the hub 23X' and the end plate 21X' until they are in fluid communication with the compression chamber. .
  • Two exhaust grooves 25X' are provided at the outer peripheral surface 23bX' of the hub 23X', and each exhaust groove 25X' extends to each bypass hole in a corresponding set of bypass holes 24X', so that the Each of the group of bypass holes 24X' can communicate with each other and with a low-pressure region outside the fixed scroll member 20X' via the exhaust groove 25X'.
  • all the bypass holes 24X' can communicate with each other and with the fixed scroll component. 20X' externally connected exhaust trough.
  • the upper surface 23aX' of the hub part 23X' is also provided with a communication groove 36X' that communicates all the bypass holes 24X'.
  • the sealing assembly 40X' includes a generally annular pressure plate 41X' and a sealing gasket 42X'. The pressure plate 41X' and the sealing gasket 42X' cover the upper surface 23aX' of the hub 23X' and cover and seal all the bypass holes 24X'. and jet enthalpy increasing jet hole 27X'.
  • the sealing assembly 40X' may also include a plurality of bolts 43X' or other fasteners that secure and compress the pressure plate 41X' and the sealing gasket 42X' to the upper surface 23aX' of the hub 23X', as well as a plurality of bolts 43X' or other fasteners capable of connecting each bypass hole.
  • the piston 44X' moves up and down in the piston chamber 24aX' of 24X'.
  • the jet enthalpy increasing entrance hole (not shown) is also formed at the outer peripheral surface 21fX' of the end plate 21X' of the fixed scroll component 20X' , a jet enthalpy increasing passage (not shown) connecting the jet enthalpy increasing incident hole and the jet enthalpy increasing injection hole 27X' is also formed inside the end plate 21X' of the fixed scroll component 20X'.
  • the jet enthalpy increasing entrance hole and the jet enthalpy increasing channel may also be formed in other parts of the fixed scroll component, for example, may be formed in the hub.
  • the fluid control device 50X' is arranged on the outer peripheral surface 23bX' of the hub portion 23X' of the fixed scroll member 20X'.
  • the fluid flow path for controlling the up and down movement of the piston 44X' can be further simplified, which will be further described below with reference to FIGS. 25 to 27 .
  • Figure 25 shows a side view of the non-scroll component 20X' illustrating the first fluid channel 31X' and the second fluid channel 32X' located in the hub 23X' of the non-scroll component 20X'.
  • Figure 26 shows a cross-sectional view of the fixed scroll component 20X' taken along a vertical plane through the axis through the first fluid channel 31X';
  • Figure 27 shows a cross-sectional view along the axis through the second fluid channel 32X' A cross-sectional view of the fixed scroll component 20X' taken in the vertical plane.
  • the first fluid passage 31X' of the fixed scroll member 20X' extends from the outer peripheral surface 23bX' of the hub 23X' to the inside of the hub 23X'.
  • the first fluid channel 31X' includes a transverse extension section 31aX' and a pressure tapping hole 31bX'.
  • the pressure tapping hole 31bX' is provided at the inner end of the transverse extension section 31aX' and penetrates the hub from the upper surface 23aX' of the hub 23X'. 23X' and the end plate 21X' extend downward to the lower surface 21bX' of the end plate 21X', whereby the pressure hole 31bX' is in fluid communication with a predetermined high-pressure area in the compression chamber.
  • the pressure tapping hole 31bX' can be positioned radially inward of the bypass hole 24X', that is, the pressure tapping hole 31bX' is larger than each bypass hole 24X'.
  • the through holes are closer to the center of the fixed scroll component 20X'.
  • the pressure hole 31bX' is pressed by the pressure plate 41X' and the sealing gasket at the upper surface 23aX' of the hub 23X'.
  • Sheet 42X' sealed.
  • the second fluid passage 32X' in the non-scroll component 20X' extends from the outer peripheral surface 23bX' of the hub 23X' to the inside of the hub 23X'.
  • the second fluid channel 32X' includes a transverse extension section 32aX' and a communication hole 32bX' extending upward from the inner end of the transverse extension section 32aX' to the communication groove 36X' of the upper surface 23aX' of the hub 23X'. middle.
  • the communication hole 32bX' and the communication groove 36X' are sealed by the pressure plate 41X' and the sealing gasket 42X'.
  • the fluid control device 50X' is located between the first fluid channel 31X' and the second fluid channel 32X' and is configured to selectively connect the first fluid channel 31X' to the second fluid channel 31X'.
  • the fluid channel 32X' is fluidly connected or disconnected to change the pressure difference between the upper part and the lower part of the piston 44X', and then uses the pressure difference to control the up and down movement of the piston 44X'.
  • the fluid control device 50X' is a solenoid valve
  • the solenoid valve when the solenoid valve is powered off, the solenoid valve fluidly connects the first fluid channel 31X' and the second fluid channel 32X', and the high pressure from the pressure hole 31bX' corresponds to
  • the high-pressure fluid in the area flows into the piston chamber 24aX' of each bypass hole 24X' via the first fluid channel 31X', the second fluid channel 32X' and the communication groove 36X'. Therefore, the pressure above the piston 44X' is greater than the pressure below the piston 44X', and the piston 44X' is pressed by the high-pressure fluid above it and drops to the second position, thus blocking the bypass hole 24X' and the exhaust groove 25X', causing the vortex The compressor is working at full load.
  • the solenoid valve When the solenoid valve is energized, the solenoid valve disconnects the first fluid channel 31X' and the second fluid channel 32X'. At this time, the high-pressure fluid located above the piston 44X' in the piston chamber 24aX' of each bypass hole 24X' is discharged through the fluid path in the solenoid valve, so that the pressure below the piston 44X' is greater than the pressure above the piston 44X'. Therefore, the piston 44X' moves upward to the first position so that the bypass hole 24X' is in fluid communication with the exhaust groove 25X', and the fluid in the corresponding compression chamber flows out through the bypass hole 24X' and the exhaust groove 25X'.
  • the non-orbiting scroll assembly may include a non-orbiting scroll component having a non-orbiting scroll and an end plate.
  • the method may include: machining at least one set of holes in the fixed scroll component, each set of holes in the at least one set including a bypass hole and a jet enthalpy increasing injection hole; and machining for sealing each set of holes in the at least one set of holes. Seal assembly for group holes or all holes.
  • the step of processing at least one group of holes may include processing bypass holes and injection enthalpy-increasing injection holes from the upper surface of the end plate toward the corresponding compression chamber; the step of processing at least one group of holes may also include processing the at least one group of holes from the upper surface of the hub.
  • the surface is machined with bypass holes and enthalpy-enhancing injection holes toward the corresponding compression chambers.
  • a portion of material can be removed from the fixed scroll of the fixed scroll component.
  • the method may also include the non-scroll component The step of processing a communication groove on the upper surface so that each group of bypass holes or all bypass holes communicate with each other and can communicate with the high-pressure area.
  • the communication groove may be formed on the upper surface of the end plate of the fixed scroll member or the upper surface of the hub.
  • the method may further include the step of machining an exhaust groove in the fixed scroll component that communicates each set of bypass holes or all bypass holes with each other and with a low-pressure area outside the fixed scroll component.
  • An exhaust groove may be machined in a recess in the upper surface of the end plate or on the outer peripheral surface of the hub.
  • the bypass hole and the jet enthalpy-increasing injection hole are arranged adjacent to each other on the upper surface of the fixed scroll component, and the sealing of these holes can be achieved simultaneously through a common sealing assembly. Therefore, the structure and processing process of the scroll compressor can be simplified, and the need for sealing parts is reduced, making the sealing structure integrated and compact, and the processing time can be reduced accordingly.
  • a communication groove on the upper surface of the fixed scroll member that allows two or more bypass holes to communicate with each other and with the high-pressure region, high-pressure fluid can be introduced into the corresponding multiple or all bypass holes at the same time. , thereby using the piston in the bypass hole to simultaneously control multiple or all bypass holes to connect or disconnect from the low-pressure area.
  • Providing an exhaust groove that communicates two or more bypass holes with each other and with a low-pressure area outside the fixed scroll component is beneficial to increasing the exhaust area.
  • the structure of the communication groove and the exhaust groove is simple and easy to machine.
