WO2024002048A1 - 一种酸性气体开关的黏弹性泡沫体系及用其提高采收率的方法和应用 - Google Patents

一种酸性气体开关的黏弹性泡沫体系及用其提高采收率的方法和应用 Download PDF

Info

Publication number
WO2024002048A1
WO2024002048A1 PCT/CN2023/102636 CN2023102636W WO2024002048A1 WO 2024002048 A1 WO2024002048 A1 WO 2024002048A1 CN 2023102636 W CN2023102636 W CN 2023102636W WO 2024002048 A1 WO2024002048 A1 WO 2024002048A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam system
viscoelastic foam
surfactant
acidic
package
Prior art date
Application number
PCT/CN2023/102636
Other languages
English (en)
French (fr)
Inventor
何秀娟
李应成
裘鋆
崔乐雨
Original Assignee
中国石油化工股份有限公司
中石化(上海)石油化工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中石化(上海)石油化工研究院有限公司 filed Critical 中国石油化工股份有限公司
Publication of WO2024002048A1 publication Critical patent/WO2024002048A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/594Compositions used in combination with injected gas, e.g. CO2 orcarbonated gas
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/30Viscoelastic surfactants [VES]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/204Keeping clear the surface of open water from oil spills

Definitions

  • the present invention relates to the technical field of enhanced oil recovery, specifically to a viscoelastic foam system for acid gas switches and methods and applications of using the same to increase oil recovery.
  • Foam is a dispersion system formed by insoluble or slightly soluble gases dispersed in a liquid phase.
  • the gas in foam for enhanced oil recovery is usually steam, nitrogen, natural gas or CO 2
  • the liquid phase is usually an aqueous solution.
  • Foam is a thermodynamically unstable system. After the foam is formed, the liquid continuously precipitates due to gravity and capillary force, and the liquid film becomes thinner. The separation pressure and viscosity between the liquid films delay the thinning of the liquid film. As the liquid film becomes thinner, gas will also diffuse from small bubbles to large bubbles through the liquid film, making the small bubbles smaller and smaller until they disappear, and the large bubbles getting bigger and bigger until they burst.
  • the anionic surfactant sodium ⁇ -olefin sulfonate is most commonly used because the negative charges between its anions repel each other and enhance the liquid film separation pressure, making The foam is not easy to thin or burst.
  • the disadvantages of sodium ⁇ -olefin sulfonate as a foaming agent are the repulsion of anionic charges between molecules, resulting in low saturation adsorption capacity, CMC in aqueous solutions as high as several hundred to several thousand mg/L, poor dilution resistance, and resistance to polyvalent calcium, magnesium, etc. Insufficient ionic capacity, calcium ion concentration reaching 200 mg/L is prone to precipitation, and foaming and foam stabilizing capabilities decrease sharply.
  • alkyl polyether ammonium sulfate and alkyl polyether carboxylate are often used.
  • acidic gases such as CO 2
  • their dissolution in the aqueous solution makes the pH high.
  • carboxylates easily form carboxylic acids, which affects their solubility in aqueous solutions.
  • Ammonium sulfate salts are hydrolyzed, and the structural stability is reduced under acidic conditions.
  • a nonionic surfactant such as an alkylamine or alkylolamine polyether surfactant
  • the present invention found that by introducing a polyamine structure into a nonionic surfactant while maintaining the nonionic structure of its polyether terminal, the compound can be well combined with the anionic surfactant under the action of acidic substances.
  • the formulated protonation degree and hydrophilic-lipophilic balance not only have excellent foam performance, but also have a good viscosity-increasing effect on the system, thus obtaining the present invention.
  • the present invention provides a viscoelastic foam system for acid gas switches and a method and application of using the same to improve oil recovery.
  • the viscoelastic foam system of the present invention includes a pH switch surfactant, a hydrocarbyl anionic surfactant and water; the pH switch surfactant is at least one of long-chain hydrocarbyl amines.
  • the present invention utilizes the characteristics of acidic gas to adjust pH, and designs a method for increasing oil recovery using a viscoelastic foam system that switches acid gas on and off. The unfavorable factors are controlled as advantageous factors, thereby achieving the purpose of increasing oil recovery.
  • Acidic gas can improve surfactant interaction, making the injected surfactant have low viscosity under neutral conditions. After encountering acidic gas, the interaction is enhanced, the viscosity increases, and the foam formed has better stability and blocking performance.
  • One of the objects of the present invention is to provide a viscoelastic foam system for acid gas switches.
  • the viscoelastic foam system of the acid gas switch includes a pH switch surfactant, a hydrocarbyl anionic surfactant and water; the pH switch surfactant is at least one of long-chain hydrocarbyl amines; the long-chain hydrocarbyl amine is The structure is shown in formula (1):
  • R 1 is selected from C 11 to C 24 aliphatic hydrocarbon groups
  • R 2 is selected from C 1 to C 5 aliphatic hydrocarbon groups
  • R 3 , R 4 , and R 5 are each independently selected from H and C 1 to C 3 aliphatic hydrocarbon groups. Hydrocarbyl or substituted aliphatic hydrocarbon group;
  • m+n+p is 0 ⁇ 30, q is 1 or 2.
  • the pH switch surfactant is at least two types of long-chain hydrocarbyl amines
  • R 1 is preferably an aliphatic hydrocarbon group from C 11 to C 20 ;
  • R 2 is preferably an aliphatic hydrocarbon group from C 1 to C 3 ;
  • R 3 , R 4 , and R 5 are each independently preferably an aliphatic hydrocarbon group from H, C 1 to C 3 ;
  • n+n+p is preferably 0 to 6, wherein m, n, and p are each independently any number from 0 to 10, preferably any number from 0 to 2; the arbitrary number is preferably any integer.
  • long-chain hydrocarbon group refers to a saturated or unsaturated aliphatic hydrocarbon group having 11 or more carbon atoms.
  • the long-chain hydrocarbyl amines of formula (1) described above may be commercially available products from the prior art. It can also be prepared by reaction methods in the prior art. Its preparation method preferably includes:
  • fatty acids React sulfoxide chloride and N,N-dimethylformamide at 70-100°C for 2-5 hours. Excessive sulfoxide chloride is extracted under reduced pressure to obtain fatty acid chloride. Among them, R 1 in the fatty acid is a C 11 to C 24 aliphatic hydrocarbon group.
  • the obtained fatty acid chloride is mixed with toluene, and a mixture of amine and pyridine in the required proportion is added dropwise at 60 to 90°C, and the reaction is carried out for 2 to 5 hours. After post-treatment, a product with a structural formula such as formula (1) is obtained.
  • the molar ratio of the above fatty acid, sulfoxide chloride and N,N-dimethylformamide is 1:1.0 ⁇ 2.0:0.03 ⁇ 0.1
  • the volume ratio of fatty acid chloride to toluene is 1:0.5 ⁇ 1.5
  • the volume ratio of fatty acid chloride to amine is 1:1 ⁇ 1.5:1 ⁇ 2.5.
  • R 1 in the above fatty acids is a C 11 to C 24 aliphatic hydrocarbon group.
  • the structure of the amine is and / or,
  • R 2 is selected from C 1 to C 5 aliphatic hydrocarbon groups
  • R 3 , R 4 and R 5 are each independently selected from H, C 1 to C 3 aliphatic hydrocarbon groups or substituted aliphatic hydrocarbon groups.
  • R 1 is selected from C 11 to C 24 aliphatic hydrocarbon groups
  • R 2 is selected from C 1 to C 5 aliphatic hydrocarbon groups
  • R 3 , R 4 , and R 5 are each independently selected from H and C 1 to C 3 aliphatic hydrocarbon groups.
  • Hydrocarbon group or substituted aliphatic hydrocarbon group; m, n and p are all 0.
  • q is 1 to 2.
  • a preferred embodiment of the long-chain hydrocarbyl amine of the present invention is as follows:
  • the product of formula (1) obtained by the above amidation reaction when at least one of R 3 , R 4 and R 5 is H, can be mixed with ethylene oxide (ethylene oxide and formula (1)
  • ethylene oxide and formula (1) The molar ratio of the product is 1 to 30:1), at a reaction temperature of 80 to 160°C and a pressure of less than 0.60MPa gauge, an alkoxylation reaction is carried out to obtain a long-chain hydrocarbyl amine with a structural formula such as the following formula (1):
  • R 1 is selected from C 11 to C 24 aliphatic hydrocarbon groups
  • R 2 is selected from C 1 to C 5 aliphatic hydrocarbon groups
  • R 3 , R 4 , and R 5 are each independently selected from H and C 1 to C 3 aliphatic hydrocarbon groups. Hydrocarbon group or substituted aliphatic hydrocarbon group, and at least one is H;
  • n+n+p 1 to 30, and q is 1 to 2.
  • the long-chain hydrocarbyl amine product obtained by the amidation reaction according to the raw materials and conditions described therein, or the long-chain hydrocarbyl amine product obtained by the alkoxylation reaction after amidation can be directly used as the PH of the present invention.
  • Switching surfactant is used in the viscoelastic foam system of the present invention.
  • the hydrocarbyl anionic surfactant is at least one of alkyl carboxylates, alkyl sulfates, alkyl sulfonates, and olefin sulfonates; the number of carbon atoms in the alkyl group is preferably 1 to 20, more preferably 1 to 20 carbon atoms. It is preferably 1 to 12; the number of carbon atoms in the olefin sulfonate is preferably 10 to 20; the olefin sulfonate is preferably ⁇ -olefin sulfonate.
  • the water is mineral-containing water, preferably at least one of tap water, oil and gas field injection water, and oil and gas field injection water, and more preferably salt water with a salinity range of 10 to 200 g/L.
