WO2024002113A1 - 供暖、通风和/或空调装置及机动车辆 - Google Patents

供暖、通风和/或空调装置及机动车辆 Download PDF

Info

Publication number
WO2024002113A1
WO2024002113A1 PCT/CN2023/102993 CN2023102993W WO2024002113A1 WO 2024002113 A1 WO2024002113 A1 WO 2024002113A1 CN 2023102993 W CN2023102993 W CN 2023102993W WO 2024002113 A1 WO2024002113 A1 WO 2024002113A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
space
airflow
ventilation
air
Prior art date
Application number
PCT/CN2023/102993
Other languages
English (en)
French (fr)
Inventor
刘霆伟
鲍韬
Original Assignee
法雷奥汽车空调湖北有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法雷奥汽车空调湖北有限公司 filed Critical 法雷奥汽车空调湖北有限公司
Publication of WO2024002113A1 publication Critical patent/WO2024002113A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H1/00028Constructional lay-out of the devices in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H1/00064Air flow details of HVAC devices for sending air streams of different temperatures into the passenger compartment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00207Combined heating, ventilating, or cooling devices characterised by the position of the HVAC devices with respect to the passenger compartment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H1/00514Details of air conditioning housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H1/00514Details of air conditioning housings
    • B60H1/00521Mounting or fastening of components in housings, e.g. heat exchangers, fans, electronic regulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00664Construction or arrangement of damper doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00078Assembling, manufacturing or layout details
    • B60H2001/00092Assembling, manufacturing or layout details of air deflecting or air directing means inside the device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00185Distribution of conditionned air
    • B60H2001/00192Distribution of conditionned air to left and right part of passenger compartment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00207Combined heating, ventilating, or cooling devices characterised by the position of the HVAC devices with respect to the passenger compartment
    • B60H2001/00214Devices in front of the passenger compartment