  • jet enthalpy-increasing injection holes, bypass holes, sealing components, communication grooves, and exhaust grooves provided on the fixed scroll assembly in the embodiments of the present disclosure can also be applied to the movable scroll assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

一种定涡旋组件、一种涡旋压缩机及一种加工定涡旋组件的方法。定涡旋组件包括定涡旋部件(20)和密封组件(40)。定涡旋部件(20)包括端板(21)和从端板(21)的第一侧延伸的定涡卷(22)。定涡旋部件(20)设置有从定涡旋部件(20)的上表面延伸至压缩腔的喷气增焓喷射孔(25),从包含有定涡旋组件的压缩机外部的喷气增焓流体能够经由喷气增焓喷射孔(25)供给至压缩腔中,喷气增焓喷射孔(25)具有通向压缩腔的第一端部和通向定涡旋组件的外部的第二端部。密封组件(40)构造成对喷气增焓喷射孔(25)的第二端部进行密封。喷气增焓喷射孔(25)的一部分包括形成在定涡卷中的凹部。这种定涡旋组件有利于简化涡旋压缩机的加工过程,还可以显著扩大喷气增焓喷射孔的流通面积。

Description

定涡旋组件、涡旋压缩机及加工定涡旋组件的方法
本申请要求以下中国专利申请的优先权:于2022年6月30日提交中国专利局的申请号为202210757840.7、发明创造名称为“定涡旋组件、涡旋压缩机及加工定涡旋组件的方法”的中国专利申请;于2022年6月30日提交中国专利局的申请号为202221670020.6、发明创造名称为“定涡旋组件和涡旋压缩机”的中国专利申请;于2022年6月30日提交中国专利局的申请号为202210760032.6、发明创造名称为“定涡旋组件、涡旋压缩机及加工定涡旋组件的方法”的中国专利申请;于2022年6月30日提交中国专利局的申请号为202221667261.5、发明创造名称为“定涡旋组件和涡旋压缩机”的中国专利申请。这些专利申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及压缩机领域,并且具体涉及定涡旋组件、包括该定涡旋组件的涡旋压缩机及加工定涡旋组件的方法。
背景技术
本部分的内容仅提供了与本公开相关的背景信息,其可能并不构成现有技术。
在涡旋压缩机中,特别是在大匹数涡旋压缩机中,可以通过与涡旋压缩机的压缩腔流体流通的喷气增焓喷射孔向压缩腔指定位置补充制冷剂以实现增焓效果,提升压缩机性能。常规涡旋压缩机中,通常从定涡旋部件的端板的设置有定涡卷的一侧加工喷气增焓喷射孔。在这种情况下,钻孔时必须避开定涡卷的型线,并且喷气增焓喷射孔不能超过动涡旋部件的动涡卷的型线宽度,以防止相应压缩腔中的流体泄漏至相邻的另一压缩腔。因此,现有技术中加工喷气增焓喷射孔的工艺流程有待改进,且喷气增焓喷射孔的尺寸及流通面积受到限制。
另一方面,在一些涡旋压缩机中常设置有位于中压压缩腔处的旁通孔,以用于选择性地使中压压缩腔与低压侧流体流通或断开,从而在不改变涡旋压缩机的转速的情况下改变涡旋压缩机的排量,而常规的大匹数涡旋压缩机通常不 会同时包括变排量结构和喷气增焓结构。如果简单地将变排量结构和喷气增焓结构集成在一台大匹数的涡旋压缩机中,其零件数量、加工难度以及体积均会增加,从而导致组装耗时、整体体积以及成本增加。
发明内容
本公开的一个目的在于简化涡旋压缩机的结构和加工过程。
本公开的另一目的在于增大涡旋压缩机中的喷气增焓喷射孔的流通面积。
本公开的又一目的在于将涡旋压缩机中的变排量结构与喷气增焓结构集成设计,从而进一步简化涡旋压缩机的结构和加工过程。
本公开的又一目的在于以共同的密封结构对涡旋压缩机中的变排量旁通孔与喷气增焓喷射孔进行密封,从而减少所需密封零部件的数量。
本公开的一方面提供了一种定涡旋组件,该定涡旋组件包括定涡旋部件和密封组件。定涡旋部件包括端板和从端板的第一侧延伸的定涡卷。定涡旋部件设置有从定涡旋部件的上表面延伸至压缩腔的喷气增焓喷射孔,包括定涡旋组件的压缩机外部的喷气增焓流体能够经由喷气增焓喷射孔供给至压缩腔中,喷气增焓喷射孔具有通向压缩腔的第一端部和通向定涡旋组件的外部的第二端部。密封组件构造成对喷气增焓喷射孔的第二端部进行密封。
在一个实施方式中,喷气增焓喷射孔可以包括第一部分和第二部分。第一部分延伸至端板的第一侧并且沿定涡旋组件的轴向方向观察不与定涡卷重叠。第二部分延伸贯穿端板至定涡卷中并且沿定涡旋组件的轴向方向观察与定涡卷重叠,第二部分包括形成在定涡卷中的凹部。
在一个实施方式中,喷气增焓喷射孔可以从端板的与第一侧相反的第二侧延伸贯穿端板。
在一个实施方式中,定涡旋部件可以包括从端板的与第一侧相反的第二侧沿轴向方向突出的毂部,喷气增焓喷射孔从毂部的上表面延伸贯穿毂部和端板。
在一个实施方式中,定涡旋部件还可以包括喷气增焓入射孔以及连接喷气增焓入射孔与喷气增焓喷射孔的喷气增焓通道,喷气增焓喷射孔的水力直径小于或等于喷气增焓通道的水力直径。
在一个实施方式中,在定涡卷的厚度方向上,凹部的深度不超过定涡卷的 厚度的2/3。
在一个实施方式中,凹部沿定涡旋部件的轴向方向的高度大于或等于喷气增焓喷射孔的水力半径。
在一个实施方式中,密封组件可以包括压板和密封垫片。
在一个实施方式中,密封组件还可以包括将密封垫片和压板固定至定涡旋部件的上表面并压紧的紧固件。
在一个实施方式中,定涡旋部件还可以包括从定涡旋部件的上表面延伸至压缩腔的旁通孔,压缩腔中的流体能够经由旁通孔排出至定涡旋部件的外部的低压区域,密封组件对旁通孔和喷气增焓喷射孔两者进行密封。
在一个实施方式中,定涡旋部件可以包括沿周向方向间隔开的两组或更多组孔,其中每组孔包括至少一个旁通孔和至少一个喷气增焓喷射孔。
在一个实施方式中,定涡旋部件可以包括沿周向方向间隔开的两组或更多组孔,其中每组孔包括至少一个旁通孔和至少一个喷气增焓喷射孔。
在一个实施方式中,密封组件可以包括活塞,活塞设置在旁通孔中并且能够在允许相应的压缩腔与低压区域流体连通的第一位置和防止相应的压缩腔与低压区域流体连通的第二位置之间移动。
在一个实施方式中,定涡旋组件还可以包括流体控制装置。该流体控制装置配置成通过向活塞的上方引入具有预定压力的流体来控制活塞的上方与下方的压力差,以控制活塞的移动。
在一个实施方式中,在定涡旋部件的上表面可以设置有使旁通孔或者每组孔中的旁通孔彼此连通并且能够与高压区域连通的连通槽,高压区域中的流体的压力大于与旁通孔连通的压缩腔中的流体的压力,连通槽在定涡旋部件的上表面处由密封组件密封。
在一个实施方式中,定涡旋部件还可以包括排气槽,排气槽构造成使所有旁通孔或者每组孔中的旁通孔能够经由排气槽彼此连通并且与低压区域流体连通。
本公开的另一方面提供了一种包括根据上述方面的定涡旋组件的涡旋压缩机。
本公开的又一方面提供了一种加工根据上述方面的定涡旋组件的方法。该方法包括:在定涡旋部件中加工从定涡旋部件的上表面延伸至压缩腔的至少一 个喷气增焓喷射孔,其中,包括定涡旋组件的压缩机的外部的喷气增焓流体能够经由喷气增焓喷射孔供给至压缩腔中,喷气增焓喷射孔具有通向压缩腔的第一端部和通向定涡旋组件的外部的第二端部;以及加工密封组件,该密封组件构造成对喷气增焓喷射孔的第二端部进行密封。
本公开的另一方面提供了一种定涡旋组件,该定涡旋组件包括定涡旋部件和密封组件。定涡旋部件设置有端板和从端板的一侧延伸的定涡卷。定涡旋部件设置有至少一组孔,每组孔包括旁通孔和喷气增焓喷射孔。压缩腔内的流体能够经由旁通孔排出至定涡旋部件的外部的低压区域。包括定涡旋组件的压缩机的外部的喷气增焓流体能够经由喷气增焓喷射孔供给至压缩腔中。密封组件构造成对该至少一组孔中的成组的孔进行密封。
在一个实施方式中,定涡旋部件可以包括沿周向方向间隔开的两组或更多组孔。
在一个实施方式中,密封组件可以包括活塞。活塞设置在旁通孔中并且能够在允许相应的压缩腔与低压区域流体连通的第一位置和防止相应的压缩腔与低压区域流体连通的第二位置之间移动。
在一个实施方式中,定涡旋组件还可以包括流体控制装置。流体控制装置配置成通过向活塞的上方引入具有预定压力的流体来控制活塞的上方与下方的压力差,以控制活塞的移动。
在一个实施方式中,定涡旋部件还可以包括将旁通孔连通至高压区域的流体通道,该高压区域中的流体的压力大于与旁通孔连通的压缩腔中的流体的压力。流体控制装置可以包括阀,该阀配置成选择性地使流体通道连通或断开,以改变活塞的上方与下方的压力差。
在一个实施方式中,在定涡旋部件的上表面可以设置有使所有旁通孔或者每组孔中的旁通孔彼此连通并且与流体通道中的至少一个流体通道流体连通的连通槽。连通槽可以由密封组件密封。
在一个实施方式中,流体通道可以包括第一流体通道和第二流体通道。第一流体通道从定涡旋部件的外周表面延伸至高压区域,第二流体通道从定涡旋部件的外周表面延伸至连通槽。阀位于第一流体通道与第二流体通道之间。
在一个实施方式中,旁通孔和喷气增焓喷射孔可以从端板的上表面延伸至相应的压缩腔。
在一个实施方式中,流体控制装置可以设置在端板的外周表面上。