  • the pH switch surfactant accounts for 0.2-1wt% of the viscoelastic foam system; preferably 0.3-0.6wt%;
  • the hydrocarbon-based anionic surfactant accounts for 0.05-0.3wt% of the viscoelastic foam system; preferably 0.1-0.2wt%;
  • the mass ratio of the pH switch surfactant to the hydrocarbyl anionic surfactant is 1: (0.05-15); preferably 1: (0.1-3); more preferably 1:0.1-0.6;
  • the foam system can form a solution viscosity of 3 to 30 mPa ⁇ s under the action of acidic gas;
  • the apparent viscosity of the foam system after forming foam in the high-permeability porous medium when the injection amount of the foam system is 1.0PV ⁇ 270mPa ⁇ s.
  • the second object of the present invention is to provide a method for preparing the viscoelastic foam system that is one of the objects of the present invention.
  • the preparation method includes thoroughly mixing components including the pH switch surfactant, hydrocarbyl anionic surfactant and water.
  • the third object of the present invention is to provide a method for improving oil recovery using the viscoelastic foam system of one of the objects of the present invention or the viscoelastic foam system prepared by the method of the second object of the present invention.
  • the methods include:
  • the viscoelastic foam system is alternately or co-injected with acidic gas into the porous medium containing crude oil to form foam in situ in the porous medium, thereby improving oil recovery.
  • the viscoelastic foam system of the present invention forms viscoelastic foam under the action of acid gas, thereby expanding the sweep coefficient of the displacement phase, thereby increasing the recovery rate of the displaced phase, that is, the crude oil, and the recovery rate can be increased by more than 20%. .
  • the acidic gas is at least one of CO 2 and H 2 S.
  • the volume ratio or volume flow rate ratio of the acid gas to the viscoelastic foam system is 1: (0.1-2).
  • the fourth object of the present invention is to provide a viscoelastic foam system according to one of the objects of the present invention or a viscoelastic foam system prepared by the method of the second object of the present invention in oil recovery from a reservoir with a salinity of 10 to 200 g/L. Applications.
  • the invention makes full use of the advantage of acidic gas in improving pH.
  • acidic gas long-chain hydrocarbyl amines convert non-ionic amines into partially positively charged quaternary ammonium.
  • electrostatic attraction between quaternary ammonium and anionic surfactants. it is easy to form relatively large micelles, thus increasing the viscosity of the system.
  • is the viscosity of the solution
  • R F is the radius of curvature of the surface circle
  • C f is the correction factor
  • ⁇ P is the pressure difference between the pressure in the adjacent P zone and the separation pressure.
  • the increase in liquid film viscosity can reduce the diffusion rate of gas through the liquid film, making the foam more stable.
  • long-chain hydrocarbyl amines improve the salt tolerance of single anionic surfactants, making the system
  • the applicable range of salinity is increased to 10 ⁇ 200g/L.
  • a viscoelastic foam system for acid gas switching including a pH switching surfactant, a hydrocarbyl anionic surfactant and water; the pH switching surfactant is at least one of long-chain hydrocarbyl amines;
  • the long chain hydrocarbyl amine is a long chain hydrocarbyl polyamine compound
  • the polyamine compound has two or more non-cyclic amine moieties, preferably 2-10 non-cyclic amine moieties Amine moieties, for example, 2, 3, 4, 5, 6, 7, 8, 9 or 10 acyclic amine moieties
  • the long chain hydrocarbyl group is saturated or unsaturated with 11 or more carbon atoms an aliphatic hydrocarbon group, preferably a C 11 to C 24 aliphatic hydrocarbon group;
  • the polyamine compound consists of a main part and a non-main part
  • the nitrogen atoms of two or more non-cyclic amine moieties, atoms or chemical groups used to connect the nitrogen atoms of each non-cyclic amine moiety together are the main part of the polyamine compound,
  • the nitrogen atoms of the non-cyclic amine moiety are present in the form of tertiary amines, primary amines and/or secondary amines (preferably, tertiary amines account for 30-100% of the sum of primary, secondary and tertiary amines based on nitrogen atoms) , such as 50%-100%, 90%-100%, or 100%);
  • the non-main part of the polyamine compound includes or consists of the following (2) and/or (3), and (1):
  • the aliphatic hydrocarbon group of C 24 is connected to the nitrogen atom of the acyclic amine moiety directly or through a carbonyl group (-CO-);
  • the non-main part of the polyamine compound does not include ionic groups such as acid groups (such as sulfonic acid groups, carboxylic acid groups, phosphate groups, and phosphonic acid groups). group) or salt group (such as sulfonate group and carboxylate group, such as sodium sulfonate) or quaternary ammonium base group (such as betaine and its derivatives, such as alkyl betaine, alkyl amide betaine alkali, sulfopropyl betaine, hydroxysulfopropyl betaine, and phospholipaine).
  • ionic groups such as acid groups (such as sulfonic acid groups, carboxylic acid groups, phosphate groups, and phosphonic acid groups). group) or salt group (such as sulfonate group and carboxylate group, such as sodium sulfonate) or quaternary ammonium base group (such as betaine and its derivatives, such as alkyl betaine, alkyl amide betaine
  • At least one -(C 2 ⁇ C 3 alkyl -O-) s -R s can be protonated under the action of acidic gas or water.
  • a viscoelastic foam system for acid gas switching including a pH switching surfactant, a hydrocarbyl anionic surfactant and water; the pH switching surfactant is at least one of long-chain hydrocarbyl amines; the long-chain The structure of hydrocarbyl amine is as shown in formula (1) or formula (Ia) or formula (Ib) or formula (Ic):
  • R 1 is each independently selected from C 11 to C 24 aliphatic hydrocarbon groups
  • R 2 is each independently selected from C 1 to C 5 aliphatic hydrocarbon groups
  • R 3 , R 4 , and R 5 are each independently selected from H, C 1 to C 3 aliphatic hydrocarbon group or substituted aliphatic hydrocarbon group;
  • m+n+p is 0 ⁇ 30, q is 1 or 2;
  • Each L is independently a chemical bond or a divalent linking group.
  • the divalent linking group is selected from: -CO-, -CO-NH-, -CO-NH-CO-, -CO-NH-COO-, -CO-NH-OCO-, -COO-, -COO-NH-, -COO-NH-CO-, -COO-NH-COO-, -NHCO-, -NHCONH-, -NHCOO-, -NHOCO-, -OCONH-, -OCO-NH-CO-, -OCO-NH-OCO-, -OCOO-, -O-SO 2 -, -SO 2 and -O-.
  • the viscoelastic foam system as described in technical solution 1 is characterized by:
  • the pH switch surfactant is at least two types of long-chain hydrocarbyl amines.
  • the viscoelastic foam system as described in any one of technical solutions 2-3 is characterized by:
  • R 1 is selected from C 11 to C 20 aliphatic hydrocarbon groups
  • R 2 is selected from C 1 to C 3 aliphatic hydrocarbon groups
  • R 3 , R 4 , and R 5 are each independently selected from H, C 1 to C 3 aliphatic hydrocarbon groups
  • m+n+p is preferably 0 to 6.
  • R 1 is selected from C 11 to C 20 aliphatic hydrocarbon groups
  • R 2 is selected from C 1 to C 3 aliphatic hydrocarbon groups
  • R 3 , R 4 , and R 5 are each independently selected from H, C 1 to C 3 aliphatic hydrocarbon groups
  • m+n+p is preferably 0 to 6 but not 0, and preferably m, n, and p are all non-negative integers.
  • R 1 is selected from C 11 to C 24 aliphatic hydrocarbon groups
  • R 2 is selected from C 1 to C 5 aliphatic hydrocarbon groups
  • R 3 , R 4 , and R 5 are each independently selected from H and C 1 to C 3 aliphatic hydrocarbon groups. Hydrocarbon group or substituted aliphatic hydrocarbon group, and at least one is H;
  • n+n+p 1 to 30, and q is 1 to 2.
  • the hydrocarbyl anionic surfactant is at least one of alkyl carboxylates, alkyl sulfates, alkyl sulfonates, and olefin sulfonates;
  • the number of carbon atoms of the alkyl group is preferably 1 to 20, more preferably 1 to 12; and/or,
  • the number of carbon atoms in the olefin sulfonate is preferably 10 to 20.
  • the water is mineral-containing water, preferably at least one of tap water, oil and gas field injection water, and oil and gas field injection water, and more preferably salt water with a salinity range of 10 to 200 g/L.
  • the pH switch surfactant accounts for 0.2-1wt% of the viscoelastic foam system; preferably 0.3-0.6wt%;
  • the hydrocarbon-based anionic surfactant accounts for 0.05-0.3wt% of the viscoelastic foam system; preferably 0.1-0.2wt%;
  • the mass ratio of the pH switch surfactant to the hydrocarbyl anionic surfactant is 1: (0.05-15); preferably 1: (0.1-3);
  • the foam system can form a solution viscosity of 3 to 30 mPa ⁇ s under the action of acidic gas.
  • the acidic gas is at least one of CO 2 and H 2 S.
  • the volume ratio or volume flow rate ratio of the acid gas to the viscoelastic foam system is 1: (0.1-2).
  • a combination product for forming foam in situ comprising:
  • viscoelastic foam system package contains the viscoelastic foam system described in any one of technical solutions 1 to 9 or the viscoelastic foam system prepared in technical solution 10;
  • Acidic material package contains acidic liquid (such as carbonic acid, acetic acid, propionic acid and butyric acid) or acidic gas (preferably CO 2 , H 2 S).
  • the acidic gas exists in the form of compressed gas.
  • the acidic liquid or acidic gas is in the acidic material package.