Definitions

  • the present invention relates to the field of heating, ventilation and/or air conditioning devices, and more specifically to a heating, ventilation and/or air conditioning device and a motor vehicle.
  • heating, ventilation and/or air conditioning devices With the widespread application of heating, ventilation and/or air conditioning devices in residential and commercial fields, heating, ventilation and/or air conditioning devices, especially those used in motor vehicles, are also facing higher costs. Require.
  • heating, ventilation and/or air conditioning devices are usually provided with no or only simple layered structures.
  • a layered structure only a single airflow of internal circulation air or fresh air enters the air conditioning device, and it is impossible to realize different airflow types for blowing the surface and blowing feet; although a simple layered structure can realize fresh air and internal circulation air
  • layered airflow enters, but the airflow space separation of the layered airflow in the shell is not clear, the flow paths of each layered airflow are mixed, the airflow cannot be well guided to the corresponding outlet, and the air output from each outlet Temperature is also difficult to regulate independently.
  • the current heating, ventilation and/or air conditioning device usually has a large vertical volume, which will cause the dashboard to be Elevated, significantly limiting the driver's visibility.
  • a heating, ventilation and/or air conditioning device that has a flow space and allows the air temperature output by each outlet to be independently adjusted and controlled, and the heating, ventilation and/or air conditioning device has an ultra-thin design, especially in the Z direction (vertical ) direction has a smaller three-dimensional volume.
  • the present invention provides a heating, ventilation and/or air conditioning device and a motor vehicle.
  • the heating, ventilation and/or air conditioning device provided by the present invention can be used to realize at least two different air flows.
  • the flow space of each layered airflow can be well divided according to actual needs, and the flow path of the layered airflow can be adjusted.
  • Guidance and direction so that it is output via the target exit.
  • the heating, ventilation and/or air conditioning device can, for example, also have an ultra-thin design, in particular a smaller three-dimensional volume in the Z-direction (vertical).
  • a heating, ventilation and/or air conditioning device including: a casing that allows airflow to pass through; and a layered partition wall that is disposed inside the casing and includes a first partition wall, the The first partition wall has a first partition part; the first partition part separates the first space and the second space in the housing; the partition partition wall is provided inside the housing, wherein the partition partition wall includes a central A partition wall, and two auxiliary partition walls respectively provided on both sides of the central partition wall; and wherein the central partition wall and two auxiliary partition walls divide the first space into four first space sub-regions ; The central partition wall and the two auxiliary partition walls divide the second space into four second space sub-areas.
  • the two auxiliary partition walls extend generally parallel to the central partition wall.
  • downstream ends of the two auxiliary partition walls are provided with transversely extending walls connecting the two auxiliary partition walls.
  • the central dividing wall is plugged into the laterally extending wall.
  • the housing includes: a first sub-outlet corresponding to each first spatial sub-region; a second sub-outlet corresponding to each second spatial sub-region; and for each first spatial sub-region Zone: the heating, ventilation and/or air conditioning device further includes a first sub-air door corresponding to the first spatial sub-area, the first sub-air door is arranged inside the housing; the first sub-air door is operable The ground is in the first position and the second position; when the first sub-air door is in the first position, the first sub-air door is engaged with the first partition to guide the first space sub-area The airflow in the corresponding second space sub-area flows out through the corresponding second sub-outlet, and the airflow in the first space sub-area is guided to flow out through the corresponding first sub-outlet; when the first sub-damper is in the third In the second position, the first sub-air door closes the corresponding first sub-outlet, so that the air flow in the first space sub-area and the air flow in the corresponding second space sub
  • the heating, ventilation and/or air conditioning device further includes a first air flow processing unit, the first air flow processing unit is disposed in the housing and is located upstream of the first partition wall; and
  • the heating, ventilation and/or air-conditioning device further includes: a first mixing damper arranged corresponding to each first space sub-area and/or a second mixing damper arranged corresponding to each second space sub-area;
  • the first partition wall also has a second partition part; the second partition part separates a third space and a fourth space in the housing; wherein a part of the air flow passing through the first air flow treatment unit enters the third space space, and the other part enters the fourth space; wherein, the central partition wall and two auxiliary partition walls divide the third space into four third space sub-areas; the central partition wall and two auxiliary partition walls
  • the partition wall divides the fourth space into four fourth space sub-areas; and for each first space sub-area: when the first mixing air door corresponding to the first space sub-area is in the fully open position, it will
  • the third space sub-region corresponding to the first space sub-region is separated from the first space sub-region; and for each second space sub-region: when the second mixing damper corresponding to the second space sub-region is in the fully open position When , separate the fourth spatial sub-region corresponding to the second spatial sub-region from the second spatial sub-region.
  • the layered partition wall also has a second partition wall; the second partition wall is located upstream of the first air flow treatment unit; the second partition wall separates a fifth partition wall in the housing. space and the sixth space; wherein, part of the airflow passing through the first airflow processing unit comes from the fifth space, and the other part comes from the sixth space; where, for each first space sub-area: when corresponding When the first mixing damper of the first space sub-region is in a fully closed position, the fifth space is separated from the first space sub-region; and for each second space sub-region: when corresponding to the second space sub-region When the second mixing damper of the space sub-region is in a fully closed position, the sixth space is separated from the second space sub-region.
  • the heating, ventilation and/or air conditioning device further includes a second air flow processing unit; the second air flow processing unit is disposed in the housing and located upstream of the second partition wall; wherein, by Part of the airflow of the second airflow treatment unit enters the fifth space, and the other part enters the sixth space.
  • the heating, ventilation and/or air conditioning device is further provided with a second sub-damper, wherein, for the second space sub-area corresponding to the laterally extending wall, Each second space sub-area: when the second sub-air door is in a fully closed position, the second sub-air door is engaged with the first partition and the transversely extending wall to connect the second space sub-area.
  • the area is divided into a first sub-area of the second space and a second sub-area of the second space.
  • the second sub-outlet includes a ventilation sub-outlet, and in the second spatial sub-area corresponding to the transversely extending wall, the heating, ventilation and/or air-conditioning device is further provided with a third sub-outlet.
  • a damper wherein for each second spatial sub-region corresponding to the transversely extending wall: when the third sub- damper is in a fully closed position, the third sub- damper is engaged with the housing to close the corresponding ventilation sub-exit.
  • the second air flow treatment unit is arranged in a substantially orthogonal manner to the first air flow treatment unit.
  • a motor vehicle is also proposed, characterized in that it includes a heating, ventilation and/or air conditioning device as described above.
  • Heating, ventilation and/or air conditioning heating can be well realized by using the heating, ventilation and/or air conditioning device provided by the present invention.
  • the device is provided with a layered structure to separate two spaces for different air flows, and can be used according to actual needs.
  • the layered structure can cooperate with the first damper to guide the airflow in different spaces to be output through different outlets.
  • the airflow temperature output by each outlet can be adjusted independently, and the heating, ventilation and/or air-conditioning device is in the Z direction. It has a smaller three-dimensional volume in the (vertical) direction.
  • Figure 1 shows a perspective view of a heating, ventilation and/or air conditioning device 100 according to an embodiment of the invention
  • FIG. 2 illustrates a top view of a heating, ventilation and/or air conditioning device 100 in accordance with an embodiment of the present disclosure
  • Figure 3 shows a cross-sectional view of the heating, ventilation and/or air-conditioning device 100 according to the central axis Oy in Figure 2, in which the first damper is in a first position;
  • Figure 4 shows a cross-sectional view of the heating, ventilation and/or air conditioning device 100 according to the central axis Oy in Figure 2, in which the first damper is in the second position;
  • Figure 5 shows a cross-sectional view of the heating, ventilation and/or air-conditioning device 100 according to the central axis Oy in Figure 2, in which the first mixing damper and the second mixing damper are in a fully open position;
  • Fig. 6 shows a cross-sectional view of the heating, ventilation and/or air conditioning device 100 according to the central axis Oy in Fig. 2, in which the first mixing damper and the second mixing damper are in a fully closed position;
  • Figure 7 shows a cross-sectional view of the heating, ventilation and/or air conditioning device 100 taken along line A-A in Figure 2, wherein the heating, ventilation and/or air conditioning device 100 is in the foot blowing and ventilation dual mode;
  • Figure 8 shows a cross-sectional view of the heating, ventilation and/or air conditioning device 100 taken along line A-A in Figure 2, wherein the heating, ventilation and/or air conditioning device 100 is in the foot blowing and defogging dual mode;
  • FIG. 9 shows a cross-section of the heating, ventilation and/or air conditioning device 100 according to line AA in FIG. 2 A view in which the heating, ventilation and/or air conditioning device 100 is in a defogging mode;
  • Figure 10 shows a cross-sectional view of the heating, ventilation and/or air conditioning device 100 taken along line A-A in Figure 2, wherein the heating, ventilation and/or air conditioning device 100 is in the foot blowing mode;
  • Figure 11 shows a cross-sectional view of the heating, ventilation and/or air conditioning device 100 taken along line A-A in Figure 2, wherein the heating, ventilation and/or air conditioning device 100 is in ventilation mode;
  • FIG. 12A illustrates a heating, ventilation and/or air conditioning device 100' having a partition wall 140 according to another embodiment of the present disclosure
  • Figure 12B shows a top view of the heating, ventilation and/or air conditioning device 100'
  • Figure 13A shows an internal view of the heating, ventilation and/or air conditioning device 100' in Figure 12A with the housing removed;
  • Figure 13B shows a view from another perspective of the heating, ventilation and/or air conditioning device 100' of Figure 13A;
  • Figure 14 shows a top view of the heating, ventilation and/or air conditioning unit 100'
  • Figure 15 shows a structural diagram of the partition wall 140 in Figure 12A;
  • FIG. 16 A cross-sectional view of the first right half 1131 of the housing according to an embodiment of the present disclosure is shown in Figure 16;
  • FIG. 17 A cross-sectional view of the second right sub-portion 1132 is shown in FIG. 17 in accordance with an embodiment of the present disclosure
  • Figure 18 shows a structural diagram of the heating, ventilation and/or air conditioning device 100' with the casing removed according to an embodiment of the present disclosure
  • FIG. 19 illustrates a cross-sectional view of the second right half sub-section 1132 in which a second spatial first sub-region and a second spatial second sub-region are labeled, in accordance with an embodiment of the present disclosure
  • Figure 20A shows a cross-sectional view of the first right half 1131 of the heating, ventilation and/or air conditioning device 100' in a foot-blowing dual mode
  • 20B shows a cross-sectional view of the second right half 1132 of the heating, ventilation and/or air conditioning device 100' in a foot-ventilation dual mode
  • Figure 21A shows a cross-sectional view of the first right half 1131 of the heating, ventilation and/or air conditioning device 100' in a defog priority mode
  • 21B shows a cross-sectional view of the second right half 1132 of the heating, ventilation and/or air conditioning device 100' in a defog priority mode
  • 22A shows a cross-sectional view of the first right half 1131 of the heating, ventilation and/or air conditioning device 100', wherein the heating, ventilation and/or air conditioning device 100' is in a foot blowing and defogging dual mode;
  • 22B shows a cross-sectional view of the second right half 1132 of the heating, ventilation and/or air conditioning device 100' in a foot blowing and defogging dual mode
  • Figure 23A shows a cross-sectional view of the first right half 1131 of the heating, ventilation and/or air conditioning device 100', wherein the heating, ventilation and/or air conditioning device 100' is in the foot blowing mode;
  • 23B shows a cross-sectional view of the second right half 1132 of the heating, ventilation and/or air conditioning device 100' in a foot blowing mode
  • Figure 24A shows a cross-sectional view of the first right half 1131 of the heating, ventilation and/or air conditioning device 100', wherein the heating, ventilation and/or air conditioning device 100' is in a ventilation mode;
  • Figure 24B shows a cross-sectional view of the second right half 1132 of the heating, ventilation and/or air conditioning device 100' in a ventilation mode.
  • FIG. 1 shows a perspective view of a heating, ventilation and/or air conditioning device 100 according to an embodiment of the present invention.
  • FIG. 2 shows a top view of the heating, ventilation and/or air conditioning device 100 according to an embodiment of the present disclosure.
  • FIG. 3 shows A cross-sectional view of the heating, ventilating and/or air-conditioning device 100 according to the central axis Oy in FIG. 2 is shown.
  • the heating, ventilation and/or air conditioning device 100 includes, for example, a housing 110,
  • the housing 110 allows airflow to pass through and has a first outlet 160, a second outlet 180 and a layered partition wall 150 (the layered partition wall 150 is shown in Figure 6).
  • the heating, ventilating and/or air-conditioning device has, for example, a central axis Oy (in the example shown in FIG. 1 , the heating, ventilating and/or air-conditioning device is, for example, symmetrical relative to the center axis Oy).
  • the first outlet 160 may be a foot outlet, and the foot outlet may further include a front foot outlet 161 and a rear foot outlet 162 .
  • the opening center of the rear foot outlet 162 The line is, for example, the A-A line. It should be understood that embodiments of the present disclosure are not limited to the specific number of first outlets.
  • the second outlet 180 may be a ventilation outlet or a defogging outlet. Embodiments of the present disclosure are not limited by the specific number and type of the second outlets.
  • the stratified partition wall 150 refers to a wall-like structure used to stratify the air flow in the housing, and the partition wall may, for example, include a plurality of sub-partition walls used to achieve stratification of the air flow.
  • the layered partition wall 150 includes, for example, a first partition wall 151 .
  • the first partition wall 151 has a first partition part 1511 , and the first partition part 1511 partitions the first space V1 and the second space V2 in the housing 110 .
  • a through opening is formed inside the housing via the first partition wall to achieve connection with the corresponding damper
  • the first partition wall may, for example, include a plurality of partitions according to actual needs. , for example, including a first partition and a second partition.
  • first space V1 and the second space V2 refer to two subspaces in the housing separated by the first partition wall.
  • the first space V1 is schematically shown as a gray diagonal line on the lower left and upper right side
  • the second space V2 is schematically shown as a black diagonal line on the upper left and lower right side.
  • the heating, ventilation and/or air conditioning device 100 further includes a first damper 170, which is disposed inside the housing 110, and is operable in a first position and a second position. Location.
  • the first damper is, for example, a sheet damper, which can rotate around its own rotation axis between two extreme positions, and the first position and the second position, for example, refer to the two extreme positions of the first damper 170 , that is, the fully open position and the fully closed position.
  • the first position is, for example, a fully open position of the first damper, for example, a position where the first damper is fully opened to abut the first partition wall 151 (as shown in FIG. 3 ).
  • the second position is, for example, a fully closed position, that is, a position in which the first damper abuts against the internal structure of the housing and causes the opening corresponding to the first damper to be completely closed.
  • the said operable first position and second position refer to the opening position of the first damper. If it can be adjusted according to the actual situation, for example, the position of the first damper can be adjusted by controlling the rotation direction and position of the rotating motor connected to the first damper, or the position of the first damper can also be adjusted in other ways, so that the position of the first damper can be adjusted according to the actual situation. Actual need to be in first position or second position. It should be understood that the embodiments of the present disclosure are not limited by the specific adjustment method of the first damper opening position.
  • the first damper 170 when the first damper 170 is in the first position, the first damper 170 is engaged with the first partition 1511 to guide the airflow in the second space V2 through the The second outlet 180 flows out and guides the airflow in the first space V1 to flow out through the first outlet 160 .
  • FIG. 4 shows a cross-sectional view of the heating, ventilation and/or air conditioning device 100 according to the central axis Oy in FIG. 2 , with the first damper in the second position (fully closed position).
  • the first damper 170 closes the first outlet 160 so that the airflow in the first space V1 and the second space All the airflow in V2 flows out from the second outlet 180 .
  • a layered partition wall is provided in the heating, ventilation and/or air conditioning device, and the first partition wall in the layered partition wall is The first partition separates the first space V1 and the second space V2 in the housing, and through the cooperation of the first partition and the first damper, when the first damper is in the first position, the first damper and the first partition are combined to guide the airflow in the second space V2 to flow out through the second outlet, and guide the airflow in the first space V1 to flow out through the first outlet, so that through the reasonable planning and arrangement of the structural components in the housing, reuse
  • the first air door participates in the separation and guidance of the air flow space, so that through the flexible cooperation of the first partition part of the first partition wall and the first air door component, two air flow spaces for different air flows can be well separated and different air flows can be guided.
  • the airflow in the space is output through different outlets, which facilitates the flexible layout of the airflow types in each outlet of
  • FIG. 5 shows a sectional view of the heating, ventilation and/or air conditioning device 100 according to the central axis Oy in FIG. 2 , with the first mixing flap and the second mixing flap in the fully open position.
  • FIG. 6 shows a cross-sectional view of the heating, ventilation and/or air conditioning device 100 according to the central axis Oy in FIG. 2 , with the first mixing flap and the second mixing flap in a fully closed position.
  • the heating, ventilation and/or air conditioning device 100 further includes a first airflow processing unit 130 , a first mixing damper 310 and/or a second mixing damper 320 .
  • the first airflow processing unit 130 is provided in the housing 110 and located at the upstream of the first partition wall 151. It should be understood that the upstream and downstream mentioned in this application are determined along the flow direction of the intake airflow.
  • the first air flow processing unit 130 may be a heater, such as a PTC heater.
  • the first mixing damper 310 refers to a damper component used to adjust the temperature of the airflow entering the first space V1; the second mixing damper 320 refers to a damper used to adjust the temperature of the airflow entering the second space V2. part.
  • the first mixing damper and the second mixing damper may, for example, be disposed downstream of the first airflow processing unit 130 along the flow direction of the intake airflow, and disposed in the corresponding first space V1 and the upstream of the second space V2, so as to realize the adjustment of the air flow temperature in the first space and the second space by controlling the ratio of the air flow passing through and bypassing the first air flow processing unit 130.
  • first mixing damper and the second mixing damper may be damper components of the same type and size, for example, or damper components of different types or sizes may be selected according to actual needs. Embodiments of the present disclosure are not limited by the type relationship and size relationship of the first mixing damper and the second mixing damper.
  • first mixing damper and the second mixing damper may both be sliding dampers as shown in Figure 5, the sliding damper flaps of which are operable to slide around their sliding central axes in two opposite directions to control the The opening position of the sliding damper.
  • each of the first mixing damper and the second mixing damper has, for example, two extreme positions: a fully open position and a fully closed position, and the first mixing damper and the second mixing damper can be in the fully closed position. Move between the open position and the fully closed position.
  • the first partition wall 151 further has a second partition part 1512 , for example.
  • the second partition 1512 separates the third space V3 and the fourth space V4 in the housing 110 .
  • Part of the airflow passing through the first airflow processing unit 130 enters the third space V3, and the other part enters the fourth space V4.
  • the third space V3 is schematically shown filled with black particles
  • the fourth space V4 is schematically shown filled with vertical lines.
  • third space and the fourth space are only intended to illustrate two different air flow spaces divided by the second partition of the first partition wall, and are not intended to be limiting.
  • the third space V3 and the first space V1 are separated.
  • the second mixing damper 320 is in the fully open position, the fourth space V4 and the second space V2 are separated.
  • the fully open position of the first mixing air door 310 refers to, for example, the first mixing air door.
  • the door is in a position that cooperates with the second partition to achieve separation of the first space and the third space.
  • it means that the first mixing air door 310 slides to the extreme position along the first direction and is engaged with the second partition 1512 location (as shown in Figure 5).
  • the first mixing door 310 when the first mixing door 310 is in the fully open position, one end of the first mixing door 310 is engaged with the second partition 1512, and the other end is combined with the inner wall of the housing.
  • the second partition 1512 , the first mixing door 310 and the inner wall of the housing cooperate to separate the third space V3 from the first space V1 .
  • the airflow flowing through the first airflow processing unit 130 in the stratified airflow will be due to the first mixing.
  • the damper 310 is blocked and cannot enter the first space V1. That is, for the stratified airflow corresponding to the first mixing damper, only a part of the stratified airflow that does not flow through the first airflow processing unit 130 can Enter the first space (that is, it can be subsequently exported through the corresponding exit).
  • the fully closed position of the first mixing damper 310 refers, for example, to the position where the first mixing damper 310 slides to the extreme position in a second direction that is substantially opposite to the first direction (as shown in FIG. 6 ), at which time the first mixing damper 310 slides to the extreme position.
  • the first mixing damper is in a position that cooperates with the inner wall of the housing to separate the first space and the fifth space described below. In this case, as shown in FIG. 6 , for the stratified airflow corresponding to the first mixing damper, the airflow in the stratified airflow that does not flow through the first airflow processing unit 130 will be affected by the first mixing damper.
  • the 310 and cannot enter the first space V1, that is, for the stratified airflow corresponding to the first mixing damper, only a part of the airflow flowing through the first airflow processing unit 130 in the stratified airflow can enter the first space V1. Within the first space (that is, it can be subsequently exported through the corresponding exit).
  • the fully open position of the second mixing damper 320 refers to the position where the second mixing damper 320 slides to the extreme position along the third direction and engages with the second partition 1512 (as shown in FIG. 5 ).
  • the second mixing door 320 when the second mixing door 320 is in the fully open position, one end of the second mixing door 320 is engaged with the second partition 1512, and the other end is combined with the inner wall of the housing.
  • the second partition 1512 , the second mixing door 320 and the inner wall of the housing cooperate to separate the fourth space V4 from the second space V2 .
  • the airflow flowing through the second airflow processing unit 130 in the stratified airflow will be due to the second mixing.
  • the damper 320 is blocked and cannot enter the second space V2. That is, at this time, for the stratified airflow corresponding to the second mixing damper, only the stratified airflow does not flow through the first airflow processing unit. A part of the airflow 130 can enter the second space (that is, it can subsequently be output through the corresponding outlet).
  • the fully closed position of the second mixing damper 310 refers to a position in which the second mixing damper 320 slides to the limit in a fourth direction that is substantially opposite to the third direction (as shown in FIG. 6 ).
  • the second mixing damper is in a position that cooperates with the inner wall of the housing to separate the second space and the sixth space described below.
  • the airflow in the stratified airflow that does not flow through the first airflow processing unit 130 will be affected by the second mixing damper.
  • the first mixing damper may be disposed in the flow path of the upper airflow in the stratified airflow to achieve temperature regulation of the upper airflow in the stratified airflow
  • the second mixing damper may be disposed in the lower layer of the stratified airflow. in the flow path of the airflow to achieve temperature regulation of the lower airflow.
  • the first mixing damper and the second mixing damper can be in a fully open position or a fully open position according to actual needs.
  • any intermediate position between the closed positions as shown in Figure 3
  • the air circulation pattern in this intermediate position will be described in more detail below in conjunction with the functional modes of heating, ventilation and/or air conditioning.
  • the housing by arranging the housing to include a first mixing door, a second mixing door and a first airflow processing unit (such as a heater), it is possible to adjust the opening position of the first mixing door according to actual needs.
  • a first airflow processing unit such as a heater
  • a second partition is used to separate the third space and the fourth space in the housing, and is arranged to separate the third space from the first space when the first mixing damper is in a fully closed position;
  • the fourth space is separated from the second space, so that the first mixing damper and the second mixing damper can be reused as spacers between adjacent spaces, thereby optimizing Structural layout within the casing.
  • the layered partition wall 150 further has a second partition wall 152 .
  • the second partition wall 152 is located upstream of the first air flow treatment unit 130 , and separates the fifth space V5 and the sixth space V6 in the housing 110 .
  • the second partition wall is formed from the lower surface of the first airflow processing unit 130 Starting from the surface (for example at the midpoint of the lower surface), and extending for example to the corresponding inner wall of the housing or joining other components within the housing, for example in Figure 6, which for example is connected to the second air flow treatment unit (e.g. evaporation The inner surfaces of the device) are joined together to separate the fifth space and the sixth space.
  • the second air flow treatment unit e.g. evaporation
  • part of the airflow passing through the first airflow processing unit 130 comes from the fifth space V5, and the other part comes from the sixth space V6.
  • the fifth space and the sixth space are further divided upstream of the first air flow treatment unit via the second partition wall, so that the third space can be Different airflow spaces corresponding to different stratified airflows are set upstream of an airflow processing unit, so that good stratified airflow spaces are provided on both the upper and lower flow paths of the first airflow processing unit; and by setting the first mixing damper in a fully closed position
  • the fifth space is separated from the first space; when the second mixing damper is in a fully closed position, the sixth space is separated from the second space, so that the first mixing damper and the third mixing damper can be reused to the greatest extent.
  • the two mixing dampers are used to separate and connect each space according to actual needs, which facilitates the flexible selection and setting of air flow paths and guidance of the air flow direction, and enables the device to achieve multiple working modes.
  • the heating, ventilation and/or air conditioning device 100 further includes a second air flow processing unit 120 .
  • the second air flow treatment unit may be a heat exchanger. Specifically, for example, it is an evaporator in the cooling mode and a condenser in the heat pump mode.
  • the second airflow treatment unit 120 is disposed in the housing 110 and located upstream of the second partition wall 152 .
  • the second air flow processing unit may be disposed close to the heating,
  • the position of the inlet of the ventilation and/or air conditioning device is such that the airflow entering the housing will first pass through the second airflow treatment unit.
  • one end of the second partition wall is joined to the lower surface of the first air flow treatment unit, and the other end of the second partition wall is joined to the inner surface of the second air flow treatment unit (which faces the housing). inside).
  • Part of the airflow passing through the second airflow processing unit 120 enters the fifth space V5, and the other part enters the sixth space V6.
  • the heating, ventilation and/or air conditioning device 100 to further include a second air flow processing unit 120, and further arranging the second air flow processing unit to be located upstream of the second partition wall, so that it can enter the heating, ventilation and/or air conditioning device 100.
  • the stratified airflow can first undergo airflow treatment (for example, through an evaporator) through the second airflow processing unit, and then enter the fifth space V5 and the sixth space V6 respectively, and then further pass through the first airflow treatment according to actual needs.
  • Unit treatment (such as heating treatment via a heater) facilitates multi-level treatment of the inlet airflow according to actual needs to achieve good heating, ventilation and/or air conditioning effects.
  • the first outlet 160 is a foot blowing outlet. At this time, the air flow output through the first outlet is, for example, internal circulation air.
  • the first inlet airflow among the multiple inlet airflows that enter in layers can be passed through the layered partition wall and the corresponding airflow space provided in the application.
  • the upper air intake airflow passes through the airflow path composed of the second airflow processing unit, the fifth space and/or the third space, and the first space, and finally completely passes through the foot blower outlet when the foot blower outlet is opened. output.
  • the foot blowing operation can also be performed through internally circulated air.
  • the second outlet 180 includes at least one of a ventilation outlet and a defogging outlet. And at this time, the air flow output through the second outlet is, for example, fresh air.
  • the second outlet as at least one of a ventilation outlet and a defogging outlet
  • the input stratified airflow is internal circulation air and fresh air, through the cooperation of the first damper and the stratified partition wall
  • the circulating air is used as the first intake air flow (for example, the upper intake air flow), and passes through the air flow path composed of the second air flow processing unit, the fifth space and/or the third space, and the first space.
  • fresh air can also be used as the second intake air flow (for example, the lower air intake air flow), through the second processing unit, the sixth space and /Or the air flow path composed of the fourth space and the second space is output through the second outlet under the guidance of the first damper, thereby realizing functions such as ventilation and/or defogging.
  • the second intake air flow for example, the lower air intake air flow
  • the second airflow processing unit 120 and the first airflow processing unit 130 are arranged in a substantially orthogonal manner.
  • the first airflow processing unit 130 is arranged substantially horizontally relative to the vehicle in the installed state
  • the second airflow processing unit 120 is arranged substantially vertically relative to the vehicle in the installed state.
  • Thin design especially reducing the three-dimensional volume of the heating, ventilation and/or air conditioning device in the Z-direction (vertical); on the other hand, by arranging the first and second air flow processing units in a vertical layout, so that in this layout It can better improve the internal space of the casing, and is conducive to further setting up stratified partition walls and forming airflow spaces corresponding to different stratified airflows, which is conducive to better optimizing the internal structure of the casing based on this vertical layout and achieving a better Good stratified airflow flow and guidance.
  • the first outlet 160 is located above the second air flow treatment unit 120 .
  • the structural layout of the heating, ventilation and/or air conditioning device can be optimized, and it is advantageous to install the heating, ventilation and/or air conditioning device to the instrument of the motor vehicle. Behind the board, the air flow is better outputted through the first outlet (such as the foot outlet).
  • the heating, ventilation and/or air conditioning device 100 further includes a central partition wall 141 that divides the housing into a left half 112 and a right half 113 .
  • the left half and the right half have, for example, structures that are symmetrical along the plane where the central partition wall is located, and both have the structural components and functional modes as shown previously with reference to FIGS. 1 to 11 .
  • Figure 2 shows the right half of the blowing foot opening 160, which includes a front blowing foot outlet and a rear blowing foot outlet, and combined with the corresponding cross-sectional views of the right half of the housing shown in Figures 7 to 11,
  • the right half of the housing further includes a front ventilation outlet, a rear ventilation outlet, and a defogger outlet.
  • the left half of the housing has, for example, a front ventilation outlet, a rear ventilation outlet, a defogging outlet, a front blowing foot outlet, and a rear blowing foot outlet.
  • port and correspondingly has a layered partition wall, a first air flow processing unit and a second air flow processing unit.
  • the left half 113 is configured, for example, to provide corresponding heating, ventilation and/or air conditioning to the right side (passenger side) of the motor vehicle. or air conditioning function, and can flexibly switch between the dual modes of foot blowing and ventilation, the dual modes of foot blowing and defogging, defog mode, foot blowing mode, and ventilation mode.
  • the right half 114 is configured, for example, to provide corresponding heating, ventilation and/or air conditioning to the left side (driver's side) of the motor vehicle. or air conditioning function, and can flexibly switch between the dual modes of foot blowing and ventilation, the dual modes of foot blowing and defogging, defog mode, foot blowing mode, and ventilation mode.
  • the left half 112 can also be set to provide corresponding heating, ventilation and heating to the left side (driver's side) of the motor vehicle. /or air conditioning function, the right half 113 provides corresponding heating, ventilation and/or air conditioning functions to the right side (passenger side) of the motor vehicle.
  • the shell is divided into a left half and a right half by setting up a central partition wall, so that on the basis of the stratified airflow entering and independent temperature control of the stratified airflow as described above, the casing is further passed through the central
  • the partition wall divides the heating, ventilation and/or air conditioning device 100 into left and right sections, and the left half and the right half can be independently controlled, so that the left half and the right half can be independently configured in the foot-blowing and ventilation double mode, foot blowing and defogging dual mode, defogging mode, foot blowing mode, and ventilation mode, so as to be able to provide different heating, ventilation and/or to the right side (passenger side) and left side (driver side) of the motor vehicle. or air-conditioning function, and realizes the design of double-layer and double-zone in heating, ventilation and/or air-conditioning units.
  • the heating, ventilation and/or air-conditioning device 100 may be, for example, a double-layer, dual-zone heating, ventilation and/or air-conditioning device, that is, the heating, ventilation and/or air-conditioning device 100 can pass through the upper air flow inlet and the lower air flow inlet respectively.
  • the inlet airflow (which may be of the same airflow type, or may be of different airflow types, for example) is implemented to divide the upper and lower airflows into relatively independent airflow paths and channels.
  • the heating, ventilation and/or air conditioning device 100 may, for example, be left and right symmetrical along the central axis. Specifically, it is divided into a left half area and a right half area via the central axis, and the left half area and the right half area have the same structure.
  • the heating, ventilation and/or air conditioning device 100 has a housing 110 , and the housing has, for example, an internal structure of the housing as shown in FIGS. 1-3 . Specifically, the housing defines an inlet 111, a first outlet (here the foot blowing outlet) 160 and a second outlet 180 (the second outlet 180 is If required, a defogging outlet 181 and/or a ventilation outlet 182 may be included.
  • the first outlet more specifically includes a front foot-blowing outlet 161 and a rear foot-blowing outlet 162;
  • the ventilation outlet 182 more specifically includes a front ventilation outlet 1821 and a rear ventilation outlet. Exit 1822.
  • the second air flow processing unit 130, the stratified partition wall 150, the first air flow processing unit 120, the first damper 170, the first mixing damper 310, and the second mixing damper 320 are also provided in the housing.
  • the second air flow processing unit 130 is, for example, an evaporator, which is disposed close to the inlet 111 of the housing.
  • the first air flow processing unit 120 is, for example, a heater.
  • the layered partition wall 150 includes, for example, the first partition wall 151 and the second partition wall 152 as mentioned above, and the first partition wall 151 has, for example, a first partition part 1511 and a second partition part 1522. And wherein, the first partition 1511 separates the first space V1 and the second space V2, and the second partition 1512 separates the third space V3 and the fourth space V4.
  • the second partition wall 152 separates the fifth space V5 and the sixth space V6. As shown in FIG. 6 , the upstream end of the second partition wall 152 is connected to the inner side of the second air flow treatment unit 130 , and the downstream end of the second partition wall 152 is connected to the first air flow treatment unit. 120 lower surface.
  • the first damper is a damper component configured for a first opening (foot-blowing opening), and is configured to control an opening of the first opening. And as described in detail before, when the first damper 170 is in the first position, the first damper 170 is engaged with the first partition 1511 to guide the airflow in the second space V2 through the The second outlet 180 flows out and guides the airflow in the first space V1 to flow out through the first outlet 160; when the first damper 170 is in the second position, the first damper 170 closes the first outlet 160, so that the air flow in the first space V1 and the air flow in the second space V2 both flow out from the second outlet 180.
  • the first mixing damper 310 is configured to adjust the ratio of the airflow passing through the first airflow processing unit and bypassing the first airflow processing unit, thereby adjusting the temperature of the airflow entering the first space V1.
  • the third space V3 is separated from the first space V1; when the first mixing damper 310 is in a fully closed position, the fifth space V5 is separated from the first space V1.
  • the first space V1 is separated.
  • the second mixing damper 320 is configured to adjust the ratio of the airflow passing through the first airflow processing unit and bypassing the first airflow processing unit, thereby adjusting the temperature of the airflow entering the second space V2.
  • the housing is also provided with a defogger damper 191, a front ventilation damper 1921, and a rear ventilation damper 1922.
  • the defog damper 191 is configured to adjust the opening of the defog outlet 181 .
  • the front ventilation damper 1921 is configured to adjust the opening of the front ventilation outlet 1821
  • the rear ventilation damper 1922 is configured to adjust the opening of the rear ventilation outlet 1822 .
  • the defogger damper 191 and the front ventilation damper 1921 are, for example, sliding dampers
  • the rear ventilation damper is, for example, a butterfly damper.
  • FIG. 7 shows a cross-sectional view of the heating, ventilation and/or air conditioning device 100 taken along line A-A in FIG. 2 , wherein the heating, ventilation and/or air conditioning device 100 is in the foot blowing and ventilation dual mode.