在一个实施方式中,端板的上表面上可以设置有凹部,凹部的侧壁上可以设置有排气槽。排气槽构造成使所有旁通孔或者每组孔中的旁通孔能够经由排气槽彼此连通并且与低压区域连通。
在一个实施方式中,定涡旋部件可以包括从端板的上表面沿轴向方向突出的毂部,旁通孔和喷气增焓喷射孔可以从毂部的上表面延伸至相应的压缩腔。
在一个实施方式中,流体控制装置可以设置在毂部的外周表面上。
在一个实施方式中,毂部的外周表面上可以设置有排气槽。排气槽构造成使所有旁通孔或者每组孔中的旁通孔能够经由排气槽彼此连通并且与低压区域连通。
在一个实施方式中,定涡旋部件还可以包括喷气增焓入射孔和喷气增焓通道。喷气增焓入射孔定位在端板的外周表面处,喷气增焓通道在端板的内部延伸并连接喷气增焓入射孔与喷气增焓喷射孔。
在一个实施方式中,喷气增焓喷射孔可以包括形成在定涡卷中的凹部。
在一个实施方式中,密封组件可以包括覆盖并密封旁通孔和喷气增焓喷射孔的密封垫片和压板。
在一个实施方式中,密封组件还可以包括将密封垫片和压板紧固至定涡旋部件的紧固件。
本公开的另一方面提供了一种包括根据上述方面的定涡旋组件的涡旋压缩机。
本公开的又一方面提供了一种加工定涡旋组件的方法。该定涡旋组件可以包括具有定涡卷和端板的定涡旋部件。该方法包括:在定涡旋部件中加工至少一组孔,该至少一组孔中的每组孔包括旁通孔和喷气增焓喷射孔。压缩腔内的流体能够经由旁通孔排出至定涡旋部件的外部的低压区域。包括定涡旋组件的压缩机的外部的喷气增焓流体能够经由喷气增焓喷射孔供给至压缩腔中;以及加工用于密封该至少一组孔中的成组的孔的密封组件。
在一个实施方式中,加工该至少一组孔可以包括:从端板的上表面朝向相应的压缩腔加工旁通孔和喷气增焓喷射孔。
在一个实施方式中,该方法还可以包括:在端板的上表面上加工使每组旁通孔或所有旁通孔彼此连通并且能够与高压区域连通的连通槽,该高压区域中 的流体的压力大于与旁通孔连通的压缩腔中的流体的压力。
在一个实施方式中,该方法还可以包括:在端板的上表面上设置凹部,并且在该凹部的侧壁上设置用于使每组旁通孔连通且与低压区域连通的排气槽。
在一个实施方式中,定涡旋部件包括从端板的上表面沿轴向方向突出的毂部,加工该至少一组孔包括:从毂部的上表面朝向相应的压缩腔加工旁通孔和喷气增焓喷射孔。
在一个实施方式中,该方法还可以包括:在毂部的上表面上加工使每组旁通孔或所有旁通孔彼此连通并且能够与高压区域连通的连通槽,该高压区域中的流体的压力大于与旁通孔连通的压缩腔中的流体的压力。
在一个实施方式中,该方法还可以包括:在毂部的外周表面上加工使每组旁通孔或所有旁通孔彼此连通且与低压区域连通的排气槽。
从下文的详细描述中,本公开的其它应用领域将变得更为明显。应该理解的是,这些详细描述和具体示例,虽然示出了本公开的优选实施例,但是它们旨在为了示例性说明的目的,而非试图限制本公开。
附图说明
以下将参照附图仅以示例方式描述本公开的实施方式。在附图中,相同的特征或部件采用相同的附图标记来表示。附图不一定是按比例绘制的,例如,为了清楚起见,某些零部件可以以夸大的形式示出。在附图中:
图1示出了根据本公开的一个实施方式的涡旋压缩机的压缩机构的立体图;
图2示出了图1中的定涡旋组件的分解图;
图3至图5分别示出了图1中的定涡旋部件的侧视图、俯视图和仰视图;
图6示出了图1中的压缩机构沿图3中的线A-A截取的截面图;
图7示出了图1中的压缩机构沿图6中的线B-B截取的截面图;
图8示出了图7中的区域C的放大图;
图9示出了根据本公开的另一实施方式的涡旋压缩机的压缩机构的立体图;
图10示出了图9中的定涡旋组件的分解图;
图11示出了根据本公开的另一实施方式的涡旋压缩机的压缩机构的立体 图;
图12示出了图11中的定涡旋组件的分解图;
图13至图15分别示出了图11中的定涡旋部件的主视图、俯视图和仰视图;
图16示出了图11中的压缩机构沿图13中的线AX-AX截取的截面图;
图17示出了图11中的压缩机构沿图16中的线BX-BX截取的截面图;
图18示出了图11中的定涡旋部件的后视图;
图19示出了图11中的定涡旋部件沿图18中的线CX-CX截取的截面图;
图20示出了图11中的定涡旋部件沿图19中的线DX-DX截取的截面图;
图21示出了图11中的定涡旋部件沿图19中的线EX-EX截取的截面图;
图22示出了图11中的压缩机构沿图19中的线FX-FX截取的截面图;
图23示出了根据本公开的另一实施方式的涡旋压缩机的压缩机构的立体图;
图24示出了图23中的定涡旋组件的分解图;
图25示出了图23中的定涡旋部件的侧视图;
图26示出了沿穿过图25中所示的第一流体通道的轴线的竖向平面截取的定涡旋部件的截面图;
图27示出了沿穿过图25中所示的第二流体通道的轴线的竖向平面截取的定涡旋部件的截面图。
具体实施方式
现在将参照附图更全面地描述示例性实施方式。
提供示例性实施方式以使得本公开将是详尽的并且将向本领域技术人员更全面地传达范围。阐述了许多具体细节比如具体部件、装置和方法的示例,以提供对本公开的各实施方式的透彻理解。对本领域技术人员而言将清楚的是,不需要采用具体细节,示例性实施方式可以以许多不同的形式实施,并且也不应当理解为限制本公开的范围。在一些示例性实施方式中,不对公知的过程、公知的装置结构和公知的技术进行详细的描述。
在以下描述中,所采用的与“上”、“下”相关的方位术语是以附图中所示出的视图的上、下位置来描述的。在实际应用中,本文中所使用的“上”、“下” 的位置关系可以根据实际情况限定,这些关系是可以相互颠倒的。
首先参照图1至图8来描述根据本公开的一个实施方式的涡旋压缩机。涡旋压缩机可以包括壳体、容置于壳体中的压缩机构1及用于驱动压缩机构1的驱动机构等。为简明起见,本文中仅示出了涡旋压缩机的压缩机构1及相应的密封组件,而未示出涡旋压缩机的其他公知结构。
图1示出了根据本公开的一个实施方式的涡旋压缩机的压缩机构1的立体图。涡旋压缩机的压缩机构1包括彼此配合以形成压缩腔的动涡旋部件10和定涡旋部件20。图2示出了图1中的定涡旋组件的分解图,定涡旋组件可以包括定涡旋部件20及连接至定涡旋部件20的密封组件40。图3至图5分别示出了定涡旋部件20的侧视图、俯视图和仰视图,图6示出了涡旋压缩机的压缩机构1沿图3中的线A-A截取的截面图,图7示出了涡旋压缩机的压缩机构1沿图6中的线B-B截取的截面图。
如图1至图5所示,定涡旋部件20包括端板21和从端板21的第一侧、即端板21的下表面21b沿轴向方向延伸的定涡卷22。定涡旋部件20还可以包括从端板21的相反的第二侧、即与下表面21b相反的上表面21a沿轴向方向突出的毂部23。如图7所示,动涡旋部件10包括端板11和从端板11的上表面11a沿轴向方向突出的动涡卷12。当涡旋压缩机运行时,驱动机构驱动动涡旋部件10相对于定涡旋部件20绕动,动涡卷12与定涡卷22相互啮合以在其间形成一系列从径向外侧朝向径向内侧体积逐渐减小的压缩腔。如图5所示,定涡卷22限定了螺旋形流体压缩路径,待压缩流体从该螺旋形流体压缩路径的径向外侧流入,经压缩后从位于端板21的大致中央处的排气口21c流出。
如图3至图7所示,定涡旋部件20包括形成在端板21的外周表面21d处的喷气增焓入射孔24、从端板21的上表面21a贯穿端板21向下延伸至压缩腔的喷气增焓喷射孔25以及在端板21的内部延伸并连接喷气增焓入射孔24与喷气增焓喷射孔25的喷气增焓通道26。在本实施方式中,定涡旋部件20包括沿定涡旋部件20的周向方向间隔开的两个喷气增焓喷射孔25。在其他实施方式中,可以设置任意数目的喷气增焓喷射孔。如图7所示,喷气增焓喷射孔25具有通向压缩腔的第一端部25a和通向定涡旋组件的外部的第二端部25b。在涡旋压缩机运行时,喷气增焓喷射孔25的位于端板21的下表面21b 处的第一端部25a与压缩腔流体连通,喷气增焓喷射孔25的位于端板21的上表面21a处的第二端部25b被密封组件40密封。由此,可以经由喷气增焓入射孔24、喷气增焓通道26和喷气增焓喷射孔25向指定位置处(即,指定压缩腔)补充一定量的制冷剂,从而实现增焓效果,优化涡旋压缩机的性能。
如图1和图2所示,密封组件40可以包括用于覆盖并密封喷气增焓喷射孔25的压板41和密封垫片42,其中密封垫片42定位在压板41与喷气增焓喷射孔25之间。密封组件40还可以包括多个螺栓43,螺栓43穿过形成在密封垫片42、压板41及端板21的上表面21a中的相应螺栓孔,以将密封垫片42和压板41固定至端板21的上表面21a并压紧。除螺栓43以外,也可以采用任何其他合适的紧固件。在本实施方式中,对应于两个喷气增焓喷射孔25,设置有两个压板41和两个密封垫片42。在其他实施方式中,可以采用任意数目的压板和密封垫片,例如可以采用单个压板和单个密封垫片同时密封多个喷气增焓喷射孔。在其他实施方式中,也可以采用任何其他合适形式的密封组件。
如图7所示,喷气增焓喷射孔25包括沿轴向方向观察不与定涡卷22重叠的第一部分和沿轴向方向观察与定涡旋22重叠的第二部分。第二部分延伸贯穿端板至定涡卷22中。换言之,喷气增焓喷射孔25的第二部分包括从定涡卷22的端板21的下表面21b朝向定涡卷22去除部分材料而形成的凹部25c。