  • the pressure in it is 0.1-30MPaG.
  • a device for controlling the output of the viscoelastic foam system from the viscoelastic foam system package
  • the sum of the volumetric flow rate of the acidic substance output by the acidic substance package and the volumetric flow rate of the viscoelastic foam system output by the viscoelastic foam system package is 0.2-200mL/min, for example, 0.5-10.0mL/min, or 1-4mL /min, such as 2mL/min, and/or, the pressure of the acidic substance output by the acidic substance package is 0.1-30MPaG; the pressure of the viscoelastic foam system output by the viscoelastic foam system package is 0.1-30MPaG.
  • the acidic substance in the acidic substance bag is CO 2 ,
  • the viscoelastic foam system in the viscoelastic foam system package is saturated with the acidic substance in the acidic substance package at room temperature and 0.1MPa.
  • the viscosity of the system obtained is 3-30mPa ⁇ s.
  • the elastic modulus of the solution surface of the system is at least 30 mN/m, such as 30-90 mN/m, such as 30-60 mN/m, the viscous modulus is at least 10 mN/m, such as 13-23 mN/m, and the phase angle is 10-30°, such as 18-26°.
  • the combination product for in-situ foam formation according to any one of technical solutions 15-17 in oil recovery from oil reservoirs with a salinity of 10 to 200 g/L.
  • the apparent viscosity of the foam formed by the combination product is 200-400mPa ⁇ s, such as 250-360mPa ⁇ s, such as 270-353mPa ⁇ s.
  • a combination product for forming foam in situ comprising:
  • pH switch surfactant package which contains the pH switch surfactant as described in any one of technical solutions 1-9, and optionally water;
  • Hydrocarbyl anionic surfactant package which contains the hydrocarbyl anionic surfactant as described in any one of technical schemes 1-9, and optionally water;
  • a surfactant package which contains the pH switch surfactant and a hydrocarbyl anionic surfactant as described in any one of technical solutions 1-9, and optionally water;
  • the combination product also includes: (2) acidic material package,
  • the acidic material package contains acidic liquid (such as carbonic acid, acetic acid, propionic acid and butyric acid) or acidic gas (preferably CO 2 , H 2 S).
  • the acidic gas exists in the form of compressed gas.
  • the acidic liquid or acidic gas is in the acidic state.
  • the pressure in the material package is 0.1-30MPaG.
  • a combination product for in-situ foam formation according to technical solution 19 which includes:
  • Device for controlling the pH switching surfactant package and the hydrocarbyl anionic surfactant package to output the pH switching surfactant (and optionally water) and the hydrocarbyl anionic surfactant (and optionally water) respectively; or for controlling means for the surfactant package to output a pH switching surfactant and a hydrocarbyl anionic surfactant (and optionally water);
  • a device for controlling the output of acidic material from an acidic material package such that:
  • the components including the pH switch surfactant, hydrocarbyl anionic surfactant and water are mixed to form a viscoelastic foam system, wherein the water comes from external water, water in the above-mentioned bag, or both;
  • the pH switch surfactant accounts for 0.2-1wt% of the viscoelastic foam system, such as 0.3-0.6wt%; the hydrocarbon-based anionic surfactant accounts for 0.05-0.3wt% of the viscoelastic foam system. , such as 0.1 to 0.2wt%; the mass ratio of the pH switch surfactant to the hydrocarbon-based anionic surfactant is 1: (0.05-15), such as 1: (0.1-3); and
  • the ratio of the volume flow rate of the acidic substance output by the acidic substance package to the volume flow rate of the formed viscoelastic foam system is 1:(0.1-10), for example, 1:(0.5-2);
  • the sum of the volumetric flow rate of the acidic substance output from the acidic substance package and the volumetric flowrate of the formed viscoelastic foam system is 0.2-200mL/min, for example, 0.5-10.0mL/min, or 1-4mL/min, such as 2mL/min, and/or, the pressure of the acidic substance output from the acidic substance package is 0.1-30MPaG; the pressure of the formed viscoelastic foam system is 0.1-30MPaG.
  • the acidic substance in the acidic substance bag is CO 2 ,
  • the viscoelastic foam system formed is saturated with the acidic substance in the acidic substance package at room temperature and 0.1MPa.
  • the viscosity of the system obtained is 3-30mPa ⁇ s
  • the elastic modulus of the solution surface of the system is at least 30mN/m. , such as 30-90mN/m, such as 30-60mN/m
  • the viscous modulus is at least 10mN/m, such as 13-23mN/m
  • the phase angle is 10-30°, such as 18-26°.
  • the combination product for in-situ foam formation according to any one of technical solutions 19-21 in oil recovery from oil reservoirs with a salinity of 10 to 200 g/L.
  • the apparent viscosity of the foam formed by the combination product is 200-400mPa ⁇ s, such as 250-360mPa ⁇ s, such as 270-353mPa ⁇ s.
  • Figure 1 is a hydrogen nuclear magnetic spectrum of a long-chain hydrocarbyl amine of the present invention.
  • aliphatic hydrocarbon groups refer to aliphatic alkyl and alkenyl groups, specifically linear or branched alkyl groups and linear or branched alkenyl groups, aliphatic hydrocarbon groups
  • the carbon atoms can be 1-30, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30.
  • a substituted aliphatic hydrocarbon group refers to a substituted aliphatic hydrocarbon group, in which the substituent may be halogen (-F, -Cl, -Br, -I), hydroxyl (-OH), Thiol (-SH), cyano (-CN), nitro (-NO 2 ), ethynyl (-C ⁇ CH), preferably hydroxyl.
  • non-cyclic amine moieties refer to NH 3 in which 1 or 2 hydrogen atoms in NH 3 are replaced by atoms other than the main part. or chemical groups substituted, while the additional hydrogen atoms may be unsubstituted or may be substituted by a non-hydrogen atom in the bulk Atoms or chemical groups (eg C 1 to C 5 aliphatic hydrocarbon groups) are substituted and, if desired, further bonded to the nitrogen atoms of other non-cyclic amine moieties.
  • chemical groups eg C 1 to C 5 aliphatic hydrocarbon groups
  • the part in the box is the main part, which includes q+1 nitrogen atoms; while the leftmost R 1 -CO- part, the rightmost -(C 2 H 4 O) n -
  • the R 3 part and the -(C 2 H 4 O) p -R 4 part, and the following q -(C 2 H 4 O) m -R 5 parts constitute the non-main part:
  • the number of at least one C 1 to C 3 aliphatic hydrocarbon group or substituted aliphatic hydrocarbon group directly connected to the nitrogen atom of the non-cyclic amine part and at least one - (C 2 ⁇ C 3 alkyl-O-) s -R The total number of s is q+2, and the number of amine moieties is q+1.
  • connecting groups usually divalent
  • the following method is used to measure the viscosity of the foam system after being saturated with 0.1MPa CO2 under normal temperature conditions: the apparent viscosity of the sample is measured using a HAAKE MARS III rheometer of Thermo Scientific Company, with a 41mm diameter Coaxial cylinder measuring rotor, viscosity test at 7.34s - 1 shear rate.
  • an interfacial rheometer is used to measure the elastic modulus, viscosity modulus and phase of the solution surface of the carbon dioxide/foam system obtained after the foam system is saturated with 0.1MPa CO2 under normal temperature conditions. Corner: The TRACKER interface expansion rheometer produced by French ITCONCEPT company is used. The oscillation period is 10s and the test temperature is normal temperature.
  • the core sample is evacuated and weighed, and then saturated with water and weighed. According to the weight
  • liquid paraffin (analytically pure, obtained from Sinopharm Group, where liquid paraffin is used to simulate crude oil) was saturated until no water flows out, and then left for 1 month to age the core samples; the mineralization degree of the aged core samples was 10-10 Displace 200g/L brine until no liquid paraffin flows out, and then use viscoelastic foam system and CO 2 to jointly inject and displace.
  • the volume flow rate ratio of CO 2 and viscoelastic foam system is 1:(0.5-2), viscoelastic foam
  • the total injection rate of the system and CO 2 is 2 mL/min. Measure and record the pressure difference ⁇ P between the front and rear ends of the viscoelastic foam system injection volume of 1.0PV, and calculate the apparent viscosity ⁇ app of the foam formed in the core.
  • A is the cross-sectional area of the sample core, used in the present invention is 4.91cm 2
  • L is the length of the sample core, used in the present invention is 30cm
  • Q L and Q g are the volume flow rates of the liquid phase and the gas phase respectively.
  • the raw materials used in the examples are all conventional commercially available raw materials.
  • R 1 is C 11 H 23 ;
  • R 2 is C 3 H 6 ;
  • the fatty acid raw materials are respectively replaced with tetradecanoic acid, hexadecanoic acid and stearic acid and reacted according to the above conditions to obtain long chain hydrocarbyl amine 1B, long chain hydrocarbyl amine 1C and long chain hydrocarbyl amine 1D.
  • R 1 in the structures of long chain hydrocarbyl amine 1B, long chain hydrocarbyl amine 1C and long chain hydrocarbyl amine 1D are C 13 H 27 , C 15 H 31 and C 17 H 35 respectively, and other parts are the same as long chain hydrocarbyl amine 1A.
  • the pH switch surfactant used in the viscoelastic foam system of Example 1 is a mixture of long-chain hydrocarbyl amines 1A, 1B, 1C and 1D, with a molar ratio of 0.067:0.059:0.316:0.569.
  • the viscosity of this viscoelastic foam system can reach 5mPa ⁇ s after being saturated with 0.1MPa CO2 .
  • the surface elastic modulus of the carbon dioxide/foam system solution was tested using an interfacial rheometer to be 30mN/m and the viscous modulus was 15mN/m. , the phase angle is 26°, indicating that it is a viscoelastic system.