  • the first damper 170 when the heating, ventilation and/or air-conditioning device 100 is in the foot-blowing dual mode, the first damper 170 is configured to be in a first position to fully open the foot-blowing opening 160 and separate it from the first The parts are connected to guide the air flow.
  • the defogger damper 191 will be in a fully closed position to completely close the defogger outlet, and the front ventilation damper 1921 and the rear ventilation damper 1922 will be opened.
  • the specific opening position can be adjusted according to actual needs, for example, to allow the front ventilation outlet and the rear ventilation outlet to open. Open at desired opening.
  • the openings of the first mixing door and the second mixing door can be further adjusted to control the proportion of the stratified airflow flowing through and bypassing the first airflow processing unit 120 (heater).
  • the first mixing damper 310 and the second mixing damper 320 are both in the middle position, for example.
  • the upper layer of the casing inlet is supplied with internal circulation air
  • the lower layer of the casing inlet is supplied with fresh air
  • the air flow in the casing is specifically: for the upper layer air flow, the upper layer inlet air flow (here is the internal circulation
  • the air intake airflow F1i enters from the upper part of the inlet and is first processed by the second airflow processing unit 130 (evaporator).
  • the upper-layer intake airflow F1i will be divided into two airflow branches, in which the first airflow branch surrounds After passing through the first air flow processing unit 120, it enters the fifth space V5 and directly enters the first space V1 from the left side of the first mixing damper 310 (the air flow direction shown with a dotted line in Figure 7).
  • the second airflow branch of the upper intake airflow F1i will pass through the first airflow processing unit (heater) 120, specifically, it will enter the fifth space V5, and then enter the third space V3 through the first airflow processing unit 120. , and enters the first space V1 via the right side of the first mixing door 310 (the air flow direction shown as a dotted line in FIG.
  • the second air flow passing through the first air flow processing unit 120 is divided into The branch will be heated by the heater to have a higher temperature relative to the first air flow branch.
  • the two airflow branches will mix and form the upper output airflow (here, the internal circulation air output airflow) F1o.
  • the first damper 170 in the first position will be separated from the first
  • the upper output airflow F1o in the first space V1 is guided to flow out through the first outlet 160, where the upper output airflow F1o is output through the rear blowing foot outlet 161 and the front blowing foot outlet 162, for example.
  • the lower airflow (herein, the fresh air intake airflow) F2i enters from the lower part of the inlet, and first passes through the processing of the second airflow processing unit 130 (evaporator) , thereafter, the lower intake airflow F2i will be divided into two airflow branches, where the first airflow branch bypasses the first airflow processing unit 120, enters the sixth space V6, and directly passes from the sixth space V6 to the second mixing damper
  • the right side of 320 enters the second space V2 (the air flow direction shown by the dotted line in Figure 7).
  • the second airflow branch of the lower intake airflow F2i will pass through the first airflow processing unit (heater) 120, specifically, it will enter the sixth space V6, and then enter the fourth space V4 through the first airflow processing unit 120, and finally from The left side of the second mixing door 320 enters the second space V2 (the air flow direction shown as a dotted line in FIG. 7 ), and the second air flow branch passing through the first air flow processing unit 120 will be heated by the heater to have Higher temperature relative to the first airflow branch.
  • the two airflow branches will mix and form the lower output airflow F2o, and at this time, the first damper 170 in the first position will engage with the first partition and guide the second space
  • the lower output airflow F2o in V2 flows out through the second outlet, where the lower output airflow (herein, the fresh air output airflow) F2o is output, for example, through the front ventilation outlet 1821 and the rear ventilation outlet 1822.
  • the internal circulation air output airflow F1o and the fresh air output airflow F2o respectively output from the blowing foot outlet and the ventilation outlet can independently realize temperature adjustment control through the set first mixing door and the second mixing door, so that the blowing can be flexibly controlled.
  • the output airflow temperature of the foot outlet and ventilation outlet is adjusted.
  • the heating, ventilation and/or air conditioning device proposed in this application /Or the air-conditioning system can realize the function of exhausting fresh air from both the front vent and the rear vent, and exhausting circulated air from both the front and rear foot outlets.
  • FIG. 8 shows a cross-sectional view of the heating, ventilation and/or air conditioning device 100 taken along line A-A in FIG. 2 , wherein the heating, ventilation and/or air conditioning device 100 is in the foot blowing and defogging dual mode.
  • the first damper 170 when the heating, ventilation and/or air conditioning device 100 is in the foot blowing and defogging dual mode, the first damper 170 is configured to be in a first position to fully open the foot blowing opening 160 and connect it to the first The partitions are joined to guide the air flow.
  • the defogger damper 191 will be in the open position.
  • the specific opening position can be adjusted according to actual needs to flexibly control the opening of the defogger outlet (for example, in Figure 8, the defogger damper is close to the fully open position).
  • the front ventilation damper 1921 and The rear ventilation damper 1922 is in a fully closed position to completely close the front ventilation outlet and the rear ventilation outlet.
  • the openings of the first mixing door 310 and the second mixing door 320 can be further adjusted to control the proportion of airflow flowing through and bypassing the first airflow processing unit 120 (heater).
  • the first mixing damper 310 and the second mixing damper 320 are both in the middle position, for example.
  • the upper layer of the casing inlet is supplied with internal circulation air, for example, and the lower layer of the casing inlet is supplied with fresh air, for example.
  • the air flow in the housing is specifically: for the upper air flow, the upper air intake air flow (here, the internal circulation air intake air flow) F1i enters from the upper part of the inlet, first passes through the second air flow processing unit 130 (evaporator) ), after which the upper intake airflow F1i will be divided into two airflow branches, where the first airflow branch bypasses the first airflow processing unit 120, enters the fifth space V5 and directly passes from the left side of the first mixing door 310 side enters the first space V1 (the airflow direction shown by the dotted line in Figure 8).
  • the second airflow branch of the upper intake airflow F1i will pass through the first airflow processing unit (heater) 120, specifically, it will enter the fifth space V5, and then enter the third space V3 through the first airflow processing unit 120. , and enters the first space V1 via the right side of the first mixing door 310 (the air flow direction shown as a dotted line in Figure 8), the second air flow branch passing through the first air flow processing unit 120 will be heated by the heater, to have a higher temperature relative to the first airflow branch. Thereafter, in the first space V1, the two airflow branches will mix and form the upper output airflow (here, the internal circulation air output airflow) F1o.
  • the upper output airflow here, the internal circulation air output airflow
  • the first damper 170 in the first position will be separated from the first
  • the upper layer output airflow F1o in the first space V1 is connected to each other, and the upper layer output airflow F1o in the first space V1 is guided to flow out through the first outlet 160.
  • the upper layer output airflow (internal circulation air output airflow) F1o for example, passes through the rear blowing foot outlet 162 and the front blowing foot outlet 161. output.
  • the lower air intake air flow (herein, the fresh air intake air flow) F2i enters from the lower part of the inlet, and first passes through the second air flow processing unit 130 (evaporator). generator), thereafter, the lower intake airflow F2i will be divided into two airflow branches, where the first airflow branch bypasses the first airflow processing unit 120, enters the sixth space V6, and directly exits the sixth space V6
  • the second space V2 is entered from the right side of the second mixing damper 320 (the airflow direction shown by the dotted line in FIG. 8 ).
  • the second airflow branch of the lower intake airflow F2i will pass through the first airflow processing unit (heater) 120, specifically, it will enter the sixth space V6, and then enter the fourth space V4 through the first airflow processing unit 120, and finally from The left side of the second mixing door 320 enters the second space V2 (the air flow direction shown as a dotted line in FIG. 8 ), and the second air flow branch passing through the first air flow processing unit 120 will be heated by the heater to have Higher temperature relative to the first airflow branch.
  • the two airflow branches will mix and form a lower output airflow (fresh air output airflow) F2o, and at this time, the first damper 170 in the first position will engage with the first partition , and guide the lower output airflow F2o in the second space V2 to flow out through the second outlet, where the lower output airflow F2o is output through the defogger outlet 181, for example.
  • a lower output airflow fresh air output airflow
  • the internal circulation air output airflow F1o and the fresh air output airflow F2o respectively output from the blowing foot outlet and the defogger outlet can independently realize temperature adjustment control through the set first and second mixing dampers, so that the temperature can be adjusted flexibly. Adjust the output air flow temperature of the foot blowing outlet and the defogging outlet.
  • FIG. 9 shows a cross-sectional view of the heating, ventilation and/or air conditioning device 100 taken along line A-A in FIG. 2 , wherein the heating, ventilation and/or air conditioning device 100 is in a defogging mode.
  • the first damper 170 when the heating, ventilation and/or air conditioning device 100 is in the defogging mode, the first damper 170 is configured to be in the second position to completely close the blower foot opening 160 .
  • the defogger damper 191 will be in an open position.
  • the specific opening position can be adjusted according to actual needs to flexibly control the opening of the defogger outlet.
  • the defogger damper 191 is in a fully open position to open the defogger outlet.
  • 181 is fully open.
  • the front ventilation damper 1921 and the rear ventilation damper 1922 are in a fully closed position to completely close the front ventilation outlet and the rear ventilation outlet.
  • the openings of the first mixing damper 310 and the second mixing damper 320 can be further adjusted, To control the ratio of the stratified airflow flowing through and bypassing the first airflow processing unit 120 (heater).
  • the first mixing door 310 and the second mixing door 320 are, for example, in a fully closed position, so that each layered airflow completely passes through the first airflow processing unit 120 .
  • the air flow in the casing is specifically: for the upper air flow, the upper air inlet air flow F1i (herein, the fresh air inlet air flow), for example, flows from the inlet
  • the upper layer part enters and first passes through the second air flow processing unit 130 (evaporator).
  • the upper layer inlet air flow F1i will all pass through the first air flow processing unit (heater) 120. Specifically, it will enter the second air flow processing unit (evaporator).
  • fifth space V5 and then enters the third space V3 through the first airflow processing unit 120, and enters the first space V1 through the right side of the first mixing damper 310 (the air flow direction shown as a dotted line in Figure 9).
  • the lower air intake air flow (herein, the fresh air intake air flow) F2i enters from the lower part of the inlet. First, it passes through the processing of the second air flow processing unit 130 (evaporator), and then the lower air flow enters.
  • the airflow F2i will all pass through the first airflow processing unit (heater) 120, specifically, it will enter the sixth space V6, then enter the fourth space V4 through the first airflow processing unit 120, and finally pass through the second mixing damper 320.
  • the left side enters the second space V2 (the airflow direction shown by the dotted line in Figure 9).
  • the first damper 170 in the second position completely closes the foot blowing outlet, so that the upper air intake air flow F1i in the first space V1 and the lower air intake air flow F2i in the second space V2 jointly form the output air flow Fo, And the output airflow Fo is output through the defogging outlet 181 .
  • the stratified entry of fresh air can be achieved through the stratified partition wall, and corresponding air flow spaces are set for each layer of air flow, and by setting the first damper in the second position, in good condition
  • the airflow in the first space and the second space can be output from the defogger outlet.
  • the upper airflow and the lower airflow can realize temperature adjustment control independently through the provided first mixing damper and the second mixing damper, so that the temperature of each layer in the stratified airflow can be flexibly controlled.
  • FIG. 10 shows a cross-sectional view of the heating, ventilation and/or air conditioning device 100 taken along line A-A in FIG. 2 , wherein the heating, ventilation and/or air conditioning device 100 is in the foot blowing mode.
  • the first damper 170 When the heating, ventilation and/or air conditioning device 100 is in the foot blowing mode, the first damper 170 is configured to be in the first position to fully open the foot blowing opening 160 and engage with the first partition to achieve Guidance of airflow.
  • the defog damper 191 will be operatively in the open position, and the specific opening position For example, the setting can be adjusted according to actual needs to flexibly control the opening of the defogger outlet.
  • the defogger damper 191 is in an intermediate position between the fully open position and the fully closed position, and is close to the fully closed position, so as to Open the defogging outlet 181 slightly to prevent fogging on the motor vehicle glass.
  • the front ventilation damper 1921 and the rear ventilation damper 1922 are in a fully closed position to completely close the front ventilation outlet 1821 and the rear ventilation outlet 1822.
  • the openings of the first mixing door 310 and the second mixing door 320 can be further adjusted to control the proportion of the stratified airflow flowing through and bypassing the first airflow processing unit 120 (heater).
  • the first mixing damper 310 and the second mixing damper 320 are, for example, in a fully closed position, so that each stratified airflow completely passes through the first airflow processing unit 120 .
  • the upper layer of the casing inlet is supplied with internal circulating air
  • the lower layer of the casing inlet is supplied with fresh air
  • the air flow in the casing is specifically: for the upper layer air flow, the upper layer inlet air flow F1i (here is internal
  • the circulating intake air flow) enters from the upper part of the inlet, and first passes through the second air flow processing unit 130 (evaporator), and then the upper intake air flow F1i will all pass through the first air flow processing unit (heater) 120 , specifically, it will enter the fifth space V5, and then enter the third space V3 through the first airflow processing unit 120, and enter the first space V1 through the right side of the first mixing damper 310 (shown as a dotted line in Figure 10 airflow direction shown).
  • the airflow entering the first space will be the upper output airflow F1o
  • the first damper 170 in the first position will engage with the first partition and guide the upper output airflow F1o in the first space V1 through the first Outlet 160 flows out, where the upper layer output airflow (internal circulation air output airflow) F1o is output, for example, through the rear blowing foot outlet 162 and the front blowing foot outlet 161.
  • the lower air intake air flow (herein, the fresh air intake air flow) F2i enters from the lower part of the inlet. First, it passes through the processing of the second air flow processing unit 130 (evaporator), and then the lower air flow enters.
  • the airflow F2i will all pass through the first airflow processing unit (heater) 120, specifically, it will enter the sixth space V6, then enter the fourth space V4 through the first airflow processing unit 120, and finally pass through the second mixing damper 320.
  • the left side enters the second space V2 (the air flow direction shown by the dotted line in Figure 10).
  • the airflow entering the second space V2 will be the lower output airflow F2o
  • the first damper 170 in the first position will engage with the first partition and guide the lower output airflow F2o in the second space V2 through the first An outlet 160 flows out, where the lower output airflow (fresh air output airflow) F2o is output, for example, through the defogging outlet 181.
  • the stratified entry of fresh air and internal circulation air can be achieved through stratified partition walls, and corresponding air flow spaces are set up for each layer of air flow, and by setting the first
  • the damper is in the first position, and on the basis of well dividing the air flow space, it can also guide the air flow in the first space and the second space, so that the internal circulation output air flow in the first space is output from the foot blowing outlet, and the air flow in the second space is output from the foot blower outlet.
  • the fresh air output airflow in the space is output from the defogger outlet.
  • the upper airflow and the lower airflow can realize temperature adjustment control independently through the set first mixing door and the second mixing door, so that the temperature of each layer in the stratified airflow can be flexibly controlled, and the blower can In foot mode, the airflow temperature output from the foot blowing outlet and the defogging outlet can be controlled independently.
  • FIG. 11 shows a cross-sectional view of the heating, ventilation and/or air conditioning device 100 taken along line A-A in FIG. 2 , wherein the heating, ventilation and/or air conditioning device 100 is in ventilation mode.
  • the first damper 170 When the heating, ventilation and/or air conditioning device 100 is in the ventilation mode, the first damper 170 is configured to be in the second position to completely close the blower foot opening 160 .
  • the defog damper 191 will be in a fully closed position to completely close the defog outlet 181.
  • the front ventilation damper 1921 and the rear ventilation damper 1922 are in a fully open position to fully open the front ventilation outlet 1821 and the rear ventilation outlet 1822.
  • the openings of the first mixing door 310 and the second mixing door 320 can be further adjusted to control the proportion of the stratified airflow flowing through and bypassing the first airflow processing unit 120 (heater).
  • the first mixing door 310 and the second mixing door 320 are, for example, in a fully open position, so that each layered airflow completely bypasses the first airflow processing unit 120 .
  • the air flow in the casing is specifically: for the upper air flow, the upper air inlet air flow F1i (herein, the fresh air inlet air flow), for example, flows from the inlet
  • the upper layer part enters and first passes through the second air flow processing unit 130 (evaporator).
  • the upper layer inlet air flow F1i will completely bypass the first air flow processing unit (heater) 120. Specifically, it will enter The fifth space V5, and directly enters the first space V1 from the left side of the first mixing damper 310 (the airflow direction shown by the dotted line in Figure 11).
  • the lower air intake air flow (herein, the fresh air intake air flow) F2i enters from the lower part of the inlet. First, it passes through the processing of the second air flow processing unit 130 (evaporator), and then the lower air flow enters.
  • the airflow F2i will completely bypass the first airflow processing unit (heater) 120, specifically, it will enter the sixth space V6, and then directly enter the second space V2 from the right side of the second mixing damper 320 (as shown in Figure 11 The air flow direction shown in dashed lines).
  • the first damper 170 in the second position completely closes the foot blowing outlet, so that the upper air intake air flow F1i in the first space V1 and the lower air intake air flow F2i in the second space V2 jointly form the output air flow Fo, And the output airflow Fo passes through the front ventilation outlet 1821 and the rear ventilation outlet 1822 output.
  • the stratified entry of fresh air can be achieved through the stratified partition walls, and corresponding air flow spaces are set for each layer of air flow, and by setting the first damper in the second position, the air flow can be well divided
  • the airflow in the first space and the second space can be output from the ventilation outlet.
  • the upper airflow and the lower airflow can realize temperature adjustment control independently through the provided first mixing damper and the second mixing damper, so that the temperature of each layer in the stratified airflow can be flexibly controlled.
  • a double-layered four-zone heating, ventilation and/or air conditioning unit 100' is also provided. That is, on the basis of the aforementioned double-layer and double-zone arrangement of the heating, ventilation and/or air-conditioning device 100, the partition partition walls are further optimized, and an auxiliary partition wall is formed on the basis of the central partition wall to divide the housing into four zones.
  • Figure 12A shows a heating, ventilation and/or air conditioning device 100' having a partition wall 140 in accordance with another embodiment of the present disclosure.
  • Figure 12B shows a top view of the heating, ventilation and/or air conditioning device 100'.
  • Figure 13A shows an internal view of the heating, ventilation and/or air conditioning device 100' of Figure 12A with the housing removed.
  • Figure 13B shows a view from another perspective of the heating, ventilation and/or air conditioning device 100' of Figure 13A.
  • Figure 14 shows a top view of the heating, ventilation and/or air conditioning device 100'
  • the heating, ventilation and/or air conditioning device 100' has, for example, a housing 110 that allows airflow to pass through.
  • the heating, ventilation and/or air conditioning device 100' also includes a layered partition wall 150, which is disposed inside the housing 110 and includes a first partition wall 151.
  • the first partition wall 151 has First partition 1511.
  • the first partition 1511 separates the first space V1 and the second space V2 in the housing 110 .
  • the specific structures of the first partition wall, the first partition part and the related first and second spaces are as previously described in detail with reference to FIGS. 1 to 3 and will not be described again here.
  • the heating, ventilation and/or air conditioning device 100' further includes a partition partition wall 140, for example.
  • the partition partition wall 140 includes a central partition wall 141 and two auxiliary partition walls 142.
  • the central partition wall 141 refers to a partition that divides the housing 111 into a left half 112 and a right half 113. As shown in Figure 12A, it is, for example, along the entrance of the housing. The vertical centerline extends to divide the housing into a left half 112 and a right half 113 .
  • the auxiliary partition wall 142 refers to a partition that divides the left half 112 and the right half 113 into two sub-parts.
  • the auxiliary partition wall may for example be connected to The central partition wall extends parallel to the central partition wall to divide the left half and the right half into two sub-parts respectively.
  • the auxiliary partition wall 142 is, for example, the The left half 112 is a first left half 1121 and a second left half 1122; the right half is a first right half 1131 and a second right half 1132.
  • the central partition wall 141 and the two auxiliary partition walls 142 divide the first space V1 into four first space sub-regions V1a, V1b, V1c, and V1d.
  • the central partition wall 141 and the two auxiliary partition walls 142 divide the second space V2 into four second space sub-regions V2a, V2b, V2c, and V2d.
  • a part of the structure of the double-layer, four-zone heating, ventilation and/or air-conditioning device 100' is, for example, the same as the structure and components described in detail in conjunction with the double-layer, two-zone heating, ventilation and/or air-conditioning device 100, and can, for example, Realize the functions of the corresponding components described above.
  • the same reference numerals are used in the drawings to identify the same or corresponding components in the heating, ventilation and/or air conditioning device 100 .
  • the heating, ventilation and/or air conditioning device by arranging the heating, ventilation and/or air conditioning device with stratified partition walls, the entry and flow of stratified airflow can be realized, and different air flow spaces are provided for different stratified airflows, which is beneficial to Subsequently, its flow is guided and independently temperature controlled; and further, by setting it to have a partition wall, and the partition wall includes a central partition wall and two auxiliary partition walls arranged on both sides of the central partition wall, so that it can pass through
  • the stratified partition wall divides the first space and the second space into four sub-areas respectively, thereby further zoning the heating, ventilation and/or air-conditioning devices on the basis of stratification, thereby achieving a double-layer
  • the four-zone heating, ventilation and/or air-conditioning device structure facilitates further guidance and independent temperature control of the airflow in the eight sub-zones, thereby greatly improving the control of the heating, ventilation and/or air-conditioning device. Flexibility, and it is conducive to setting different sub-areas in
  • FIG. 15 shows a structural diagram of the partition wall 140 in FIG. 12A.
  • the two auxiliary partition walls 142 extend substantially parallel to the central partition wall 141 .
  • the housing can be partitioned in a simple and convenient manner, thereby forming the first spatial sub-region V1a, V1b, V1c, V1d and the second spatial sub-region V2a. V2b,V2c,V2d.
  • the downstream ends of the two auxiliary partition walls 142 are provided with transversely extending walls 143 connecting the two auxiliary partition walls 142 .
  • the transverse extension wall refers to the component used to connect two auxiliary partition walls. Refer to Figure 15, Its extending direction is, for example, substantially perpendicular to the central partition wall and the auxiliary partition walls, and its two ends are respectively joined to the two auxiliary partition walls to connect the two auxiliary partition walls.
  • the two auxiliary partition walls 142 and the transverse extension wall 143 may be integrally formed.
  • the central partition wall 141 is plugged into the laterally extending wall 143 .
  • the central partition wall 141 is, for example, plugged into the center line of the transverse partition wall.
  • the assembly and positioning of the central partition wall and the two auxiliary partition walls can be achieved in a simple and convenient manner.
  • the shell includes, for example: with each first The first sub-exits 160a, 160b, 160c, 160d corresponding to the space sub-regions V1a, V1b, V1c, and V1d, and the second sub-exits 180a, 180b corresponding to each second space sub-region V2a, V2b, V2c, V2d, 180c,180d.
  • the first sub-outlet is, for example, a foot blowing outlet
  • the second sub-outlet is, for example, a ventilation outlet and a defogging outlet.
  • the heating, ventilation and/or air-conditioning device also includes a first sub-damper (for example, 170a, 170b, 170c, 170d respectively) , the first sub-air door is disposed inside the housing 110 , and the first sub-air door is operable in a first position and a second position.
  • a first sub-damper for example, 170a, 170b, 170c, 170d respectively
  • the first sub-damper may have the structure and type of the previously described first damper 170 and have corresponding movement modes.
  • the first sub-damper can be, for example, a sheet-shaped damper, which can rotate around its own rotation axis between two extreme positions, and the first position and the second position refer to the two sides of the first sub-damper, for example. two extreme positions, namely the fully open position and the fully closed position.
  • the first position is, for example, a fully open position of the first sub-air door, such as a position where the first sub-air door is fully opened to abut the first partition wall (as shown in FIG. 16 ).
  • the second position is, for example, a fully closed position, that is, a position in which the first sub-damper abuts against the internal structure of the housing and causes the opening corresponding to the first sub-damper to be completely closed.
  • Said to be operable in the first position and the second position means that the opening position of the first sub-damper can be adjusted according to the actual situation, for example, by controlling a rotary electric motor connected to the first sub-damper.
  • the position of the first sub-air door can be adjusted according to the rotation direction and position of the machine, or the position of the first sub-air door can be adjusted in other ways so that it is in the first position or the second position according to actual needs. It should be understood that the embodiments of the present disclosure are not limited by the specific adjustment method of the opening position of the first sub-air door.
  • the first sub-damper When the first sub-damper is in the first position, the first sub-damper is engaged with the first partition 1511 to guide the corresponding second spatial sub-region corresponding to the first spatial sub-region. The airflow in the space flows out through the corresponding second sub-outlet, and the airflow in the first space sub-area is guided to flow out through the corresponding first sub-outlet.
  • the first sub-air door When the first sub-air door is in the second position, the first sub-air door closes the corresponding first sub-outlet, so that the air flow in the first space sub-area is consistent with the air flow corresponding to the first space sub-area.
  • the airflow in the second space sub-area all flows out from the corresponding second sub-outlet.
  • FIG. 16 A cross-sectional view of the first right half 1131 of the housing according to an embodiment of the present disclosure is shown in FIG. 16 .
  • the first right half 1131 in FIG. 16 will be taken as an example to describe the situation in which the first sub-damper is in the first position in more detail.
  • the first right half sub-section 1131 corresponds to the first spatial sub-region V1d and the second spatial sub-region V2d, for example, and the housing is provided with a structure corresponding to the first spatial sub-region V1d.
  • the first sub-outlet 160d is, for example, the right half front foot outlet.
  • a second sub-outlet 180d corresponding to the second sub-area space V2d is provided in the housing.
  • the second sub-outlet 180d includes, for example, a right half defogging sub-outlet and a right half front ventilation sub-outlet.
  • the first right half sub-section 1131 also includes a first sub-damper 170d corresponding to the first spatial sub-region V1d.
  • first sub-damper 170d abuts the first partition 1151 of the first partition wall to engage with the first partition 1511 to guide the corresponding first space sub-region V1d.
  • the airflow in the second space sub-region V2d flows out through the second sub-outlet 180d (here, for example, through the front ventilation outlet), and the airflow in the first space sub-region V1d is guided to flow out through the first sub-outlet 160d.
  • the heating, ventilation and/or air conditioning device further includes The first sub-damper enables the corresponding first sub-damper to be configured in the first position according to actual needs, so that the airflow in the corresponding first sub-area flows out through the corresponding first sub-outlet, and the corresponding second sub-area The airflow flows out through the corresponding second sub-outlet, and the first sub-damper is reused to participate in the separation and guidance of the airflow sub-space (sub-area), so that the corresponding sub-areas of the heating, ventilation and/or air-conditioning device can be flexibly laid out
  • the airflow type in the sub-outlets enables multiple working modes.
  • the heating, ventilation and/or air conditioning device further includes a first Air flow processing unit 130 , the first air flow processing unit 130 is disposed in the housing 110 and is located upstream of the first partition wall 151 .
  • the first partition wall 151 also has a second partition part 1512, and the second partition part 1512 separates the third space V3 and the fourth space V4 in the housing 110. Part of the airflow passing through the first airflow processing unit 130 enters the third space V3, and the other part enters the fourth space V4.
  • the second partition, the third space and the fourth space have been described in detail previously with reference to FIG. 5 and will not be described again here.
  • the heating, ventilation and/or air conditioning device further includes: a first mixing damper (for example, a first mixing damper 310a, 310b respectively) provided corresponding to each first spatial sub-region V1a, V1b, V1c, V1d. , 310c, 310d) and/or a second mixing damper provided corresponding to each second spatial sub-region V2a, V2b, V2c, V2d (for example, the second mixing damper 320a, 320b, 320c, 320d respectively).
  • a first mixing damper for example, a first mixing damper 310a, 310b respectively
  • a second mixing damper provided corresponding to each second spatial sub-region V2a, V2b, V2c, V2d
  • the central partition wall 141 and the two auxiliary partition walls 142 divide the third space V3 into four third space sub-areas, for example, third space sub-areas V3a, V3b, V3c, V3d (in The third space sub-regions V3c, V3d) are schematically shown in Figures 16 and 17; the central partition wall 141 and the two auxiliary partition walls 142 divide the fourth space V4 into four.
  • Four spatial sub-regions V4a, V4b, V4c, V4d (the third spatial sub-region V4c, V4d is schematically shown in Figures 16 and 17).
  • each first spatial sub-region V1a, V1b, V1c, V1d when the first mixing damper corresponding to the first spatial sub-region is in the fully open position , separating the third spatial sub-region corresponding to the first spatial sub-region from the first spatial sub-region.
  • the first spatial sub-region V1d as an example, refer to FIG. 16, which shows, for example, the first mixing damper 310d corresponding to the first spatial sub-region V1d. If the first mixing damper 310d in FIG. 5, then for example, the third spatial sub-region V3d can be separated from the first spatial sub-region V1d.
  • the second spatial sub-region V2d as an example, refer to FIG. 16, which shows, for example, the first mixing damper 320d corresponding to the second spatial sub-region V2d. If the second mixing damper 320d in FIG. 5, then for example, the fourth spatial sub-region V4d can be separated from the second spatial sub-region V2d.
  • the housing by arranging the housing to include a first mixing damper corresponding to each first spatial sub-area and/or a second mixing damper corresponding to each second spatial sub-area and a first airflow treatment unit (such as a heater), so that the temperature of the airflow entering the corresponding first space sub-region can be adjusted according to actual needs through the opening position of the first mixing air door corresponding to the first space sub-region; by communicating with the second space The opening position of the second mixing air door corresponding to the sub-zone adjusts the temperature of the airflow entering the second space sub-zone, achieving independent adjustment of the airflow temperature of different layers and different sub-zones after stratification and partitioning.
  • a first mixing damper corresponding to each first spatial sub-area and/or a second mixing damper corresponding to each second spatial sub-area and a first airflow treatment unit (such as a heater)
  • a plurality of third space sub-regions and fourth space sub-regions are separated in the housing through the second partition part and the partition partition wall, and are arranged when the corresponding first mixing air door is in a fully closed position.
  • Three spatial sub-regions are separated from the first spatial sub-region; when the corresponding second mixing damper is in a fully closed position, the fourth spatial sub-region is separated from the second spatial sub-region so that it can be restored.
  • the first mixing damper and the second mixing damper are used as spacers between adjacent spaces to optimize the structural layout within the housing.
  • the layered partition wall 150 further has a second partition wall 152 .
  • the second partition wall 152 is located upstream of the first air flow treatment unit 130 , and separates the fifth space V5 and the sixth space V6 in the housing 110 . Part of the airflow passing through the first airflow processing unit 130 comes from the fifth space V5, and the other part comes from the sixth space V6. It should be understood that the first air flow treatment unit, the second partition wall and the fifth and sixth spaces have been described in detail above and will not be described again here.
  • V1a, V1b, V1c, V1d when the first mixing damper corresponding to the first space sub-region is in a fully closed position, the fifth space V5 and the first space Separate sub-regions.
  • second space sub-region V2a, V2b, V2c, V2d when the second mixing damper corresponding to the second space sub-region is in a fully closed position, the sixth space V6 and the second space sub-region are separated.
  • FIG. 17 A cross-sectional view of the second right sub-portion 1132 is shown in FIG. 17 in accordance with an embodiment of the present disclosure. Next, the closing positions of the first and second mixing dampers will be described in more detail with reference to FIG. 17 .
  • the second right half sub-section 1132 corresponds to the first spatial sub-region V1c and the second spatial sub-region V2c, for example, and the first sub-section corresponding to the first spatial sub-region V1c is provided in the housing.
  • the outlet 160c is, for example, the right half rear foot outlet.
  • a second sub-outlet 180c corresponding to the second sub-area space V2c is provided in the housing.
  • the second sub-outlet 180c includes, for example, a right half defogging outlet and a right half rear ventilation outlet.
  • the second right half sub-portion 1132 also includes a first sub-damper 170c corresponding to the first spatial sub-region V1c.
  • FIG. 17 shows that when the first mixing damper 310c corresponding to the first space sub-area is in a fully closed position, the fifth space V5 is separated from the first space sub-area V1c, and the corresponding When the second mixing damper 320c of the second space sub-area is in a fully closed position, the sixth space V6 is separated from the second space sub-area V2c.
  • the fifth space and the sixth space are further divided upstream of the first air flow treatment unit via the second partition wall, so that the third space can be Different airflow spaces corresponding to different stratified airflows are set upstream of an airflow processing unit, so that good stratified airflow spaces are set up on both the upper and lower flow paths of the first airflow processing unit; and by setting the third space corresponding to the first space sub-area
  • a mixing damper When a mixing damper is in a fully closed position, it separates the fifth space from the corresponding first space sub-area; when a second mixing damper corresponding to the second space sub-area is in a fully closed position, it separates the sixth space from the corresponding first space sub-area.
  • the second space sub-areas are separated, so that the first mixing damper corresponding to each first space sub-area and the second mixing damper corresponding to each second space sub-area can be reused to the greatest extent to realize each space according to actual needs.
  • the separation and connection are conducive to the flexible selection and setting of the air flow path and the guidance of the air flow direction, and enable the device to achieve multiple working modes.
  • the heating, ventilation and/or air conditioning device further includes a second air flow processing unit 120 .
  • the second airflow treatment unit 120 is disposed in the housing 110 and is located upstream of the second partition wall 152 . Part of the airflow passing through the second airflow processing unit 120 enters the fifth space V5, and the other part enters the sixth space V6.
  • the second air flow treatment unit 120 and related joint features with the second partition wall are as previously described in detail in connection with the double-layer dual-zone heating, ventilation and/or air-conditioning device, and will not be described again here.
  • Figure 18 shows a structural diagram of the heating, ventilation and/or air conditioning device 100' without the casing according to an embodiment of the present disclosure.
  • the heating, ventilation and/or air conditioning device 100' is also provided with a second sub-damper.
  • the second spatial sub-region corresponding to the transversely extending wall 143 refers to the second spatial sub-region through which the transversely extending wall extends.
  • the transverse extension wall extends, for example, in the second spatial sub-region V2b, V2c, that is, the second spatial sub-region V2b, V2c is the second spatial sub-region V2b, V2c corresponding to the transverse extension wall 143. space subregion.
  • the second sub-damper refers to being arranged in the second spatial sub-area corresponding to the transversely extending wall.
  • the second sub-damper component which may be a butterfly damper, for example. Embodiments of the present disclosure are not limited by the specific type of the second sub-damper.
  • a second sub-damper is provided in the second spatial sub-region V2b, V2c corresponding to the transverse extension wall, specifically , for example, a second sub-flap door 171b is provided in the second space sub-region V2b, and for example, a second sub-flap door 171c is provided in the second sub-space V2c.
  • the fully closed position refers to the position where the second sub-air door separates the second spatial sub-region.
  • the first sub-area of the second space and the second sub-area of the second space refer to two areas in the sub-area of the second space. It should be understood that the embodiments of the present disclosure are not limited by the specific spatial volume and spatial location of the first sub-region of the second space and the second sub-region of the second space.
  • FIG. 19 illustrates a cross-sectional view of the second right half sub-section 1132 with the second spatial first sub-region and the second spatial second sub-region labeled, in accordance with an embodiment of the present disclosure.
  • the second sub-damper will be described in more detail below, taking the second right half sub-portion 1132 as an example.
  • the second right half sub-section 1132 corresponds to the second subspace V2c
  • FIG. 19 shows, for example, the second right half portion 1132 in a fully closed position in the second subspace V2c.
  • the second sub-air door 171c here the second sub-air door 171c is, for example, a butterfly-shaped air door, and in the fully closed position, the second sub-air door is in a substantially horizontal position.
