WO2024002090A1 - 冷藏冷冻装置 - Google Patents

冷藏冷冻装置 Download PDF

Info

Publication number
WO2024002090A1
WO2024002090A1 PCT/CN2023/102853 CN2023102853W WO2024002090A1 WO 2024002090 A1 WO2024002090 A1 WO 2024002090A1 CN 2023102853 W CN2023102853 W CN 2023102853W WO 2024002090 A1 WO2024002090 A1 WO 2024002090A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
fan
refrigeration
heating unit
freezing device
Prior art date
Application number
PCT/CN2023/102853
Other languages
English (en)
French (fr)
Inventor
刘勇豪
姬立胜
陈建全
韩志强
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2024002090A1 publication Critical patent/WO2024002090A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans

Definitions

  • the present invention relates to the field of refrigeration or cooling, and in particular to a refrigeration and freezing device with a heating unit.
  • the design requires a refrigeration and freezing device that can effectively dissipate heat from heating devices and has low production costs.
  • An object of the present invention is to overcome at least one technical defect in the prior art and provide a refrigeration and freezing device with a heating unit, which can achieve effective heat dissipation of the heating device of the heating unit.
  • a further object of the invention is to avoid frequent starting of the first fan or the second fan.
  • a further object of the invention is to reduce production costs.
  • the present invention provides a refrigeration and freezing device, including:
  • a box defining a press chamber and at least one storage compartment
  • a refrigeration system for providing cold energy to the at least one storage compartment
  • a heating unit configured to generate heat for heating the object to be processed in one of the storage compartments or in a part of one of the storage compartments;
  • the first fan is disposed in the compressor chamber together with the compressor of the refrigeration system and a part of the heating unit;
  • the first The fan is configured to start or stop based on the surface temperature of the compressor.
  • the first fan is configured to start when the surface temperature of the compressor is greater than a first temperature threshold, and when the surface temperature of the compressor is less than a second temperature Stop at threshold;
  • the first temperature threshold is greater than the second temperature threshold.
  • the first fan is configured to remain on when the compressor is in an operating state and the heating unit is in a non-operating state.
  • the refrigeration and freezing device also includes:
  • a second fan disposed in the compressor chamber, configured to start when the surface temperature of the compressor is greater than a third temperature threshold when the compressor is in an operating state and the heating unit is in a non-operating state, Stop when less than the fourth temperature threshold;
  • the third temperature threshold is greater than the fourth temperature threshold.
  • the first fan is configured to start or stop according to the temperature rise rate of the part.
  • the first fan is configured to start when the temperature rise rate of the part is greater than a preset rate threshold. Stop when the rate is less than or equal to the rate threshold.
  • the refrigeration and freezing device also includes:
  • a first sensor configured to sense the surface temperature of the compressor every first time interval when the compressor is in an operating state
  • a second sensor configured to sense the surface temperature of the portion every second time interval when the heating unit is in the working state and the compressor is in the non-working state, and thereby obtain the temperature rise rate
  • the second time interval is less than the first time interval.
  • the refrigeration and freezing device also includes:
  • a second fan is provided in the press chamber and configured to remain on when the heating unit is in a working state.
  • the first fan is disposed on a side of the compressor away from the part and urges air to flow from the compressor to the part;
  • the second fan is disposed on a side of the portion away from the compressor and urges air to flow from the compressor to the portion.
  • the parts include:
  • a signal source configured to generate an electromagnetic wave signal
  • a power amplifier configured to be electrically connected to the signal source and increase the power of the electromagnetic wave signal
  • a power module configured to provide electrical energy to the signal source and the power amplifier;
  • the power amplifier is disposed above the power module and is spaced apart from the power module.
  • the heating device of the heating unit is placed in the compressor chamber, and when both the compressor and the heating unit are in working condition, the first fan starts or stops according to the surface temperature of the compressor.
  • Accommodation slots are provided in other positions of the box, which reduces the production cost of the box.
  • the large space of the press chamber is used to improve the heat dissipation efficiency of the heating device. It is also helpful to prevent the press chamber from overheating, ensure the service life of the heating device, and reduce the cost of the box. Compressor workload.
  • the present invention keeps the first fan on when the compressor is in working state and the heating unit is in non-working state, and the second fan starts or stops according to the surface temperature of the compressor.
  • the second fan is kept on, and the first fan starts or stops according to the temperature rise rate of the heating device of the heating unit. While ensuring the heat dissipation efficiency, frequent starting of the first fan or the second fan is avoided. Extends fan life and reduces fan noise.
  • the present invention disposes the first fan on the side of the compressor away from the heating device, and the second fan is disposed on the side of the heating device away from the compressor, and causes the air to flow from the compressor to the heating device, overcoming the problems in the prior art.
  • the technical prejudice of keeping the heating device of the heating unit as far away from other devices as possible, or making the low-temperature air flow through the heating device of the heating unit first and then to other devices reduces the impact on the original devices in the press room, and there is basically no need to change the pressure.
  • the layout of the original components in the machine room reduces production costs.