图8示出了图7中的区域C的放大图。本文中示出了具有圆形横截面的喷气增焓喷射孔25和喷气增焓通道26。喷气增焓喷射孔25的直径D1小于或等于喷气增焓通道26的直径D2。当D1=D2时,喷气增焓流体的流动路径可以具有恒定的流通面积。优选地,在定涡卷22的厚度方向上,从定涡卷22去除部分材料而形成的凹部25c的深度W1不超过定涡卷22的厚度W2的2/3,以确保定涡卷22仍具有足够的刚度。优选地,凹部25c沿轴向方向的高度H大于或等于喷气增焓喷射孔25的半径,即H≥1/2D1,以实现尽可能大的流通面积。
尽管本文中的喷气增焓入射孔、喷气增焓喷射孔、喷气增焓通道、旁通孔等各种孔或通道均被图示为具有圆形横截面的孔或通道,但是应当理解本公开不限于特定的孔型及通道形状。在其他实施方式中,也可以采用任何其他合适形状的孔或通道。对于具有非圆形横截面的孔或通道而言,本文中所述的孔或通道的直径或半径应当被理解为该孔或通道的水力直径或水力半径。水力直径 指的是孔或通道的过流断面面积的四倍与周长之比,水力半径是孔或通道的过流断面面积与周长之比。
如图8所示,在现有技术中,通常从定涡旋部件20的端板21的下表面21b(即,从定涡卷22的型线侧)钻出喷气增焓喷射孔,这要求喷气增焓喷射孔必须避开定涡卷22的型线并且不能超过动涡卷12的型线宽度,以防止与喷气增焓喷射孔流体连通的压缩腔中的流体泄漏至相邻的另一压缩腔。因此,现有技术中喷气增焓喷射孔的尺寸及流通面积受到限制。图8示出了这种情况下喷气增焓喷射孔在定涡卷22及动涡卷12的厚度方向上的最大尺寸L1。相比之下,根据本实施方式从定涡旋部件20的端板21的上表面21a钻出喷气增焓喷射孔25,这可以有效避免定涡卷22阻碍钻孔过程。进一步而言,本公开可以利用定涡卷22的一部分厚度来布置喷气增焓喷射孔25,以增大喷气增焓喷射孔25的尺寸和流通面积。图8示出了根据本公开的喷气增焓喷射孔25在定涡卷22及动涡卷12的厚度方向上的最大尺寸L2。可以看出,L2=L1+W1。也就是说,根据本公开的涡旋压缩机的喷气增焓喷射孔25在定涡卷22及动涡卷12的厚度方向上的最大尺寸L2相比于常规涡旋压缩机中喷气增焓喷射孔的相应最大尺寸L1增加了从定涡卷22去除部分材料而形成的凹部25c的深度W1,该深度W1可以为定涡卷22的厚度W2的2/3。对于圆形孔而言,最大尺寸L1和L2可以理解为孔的直径。对于非圆形孔而言,最大尺寸L1和L2可以限制孔的水力直径及流通面积。与常规涡旋压缩机相比,根据本公开的实施方式的涡旋压缩机的喷气增焓喷射孔的水力直径可以增大至少一倍,喷气增焓喷射孔的流通面积可以增大至少四倍。
涡旋压缩机还可以包括与喷气增焓结构集成设计的变排量结构,以用于在不改变涡旋压缩机的转速的情况下改变涡旋压缩机的排量。
如图2至图6所示,定涡旋部件20还包括邻近喷气增焓喷射孔25布置的一个或多个旁通孔27。旁通孔27大致位于图5中所示的螺旋形流体压缩路径的中段处,并且从端板21的上表面21a延伸越过下表面21b,从而贯穿端板21延伸至压缩腔。旁通孔27与喷气增焓喷射孔25成组地布置在端板21的上表面21a处,并且可以由共同的密封组件40密封。在本实施方式中,分别对应于两个喷气增焓喷射孔25,设置有沿周向方向间隔开的两组旁通孔27,每组旁通孔27包括三个旁通孔27。在其他实施方式中,可以设置任意数目及组 数的旁通孔。通过选择性地使旁通孔27与定涡旋部件20的外部的低压区域流体连通或断开,可以改变涡旋压缩机的排量。当旁通孔27被堵塞时,涡旋压缩机以满载荷工作状态运行;当旁通孔27与定涡旋部件20的外部流体连通从而使对应的压缩腔与涡旋压缩机的低压区域流体连通时,涡旋压缩机以部分载荷工作状态运行。
如图1和图2所示,在每组旁通孔27的侧面设置有排气槽28,排气槽28延伸至该组旁通孔27的每个旁通孔中,使该组旁通孔27中的各个旁通孔能够经由排气槽28彼此连通且与定涡旋部件20的外部连通。在本实施方式中,排气槽28设置在从端板21的上表面21a向下凹入的凹部21e的与旁通孔27相邻的侧壁21f上。如图2所示,密封组件40还可以包括活塞44。旁通孔27的上部部分限定活塞腔27a,活塞44设置在活塞腔27a中并且能够在活塞腔27a中的第一位置与第二位置之间上下移动。当活塞44升高至第一位置时,旁通孔27与排气槽28流体连通,使得相应的压缩腔中的流体能够经由旁通孔27和排气槽28排出至定涡旋部件20的外部的低压区域,从而允许涡旋压缩机以部分载荷工作状态运行。当活塞44下降至第二位置时,旁通孔27与排气槽28之间的通道被活塞44阻断,相应的压缩腔与低压区域断开连通,涡旋压缩机以满载荷工作状态运行。
如图2和图4中所示,在定涡旋部件20的端板21的上表面21a还可以设置有连通槽29,连通槽29布置在每组旁通孔27中的每个旁通孔周围并将该组旁通孔连通在一起。连通槽29还允许旁通孔27能够与高压区域流体连通,该高压区域中的流体的压力大于与相应的旁通孔27连通的压缩腔中的流体的压力。在组装状态下,旁通孔27及连通槽29在端板21的上表面21a处被压板41、密封垫片42覆盖并密封。通过设置连通槽29,可以同时向一组旁通孔27中的所有活塞44的上表面引入具有预定压力的流体,从而改变活塞44的上方与下方的压力差,以便同时控制每组旁通孔27中所有活塞44的运动。在其他实施方式中,也可以设置连通所有旁通孔的连通槽。
如图1和图2所示,涡旋压缩机还可以包括流体控制装置50,用于向活塞44的上表面引入具有预定压力的流体,通过控制活塞44的上方与下方的压力差而控制活塞44的运动,进而控制涡旋压缩机在满载荷工作状态与部分载荷工作状态之间进行切换。在本实施方式中,流体控制装置50包括电磁阀。 在其他实施方式中,流体控制装置50也可以包括任何其他合适的阀和/或其他机构。在定涡旋部件20的端板21中设置有用于与流体控制装置50连接的第一流体通道31、第二流体通道32及第三流体通道33。在本实施方式中,在端板21的外周表面21d上设置有用于接纳并安置流体控制装置50的凹部21g,第一流体通道31、第二流体通道32及第三流体通道33在凹部21g处从端板21的外周表面21d延伸至端板21的内部。第一流体通道31延伸至压缩腔中的预定高压区域。在定涡旋部件20的螺旋形流体压缩路径上该高压区域可以定位在旁通孔27的径向内侧,即该高压区域比旁通孔27中的每个旁通孔都更接近定涡旋部件20的中心。因此,该高压区域处的流体的压力大于与旁通孔27流体连通的压缩腔中的流体的压力。第二流体通道32和第三流体通道33分别与两组旁通孔27各自对应的连通槽29流体连通。流体控制装置50设置在第一流体通道31与第二流体通道32、第三流体通道33之间,并且配置成选择性地使第一流体通道31与第二流体通道32及第三流体通道33流体连通或断开。当第一流体通道31与第二流体通道32及第三流体通道33流体连通时,来自高压区域的高压流体经由第一流体通道31、第二流体通道32、第三流体通道33及连通槽29流入旁通孔27的活塞腔27a中并作用于活塞44的上表面,活塞44的上方的压力大于下方的压力,活塞44下降至第二位置并阻断旁通孔27与排气槽28的流体连通。当第一流体通道31与第二流体通道32及第三流体通道33断开时,每个旁通孔27的活塞腔27a中位于活塞44上方的高压流体经由流体控制装置50中的流体路径排出,使得活塞44下方的压力大于活塞44上方的压力。因此,活塞44向上移动至第一位置而使旁通孔27与排气槽28流体连通,相应压缩腔中的流体能够经由旁通孔27和排气槽28流出。
图9至图10示出了根据本公开的另一实施方式的涡旋压缩机。下面将主要针对涡旋压缩机与上文中所述的涡旋压缩机的区别之处进行说明,其中相同或相对应的特征或部件以带撇号的相同附图标记表示。
图9示出了涡旋压缩机的压缩机构1’的立体图。压缩机构1’包括彼此配合以形成压缩腔的动涡旋部件10’和定涡旋部件20’。图10示出了图9中的定涡旋组件的分解图,定涡旋组件可以包括定涡旋部件20’及连接至定涡旋部件20’的密封组件40’和/或流体控制装置50’。
如图10所示,定涡旋部件20’包括彼此间隔开的两个喷气增焓喷射孔25’及邻近每个喷气增焓喷射孔25’布置的两组旁通孔27’,每个喷气增焓喷射孔25’和旁通孔27’从定涡旋部件20’的毂部23’的上表面23a’向下延伸贯穿毂部23’和端板21’直至与压缩腔流体连通。与前述实施方式类似,每个喷气增焓喷射孔25’可以包括沿轴向方向观察不与定涡卷重叠的第一部分和沿轴向方向观察与定涡旋重叠的第二部分。第二部分延伸贯穿端板21’至定涡卷(未示出)中以扩大喷气增焓喷射孔25’的流通面积。
与前一实施方式中的定涡旋部件20类似,在本实施方式中,喷气增焓入射孔(未示出)同样形成在定涡旋部件20’的端板21’的外周表面21d’处,连接喷气增焓入射孔与喷气增焓喷射孔25’的喷气增焓通道(未示出)同样形成在定涡旋部件20’的端板21’的内部。但是本公开不限于此,在其他实施方式中,也可以将喷气增焓入射孔和喷气增焓通道布置在其他位置处,例如布置在定涡旋部件的毂部上。
在毂部23’的外周表面23b’处设置有两个排气槽28’,每个排气槽28’延伸至对应的一组旁通孔27’中的每个旁通孔中,使该组旁通孔27’中的各个旁通孔能够经由排气槽28’彼此连通且与定涡旋部件20’的外部连通。在其他实施方式中,也可以设置将所有的旁通孔27’彼此连通且与定涡旋部件20’的外部连通的排气槽。在毂部23’的上表面23a’还设置有将所有的旁通孔27’连通的连通槽29’。