  • the core sample was evacuated and weighed, then saturated with water and weighed. Based on the weight difference, the pore volume PV was calculated to be 47.9 mL.
  • the water phase permeability k was measured to be 1045mD. Then, it was saturated with liquid paraffin (analytically pure, obtained from Sinopharm Group, where the liquid paraffin was used to simulate crude oil, the same below) until no water flows out, and then the core was left to age for 1 month.
  • the aged core was displaced with brine with a salinity of 50g/L until no liquid paraffin flowed out, and the water flooding recovery rate was recorded as 51%.
  • the aged core was then co-injected and displaced with the viscoelastic foam system and CO 2 in Example 1.
  • the volume flow rate ratio of CO 2 to the viscoelastic foam system was 1:2, and the total injection rate of the viscoelastic foam system and CO 2 was 2 mL. /min, record the viscoelastic foam system injection volume of 0.5PV and 1.0PV.
  • the liquid paraffin recovery rate displaced reaches 70% and 81% respectively, increasing the recovery rate by 19% and 30%.
  • the viscoelastic foam system injection volume is 1.0PV.
  • the apparent viscosity is 353mPa ⁇ s.
  • Example 1 At normal temperature and pressure, weigh 0.6g of the pH switch surfactant in Example 1 and add it to the salt water with a salinity of 50g/L. After mixing, a total of 100g of foam system is obtained.
  • the core sample was evacuated and weighed, then saturated with water and weighed. Based on the weight difference, the pore volume PV was calculated to be 47.1 mL.
  • the water phase permeability k was measured to be 997mD. Then, it was saturated with liquid paraffin (analytical grade, obtained from Sinopharm Group) until no water flowed out, and then the core was left to age for 1 month.
  • the aged core was displaced with brine with a salinity of 50g/L until no liquid paraffin flows out, and the water flooding recovery rate was recorded as 50%. Then, the aged core was displaced by co-injecting the 0.5% foam system and CO 2 in Comparative Example 1.
  • the volume flow rate ratio of CO 2 to the foam system was 1:2, and the total injection rate of the foam system and CO 2 was 2 mL/min. It is recorded that the liquid paraffin recovery rate displaced by the foam system injection amount of 0.5PV and 1.0PV is 60% and 69% respectively, and the recovery rate is increased by 10% and 19%.
  • the foam system is injected with 1.0PV, a foam appearance is formed in the core.
  • the viscosity is 30mPa ⁇ s.
  • Example 1 At normal temperature and pressure, weigh 0.6 g of sodium decyl sulfonate in Example 1, add it to salt water with a salinity of 50 g/L, and mix to obtain a total of 100 g of foam system.
  • the core sample was evacuated and weighed, then saturated with water and weighed. Based on the weight difference, the pore volume PV was calculated to be 47.3 mL.
  • the water phase permeability k was measured to be 999mD. Then, it was saturated with liquid paraffin (analytically pure, obtained from Sinopharm Group) until no water flowed out, and then the core was left to age for 1 month.
  • the aged core was displaced with brine with a salinity of 50g/L until no liquid paraffin flowed out, and the water flooding recovery rate was recorded as 51%. Then, the aged core was displaced using the 0.6% foam system in Comparative Example 1 and CO2 .
  • the volume flow rate ratio of CO2 to the foam system was 1:2.
  • the total injection rate of the foam system and CO2 was 2mL/min. Record The recovery rates of liquid paraffin displaced by foam system injection amounts of 0.5PV and 1.0PV are 53% and 56% respectively, increasing the recovery rate by 2% and 5%. When the foam system is injected with 1.0PV, foam apparent viscosity is formed in the core. is 5mPa ⁇ s.
  • Example 1 At normal temperature and pressure, weigh 0.3g of the pH switch surfactant in Example 1 and sodium ethoxylated alkyl sulfate (Jintong Chemical, model: AES, the number of alkyl carbon atoms is C 12 -C 14 )0.2g, added to salt water with a salinity of 100g/L and mixed to obtain a total of 100g of viscoelastic foam system.
  • the viscosity of this viscoelastic foam system can reach 4mPa ⁇ s after saturation with 0.1MPa CO2 .
  • the surface elastic modulus of the carbon dioxide/foam system solution tested using an interfacial rheometer is 40mN/m, and the viscous modulus is 13mN/m. , the phase angle is 18°.
  • the core sample was evacuated and weighed, then saturated with water and weighed. Based on the weight difference, the pore volume PV was calculated to be 47.0 mL. The water phase permeability k was measured to be 990mD. Then, it was saturated with liquid paraffin (analytical grade, obtained from Sinopharm Group) until no water flowed out, and then the core was left to age for 1 month. The aged core was displaced with brine with a salinity of 100g/L until no liquid paraffin flowed out, and the water flooding recovery rate was recorded as 47%. The aged core was then co-injected and displaced with the viscoelastic foam system and CO 2 in Example 2.
  • liquid paraffin analytical grade, obtained from Sinopharm Group
  • the volume ratio of CO 2 to the viscoelastic foam system was 1:1, and the total injection rate of the viscoelastic foam system and CO 2 was 2 mL/ min, record the viscoelastic foam system injection amount of 0.5PV and 1.0PV, and the liquid paraffin recovery rate reached 64% and 75% respectively, increasing the recovery rate by 17% and 28%.
  • the apparent viscosity of the foam formed in the core is 301 mPa ⁇ s.
  • Example 2 At normal temperature and pressure, weigh 0.5g of the ethoxylated sodium alkyl sulfate in Example 2 and add it to salt water with a salinity of 100g/L. After mixing, a total of 100g of foam system is obtained.
  • the core sample was evacuated and weighed, then saturated with water and weighed. Based on the weight difference, the pore volume PV was calculated to be 47.4 mL.
  • the water phase permeability k was measured to be 1037mD. Then, it was saturated with liquid paraffin (analytically pure, obtained from Sinopharm Group) until no water flowed out, and then the core was left to age for 1 month.
  • the aged core was displaced with brine with a salinity of 100g/L until no liquid paraffin flows out, and the water flooding recovery rate was recorded as 50%. Then the aged core was displaced by co-injection of the foam system and CO 2 in Comparative Example 3.
  • the volume flow rate ratio of CO 2 to the foam system was 1:1, and the total injection rate of the foam system and CO 2 was 2 mL/min. Record the foam system injection.
  • the recovery rates of liquid paraffin displaced by 0.5PV and 1.0PV are 56% and 59% respectively, increasing the recovery rate by 6% and 9%.
  • the apparent viscosity of the foam formed in the core is 5mPa ⁇ s.
  • R 1 is C 11 H 23 ;
  • R 2 is C 2 H 4 ;
  • R 3 and R 4 are C 3 H 7 ;
  • Example 3 At normal temperature and pressure, weigh 0.6g of the pH switch surfactant and 0.15g of sodium acetate in Example 3, add them to salt water with a salinity of 10g/L, and mix to obtain a total of 100g of viscoelastic foam system.
  • the viscosity of this viscoelastic foam system can reach 10mPa ⁇ s after being saturated with 0.1MPa CO2 .
  • the surface elastic modulus of the carbon dioxide/foam system solution tested using an interfacial rheometer is 35mN/m, and the viscous modulus is 17mN/m. , the phase angle is 26°.
  • the core sample was evacuated and weighed, then saturated with water and weighed. Based on the weight difference, the pore volume PV was calculated to be 47.1 mL.
  • the water phase permeability k was measured to be 1009mD. This was followed by liquid paraffin (analytical grade, obtained from Sinopharm Group) was saturated until no water flowed out, and then the core was left to age for 1 month.
  • the aged core was displaced with brine with a salinity of 10g/L until no liquid paraffin flowed out, and the water flooding recovery rate was recorded as 53%.
  • the aged core was then co-injected and displaced with the viscoelastic foam system and CO 2 in Example 3.
  • the volume ratio of CO 2 to the viscoelastic foam system was 1:0.5, and the total injection rate of the viscoelastic foam system and CO 2 was 2 mL/ min, record the viscoelastic foam system injection amount of 0.5PV and 1.0PV, and the liquid paraffin recovery rate reached 67% and 82% respectively, increasing the recovery rate by 14% and 29%.
  • the apparent viscosity of the foam formed in the core is 307 mPa ⁇ s.
  • Example 3 At normal temperature and pressure, weigh 0.75g of the pH switch surfactant in Example 3, add it to salt water with a salinity of 10g/L, and mix to obtain a total of 100g of foam system.
  • the tested viscosity of this foam system can reach 2mPa ⁇ s after being saturated with 0.1MPa CO2 .
  • the core sample was evacuated and weighed, then saturated with water and weighed. Based on the weight difference, the pore volume PV was calculated to be 47.3 mL.
  • the water phase permeability k was measured to be 1030mD. Then, it was saturated with liquid paraffin (analytical grade, obtained from Sinopharm Group) until no water flowed out, and then the core was left to age for 1 month.
  • the aged core was displaced with brine with a salinity of 10g/L until no liquid paraffin flowed out, and the water flooding recovery rate was recorded as 54%. Then, the aged core was displaced by co-injection of the foam system and CO 2 in Comparative Example 4.
  • the volume flow rate ratio of CO 2 to the foam system was 1:0.5.
  • the total injection rate of the foam system and CO 2 was 2 mL/min. Record the foam system injection.
  • the recovery rates of liquid paraffin displaced by 0.5PV and 1.0PV are 67% and 74% respectively, increasing the recovery rate by 13% and 20%.
  • the apparent viscosity of the foam formed in the core is 130mPa ⁇ s.