  • Figure 1 is a schematic cross-sectional view of a refrigeration and freezing device according to an embodiment of the present invention
  • Figure 2 is a schematic rear view of the refrigeration and freezing device shown in Figure 1, in which the rear cover of the press chamber is removed to show the layout of the components in the press chamber;
  • Figure 3 is a schematic isometric view of the refrigeration and freezing device shown in Figure 1 viewed from back to front;
  • Figure 4 is a schematic structural diagram of an electronic control system of a refrigeration and freezing device according to an embodiment of the present invention.
  • Figure 5 is a schematic flow chart of a control method for a refrigeration and freezing device according to an embodiment of the present invention.
  • Figure 1 is a schematic cross-sectional view of the refrigeration and freezing device 100 according to an embodiment of the present invention
  • Figure 2 is a schematic rear view of the refrigeration and freezing device 100 shown in Figure 1, in which the rear cover of the press chamber 113 is removed to illustrate Device layout in press chamber 113.
  • the refrigeration and freezing device 100 may include a box 110 defining a press chamber 113 and at least one storage compartment, at least one door for opening and closing at least one storage compartment, a refrigeration system, and Heating unit.
  • at least one is one, two or more than two.
  • the storage compartment defined by the box 110 may include a first compartment 111 and a second compartment 112 .
  • the set temperature of the first compartment 111 may be lower than the set temperature of the second compartment 112.
  • the first compartment 111 is a freezing compartment and the second compartment 112 is a refrigeration compartment.
  • the refrigeration system may include a compressor 121, a condenser 122 in communication with a refrigerant outlet of the compressor 121, at least one throttling element in communication with the refrigerant outlet of the condenser 122, and at least one evaporator in communication with the refrigerant outlet of a throttling element. device to provide cooling capacity to at least one storage compartment.
  • the refrigeration and freezing device 100 is provided with only one evaporator 124 , and the cooling fan 125 provides cooling energy to the first chamber 111 and the second chamber 112 at the same time.
  • the refrigeration and freezing device 100 may also be provided with an evaporator in the first compartment 111 and the second compartment 112 respectively to provide cooling energy to the first compartment 111 and the second compartment 112 separately.
  • the heating unit may be arranged to generate heating within a storage compartment or locally within a storage compartment.
  • the heat of the object to be treated may be a unit having an electromagnetic wave generating system.
  • the heating unit may include a cylinder 131 provided in a storage room, and a door 132 that opens and closes the access opening of the cylinder 131 .
  • the electromagnetic wave generating system is configured to generate electromagnetic waves within the cylinder 131 .
  • the electromagnetic wave generating system can also be configured to generate electromagnetic waves throughout the storage room.
  • the electromagnetic wave generation system may include a signal source 133, a power amplifier 134, a radiation element, and a power module 135.
  • the signal source 133 may be configured to generate an electromagnetic wave signal.
  • the power amplifier 134 may be configured to be electrically connected to the signal source 133 and increase the power of the electromagnetic wave signal.
  • the radiating element may be configured to be electrically connected to the power amplifier 134 and radiate the amplified electromagnetic waves to the surrounding environment.
  • the power module 135 may be configured to power the signal source 133 and the power amplifier 134 .
  • the bottom of the box 110 may define a press chamber 113 .
  • the compressor 121 and part of the heating unit (especially the heating device) can be disposed in the press chamber 113 to facilitate heat dissipation.
  • the signal source 133, the power amplifier 134, and the power module 135 of the electromagnetic wave generation system may be disposed in the press chamber 113.
  • the power amplifier 134 can be disposed above the power module 135 with a gap from the power module 135 to facilitate the electrical connection between the power amplifier 134 and the power module 135 and to facilitate the surroundings of the power amplifier 134 and the power module 135 The air flows to improve the heat dissipation efficiency of the power amplifier 134.
  • the refrigeration and freezing device 100 may further include heat dissipation fins 143 .
  • the heat dissipation fins 143 may be configured to be thermally connected to the upper surface of the power amplifier 134 to further improve the heat dissipation efficiency of the power amplifier 134 .
  • the refrigeration and freezing device 100 may further include a first fan 141 .
  • the first fan 141 can be disposed in the press chamber 113 to promote air flow in the press chamber 113 and improve heat dissipation efficiency.
  • the first fan 141 can be configured to start or stop according to the surface temperature of the compressor 121 to prevent the compressor chamber 113 from overheating and ensure the service life of the heating device. , reducing the workload of the compressor 121.
  • the first fan 141 may be configured to start when the surface temperature of the compressor 121 is greater than the first temperature threshold T1. start and stop when it is less than the second temperature threshold T2, so as to ensure the heat dissipation effect while avoiding frequent starting of the first fan 141 and reducing energy consumption.
  • the first temperature threshold T1 may be greater than the second temperature threshold T2.
  • the refrigeration and freezing device 100 may further include a second fan 142 .
  • the second fan 142 can be disposed in the press chamber 113 to further improve the heat dissipation efficiency.
  • the second fan 142 may be configured to remain on while the heating unit is in operation to prevent the power amplifier 134 from overheating.
  • the first fan 141 may be disposed on a side of the compressor 121 away from the power amplifier 134
  • the second fan 142 may be disposed on a side of the power amplifier 134 away from the compressor 121 , so that the first fan 141 and The second fan 142 improves the heat dissipation efficiency of the compressor 121 and the power amplifier 134 respectively when working alone, and increases the overall air flow rate in the compressor chamber 113 when working simultaneously.