  • the second sub-air door 171c In the fully closed position, one end of the second sub-air door 171c is engaged with the aforementioned first partition 1511, and the other end of the second sub-air door 171c is engaged with, for example, the transversely extending wall 143 in the partition wall, so that The second sub-space is divided into a first sub-area V2c-1 of the second sub-space and a second sub-area V2c-2 of the second sub-space via the first partition 1511, the second sub-damper 171c and the transverse extension wall 143. And the first sub-area of the second space and the second sub-area of the second space are connected to different second sub-exits, for example. Specifically, the first sub-area of the second space may be connected to the front ventilation sub-exit and the defogging sub-exit, and the second sub-area of the second space may be connected to the rear ventilation sub-exit, for example.
  • a second sub-air door is provided in the second space sub-area corresponding to the transversely extending wall, and the second sub-air door is arranged to be in a fully closed position with the first partition and the transverse extension wall.
  • the extension walls are connected and divide the second space sub-area into a first sub-area of the second space and a second sub-area of the second space, so that the internal structure of the housing and the partition wall can be communicated with each other through the provided second sub-air door.
  • the cooperation of the structure flexibly realizes further separation of the subspace inside the shell, which is conducive to flexibly setting the flow paths of the stratified airflow in different areas according to actual needs, and is conducive to the realization of multiple working modes.
  • the second sub-outlet may include a ventilation sub-outlet, for example.
  • the ventilation sub-outlet may also include a front ventilation sub-outlet and a rear ventilation sub-outlet.
  • the heating, ventilation and/or air conditioning device is also provided with a third sub-damper, for example.
  • the third sub-damper may be a butterfly damper, for example, or may be of other types according to actual needs.
  • the fully closed position of the third sub-air door refers to the position where the third sub-air door is used to close the corresponding ventilation sub-outlet.
  • the second sub-outlet includes, for example, a demister sub-outlet 181 c, a front ventilation sub-outlet 1821 c and a rear ventilation sub-outlet 1822 c.
  • the third sub-air door 172c is, for example, disposed near the rear ventilation sub-exit 1822c and is a butterfly-shaped air door. When the third sub-air door is in a fully closed position, the two butterfly-shaped blades of the third sub-air door are respectively connected with each other, for example.
  • the inner walls of the housing are joined to form a spacer to close the corresponding rear vent outlet 1822c.
  • a third sub-air door is provided in the second space sub-area corresponding to the transversely extending wall, and when the third sub-air door is in a fully closed position, the third sub-air door and the The shell cooperates to close the corresponding ventilation sub-outlet, so that the corresponding ventilation sub-outlet of the second space sub-area can be closed according to actual needs by adjusting the third sub-damper, thereby facilitating the flexible setting of the flow of airflow according to actual needs. paths and output outlets, thereby enabling multi-mode and multi-functional heating, ventilation and/or air conditioning devices.
  • the structure of the heating, ventilation and/or air-conditioning device 100' and the cooperative relationship between the components will be updated based on the application of the double-layer four-zone heating, ventilation and/or air-conditioning device 100' in multiple different working modes. Be specific.
  • the double-layered four-zone means that the heating, ventilation and/or air-conditioning device 100' has four sub-parts (the first left half, the second left half) that are divided by partition walls and are symmetrical along the plane where the central partition wall is located. part, the first right half sub-section, the second right half sub-section), and has two layers of air flow inlets (upper air flow inlet and lower air flow inlet) divided by stratified partition walls, that is, it has eight independent air flows Inlets (for example, they can lead to the same air flow type, or they can be different air flow types), and corresponding air flow paths and temperature control dampers are divided into the eight independent air flow inlets inside the casing.
  • independent foot blowing outlets, ventilation outlets and defrost outlets are provided in the four directions of left front, left rear, right front and right rear. , and each foot blower outlet, ventilation outlet, and defrost outlet can output output airflows of different types, temperatures, and air flows. Therefore, independent foot blowing, ventilation and defrosting functions can be well provided for the front passenger side (right side), the front driver side (left side), the rear left passenger side and the rear right passenger side of the motor vehicle. .
  • the double-layer four-zone heating, ventilation and/or air-conditioning device 100' as an example here has the structure of the heating, ventilation and/or air-conditioning device 100' described in detail with reference to FIGS. 12A to 19, which may, for example, It includes the housing 110, the layered partition wall 150, the first processing unit 120, the second processing unit 130 as mentioned above, and has corresponding connection structures, which will not be described again here.
  • the heating, ventilation and/or air conditioning device 100' includes, for example, a partition wall 140 as shown in Figure 15 (including a central partition wall, an auxiliary partition wall extending parallel to the central partition wall, and a transverse extension wall), and the central
  • the partition wall 141 divides the heating, ventilation and/or air conditioning device 100' into a left half 112 and a right half 113 that are symmetrical along the line where the central partition wall is located, and the auxiliary partition wall 142 divides the left half 112 into The first left half part 1121 and the second left half part 1122; the right half part is the first right half part 1131 and the second right half part 1132, the central partition wall 141 and the two auxiliary partition walls 142 Divide the first space V1 into four first space sub-areas V1a, V1b, V1c, V1d, and divide the second space V2 into four second space sub-areas V2a, V2b, V2c, V2d.
  • first space sub-region there is, for example, a corresponding first sub-exit.
  • first spatial sub-region V1a in the first left half sub-section 1121 it has a left half front blower outlet; for the first spatial sub-region V1b in the second left half sub-section 1121, it has It has a left half rear blowing pin outlet; for the first space sub-area V1d in the first right half sub-section 1131, it has a right half front blowing pin outlet; for the first right half sub-section 1131 Space subregion V1c, which has a right half backblow Foot exit.
  • the second sub-outlet includes, for example, a defogging sub-outlet and a ventilation sub-outlet that are provided for each second space sub-area.
  • the ventilation sub-outlet for example, for the second spatial sub-region V2a in the first left half sub-section 1121, which has a left half front ventilation sub-outlet; for the second left half sub-section 1121
  • the spatial sub-region V2b has a left half rear vent outlet; for the second spatial sub-region V2d in the first right half sub-section 1131, it has a right half front vent outlet; for the second right half sub-section 1131
  • the second space sub-area V2c in the space has a right half rear ventilation sub-outlet.
  • the left half and the right half have the same structure.
  • the first left half part and the first right half part may have the same arrangement and the same airflow path;
  • the second left half part and the second right half part may have the same airflow path, for example. setup and the same airflow path. Therefore, in the subsequent description of each working mode, the right half (including the first right half and the second right half) will be used as an example to describe its specific structural configuration and airflow path.
  • the left half can be set accordingly to be in the corresponding mode and realize the corresponding function.
  • Figure 20A shows a cross-sectional view of the first right half 1131 of the heating, ventilation and/or air conditioning device 100' in the foot-blowing dual mode
  • Figure 20B shows Cross-sectional view of the second right half 1132 of the heating, ventilation, and/or air conditioning unit 100' in the foot-ventilation dual mode.
  • the first right half 1131 corresponds to the first spatial sub-region V1d and the second spatial sub-region V2d, for example, and the
  • a first sub-outlet 160d corresponding to the first spatial sub-region V1d is provided in the casing, here is the right half front blower foot outlet 161d.
  • a second sub-outlet 180d corresponding to the second sub-region space V2d is provided in the housing.
  • the second sub-outlet includes, for example, a right half defogging sub-outlet 181d and a right half front ventilation sub-outlet 1821d.
  • the first right half sub-section 1131 also includes a first sub-damper 170d corresponding to the first spatial sub-region V1d.
  • the first sub-damper 170d in the first right half 1131 is configured to be in the first position to close the right half.
  • the front blow pin outlet 161d is fully opened and engaged with the first partition to guide the air flow.
  • the demister damper 191d will be in a fully closed position to completely close the demister outlet 181d,
  • the front ventilation sub-damper 1921d is opened, and the specific opening position can be adjusted according to actual needs, for example, so that the outlet is opened at a desired opening.
  • the openings of the first mixing door 310d and the second mixing door 320d can be further adjusted to control the proportion of the stratified airflow flowing through and bypassing the first airflow processing unit 120 (heater).
  • the first mixing damper 310d and the second mixing damper 320d are both in the middle position, for example.
  • the upper layer of the casing inlet of the first right half is supplied with internal circulation air, for example, and the lower layer of the casing inlet of the first right half is supplied with fresh air, for example, and the air flow in the casing is specifically: for the upper layer air flow
  • the upper intake airflow here, the internal circulation air intake airflow
  • F1i_d enters from the upper part of the inlet and is first processed by the second airflow processing unit 130 (evaporator).
  • the upper intake airflow F1i_d will be divided into are two airflow branches, where the first airflow branch bypasses the first airflow processing unit 120, enters the fifth space V5 and directly enters the first space sub-area V1d from the left side of the first mixing door 310d (as shown in Figure 20A with The airflow direction shown by the dotted line).
  • the second airflow branch of the upper intake airflow F1i_d will pass through the first airflow processing unit (heater) 120, specifically, it will enter the fifth space V5, and then enter the third space sub-space through the first airflow processing unit 120.
  • the second airflow branch passing through the first airflow processing unit 120 will be The heater heats to have a higher temperature relative to the first airflow branch.
  • the two airflow branches will mix and form the upper output airflow (here is the internal circulation air output airflow) F1o_d (it should be understood that the arrows in the drawings are only for illustration, in fact, the output The airflow is output through the side opening of the casing).
  • the first sub-damper 170d in the first position will engage with the first partition and guide the upper output airflow F1o_d in the first space sub-area V1d through the right half
  • the front blower outlet 161d flows out.
  • the lower airflow (here, the fresh air intake airflow) F2i_d enters from the lower part of the inlet, and first passes through the processing of the second airflow processing unit 130 (evaporator) , thereafter, the lower intake airflow F2i_d will be divided into two airflow branches, where the first airflow branch bypasses the first airflow processing unit 120, enters the sixth space V6, and directly passes from the sixth space V6 to the second mixing damper
  • the right side of 320d enters the second spatial sub-region V2d (the air flow direction shown by the dotted line in Figure 20A).
  • the second airflow branch of the lower intake airflow F2i_d will pass through the first airflow processing unit (heater) 120, specifically, it will enter the sixth space V6, and then pass through the first airflow processing unit 120 and enter the fourth space sub-region V4d, Finally from the left side of the second mixture flap 320d Entering the second spatial sub-region V2d (the air flow direction shown as a dotted line in FIG. 20A), the second air flow branch passing through the first air flow processing unit 120 will be heated by the heater to have a relative shape relative to the first air flow branch. higher temperatures.
  • the two airflow branches will mix and form the lower output airflow F2o_d, and at this time, the first sub-damper 170d in the first position will engage with the first partition and guide the second
  • the lower output airflow F2o_d in the space sub-area V2d is output through the right half front ventilation sub-outlet 1821d.
  • the first sub-damper 170c in the second right half 1132 is configured to be in the first position to close the right half.
  • the rear blow pin outlet 162c is fully opened and engaged with the first partition to guide the air flow.
  • the demister sub-damper 191c will be in a fully closed position to completely close the demist sub-outlet 181c, and the third sub-damper (here used as a front ventilation sub-damper) 172c will be in an open position, for example.
  • the specific opening position can be determined according to actual needs, for example. Adjust so that the right half rear vent outlet 1822c opens at a desired opening.
  • the openings of the first mixing door 310c and the second mixing door 320c can be further adjusted to control the proportion of the stratified airflow flowing through and bypassing the first airflow processing unit 120 (heater).
  • the first mixing damper 310c and the second mixing damper 320c are both in the middle position, for example.
  • the upper layer of the casing inlet of the second right half is supplied with internal circulation air, for example, and the lower layer of the casing inlet of the second right half is supplied with fresh air, for example, and the air flow in the casing is specifically: for the upper layer air flow
  • the upper intake airflow here, the internal circulation air intake airflow
  • F1i_c enters from the upper part of the inlet and is first processed by the second airflow processing unit 130 (evaporator).
  • the upper intake airflow F1i_c will be divided into are two airflow branches, where the first airflow branch bypasses the first airflow processing unit 120, enters the fifth space V5 and directly enters the first space sub-area V1c from the left side of the first mixing door 310c (as shown in Figure 20B with The airflow direction shown by the dotted line).
  • the second airflow branch of the upper intake airflow F1i_c will pass through the first airflow processing unit (heater) 120, specifically, it will enter the fifth space V5, and then enter the third space sub-space through the first airflow processing unit 120.
  • the second airflow branch passing through the first airflow processing unit 120 will be The heater heats to have a higher temperature relative to the first airflow branch. Thereafter, in the first space sub-region V1c, the two airflow branches will mix and form an upper layer output airflow (here is the internal circulation air output airflow) F1o_c.
  • the first sub-damper 170c in the first position will interact with The first partitions are joined together, and The upper-layer output airflow F1o_c in the first spatial sub-region V1c is guided to flow out through the right half rear blower outlet 162c.
  • the lower airflow (herein, the fresh air intake airflow) F2i_c enters from the lower part of the inlet, and first passes through the processing of the second airflow processing unit 130 (evaporator) , thereafter, the lower intake airflow F2i_c will be divided into two airflow branches, where the first airflow branch bypasses the first airflow processing unit 120, enters the sixth space V6, and directly passes from the sixth space V6 to the second mixing damper
  • the right side of 320c enters the second spatial sub-region V2c (the air flow direction shown with a dotted line in Figure 20B).
  • the second airflow branch of the lower intake airflow F2i_c will pass through the first airflow processing unit (heater) 120, specifically, it will enter the sixth space V6, and then pass through the first airflow processing unit 120 and enter the fourth space sub-region V4c, Finally entering the second spatial sub-region V2c from the left side of the second mixing damper 320c (the airflow direction shown as a dotted line in FIG. 20B), the second airflow branch passing through the first airflow processing unit 120 will be heated. Heating to have a higher temperature relative to the first airflow branch.
  • the two airflow branches will mix and form the lower output airflow F2o_c, and at this time, the second sub-air door 171c in the fully closed position will be in contact with the first partition and the transversely extending wall. joint to separate the first sub-area V2c-1 of the second space and the second sub-area V2c-2 of the second space in the second space sub-area V2c, and guide the lower output airflow F2o_c in the second space V2c only in the second space It flows in the first sub-area V2c-1 of the space and is output through the rear ventilation sub-exit 1822c of the right half.
  • first mixing damper and the second mixing damper are respectively provided corresponding to each first sub-region and the second sub-region, and both have temperature adjustment functions, the details of the first mixing damper via the first mixing damper will not be described in detail below. And the second mixing damper realizes the process of temperature adjustment.
  • Figure 21A shows a cross-sectional view of the first right half 1131 of the heating, ventilation and/or air conditioning device 100' in a defogging priority mode
  • Figure 21B shows the heating , a cross-sectional view of the second right half 1132 of the ventilation and/or air conditioning device 100' in a defogging priority mode.
  • the first sub-damper 170d in the first right half 1131 is configured to be in the second position to close the right half.
  • the front foot outlet 161d is completely closed.
  • the demister damper 191d will be in a fully open position to fully open the demister outlet 181d, and the front ventilation damper 1921d will be closed to close the right half of the front ventilation outlet 1821d.
  • the openings of the first mixing door 310d and the second mixing door 320d can be further adjusted to control the proportion of the stratified airflow flowing through and bypassing the first airflow processing unit 120 (heater).
  • the first mixing damper 310d and the second mixing damper 320d are both in the middle position, for example.
  • fresh air is introduced into both the upper and lower layers of the casing inlet of the first right half, and the air flow in the casing is specifically: for the upper air flow, the upper air inlet air flow (herein, the fresh air inlet The air flow) F1i_d, for example, enters from the upper part of the inlet and is first processed by the second air flow processing unit 130 (evaporator). After that, the upper inlet air flow F1i_d will be divided into two air flow branches, where the first air flow branch bypasses the second air flow branch.
  • An airflow processing unit 120 enters the fifth space V5 and directly enters the first space sub-area V1d from the left side of the first mixing damper 310d (the airflow direction shown by the dotted line in Figure 21A).
  • the second airflow branch of the upper intake airflow F1i_d will pass through the first airflow processing unit (heater) 120, specifically, it will enter the fifth space V5, and then enter the third space sub-space through the first airflow processing unit 120.
  • Area V3d and enters the first spatial sub-area V1d via the right side of the first mixing damper 310d (the airflow direction shown by the dotted line in Figure 21A).
  • the lower airflow (here, the fresh air intake airflow) F2i_d enters from the lower part of the inlet, and first passes through the processing of the second airflow processing unit 130 (evaporator) , thereafter, the lower intake airflow F2i_d will be divided into two airflow branches, where the first airflow branch bypasses the first airflow processing unit 120, enters the sixth space V6, and directly passes from the sixth space V6 to the second mixing damper
  • the right side of 320d enters the second space sub-region V2d (in Figure 21A Airflow direction shown in dashed lines).
  • the second airflow branch of the lower intake airflow F2i_d will pass through the first airflow processing unit (heater) 120, specifically, it will enter the sixth space V6, and then pass through the first airflow processing unit 120 and enter the fourth space sub-region V4d, Finally, it enters the second spatial sub-region V2d from the left side of the second mixing damper 320d (the airflow direction shown by the dotted line in Figure 21A).
  • the first sub-damper 170c in the second right half 1132 is configured to be in the second position to close the right half.
  • the rear blower outlet 162c is completely closed.
  • the demister sub-damper 191c will be in a fully open position to fully open the demist sub-outlet 181c, and the third sub-damper (here as a front ventilation sub-damper) 172c, for example, will be in a fully closed position to cooperate with the inner wall of the housing and
  • the right half rear ventilation outlet 1822c is completely closed.
  • fresh air is introduced into both the upper and lower layers of the housing inlet of the second right half, for example, and the air flow in the housing is specifically: for the upper air flow, the upper air intake air flow (herein is the fresh air intake The airflow) F1i_c, for example, enters from the upper part of the inlet and is first processed by the second airflow processing unit 130 (evaporator). Thereafter, the upper-layer inlet airflow F1i_c will be divided into two airflow branches, in which the first airflow branch bypasses the first airflow branch.
  • the airflow processing unit 120 enters the fifth space V5 and directly enters the first space sub-area V1c from the left side of the first mixing damper 310c (the airflow direction shown by the dotted line in Figure 21B).
  • the second airflow branch of the upper intake airflow F1i_c will pass through the first airflow processing unit (heater) 120, specifically, it will enter the fifth space V5, and then enter the third space sub-space through the first airflow processing unit 120.
  • area V3c and enters the first spatial sub-area V1c via the right side of the first mixing damper 310c (the air flow direction shown by the dotted line in Figure 21B).
  • the lower airflow (here, the fresh air intake airflow) F2i_c enters from the lower part of the inlet, and first passes through the processing of the second airflow processing unit 130 (evaporator) , thereafter, the lower intake airflow F2i_c will be divided into two airflow branches, where the first airflow branch bypasses the first airflow processing unit 120, enters the sixth space V6, and directly passes from the sixth space V6 to the second mixing damper
  • the right side of 320c enters the first sub-area V2c-1 of the second space (the air flow direction shown with a dotted line in Figure 21B).
  • the second airflow branch of the lower intake airflow F2i_c will pass through the first airflow processing unit (heater) 120, specifically, it will enter the sixth space V6, and then pass through Pass through the first air flow processing unit 120 and enter the fourth space sub-area V4c, and finally enter the second space first sub-area V2c-1 from the left side of the second mixing door 320c (the air flow direction shown by the dotted line in Figure 21B ), at this time, the second sub-air door 171c in the open position will cooperate with the first partition to guide the intake airflow, so that the intake airflow (including two airflow branches) passes through the second sub-air door 171c and The path between the first partitions enters the second space second sub-region V2c-2 from the first sub-region V2c-1 of the second space.
  • the corresponding air blower outlet is completely closed through the first sub-air door in each first space sub-area, and the right half of the rear ventilation sub-outlet is completely closed through the third sub-air door, and The airflow is guided through cooperation between the second sub-damper and the first partition, so that, for example, both the upper-layer intake airflow and the lower-layer intake airflow are output through the demister sub-openings.
  • Figure 22A shows a cross-sectional view of the first right half 1131 of the heating, ventilation and/or air conditioning device 100' in a foot blowing and defogging dual mode
  • Figure 22B shows is a cross-sectional view of the second right half 1132 of the heating, ventilation and/or air conditioning device 100' in the foot blowing and defogging dual mode.
  • the first sub-damper 170d in the first right half 1131 is configured to be in the first position to blow the right
  • the half front blower pin outlet 161d is fully opened and engaged with the first partition to guide the airflow.
  • the demister damper 191d will be in an open position to open the demister outlet 181d.
  • the specific opening position can be adjusted according to actual needs, for example, to open the outlet at a desired opening.
  • the front ventilation sub-damper 1921d is in a fully closed position to close the right half of the front ventilation sub-outlet 1821d.
  • the openings of the first mixing door 310d and the second mixing door 320d can be further adjusted to control the proportion of the stratified airflow flowing through and bypassing the first airflow processing unit 120 (heater).
  • the first mixing damper 310d and the second mixing damper 320d are both in the middle position, for example.
  • the upper layer of the casing inlet of the first right half is supplied with internal circulation air, for example, and the lower layer of the casing inlet of the first right half is supplied with fresh air, for example, and the air flow in the casing is specifically: for the upper layer
  • the upper-layer intake airflow here, the internal circulation air intake airflow
  • F1i_d enters from the upper part of the inlet, first passes through the processing of the second airflow processing unit 130 (evaporator), and then, the upper-layer intake airflow F1i_d will be divided into two airflow branches, where the first airflow branch bypasses the first airflow processing unit 120, enters the fifth space V5 and directly enters the first space sub-area V1d from the left side of the first mixing door 310d (as shown in Figure 22A The direction of airflow shown in dotted lines).
  • the second airflow branch of the upper intake airflow F1i_d will pass through the first airflow processing unit (heater) 120, specifically, it will enter the fifth space V5, and then enter the third space sub-space through the first airflow processing unit 120.
  • Area V3d and enters the first spatial sub-area V1d via the right side of the first mixing damper 310d (the air flow direction shown by the dotted line in Figure 22A).
  • the two airflow branches will mix and form the upper output airflow (here, the internal circulation air output airflow) F1o_d.
  • the first sub-damper 170d in the first position will interact with The first partitions are connected and guide the upper output airflow F1o_d in the first spatial sub-region V1d to flow out through the right half front blower foot outlet 161d.
  • the lower airflow (here, the fresh air intake airflow) F2i_d enters from the lower part of the inlet, and first passes through the processing of the second airflow processing unit 130 (evaporator) , thereafter, the lower intake airflow F2i_d will be divided into two airflow branches, where the first airflow branch bypasses the first airflow processing unit 120, enters the sixth space V6, and directly passes from the sixth space V6 to the second mixing damper
  • the right side of 320d enters the second spatial sub-region V2d (the airflow direction shown with a dotted line in Figure 22A).
  • the second airflow branch of the lower intake airflow F2i_d will pass through the first airflow processing unit (heater) 120, specifically, it will enter the sixth space V6, and then pass through the first airflow processing unit 120 and enter the fourth space sub-region V4d, Finally, it enters the second spatial sub-region V2d from the left side of the second mixing damper 320d (the airflow direction shown by the dotted line in Figure 22A). Thereafter, in the first spatial sub-region V2d, the two airflow branches will mix and form a lower output airflow (here, a fresh air output airflow) F2o_d, and the lower output airflow F2o_d is output through the demister sub-outlet 181d.
  • a lower output airflow here, a fresh air output airflow
  • the first sub-damper 170c in the second right half 1132 is configured to be in the first position to fully open the rear foot blowing outlet 162c of the right half and Engaged with the first partition to guide airflow.
  • the demister damper 191c will be in an open position to open the demister outlet 181c.
  • the specific opening position can be adjusted according to actual needs, for example, so that the demister outlet 181c can be opened at a desired opening.
  • the third sub-damper (here used as the front ventilation sub-damper) 172c is, for example, in a fully closed position to close the right half of the rear ventilation sub-outlet 1822c.
  • the upper layer of the casing inlet of the second right half is supplied with internal circulation air, for example, and the lower layer of the casing inlet of the second right half is supplied with fresh air, for example, and the air flow in the casing is specifically: for the upper layer
  • the upper-layer intake airflow here, the internal circulation air intake airflow
  • F1i_c enters from the upper part of the inlet, first passes through the processing of the second airflow processing unit 130 (evaporator), and then, the upper-layer intake airflow F1i_c will be divided into two airflow branches, where the first airflow branch bypasses the first airflow processing unit 120, enters the fifth space V5 and directly enters the first space sub-area V1c from the left side of the first mixing door 310c (as shown in Figure 22B The direction of airflow shown in dotted lines).
  • the second airflow branch of the upper intake airflow F1i_c will pass through the first airflow processing unit (heater) 120, specifically, it will enter the fifth space V5, and then enter the third space sub-space through the first airflow processing unit 120.
  • area V3c and enters the first spatial sub-area V1c through the right side of the first mixing damper 310c (the air flow direction shown by the dotted line in Figure 22B).
  • the two airflow branches will mix and form an upper layer output airflow (here is the internal circulation air output airflow) F1o_c.
  • the first sub-damper 170c in the first position will interact with The first partitions are connected and guide the upper output airflow F1o_c in the first space sub-region V1c to flow out through the right half rear blower outlet 162c.
  • the second sub-damper 171c is, for example, in a fully closed state to block the first sub-area V2c-1 of the second space and the second sub-area V2c of the second space.
  • the lower-layer intake airflow will not enter the second sub-area V2c-2 of the second space, nor will it be output through the demister outlet 181c.
  • the defogging function can be realized, for example, based only on the lower output airflow F2o_d output from the defogging sub-outlet 181d in FIG. 22A .
  • the second sub-damper 171c may also be configured to be in the open position shown in FIG. 21B to cooperate with the inner wall of the housing.
  • the lower-layer inlet airflow is guided to be output through the demister outlet 181c, so that the demister airflow is jointly output through the demister outlet 181c and the demister outlet 181d to achieve a more powerful defogging function.
  • the division of the first space sub-area and the second space sub-area is achieved through the cooperation of the first sub-air door and the first partition in each first space sub-area. And guide the upper layer internal circulation air to be output through the corresponding front/rear foot sub-outlets, realizing the function of blowing the feet through the internal circulation air.
  • the fresh air in the lower layer can be used to achieve the defogging function through the cooperation between the second sub-air door in each second space sub-area and the inner wall.
  • Figure 23A shows a cross-sectional view of the first right half 1131 of the heating, ventilation and/or air conditioning device 100', wherein the heating, ventilation and/or air conditioning device 100' is in the foot blowing mode;
  • Figure 23B shows the heating, ventilation and/or air conditioning device 100'.
  • the first sub-damper 170d in the first right half 1131 is configured to be in the first position to blow the front of the right half.
  • the outlet 161d of the blower pin is fully opened and engaged with the first partition to guide the air flow.
  • the demister damper 191d will be in the open position to slightly open the demister outlet 181d to prevent fog from appearing on the glass during the foot blowing process.
  • the air flow path and structural configuration in the foot blowing mode are, for example, the same as those in the foot blowing and defogging dual modes, and will not be described again here.
  • the first sub-damper 170c in the second right half 1132 is configured to be in the first position to fully open the rear foot blowing outlet 162c of the right half and connect it to the first The partitions are joined to guide the air flow.
  • the demister damper 191c will be in an open position to open the demister outlet 181c.
  • the specific opening position can be adjusted according to actual needs, for example, so that the demister outlet 181c can be opened at a desired opening.
  • the third sub-damper (here used as the front ventilation sub-damper) 172c is, for example, in a fully closed position to close the right half of the rear ventilation sub-outlet 1822c.
  • the upper layer of the housing inlet of the second right half is supplied with internal circulation air, and its air flow in the housing is specifically: for the upper layer air flow, the upper layer air intake air flow (here is the internal circulation air intake air flow)
  • the upper layer air intake air flow here is the internal circulation air intake air flow
  • F1i_c enters from the upper part of the inlet and first passes through the treatment of the second airflow processing unit 130 (evaporator). After that, the upper intake airflow F1i_c will be divided into two airflow branches, where the first airflow branch bypasses the first airflow treatment.
  • the unit 120 enters the fifth space V5 and directly enters the first space sub-region V1c from the left side of the first mixing damper 310c (the airflow direction shown by the dotted line in Figure 23B).
  • the second airflow branch of the upper intake airflow F1i_c will pass through the first airflow processing unit (heater) 120, specifically, it will enter the fifth space V5, and then enter the third space sub-space through the first airflow processing unit 120.
  • Area V3c and enters the first spatial sub-area V1c through the right side of the first mixing damper 310c (the airflow direction shown by the dotted line in Figure 23B).
  • the two airflow branches will mix and form an upper layer output airflow (here is the internal circulation air output airflow) F1o_c.
  • the first sub-damper 170c in the first position will interact with The first partitions are connected and guide the upper output airflow F1o_c in the first space sub-region V1c to flow out through the right half rear blower outlet 162c.
  • the second sub-damper 171c is, for example, in a fully closed state to block the first sub-area V2c of the second space. -1 and the second sub-area V2c-2 of the second space.
  • the lower intake airflow will not enter the second sub-area V2c-2 of the second space, nor will it be output through the demister outlet 181c.
  • the second sub-damper 171c can also be configured to be in the open position shown in FIG. 21B to cooperate with the inner wall of the housing and The lower-layer intake airflow is guided to be output through the demister outlet 181c.
  • the defogging sub-outlets can be selectively opened, and through the cooperation between the second sub-air doors in each second space sub-area and the inner wall, the fresh air in the lower layer can be used to achieve the defogging function.
  • Figure 24A shows a cross-sectional view of the first right half 1131 of the heating, ventilation and/or air conditioning device 100', wherein the heating, ventilation and/or air conditioning device 100' is in the ventilation mode;
  • Figure 24B shows the heating, ventilation and/or air conditioning device 100'.
  • the first sub-damper 170d in the first right half 1131 is configured to be in the second position to blow the right half forward.
  • the foot outlet 161d is completely closed.
  • the demister damper 191d will be in a fully closed position to completely close the demister outlet 181d, and the front ventilation damper 1921d will be opened.
  • the specific opening position can be adjusted according to actual needs, for example, so that the outlet opens at a desired opening.
  • the air flow in the casing is specifically: for the upper air flow, the upper air inlet air flow (here is the internal circulation air inlet)
  • the air flow) F1i_d enters from the upper part of the inlet and is first processed by the second air flow processing unit 130 (evaporator). After that, the upper inlet air flow F1i_d will be divided into two air flow branches, where the first air flow branch bypasses the second air flow branch.
  • An airflow processing unit 120 enters the fifth space V5 and directly enters the first space sub-area V1d from the left side of the first mixing damper 310d (the airflow direction shown by the dotted line in Figure 24A).
  • the second airflow branch of the upper intake airflow F1i_d will pass through the first airflow processing unit (heater) 120, specifically, it will enter the fifth space V5, and then enter the third space sub-space through the first airflow processing unit 120.
  • area V3d and enters the first spatial sub-area V1d via the right side of the first mixing damper 310d (the airflow direction shown as a dotted line in Figure 24A).
  • the two airflow branches will mix And form the upper output airflow.
  • the lower airflow (here, the fresh air intake airflow) F2i_d enters from the lower part of the inlet, and first passes through the second airflow processing unit 130 (evaporator), after which the lower intake airflow F2i_d will be divided into two airflow branches, where the first airflow branch bypasses the first airflow processing unit 120, enters the sixth space V6, and directly passes through the sixth space V6.
  • the space V6 enters the second space sub-region V2d from the right side of the second mixing damper 320d (the air flow direction shown by the dotted line in FIG. 24A).
  • the second airflow branch of the lower intake airflow F2i_d will pass through the first airflow processing unit (heater) 120, specifically, it will enter the sixth space V6, and then pass through the first airflow processing unit 120 and enter the fourth space sub-region V4d, Finally, it enters the second space sub-area V2d from the left side of the second mixing damper 320d (the airflow direction shown as a dotted line in Figure 24A). In the second space sub-area V2d, the two airflow branches will mix and form The lower layer outputs airflow.
  • the first sub-damper 170d in the first position will engage with the first partition and guide the upper output airflow in the first spatial sub-area V1d and the lower output airflow in the second spatial sub-area V2d to jointly form an output
  • the airflow Fo_d flows out through the right half front vent outlet 1821d.
  • the first sub-damper 170c in the second right half 1132 is configured to be in the second position to blow the right half backward.
  • the foot outlet 162c is completely closed.
  • the demister sub-damper 191c will be in a fully closed position to completely close the demist sub-outlet 181c, and the third sub-damper (here used as a front ventilation sub-damper) 172c will be in an open position, for example.
  • the specific opening position can be determined according to actual needs, for example. Adjust so that the right half rear vent outlet 1822c opens at a desired opening.
  • the upper and lower layers of the casing inlet of the second right half are introduced with fresh air, for example, and the air flow in the casing is specifically: for the upper air flow, the upper air intake air flow (here is the fresh air intake air flow ) F1i_c, for example, enters from the upper part of the inlet and first passes through the processing of the second airflow processing unit 130 (evaporator). After that, the upper intake airflow F1i_c will be divided into two airflow branches, where the first airflow branch bypasses the first airflow.
  • the processing unit 120 enters the fifth space V5 and directly enters the first space sub-area V1c from the left side of the first mixing damper 310c (the airflow direction shown by the dotted line in Figure 24B).
  • the second airflow branch of the upper intake airflow F1i_c will pass through the first airflow processing unit (heater) 120, specifically, it will enter the fifth space V5, and then enter the third space sub-space through the first airflow processing unit 120.
  • area V3c and enters the first spatial sub-area V1c via the right side of the first mixing damper 310c (the air flow direction shown by the dotted line in Figure 24B).
  • the two airflow branches will mix and form an upper output airflow (herein, a fresh air output airflow) F1o_c.
  • the lower intake airflow when fresh air is introduced, the lower intake airflow (here is the fresh air
  • the air inlet air flow F2i_c enters from the lower part of the inlet.
  • the second air flow processing unit 130 evaporator
  • the lower air inlet air flow F2i_c will be divided into two air flow branches, in which the first air flow branch Bypassing the first airflow processing unit 120, it enters the sixth space V6, and directly enters the first sub-area V2c-1 of the second space from the right side of the second mixing door 320c from the sixth space V6 (shown with a dotted line in Figure 24B direction of the outgoing airflow).
  • the second airflow branch of the lower intake airflow F2i_c will pass through the first airflow processing unit (heater) 120, specifically, it will enter the sixth space V6, and then pass through the first airflow processing unit 120 and enter the fourth space sub-region V4c, Finally, it enters the first sub-area V2c-1 of the second space from the left side of the second mixing damper 320c (the air flow direction shown by the dotted line in Figure 24B). Thereafter, in the first sub-region V2c-1 of the second space, the two airflow branches will mix and form the lower output airflow F2o_c.
  • the second sub-damper 171c in the fully closed position will be engaged with the first partition and the transverse extension wall to separate the first sub-area V2c-1 of the second space and the second sub-area V2c-2 of the second space.
  • the upper output airflow F1o_c in the first space sub-area V1c is guided to the second space second sub-area V2c-2, and the upper level output airflow F1o_c is output through the right half of the front ventilation sub-outlet 1821c; on the other hand, On the one hand, the lower output airflow F2o_c is allowed to flow only in the first sub-area V2c-1 of the second space, and is output through the right half rear ventilation sub-outlet 1822c.
  • the corresponding foot blowing sub-outlets are completely closed through the first sub-air door in each first space sub-area, and each ventilation sub-outlet is selectively opened through the third sub-air door.
  • the airflow is guided through the cooperation of the second sub-air door and the first partition, so that, for example, the upper-level intake airflow is output through the corresponding front ventilation sub-outlet, and the lower-level intake airflow is output through the corresponding rear ventilation sub-outlet, so that It is beneficial to achieve independent temperature control of each front vent and rear vent in ventilation mode with respect to each other.
  • first/second embodiment means a certain feature, structure or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that “one embodiment” or “an embodiment” or “an alternative embodiment” mentioned twice or more at different places in this specification does not necessarily refer to the same embodiment. . In addition, certain features, structures or characteristics in one or more embodiments of the present application may be appropriately combined.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