  • Example 3 At normal temperature and pressure, weigh 0.75g of sodium acetate in Example 3 and add it to salt water with a salinity of 10g/L. After mixing, a total of 100g of foam system is obtained.
  • the core sample was evacuated and weighed, then saturated with water and weighed. Based on the weight difference, the pore volume PV was calculated to be 47.5 mL.
  • the water phase permeability k was measured to be 1021mD. Then, it was saturated with liquid paraffin (analytical grade, obtained from Sinopharm Group) until no water flowed out, and then the core was left to age for 1 month.
  • the aged core was displaced with brine with a salinity of 10g/L until no liquid paraffin flowed out, and the water flooding recovery rate was recorded as 48%. Ran The aged core was then displaced by co-injection of the foam system and CO 2 in Comparative Example 5.
  • the volume flow rate ratio of CO 2 to the foam system was 1:0.5, and the total injection rate of the foam system and CO 2 was 2 mL/min. Record the foam system injection.
  • the recovery rates of liquid paraffin displaced by 0.5PV and 1.0PV are 50% and 52% respectively, increasing the recovery rate by 2% and 4%.
  • the apparent viscosity of the foam formed in the core is 2mPa ⁇ s.
  • Example 3 At normal temperature and pressure, weigh 0.2g of the pH switch surfactant in Example 3 and 0.1g of sodium ⁇ -alkenesulfonate (Zhongqing Chemical Industry, model: AOS/92), and add them until the salinity is 10g. /L salt water to obtain a total of 100g of viscoelastic foam system.
  • the viscoelastic foam system has a viscosity of up to 3mPa ⁇ s after being saturated with 0.1MPa CO2 .
  • the core sample was evacuated and weighed, then saturated with water and weighed. Based on the weight difference, the pore volume PV was calculated to be 47.4 mL.
  • the water phase permeability k was measured to be 1041mD. Then, it was saturated with liquid paraffin (analytical grade, obtained from Sinopharm Group) until no water flowed out, and then the core was left to age for 1 month.
  • the aged core was displaced with brine with a salinity of 10g/L until no liquid paraffin flowed out, and the water flooding recovery rate was recorded as 49%.
  • the aged core was then co-injected and displaced with the viscoelastic foam system and CO 2 in Example 4.
  • the volume ratio of CO 2 to the viscoelastic foam system was 1:1.5, and the total injection rate of the viscoelastic foam system and CO 2 was 2 mL/ min, record the viscoelastic foam system injection amount of 0.5PV and 1.0PV, and the liquid paraffin recovery rate reached 61% and 71% respectively, increasing the recovery rate by 12% and 22%.
  • the apparent viscosity of the foam formed in the core is 317 mPa ⁇ s.
  • Example 4 At normal temperature and pressure, weigh 0.3g of sodium olefin sulfonate in Example 4 and add it to salt water with a salinity of 10g/L, and mix to obtain a total of 100g of foam system.
  • the core sample was evacuated and weighed, then saturated with water and weighed. Based on the weight difference, the pore volume PV was calculated to be 47.7 mL.
  • the water phase permeability k was measured to be 1038mD. Then, it was saturated with liquid paraffin (analytical grade, obtained from Sinopharm Group) until no water flowed out, and then the core was left to age for 1 month. Mineralization of aged cores Displace brine with a concentration of 10g/L until no liquid paraffin flows out, and record the water flooding recovery rate as 49%. Then the aged core was displaced by co-injection of the foam system and CO 2 in Comparative Example 6. The volume flow rate ratio of CO 2 to the foam system was 1:1.5.
  • the total injection rate of the foam system and CO 2 was 2 mL/min. Record the foam system injection.
  • the recovery rates of liquid paraffin displaced by 0.5PV and 1.0PV are 59% and 65% respectively, increasing the recovery rate by 10% and 16%.
  • the apparent viscosity of the foam formed in the core is 100mPa ⁇ s.
  • R 1 is C 19 H 39 ;
  • R 2 is C 3 H 6 ;
  • Example 5 At normal temperature and pressure, weigh 0.4g of the pH switch surfactant and 0.1g of sodium butyl sulfonate in Example 5, add them to salt water with a salinity of 200g/L, and mix to obtain a total of 100g of viscoelastic foam system. .
  • the tested viscosity of this viscoelastic foam system can reach 23mPa ⁇ s after being saturated with 0.1MPa CO2 .
  • the surface elastic modulus of the carbon dioxide/foam system solution was tested using an interfacial rheometer to be 60mN/m.
  • the viscous modulus is 23mN/m and the phase angle is 21°.
  • the core sample was evacuated and weighed, then saturated with water and weighed. Based on the weight difference, the pore volume PV was calculated to be 46.8 mL. The water phase permeability k was measured to be 990mD. Then, it was saturated with liquid paraffin (analytical grade, obtained from Sinopharm Group) until no water flowed out, and then the core was left to age for 1 month. The aged core was displaced with brine with a salinity of 200g/L until no liquid paraffin flows out, and the water flooding recovery rate was recorded as 45%. The aged core was then jointly injected and displaced with the viscoelastic foam system and CO 2 in Example 5.
  • liquid paraffin analytical grade, obtained from Sinopharm Group
  • the volume ratio of CO 2 to the viscoelastic foam system was 1:0.5, and the total injection rate of the viscoelastic foam system and CO 2 was 2 mL/ min, record the viscoelastic foam system injection amount of 0.5PV and 1.0PV, and the liquid paraffin recovery rate reached 59% and 74% respectively, increasing the recovery rate by 14% and 29%.
  • the apparent viscosity of the foam formed in the core is 307 mPa ⁇ s.
  • Example 5 At normal temperature and pressure, weigh 0.5g of the pH switch surfactant in Example 5, add it to salt water with a salinity of 200g/L, and mix to obtain a total of 100g of foam system.
  • the tested viscosity of this foam system can reach 2mPa ⁇ s after being saturated with 0.1MPa CO2 .
  • the core sample was evacuated and weighed, then saturated with water and weighed. Based on the weight difference, the pore volume PV was calculated to be 47.6 mL.
  • the water phase permeability k was measured to be 1027mD. Then, it was saturated with liquid paraffin (analytical grade, obtained from Sinopharm Group) until no water flowed out, and then the core was left to age for 1 month.
  • the aged core was displaced with brine with a salinity of 200g/L until no liquid paraffin flowed out, and the water flooding recovery rate was recorded as 44%. Then the aged core was displaced by co-injection of the foam system and CO 2 in Comparative Example 7.
  • the volume flow rate ratio of CO 2 to the foam system was 1:0.5.
  • the total injection rate of the foam system and CO 2 was 2 mL/min. Record the foam system injection.
  • the recovery rates of liquid paraffin displaced by 0.5PV and 1.0PV were 53% and 62% respectively, increasing the recovery rates by 9% and 18%.
  • the apparent viscosity of the foam formed in the core was 140mPa ⁇ s.
  • Example 5 At normal temperature and pressure, weigh 0.7g of the pH switch surfactant and 0.05g of sodium butyl sulfonate in Example 5, add them to salt water with a salinity of 200g/L, and mix to obtain a total of 100g of viscoelastic foam system. .
  • the viscosity of this viscoelastic foam system can reach 4mPa ⁇ s after saturation with 0.1MPa CO2 .
  • the surface elastic modulus of the carbon dioxide/foam system solution tested using an interfacial rheometer is 37mN/m.
  • the viscous modulus is 15mN/m and the phase angle is 22°.
  • the core sample was evacuated and weighed, then saturated with water and weighed. Based on the weight difference, the pore volume PV was calculated to be 47.0 mL.
  • the water phase permeability k was measured to be 1007mD. Then, it was saturated with liquid paraffin (analytical grade, obtained from Sinopharm Group) until no water flowed out, and then the core was left to age for 1 month.
  • the aged core was displaced with brine with a salinity of 200g/L until no liquid paraffin flowed out, and the water flooding recovery rate was recorded as 46%. Then, the aged core was displaced by co-injection of the viscoelastic foam system and CO 2 in Example 5.
  • the volume ratio of CO 2 to the viscoelastic foam system was 1:1.5, and the total injection rate of the viscoelastic foam system and CO 2 was 2 mL/ min, record the viscoelastic foam system injection amount of 0.5PV and 1.0PV, and the liquid paraffin recovery rate reaches 60% and 69% respectively, increasing the recovery rate by 14% and 23%.
  • the apparent viscosity of the foam formed in the core is 270 mPa ⁇ s.
  • Example 5 At normal temperature and pressure, weigh 0.75g of sodium butyl sulfonate in Example 5, add it to salt water with a salinity of 200g/L, and mix to obtain a total of 100g of foam system.
  • the core sample was evacuated and weighed, then saturated with water and weighed. Based on the weight difference, the pore volume PV was calculated to be 47.3 mL.
  • the water phase permeability k was measured to be 1023mD. Then, it was saturated with liquid paraffin (analytical grade, obtained from Sinopharm Group) until no water flowed out, and then the core was left to age for 1 month.
  • the aged core was displaced with brine with a salinity of 200g/L until no liquid paraffin flowed out, and the water flooding recovery rate was recorded as 46%. Then the aged core was displaced by co-injection of the foam system and CO 2 in Comparative Example 8.
  • the volume flow rate ratio of CO 2 to the foam system was 1:1.5.
  • the total injection rate of the foam system and CO 2 was 2 mL/min. Record the foam system injection.
  • the recovery rates of liquid paraffin displaced by 0.5PV and 1.0PV are 49% and 54% respectively, increasing the recovery rate by 3% and 8%.
  • the apparent viscosity of the foam formed in the core is 3mPa ⁇ s.
  • the long chain hydrocarbyl amine 1A switch surfactant prepared in Example 1 was used.