  • the first fan 141 and the second fan 142 may both be configured to urge air to flow from the compressor 121 to the power amplifier 134 to reduce layout changes of original components in the compressor chamber 113 .
  • FIG. 3 is a schematic isometric view of the refrigeration and freezing device 100 shown in FIG. 1 viewed from the back to the front.
  • an air inlet 114 may be provided on the lateral side wall of the box 110 away from the power amplifier 134 and the part of the back cover of the press chamber 113 away from the power amplifier 134 .
  • An air outlet 115 may be provided on the lateral side wall of the box 110 close to the power amplifier 134 .
  • the portion of the back cover of the press chamber 113 located between the second fan 142 and the projection of the compressor 121 on the back cover may be provided with a vent 116 to provide space between the first fan 141 and the second Among the fans 142, only the first fan 141 is used as an air outlet when started; only the second fan 142 is at least partially used as an air inlet when started, thereby improving heat dissipation efficiency.
  • first fan 141 and the second fan 142 may also be disposed between the compressor 121 and the power amplifier 134 .
  • the first fan 141 when the compressor 121 is in the operating state and the heating unit is in the non-operating state, the first fan 141 may be configured to remain on to prevent the compressor 121 from overheating.
  • the second fan 142 may be configured to start when the surface temperature of the compressor 121 is greater than the third temperature threshold and stop when it is less than the fourth temperature threshold, so as to While ensuring the heat dissipation effect, frequent starting of the second fan 142 is avoided, thereby reducing energy consumption.
  • the third temperature threshold may be greater than the fourth temperature threshold. value.
  • the third temperature threshold may be the same as the first temperature threshold T1; the fourth temperature threshold may be the same as the second temperature threshold T2.
  • the first fan 141 may be configured to start or stop according to the temperature rise rate of the power amplifier 134 .
  • the temperature rise rate of the power amplifier 134 may be the ratio of the difference between the surface temperature of the power amplifier 134 sensed this time and the surface temperature of the power amplifier 134 sensed last time and time.
  • the first fan 141 may be configured to start when the temperature rise rate of the power amplifier 134 is greater than the preset rate threshold S, and when the temperature rise rate is less than or equal to the rate Stop at the threshold S to reduce energy consumption while ensuring the heat dissipation efficiency of the power amplifier 134 .
  • the refrigeration and freezing device 100 may further include a first sensor 161 and a second sensor 162 .
  • the first sensor 161 may be configured to sense the surface temperature of the compressor 121 every first time interval when the compressor 121 is in an operating state.
  • the second sensor 162 is configured to sense the surface temperature of the power amplifier 134 every second time interval when the heating unit is in the working state and the compressor 121 is in the non-working state, thereby obtaining the temperature rise rate of the power amplifier 134 .
  • the second time interval may be smaller than the first time interval to prevent the power amplifier 134 from overheating.
  • Figure 4 is a schematic structural diagram of the electronic control system of the refrigeration and freezing device 100 according to one embodiment of the present invention.
  • the refrigeration and freezing device 100 may further include a controller 150 .
  • the controller 150 may be configured to be electrically connected to the signal source 133, the power amplifier 134, the power module 135, the first fan 141 and the second fan 142, and the first sensor 161 and the second sensor 162 to implement control of the embodiment of the present invention. method.
  • FIG. 5 is a schematic flowchart of a control method for the refrigeration and freezing device 100 according to an embodiment of the present invention (where “Y” represents “yes”; “N” represents “no”).
  • the control method for the refrigeration and freezing device 100 of the present invention may include the following steps:
  • Step S502 Determine whether the power amplifier 134 is in a working state. If yes, execute step S504; if not, execute step S524.
  • Step S504 Control the second fan 142 to remain on.
  • Step S506 Determine whether the compressor 121 is in a working state. If yes, execute step S508; if not, execute step S516.
  • Step S508 Determine whether the surface temperature of the compressor 121 is greater than the first temperature threshold T1. If yes, perform step S510; if not, repeat step S508.
  • Step S510 Control the first fan 141 to start.
  • Step S512 Determine whether the surface temperature of the compressor 121 is less than the second temperature threshold T2. If yes, perform step S514; if not, repeat step S512.
  • Step S514 Control the first fan 141 to stop. Execute step S522.
  • Step S516 Determine whether the surface temperature rise rate of the power amplifier 134 is greater than the preset rate threshold S. If yes, perform step S518; if not, perform step S520.
  • Step S518 Control the first fan 141 to start. Return to step S516.
  • Step S520 Control the first fan 141 to stop.
  • Step S522 Determine whether the power amplifier 134 is in a non-working state. If yes, execute step S524; if not, return to step S506.
  • Step S524 Determine whether the compressor 121 is in a working state. If yes, execute step S526; if not, execute step S536.
  • Step S526 Control the first fan 141 to remain on.
  • Step S528 Determine whether the surface temperature of the compressor 121 is greater than the first temperature threshold T1. If yes, perform step S530; if not, repeat step S528.
  • Step S530 Control the second fan 142 to start.
  • Step S532 Determine whether the surface temperature of the compressor 121 is less than the second temperature threshold T2. If yes, perform step S534; if not, repeat step S532.
  • Step S534 Control the second fan 142 to stop. Execute step S524.
  • Step S536 Control the first fan 141 and the second fan 142 to stop.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