公开了一种供暖、通风和/或空调装置及机动车辆,包括:壳体,容许气流通过;分层分隔壁,设置在所述壳体内部且包括第一分隔壁,所述第一分隔壁具有第一分隔部;所述第一分隔部在所述壳体内分隔第一空间及第二空间;分区分隔壁,设置在所述壳体内部,其中所述分区分隔壁包括中央分隔壁,以及分别设置在所述中央分隔壁两侧的两个辅助分隔壁;且其中,所述中央分隔壁和两个辅助分隔壁将所述第一空间分为四个第一空间子区;所述中央分隔壁和两个辅助分隔壁将所述第二空间分为四个第二空间子区。。

Description

供暖、通风和/或空调装置及机动车辆 技术领域
本发明涉及供暖、通风和/或空调装置领域,更具体地涉及一种供暖、通风和/或空调装置及机动车辆。
背景技术
随着供暖、通风和/或空调装置在民用和商用领域的广泛应用,对于供暖、通风和/或空调装置,特别是用于机动车辆的供暖、通风和/或空调装置也面临着更高的要求。
目前在机动车辆中,一方面,供暖、通风和/或空调装置通常不设置分层结构或者仅设置有简单的分层结构。然而,不设置分层结构导致仅有内循环空气或新鲜空气单一气流进入该空调装置,无法实现吹面和吹脚采用不同的气流类型;简单的分层结构虽然能够实现新鲜空气和内循环空气在该空调装置中分层进入,但是壳体中对分层气流的气流空间分隔不明确,各分层气流的流路混杂,无法将气流良好地引导至对应的出口,且各个出口输出的空气温度也很难被独立地被调节控制。另一方面,考虑到供暖、通风和/或空调装置将安装设置在车辆的仪表板下方,当前的供暖、通风和/或空调装置通常具有较大的垂直立体体积,安装后将导致仪表板的升高,大幅度地限制了驾驶员的能见度。
因此,需要一种在实现良好供暖、通风和/或空调功能的基础上,能够实现不同气流的分层进入,且能够根据实际需要,通过壳体内结构部件的配合,良好地分隔各个分层气流的流动空间,且令各个出口输出的空气温度能够独立地被调节控制的供暖、通风和/或空调装置,且该供暖、通风和/或空调装置具有超薄设计,特别是在Z向(垂直)方向上具有较小立体体积。
发明内容
针对以上问题,本发明提供了一种供暖、通风和/或空调装置及机动车辆。利用本发明提供的供暖、通风和/或空调装置可以在实现至少两种不同气流的 分层进入的基础上,通过壳体内部结构及部件在不同工作模式下的灵活配合,使得能够根据实际需要良好地划分出各个分层气流的流动空间,且对分层气流的流动路劲进行引导和导向,以使得其经由目标出口输出。此外,该供暖、通风和/或空调装置例如还可以具有超薄设计,特别是在Z向(垂直)方向上具有较小立体体积。
根据本发明的一方面,提出了一种供暖、通风和/或空调装置,包括:壳体,容许气流通过;分层分隔壁,设置在所述壳体内部且包括第一分隔壁,所述第一分隔壁具有第一分隔部;所述第一分隔部在所述壳体内分隔第一空间及第二空间;分区分隔壁,设置在所述壳体内部,其中所述分区分隔壁包括中央分隔壁,以及分别设置在所述中央分隔壁两侧的两个辅助分隔壁;且其中,所述中央分隔壁和两个辅助分隔壁将所述第一空间分为四个第一空间子区;所述中央分隔壁和两个辅助分隔壁将所述第二空间分为四个第二空间子区。
在一些实施例中,所述两个辅助分隔壁大致平行于所述中央分隔壁延伸。
在一些实施例中,所述两个辅助分隔壁的下游端设置有连接该两个辅助分隔壁的横向延伸壁。
在一些实施例中,所述中央分隔壁插接至所述横向延伸壁。
在一些实施例中,所述壳体包括:与每一个第一空间子区对应的第一子出口;与每一个第二空间子区对应的第二子出口;且对于每一个第一空间子区:所述供暖、通风和/或空调装置还包括对应于该第一空间子区的第一子风门,所述第一子风门设置在所述壳体内部;所述第一子风门可操作地处于第一位置及第二位置;在所述第一子风门处于所述第一位置时,所述第一子风门与所述第一分隔部相接合,以引导与该第一空间子区相对应的相应第二空间子区内的气流经由相应的第二子出口流出,并引导该第一空间子区内的气流经由相应的第一子出口流出;在第一子风门处于所述第二位置时,所述第一子风门关闭相应的第一子出口,以使该第一空间子区内的气流和与该第一空间子区相对应的相应第二空间子区内的气流均从相应的第二子出口流出。
在一些实施例中,所述供暖、通风和/或空调装置还包括第一气流处理单元,所述第一气流处理单元设置在所述壳体内,并且位于所述第一分隔壁的上游;且所述供暖通风和/或空调装置还包括:对应于每一个第一空间子区设置的第一混合风门和/或对应于每一个第二空间子区设置的第二混合风门;所 述第一分隔壁还具有第二分隔部;所述第二分隔部在所述壳体内分隔第三空间及第四空间;其中,通过所述第一气流处理单元的气流一部分进入所述第三空间,另一部分进入所述第四空间;其中,所述中央分隔壁和两个辅助分隔壁将所述第三空间分为四个第三空间子区;所述中央分隔壁和两个辅助分隔壁将所述第四空间分为四个第四空间子区;且对于每一个第一空间子区:当对应于该第一空间子区的第一混合风门处于完全打开位置时,将与该第一空间子区对应的第三空间子区和该第一空间子区隔开;且对于每一个第二空间子区:当对应于该第二空间子区的第二混合风门处于完全打开位置时,将与该第二空间子区对应的第四空间子区和该第二空间子区隔开。
在一些实施例中,所述分层分隔壁还具有第二分隔壁;所述第二分隔壁位于所述第一气流处理单元的上游;所述第二分隔壁在所述壳体内分隔第五空间和第六空间;其中,通过所述第一气流处理单元的气流一部分来自于所述第五空间,另一部分来自于所述第六空间;其中,对于每一个第一空间子区:当对应于该第一空间子区的第一混合风门处于完全关闭位置时,将所述第五空间与该第一空间子区隔开;且对于每一个第二空间子区:当对应于该第二空间子区的第二混合风门处于完全关闭位置时,将所述第六空间与该第二空间子区隔开。
在一些实施例中,所述供暖、通风和/或空调装置还包括第二气流处理单元;所述第二气流处理单元设置在所述壳体内并且位于所述第二分隔壁上游;其中,通过所述第二气流处理单元的气流一部分进入所述第五空间,另一部分进入所述第六空间。
在一些实施例中,在所述横向延伸壁所对应的第二空间子区中,所述供暖、通风和/或空调装置还设置有第二子风门,其中,对于所述横向延伸壁所对应的每个第二空间子区:所述第二子风门处于完全闭合位置时,所述第二子风门与所述第一分隔部及所述横向延伸壁相接合,以将该第二空间子区分隔为第二空间第一子区和第二空间第二子区。
在一些实施例中,所述第二子出口包括通风子出口,且在所述横向延伸壁所对应的第二空间子区中,所述供暖、通风和/或空调装置还设置有第三子风门,其中,对于所述横向延伸壁所对应的每个第二空间子区:所述第三子风门处于完全闭合位置时,所述第三子风门与所述壳体相接合,以关闭相应的通风子出口。
在一些实施例中,所述第二气流处理单元与所述第一气流处理单元以基本上正交的方式布置。
根据本公开的另一方面,还提出了一种机动车辆,其特征在于,其包括如前所述的供暖、通风和/或空调装置。
利用本发明提供的供暖、通风和/或空调装置,可以良好地实现供暖、通风和/或空调供暖,该装置中设置有分层结构以分隔用于不同气流的两个空间,且根据实际需要,该分层结构能够与第一风门相配合,以引导不同空间内的气流经由不同的出口输出,各出口输出的气流温度可以独立地调节,且该供暖、通风和/或空调装置在Z向(垂直)方向上具有较小立体体积。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员而言,在没有做出创造性劳动的前提下,还可以根据这些附图获得其他的附图。以下附图并未刻意按实际尺寸等比例缩放绘制,重点在于示出本发明的主旨。
图1示出了根据本发明实施例的供暖、通风和/或空调装置100的立体图;
图2示出了根据本公开实施例的供暖、通风和/或空调装置100的顶视图;
图3示出了根据图2中的中轴线Oy得到供暖、通风和/或空调装置100的剖视图,其中所述第一风门处于第一位置;
图4示出了根据图2中的中轴线Oy得到供暖、通风和/或空调装置100的剖视图,其中所述第一风门处于第二位置;
图5示出了根据图2中的中轴线Oy得到供暖、通风和/或空调装置100的剖视图,其中所述第一混合风门和所述第二混合风门处于完全打开位置;
图6示出了根据图2中的中轴线Oy得到供暖、通风和/或空调装置100的剖视图,其中所述第一混合风门和所述第二混合风门处于完全关闭位置;
图7示出了根据图2中的A-A线得到供暖、通风和/或空调装置100的剖视图,其中所述供暖、通风和/或空调装置100处于吹脚通风双模式;
图8示出了根据图2中的A-A线得到供暖、通风和/或空调装置100的剖视图,其中所述供暖、通风和/或空调装置100处于吹脚除雾双模式;
图9示出了根据图2中的A-A线得到供暖、通风和/或空调装置100的剖 视图,其中所述供暖、通风和/或空调装置100处于除雾模式;
图10示出了根据图2中的A-A线得到供暖、通风和/或空调装置100的剖视图,其中所述供暖、通风和/或空调装置100处于吹脚模式;
图11示出了根据图2中的A-A线得到供暖、通风和/或空调装置100的剖视图,其中所述供暖、通风和/或空调装置100处于通风模式;
图12A示出了根据本公开的另一个实施例的供暖、通风和/或空调装置100’,其具有分区分隔壁140;
图12B示出了供暖、通风和/或空调装置100’的顶视图;
图13A示出了图12A中供暖、通风和/或空调装置100’去掉壳体后的内部图;
图13B示出了图13A中供暖、通风和/或空调装置100’的另一视角下的视图;
图14示出了图13A中的供暖、通风和/或空调装置100’的顶视图,其中标示了分层分隔壁140形成的各个子区;
图15中示出了图12A中分区分隔壁140的结构图;
图16中示出了根据本公开实施例的壳体的第一右半部1131剖面图;
图17中示出了根据本公开实施例的第二右半子部1132的剖面图;
图18示出了根据本公开实施例的供暖、通风和/或空调装置100’去除壳体后的结构图;
图19示出了根据本公开实施例的第二右半子部1132的剖面图,其中标示了第二空间第一子区和第二空间第二子区;
图20A示出了供暖、通风和/或空调装置100’的第一右半部1131的剖视图,其中所述供暖、通风和/或空调装置100’处于吹脚通风双模式;
图20B示出了供暖、通风和/或空调装置100’的第二右半部1132的剖视图,其中所述供暖、通风和/或空调装置100’处于吹脚通风双模式;
图21A示出了供暖、通风和/或空调装置100’的第一右半部1131的剖视图,其中所述供暖、通风和/或空调装置100’处于除雾优先模式;
图21B示出了供暖、通风和/或空调装置100’的第二右半部1132的剖视图,其中所述供暖、通风和/或空调装置100’处于除雾优先模式;
图22A示出了供暖、通风和/或空调装置100’的第一右半部1131的剖视图,其中所述供暖、通风和/或空调装置100’处于吹脚除雾双模式;
图22B示出了供暖、通风和/或空调装置100’的第二右半部1132的剖视图,其中所述供暖、通风和/或空调装置100’处于吹脚除雾双模式;
图23A示出了供暖、通风和/或空调装置100’的第一右半部1131的剖视图,其中所述供暖、通风和/或空调装置100’处于吹脚模式;
图23B示出了供暖、通风和/或空调装置100’的第二右半部1132的剖视图,其中所述供暖、通风和/或空调装置100’处于吹脚模式;
图24A示出了供暖、通风和/或空调装置100’的第一右半部1131的剖视图,其中所述供暖、通风和/或空调装置100’处于通风模式;
图24B示出了供暖、通风和/或空调装置100’的第二右半部1132的剖视图,其中所述供暖、通风和/或空调装置100’处于通风模式。
具体实施方式
下面将结合附图对本发明实施例中的技术方案进行清楚、完整地描述,显而易见地,所描述的实施例仅仅是本发明的部分实施例,而不是全部的实施例。基于本发明实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,也属于本发明保护的范围。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。
虽然本申请对根据本申请的实施例的系统中的某些模块做出了各种引用,然而,任何数量的不同模块可以被使用并运行在用户终端和/或服务器上。所述模块仅是说明性的,并且所述系统和方法的不同方面可以使用不同模块。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或下面操作不一定按照顺序来精确地执行。相反,根据需要,可以按照倒序或同时处理各种步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
图1示出了根据本发明实施例的供暖、通风和/或空调装置100的立体图,图2示出了根据本公开实施例的供暖、通风和/或空调装置100的顶视图,图3示出了根据图2中的中轴线Oy得到供暖、通风和/或空调装置100的剖视图。
综合参照图1及图2,所述供暖、通风和/或空调装置100例如包括壳体110, 所述壳体110容许气流通过且具有第一出口160、第二出口180和分层分隔壁150(图6中示出了分层分隔壁150)。且该供暖、通风和/或空调装置例如具有中轴线Oy(在图1所示出的示例中,该供暖、通风和/或空调装置例如相较于中心线Oy左右对称)。
例如,参照图2及图3,所述第一出口160可以为脚部出口,且所述脚部出口例如可以进一步包括前脚部出口161和后脚部出口162,所述后脚部出口162的开口中心线例如为A-A线。应了解,本公开的实施例不受该第一出口的具体数目的限制。
所述第二出口180可以为通风出口或除雾出口。本公开的实施例不受该第二出口的具体数目及其类型的限制。
所述分层分隔壁150是指用于对壳体内的气流进行分层的壁状结构,且所述分隔壁例如可以包括多个用于实现气流分层的子分隔壁。
具体地,参照图3,所述分层分隔壁150例如包括第一分隔壁151。所述第一分隔壁151具有第一分隔部1511,所述第一分隔部1511在所述壳体110内分隔第一空间V1及第二空间V2。
如图3所示出的,例如经由该第一分隔壁形成在该壳体内部的贯通开口,以实现与相应的风门的接合,且该第一分隔壁例如可以根据实际需要包括多个分隔部,例如包括第一分隔部及第二分隔部等。
应了解,所述第一空间V1及所述第二空间V2是指经由所述第一分隔壁分隔的壳体内的两个子空间。图3中以左下右上灰色斜线示意性地示出了第一空间V1,以左上右下黑色斜线示意性地示出了第二空间V2。
所述供暖、通风和/或空调装置100还包括第一风门170,所述第一风门170设置在所述壳体110内部,且所述第一风门170可操作地处于第一位置及第二位置。
所述第一风门例如为片状风门,其可以绕自身的旋转轴在两个极限位置之间旋转,且所述第一位置及第二位置例如是指该第一风门170的两个极限位置,即完全打开位置与完全关闭位置。具体地,所述第一位置例如为该第一风门的完全打开位置,例如为该第一风门完全打开以抵靠第一分隔壁151的位置(如图3所示出的)。所述第二位置例如为完全关闭位置,即该第一风门抵靠壳体内部结构且使得与该第一风门相对应的开口完全被关闭的位置。
所述可操作地处于第一位置及第二位置,是指该第一风门的开度位置例 如可以根据实际情况调节,例如通过控制与该第一风门相连接的旋转电机的转动方向及位置来调节该第一风门的位置,或者也可以通过其他方式来调节第一风门的位置,使得根据实际需要处于第一位置或第二位置。应了解,本公开的实施例不受该第一风门开度位置的具体调节方式的限制。
参照图3,在所述第一风门170处于所述第一位置时,所述第一风门170与所述第一分隔部1511相接合,以引导所述第二空间V2内的气流经由所述第二出口180流出,并引导所述第一空间V1内的气流经由所述第一出口160流出。
图4示出了根据图2中的中轴线Oy得到供暖、通风和/或空调装置100的剖视图,其中所述第一风门处于第二位置(完全关闭位置)。参照图4,在所述第一风门170处于所述第二位置时,所述第一风门170关闭所述第一出口160,以使所述第一空间V1内的气流和所述第二空间V2内的气流均从所述第二出口180流出。
基于上述,本申请中,在实现良好供暖、通风和/或空调功能的基础上,在供暖、通风和/或空调装置中设置分层分隔壁,通过该分层分隔壁中第一分隔壁的第一分隔部在壳体内分隔第一空间V1及第二空间V2,且通过第一分隔部与第一风门的配合,使得在第一风门处于第一位置时,第一风门与第一分隔部相接合,以引导第二空间V2内的气流经由第二出口流出,并引导第一空间V1内的气流经由所述第一出口流出,从而通过对壳体内结构部件的合理规划设置,复用了第一风门参与气流空间的分隔和引导,使得能够经由第一分隔壁的第一分隔部与第一风门部件的灵活配合,良好地分隔出用于不同气流的两个气流空间,且引导不同气流空间内的气流经由不同的出口输出,从而有利于根据实际需要,灵活地布局该供暖、通风和/或空调装置的各出口中的气流类型,实现多种工作模式。
图5示出了根据图2中的中轴线Oy得到供暖、通风和/或空调装置100的剖视图,其中所述第一混合风门和所述第二混合风门处于完全打开位置。图6示出了根据图2中的中轴线Oy得到供暖、通风和/或空调装置100的剖视图,其中所述第一混合风门和所述第二混合风门处于完全关闭位置。
在一些实施例中,参照图5,所述供暖、通风和/或空调装置100还包括第一气流处理单元130、第一混合风门310和/或第二混合风门320。
参照图5,所述第一气流处理单元130设置在所述壳体110内,并且位于所 述第一分隔壁151的上游。应了解,本申请中所述上游、下游是沿进气气流的流动方向确定的。
应了解,根据实际需要,所述第一气流处理单元130例如可以是加热器,例如PTC加热器。
所述第一混合风门310是指用于调节进入所述第一空间V1的气流温度的风门部件;所述第二混合风门320是指用于调节进入所述第二空间V2的气流温度的风门部件。如图5所示出的,所述第一混合风门、第二混合风门例如可以沿进气气流的流动方向设置在所述第一气流处理单元130的下游,且设置在相应地第一空间V1及第二空间V2的上游,以通过控制气流经过及绕过第一气流处理单元130的比例,来实现对第一空间、第二空间内的气流温度的调节。
应了解,所述第一混合风门、第二混合风门例如可以为同类型同尺寸的风门部件,或者也可以根据实际需要,选择不同类型或尺寸的风门部件。本公开的实施例不受该第一混合风门及第二混合风门的类型关系及尺寸关系的限制。
例如,所述第一混合风门、第二混合风门可以均为如图5中所示出的滑动风门,其滑动风门瓣片可操作地绕其滑动中心轴在两个相反方向上滑动以控制该滑动风门的开度位置。且所述第一混合风门和所述第二混合风门每个例如均具有两个极限位置:完全打开位置及完全关闭位置,且所述第一混合风门和所述第二混合风门能够在该完全打开位置及完全关闭位置之间移动。
综合参照图3及图5,所述第一分隔壁151例如还具有第二分隔部1512。所述第二分隔部1512在所述壳体110内分隔第三空间V3及第四空间V4。其中,通过所述第一气流处理单元130的气流一部分进入所述第三空间V3,另一部分进入所述第四空间V4。图5中以黑色颗粒填充示意性地示出了第三空间V3,且以垂直线填充示意性地示出了第四空间V4。
应了解,所述第三空间及所述第四空间仅旨在示出经由第一分隔壁的第二分隔部划分的两个不同气流空间,并不旨在对其进行限制。
其中,所述第一混合风门310处于完全打开位置时,将所述第三空间V3和所述第一空间V1隔开。所述第二混合风门320处于完全打开位置时,将所述第四空间V4和所述第二空间V2隔开。
具体地,所述第一混合风门310的完全打开位置例如是指该第一混合风 门处于与该第二分隔部相配合以实现第一空间及第三空间分隔的位置,例如,是指该第一混合风门310沿第一方向滑动至极限位置且与第二分隔部1512接合的位置(如图5所示出的)。例如,参照图5,所述第一混合风门310处于完全打开位置时,所述第一混合风门310的一端与所述第二分隔部1512相接合,另一端与壳体的内部壁相结合,此时,所述第二分隔部1512、第一混合风门310及壳体内部壁共同协作,以将所述第三空间V3与所述第一空间V1分隔。
例如,在该情况下,如图5中所示出的,对于该第一混合风门所对应的分层气流,该分层气流中流动经过该第一气流处理单元130的气流将由于第一混合风门310的阻隔而无法进入第一空间V1中,即此时对于该第一混合风门所对应的分层气流而言,仅该分层气流中不流动经过第一气流处理单元130的一部分气流能够进入该第一空间内(也即后续能够经由相应出口输出)。
所述第一混合风门310的完全关闭位置例如是指该第一混合风门310沿大致上与第一方向相反的第二方向滑动至极限的位置(如图6所示出的),此时该第一混合风门处于与该壳体内壁配合以实现将第一空间及下文中描述的第五空间分隔的位置。在该情况下,如图6中所示出的,对于该第一混合风门所对应的分层气流,该分层气流中未流动经过该第一气流处理单元130的气流将由于第一混合风门310的阻隔而无法进入第一空间V1中,即此时对于该第一混合风门所对应的分层气流而言,仅该分层气流中流动经过第一气流处理单元130的一部分气流能够进入该第一空间内(也即后续能够经由相应出口输出)。
所述第二混合风门320的完全打开位置是指该第二混合风门320沿第三方向滑动至极限位置且与第二分隔部1512接合的位置(如图5所示出的)。例如,参照图5,所述第二混合风门320处于完全打开位置时,所述第二混合风门320的一端与所述第二分隔部1512相接合,另一端与壳体的内部壁相结合,此时,所述第二分隔部1512、第二混合风门320及壳体内部壁共同协作,以将所述第四空间V4与所述第二空间V2分隔。
例如,在该情况下,如图5中所示出的,对于该第二混合风门所对应的分层气流,该分层气流中流动经过该第二气流处理单元130的气流将由于第二混合风门320的阻隔而无法进入第二空间V2中,即此时对于该第二混合风门所对应的分层气流而言,仅该分层气流中不流动经过第一气流处理单元 130的一部分气流能够进入该第二空间内(也即后续能够经由相应出口输出)。
所述第二混合风门310的完全关闭位置是指该第二混合风门320沿大致上与第三方向相反的第四方向滑动至极限的位置(如图6所示出的)。此时该第二混合风门处于与该壳体内壁配合以实现将第二空间及下文中描述的第六空间分隔的位置。在该情况下,如图6中所示出的,对于该第二混合风门所对应的分层气流,该分层气流中未流动经过该第一气流处理单元130的气流将由于第二混合风门320的阻隔而无法进入第二空间V2中,即此时对于该第二混合风门所对应的分层气流而言,仅该分层气流中流动经过第一气流处理单元130的一部分气流能够进入该第二空间内(也即后续能够经由相应出口输出)。
例如,该第一混合风门例如可以设置在分层气流中上层气流的流动路径中,以实现对该分层气流中上层气流的温度调节,该第二混合风门例如可以设置在分层气流中下层气流的流动路径中,以实现对该下层气流的温度调节。
应了解,尽管上述重点描述了第一混合风门的两个极限位置、第二混合风门的两个极限位置,但是该第一混合风门、第二混合风门可以根据实际需要处于位于完全打开位置与完全关闭位置之间的任一中间位置(如图3所示出的),在该中间位置中的空气流通方式在下文中将结合供暖、通风和/或空调的功能模式进行更具体地说明。
基于上述,本申请中,通过设置所述壳体包括第一混合风门及第二混合风门及第一气流处理单元(例如加热器),使得能够根据实际需要,通过第一混合风门的开度位置来调节进入第一空间的气流的温度;通过第二混合风门的开度位置来调节进入第二空间的气流的温度,实现对分层后的不同气流温度的独立调节。且通过第二分隔部在所述壳体内分隔第三空间和第四空间,并设置在第一混合风门处于完全关闭位置时,将所述第三空间与所述第一空间隔开;所述第二混合风门处于完全关闭位置时,将所述第四空间与所述第二空间隔开,使得能够复用第一混合风门及第二混合风门作为相邻空间之间的间隔件,从而优化壳体内的结构布局。
参照图6,在一些实施例中,所述分层分隔壁150还具有第二分隔壁152。
所述第二分隔壁152位于所述第一气流处理单元130的上游,所述第二分隔壁152在所述壳体110内分隔第五空间V5和第六空间V6。
例如,参照图6,所述第二分隔壁从所述第一气流处理单元130的下表 面的(例如下表面的中点处)起始,且例如延伸至壳体的相应内壁或与壳体内的其他部件相接合,例如在图6中,其例如与第二气流处理单元(例如蒸发器)的内表面相接合,以分隔第五空间及第六空间。
且其中,通过所述第一气流处理单元130的气流一部分来自于所述第五空间V5,另一部分来自于所述第六空间V6。
且其中,所述第一混合风门310处于完全关闭位置时,将所述第五空间V5与所述第一空间V1隔开;所述第二混合风门320处于完全关闭位置时,将所述第六空间V6与所述第二空间V2隔开。
例如,参照图6,在所述第一混合风门处于如前所述的完全关闭位置时,所述第一混合风门的两个端部与壳体的相应内部壁相接合,此时壳体的相应内部壁、第一混合风门及第二分隔壁相协作,以将第五空间V5与第一空间V1相隔开。且进一步参照图6,在所述第二混合风门处于如前所述的完全关闭位置时,所述第二混合风门的两端也与壳体内相应的内部壁相接合,此时壳体的相应内部壁、第二混合风门及第二分隔壁相协作,以将第六空间V6与第二空间V2相隔开。
基于上述,本申请中,通过设置该分层分隔壁进一步具有第二分隔壁,使得经由第二分隔壁在第一气流处理单元的上游进一步划分出第五空间及第六空间,使得能够在第一气流处理单元上游为不同的分层气流设置对应的不同气流空间,从而在第一气流处理单元的上下流路上均设置良好的分层气流空间;且通过设置第一混合风门处于完全关闭位置时将所述第五空间与第一空间隔开;第二混合风门处于完全关闭位置时将所述第六空间与所述第二空间隔开,使得能够最大程度地复用第一混合风门及第二混合风门来根据实际需要实现各个空间的分隔与连通,从而有利于灵活地选择和设置气流流动路径且实现对气流流动方向的引导,且使得该装置能够实现多种工作模式。
在一些实施例中,述供暖、通风和/或空调装置100还包括第二气流处理单元120。
例如,所述第二气流处理单元例如可以是热交换器。具体地,例如在制冷模式下为蒸发器,在热泵模式下为冷凝器。
参照图6,所述第二气流处理单元120设置在所述壳体110内并且位于所述第二分隔壁152上游。
例如,参照图6,所述第二气流处理单元例如可以设置在靠近该供暖、 通风和/或空调装置的入口的位置,进入该壳体内的气流将首先通过该第二气流处理单元。
例如,所述第二分隔壁的一端接合至所述第一气流处理单元的下表面,所述第二分隔壁的另一端接合至所述第二气流处理单元的内侧表面(其朝向该壳体内侧)。
其中,通过所述第二气流处理单元120的气流一部分进入所述第五空间V5,另一部分进入所述第六空间V6。
基于上述,通过设置供暖、通风和/或空调装置100还包括第二气流处理单元120,并进一步设置第二气流处理单元位于第二分隔壁上游,使得进入供暖、通风和/或空调装置100内的分层气流可以首先经由第二气流处理单元进行气流处理(例如经由蒸发器处理),其后,分别进入第五空间V5及第六空间V6,并后续根据实际需要,进一步经由第一气流处理单元处理(例如经由加热器的加热处理),从而有利于根据实际需要对进气气流进行多层次的处理,以实现良好地供暖、通风和/或空调效果。
在一些实施例中,所述第一出口160为吹脚出口。且此时,经由第一出口输出的气流例如为内循环空气。
本申请中,通过设置该第一出口为吹脚出口,使得经由本申请中设置的分层分隔壁及相应的气流空间,能够令分层进入的多个进气气流中的第一进气气流(例如为上层进气气流)经由第二气流处理单元、第五空间和/或第三空间、第一空间所组成的气流流通路径,最终在吹脚出口打开的情况下,完全经由吹脚出口输出。特别地,当该第一气流为内循环空气时,使得经由分层分隔壁,在使用新鲜空气进行通风除雾的同时,还能够经由内循环空气进行吹脚操作。
在一些实施例中,所述第二出口180包括通风出口、除雾出口中的至少一个。且此时,经由第二出口输出的气流例如为新鲜空气。
本申请中,通过设置第二出口为通风出口、除雾出口中的至少一个,使得当输入的分层气流为内循环空气及新鲜空气时,能够经由第一风门与分层分隔壁的配合,在应用内循环空气作为第一进气气流(例如为上层进气气流),经由第二气流处理单元、第五空间和/或第三空间、第一空间所组成的气流流通路径,在第一风门的引导下从吹脚出口输出的同时;还能够应用新鲜空气作为第二进气气流(例如为下层进气气流),经由第二处理单元、第六空间和 /或第四空间、第二空间所组成的气流流通路径,在第一风门的引导下经由第二出口输出,从而实现通风和/除雾等功能。
在一些实施例中,参照图6,所述第二气流处理单元120与所述第一气流处理单元130以基本上正交的方式布置。例如设置所述第一气流处理单元130在安装状态下相对于车辆基本水平布置,并且所述第二气流处理单元120在安装状态下相对于车辆基本垂直布置。
基于上述,本申请中,通过设置该第二气流处理单元120与第一气流处理单元130以基本上正交的方式布置,相较于当前普遍采取的第一、第二气流处理单元平行布局(例如第一、第二处理单元均垂直放置或均水平方式或以相同角度倾斜放置的平行布局),本申请中通过采用第一、第二气流处理单元的正交布置方式,一方面能够实现超薄设计,特别是降低该供暖、通风和/或空调装置在Z向(垂直)方向上的立体体积;另一方面,通过设置该第一、第二气流处理单元垂直布局,使得在这一布局下能够更好地提高壳体的内部空间,有利于进一步设置分层分隔壁并形成对应于不同分层气流的气流空间,即有利于基于该垂直布局更好地优化壳体内部结构并实现更好地分层气流流动及引导。
在一些实施例中,所述第一出口160位于所述第二气流处理单元120上方。
通过设置第一出口160位于第二气流处理单元120上方,使得能够优化该供暖、通风和/或空调装置的结构布局,且有利于在该供暖、通风和/或空调装置安装至机动车辆的仪表板上后,经由该第一出口(例如吹脚出口)更好地输出气流。
在一些实施例中,参照图2,所述供暖、通风和/或空调装置100还包括中央分隔壁141,所述中央分隔壁141将所述壳体分为左半部112及右半部113。
所述左半部及所述右半部例如具有沿所述中央分隔壁所在平面相对称的结构,且例如均具有如前结合图1-图11所示出的结构部件及功能模式。
例如,图2中示出了右半部的吹脚开口160,其包括前吹脚出口、后吹脚出口,且结合图7至图11所示出的壳体右半部的相应剖面图,该右半部壳体例如还包括前通风出口、后通风出口、除雾出口。相应地,壳体左半部例如相应地具有前通风出口、后通风出口、除雾出口、前吹脚出口、后吹脚出 口,并相应地具有分层分隔壁、第一气流处理单元及第二气流处理单元。
例如,在所述供暖、通风和/或空调装置100安装至机动车辆后,所述左半部113例如被配置为向所述机动车辆的右侧(乘客侧)提供相应的供暖、通风和/或空调功能,且可以灵活地在吹脚通风双模式、吹脚除雾双模式、除雾模式、吹脚模式、通风模式中切换。且在所述供暖、通风和/或空调装置100安装至机动车辆后,所述右半部114例如被配置为向所述机动车辆的左侧(驾驶员侧)提供相应的供暖、通风和/或空调功能,且可以灵活地在吹脚通风双模式、吹脚除雾双模式、除雾模式、吹脚模式、通风模式中切换。
应了解,上述仅给出一种左半部及右半部的示例性工作方式,根据实际需要,还可以设置左半部112向机动车辆左侧(驾驶员侧)提供相应的供暖、通风和/或空调功能,右半部113向机动车辆右侧(乘客侧)提供相应的供暖、通风和/或空调功能。
基于上述,本申请中,通过设置中央分隔壁,将壳体分隔为左半部及右半部,使得在如前描述的气流分层进入,分层气流独立温度控制的基础上,进一步通过中央分隔壁对该供暖、通风和/或空调装置100进行左右分区,且左半部及右半部能够被独立地控制,从而使得左半部及右半部能够独立地被配置处于吹脚通风双模式、吹脚除雾双模式、除雾模式、吹脚模式、通风模式中,以使得能够向机动车辆的右侧(乘客侧)和左侧(驾驶员侧)提供不同的供暖、通风和/或空调功能,且实现了供暖、通风和/或空调装置中双层双区的设计。
接下来将结合具体实施例对上述供暖、通风和/或空调装置100的气流流通路径及相应的工作模式进行更具体地描述。该供暖、通风和/或空调装置100例如可以是双层双区的供暖、通风和/或空调装置,即该供暖、通风和/或空调装置100能够在上层气流入口及下层气流入口中分别通入进气气流(其例如可以是同种气流类型,或者也可以是不同种的气流类型),实现对上下层气流划分相对独立的气流流动路径及通道。此外,该供暖、通风和/或空调装置100例如可以沿中轴线左右对称,具体地,其经由中轴线划分为左半区及右半区,且该左半区与该右半区具有相同的结构。
例如,参照图3,该供暖、通风和/或空调装置100具有壳体110,且该壳体例如具有如图1-3所示出的壳体内部结构。具体地,所述壳体限定入口111、第一出口(此处为吹脚出口)160及第二出口180(该第二出口180例 如根据实际需要,可以包括除雾出口181和/或通风出口182)。
且参照图1及图3,该第一出口(吹脚出口)例如更具体地包括前吹脚出口161及后吹脚出口162;该通风出口182例如更具体地包括前通风出口1821及后通风出口1822。
且所述壳体内例如还设置有如前所述的第二气流处理单元130、分层分隔壁150、第一气流处理单元120、第一风门170、第一混合风门310、第二混合风门320。其中,所述第二气流处理单元130例如为蒸发器,其靠近壳体的入口111设置。所述第一气流处理单元120例如为加热器。
所述分层分隔壁150例如包括如前所述的第一分隔壁151及第二分隔壁152,且该第一分隔壁151例如具有第一分隔部1511及第二分隔部1522。且其中,所述第一分隔部1511分隔第一空间V1及第二空间V2,所述第二分隔部1512分隔第三空间V3及第四空间V4。所述第二分隔壁152分隔第五空间V5及第六空间V6。且如图6所示出的,第二分隔壁152的上游端连接至所述第二气流处理单元130的内侧面,所述第二分隔壁152的下游端连接至所述第一气流处理单元120的下表面。
所述第一风门为被配置为用于第一开口(吹脚开口)的风门部件,其被配置为控制该第一开口的开度。且如前所详细说明地,在所述第一风门170处于所述第一位置时,第一风门170与第一分隔部1511相接合,以引导所述第二空间V2内的气流经由所述第二出口180流出,并引导所述第一空间V1内的气流经由所述第一出口160流出;在所述第一风门170处于所述第二位置时,所述第一风门170关闭第一出口160,以使所述第一空间V1内的气流和所述第二空间V2内的气流均从所述第二出口180流出。
所述第一混合风门310被配置为用于调节通过第一气流处理单元与绕过第一气流处理单元的气流的比例,从而调节进入所述第一空间V1内的气流的温度。当第一混合风门310处于完全打开位置时,将所述第三空间V3和所述第一空间V1隔开;所述第一混合风门310处于完全关闭位置时,将所述第五空间V5与所述第一空间V1隔开。
所述第二混合风门320被配置为用于调节通过第一气流处理单元与绕过第一气流处理单元的气流的比例,从而调节进入所述第二空间V2内的气流的温度。当第二混合风门320处于完全打开位置时,将所述第四空间V4和所述第二空间V2隔开;所述第二混合风门320处于完全关闭位置时,将所 述第六空间V6与所述第二空间V2隔开。