密封组件40’包括大体呈环形的压板41’与密封垫片42’,压板41’与密封垫片42’覆盖毂部23’的上表面23a’,并覆盖及密封所有的喷气增焓喷射孔25’和旁通孔27’。密封组件40’还可以包括将压板41’和密封垫片42’固定至毂部23’的上表面23a’并压紧的多个螺栓43’或其他紧固结构以及能够在每个旁通孔27’的活塞腔27a’中上下移动的活塞44’。
如图9和图10所示,在本实施方式中,流体控制装置50’布置在定涡旋部件20’的毂部23’的外周表面23b’上。相应地,用于与流体控制装置50’连接的第一流体通道31’、第二流体通道32’从毂部23’的外周表面23b’延伸至毂部23’的内部。第一流体通道31’与压缩腔中的预定高压区域流体连通,该高压区域比旁通孔27’中的每个旁通孔都更接近定涡旋部件20’的中心。第二流体通道32’与连通所有旁通孔27’的连通槽29’流体连通。与前 一实施方式中的流体控制装置50类似,流体控制装置50’设置在第一流体通道31’与第二流体通道32’之间并且配置成选择性地使第一流体通道31’与第二流体通道32’流体连通或断开,从而改变活塞44’的上方与下方的压力差以使活塞44’在旁通孔27’的活塞腔27a’中上下移动,由此控制涡旋压缩机在满载荷工作状态与部分载荷工作状态之间进行切换。
本公开的另一方面提供了一种加工根据上述方面的定涡旋组件的方法。该方法可以包括:在定涡旋部件中加工从定涡旋部件的上表面延伸至压缩腔的至少一个喷气增焓喷射孔,包括定涡旋组件的压缩机的外部的喷气增焓流体能够经由喷气增焓喷射孔供给至压缩腔中,喷气增焓喷射孔具有通向压缩腔的第一端部和通向定涡旋组件的外部的第二端部;以及加工密封组件,密封组件构造成对喷气增焓喷射孔的第二端部进行密封。该方法还可以包括加工前述实施方式中的诸如旁通孔、排气槽、连通槽等特征的相应步骤。上述各个步骤不一定按本文中所描述的顺序进行。
如上所述,根据本公开的实施方式从定涡旋部件的上表面(例如端板的上表面或毂部的上表面)钻出喷气增焓喷射孔,并且可以利用定涡卷的一部分厚度来布置喷气增焓喷射孔,这可以显著简化定涡旋组件的加工过程,并且能够在不损害涡旋压缩机的密封性能的情况下增大显著增大喷气增焓喷射孔的尺寸和流通面积。与常规涡旋压缩机相比,根据本公开的实施方式的涡旋压缩机的喷气增焓喷射孔的水力直径可以增大至少一倍,喷气增焓喷射孔的流通面积可以增大至少四倍。此外,本公开将涡旋压缩机的喷气增焓结构与变排量结构集成设计,使得喷气增焓喷射孔与旁通孔能够由共同的密封组件密封。这简化了涡旋压缩机的结构和加工过程,并且减少了所需密封件的数量。特别地,将喷气增焓喷射孔、旁通孔布置在定涡旋部件的毂部的上表面上并且设置连通所有旁通孔的单个连通槽,可以采用单个压板和单个密封垫片来密封各个孔和连通槽,由此可以进一步简化涡旋压缩机的结构和加工过程并且进一步减少所需密封零部件的数量。
接下来参照图11至图22来描述根据本公开的另一实施方式的涡旋压缩机。涡旋压缩机可以包括壳体、容置于壳体中的压缩机构1X、用于驱动压缩机构的驱动机构等。为简明起见,本文中仅示出了涡旋压缩机的压缩机构1X,而未示出涡旋压缩机的其他公知结构。
图11示出了根据本公开的一个实施方式的涡旋压缩机的压缩机构1X的立体图。涡旋压缩机的压缩机构1X包括彼此配合以形成压缩腔的动涡旋部件10X和定涡旋部件20X。图12示出了图11中的包括定涡旋部件20X的定涡旋组件的分解图。如图12所示,定涡旋组件可以包括定涡旋部件20X及连接至定涡旋部件20X的密封组件40X。图13至图15分别示出了定涡旋部件20X的主视图、俯视图和仰视图;图16和图17示出了涡旋压缩机的压缩机构1X的截面图。
如图11至图15所示,定涡旋部件20X包括端板21X和从端板21X的下表面21bX沿轴向方向延伸的定涡卷22X。定涡旋部件20X还可以包括从端板21X的上表面21aX沿轴向方向突出的毂部23X。如图17所示,动涡旋部件10X包括端板11X和从端板11X的上表面11aX沿轴向方向延伸的动涡卷12X。当涡旋压缩机运行时,驱动机构驱动动涡旋部件10X相对于定涡旋部件20X绕动,动涡卷12X与定涡卷22X相互啮合以在其间形成一系列从径向外侧朝向径向内侧体积逐渐减小的压缩腔。如图15所示,定涡卷22X限定了螺旋形流体压缩路径。在涡旋压缩机的满载荷工作状态下,待压缩流体从该螺旋形流体压缩路径的径向外侧流入,经压缩后从位于端板21X的大致中央处的排气口21cX流出。在螺旋形流体压缩路径的中段处,设置有从端板21X的上表面21aX贯穿端板21X向下延伸至压缩腔的一个或多个旁通孔24X。在本实施方式中,设置有沿周向方向间隔开的两组旁通孔,每组旁通孔包括三个旁通孔24X。在其他实施方式中,可以设置任意数目及组数的旁通孔。此外,旁通孔的形状可以是圆形的或者呈任何其他合适的形状。通过选择性地使旁通孔24X与定涡旋部件20X的外部流体连通或断开,可以改变涡旋压缩机的排量。当旁通孔24X被堵塞时,涡旋压缩机以满载荷工作状态运行;当旁通孔24X与定涡旋部件20X的外部流体连通从而使对应的压缩腔与涡旋压缩机的低压区域流体连通时,涡旋压缩机以部分载荷工作状态运行。如图11和图12所示,在每组旁通孔24X的侧面设置有排气槽25X,排气槽25X延伸至该组旁通孔24X的每个旁通孔中,使该组旁通孔24X中的各个旁通孔能够经由排气槽25X彼此连通且与定涡旋部件20X的外部连通。如图12所示,在本实施方式中,排气槽25X设置在从端板21X的上表面21aX向下凹入的凹部21dX的与旁通孔24X相邻的侧壁21eX上。
图16示出了涡旋压缩机的压缩机构1X沿图13中的线AX-AX截取的截面图,图17示出了涡旋压缩机的压缩机构1X沿图16中的线BX-BX截取的截面图。如图13至图17所示,定涡旋部件20X还可以包括形成在端板21X的外周表面21fX处的喷气增焓入射孔26X、从端板21X的上表面21aX贯穿端板21X向下延伸至压缩腔的喷气增焓喷射孔27X以及在端板21X的内部延伸并连接喷气增焓入射孔26X与喷气增焓喷射孔27X的喷气增焓通道28X。在本实施方式中,定涡旋部件20X包括两个喷气增焓喷射孔27X,每个喷气增焓喷射孔27X定位在一组旁通孔24X附近。在其他实施方式中,可以设置任意数目的喷气增焓喷射孔。如图17所示,在涡旋压缩机运行时,喷气增焓喷射孔27X的位于端板21X的上表面21aX处的开口27aX被密封,喷气增焓喷射孔27X的位于端板21X的下表面21bX处的开口27bX与压缩腔流体连通。由此,可以经由喷气增焓入射孔26X、喷气增焓通道28X和喷气增焓喷射孔27X向指定位置处(即,指定压缩腔)补充一定量的制冷剂,从而实现增焓效果,优化涡旋压缩机的性能。
优选地,如图17所示,喷气增焓喷射孔27X的至少一部分从端板21X的上表面21aX延伸越过下表面21bX并延伸到定涡卷22X中,使得喷气增焓喷射孔27X包括从定涡卷22X去除部分材料而形成的凹部27cX。在现有技术中,通常从端板21X的下表面21bX钻出喷气增焓喷射孔,这要求喷气增焓喷射孔必须避开定涡卷22X并且不能超过动涡卷12X的型线宽度,以防止与喷气增焓喷射孔流体连通的压缩腔中的流体泄漏至相邻的另一压缩腔。因此,现有技术中喷气增焓喷射孔的孔径及流通面积受到限制。相比之下,根据本公开的实施方式从端板21X的上表面21aX钻出喷气增焓喷射孔27X,并且可以利用定涡卷22X的一部分厚度来布置喷气增焓喷射孔27X,这能够显著增大喷气增焓喷射孔27X的孔径和流通面积。
在本公开中,用于实现压缩机变排量功能的旁通孔24X和用于实现喷气增焓功能的喷气增焓喷射孔27X彼此相邻且成组地布置,因此可以通过共同的密封结构来实现对这些孔的妥善密封。如图11和图12中所示,涡旋压缩机的定涡旋组件可以包括密封组件40X。密封组件40X可以包括用于覆盖并密封旁通孔24X与喷气增焓喷射孔27X的压板41X和密封垫片42X,其中密封垫片42X定位在压板41X与旁通孔24X及喷气增焓喷射孔27X之间。密封组 件40X还可以包括多个螺栓43X,螺栓43X穿过形成在密封垫片42X、压板41X及端板21X的上表面21aX中的相应螺栓孔,以将密封垫片42X和压板41X固定至端板21X的上表面21aX并压紧。除螺栓43X以外,也可以采用任何其他合适的紧固件。在本实施方式中,对应于彼此间隔开的两组旁通孔24X及喷气增焓喷射孔27X,设置有两个压板41X和两个密封垫片42X。密封组件40X还可以包括活塞44X。活塞44X设置在旁通孔24X中并且能够上下移动,从而选择性地使压缩腔与低压区域流体连通或断开。
密封组件40X用于对成组的孔(包括彼此邻近的旁通孔和喷气增焓喷射孔)进行密封。即,单个密封组件可以用于密封一组孔、多于一组的孔、或者所有组的孔。由此可以显著减少密封组件的数量,使密封结构简化且紧凑化,并且可以减少组装耗时。
如图11和图12所示,涡旋压缩机的定涡旋组件还可以包括流体控制装置50X,用于向活塞44X的上表面引入具有预定压力的流体,通过控制活塞44X的上方与下方的压力差而控制活塞44X的运动,进而控制涡旋压缩机在满载荷工作状态与部分载荷工作状态之间进行切换。在本实施方式中,流体控制装置50X包括电磁阀。在其他实施方式中,流体控制装置50X也可以包括任何其他合适的阀和/或其他机构。