提供一种冷藏冷冻装置(100),包括限定有压机室(113)和至少一个储物间室(111、112)的箱体(110)、用于向至少一个储物间室(111、112)提供冷量的制冷系统、在一个储物间室(111、112)内或一个储物间室(111、112)的局部产生加热待处理物的热量的加热单元以及第一风扇(141)。第一风扇(141)与制冷系统的压缩机(121)、加热单元的一部分一同设置于压机室(113)。在压缩机(121)和加热单元均处于工作状态的情况下,第一风扇(141)配置为根据压缩机(121)的表面温度启动或停止。压机室(113)的大空间提高了发热器件的散热效率,可防止压机室(113)过热,保证发热器件的使用寿命,降低压缩机(121)的工作负荷。

Description

冷藏冷冻装置 技术领域
本发明涉及制冷或冷却领域,特别是涉及一种具有加热单元的冷藏冷冻装置。
背景技术
现有技术中存在一些具有加热单元的冷藏冷冻装置,可以快速地解冻食物、或减少凝露和结霜。然而,加热单元工作时,加热单元的一些电器件会产生大量的热,不仅影响周围环境的利用,而且影响解冻化霜效果、加热单元的连续工作时间、和发热电器件的使用寿命。
综合考虑,在设计上需要一种可实现发热电器件有效散热且生产成本低的冷藏冷冻装置。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种具有加热单元的冷藏冷冻装置,其可实现加热单元的发热器件的有效散热。
本发明一个进一步的目的是要避免第一风扇或第二风扇频繁启动。
本发明另一个进一步的目的是要降低生产成本。
特别地,本发明提供了一种冷藏冷冻装置,包括:
箱体,限定有压机室和至少一个储物间室;
制冷系统,用于向所述至少一个储物间室提供冷量;
加热单元,设置为在一个所述储物间室内或一个所述储物间室的局部产生加热待处理物的热量;以及
第一风扇,与所述制冷系统的压缩机、所述加热单元的一部分一同设置于所述压机室;其中,
在所述压缩机和所述加热单元均处于工作状态的情况下,所述第一 风扇配置为根据所述压缩机的表面温度启动或停止。
可选地,在所述压缩机和所述加热单元均处于工作状态的情况下,所述第一风扇配置为在所述压缩机的表面温度大于第一温度阈值时启动、在小于第二温度阈值时停止;其中,
所述第一温度阈值大于所述第二温度阈值。
可选地,在所述压缩机处于工作状态且所述加热单元处于非工作状态的情况下,所述第一风扇配置为保持开启。
可选地,所述冷藏冷冻装置,还包括:
第二风扇,设置于所述压机室,配置为在所述压缩机处于工作状态且所述加热单元处于非工作状态的情况下在所述压缩机的表面温度大于第三温度阈值时启动、在小于第四温度阈值时停止;其中,
所述第三温度阈值大于所述第四温度阈值。
可选地,在所述加热单元处于工作状态且所述压缩机处于非工作状态的情况下,所述第一风扇配置为根据所述部分的温升速率启动或停止。
可选地,在所述加热单元处于工作状态且所述压缩机处于非工作状态的情况下,所述第一风扇配置为在所述部分的温升速率大于预设的速率阈值时启动、在小于等于所述速率阈值时停止。
可选地,所述冷藏冷冻装置,还包括:
第一传感器,配置为在所述压缩机处于工作状态的情况下每间隔第一时间间隔感测一次所述压缩机的表面温度;和
第二传感器,配置为在所述加热单元处于工作状态且所述压缩机处于非工作状态的情况下每间隔第二时间间隔感测一次所述部分的表面温度,进而获得所述温升速率;其中,
所述第二时间间隔小于所述第一时间间隔。
可选地,所述冷藏冷冻装置,还包括:
第二风扇,设置于所述压机室,并配置为在所述加热单元处于工作状态的情况下保持开启。
可选地,所述第一风扇设置于所述压缩机远离所述部分的一侧,并促使空气由所述压缩机流向所述部分;且
所述第二风扇设置于所述部分远离所述压缩机的一侧,并促使空气由所述压缩机流向所述部分。
可选地,所述部分包括:
信号源,配置为产生电磁波信号;
功率放大器,设置为与所述信号源电连接,并提高所述电磁波信号的功率;以及
电源模块,设置为向所述信号源和所述功率放大器提供电能;其中,
所述功率放大器设置于所述电源模块的上方并与所述电源模块留有间隔。
本发明的冷藏冷冻装置将加热单元的发热器件设置在压机室内,并在压缩机和加热单元均处于工作状态的情况下,使第一风扇根据压缩机的表面温度启动或停止,不仅无需在箱体的其他位置开设容置槽,降低了箱体的生产成本,利用压机室的大空间提高了发热器件的散热效率,而且有利于防止压机室过热,保证发热器件的使用寿命,降低压缩机的工作负荷。