且参照图4,该壳体内还设置有除雾风门191、前通风风门1921、后通风风门1922。所述除雾风门191被配置为调节除雾出口181的开度。所述前通风风门1921被配置为调节前通风出口1821的开度,且所述后通风风门1922被配置为调节后通风出口1822的开度。参照图4,所述除雾风门191及所述前通风风门1921例如为滑动风门,所述后通风风门例如为蝶形风门。
接下来将对该供暖、通风和/或空调装置100的不同工作模式进行详细说明。
吹脚通风双模式
图7示出了根据图2中的A-A线得到供暖、通风和/或空调装置100的剖视图,其中所述供暖、通风和/或空调装置100处于吹脚通风双模式。
参照图7,在该供暖、通风和/或空调装置100处于吹脚通风双模式下,此时第一风门170被配置为处于第一位置,以将吹脚开口160完全打开且与第一分隔部相接合,以实现对气流的引导。除雾风门191将处于完全关闭位置,以将除雾出口完全关闭,前通风风门1921及后通风风门1922打开,具体开度位置例如可以根据实际需要进行调节,以令前通风出口及后通风出口以期望的开度打开。
此时例如可以进一步调节第一混合风门及第二混合风门的开度,以控制分层气流流过及绕过该第一气流处理单元120(加热器)的比例。在图7所示出的示例中,该第一混合风门310及第二混合风门320例如均处于中间位置。
此时壳体入口的上层例如通入内循环空气,壳体入口的下层例如通入新鲜空气,且其在壳体内的气流具体为:对于上层气流而言,上层进气气流(此处为内循环空气进气气流)F1i例如从入口上层部分进入,首先通过第二气流处理单元130(蒸发器)的处理,其后,上层进气气流F1i将分为两个气流分支,其中第一气流分支绕过第一气流处理单元120,其进入第五空间V5并直接从第一混合风门310的左侧进入第一空间V1(如图7中以虚线示出的气流流向)。上层进气气流F1i的第二气流分支将通过所述第一气流处理单元(加热器)120,具体地,其将进入第五空间V5,并随后通过第一气流处理单元120进入第三空间V3,并经由第一混合风门310的右侧进入第一空间V1(如图7中以点线示出的气流流向),该通过第一气流处理单元120的第二气流分 支将被加热器加热,以具有相对于第一气流分支更高的温度。其后,在第一空间V1中,两个气流分支将混合并形成上层输出气流(此处为内循环空气输出气流)F1o,此时,处于第一位置的第一风门170将与第一分隔部相接合,并引导第一空间V1内的上层输出气流F1o经由第一出口160流出,此处该上层输出气流F1o例如经由后吹脚出口161及前吹脚出口162输出。
对于下层气流而言,当通入新鲜空气时,下层进气气流(此处为新鲜空气进气气流)F2i例如从入口下层部分进入,首先其通过第二气流处理单元130(蒸发器)的处理,其后,下层进气气流F2i将分为两个气流分支,其中第一气流分支绕过第一气流处理单元120,其进入第六空间V6,并直接从第六空间V6从第二混合风门320的右侧进入第二空间V2(图7中以虚线示出的气流流向)。下层进气气流F2i的第二气流分支将通过第一气流处理单元(加热器)120,具体地,其将进入第六空间V6,随后通过第一气流处理单元120进入第四空间V4,最终从第二混合风门320的左侧进入第二空间V2(如图7中的以点线示出的气流流向),该通过第一气流处理单元120的第二气流分支将被加热器加热,以具有相对于第一气流分支更高的温度。其后,在第二空间V2中,两个气流分支将混合并形成下层输出气流F2o,且此时,处于第一位置的第一风门170将与第一分隔部相接合,并引导第二空间V2内的下层输出气流F2o经由第二出口流出,此处该下层输出气流(此处为新鲜空气输出气流)F2o例如经由前通风出口1821及后通风出口1822输出。
基于此,使得能够经由分层分隔壁实现内循环空气与新鲜空气的分层进入,并为各层气流设置了相应的气流流动空间,且通过复用第一风门与第一分隔部相接合,在良好划分气流流动空间的基础上,实现了对第一空间、第二空间内的气流的良好引导,从而使得在经由新鲜空气通过通风出口进行通风换气的同时,还能够采用内循环空气经由吹脚出口进行吹脚,使得兼顾通风和脚部保暖。此外,自吹脚出口及通风出口分别输出的内循环空气输出气流F1o新鲜空气输出气流F2o可以经由所设置的第一混合风门及第二混合风门独立地实现温度调节控制,从而能够灵活地对吹脚出口及通风出口的输出气流温度进行调节。相较于当前的供暖、通风和/或空调装置仅前通风口能够排出新鲜空气,后通风口、前脚部出口及后脚部出口均排出循环空气的情况,本申请中所提出的供暖、通风和/或空调系统能够实现前通风口及后通风口均排出新鲜空气,前吹脚出口及后吹脚出口均排出循环空气的功能。
吹脚除雾双模式
图8示出了根据图2中的A-A线得到供暖、通风和/或空调装置100的剖视图,其中所述供暖、通风和/或空调装置100处于吹脚除雾双模式。
参照图8,在该供暖、通风和/或空调装置100处于吹脚除雾双模式下,此时第一风门170被配置为处于第一位置,以将吹脚开口160完全打开且与第一分隔部相接合,以实现对气流的引导。除雾风门191将处于打开位置,具体开度位置例如可以根据实际需要进行调节以灵活控制除雾出口的开度(例如在图8中该除雾风门靠近完全打开位置),前通风风门1921及后通风风门1922处于完全关闭位置,以完全关闭前通风出口及后通风出口。
此时例如可以进一步调节第一混合风门310及第二混合风门320的开度,以控制气流流过及绕过该第一气流处理单元120(加热器)的比例。在图8所示出的示例中,该第一混合风门310及第二混合风门320例如均处于中间位置。
此时壳体入口的上层例如通入内循环空气,壳体入口的下层例如通入新鲜空气。且其在壳体内的气流具体为:对于上层气流而言,上层进气气流(此处为内循环空气进气气流)F1i例如从入口上层部分进入,首先通过第二气流处理单元130(蒸发器)的处理,其后,上层进气气流F1i将分为两个气流分支,其中第一气流分支绕过第一气流处理单元120,其进入第五空间V5并直接从第一混合风门310的左侧进入第一空间V1(如图8中以虚线示出的气流流向)。上层进气气流F1i的第二气流分支将通过所述第一气流处理单元(加热器)120,具体地,其将进入第五空间V5,并随后通过第一气流处理单元120进入第三空间V3,并经由第一混合风门310的右侧进入第一空间V1(如图8中以点线示出的气流流向),该通过第一气流处理单元120的第二气流分支将被加热器加热,以具有相对于第一气流分支更高的温度。其后,在第一空间V1中,两个气流分支将混合并形成上层输出气流(此处为内循环空气输出气流)F1o,此时,处于第一位置的第一风门170将与第一分隔部相接合,并引导第一空间V1内的上层输出气流F1o经由第一出口160流出,此处该上层输出气流(内循环空气输出气流)F1o例如经由后吹脚出口162及前吹脚出口161输出。
对于下层气流(新鲜空气)而言,该下层进气气流(此处为新鲜空气进气气流)F2i例如从入口下层部分进入,首先其通过第二气流处理单元130(蒸 发器)的处理,其后,下层进气气流F2i将分为两个气流分支,其中第一气流分支绕过第一气流处理单元120,其进入第六空间V6,并直接从第六空间V6从第二混合风门320的右侧进入第二空间V2(图8中以虚线示出的气流流向)。下层进气气流F2i的第二气流分支将通过第一气流处理单元(加热器)120,具体地,其将进入第六空间V6,随后通过第一气流处理单元120进入第四空间V4,最终从第二混合风门320的左侧进入第二空间V2(如图8中的以点线示出的气流流向),该通过第一气流处理单元120的第二气流分支将被加热器加热,以具有相对于第一气流分支更高的温度。其后,在第二空间V2中,两个气流分支将混合并形成下层输出气流(新鲜空气输出气流)F2o,且此时,处于第一位置的第一风门170将与第一分隔部相接合,并引导第二空间V2内的下层输出气流F2o经由第二出口流出,此处该下层输出气流F2o例如经由除雾出口181输出。
基于此,使得能够经由分层分隔壁实现内循环空气与新鲜空气的分层进入,并为各层气流设置了相应的气流流动空间,且通过复用第一风门与第一分隔部相接合,在良好划分气流流动空间的基础上,实现了对第一空间、第二空间内的气流的良好引导,从而使得在经由新鲜空气通过除雾出口进行除雾的同时,还能够采用内循环空气经由吹脚出口进行吹脚,使得兼顾除雾和脚部保暖。此外,自吹脚出口及除雾出口分别输出的内循环空气输出气流F1o新鲜空气输出气流F2o可以经由所设置的第一混合风门及第二混合风门独立地实现温度调节控制,从而能够灵活地对吹脚出口及除雾出口的输出气流温度进行调节。
除雾模式
图9示出了根据图2中的A-A线得到供暖、通风和/或空调装置100的剖视图,其中所述供暖、通风和/或空调装置100处于除雾模式。
参照图9,在该供暖、通风和/或空调装置100处于除雾模式下,此时第一风门170被配置为处于第二位置,以将吹脚开口160完全关闭。除雾风门191将处于打开位置,具体开度位置例如可以根据实际需要进行调节以灵活控制除雾出口的开度,例如,在图9中该除雾风门191处于完全打开位置以将除雾出口181完全打开。前通风风门1921及后通风风门1922处于完全关闭位置,以完全关闭前通风出口及后通风出口。
此时例如可以进一步调节第一混合风门310及第二混合风门320的开度, 以控制分层气流流过及绕过该第一气流处理单元120(加热器)的比例。在图9所示出的示例中,该第一混合风门310及第二混合风门320例如均处于完全关闭位置,从而使得各分层气流均完全通过第一气流处理单元120。
此时壳体入口的上层及下层例如均通入新鲜空气,且其在壳体内的气流具体为:对于上层气流而言,上层进气气流F1i(此处为新鲜空气进气气流)例如从入口上层部分进入,首先通过第二气流处理单元130(蒸发器)的处理,其后,上层进气气流F1i将全部通过所述第一气流处理单元(加热器)120,具体地,其将进入第五空间V5,并随后通过第一气流处理单元120进入第三空间V3,并经由第一混合风门310的右侧进入第一空间V1(如图9中以点线示出的气流流向)。
对于下层气流而言,该下层进气气流(此处为新鲜空气进气气流)F2i例如从入口下层部分进入,首先其通过第二气流处理单元130(蒸发器)的处理,其后,下层进气气流F2i将全部通过第一气流处理单元(加热器)120,具体地,其将进入第六空间V6,随后通过第一气流处理单元120进入第四空间V4,最终从第二混合风门320的左侧进入第二空间V2(如图9中的以点线示出的气流流向)。
且此时,处于第二位置的第一风门170将吹脚出口完全关闭,使得第一空间V1内的上层进气气流F1i和第二空间V2内的下层进气气流F2i共同形成输出气流Fo,且该输出气流Fo经由该除雾出口181输出。
基于此,在除雾模式下,使得能够经由分层分隔壁实现新鲜空气的分层进入,并为各层气流设置了相应的气流流动空间,且通过设置第一风门处于第二位置,在良好划分气流流动空间的基础上,使得第一空间、第二空间内的气流能够均从除雾出口输出。此外,上层气流及下层气流可以分别经由所设置的第一混合风门及第二混合风门独立地实现温度调节控制,从而能够灵活地对分层气流中的各层进行温度控制。
吹脚模式
图10示出了根据图2中的A-A线得到供暖、通风和/或空调装置100的剖视图,其中所述供暖、通风和/或空调装置100处于吹脚模式。
在该供暖、通风和/或空调装置100处于吹脚模式下,此时第一风门170被配置为处于第一位置,以将吹脚开口160完全打开且与第一分隔部相接合,以实现对气流的引导。除雾风门191将可操作地处于打开位置,具体开度位 置例如可以根据实际需要进行调节以灵活控制除雾出口的开度,例如,在图10中该除雾风门191处于完全打开位置及完全关闭位置之间的中间位置,且靠近完全关闭位置,以将除雾出口181小幅度地打开,以防止机动车辆玻璃出现雾气。前通风风门1921及后通风风门1922处于完全关闭位置,以完全关闭前通风出口1821及后通风出口1822。
此时,例如可以进一步调节第一混合风门310及第二混合风门320的开度,以控制分层气流流过及绕过该第一气流处理单元120(加热器)的比例。在图10所示出的示例中,该第一混合风门310及第二混合风门320例如均处于完全关闭位置,从而使得各分层气流均完全通过第一气流处理单元120。
此时壳体入口的上层例如均通入内循环空气,壳体入口的下层通入新鲜空气,且其在壳体内的气流具体为:对于上层气流而言,上层进气气流F1i(此处为内循环进气气流)例如从入口上层部分进入,首先通过第二气流处理单元130(蒸发器)的处理,其后,上层进气气流F1i将全部通过所述第一气流处理单元(加热器)120,具体地,其将进入第五空间V5,并随后通过第一气流处理单元120进入第三空间V3,并经由第一混合风门310的右侧进入第一空间V1(如图10中以点线示出的气流流向)。其后,进入第一空间的气流将作为上层输出气流F1o,且处于第一位置的第一风门170将与第一分隔部相接合,并引导第一空间V1内的上层输出气流F1o经由第一出口160流出,此处该上层输出气流(内循环空气输出气流)F1o例如经由后吹脚出口162及前吹脚出口161输出。
对于下层气流而言,该下层进气气流(此处为新鲜空气进气气流)F2i例如从入口下层部分进入,首先其通过第二气流处理单元130(蒸发器)的处理,其后,下层进气气流F2i将全部通过第一气流处理单元(加热器)120,具体地,其将进入第六空间V6,随后通过第一气流处理单元120进入第四空间V4,最终从第二混合风门320的左侧进入第二空间V2(如图10中的以点线示出的气流流向)。其后,进入第二空间V2的气流将作为下层输出气流F2o,且处于第一位置的第一风门170将与第一分隔部相接合,并引导第二空间V2内的下层输出气流F2o经由第一出口160流出,此处该下层输出气流(新鲜空气输出气流)F2o例如经由除雾出口181输出。
基于此,在吹脚模式下,能够经由分层分隔壁实现新鲜空气及内循环空气的分层进入,并为各层气流设置了相应的气流流动空间,且通过设置第一 风门处于第一位置,在良好划分气流流动空间的基础上,还能够对第一空间、第二空间内的气流进行引导,使得第一空间内的内循环输出气流从吹脚出口输出,第二空间内的新鲜空气输出气流从除雾出口输出。此外,上层气流及下层气流可以分别经由所设置的第一混合风门及第二混合风门独立地实现温度调节控制,从而能够灵活地对分层气流中的各层进行温度控制,且使得在该吹脚模式下,吹脚出口、除雾出口输出的气流温度均能够被独立控制。
通风模式
图11示出了根据图2中的A-A线得到供暖、通风和/或空调装置100的剖视图,其中所述供暖、通风和/或空调装置100处于通风模式。
在该供暖、通风和/或空调装置100处于通风模式下,此时第一风门170被配置为处于第二位置,以将吹脚开口160完全关闭。除雾风门191将处于完全关闭位置,以将除雾出口181完全关闭。前通风风门1921及后通风风门1922处于完全打开位置,以完全打开前通风出口1821及后通风出口1822。
此时例如可以进一步调节第一混合风门310及第二混合风门320的开度,以控制分层气流流过及绕过该第一气流处理单元120(加热器)的比例。在图11所示出的示例中,该第一混合风门310及第二混合风门320例如均处于完全打开位置,从而使得各分层气流均完全绕过第一气流处理单元120。
此时壳体入口的上层及下层例如均通入新鲜空气,且其在壳体内的气流具体为:对于上层气流而言,上层进气气流F1i(此处为新鲜空气进气气流)例如从入口上层部分进入,首先通过第二气流处理单元130(蒸发器)的处理,其后,上层进气气流F1i将全部绕过所述第一气流处理单元(加热器)120,具体地,其将进入第五空间V5,并从第一混合风门310的左侧直接进入第一空间V1(如图11中以虚线示出的气流流向)。
对于下层气流而言,该下层进气气流(此处为新鲜空气进气气流)F2i例如从入口下层部分进入,首先其通过第二气流处理单元130(蒸发器)的处理,其后,下层进气气流F2i将全部绕过第一气流处理单元(加热器)120,具体地,其将进入第六空间V6,随后从第二混合风门320的右侧直接进入第二空间V2(如图11中的以虚线示出的气流流向)。
且此时,处于第二位置的第一风门170将吹脚出口完全关闭,使得第一空间V1内的上层进气气流F1i和第二空间V2内的下层进气气流F2i共同形成输出气流Fo,且该输出气流Fo经由该前通风出口1821及后通风出口1822 输出。
基于此,在通风模式下,能够经由分层分隔壁实现新鲜空气的分层进入,并为各层气流设置了相应的气流流动空间,且通过设置第一风门处于第二位置,在良好划分气流流动空间的基础上,使得第一空间、第二空间内的气流能够均从通风出口输出。此外,上层气流及下层气流可以分别经由所设置的第一混合风门及第二混合风门独立地实现温度调节控制,从而能够灵活地对分层气流中的各层进行温度控制。
在一些实施例中,还设置有双层四区的供暖、通风和/或空调装置100’。即在前述供暖、通风和/或空调装置100双层双区设置的基础上进一步优化分区分隔壁,在中央分隔壁的基础上形成辅助分隔壁,以将所述壳体分为四个区。
图12A示出了根据本公开的另一个实施例的供暖、通风和/或空调装置100’,其具有分区分隔壁140。图12B示出了供暖、通风和/或空调装置100’的顶视图。图13A示出了图12A中供暖、通风和/或空调装置100’去掉壳体后的内部图。图13B示出了图13A中供暖、通风和/或空调装置100’的另一视角下的视图。图14示出了图13A中的供暖、通风和/或空调装置100’的顶视图,其中标示了分层分隔壁140形成的各个子区。
参照图12A及图13A,与前述相同,所述供暖、通风和/或空调装置100’例如具有壳体110,容许气流通过。
且与前述相同,该供暖、通风和/或空调装置100’例如还包括分层分隔壁150,其设置在所述壳体110内部且包括第一分隔壁151,所述第一分隔壁151具有第一分隔部1511。所述第一分隔部1511在所述壳体110内分隔第一空间V1及第二空间V2。该第一分隔壁、第一分隔部及相关第一、第二空间的具体结构如前结合图1至图3所详细说明的,在这里不再赘述。
且该供暖、通风和/或空调装置100’例如还包括分区分隔壁140,该分区分隔壁140包括中央分隔壁141和两个辅助分隔壁142。
参照前述图2,所述中央分隔壁141是指将所述壳体111分为左半部112及右半部113的分隔件,如图12A所示出的,其例如沿着该壳体入口的竖直中心线延伸,以将壳体分为左半部112及右半部113。
参照图13A及图14,所述辅助分隔壁142是指将所述左半部112及所述右半部113分别分为两个子部分的分隔件。所述辅助分隔壁例如可以连接至 所述中央分隔壁,且平行于所述中央分隔壁延伸,以将左半部及右半部分别划分为两个子部分,如图14所示出的,所述辅助分隔壁142例如将所述左半部分112为第一左半子部1121、第二左半子部1122;将所述右半子部分为第一右半子部1131及第二右半子部1132。
其中,参照图14,所述中央分隔壁141和两个辅助分隔壁142将所述第一空间V1分为四个第一空间子区V1a,V1b,V1c,V1d。所述中央分隔壁141和两个辅助分隔壁142将所述第二空间V2分为四个第二空间子区V2a,V2b,V2c,V2d。
该双层四区的供暖、通风和/或空调装置100’中的一部分结构例如与前述结合双层双区的供暖、通风和/或空调装置100所详细说明的结构及部件相同,且例如能够实现前述描述的相应部件的功能。在附图中采用相同的附图标记标识与该供暖、通风和/或空调装置100中相同或相应的部件。
基于上述,本申请中,通过设置该供暖、通风和/或空调装置具有分层分隔壁,使得能够实现分层气流进入及流动,且为不同的分层气流提供不同的气流流动空间,有利于后续对其流动进行引导及独立温度控制;且进一步地,通过设置其具有分区分隔壁,并令分区分隔壁包括中央分隔壁及设置在中央分隔壁两侧的两个辅助分隔壁,使得能够经由该分层分隔壁将该第一空间、第二空间分别划分为四个子区,从而在对供暖、通风和/或空调装置进行分层的基础上,进一步对其进行分区,从而能够实现双层四区的供暖、通风和/或空调装置结构,有利于后续进一步对所形成的8个子区内的气流进行引导及独立温度控制,从而极大地提高了该供暖、通风和/或空调装置的控制灵活度,且有利于设置各个不同的子区位于不同的工作模式下,从而满足多种不同的功能需求。
图15中示出了图12A中分区分隔壁140的结构图。参照图15,在一些实施例中,所述两个辅助分隔壁142大致平行于所述中央分隔壁141延伸。
通过设置该辅助分隔壁大致平行于中央分隔壁延伸,使得能够以简单便捷地方式对该壳体进行分区,从而形成第一空间子区V1a,V1b,V1c,V1d及第二空间子区V2a,V2b,V2c,V2d。
继续参照图15,在一些实施例中,所述两个辅助分隔壁142的下游端设置有连接该两个辅助分隔壁142的横向延伸壁143。
所述横向延伸壁是指用于将两个辅助分隔壁相连接的部件,参照图15, 其延伸方向例如大体上与中央分隔壁及辅助分隔壁相垂直,且其两个端部分别接合至两个辅助分隔壁,以将该两个辅助分隔壁相连接。
例如,两个辅助分隔壁142及所述横向延伸壁143可以为一体成型的。
基于上述,本申请中,通过设置横向延伸壁,且进一步设置该横向延伸壁连接两个辅助壁,使得能够更好地实现两个辅助壁的接合固定,且有利于该分层分隔壁在壳体内的良好定位。
在一些实施例中,所述中央分隔壁141插接至所述横向延伸壁143。例如,参照图15,所述中央分隔壁141例如插接至所述横向分隔壁的中心线处。
通过设置该横向分隔壁插接至两个辅助壁,使得能够以简单便捷的方式实现中央分隔壁与两个辅助分隔壁的组装及定位。
在一些实施例中,在上述双层四区的结构下,壳体内部的结构例如可以更具体地说明,具体地,参照图12A及图12B,所述壳体例如包括:与每一个第一空间子区V1a,V1b,V1c,V1d对应的第一子出口160a,160b,160c,160d,以及与每一个第二空间子区V2a,V2b,V2c,V2d对应的第二子出口180a,180b,180c,180d。
例如,在图12A所示出的示例中,该第一子出口例如是吹脚出口,该第二子出口例如是通风出口及除雾出口。
且参照图13A及图14,对于每一个第一空间子区V1a,V1b,V1c,V1d:供暖、通风和/或空调装置还包括第一子风门(例如分别为170a,170b,170c,170d),所述第一子风门设置在所述壳体110内部,所述第一子风门可操作地处于第一位置及第二位置。
应了解,该第一子风门可以具有先前描述的第一风门170的结构、类型,且具有相应地运动方式。具体地,第一子风门例如可以为片状风门,其可以绕自身的旋转轴在两个极限位置之间旋转,且所述第一位置及第二位置例如是指该第一子风门的两个极限位置,即完全打开位置与完全关闭位置。具体地,所述第一位置例如为该第一子风门的完全打开位置,例如为该第一子风门完全打开以抵靠第一分隔壁的位置(如图16所示出的)。所述第二位置例如为完全关闭位置,即该第一子风门抵靠壳体内部结构且使得与该第一子风门相对应的开口完全被关闭的位置。
所述可操作地处于第一位置及第二位置,是指该第一子风门的开度位置例如可以根据实际情况调节,例如通过控制与该第一子风门相连接的旋转电 机的转动方向及位置来调节该第一子风门的位置,或者也可以通过其他方式来调节第一子风门的位置,使得根据实际需要处于第一位置或第二位置。应了解,本公开的实施例不受该第一子风门开度位置的具体调节方式的限制。
在所述第一子风门处于所述第一位置时,所述第一子风门与所述第一分隔部1511相接合,以引导与该第一空间子区相对应的相应第二空间子区内的气流经由相应的第二子出口流出,并引导该第一空间子区内的气流经由相应的第一子出口流出。在第一子风门处于所述第二位置时,所述第一子风门关闭相应的第一子出口,以使该第一空间子区内的气流和与该第一空间子区相对应的相应第二空间子区内的气流均从相应的第二子出口流出。
图16中示出了根据本公开实施例的壳体的第一右半部1131剖面图。接下来将以图16中的第一右半部1131为例对其进行更具体地说明该第一子风门处于第一位置的情况。
结合参照图14及图15,该第一右半部子部1131例如对应于第一空间子区V1d及第二空间子区V2d,且该壳体内例如设置有对应于该第一空间子区V1d的第一子出口160d,其例如为右半部前吹脚子出口。且该壳体内例如设置有对应于第二子区空间V2d的第二子出口180d,该第二子出口180d例如包括了右半部除雾子出口及右半部前通风子出口。且该第一右半部子部1131还包括对应于第一空间子区V1d的第一子风门170d。
且图15中示出了第一子风门170d抵靠第一分隔壁的第一分隔部1151以与所述第一分隔部1511相接合,以引导与该第一空间子区V1d相对应的相应第二空间子区V2d内的气流经由所述第二子出口180d流出(此处例如经由前通风出口流出),并引导该第一空间子区V1d内的气流经由所述第一子出口160d流出。
基于上述,本申请中,在形成双层四区结构的供暖、通风和/或空调装置的基础上,通过对于每一个第一空间子区,令所述供暖、通风和/或空调装置还包括第一子风门,使得能够根据实际需要,配置相应的第一子风门处于第一位置,以令相应的第一子区的气流均通过相应的第一子出口流出,相应的第二子区内的气流均通过相应的第二子出口流出,复用第一子风门参与气流子空间(子区)的分隔及引导,从而能够灵活地布局该供暖、通风和/或空调装置的各子区对应的子出口中的气流类型,实现多种工作模式。
在一些实施例中,如前所述,所述供暖、通风和/或空调装置还包括第一 气流处理单元130,所述第一气流处理单元130设置在所述壳体110内,并且位于所述第一分隔壁151的上游。
且如前所述,所述第一分隔壁151还具有第二分隔部1512,所述第二分隔部1512在所述壳体110内分隔第三空间V3及第四空间V4。其中,通过所述第一气流处理单元130的气流一部分进入所述第三空间V3,另一部分进入所述第四空间V4。第二分隔部、第三空间及第四空间已经在先前结合附图5进行了详细说明,在这里不再赘述。
参照图13A,且所述供暖通风和/或空调装置还包括:对应于每一个第一空间子区V1a,V1b,V1c,V1d设置的第一混合风门(例如分别为第一混合风门310a,310b,310c,310d)和/或对应于每一个第二空间子区V2a,V2b,V2c,V2d设置的第二混合风门(例如分别为第二混合风门320a,320b,320c,320d)。
且其中,所述中央分隔壁141和两个辅助分隔壁142将所述第三空间V3分为四个第三空间子区,例如分别为第三空间子区V3a,V3b,V3c,V3d(在附图16、17中示意性地示出了其中的第三空间子区V3c、V3d);所述中央分隔壁141和两个辅助分隔壁142例如将所述第四空间V4分为四个第四空间子区V4a,V4b,V4c,V4d(在附图16、17中示意性地示出了其中的第三空间子区V4c、V4d)。
且类似于前述参照双层双区结构所详细说明的,对于每一个第一空间子区V1a,V1b,V1c,V1d:当对应于该第一空间子区的第一混合风门处于完全打开位置时,将与该第一空间子区对应的第三空间子区和该第一空间子区隔开。
例如,以第一空间子区V1d为例,参照图16,其中例如示出了对应于第一空间子区V1d的第一混合风门310d,若图16中的第一混合风门310d处于如前述图5中的完全打开位置,则此时例如可以将第三空间子区V3d与第一空间子区V1d相分隔。
且类似于前述参照双层双区结构所详细说明的,对于每一个第二空间子区V2a,V2b,V2c,V2d:当对应于该第二空间子区的第二混合风门处于完全打开位置时,将对应于该第二空间子区的第四空间子区和该第二空间子区隔开。
例如,以第二空间子区V2d为例,参照图16,其中例如示出了对应于第二空间子区V2d的第一混合风门320d,若图16中的第二混合风门320d处于如前述图5中的完全打开位置,则此时例如可以将第四空间子区V4d与第二空间子区V2d相分隔。
基于上述,本申请中,通过设置所述壳体包括对应于每一个第一空间子区的第一混合风门和/或对应于每一个第二空间子区的第二混合风门及第一气流处理单元(例如加热器),使得能够根据实际需要,通过与第一空间子区对应的第一混合风门的开度位置来调节进入相应的第一空间子区的气流的温度;通过与第二空间子区对应的第二混合风门的开度位置来调节进入第二空间子区的气流的温度,实现对分层及分区后的不同层及不同子区的气流温度的独立调节。且通过第二分隔部及分区分隔壁在所述壳体内分隔出多个第三空间子区和第四空间子区,并设置在相应的第一混合风门处于完全关闭位置时,将所述第三空间子区与所述第一空间子区隔开;在相应的第二混合风门处于完全关闭位置时,将所述第四空间子区与所述第二空间子区隔开,使得能够复用第一混合风门及第二混合风门作为相邻空间之间的间隔件,从而优化壳体内的结构布局。
在一些实施例中,所述分层分隔壁150还具有第二分隔壁152。所述第二分隔壁152位于所述第一气流处理单元130的上游,所述第二分隔壁152在所述壳体110内分隔第五空间V5和第六空间V6。其中,通过所述第一气流处理单元130的气流一部分来自于所述第五空间V5,另一部分来自于所述第六空间V6。应了解,所述第一气流处理单元、第二分隔壁及第五、第六空间前述已经详细说明,在这里不再赘述。
其中,对于每一个第一空间子区V1a,V1b,V1c,V1d:当对应于该第一空间子区的第一混合风门处于完全关闭位置时,将所述第五空间V5与该第一空间子区隔开。且对于每一个第二空间子区V2a,V2b,V2c,V2d:当对应于该第二空间子区的第二混合风门处于完全关闭位置时,将所述第六空间V6与该第二空间子区隔开。
图17中示出了根据本公开实施例的第二右半子部1132的剖面图。接下来将参照图17对该第一、第二混合风门的关闭位置进行更具体地说明。
参照图17,其中该第二右半子部1132例如对应于第一空间子区V1c及第二空间子区V2c,且该壳体内例如设置有对应于该第一空间子区V1c的第一子出口160c,其例如为右半部后吹脚出口。且该壳体内例如设置有对应于第二子区空间V2c的第二子出口180c,该第二子出口180c例如包括了右半部除雾出口及右半部后通风出口。且该第二右半子部1132还包括对应于第一空间子区V1c的第一子风门170c。
且图17中示出了对应于该第一空间子区的第一混合风门310c处于完全关闭位置时,将所述第五空间V5与该第一空间子区V1c隔开,且示出了对应于该第二空间子区的第二混合风门320c处于完全关闭位置时,将所述第六空间V6与该第二空间子区V2c隔开。
基于上述,本申请中,通过设置该分层分隔壁进一步具有第二分隔壁,使得经由第二分隔壁在第一气流处理单元的上游进一步划分出第五空间及第六空间,使得能够在第一气流处理单元上游为不同的分层气流设置对应的不同气流空间,从而在第一气流处理单元的上下流路上均设置良好的分层气流空间;且通过设置第一空间子区所对应的第一混合风门处于完全关闭位置时将所述第五空间与相应的第一空间子区隔开;第二空间子区所对应的第二混合风门处于完全关闭位置时将所述第六空间与所述第二空间子区隔开,使得能够最大程度地复用各第一空间子区所对应的第一混合风门及各第二空间子区所对应的第二混合风门来根据实际需要实现各个空间的分隔与连通,从而有利于灵活地选择和设置气流流动路径且实现对气流流动方向的引导,且使得该装置能够实现多种工作模式。
在一些实施例中,如前所述,所述供暖、通风和/或空调装置还包括第二气流处理单元120。所述第二气流处理单元120设置在所述壳体110内并且位于所述第二分隔壁152上游。其中,通过所述第二气流处理单元120的气流一部分进入所述第五空间V5,另一部分进入所述第六空间V6。该第二气流处理单元120及其与第二分隔壁的相关接合特征如前结合双层双区供暖、通风和/或空调装置所详细说明的,在这里不再赘述。
图18示出了根据本公开实施例的供暖、通风和/或空调装置100’去除壳体后的结构图。
在一些实施例中,参照图18,在所述横向延伸壁143所对应的第二空间子区中,所述供暖、通风和/或空调装置100’还设置有第二子风门。
所述横向延伸壁143所对应的第二空间子区,是指该横向延伸壁所延伸经过的第二空间子区,例如,综合参照图14及图18可知,在图14及图18所示出的供暖、通风和/或空调装置中,所述横向延伸壁例如在第二空间子区V2b,V2c中延伸,即第二空间子区V2b,V2c为对应于该横向延伸壁143的第二空间子区。
所述第二子风门,是指设置在于该横向延伸壁相对应的第二空间子区中 的第二子风门部件,其例如可以是蝶形风门。本公开的实施例不受该第二子风门的具体类型的限制。
例如,例如综合参照图14及图18所示出的供暖、通风和/或空调装置,在与横向延伸壁相对应的第二空间子区V2b,V2c中例如设置有第二子风门,具体地,在第二空间子区V2b中例如设置有第二子风门171b,在第二子空间V2c中例如设置有第二子风门171c。
且其中,对于所述横向延伸壁所对应的每个第二空间子区:所述第二子风门处于完全闭合位置时,所述第二子风门与所述第一分隔部及所述横向延伸壁相接合,以将该第二空间子区分隔为第二空间第一子区和第二空间第二子区。
应了解,所述完全闭合位置是指该第二子风门对第二空间子区进行分隔的位置。
所述第二空间第一子区和第二空间第二子区是指第二空间子区中的两个区域。应了解,本公开的实施例不受该第二空间第一子区和第二空间第二子区的具体空间体积及空间位置的限制。
图19示出了根据本公开实施例的第二右半子部1132的剖面图,其中标示了第二空间第一子区和第二空间第二子区。参照图19,接下来例如以第二右半子部1132作为示例对该第二子风门进行更具体的说明。
如图17及图19所示出的,所述第二右半子部1132对应于第二子空间V2c,且图19中例如示出了在第二子空间V2c中处于完全闭合位置的第二子风门171c,此处该第二子风门171c例如为蝶形风门,且该完全闭合位置为该第二子风门处于基本上水平的位置。在该完全闭合位置上,该第二子风门171c的一端与前述第一分隔部1511相接合,该第二子风门171c的另一端例如与该分区分隔壁中的横向延伸壁143相接合,从而经由该第一分隔部1511、第二子风门171c及横向延伸壁143将该第二子空间分隔为第二子空间第一子区V2c-1及第二子空间第二子区V2c-2。且该第二空间第一子区和第二空间第二子区例如分别与不同的第二子出口相连通。具体地,该第二空间第一子区例如可以与前通风子出口及除雾子出口连通,且该第二空间第二子区例如可以与后通风子出口相连通。
基于上述,本申请中,通过在横向延伸壁所对应的第二空间子区中设置第二子风门,并设置第二子风门在完全关闭位置时与第一分隔部及所述横向 延伸壁相接合,并将该第二空间子区分隔为第二空间第一子区和第二空间第二子区,使得能够经由所设置的第二子风门与壳体内部结构及分区分隔壁结构的配合,灵活地实现对壳体内部子空间的进一步分隔,从而有利于根据实际需要灵活地设置分层气流在各个不同的区域中的流动路径,有利于实现多种工作模式。
在一些实施例中,进一步参照图19,所述第二子出口例如可以包括通风子出口。进一步地,该通风子出口例如还可以包括前通风子出口及后通风子出口。
在所述横向延伸壁143所对应的第二空间子区中,所述供暖、通风和/或空调装置例如还设置有第三子风门。所述第三子风门例如可以为蝶形风门,或者也可以根据实际需要具有其他的类型。