下面结合图18至图22说明密封组件40X及流体控制装置50X的工作过程和原理。图18示出了定涡旋部件20X的后视图;图19示出了定涡旋部件20X沿图18中的线CX-CX截取的截面图;图20示出了定涡旋部件20X沿图19中的线DX-DX截取的截面图;图21示出了定涡旋部件20X沿图19中的线EX-EX截取的截面图;图22示出了涡旋压缩机的压缩机构1X沿图19中的线FX-FX截取的截面图。
如图18和图19所示,定涡旋部件20X的端板21X设置有从端板21X的外周表面21fX延伸至端板21X内部的第一流体通道31X、第二流体通道32X和第三流体通道33X。如图19和图20所示,第一流体通道31X可以包括横向延伸段31aX和在横向延伸段31aX的内端部处延伸至端板21X的下表面21bX的取压孔31bX,第一流体通道31X的取压孔31bX与高压区域流体连通。在定涡旋部件20X的螺旋形流体压缩路径上,取压孔31bX可以定位在旁通孔24X的径向内侧,也就是说,取压孔31bX相比于旁通孔24X中的每个旁通孔 都更接近定涡旋部件20X的中心。如图19所示,第二流体通道32X和第三流体通道33X分别对应于一组旁通孔24X。参见图14和图21,第二流体通道32X可以包括横向延伸段32aX和在横向延伸段32aX的内端部处延伸至端板21X的上表面21aX的连通孔32bX,在端板21X的上表面21aX上还设置有将该组旁通孔24X彼此连通且与连通孔32bX连通的连通槽36X。类似地,如图14和图19所示,第三流体通道33X可以包括横向延伸段33aX和在横向延伸段33aX的内端部处延伸至端板21X的上表面21aX的连通孔33bX,在端板21X的上表面21aX上还设置有将该组旁通孔24X彼此连通且与连通孔33bX连通的连通槽38X。如图21所示,每个旁通孔24X的上部部分的孔径略大于下部部分的孔径,旁通孔24X的上部部分限定用于容纳活塞44X的活塞腔24aX,活塞44X能够在活塞腔24aX内上下移动并且能够堵塞旁通孔24X的下部部分。在组装状态下,连通孔32bX、33bX和连通槽36X、38X由压板41X和密封垫片42X覆盖并密封,来自第二流体通道32X和第三流体通道33X的流体能够分别通过连通槽36X、38X流动至对应的活塞腔24aX中并作用于活塞44X的上表面。
如图11和图12所示,流体控制装置50X布置在定涡旋部件20X的端板21X的外周表面21fX上并且位于第一流体通道31X与第二流体通道32X、第三流体通道33X之间。在本实施方式中,在端板21X的外周表面21fX上形成用于接纳流体控制装置50X的凹部21gX。流体控制装置50X构造成选择性地使第一流体通道31X与第二流体通道32X及第三流体通道33X流体连通或断开,从而改变活塞44X的上方与下方的压力差,并利用压力差控制活塞44X上下移动。活塞44X能够在允许相应的压缩腔与定涡旋部件20X外部的低压区域流体连通的第一位置与防止相应的压缩腔与低压区域流体连通的第二位置之间移动。图22示意性地同时示出了活塞44X的第一位置(参见图22中的左侧活塞44X)和活塞44X的第二位置(参见图22中的右侧活塞44X)。
在流体控制装置50X为电磁阀的实施方式中,当电磁阀断电时,电磁阀使第一流体通道31X与第二流体通道32X及第三流体通道33X流体连通,来自取压孔31bX所对应的高压区域的高压流体经由第一流体通道31X、第二流体通道32X和连通槽36X流动至相应的一组旁通孔24X中的每个旁通孔24X的活塞腔24aX中,同时,来自取压孔31bX所对应的高压区域的高压流体经 由第一流体通道31X、第三流体通道33X和连通槽38X流动至相应的另一组旁通孔24X中的每个旁通孔24X的活塞腔24aX中。因此,每个活塞44X上方的压力对应于取压孔31bX处的流体的压力,每个活塞44X下方的压力对应于与相应旁通孔24X流体连通的压缩腔中的流体的压力。由于取压孔31bX在螺旋形流体压缩路径上相比于每个旁通孔24X都更接近定涡旋部件20X的中心,因此取压孔31bX所对应的高压区域处的流体的压力大于与每个旁通孔24X流体连通的压缩腔中的流体的压力,即,活塞44X上方的压力大于活塞44X下方的压力。因此,活塞44X被其上方的高压流体压迫而下降至其第二位置,从而堵塞旁通孔24X和排气槽25X,如图22的右半部分所示。
当电磁阀通电时,电磁阀使第一流体通道31X与第二流体通道32X及第三流体通道33X断开。此时,每个旁通孔24X的活塞腔24aX中位于活塞44X上方的高压流体经由电磁阀中的流体路径排出,使得活塞44X下方的压力大于活塞44X上方的压力。因此,活塞44X向上移动至其第一位置,使旁通孔24X与排气槽25X流体连通,相应压缩腔中的流体能够经由旁通孔24X和排气槽25X流出,如图22的左半部分中的箭头所示。
图23至图27示出了根据本公开的另一实施方式的涡旋压缩机的压缩机构1X’。下面将主要针对压缩机构1X’与上文中所述的压缩机构1X的区别之处进行说明,其中相同或相对应的特征或部件以带撇号的相同附图标记表示。
图23示出了涡旋压缩机的压缩机构1X’的立体图。压缩机构1X’包括彼此配合以形成压缩腔的动涡旋部件10X’和定涡旋部件20X’。图24示出了图23中的定涡旋组件的分解图,定涡旋组件可以包括定涡旋部件20X’、连接至定涡旋部件20X’的密封组件40X’和流体控制装置50X’。如图24所示,在该实施方式中,定涡旋部件20X’包括彼此间隔开的两组旁通孔24X’及邻近每组旁通孔24X’布置的喷气增焓喷射孔27X’,每个旁通孔24X’和喷气增焓喷射孔27X’从定涡旋部件20X’的毂部23X’的上表面23aX’向下延伸贯穿毂部23X’和端板21X’直至与压缩腔流体连通。在毂部23X’的外周表面23bX’处设置有两个排气槽25X’,每个排气槽25X’延伸至对应的一组旁通孔24X’中的每个旁通孔中,使该组旁通孔24X’中的各个旁通孔能够经由排气槽25X’彼此连通且与定涡旋部件20X’的外部的低压区域连通。在其他实施方式中,也可以设置将所有的旁通孔24X’彼此连通且与定涡旋部件 20X’的外部连通的排气槽。在毂部23X’的上表面23aX’还设置有将所有的旁通孔24X’连通的连通槽36X’。密封组件40X’包括大体呈环形的压板41X’与密封垫片42X’,压板41X’与密封垫片42X’覆盖毂部23X’的上表面23aX’,并覆盖及密封所有的旁通孔24X’和喷气增焓喷射孔27X’。密封组件40X’还可以包括将压板41X’和密封垫片42X’固定至毂部23X’的上表面23aX’并压紧的多个螺栓43X’或其他紧固件以及能够在每个旁通孔24X’的活塞腔24aX’中上下移动的活塞44X’。
与前一实施方式中的定涡旋部件20X类似,在本实施方式中,喷气增焓入射孔(未示出)同样形成在定涡旋部件20X’的端板21X’的外周表面21fX’处,连接喷气增焓入射孔与喷气增焓喷射孔27X’的喷气增焓通道(未示出)同样形成在定涡旋部件20X’的端板21X’的内部。但应该理解的是,本公开不限于此,喷气增焓入射孔和喷气增焓通道也可以形成在定涡旋部件的其他部位,例如可以形成在毂部中。
如图23和图24所示,在本实施方式中,流体控制装置50X’布置在定涡旋部件20X’的毂部23X’的外周表面23bX’上。由此,可以进一步简化用于控制活塞44X’上下移动的流体流动路径,下面将结合图25至图27对此进行进一步说明。
图25示出了定涡旋部件20X’的侧视图,图示了位于定涡旋部件20X’的毂部23X’中的第一流体通道31X’和第二流体通道32X’。图26示出了沿着穿过第一流体通道31X’的轴线的竖向平面截取的定涡旋部件20X’的截面图;图27示出了沿着穿过第二流体通道32X’的轴线的竖向平面截取的定涡旋部件20X’的截面图。如图24至图26所示,定涡旋部件20X’的第一流体通道31X’从毂部23X’的外周表面23bX’延伸至毂部23X’内部。第一流体通道31X’包括横向延伸段31aX’及取压孔31bX’,取压孔31bX’设置在横向延伸段31aX’的内端部处并且从毂部23X’的上表面23aX’贯穿毂部23X’及端板21X’向下延伸至端板21X’的下表面21bX’,由此取压孔31bX’与压缩腔中的预定高压区域流体连通。在定涡旋部件20X’的螺旋形流体压缩路径上,取压孔31bX’可以定位在旁通孔24X’的径向内侧,即取压孔31bX’比旁通孔24X’中的每个旁通孔都更接近定涡旋部件20X’的中心。在组装状态下,取压孔31bX’在毂部23X’的上表面23aX’处被压板41X’和密封垫 片42X’密封。如图24、图25和图27所示,在定涡旋部件20X’的第二流体通道32X’从毂部23X’的外周表面23bX’延伸至毂部23X’的内部。第二流体通道32X’包括横向延伸段32aX’和连通孔32bX’,连通孔32bX’从横向延伸段32aX’的内端部处向上延伸至毂部23X’的上表面23aX’的连通槽36X’中。在组装状态下,连通孔32bX’和连通槽36X’由压板41X’和密封垫片42X’密封。