进一步地,本发明在压缩机处于工作状态且加热单元处于非工作状态的情况下使第一风扇保持开启、第二风扇根据压缩机的表面温度启动或停止,在加热单元处于工作状态且压缩机处于非工作状态的情况下使第二风扇保持开启、第一风扇根据加热单元的发热器件的温升速率启动或停止,在保证散热效率的同时,避免了第一风扇或第二风扇频繁启动,延长了风扇的使用寿命并降低了风扇噪音。
进一步地,本发明将第一风扇设置于压缩机远离发热器件的一侧,第二风扇设置于发热器件远离压缩机的一侧,并使空气由压缩机流向发热器件,克服了现有技术中将加热单元的发热器件尽可能地远离其他器件、或使低温空气首先流过加热单元的发热器件再流向其他器件的技术偏见,降低了对压机室原有器件的影响,基本不需要改变压机室原有器件的布局,降低了生产成本。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些 具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冷藏冷冻装置的示意性剖视图;
图2是图1所示冷藏冷冻装置的示意性后视图,其中去除了压机室后盖板,以示出压机室内器件布局;
图3是从后向前观察图1所示冷藏冷冻装置的示意性轴测图;
图4是根据本发明一个实施例的冷藏冷冻装置的电控系统示意性结构图。
图5是根据本发明一个实施例的用于冷藏冷冻装置的控制方法的示意性流程图。
具体实施方式
图1是根据本发明一个实施例的冷藏冷冻装置100的示意性剖视图;图2是图1所示冷藏冷冻装置100的示意性后视图,其中去除了压机室113后盖板,以示出压机室113内器件布局。参见图1和图2,冷藏冷冻装置100可包括限定有压机室113和至少一个储物间室的箱体110、用于开闭至少一个储物间室的至少一个箱门、制冷系统以及加热单元。在本发明中,至少一个为一个、两个或两个以上的更多个。
在图示实施例中,箱体110限定的储物间室可包括第一间室111和第二间室112。第一间室111的设定温度可小于第二间室112的设定温度,例如第一间室111为冷冻间室、第二间室112为冷藏间室。
制冷系统可包括压缩机121、与压缩机121的冷媒出口连通的冷凝器122、与冷凝器122的冷媒出口连通的至少一个节流元件、和与一个节流元件的冷媒出口连通的至少一个蒸发器,以向至少一个储物间室提供冷量。
在图1所示实施例中,冷藏冷冻装置100仅设置有一个蒸发器124,通过制冷风扇125同时向第一间室111和第二间室112提供冷量。
冷藏冷冻装置100也可在第一间室111和第二间室112中分别设置一个蒸发器,以单独向第一间室111和第二间室112提供冷量。
加热单元可设置为在一个储物间室内或一个储物间室的局部产生加 热待处理物的热量。在本发明中,加热单元可为具有电磁波发生系统的单元。
示例性地,加热单元可包括设置于一个储物间室内的筒体131、以及开闭筒体131的取放口的门体132。电磁波发生系统设置为在筒体131内产生电磁波。
电磁波发生系统也可设置为在整个储物间室内产生电磁波。
具体地,电磁波发生系统可包括信号源133、功率放大器134、辐射元件、以及电源模块135。
信号源133可配置为产生电磁波信号。功率放大器134可设置为与信号源133电连接,并提高电磁波信号的功率。
辐射元件可设置为与功率放大器134电连接,并将放大后的电磁波辐射到周围环境。
电源模块135可设置为向信号源133和功率放大器134供电能。
箱体110底部可限定有压机室113。压缩机121、加热单元的一部分(特别是发热器件)可设置于压机室113,以便于散热。
具体地,电磁波发生系统的信号源133、功率放大器134、和电源模块135可设置于压机室113。
在一些实施例中,功率放大器134可设置于电源模块135的上方并与电源模块135留有间隔,以便于功率放大器134与电源模块135的电连接,并便于功率放大器134和电源模块135的周围空气流动,提高功率放大器134的散热效率。
冷藏冷冻装置100还可包括散热翅片143。散热翅片143可设置为与功率放大器134的上表面热连接,以进一步提高功率放大器134的散热效率。
冷藏冷冻装置100还可包括第一风扇141。第一风扇141可设置于压机室113,以促进压机室113的空气流动,提高散热效率。
特别地,在压缩机121和加热单元均处于工作状态的情况下,第一风扇141可配置为根据压缩机121的表面温度启动或停止,以防止压机室113过热,保证发热器件的使用寿命,降低压缩机121的工作负荷。
具体地,在压缩机121和加热单元均处于工作状态的情况下,第一风扇141可配置为在压缩机121的表面温度大于第一温度阈值T1时启 动、在小于第二温度阈值T2时停止,以在保证散热效果的同时,避免第一风扇141频繁启动,降低能耗。其中,第一温度阈值T1可大于第二温度阈值T2。