  • the viscoelastic foam system was saturated with 0.1MPa CO2 and tested to have a viscosity of 3mPa ⁇ s.
  • the interfacial rheometer was used to test the surface elastic modulus of the carbon dioxide/foam system solution to be 39mN/m and the viscous modulus to be 19mN/m.
  • the phase angle is 26°.
  • the core sample was evacuated and weighed, then saturated with water and weighed. Based on the weight difference, the pore volume PV was calculated to be 47.9 mL.
  • the water phase permeability k was measured to be 1048mD. Then, it was saturated with liquid paraffin (analytical grade, obtained from Sinopharm Group) until no water flowed out, and then the core was left to age for 1 month.
  • the aged core was displaced with brine with a salinity of 50g/L until no liquid paraffin flows out, and the water flooding recovery rate was recorded as 50%.
  • the aged core was then jointly injected and displaced with the viscoelastic foam system and CO 2 in Example 1.
  • the volume ratio of CO 2 to the viscoelastic foam system was 1:2, and the total injection rate of the viscoelastic foam system and CO 2 was 2 mL/ min, record the viscoelastic foam system injection volume of 0.5PV and 1.0PV, and the liquid paraffin recovery rate reached 67% and 77% respectively, increasing the recovery rate by 17% and 27%.
  • the viscoelastic foam system injection volume is 1.0PV
  • the apparent viscosity of the foam formed in the core is 301 mPa ⁇ s.
  • Example 1 and Example 7 It can be seen from Example 1 and Example 7 that mixing long-chain hydrocarbyl amines prepared from different fatty acids in the viscoelastic foam system has a better effect on improving oil recovery than long-chain hydrocarbyl amines prepared from a single fatty acid.
  • the recovery rate can be increased by 10% compared to the long-chain hydrocarbyl amine prepared from a single C 12 fatty acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明公开了一种酸性气体开关的黏弹性泡沫体系及用其提高采收率的方法和应用。本发明的酸性气体开关的黏弹性泡沫体系包括pH开关表面活性剂、烃基阴离子表面活性剂和水;所述pH开关表面活性剂为长链烃基胺中的至少一种。所述黏弹性泡沫体系与酸性气体相遇后,pH开关表面活性剂与烃基阴离子表面活性剂相互作用增强,黏度增加,形成的泡沫具有更好的稳定性和封堵性能,黏弹性泡沫体系注入1.0PV时在岩心中形成泡沫表观黏度≥270mPa·s,可提高采收率20%以上,并且长链烃基胺提高了单一阴离子的耐盐性,使得体系的矿化度适用范围提高到10~200g/L。

Description

一种酸性气体开关的黏弹性泡沫体系及用其提高采收率的方法和应用 技术领域
本发明涉及强化采油技术领域,具体是涉及一种酸性气体开关的黏弹性泡沫体系及用其提高采收率的方法和应用。
背景技术
泡沫是由不溶性或微溶性气体分散于液相中所形成的分散体系。强化采油用泡沫中的气体通常为蒸汽、氮气、天然气或CO2,而液相通常都是水溶液。泡沫属于热力学不稳定系统,泡沫形成后液体由于重力和毛细管力不断析出,液膜变薄,液膜间的分离压力和黏度延缓液膜变薄。在液膜变薄的同时,气体也会通过液膜从小气泡向大气泡扩散,使得小气泡越来越小,直至消失,大气泡越来越大,直至破裂。
国外自上世纪70年代开始就开展了泡沫控制气体流度的技术研究,阴离子表面活性剂α-烯烃磺酸钠最常被应用,因为其阴离子间负电荷相互排斥,增强液膜分离压力,使得泡沫不容易变薄、破裂。α-烯烃磺酸钠作为泡沫剂的缺点是分子间阴离子电荷排斥,使得其饱和吸附量低,水溶液中CMC高达几百-几千mg/L,抗稀释能力差,耐钙、镁等多价离子能力不足,钙离子浓度达200mg/L容易发生沉淀析出,起泡和稳泡能力急剧下降。
为了提高体系的耐盐性,阴离子表面活性剂烷基聚醚硫酸铵,烷基聚醚羧酸盐常被采用,但是当CO2等酸性气体作为气源时,其在水溶液中溶解使得pH大幅度降低,羧酸盐易形成羧酸,影响其在水溶液中的溶解性,硫酸铵盐水解,酸性条件下结构稳定性降低。
因此,目前需要一种适用于酸性气体条件的泡沫体系。
发明内容
本发明人在研究中发现,非离子表面活性剂(如烷基胺或烷基醇胺聚醚表面活性剂)与阴离子表面活性剂复配,由于非离子表面活性剂质子化度较低,复配后无法获得较好的起泡性能;而阴-非离子表面活性剂(如烷基胺或烷基醇胺聚醚羧酸盐或磺酸盐表面活性剂)与阴离子表面活性剂复配,虽然其质子化度较高,复配后可以作为起泡剂使用,但由于其具有的阴离子基团与阴离子 表面活性剂间具有相互排斥的作用,因此,复配体系不具备对体系的增粘作用。
本发明经过更深入的研究发现,在非离子表面活性剂中引入多胺结构,同时保持其聚醚末端的非离子结构,在酸性物质的作用下,可以很好地达到和阴离子表面活性剂复配的质子化度和亲水亲油平衡,不仅具有优异的泡沫性能,还可以起到对体系良好的增粘作用,从而得到本发明。
为解决现有技术中存在的问题,本发明提供了一种酸性气体开关的黏弹性泡沫体系及用其提高采收率的方法和应用。本发明的黏弹性泡沫体系,包括pH开关表面活性剂、烃基阴离子表面活性剂和水;所述pH开关表面活性剂为长链烃基胺中的至少一种。本发明利用酸性气体调节pH的特点,设计了一种酸性气体开关的黏弹性泡沫体系提高采收率的方法,调控不利因素为优势因素,从而达到提高采收率的目的。酸性气体可以改善表面活性剂相互作用,使得注入表面活性剂在中性条件下低粘度,与酸性气体相遇后相互作用增强,黏度增加,形成的泡沫具有更好的稳定性和封堵性能。
本发明的目的之一是提供一种酸性气体开关的黏弹性泡沫体系。
所述酸性气体开关的黏弹性泡沫体系包括pH开关表面活性剂、烃基阴离子表面活性剂和水;所述pH开关表面活性剂为长链烃基胺中的至少一种;所述长链烃基胺的结构如式(1)所示:
其中,R1选自C11~C24的脂肪烃基;R2选自C1~C5的脂肪烃基;R3、R4、R5各自独立地选自H、C1~C3的脂肪烃基或取代脂肪烃基;
m+n+p为0~30,q为1或2。
本发明的一种优选地实施方式中,
所述pH开关表面活性剂为长链烃基胺中的至少两种;
R1优选自C11~C20的脂肪烃基;R2优选自C1~C3的脂肪烃基;R3、R4、R5各自独立地优选自H、C1~C3的脂肪烃基;
m+n+p优选为0~6,其中,m、n、p各自独立地为0~10的任意数,优选为0~2的任意数;所述任意数优选为任意整数。
当m、n或p为0时,其所对应的R3、R4或R5与N直接连接。
本发明中,术语“长链烃基”是指具有11个及以上碳原子的饱和或不饱和的脂肪族烃基。
以上所述式(1)的长链烃基胺可以是来自现有技术的市售产品。也可以通过现有技术的反应方法进行制备。其制备方法优选包括:
将脂肪酸氯化亚砜和N,N-二甲基甲酰胺在70~100℃反应2~5h,减压抽出过量的氯化亚砜,得到脂肪酰氯其中脂肪酸中的R1为C11~C24的脂肪烃基。将所得脂肪酰氯与甲苯混合,在60~90℃,滴入所需配比的胺和吡啶的混合物,反应2~5h,经后处理后得到结构式如式(1)的产物。