与根据前一实施方式的流体控制装置50X类似,流体控制装置50X’位于第一流体通道31X’与第二流体通道32X’之间并且构造成选择性地使第一流体通道31X’与第二流体通道32X’流体连通或断开,以改变活塞44X’的上方与下方的压力差,进而利用压力差控制活塞44X’上下移动。在流体控制装置50X’为电磁阀的实施方式中,当电磁阀断电时,电磁阀使第一流体通道31X’与第二流体通道32X’流体连通,来自取压孔31bX’所对应的高压区域的高压流体经由第一流体通道31X’、第二流体通道32X’和连通槽36X’流动至每个旁通孔24X’的活塞腔24aX’中。因此,活塞44X’上方的压力大于活塞44X’下方的压力,活塞44X’被其上方的高压流体压迫而下降至第二位置,从而堵塞旁通孔24X’和排气槽25X’,使得涡旋压缩机处于满载荷工作状态。当电磁阀通电时,电磁阀使第一流体通道31X’与第二流体通道32X’断开。此时,每个旁通孔24X’的活塞腔24aX’中位于活塞44X’上方的高压流体经由电磁阀中的流体路径排出,使得活塞44X’下方的压力大于活塞44X’上方的压力。因此,活塞44X’向上移动至第一位置而使旁通孔24X’与排气槽25X’流体连通,相应压缩腔中的流体经由旁通孔24X’和排气槽25X’流出。
本公开的又一方面提供了一种加工定涡旋组件的方法。定涡旋组件可以包括具有定涡卷和端板的定涡旋部件。该方法可以包括:在定涡旋部件中加工至少一组孔,该至少一组孔中的每组孔包括旁通孔和喷气增焓喷射孔;加工用于密封该至少一组孔中的每组孔或者所有孔的密封组件。具体而言,加工至少一组孔的步骤可以包括从端板的上表面朝向相应的压缩腔加工旁通孔和喷气增焓喷射孔;加工至少一组孔的步骤也可以包括从毂部的上表面朝向相应的压缩腔加工旁通孔和喷气增焓喷射孔。优选地,在加工喷气增焓喷射孔时,可以从定涡旋部件的定涡卷去除一部分材料。此外,该方法还可以包括在定涡旋部件 的上表面处加工使每组旁通孔或所有旁通孔彼此连通且能够与高压区域连通的连通槽的步骤。具体而言,可以在定涡旋部件的端板的上表面上或者毂部的上表面上加工连通槽。另外,该方法还可以包括在定涡旋部件中加工使每组旁通孔或所有旁通孔彼此连通且与定涡旋部件的外部的低压区域连通的排气槽的步骤。可以在端板的上表面的凹部中或者毂部的外周表面上加工排气槽。上述步骤不一定按本文中所描述的顺序进行。
在本公开的一些实施方式中,旁通孔和喷气增焓喷射孔彼此相邻地布置在定涡旋部件的上表面上,可以通过共同的密封组件同时实现对这些孔的密封。因此,可以简化涡旋压缩机的结构及加工过程,并且减少了对密封零部件的需求,使得密封结构集成化、紧凑化,加工耗时也能够相应减少。此外,通过在定涡旋部件的上表面上设置使两个或更多个旁通孔彼此连通且能够与高压区域连通的连通槽,能够将高压流体同时引入对应的多个或所有旁通孔中,从而利用旁通孔中的活塞同时控制多个或所有旁通孔与低压区域连通或断开。设置使两个或更多个旁通孔彼此连通且与定涡旋部件的外部的低压区域连通的排气槽有利于增大排气面积。连通槽和排气槽的结构简单,便于机加工。
本公开的实施方式中的设置于定涡旋组件上的喷气增焓喷射孔、旁通孔、密封组件、连通槽和排气槽等特征也可以应用于动涡旋组件上。
在此,已详细描述了根据本公开的定涡旋组件、涡旋压缩机及定涡旋组件加工方法的示例性实施方式,但是应该理解的是,本公开并不局限于上文详细描述和示出的具体实施方式。根据本公开的各个实施方式可以单独使用或组合使用。在不偏离本公开的主旨和范围的情况下,本领域的技术人员能够对本公开进行各种变型和变体。所有这些变型和变体都落入本公开的范围内。而且,所有在此描述的构件都可以由其他技术性上等同的构件来代替。

Claims (26)

  1. 一种定涡旋组件,所述定涡旋组件包括:
    定涡旋部件,所述定涡旋部件包括端板和从所述端板的第一侧延伸的定涡卷,其中,所述定涡旋部件设置有从所述定涡旋部件的上表面延伸至压缩腔的喷气增焓喷射孔,包括所述定涡旋组件的压缩机外部的喷气增焓流体能够经由所述喷气增焓喷射孔供给至所述压缩腔中,所述喷气增焓喷射孔具有通向所述压缩腔的第一端部和通向所述定涡旋组件的外部的第二端部;以及
    密封组件,所述密封组件构造成对所述喷气增焓喷射孔的所述第二端部进行密封。
  2. 根据权利要求1所述的定涡旋组件,其中,所述喷气增焓喷射孔包括第一部分和第二部分,所述第一部分延伸至所述端板的所述第一侧并且沿所述定涡旋组件的轴向方向观察不与所述定涡卷重叠,所述第二部分延伸贯穿所述端板至所述定涡卷中并且沿定涡旋组件的所述轴向方向观察与所述定涡卷重叠,所述第二部分包括形成在所述定涡卷中的凹部。
  3. 根据权利要求1或2所述的定涡旋组件,其中,所述喷气增焓喷射孔从所述端板的与所述第一侧相反的第二侧延伸贯穿所述端板。
  4. 根据权利要求1或2所述的定涡旋组件,其中,所述定涡旋部件包括从所述端板的与所述第一侧相反的第二侧沿所述轴向方向突出的毂部,所述喷气增焓喷射孔从所述毂部的上表面延伸贯穿所述毂部和所述端板。
  5. 根据权利要求1或2所述的定涡旋组件,其中,定涡旋部件还包括喷气增焓入射孔以及连接所述喷气增焓入射孔与所述喷气增焓喷射孔的喷气增焓通道,所述喷气增焓喷射孔的水力直径小于或等于所述喷气增焓通道的水力直径。
  6. 根据权利要求2所述的定涡旋组件,其中,在所述定涡卷的厚度方向 上,所述凹部的深度不超过所述定涡卷的厚度的2/3。
  7. 根据权利要求2所述的定涡旋组件,其中,所述凹部沿所述定涡旋部件的所述轴向方向的高度大于或等于所述喷气增焓喷射孔的水力半径。
  8. 根据权利要求1或2所述的定涡旋组件,其中,所述定涡旋部件包括至少一组孔,所述至少一组孔中的每组孔包括旁通孔和所述喷气增焓喷射孔,所述压缩腔中的流体能够经由所述旁通孔排出至所述定涡旋部件的外部的低压区域,所述密封组件对所述至少一组孔中的成组的孔进行密封。
  9. 根据权利要求1或2所述的定涡旋组件,其中,所述密封组件包括压板和密封垫片。
  10. 根据权利要求9所述的定涡旋组件,其中,所述密封组件还包括将所述密封垫片和所述压板固定至所述定涡旋部件的所述上表面并压紧的紧固件。
  11. 根据权利要求8所述的定涡旋组件,其中,所述定涡旋部件包括沿周向方向间隔开的两组或更多组孔,其中每组孔包括至少一个所述旁通孔和至少一个所述喷气增焓喷射孔。
  12. 根据权利要求8所述的定涡旋组件,其中,所述密封组件包括活塞,所述活塞设置在所述旁通孔中并且能够在允许相应的压缩腔与所述低压区域流体连通的第一位置和防止相应的压缩腔与所述低压区域流体连通的第二位置之间移动。
  13. 根据权利要求12所述的定涡旋组件,其中,所述定涡旋部件还包括将所述旁通孔连通至高压区域的流体通道,所述高压区域中的流体的压力大于与所述旁通孔连通的所述压缩腔中的流体的压力。
  14. 根据权利要求13所述的定涡旋组件,还包括流体控制装置,所述流 体控制装置配置成通过向所述活塞的上方引入具有预定压力的流体来控制所述活塞的上方与下方的压力差,以控制所述活塞的移动。
  15. 根据权利要求8所述的定涡旋组件,其中,在所述定涡旋部件的所述上表面设置有使所有旁通孔或者每组孔中的旁通孔彼此连通并且能够与高压区域连通的连通槽,所述高压区域中的流体的压力大于与所述旁通孔连通的所述压缩腔中的流体的压力,所述连通槽在所述定涡旋部件的所述上表面处由所述密封组件密封。
  16. 根据权利要求8所述的定涡旋组件,其中,所述定涡旋部件还包括排气槽,所述排气槽构造成使所有旁通孔或者每组孔中的旁通孔能够经由所述排气槽彼此连通并且与所述低压区域流体连通。
  17. 根据权利要求14所述的定涡旋组件,其中,所述流体控制装置包括阀,所述阀配置成选择性地使所述流体通道连通或断开,以改变所述活塞的上方与下方的压力差。
  18. 根据权利要求17所述的定涡旋组件,其中,所述流体通道包括第一流体通道和第二流体通道,所述第一流体通道从所述定涡旋部件的外周表面延伸至所述高压区域,所述第二流体通道从所述定涡旋部件的所述外周表面延伸至所述连通槽,所述阀位于所述第一流体通道与所述第二流体通道之间。
  19. 根据权利要求8所述的定涡旋组件,其中,所述旁通孔和所述喷气增焓喷射孔从所述端板的与所述第一侧相反的第二侧延伸至相应的压缩腔。
  20. 根据权利要求19所述的定涡旋组件,其中,所述密封组件包括活塞,所述活塞设置在所述旁通孔中并且能够在允许相应的压缩腔与所述低压区域流体连通的第一位置和防止相应的压缩腔与所述低压区域流体连通的第二位置之间移动,所述定涡旋组件还包括流体控制装置,所述流体控制装置配置成通过向所述活塞的上方引入具有预定压力的流体来控制所述活塞的上方与下 方的压力差,以控制所述活塞的移动,所述流体控制装置设置在所述端板的外周表面上。
  21. 根据权利要求19所述的定涡旋组件,其中,所述端板的所述第二侧上设置有凹部,所述凹部的侧壁上设置有排气槽,所述排气槽构造成使所有旁通孔或者每组孔中的旁通孔能够经由所述排气槽彼此连通并且与所述低压区域连通。
  22. 根据权利要求8所述的定涡旋组件,其中,所述定涡旋部件包括从所述端板的与所述第一侧相反的第二侧沿轴向方向突出的毂部,所述旁通孔和所述喷气增焓喷射孔从所述毂部的上表面延伸至相应的压缩腔。
  23. 根据权利要求22所述的定涡旋组件,其中,所述密封组件包括活塞,所述活塞设置在所述旁通孔中并且能够在允许相应的压缩腔与所述低压区域流体连通的第一位置和防止相应的压缩腔与所述低压区域流体连通的第二位置之间移动,所述定涡旋组件还包括流体控制装置,所述流体控制装置配置成通过向所述活塞的上方引入具有预定压力的流体来控制所述活塞的上方与下方的压力差,以控制所述活塞的移动,所述流体控制装置设置在所述毂部的外周表面上。