在一些实施例中,冷藏冷冻装置100还可包括第二风扇142。第二风扇142可设置于压机室113,以进一步提高散热效率。
在一些进一步的实施例中,在加热单元处于工作状态的情况下,第二风扇142可配置为保持开启,以避免功率放大器134过热。
在一些进一步的实施例中,第一风扇141可设置于压缩机121远离功率放大器134的一侧,第二风扇142可设置于功率放大器134远离压缩机121的一侧,以第一风扇141和第二风扇142在单独工作的情况下分别提高压缩机121和功率放大器134的散热效率,并在同时工作的情况下在整体上提高压机室113内空气流动的速率。
第一风扇141和第二风扇142可均设置为促使空气由压缩机121流向功率放大器134,以减少压机室113原有器件的布局改变。
图3是从后向前观察图1所示冷藏冷冻装置100的示意性轴测图。参见图3,箱体110远离功率放大器134的横向侧壁、以及压机室113的后盖板远离功率放大器134的部分可开设有进风口114。箱体110靠近功率放大器134的横向侧壁可开设有出风口115。
在一些实施例中,压机室113的后盖板位于第二风扇142和压缩机121在后盖板上的投影之间的部分可开设有通风口116,以在第一风扇141和第二风扇142中仅第一风扇141启动时作为出风口使用;仅第二风扇142启动时至少部分作为进风口使用,提高散热效率。
在另一些进一步的实施例中,第一风扇141和第二风扇142可也设置在压缩机121和功率放大器134之间。
在一些实施例中,在压缩机121处于工作状态且加热单元处于非工作状态的情况下,第一风扇141可配置为保持开启,以避免压缩机121过热。
在压缩机121处于工作状态且加热单元处于非工作状态的情况下,第二风扇142可配置为在压缩机121的表面温度大于第三温度阈值时启动、在小于第四温度阈值时停止,以在保证散热效果的同时,避免第二风扇142频繁启动,降低能耗。其中,第三温度阈值可大于第四温度阈 值。第三温度阈值可与第一温度阈值T1相同;第四温度阈值可与第二温度阈值T2相同。
在一些实施例中,在加热单元处于工作状态且压缩机121处于非工作状态的情况下,第一风扇141可配置为根据功率放大器134的温升速率启动或停止。功率放大器134的温升速率可为本次感测到的功率放大器134的表面温度与前一次感测到的功率放大器134的表面温度的差值与时间的比值。
具体地,在加热单元处于工作状态且压缩机121处于非工作状态的情况下,第一风扇141可配置为在功率放大器134的温升速率大于预设的速率阈值S时启动、在小于等于速率阈值S时停止,以在保证功率放大器134的散热效率的同时,降低能耗。
冷藏冷冻装置100还可包括第一传感器161和第二传感器162。第一传感器161可配置为在压缩机121处于工作状态的情况下每间隔第一时间间隔感测一次压缩机121的表面温度。
第二传感器162配置为在加热单元处于工作状态且压缩机121处于非工作状态的情况下每间隔第二时间间隔感测一次功率放大器134的表面温度,进而获得功率放大器134的温升速率。其中,第二时间间隔可小于第一时间间隔,以避免功率放大器134过热。
图4是根据本发明一个实施例的冷藏冷冻装置100的电控系统示意性结构图。参见图4,冷藏冷冻装置100还可包括控制器150。控制器150可设置为与信号源133、功率放大器134、电源模块135、第一风扇141和第二风扇142、以及第一传感器161和第二传感器162电连接,以实现本发明实施例的控制方法。
图5是根据本发明一个实施例的用于冷藏冷冻装置100的控制方法的示意性流程图(其中,“Y”表示“是”;“N”表示“否”)。参见图5,本发明的用于冷藏冷冻装置100的控制方法可包括如下步骤:
步骤S502:判断功率放大器134是否处于工作状态。若是,执行步骤S504;若否,执行步骤S524。
步骤S504:控制第二风扇142保持开启。
步骤S506:判断压缩机121是否处于工作状态。若是,执行步骤S508;若否,执行步骤S516。
步骤S508:判断压缩机121的表面温度是否大于第一温度阈值T1。若是,执行步骤S510;若否,重复步骤S508。
步骤S510:控制第一风扇141启动。
步骤S512:判断压缩机121的表面温度是否小于第二温度阈值T2。若是,执行步骤S514;若否,重复步骤S512。
步骤S514:控制第一风扇141停止。执行步骤S522。
步骤S516:判断功率放大器134的表面温升速率是否大于预设的速率阈值S。若是,执行步骤S518;若否,执行步骤S520。