且其中,对于所述横向延伸壁所对应的每个第二空间子区:所述第三子风门处于完全闭合位置时,所述第三子风门与所述壳体相接合,以关闭相应的通风子出口。
所述第三子风门的完全闭合位置,是指该第三子风门用于关闭相应的通风子出口的位置。
例如,参照图19,在图19所示出的第二右半子部1132中,该第二子出口例如包括除雾子出口181c,前通风子出口1821c及后通风子出口1822c。且该第三子风门172c例如设置在该后通风子出口1822c的附近且为蝶形风门,在该第三子风门处于完全闭合位置时,该第三子风门的两个蝶形叶片例如分别与该壳体内壁相接合,以形成间隔件,将相应的后通风子出口1822c关闭。
基于上述,本申请中,通过设置横向延伸壁所对应的第二空间子区中有第三子风门,并设置所述第三子风门处于完全闭合位置时,所述第三子风门与所述壳体相配合,以关闭相应的通风子出口,使得能够根据实际需要通过调整该第三子风门闭合该第二空间子区的相应通风子出口,从而有利于根据实际需要灵活地设置气流的流动路径及输出出口,从而能够实现多模式及多功能的供暖、通风和/或空调装置。
接下来将结合双层四区的供暖、通风和/或空调装置100’在多个不同工作模式下的应用对该供暖、通风和/或空调装置100’的结构及部件间的配合关系进行更具体地说明。
所述双层四区是指该供暖、通风和/或空调装置100’具有经由分区分隔壁划分的沿中央分隔壁所在平面对称的四个子部分(第一左半子部、第二左半子部、第一右半子部、第二右半子部),且具有经由分层分隔壁所划分的两层气流入口(上层气流入口及下层气流入口),也即其具有八个独立的气流入口(其例如可以通入同种气流类型,或者也可以是各自不同种的气流类型),并在壳体内部为该8个独立的气流入口分别划分了相应的气流流通路径及温度控制风门,从而实现对8个独立气流入口中进入的每一个进气气流进行独立的温度调节,并能够根据不同的模式将其导向不同的出口通道。且通过对应出口的设置,使得对于该供暖、通风和/或空调装置而言,在左前、左后、右前、右后四个方向上均设置有独立的吹脚出口、通风出口及除霜出口,且各个吹脚出口、通风出口、除霜出口可以输出不同的类型、不同温度、不同气流量的输出气流。从而能够对机动车辆前部乘客侧(右侧)、前部驾驶员侧(左侧)、后部左乘客侧、后部右乘客侧均良好地提供彼此独立的吹脚、通风、除霜功能。
例如,此处作为示例的双层四区供暖、通风和/或空调装置100’具有参照前述结合图12A至图19所详细说明的供暖、通风和/或空调装置100’的结构,其例如可以包括如前所述的壳体110、分层分隔壁150、第一处理单元120、第二处理单元130,且具有相应的连接结构,在这里不再赘述。
且该供暖、通风和/或空调装置100’例如包括如图15所示出的分区分隔壁140(包括中央分隔壁、平行于中央分隔壁延伸的辅助分隔壁、横向延伸壁),且该中央分隔壁141将该供暖、通风和/或空调装置100’划分为沿中央分隔壁所在直线对称的左半部112及右半部113,且该辅助分隔壁142例如将所述左半部分112为第一左半子部1121、第二左半子部1122;将所述右半子部分为第一右半子部1131及第二右半子部1132,中央分隔壁141和两个辅助分隔壁142将所述第一空间V1分为四个第一空间子区V1a,V1b,V1c,V1d,将第二空间V2分为四个第二空间子区V2a,V2b,V2c,V2d。
且对于每一个第一空间子区,例如具有对应的第一子出口。具体地,例如对于第一左半子部1121中的第一空间子区V1a,其具有左半部前吹脚子出口;对于第二左半子部1121中的第一空间子区V1b,其具有左半部后吹脚子出口;对于第一右半子部1131中的第一空间子区V1d,其具有右半部前吹脚子出口;对于第二右半子部1131中的第一空间子区V1c,其具有右半部后吹 脚子出口。
此外,对于每一个第二空间子区,例如具有对应的第二子出口。在该示例中,该第二子出口例如包括对于每一个第二空间子区均设置的除雾子出口及通风子出口。具体地,对于通风子出口而言,例如对于第一左半子部1121中的第二空间子区V2a,其具有左半部前通风子出口;对于第二左半子部1121中的第二空间子区V2b,其具有左半部后通风子出口;对于第一右半子部1131中的第二空间子区V2d,其具有右半部前通风子出口;对于第二右半子部1131中的第二空间子区V2c,其具有右半部后通风子出口。
考虑到左半部及右半部的对称关系及子出口的对应设置位置,可知左半部及右半部具有相同的结构。且在同一模式中,第一左半子部与第一右半子部例如可以具有相同的设置方式及相同的气流路径;第二左半子部与第二右半子部例如可以具有相同的设置方式及相同的气流路径。因此,后续在对各工作模式描述中,将以右半子部(包括第一右半子部及第二右半子部)作为示例来描述其具体结构配置及气流路径,本领域技术人员应了解,根据对称关系,左半部可以进行相应的设置,以处于相应的模式并实现相应的功能。
吹脚通风双模式
图20A示出了供暖、通风和/或空调装置100’的第一右半部1131的剖视图,其中所述供暖、通风和/或空调装置100’处于吹脚通风双模式;图20B示出了供暖、通风和/或空调装置100’的第二右半部1132的剖视图,其中所述供暖、通风和/或空调装置100’处于吹脚通风双模式。
参照图20A,在该供暖、通风和/或空调装置100’处于吹脚通风双模式下,该第一右半部1131例如对应于第一空间子区V1d及第二空间子区V2d,且该壳体内例如设置有对应于该第一空间子区V1d的第一子出口160d,此处为右半部前吹脚子出口161d。且该壳体内例如设置有对应于第二子区空间V2d的第二子出口180d,该第二子出口例如包括了右半部除雾子出口181d及右半部前通风子出口1821d。且该第一右半部子部1131还包括对应于第一空间子区V1d的第一子风门170d。
参照图20A,在该供暖、通风和/或空调装置100处于吹脚通风双模式下,此时第一右半部1131中第一子风门170d被配置为处于第一位置,以将右半部前吹脚子出口161d完全打开且与第一分隔部相接合,以实现对气流的引导。除雾子风门191d将处于完全关闭位置,以将除雾子出口181d完全关闭, 前通风子风门1921d打开,具体开度位置例如可以根据实际需要进行调节,以令出口以期望的开度打开。
此时例如可以进一步调节第一混合风门310d及第二混合风门320d的开度,以控制分层气流流过及绕过该第一气流处理单元120(加热器)的比例。在图20A所示出的示例中,该第一混合风门310d及第二混合风门320d例如均处于中间位置。
此时第一右半部的壳体入口的上层例如通入内循环空气,第一右半部的壳体入口的下层例如通入新鲜空气,且其在壳体内的气流具体为:对于上层气流而言,上层进气气流(此处为内循环空气进气气流)F1i_d例如从入口上层部分进入,首先通过第二气流处理单元130(蒸发器)的处理,其后,上层进气气流F1i_d将分为两个气流分支,其中第一气流分支绕过第一气流处理单元120,其进入第五空间V5并直接从第一混合风门310d的左侧进入第一空间子区V1d(如图20A中以虚线示出的气流流向)。上层进气气流F1i_d的第二气流分支将通过所述第一气流处理单元(加热器)120,具体地,其将进入第五空间V5,并随后通过第一气流处理单元120进入第三空间子区V3d,并经由第一混合风门310d的右侧进入第一空间子区V1d(如图20A中以点线示出的气流流向),该通过第一气流处理单元120的第二气流分支将被加热器加热,以具有相对于第一气流分支更高的温度。其后,在第一空间子区V1d中,两个气流分支将混合并形成上层输出气流(此处为内循环空气输出气流)F1o_d(应了解,附图中的箭头仅为示意,实则该输出气流经由壳体侧部开口输出),此时,处于第一位置的第一子风门170d将与第一分隔部相接合,并引导第一空间子区V1d内的上层输出气流F1o_d经由右半部前吹脚子出口161d流出。
对于下层气流而言,当通入新鲜空气时,下层进气气流(此处为新鲜空气进气气流)F2i_d例如从入口下层部分进入,首先其通过第二气流处理单元130(蒸发器)的处理,其后,下层进气气流F2i_d将分为两个气流分支,其中第一气流分支绕过第一气流处理单元120,其进入第六空间V6,并直接从第六空间V6从第二混合风门320d的右侧进入第二空间子区V2d(图20A中以虚线示出的气流流向)。下层进气气流F2i_d的第二气流分支将通过第一气流处理单元(加热器)120,具体地,其将进入第六空间V6,随后通过第一气流处理单元120进入第四空间子区V4d,最终从第二混合风门320d的左侧 进入第二空间子区V2d(如图20A中的以点线示出的气流流向),该通过第一气流处理单元120的第二气流分支将被加热器加热,以具有相对于第一气流分支更高的温度。其后,在第二空间V2中,两个气流分支将混合并形成下层输出气流F2o_d,且此时,处于第一位置的第一子风门170d将与第一分隔部相接合,并引导第二空间子区V2d内的下层输出气流F2o_d经由右半部前通风子出口1821d输出。
参照图20B,在该供暖、通风和/或空调装置100’处于吹脚通风双模式下,此时第二右半部1132中第一子风门170c被配置为处于第一位置,以将右半部后吹脚子出口162c完全打开且与第一分隔部相接合,以实现对气流的引导。除雾子风门191c将处于完全关闭位置,以将除雾子出口181c完全关闭,第三子风门(此处作为前通风子风门)172c例如处于打开位置,具体开度位置例如可以根据实际需要进行调节,以令右半部后通风子出口1822c以期望的开度打开。
此时例如可以进一步调节第一混合风门310c及第二混合风门320c的开度,以控制分层气流流过及绕过该第一气流处理单元120(加热器)的比例。在图20B所示出的示例中,该第一混合风门310c及第二混合风门320c例如均处于中间位置。
此时第二右半部的壳体入口的上层例如通入内循环空气,第二右半部的壳体入口的下层例如通入新鲜空气,且其在壳体内的气流具体为:对于上层气流而言,上层进气气流(此处为内循环空气进气气流)F1i_c例如从入口上层部分进入,首先通过第二气流处理单元130(蒸发器)的处理,其后,上层进气气流F1i_c将分为两个气流分支,其中第一气流分支绕过第一气流处理单元120,其进入第五空间V5并直接从第一混合风门310c的左侧进入第一空间子区V1c(如图20B中以虚线示出的气流流向)。上层进气气流F1i_c的第二气流分支将通过所述第一气流处理单元(加热器)120,具体地,其将进入第五空间V5,并随后通过第一气流处理单元120进入第三空间子区V3c,并经由第一混合风门310c的右侧进入第一空间子区V1c(如图20B中以点线示出的气流流向),该通过第一气流处理单元120的第二气流分支将被加热器加热,以具有相对于第一气流分支更高的温度。其后,在第一空间子区V1c中,两个气流分支将混合并形成上层输出气流(此处为内循环空气输出气流)F1o_c,此时,处于第一位置的第一子风门170c将与第一分隔部相接合,并 引导第一空间子区V1c内的上层输出气流F1o_c经由右半部后吹脚子出口162c流出。
对于下层气流而言,当通入新鲜空气时,下层进气气流(此处为新鲜空气进气气流)F2i_c例如从入口下层部分进入,首先其通过第二气流处理单元130(蒸发器)的处理,其后,下层进气气流F2i_c将分为两个气流分支,其中第一气流分支绕过第一气流处理单元120,其进入第六空间V6,并直接从第六空间V6从第二混合风门320c的右侧进入第二空间子区V2c(图20B中以虚线示出的气流流向)。下层进气气流F2i_c的第二气流分支将通过第一气流处理单元(加热器)120,具体地,其将进入第六空间V6,随后通过第一气流处理单元120进入第四空间子区V4c,最终从第二混合风门320c的左侧进入第二空间子区V2c(如图20B中的以点线示出的气流流向),该通过第一气流处理单元120的第二气流分支将被加热器加热,以具有相对于第一气流分支更高的温度。其后,在第二空间子区V2c中,两个气流分支将混合并形成下层输出气流F2o_c,且此时,处于完全关闭位置的第二子风门171c将与第一分隔部及横向延伸壁相接合,以在第二空间子区V2c中分隔第二空间第一子区V2c-1及第二空间第二子区V2c-2,且引导第二空间V2c内的下层输出气流F2o_c仅在第二空间第一子区V2c-1中流动,并经由右半部后通风子出口1822c输出。
应了解,考虑到第一混合风门和第二混合风门对应于每一个第一子区和第二子区分别设置,且均具有温度调节作用,因此在后文中将不再赘述经由第一混合风门及第二混合风门实现温度调节的过程。
基于此,使得能够经由分层分隔壁、分区分隔壁的综合设置,实现内循环空气与新鲜空气分层进入并具有相应的气流流动空间的基础上,通过分区分隔壁及壳体结构的设置,使得在左右独立控温(如前结合双层双区所说明的)功能的基础上,进一步地实现了前后左右均独立控温的功能。具体地,如前结合右半部详细说明的工作模式可知(基于对称结构,左半部可以对应具有相应的气流通路),在这种情况下,使得能够为右半部前脚部子出口、右半部后脚部子出口设置不同的空气流通路径、开度控制风门、并进行独立温控,并为右半部前通风子出口及右半部后通风子出口设置不同的空气流通路径、开度控制风门并进行独立温控。从而使得对于该供暖、通风和/或空调装置而言,在左前、左后、右前、右后四个方向上均设置有独立的吹脚出口及 通风出口,且各个吹脚出口及通风出口可以输出不同的类型、不同温度、不同气流量的输出气流。
除雾优先模式
图21A示出了供暖、通风和/或空调装置100’的第一右半部1131的剖视图,其中所述供暖、通风和/或空调装置100’处于除雾优先模式;图21B示出了供暖、通风和/或空调装置100’的第二右半部1132的剖视图,其中所述供暖、通风和/或空调装置100’处于除雾优先模式。
参照图21A,在该供暖、通风和/或空调装置100’处于除雾优先模式下,此时第一右半部1131中第一子风门170d被配置为处于第二位置,以将右半部前吹脚子出口161d完全关闭。除雾子风门191d将处于完全打开位置,以将除雾子出口181d完全打开,前通风子风门1921d关闭,以关闭右半部前通风子出口1821d。
此时例如可以进一步调节第一混合风门310d及第二混合风门320d的开度,以控制分层气流流过及绕过该第一气流处理单元120(加热器)的比例。在图21A所示出的示例中,该第一混合风门310d及第二混合风门320d例如均处于中间位置。
此时第一右半部的壳体入口的上层及下层例如均通入新鲜空气,且其在壳体内的气流具体为:对于上层气流而言,上层进气气流(此处为新鲜空气气进气气流)F1i_d例如从入口上层部分进入,首先通过第二气流处理单元130(蒸发器)的处理,其后,上层进气气流F1i_d将分为两个气流分支,其中第一气流分支绕过第一气流处理单元120,其进入第五空间V5并直接从第一混合风门310d的左侧进入第一空间子区V1d(如图21A中以虚线示出的气流流向)。上层进气气流F1i_d的第二气流分支将通过所述第一气流处理单元(加热器)120,具体地,其将进入第五空间V5,并随后通过第一气流处理单元120进入第三空间子区V3d,并经由第一混合风门310d的右侧进入第一空间子区V1d(如图21A中以点线示出的气流流向)。
对于下层气流而言,当通入新鲜空气时,下层进气气流(此处为新鲜空气进气气流)F2i_d例如从入口下层部分进入,首先其通过第二气流处理单元130(蒸发器)的处理,其后,下层进气气流F2i_d将分为两个气流分支,其中第一气流分支绕过第一气流处理单元120,其进入第六空间V6,并直接从第六空间V6从第二混合风门320d的右侧进入第二空间子区V2d(图21A中 以虚线示出的气流流向)。下层进气气流F2i_d的第二气流分支将通过第一气流处理单元(加热器)120,具体地,其将进入第六空间V6,随后通过第一气流处理单元120进入第四空间子区V4d,最终从第二混合风门320d的左侧进入第二空间子区V2d(如图21A中的以点线示出的气流流向)。
此时,由于处于第二位置的第一子风门170d将右半部前吹脚子出口161d完全关闭,使得第一空间子区V1d内的上层进气气流F1i_d和第二空间子区V2d内的下层进气气流F2i_d共同形成输出气流Fo_d,且该输出气流Fo_d经由除雾子出口181d输出。
参照图21B,在该供暖、通风和/或空调装置100’处于除雾优先模式下,此时第二右半部1132中第一子风门170c被配置为处于第二位置,以将右半部后吹脚子出口162c完全关闭。除雾子风门191c将处于完全打开位置,以将除雾子出口181c完全打开,第三子风门(此处作为前通风子风门)172c例如处于完全关闭位置,以与所述壳体内壁配合并令右半部后通风子出口1822c完全关闭。
此时第二右半部的壳体入口的上层及下层例如均通入新鲜空气,且其在壳体内的气流具体为:对于上层气流而言,上层进气气流(此处为新鲜空气进气气流)F1i_c例如从入口上层部分进入,首先通过第二气流处理单元130(蒸发器)的处理,其后,上层进气气流F1i_c将分为两个气流分支,其中第一气流分支绕过第一气流处理单元120,其进入第五空间V5并直接从第一混合风门310c的左侧进入第一空间子区V1c(如图21B中以虚线示出的气流流向)。上层进气气流F1i_c的第二气流分支将通过所述第一气流处理单元(加热器)120,具体地,其将进入第五空间V5,并随后通过第一气流处理单元120进入第三空间子区V3c,并经由第一混合风门310c的右侧进入第一空间子区V1c(如图21B中以点线示出的气流流向)。
对于下层气流而言,当通入新鲜空气时,下层进气气流(此处为新鲜空气进气气流)F2i_c例如从入口下层部分进入,首先其通过第二气流处理单元130(蒸发器)的处理,其后,下层进气气流F2i_c将分为两个气流分支,其中第一气流分支绕过第一气流处理单元120,其进入第六空间V6,并直接从第六空间V6从第二混合风门320c的右侧进入第二空间第一子区V2c-1(图21B中以虚线示出的气流流向)。下层进气气流F2i_c的第二气流分支将通过第一气流处理单元(加热器)120,具体地,其将进入第六空间V6,随后通 过第一气流处理单元120进入第四空间子区V4c,最终从第二混合风门320c的左侧进入第二空间第一子区V2c-1(如图21B中的以点线示出的气流流向),此时,处于打开位置的第二子风门171c将与第一分隔部相配合以实现对进气气流的引导,使得进气气流(包括两个气流分支)经由该第二子风门171c与该第一分隔部之间的路径从第二空间第一子区V2c-1进入第二空间第二子区V2c-2。
此时,由于处于第二位置的第一子风门170c将右半部后吹脚子出口162c完全关闭,使得第一空间子区V1c内的上层进气气流F1i_c和第二空间子区V2c内的下层进气气流F2i_c共同形成输出气流Fo_c,且该输出气流Fo_c经由除雾子出口181c输出。
基于此,在除雾优先模式下,经由各第一空间子区内的第一子风门将相应的吹脚子出口完全关闭,经由第三子风门将右半部后通风子出口完全关闭,并经由第二子风门及第一分隔部相配合来实现对气流的引导,从而例如使得上层进气气流及下层进气气流均经由除雾子开口输出。
吹脚除雾双模式
图22A示出了供暖、通风和/或空调装置100’的第一右半部1131的剖视图,其中所述供暖、通风和/或空调装置100’处于吹脚除雾双模式;图22B示出了供暖、通风和/或空调装置100’的第二右半部1132的剖视图,其中所述供暖、通风和/或空调装置100’处于吹脚除雾双模式。
参照图22A,在该供暖、通风和/或空调装置100’处于吹脚除雾双模式下,此时第一右半部1131中第一子风门170d被配置为处于第一位置,以将右半部前吹脚子出口161d完全打开且与第一分隔部相接合,以实现对气流的引导。除雾子风门191d将处于打开位置,以将除雾子出口181d打开,具体开度位置例如可以根据实际需要进行调节,以令出口以期望的开度打开。前通风子风门1921d处于完全关闭位置,以将右半部前通风子出口1821d关闭。
此时例如可以进一步调节第一混合风门310d及第二混合风门320d的开度,以控制分层气流流过及绕过该第一气流处理单元120(加热器)的比例。在图22A所示出的示例中,该第一混合风门310d及第二混合风门320d例如均处于中间位置。
此时第一右半部的壳体入口的上层例如通入内循环空气,第一右半部的壳体入口的下层例如通入新鲜空气,且其在壳体内的气流具体为:对于上层 气流而言,上层进气气流(此处为内循环空气进气气流)F1i_d例如从入口上层部分进入,首先通过第二气流处理单元130(蒸发器)的处理,其后,上层进气气流F1i_d将分为两个气流分支,其中第一气流分支绕过第一气流处理单元120,其进入第五空间V5并直接从第一混合风门310d的左侧进入第一空间子区V1d(如图22A中以虚线示出的气流流向)。上层进气气流F1i_d的第二气流分支将通过所述第一气流处理单元(加热器)120,具体地,其将进入第五空间V5,并随后通过第一气流处理单元120进入第三空间子区V3d,并经由第一混合风门310d的右侧进入第一空间子区V1d(如图22A中以点线示出的气流流向)。其后,在第一空间子区V1d中,两个气流分支将混合并形成上层输出气流(此处为内循环空气输出气流)F1o_d,此时,处于第一位置的第一子风门170d将与第一分隔部相接合,并引导第一空间子区V1d内的上层输出气流F1o_d经由右半部前吹脚子出口161d流出。
对于下层气流而言,当通入新鲜空气时,下层进气气流(此处为新鲜空气进气气流)F2i_d例如从入口下层部分进入,首先其通过第二气流处理单元130(蒸发器)的处理,其后,下层进气气流F2i_d将分为两个气流分支,其中第一气流分支绕过第一气流处理单元120,其进入第六空间V6,并直接从第六空间V6从第二混合风门320d的右侧进入第二空间子区V2d(图22A中以虚线示出的气流流向)。下层进气气流F2i_d的第二气流分支将通过第一气流处理单元(加热器)120,具体地,其将进入第六空间V6,随后通过第一气流处理单元120进入第四空间子区V4d,最终从第二混合风门320d的左侧进入第二空间子区V2d(如图22A中的以点线示出的气流流向)。其后,在第一空间子区V2d中,两个气流分支将混合并形成下层输出气流(此处为新鲜空气输出气流)F2o_d,且该下层输出气流F2o_d经由除雾子出口181d输出。
参照图22B,在该吹脚除雾双模式下,此时第二右半部1132中第一子风门170c被配置为处于第一位置,以将右半部后吹脚子出口162c完全打开且与第一分隔部相接合,以实现对气流的引导。除雾子风门191c将处于打开位置,以将除雾子出口181c打开,具体开度位置例如可以根据实际需要进行调节,以令除雾子出口181c以期望的开度打开。第三子风门(此处作为前通风子风门)172c例如处于完全关闭位置,以将右半部后通风子出口1822c关闭。
此时第二右半部的壳体入口的上层例如通入内循环空气,第二右半部的壳体入口的下层例如通入新鲜空气,且其在壳体内的气流具体为:对于上层 气流而言,上层进气气流(此处为内循环空气进气气流)F1i_c例如从入口上层部分进入,首先通过第二气流处理单元130(蒸发器)的处理,其后,上层进气气流F1i_c将分为两个气流分支,其中第一气流分支绕过第一气流处理单元120,其进入第五空间V5并直接从第一混合风门310c的左侧进入第一空间子区V1c(如图22B中以虚线示出的气流流向)。上层进气气流F1i_c的第二气流分支将通过所述第一气流处理单元(加热器)120,具体地,其将进入第五空间V5,并随后通过第一气流处理单元120进入第三空间子区V3c,并经由第一混合风门310c的右侧进入第一空间子区V1c(如图22B中以点线示出的气流流向)。其后,在第一空间子区V1c中,两个气流分支将混合并形成上层输出气流(此处为内循环空气输出气流)F1o_c,此时,处于第一位置的第一子风门170c将与第一分隔部相接合,并引导第一空间子区V1c内的上层输出气流F1o_c经由右半部后吹脚子出口162c流出。
对于下层气流而言,在当前图22B所示出的情况下,该第二子风门171c例如处于完全关闭状态,以阻隔第二空间第一子区V2c-1及第二空间第二子区V2c-2,此时下层进气气流例如不会进入第二空间第二子区V2c-2,也不会经由除雾子出口181c输出。
此时,该除雾功能例如可以仅基于前述图22A中除雾子出口181d中输出的下层输出气流F2o_d来实现。然而,应了解,根据实际情况,例如在需要进一步增大除雾气流的情况下,第二子风门171c例如也可以被配置为处于图21B中所示出的打开位置,以与壳体内壁配合并引导下层进气气流经由除雾子出口181c输出,从而使得经由除雾子出口181c与除雾子出口181d来共同输出除雾气流,以实现更强劲的除雾功能。
基于此,在吹脚除雾双模式下,一方面,经由各第一空间子区内的第一子风门与第一分隔部的配合实现第一空间子区及第二空间子区的划分,并引导上层内循环空气经由相应的前/后脚部子出口输出,实现经由内循环空气吹脚的功能。另一方面,可以经由各第二空间子区中的第二子风门与内壁的配合,使得下层新鲜空气能够用于实现除雾的功能。
吹脚模式
图23A示出了供暖、通风和/或空调装置100’的第一右半部1131的剖视图,其中所述供暖、通风和/或空调装置100’处于吹脚模式;图23B示出了供暖、通风和/或空调装置100’的第二右半部1132的剖视图,其中所述供暖、 通风和/或空调装置100’处于吹脚模式。
参照图23A,在该供暖、通风和/或空调装置100’处于吹脚模式下,此时第一右半部1131中第一子风门170d被配置为处于第一位置,以将右半部前吹脚子出口161d完全打开且与第一分隔部相接合,以实现对气流的引导。除雾子风门191d将处于打开位置,以将除雾子出口181d稍微打开,防止吹脚过程中玻璃上出现雾气。在此情况下,该吹脚模式中的气流流动路径及结构配置例如与吹脚除雾双模式下相同,在此不再赘述。
参照图22B,在该吹脚模式下,此时第二右半部1132中第一子风门170c被配置为处于第一位置,以将右半部后吹脚子出口162c完全打开且与第一分隔部相接合,以实现对气流的引导。除雾子风门191c将处于打开位置,以将除雾子出口181c打开,具体开度位置例如可以根据实际需要进行调节,以令除雾子出口181c以期望的开度打开。第三子风门(此处作为前通风子风门)172c例如处于完全关闭位置,以将右半部后通风子出口1822c关闭。
此时第二右半部的壳体入口的上层例如通入内循环空气,且其在壳体内的气流具体为:对于上层气流而言,上层进气气流(此处为内循环空气进气气流)F1i_c例如从入口上层部分进入,首先通过第二气流处理单元130(蒸发器)的处理,其后,上层进气气流F1i_c将分为两个气流分支,其中第一气流分支绕过第一气流处理单元120,其进入第五空间V5并直接从第一混合风门310c的左侧进入第一空间子区V1c(如图23B中以虚线示出的气流流向)。上层进气气流F1i_c的第二气流分支将通过所述第一气流处理单元(加热器)120,具体地,其将进入第五空间V5,并随后通过第一气流处理单元120进入第三空间子区V3c,并经由第一混合风门310c的右侧进入第一空间子区V1c(如图23B中以点线示出的气流流向)。其后,在第一空间子区V1c中,两个气流分支将混合并形成上层输出气流(此处为内循环空气输出气流)F1o_c,此时,处于第一位置的第一子风门170c将与第一分隔部相接合,并引导第一空间子区V1c内的上层输出气流F1o_c经由右半部后吹脚子出口162c流出。
对于下层气流而言,在当前图23B所示出的情况下,例如可以不通入下层进气气流,此时该第二子风门171c例如处于完全关闭状态,以阻隔第二空间第一子区V2c-1及第二空间第二子区V2c-2,此时下层进气气流例如不会进入第二空间第二子区V2c-2,也不会经由除雾子出口181c输出。然而,应 了解,根据实际情况,也可以将新鲜空气作为下层进气气流通入,此时第二子风门171c例如也可以被配置为处于图21B中所示出的打开位置,以与壳体内壁配合并引导下层进气气流经由除雾子出口181c输出。
基于此,在吹脚模式下,经由各第一空间子区内的第一子风门与第一分隔部的配合实现第一空间子区及第二空间子区的划分,并引导上层内循环空气经由相应的前/后脚部子出口输出,实现经由内循环空气吹脚的功能。另一方面,根据实际情况,可以选择性地打开除雾子出口,经由各第二空间子区中的第二子风门与内壁的配合,使得下层新鲜空气能够用于实现除雾的功能。
通风模式
图24A示出了供暖、通风和/或空调装置100’的第一右半部1131的剖视图,其中所述供暖、通风和/或空调装置100’处于通风模式;图24B示出了供暖、通风和/或空调装置100’的第二右半部1132的剖视图,其中所述供暖、通风和/或空调装置100’处于通风模式。
参照图24A,在该供暖、通风和/或空调装置100’处于通风模式下,此时第一右半部1131中第一子风门170d被配置为处于第二位置,以将右半部前吹脚子出口161d完全关闭。除雾子风门191d将处于完全关闭位置,以将除雾子出口181d完全关闭,前通风子风门1921d打开,具体开度位置例如可以根据实际需要进行调节,以令出口以期望的开度打开。
此时第一右半部的壳体入口的上层及下层例如均通入新鲜空气,且其在壳体内的气流具体为:对于上层气流而言,上层进气气流(此处为内循环空气进气气流)F1i_d例如从入口上层部分进入,首先通过第二气流处理单元130(蒸发器)的处理,其后,上层进气气流F1i_d将分为两个气流分支,其中第一气流分支绕过第一气流处理单元120,其进入第五空间V5并直接从第一混合风门310d的左侧进入第一空间子区V1d(如图24A中以虚线示出的气流流向)。上层进气气流F1i_d的第二气流分支将通过所述第一气流处理单元(加热器)120,具体地,其将进入第五空间V5,并随后通过第一气流处理单元120进入第三空间子区V3d,并经由第一混合风门310d的右侧进入第一空间子区V1d(如图24A中以点线示出的气流流向),在第一空间子区V1d中,两个气流分支将混合并形成上层输出气流。
对于下层气流而言,通入新鲜空气时,下层进气气流(此处为新鲜空气进气气流)F2i_d例如从入口下层部分进入,首先其通过第二气流处理单元 130(蒸发器)的处理,其后,下层进气气流F2i_d将分为两个气流分支,其中第一气流分支绕过第一气流处理单元120,其进入第六空间V6,并直接从第六空间V6从第二混合风门320d的右侧进入第二空间子区V2d(图24A中以虚线示出的气流流向)。下层进气气流F2i_d的第二气流分支将通过第一气流处理单元(加热器)120,具体地,其将进入第六空间V6,随后通过第一气流处理单元120进入第四空间子区V4d,最终从第二混合风门320d的左侧进入第二空间子区V2d(如图24A中的以点线示出的气流流向),在第二空间子区V2d中,两个气流分支将混合并形成下层输出气流。
此时,处于第一位置的第一子风门170d将与第一分隔部相接合,并引导第一空间子区V1d内的上层输出气流及第二空间子区V2d内的下层输出气流共同形成输出气流Fo_d,且该输出气流Fo_d经由右半部前通风子出口1821d流出。
参照图24B,在该供暖、通风和/或空调装置100’处于通风模式时,此时第二右半部1132中第一子风门170c被配置为处于第二位置,以将右半部后吹脚子出口162c完全关闭。除雾子风门191c将处于完全关闭位置,以将除雾子出口181c完全关闭,第三子风门(此处作为前通风子风门)172c例如处于打开位置,具体开度位置例如可以根据实际需要进行调节,以令右半部后通风子出口1822c以期望的开度打开。
此时第二右半部的壳体入口的上层及下层例如通入新鲜空气,且其在壳体内的气流具体为:对于上层气流而言,上层进气气流(此处为新鲜空气进气气流)F1i_c例如从入口上层部分进入,首先通过第二气流处理单元130(蒸发器)的处理,其后,上层进气气流F1i_c将分为两个气流分支,其中第一气流分支绕过第一气流处理单元120,其进入第五空间V5并直接从第一混合风门310c的左侧进入第一空间子区V1c(如图24B中以虚线示出的气流流向)。上层进气气流F1i_c的第二气流分支将通过所述第一气流处理单元(加热器)120,具体地,其将进入第五空间V5,并随后通过第一气流处理单元120进入第三空间子区V3c,并经由第一混合风门310c的右侧进入第一空间子区V1c(如图24B中以点线示出的气流流向)。其后,在第一空间子区V1c中,两个气流分支将混合并形成上层输出气流(此处为新鲜空气输出气流)F1o_c。
对于下层气流而言,当通入新鲜空气时,下层进气气流(此处为新鲜空 气进气气流)F2i_c例如从入口下层部分进入,首先其通过第二气流处理单元130(蒸发器)的处理,其后,下层进气气流F2i_c将分为两个气流分支,其中第一气流分支绕过第一气流处理单元120,其进入第六空间V6,并直接从第六空间V6从第二混合风门320c的右侧进入第二空间第一子区V2c-1(图24B中以虚线示出的气流流向)。下层进气气流F2i_c的第二气流分支将通过第一气流处理单元(加热器)120,具体地,其将进入第六空间V6,随后通过第一气流处理单元120进入第四空间子区V4c,最终从第二混合风门320c的左侧进入第二空间第一子区V2c-1(如图24B中的以点线示出的气流流向)。其后,在第二空间第一子区V2c-1中,两个气流分支将混合并形成下层输出气流F2o_c。
且此时,处于完全关闭位置的第二子风门171c将与第一分隔部及横向延伸壁相接合,以将第二空间第一子区V2c-1及第二空间第二子区V2c-2相分隔,一方面,将第一空间子区V1c内的上层输出气流F1o_c引导至第二空间第二子区V2c-2,并经由右半部前通风子出口1821c输出该上层输出气流F1o_c;另一方面,使该下层输出气流F2o_c仅在第二空间第一子区V2c-1中流动,并经由右半部后通风子出口1822c输出。
基于上述,本申请中,在通风模式下,经由各第一空间子区内的第一子风门将相应的吹脚子出口完全关闭,经由第三子风门将各通风子出口选择性地打开,并经由第二子风门及第一分隔部相配合来实现对气流的引导,从而例如使得上层进气气流经由相应的前通风子出口输出,下层进气气流经由相应的后通风子出口输出,从而有利于实现通风模式下各个前通风口及后通风口相对于彼此独立的温度控制。
本申请使用了特定词语来描述本申请的实施例。如“第一/第二实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
除非另有定义,这里使用的所有术语(包括技术和科学术语)具有与本发明所属领域的普通技术人员共同理解的相同含义。还应当理解,诸如在通常字典里定义的那些术语应当被解释为具有与它们在相关技术的上下文中的 含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
上面是对本发明的说明,而不应被认为是对其的限制。尽管描述了本发明的若干示例性实施例,但本领域技术人员将容易地理解,在不背离本发明的新颖教学和优点的前提下可以对示例性实施例进行许多修改。因此,所有这些修改都意图包含在权利要求书所限定的本发明范围内。应当理解,上面是对本发明的说明,而不应被认为是限于所公开的特定实施例,并且对所公开的实施例以及其他实施例的修改意图包含在所附权利要求书的范围内。本发明由权利要求书及其等效物限定。