  24. 根据权利要求22所述的定涡旋组件,其中,所述毂部的外周表面上设置有排气槽,所述排气槽构造成使所有旁通孔或者每组孔中的旁通孔能够经由所述排气槽彼此连通并且与所述低压区域连通。
  25. 一种涡旋压缩机,包括根据权利要求1至24中的任一项所述的定涡旋组件。
  26. 一种加工定涡旋组件的方法,所述定涡旋组件是根据权利要求1至24中的任一项所述的定涡旋组件,所述方法包括:
    在定涡旋部件中加工从所述定涡旋部件的上表面延伸至压缩腔的至少一 个喷气增焓喷射孔,其中,包括所述定涡旋组件的压缩机的外部的喷气增焓流体能够经由所述喷气增焓喷射孔供给至所述压缩腔中,所述喷气增焓喷射孔具有通向所述压缩腔的第一端部和通向所述定涡旋组件的外部的第二端部;以及
    加工密封组件,所述密封组件构造成对所述喷气增焓喷射孔的所述第二端部进行密封。
PCT/CN2023/104610 2022-06-30 2023-06-30 定涡旋组件、涡旋压缩机及加工定涡旋组件的方法 WO2024002338A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202221670020.6 2022-06-30
CN202221670020.6U CN218093424U (zh) 2022-06-30 2022-06-30 定涡旋组件和涡旋压缩机
CN202221667261.5 2022-06-30
CN202210757840.7A CN117365944A (zh) 2022-06-30 2022-06-30 定涡旋组件、涡旋压缩机及加工定涡旋组件的方法
CN202210760032.6A CN117365954A (zh) 2022-06-30 2022-06-30 定涡旋组件、涡旋压缩机及加工定涡旋组件的方法
CN202221667261.5U CN217873271U (zh) 2022-06-30 2022-06-30 定涡旋组件和涡旋压缩机
CN202210757840.7 2022-06-30
CN202210760032.6 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024002338A1 true WO2024002338A1 (zh) 2024-01-04

Family

ID=89383363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104610 WO2024002338A1 (zh) 2022-06-30 2023-06-30 定涡旋组件、涡旋压缩机及加工定涡旋组件的方法

Country Status (1)

Country Link
WO (1) WO2024002338A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102449313A (zh) * 2009-05-29 2012-05-09 艾默生环境优化技术有限公司 具有活塞组件的压缩机
CN102449314A (zh) * 2009-05-29 2012-05-09 艾默生环境优化技术有限公司 具有容量调制系统或流体注入系统的压缩机
CN202971187U (zh) * 2012-11-23 2013-06-05 艾默生环境优化技术(苏州)有限公司 涡旋压缩机
CN203201801U (zh) * 2013-04-02 2013-09-18 上海本菱涡旋压缩机有限公司 一种补气增焓涡旋压缩机
US20150192121A1 (en) * 2014-01-06 2015-07-09 Lg Electronics Inc. Scroll compressor
CN207377799U (zh) * 2015-10-29 2018-05-18 艾默生环境优化技术有限公司 压缩机
CN110513289A (zh) * 2019-09-24 2019-11-29 苏州英华特涡旋技术有限公司 可变容量涡旋式压缩机
CN111502987A (zh) * 2019-01-30 2020-08-07 艾默生环境优化技术(苏州)有限公司 容量调节和喷气增焓一体式涡旋压缩机及其系统
CN217873271U (zh) * 2022-06-30 2022-11-22 艾默生环境优化技术(苏州)有限公司 定涡旋组件和涡旋压缩机
CN218093424U (zh) * 2022-06-30 2022-12-20 艾默生环境优化技术(苏州)有限公司 定涡旋组件和涡旋压缩机

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102449313A (zh) * 2009-05-29 2012-05-09 艾默生环境优化技术有限公司 具有活塞组件的压缩机
CN102449314A (zh) * 2009-05-29 2012-05-09 艾默生环境优化技术有限公司 具有容量调制系统或流体注入系统的压缩机
CN202971187U (zh) * 2012-11-23 2013-06-05 艾默生环境优化技术(苏州)有限公司 涡旋压缩机
CN203201801U (zh) * 2013-04-02 2013-09-18 上海本菱涡旋压缩机有限公司 一种补气增焓涡旋压缩机
US20150192121A1 (en) * 2014-01-06 2015-07-09 Lg Electronics Inc. Scroll compressor
CN207377799U (zh) * 2015-10-29 2018-05-18 艾默生环境优化技术有限公司 压缩机
CN111502987A (zh) * 2019-01-30 2020-08-07 艾默生环境优化技术(苏州)有限公司 容量调节和喷气增焓一体式涡旋压缩机及其系统
CN110513289A (zh) * 2019-09-24 2019-11-29 苏州英华特涡旋技术有限公司 可变容量涡旋式压缩机
CN217873271U (zh) * 2022-06-30 2022-11-22 艾默生环境优化技术(苏州)有限公司 定涡旋组件和涡旋压缩机
CN218093424U (zh) * 2022-06-30 2022-12-20 艾默生环境优化技术(苏州)有限公司 定涡旋组件和涡旋压缩机

Similar Documents

Publication Publication Date Title
CN109340107B (zh) 具有容量调节系统的压缩机
US4971535A (en) Tandem rotary pump with pressure chamber between two intermediate side plates
EP1087142B1 (en) Scroll compressor capacity control
EP0969209B1 (en) Scroll-type variable-capacity compressor
CN106662104B (zh) 容量调节的涡旋压缩机
US9739277B2 (en) Capacity-modulated scroll compressor
CN217873271U (zh) 定涡旋组件和涡旋压缩机
CN218093424U (zh) 定涡旋组件和涡旋压缩机
US6379123B1 (en) Capacity control scroll compressor
JPH029194B2 (zh)
US5807090A (en) Vane pump having a hydraulic resistance element
JP4635893B2 (ja) 横置き型スクロール圧縮機
EP1880112B1 (en) Spool valve apparatus and method
JP4282637B2 (ja) スクロール型圧縮機
WO2024002338A1 (zh) 定涡旋组件、涡旋压缩机及加工定涡旋组件的方法
CN218376868U (zh) 定涡旋组件和涡旋压缩机
CN113931842A (zh) 涡旋压缩机构和涡旋压缩机
CN210218102U (zh) 涡旋压缩机
CN217999879U (zh) 压缩机构及涡旋压缩机
CN212717168U (zh) 涡旋压缩机构和涡旋压缩机
CN105275804B (zh) 涡旋压缩机的变容机构及涡旋压缩机
EP3978754A1 (en) Scroll compressor
EP1252443B1 (en) Hydraulic fluid vane pump
WO2020057535A1 (zh) 涡旋压缩机
KR20200126325A (ko) 스크롤 압축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830501

Country of ref document: EP

Kind code of ref document: A1