步骤S518:控制第一风扇141启动。返回步骤S516。
步骤S520:控制第一风扇141停止。
步骤S522:判断功率放大器134是否处于非工作状态。若是,执行步骤S524;若否,返回步骤S506。
步骤S524:判断压缩机121是否处于工作状态。若是,执行步骤S526;若否,执行步骤S536。
步骤S526:控制第一风扇141保持开启。
步骤S528:判断压缩机121的表面温度是否大于第一温度阈值T1。若是,执行步骤S530;若否,重复步骤S528。
步骤S530:控制第二风扇142启动。
步骤S532:判断压缩机121的表面温度是否小于第二温度阈值T2。若是,执行步骤S534;若否,重复步骤S532。
步骤S534:控制第二风扇142停止。执行步骤S524。
步骤S536:控制第一风扇141和第二风扇142停止。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种冷藏冷冻装置,包括:
    箱体,限定有压机室和至少一个储物间室;
    制冷系统,用于向所述至少一个储物间室提供冷量;
    加热单元,设置为在一个所述储物间室内或一个所述储物间室的局部产生加热待处理物的热量;以及
    第一风扇,与所述制冷系统的压缩机、所述加热单元的一部分一同设置于所述压机室;其中,
    在所述压缩机和所述加热单元均处于工作状态的情况下,所述第一风扇配置为根据所述压缩机的表面温度启动或停止。
  2. 根据权利要求1所述的冷藏冷冻装置,其中,
    在所述压缩机和所述加热单元均处于工作状态的情况下,所述第一风扇配置为在所述压缩机的表面温度大于第一温度阈值时启动、在小于第二温度阈值时停止;其中,
    所述第一温度阈值大于所述第二温度阈值。
  3. 根据权利要求1所述的冷藏冷冻装置,其中,
    在所述压缩机处于工作状态且所述加热单元处于非工作状态的情况下,所述第一风扇配置为保持开启。
  4. 根据权利要求3所述的冷藏冷冻装置,还包括:
    第二风扇,设置于所述压机室,配置为在所述压缩机处于工作状态且所述加热单元处于非工作状态的情况下在所述压缩机的表面温度大于第三温度阈值时启动、在小于第四温度阈值时停止;其中,
    所述第三温度阈值大于所述第四温度阈值。
  5. 根据权利要求1所述的冷藏冷冻装置,其中,
    在所述加热单元处于工作状态且所述压缩机处于非工作状态的情况下,所述第一风扇配置为根据所述部分的温升速率启动或停止。
  6. 根据权利要求5所述的冷藏冷冻装置,其中,
    在所述加热单元处于工作状态且所述压缩机处于非工作状态的情况下,所述第一风扇配置为在所述部分的温升速率大于预设的速率阈值时启动、在小于等于所述速率阈值时停止。
  7. 根据权利要求6所述的冷藏冷冻装置,还包括:
    第一传感器,配置为在所述压缩机处于工作状态的情况下每间隔第一时间间隔感测一次所述压缩机的表面温度;和
    第二传感器,配置为在所述加热单元处于工作状态且所述压缩机处于非工作状态的情况下每间隔第二时间间隔感测一次所述部分的表面温度,进而获得所述温升速率;其中,
    所述第二时间间隔小于所述第一时间间隔。
  8. 根据权利要求1所述的冷藏冷冻装置,还包括:
    第二风扇,设置于所述压机室,并配置为在所述加热单元处于工作状态的情况下保持开启。
  9. 根据权利要求4或8所述的冷藏冷冻装置,其中,
    所述第一风扇设置于所述压缩机远离所述部分的一侧,并促使空气由所述压缩机流向所述部分;且
    所述第二风扇设置于所述部分远离所述压缩机的一侧,并促使空气由所述压缩机流向所述部分。
  10. 根据权利要求9所述的冷藏冷冻装置,其中,所述部分包括:
    信号源,配置为产生电磁波信号;
    功率放大器,设置为与所述信号源电连接,并提高所述电磁波信号的功率;以及
    电源模块,设置为向所述信号源和所述功率放大器提供电能;其中,
    所述功率放大器设置于所述电源模块的上方并与所述电源模块留有间隔。
PCT/CN2023/102853 2022-06-30 2023-06-27 冷藏冷冻装置 WO2024002090A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210772184.8 2022-06-30
CN202210772184.8A CN117366974A (zh) 2022-06-30 2022-06-30 冷藏冷冻装置