Claims (12)

  1. 一种供暖、通风和/或空调装置(100’),包括:
    壳体(110),容许气流通过;
    分层分隔壁(150),设置在所述壳体(110)内部且包括第一分隔壁(151),所述第一分隔壁(151)具有第一分隔部(1511);所述第一分隔部(1511)在所述壳体(110)内分隔第一空间(V1)及第二空间(V2);
    分区分隔壁(140),设置在所述壳体(110)内部,其中所述分区分隔壁(140)包括中央分隔壁(141),以及分别设置在所述中央分隔壁(141)两侧的两个辅助分隔壁(142);
    且其中,所述中央分隔壁(141)和两个辅助分隔壁(142)将所述第一空间(V1)分为四个第一空间子区(V1a,V1b,V1c,V1d);所述中央分隔壁(141)和两个辅助分隔壁(142)将所述第二空间(V2)分为四个第二空间子区(V2a,V2b,V2c,V2d)。
  2. 根据权利要求1所述的供暖、通风和/或空调装置(100’),其中,所述两个辅助分隔壁(142)大致平行于所述中央分隔壁(141)延伸。
  3. 根据权利要求1所述的供暖、通风和/或空调装置(100’),其中,所述两个辅助分隔壁(142)的下游端设置有连接该两个辅助分隔壁(142)的横向延伸壁(143)。
  4. 根据权利要求2或3所述的供暖、通风和/或空调装置(100’),其中,所述中央分隔壁(141)插接至所述横向延伸壁(143)。
  5. 根据权利要求1所述的供暖、通风和/或空调装置(100’),其中,所述壳体包括:与每一个第一空间子区对应的第一子出口;与每一个第二空间子区对应的第二子出口;
    且对于每一个第一空间子区:
    所述供暖、通风和/或空调装置还包括对应于该第一空间子区的第一子风门,所述第一子风门设置在所述壳体(110)内部;所述第一子风门可操作地处于第一位置及第二位置;
    在所述第一子风门处于所述第一位置时,所述第一子风门与所述第一分隔部(1511)相接合,以引导与该第一空间子区相对应的相应第二空间子区内的气流经由相应的第二子出口流出,并引导该第一空间子区内的气流经由 相应的第一子出口流出;
    在第一子风门处于所述第二位置时,所述第一子风门关闭相应的第一子出口,以使该第一空间子区内的气流和与该第一空间子区相对应的相应第二空间子区内的气流均从相应的第二子出口流出。
  6. 根据权利要求5所述的供暖、通风和/或空调装置(100’),其特征在于,所述供暖、通风和/或空调装置(100’)还包括第一气流处理单元(130),所述第一气流处理单元(130)设置在所述壳体(110)内,并且位于所述第一分隔壁(151)的上游;
    且所述供暖通风和/或空调装置(100’)还包括:对应于每一个第一空间子区设置的第一混合风门和/或对应于每一个第二空间子区设置的第二混合风门;
    所述第一分隔壁(151)还具有第二分隔部(1512);所述第二分隔部(1512)在所述壳体(110)内分隔第三空间(V3)及第四空间(V4);其中,通过所述第一气流处理单元(130)的气流一部分进入所述第三空间(V3),另一部分进入所述第四空间(V4);
    其中,所述中央分隔壁(141)和两个辅助分隔壁(142)将所述第三空间(V3)分为四个第三空间子区;所述中央分隔壁(141)和两个辅助分隔壁(142)将所述第四空间(V4)分为四个第四空间子区;
    且对于每一个第一空间子区:当对应于该第一空间子区的第一混合风门处于完全打开位置时,将与该第一空间子区对应的第三空间子区和该第一空间子区隔开;
    且对于每一个第二空间子区:当对应于该第二空间子区的第二混合风门处于完全打开位置时,将与该第二空间子区对应的第四空间子区和该第二空间子区隔开。
  7. 根据权利要求6所述的供暖、通风和/或空调装置(100’),其特征在于,所述分层分隔壁(150)还具有第二分隔壁(152);所述第二分隔壁(152)位于所述第一气流处理单元(130)的上游;所述第二分隔壁(152)在所述壳体(110)内分隔第五空间(V5)和第六空间(V6);
    其中,通过所述第一气流处理单元(130)的气流一部分来自于所述第五空间(V5),另一部分来自于所述第六空间(V6);
    其中,对于每一个第一空间子区:当对应于该第一空间子区的第一混合 风门处于完全关闭位置时,将所述第五空间(V5)与该第一空间子区隔开;
    且对于每一个第二空间子区:当对应于该第二空间子区的第二混合风门处于完全关闭位置时,将所述第六空间(V6)与该第二空间子区隔开。
  8. 根据权利要求7所述的供暖、通风和/或空调装置(100’),其中,所述供暖、通风和/或空调装置还包括第二气流处理单元(120);所述第二气流处理单元(120)设置在所述壳体(110)内并且位于所述第二分隔壁(152)上游;
    其中,通过所述第二气流处理单元(120)的气流一部分进入所述第五空间(V5),另一部分进入所述第六空间(V6)。
  9. 根据权利要求3所述的供暖、通风和/或空调装置(100’),其中,在所述横向延伸壁(143)所对应的第二空间子区中,所述供暖、通风和/或空调装置还设置有第二子风门,
    其中,对于所述横向延伸壁(143)所对应的每个第二空间子区:所述第二子风门处于完全闭合位置时,所述第二子风门与所述第一分隔部(1511)及所述横向延伸壁(143)相接合,以将该第二空间子区分隔为第二空间第一子区和第二空间第二子区。
  10. 根据权利要求3所述的供暖、通风和/或空调装置(100’),其中,所述第二子出口包括通风子出口,且在所述横向延伸壁(143)所对应的第二空间子区中,所述供暖、通风和/或空调装置还设置有第三子风门,
    其中,对于所述横向延伸壁(143)所对应的每个第二空间子区:所述第三子风门处于完全闭合位置时,所述第三子风门与所述壳体(110)相接合,以关闭相应的通风子出口。
  11. 根据权利要求8所述的供暖、通风和/或空调装置(100’),其中,所述第二气流处理单元(120)与所述第一气流处理单元(130)以基本上正交的方式布置。
  12. 一种机动车辆,其特征在于,其包括前述权利要求1-11中任一项所述的供暖、通风和/或空调装置(100’)。
PCT/CN2023/102993 2022-06-30 2023-06-28 供暖、通风和/或空调装置及机动车辆 WO2024002113A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210766943.X 2022-06-30
CN202210766943.XA CN117325608A (zh) 2022-06-30 2022-06-30 供暖、通风和/或空调装置及机动车辆

Publications (1)

Publication Number Publication Date
WO2024002113A1 true WO2024002113A1 (zh) 2024-01-04

Family

ID=89288986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102993 WO2024002113A1 (zh) 2022-06-30 2023-06-28 供暖、通风和/或空调装置及机动车辆

Country Status (2)

Country Link
CN (1) CN117325608A (zh)
WO (1) WO2024002113A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2011675A2 (de) * 2007-07-04 2009-01-07 Behr GmbH & Co. KG Klimaanlage
CN101655262A (zh) * 2008-08-20 2010-02-24 汉拏空调株式会社 车用双区式空调器以及该空调器的控制方法
CN101963376A (zh) * 2009-07-21 2011-02-02 现代自动车株式会社 用于车辆的空调器
WO2016125731A1 (ja) * 2015-02-03 2016-08-11 株式会社デンソー 車両用空調装置
CN111051093A (zh) * 2017-07-28 2020-04-21 法雷奥热系统公司 用于相应机动车辆供暖、通风和/或空调装置的进气壳体和风机
US20200384830A1 (en) * 2019-06-07 2020-12-10 Hanon Systems Sliding temperature door architecture for hvac modoule
CN112124039A (zh) * 2020-10-20 2020-12-25 上海爱斯达克汽车空调系统有限公司 汽车空调进气装置
CN113580879A (zh) * 2021-08-19 2021-11-02 法雷奥汽车空调湖北有限公司 供暖、通风和空气调节模块和车辆

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2011675A2 (de) * 2007-07-04 2009-01-07 Behr GmbH & Co. KG Klimaanlage
CN101655262A (zh) * 2008-08-20 2010-02-24 汉拏空调株式会社 车用双区式空调器以及该空调器的控制方法
CN101963376A (zh) * 2009-07-21 2011-02-02 现代自动车株式会社 用于车辆的空调器
WO2016125731A1 (ja) * 2015-02-03 2016-08-11 株式会社デンソー 車両用空調装置
CN111051093A (zh) * 2017-07-28 2020-04-21 法雷奥热系统公司 用于相应机动车辆供暖、通风和/或空调装置的进气壳体和风机
US20200384830A1 (en) * 2019-06-07 2020-12-10 Hanon Systems Sliding temperature door architecture for hvac modoule
CN112124039A (zh) * 2020-10-20 2020-12-25 上海爱斯达克汽车空调系统有限公司 汽车空调进气装置
CN113580879A (zh) * 2021-08-19 2021-11-02 法雷奥汽车空调湖北有限公司 供暖、通风和空气调节模块和车辆

Also Published As

Publication number Publication date
CN117325608A (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
JP6633198B2 (ja) 車両用空調装置
KR102024023B1 (ko) 자동차 객실 공기 조화용 공조 시스템
JPH10244824A (ja) 空気調和装置のケースユニット及びこれを用いた自動車用空気調和装置
JP2001010327A (ja) 車両用空調装置
US10363792B2 (en) Air-conditioning system for cooling and drying air in passenger compartment of vehicle
US11554630B2 (en) Vehicular air conditioner having heating heat exchanger disposed downstream of blower fan
KR20050120156A (ko) 차량용 공기 조화 장치
KR102456849B1 (ko) 차량용 공조장치
KR102456850B1 (ko) 차량용 공조장치
KR20120027670A (ko) 차량용 공조장치
JP2006036032A (ja) 自動車用空調装置
KR102603479B1 (ko) 차량용 공조장치
JPS6312005B2 (zh)
JP4766616B2 (ja) 車両用の暖房または空調設備
WO2024002113A1 (zh) 供暖、通风和/或空调装置及机动车辆
WO2024002111A1 (zh) 供暖、通风和/或空调装置及机动车辆
WO2021006541A1 (en) Unique airflow delivery path for independent rear zone in tri or quad hvac system
US11040592B2 (en) Climate control device for a motor vehicle
KR20190044893A (ko) 차량용 공조장치
KR102136606B1 (ko) 자동차용 공조 시스템
CN110871662B (zh) 车辆用空调装置
KR20060132184A (ko) 차량용 공조장치
KR100759794B1 (ko) 좌,우 독립 제어 방식의 자동차용 공기 조화 장치
US20220305875A1 (en) Control device, and associated heating and/or ventilation and/or air conditioning installation, motor vehicle and temperature management method
KR20240063345A (ko) 차량용 리어 공조유닛 및 이를 포함하는 차량용 리어 공조장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830289

Country of ref document: EP

Kind code of ref document: A1