Publications (1)

Publication Number Publication Date
WO2024002090A1 true WO2024002090A1 (zh) 2024-01-04

Family

ID=89382996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102853 WO2024002090A1 (zh) 2022-06-30 2023-06-27 冷藏冷冻装置

Country Status (2)

Country Link
CN (1) CN117366974A (zh)
WO (1) WO2024002090A1 (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240A (ja) * 1994-06-20 1996-01-09 Toshiba Corp 解凍装置
CN108036572A (zh) * 2018-01-09 2018-05-15 合肥美菱股份有限公司 一种冰箱压缩机仓散热结构
CN108800709A (zh) * 2018-08-13 2018-11-13 长虹美菱股份有限公司 一种具有解冻功能的冰箱
CN109990552A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 冰箱
CN109990521A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 风冷冰箱
CN109990563A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 风冷冰箱及其控制方法
CN109990554A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 解冻装置及具有该解冻装置的冰箱
CN109990553A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 冰箱
CN109990535A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 解冻装置及具有该解冻装置的冰箱
CN109990533A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 风冷冰箱
CN109990534A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 冰箱
CN109990530A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 解冻装置及具有该解冻装置的冰箱
CN109990564A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 风冷冰箱
CN109990562A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 冰箱
US20200318885A1 (en) * 2017-12-27 2020-10-08 Samsung Electronics Co., Ltd. Refrigerator having high frequency wave thawing device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240A (ja) * 1994-06-20 1996-01-09 Toshiba Corp 解凍装置
US20200318885A1 (en) * 2017-12-27 2020-10-08 Samsung Electronics Co., Ltd. Refrigerator having high frequency wave thawing device
CN109990554A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 解冻装置及具有该解冻装置的冰箱
CN109990552A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 冰箱
CN109990521A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 风冷冰箱
CN109990563A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 风冷冰箱及其控制方法
CN109990553A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 冰箱
CN109990535A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 解冻装置及具有该解冻装置的冰箱
CN109990533A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 风冷冰箱
CN109990534A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 冰箱
CN109990530A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 解冻装置及具有该解冻装置的冰箱
CN109990564A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 风冷冰箱
CN109990562A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 冰箱
CN108036572A (zh) * 2018-01-09 2018-05-15 合肥美菱股份有限公司 一种冰箱压缩机仓散热结构
CN108800709A (zh) * 2018-08-13 2018-11-13 长虹美菱股份有限公司 一种具有解冻功能的冰箱

Also Published As

Publication number Publication date
CN117366974A (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
WO2021223779A1 (zh) 用于冷藏冷冻装置的控制方法及冷藏冷冻装置
US20110167856A1 (en) Apparatus for cooling computer body by introducing cooling air therein
WO2024002090A1 (zh) 冷藏冷冻装置
US20090314027A1 (en) Refrigerator
JP2005155365A (ja) 電動圧縮機用モータ駆動装置
JP4503045B2 (ja) 保存庫及び冷蔵用保存庫
CN113347750B (zh) 用于加热单元的控制方法及加热单元和冷藏冷冻装置
JP7313867B2 (ja) 冷却構造及びこれを備えた電装ユニット並びに室外機
WO2019120172A1 (zh) 冷藏冷冻装置的控制方法
WO2019120173A1 (zh) 冷藏冷冻装置
KR100759047B1 (ko) 냉장고 기계실의 방열 및 제상수 증발 시스템 및 그제어방법
AU2021223034B2 (en) Control method for heating unit, heating unit, and refrigerating and freezing apparatus
CN112824785A (zh) 用于风冷冰箱的控制方法及风冷冰箱
WO2024002089A1 (zh) 用于冷藏冷冻装置的控制方法及冷藏冷冻装置
CN116972594A (zh) 冷藏冷冻装置
CN219459615U (zh) 一种新型伺服驱动器
JP2004333091A (ja) 冷蔵庫
CN219063862U (zh) 制冷设备
WO2019120170A1 (zh) 冷藏冷冻装置的控制方法
JP2887188B2 (ja) 冷蔵庫の放熱装置
KR20080094435A (ko) 냉장고용 방열 구조
CN116928987A (zh) 冷藏冷冻装置
KR100430000B1 (ko) 듀얼 콘덴서를 구비한 냉장고
KR100556390B1 (ko) 냉장고 기계실의 방열구조
CN117006524A (zh) 窗式空调器及其窗式空调器的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830267

Country of ref document: EP

Kind code of ref document: A1