以上所述脂肪酸、氯化亚砜和N,N-二甲基甲酰胺的摩尔比为1:1.0~2.0:0.03~0.1,脂肪酰氯与甲苯体积比1:0.5~1.5,脂肪酰氯与胺、吡啶的摩尔比为1:1~1.5:1~2.5。
以上脂肪酸中的R1为C11~C24的脂肪烃基。
以上当所述胺中只有一个胺基时,所述胺的结构为和/或,
当所述胺中有两个以上胺基时,所述胺的结构为
其中R2选自C1~C5的脂肪烃基;R3、R4、R5各自独立地选自H、C1~C3的脂肪烃基或取代脂肪烃基。
以上酰胺化反应所得的长链烃基胺:
其中,R1选自C11~C24的脂肪烃基;R2选自C1~C5的脂肪烃基;R3、R4、R5各自独立地选自H、C1~C3的脂肪烃基或取代脂肪烃基;m、n和p均为0。
当原料中所述胺中有两个以上胺基时,式(1)中,q为1~2。
进一步地,本发明所述长链烃基胺的一种优选地实施方式如下:
上述酰胺化反应所得的如式(1)的产物,当R3、R4、R5中的至少一个为H时,可将其与环氧乙烷(环氧乙烷与式(1)的产物的摩尔比为1~30:1)在反应温度为80~160℃,压力小于0.60MPa表压条件下,进行烷氧基化反应,得到结构式如以下式(1)的长链烃基胺:
其中,R1选自C11~C24的脂肪烃基;R2选自C1~C5的脂肪烃基;R3、R4、R5各自独立地选自H、C1~C3的脂肪烃基或取代脂肪烃基,且至少一个为H;
m+n+p为1~30,q为1~2。
以上制备方法,按其所述原料和条件酰胺化反应所得的长链烃基胺产物,或者酰胺化后再烷氧基化反应得到的长链烃基胺产物,即可直接作为本发明所述的PH开关表面活性剂,应用于本发明的黏弹性泡沫体系。
本发明的一种优选地实施方式中,
所述烃基阴离子表面活性剂为烷基羧酸盐、烷基硫酸盐、烷基磺酸盐、烯烃磺酸盐中的至少一种;所述烷基的碳原子数优选为1~20,更优选为1~12;所述烯烃磺酸盐中的碳原子数优选为10~20;所述烯烃磺酸盐优选为α-烯烃磺酸盐。
本发明的一种优选地实施方式中,
所述水为含矿物质的水,优选为自来水、油气田地层注入水、水油气田注入水中的至少一种,更优选矿化度范围为10~200g/L的盐水。
本发明的一种优选地实施方式中,
所述pH开关表面活性剂占所述黏弹性泡沫体系的0.2~1wt%;优选为0.3~0.6wt%;
所述烃基阴离子表面活性剂占所述黏弹性泡沫体系的0.05~0.3wt%;优选为0.1~0.2wt%;
所述pH开关表面活性剂与烃基阴离子表面活性剂质量比为1:(0.05-15);优选为1:(0.1-3);更优选为1:0.1~0.6;
所述泡沫体系在酸性气体作用下可以形成3~30mPa·s的溶液黏度;
所述泡沫体系注入量1.0PV时在高渗多孔介质中形成泡沫后表观黏度 ≥270mPa·s。
本发明的目的之二是提供一种本发明的目的之一的黏弹性泡沫体系的制备方法。
所述制备方法包括将包括所述pH开关表面活性剂、烃基阴离子表面活性剂和水在内的组分充分混合。
本发明的目的之三是提供一种使用本发明的目的之一的黏弹性泡沫体系或者由本发明的目的之二的方法所制备的黏弹性泡沫体系提高采收率的方法。
所述方法包括:
将所述黏弹性泡沫体系与酸性气体交替或者共同注入到含有原油的多孔介质中,在多孔介质中原位形成泡沫,从而提高采收率。
本发明的黏弹性泡沫体系在酸性气体的作用下形成黏弹性泡沫,从而扩大驱替相的波及系数,进而提高被驱替相,也就是原油的采收率,采收率可以提高20%以上。
本发明的一种优选地实施方式中,
所述酸性气体为CO2、H2S中的至少一种。
本发明的一种优选地实施方式中,
所述酸性气体与黏弹性泡沫体系的体积比或体积流速比为1:(0.1-2)。
本发明的目的之四是提供一种本发明的目的之一的黏弹性泡沫体系或者由本发明的目的之二的方法所制备的黏弹性泡沫体系在10~200g/L矿化度油藏采油中的应用。
本发明具有以下优势:
本发明充分利用了酸性气体改善pH的优势,长链烃基胺在酸性气体的作用下,非离子的胺转化为部分带有正电荷的季铵,季铵与阴离子表面活性剂之间存在静电吸引,易形成比较大的胶束,从而增加体系的黏度。
泡膜的变薄方程:
上述方程中,μ为溶液的黏度,RF为表面圆曲率半径,Cf为校正因子,ΔP为相临P区的压力和分离压力的压差。
从上述方程可知,黏度增加,可以延缓泡沫从液体中析出,稳定泡沫。
液膜黏度的增加可以降低气体透过液膜的扩散速度,使得泡沫更加稳定。
与此同时,长链烃基胺提高了单一阴离子表面活性剂的耐盐性,使得体系 的矿化度适用范围提高到10~200g/L。
本发明还提供了下列技术方案:
1.一种酸性气体开关的黏弹性泡沫体系,包括pH开关表面活性剂、烃基阴离子表面活性剂和水;所述pH开关表面活性剂为长链烃基胺中的至少一种;
其中所述长链烃基胺是一种长链烃基多胺化合物,所述多胺化合物具有两个或更多个非环状胺部分(non-cyclic amine moieties),优选2-10个非环状胺部分,例如,2、3、4、5、6、7、8、9或10个非环状胺部分,并且所述长链烃基是具有11个或更多个碳原子的饱和或不饱和的脂肪族烃基,优选C11~C24的脂肪烃基;
所述多胺化合物由主体部分和非主体部分组成,
所述的两个或更多个非环状胺部分的氮原子、用于将各个非环状胺部分的氮原子连接在一起的原子或化学基团(例如C1~C5的脂肪烃基团)、以及与各个非环状胺部分的氮原子直接相连的氢原子是多胺化合物的主体部分,
其它与非环状胺部分的氮原子连接的原子或化学基团是多胺化合物的非主体部分;
非环状胺部分的氮原子以叔胺、和伯胺和/或仲胺的形式存在(优选地,按氮原子计,叔胺占伯胺、仲胺和叔胺的总和的30-100%,例如50%-100%,90%-100%,或100%);
多胺化合物的非主体部分包括或由以下(2)和/或(3)、和(1)组成:
(1)与非环状胺部分的氮原子直接相连或通过连接基团相连的至少一个、优选一个长链烃基如C11~C24的脂肪烃基,更优选地,长链烃基如C11~C24的脂肪烃基直接或通过羰基(-CO-)与非环状胺部分的氮原子相连;和
(2)与非环状胺部分的氮原子直接相连的至少一个C1~C3的脂肪烃基或取代脂肪烃基;和/或(3)与非环状胺部分的氮原子直接相连的至少一个-(C2~C3烷基-O-)s-Rs,s为1-60,例如1-6,或1-4,或1-3,或1-2,Rs为H或C1~C3的脂肪烃基或取代脂肪烃基,-(C2~C3烷基-O-)s-Rs例如为-(C2H4O)sH,s是如上定义的;
多胺化合物的非主体部分,例如多胺化合物的非主体部分的末端,不包括离子性基团,如酸根基团(如磺酸基团、羧酸基团、磷酸基团、和膦酸基团)或盐基团(如磺酸盐基团和羧酸盐基团,例如磺酸钠)或季铵碱基团(如甜菜碱及其衍生物,如烷基甜菜碱、烷基酰胺甜菜碱、磺丙基甜菜碱、羟基磺丙基甜菜碱、和磷酸脂甜菜碱)。
在上述技术方案中,(2)与非环状胺部分的氮原子直接相连的至少一个C1~C3的脂肪烃基或取代脂肪烃基的数目和(3)与非环状胺部分的氮原子直接相连的至少一个-(C2~C3烷基-O-)s-Rs的数目的总数不超过多胺化合物的胺部分的个数的两倍减一。作为非离子基团,(2)与非环状胺部分的氮原子直接相连的至少一个C1~C3的脂肪烃基或取代脂肪烃基和(3)与非环状胺部分的氮原子直接相连的至少一个-(C2~C3烷基-O-)s-Rs能够在与酸性气体,水作用下质子化。
2.一种酸性气体开关的黏弹性泡沫体系,包括pH开关表面活性剂、烃基阴离子表面活性剂和水;所述pH开关表面活性剂为长链烃基胺中的至少一种;所述长链烃基胺的结构如式(1)或式(Ia)或式(Ib)或式(Ic)所示:
其中,R1各自独立地选自C11~C24的脂肪烃基;R2各自独立地选自C1~C5的脂肪烃基;R3、R4、R5各自独立地选自H、C1~C3的脂肪烃基或取代脂肪烃基;
m+n+p为0~30,q为1或2;
L各自独立地是化学键或二价连接基团,优选地,二价连接基团选自:-CO-、-CO-NH-、-CO-NH-CO-、-CO-NH-COO-、-CO-NH-OCO-、-COO-、-COO-NH-、-COO-NH-CO-、-COO-NH-COO-、-NHCO-、-NHCONH-、-NHCOO-、-NHOCO-、-OCONH-、-OCO-NH-CO-、-OCO-NH-OCO-、-OCOO-、-O-SO2-、 -SO2和-O-。
3.如技术方案1所述的黏弹性泡沫体系,其特征在于:
所述pH开关表面活性剂为长链烃基胺中的至少两种。
4.如技术方案2-3中任一项所述的黏弹性泡沫体系,其特征在于:
R1选自C11~C20的脂肪烃基;R2选自C1~C3的脂肪烃基;R3、R4、R5各自独立地选自H、C1~C3的脂肪烃基;m+n+p优选为0~6。
5.如技术方案2-4中任一项所述的黏弹性泡沫体系,其特征在于:
R1选自C11~C20的脂肪烃基;R2选自C1~C3的脂肪烃基;R3、R4、R5各自独立地选自H、C1~C3的脂肪烃基;m+n+p优选为0~6但不为0,优选m,n,p均为非负整数。
6.如技术方案2-5中任一项所述的黏弹性泡沫体系,其特征在于:
其中,R1选自C11~C24的脂肪烃基;R2选自C1~C5的脂肪烃基;R3、R4、R5各自独立地选自H、C1~C3的脂肪烃基或取代脂肪烃基,且至少一个为H;
m+n+p为1~30,q为1~2。
7.如技术方案1-6中任一项所述的黏弹性泡沫体系,其特征在于:
所述烃基阴离子表面活性剂为烷基羧酸盐、烷基硫酸盐、烷基磺酸盐、烯烃磺酸盐中的至少一种;
所述烷基的碳原子数优选为1~20,更优选为1~12;和/或,
所述烯烃磺酸盐中的碳原子数优选为10~20。
8.如技术方案1-7中任一项所述的黏弹性泡沫体系,其特征在于:
所述水为含矿物质的水,优选为自来水、油气田地层注入水、水油气田注入水中的至少一种,更优选矿化度范围为10~200g/L的盐水。
9.如技术方案1-8中任一项所述的黏弹性泡沫体系,其特征在于:
所述pH开关表面活性剂占所述黏弹性泡沫体系的0.2~1wt%;优选为0.3~0.6wt%;
所述烃基阴离子表面活性剂占所述黏弹性泡沫体系的0.05~0.3wt%;优选为0.1~0.2wt%;
所述pH开关表面活性剂与烃基阴离子表面活性剂质量比为1:(0.05-15);优选为1:(0.1-3);
所述泡沫体系在酸性气体作用下可以形成3~30mPa·s的溶液黏度。
10.一种如技术方案1-9中任一项所述的黏弹性泡沫体系的制备方法,包括将包括所述pH开关表面活性剂、烃基阴离子表面活性剂和水在内的组分充分混合。
11.一种用技术方案1-9中任一项所述的黏弹性泡沫体系或技术方案10所制备的所述的黏弹性泡沫体系提高采收率的方法,包括将所述黏弹性泡沫体系与酸性气体交替或者共同注入到含有原油的多孔介质中,在多孔介质中原位形成泡沫,从而提高采收率。
12.如技术方案11所述的方法,其特征在于:
所述酸性气体为CO2、H2S中的至少一种。
13.如技术方案11所述的方法,其特征在于:
所述酸性气体与黏弹性泡沫体系的体积比或体积流速比为1:(0.1-2)。
14.一种如技术方案1-9中任一项所述的黏弹性泡沫体系或技术方案10所制备的所述的黏弹性泡沫体系在10~200g/L矿化度油藏采油中的应用。
15.一种用于原位形成泡沫的组合产品,其包括:
(1)黏弹性泡沫体系包;和
(2)酸性物质包;
其中所述黏弹性泡沫体系包,含有技术方案1-9任一所述的黏弹性泡沫体系或技术方案10所制备的所述的黏弹性泡沫体系;
酸性物质包,含有酸性液体(如碳酸、乙酸、丙酸和丁酸)或酸性气体(优选CO2、H2S),酸性气体以压缩气体的形式存在,酸性液体或酸性气体在酸性物质包中的压强为0.1-30MPaG。
16.一种技术方案15的用于原位形成泡沫的组合产品,其包括:
用于控制黏弹性泡沫体系包输出黏弹性泡沫体系的装置;和
用于控制酸性物质包输出酸性物质的装置,使得:酸性物质包输出的酸性物质的体积流速与黏弹性泡沫体系包输出的黏弹性泡沫体系的体积流速之比为1:(0.1-10),例如1:(0.5-2);
优选地,酸性物质包输出的酸性物质的体积流速与黏弹性泡沫体系包输出的黏弹性泡沫体系的体积流速之和为0.2-200mL/min,例如,0.5-10.0mL/min,或1-4mL/min,如2mL/min,和/或,酸性物质包输出的酸性物质的压强为0.1-30MPaG;黏弹性泡沫体系包输出的黏弹性泡沫体系的压强为0.1-30MPaG。
17.一种技术方案15或16的用于原位形成泡沫的组合产品,其中:
酸性物质包中的酸性物质为CO2
使黏弹性泡沫体系包中的黏弹性泡沫体系在常温、0.1MPa的条件下用酸性物质包中的酸性物质饱和后得到的体系的黏度为3-30mPa·s,体系的溶液表面的弹性模量为至少30mN/m,例如30-90mN/m,如30-60mN/m,粘性模量为至少10mN/m,例如13-23mN/m,相角为10-30°,例如18-26°。
18.技术方案15-17中任一项的用于原位形成泡沫的组合产品在10~200g/L矿化度油藏采油中的用途,优选地,组合产品所形成的泡沫表观黏度为200-400mPa·s,例如250-360mPa·s,如270-353mPa·s。
19.一种用于原位形成泡沫的组合产品,其包括:
(1a)pH开关表面活性剂包,其包含如技术方案1-9中任一项所述的pH开关表面活性剂,和任选地水;
(1b)烃基阴离子表面活性剂包,其包含如技术方案1-9中任一项所述的烃基阴离子表面活性剂,和任选地水;
或者(1)表面活性剂包,其包含如技术方案1-9中任一项所述的pH开关表面活性剂和烃基阴离子表面活性剂,和任选地水;
所述组合产品还包括:(2)酸性物质包,
所述酸性物质包,含有酸性液体(如碳酸、乙酸、丙酸和丁酸)或酸性气体(优选CO2、H2S),酸性气体以压缩气体的形式存在,酸性液体或酸性气体在酸性物质包中的压强为0.1-30MPaG。
20.一种技术方案19的用于原位形成泡沫的组合产品,其包括:
用于控制引入任选的外部水的装置;
用于控制pH开关表面活性剂包和烃基阴离子表面活性剂包分别输出pH开关表面活性剂(和任选地水)和烃基阴离子表面活性剂(和任选地水)的装置;或者用于控制表面活性剂包输出pH开关表面活性剂和烃基阴离子表面活性剂(和任选地水)的装置;
用于将输出的pH开关表面活性剂(和任选地水)和输出的烃基阴离子表面活性剂(和任选地水),和被引入的任选的外部水混合的装置;或者任选地,用于将输出的pH开关表面活性剂和烃基阴离子表面活性剂(和任选地水),和被引入的任选的外部水混合的装置;和
用于控制酸性物质包输出酸性物质的装置,使得:
所述pH开关表面活性剂、烃基阴离子表面活性剂和水在内的组分混合而形成黏弹性泡沫体系,其中水来自于外部水,上述包中的水,或其两者;
优选地,所述pH开关表面活性剂占所述黏弹性泡沫体系的0.2~1wt%,例如0.3~0.6wt%;所述烃基阴离子表面活性剂占所述黏弹性泡沫体系的0.05~0.3wt%,例如0.1~0.2wt%;所述pH开关表面活性剂与烃基阴离子表面活性剂质量比为1:(0.05-15),例如1:(0.1-3);并且
酸性物质包输出的酸性物质的体积流速与所形成的黏弹性泡沫体系的体积流速之比为1:(0.1-10),例如1:(0.5-2);
优选地,酸性物质包输出的酸性物质的体积流速与所形成的黏弹性泡沫体系的体积流速之和为0.2-200mL/min,例如,0.5-10.0mL/min,或1-4mL/min,如2mL/min,和/或,酸性物质包输出的酸性物质的压强为0.1-30MPaG;所形成的黏弹性泡沫体系的压强为0.1-30MPaG。
21.一种技术方案20的用于原位形成泡沫的组合产品,其中:
酸性物质包中的酸性物质为CO2
所形成的黏弹性泡沫体系在常温、0.1MPa的条件下用酸性物质包中的酸性物质饱和后得到的体系的黏度为3-30mPa·s,体系的溶液表面的弹性模量为至少30mN/m,例如30-90mN/m,如30-60mN/m,粘性模量为至少10mN/m,例如13-23mN/m,相角为10-30°,例如18-26°。
22.技术方案19-21中任一项的用于原位形成泡沫的组合产品在10~200g/L矿化度油藏采油中的用途,优选地,组合产品所形成的泡沫表观黏度为200-400mPa·s,例如250-360mPa·s,如270-353mPa·s。
附图说明
图1是本发明的一种长链烃基胺的核磁氢谱。
具体实施方式
在本发明中,在没有特别定义的情况下,脂肪烃基是指脂肪族的烷基和烯基,特别地是指直链或支链的烷基和直链或支链的烯基,脂肪烃基的碳原子是可以是1-30,例如,1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30。
在本发明中,在没有特别定义的情况下,取代脂肪烃基是指被取代的脂肪烃基,其中取代基可以是卤素(-F、-Cl、-Br、-I)、羟基(-OH)、巯基(-SH)、氰基(-CN)、硝基(-NO2)、乙炔基(-C≡CH),优选地,羟基。
在本发明中,在没有特别定义的情况下,非环状胺部分(non-cyclic amine moieties)是指这样的NH3,其中NH3中的1个或2个氢原子被非主体部分的原子或化学基团取代,而另外的氢原子可以是未被取代的或是被主体部分的非氢 原子或化学基团(例如C1~C5的脂肪烃基团)取代并如果需要的话,进一步与其他的非环状胺部分的氮原子连接。
举例来说,如下式所示,框中的部分是主体部分,其中包括q+1个氮原子;而最左边的R1-CO-部分、最右边的-(C2H4O)n-R3部分和-(C2H4O)p-R4部分、以及下面的q个-(C2H4O)m-R5部分构成非主体部分:
在上面的例子中,与非环状胺部分的氮原子直接相连的至少一个C1~C3的脂肪烃基或取代脂肪烃基的数目和与非环状胺部分的氮原子直接相连的至少一个-(C2~C3烷基-O-)s-Rs的数目的总数为q+2,而胺部分的个数为q+1,两者满足下述关系式:(q+2)≤(q+1)*2-1=2q+1。
在本发明中,为合成长链烃基胺,在合成过程中需要引入本领域众所周知的连接基团(通常是二价的),包括但不限于-CO-、-CO-NH-、-CO-NH-CO-、-CO-NH-COO-、-CO-NH-OCO-、-COO-、-COO-NH-、-COO-NH-CO-、-COO-NH-COO-、-NHCO-、-NHCONH-、-NHCOO-、-NHOCO-、-OCONH-、-OCO-NH-CO-、-OCO-NH-OCO-、-OCOO-、-O-SO2-、-SO2和-O-。举例来说,在脂肪酰氯(C11H23COCl)与丙二胺的反应中形成带有-CO-NH-键的多胺化合物以及HCl,而其中的-CO-就是众所周知的连接基团,因为原料“烷基-COCl”相比于原料“烷基-Cl”更容易获得,所以本领域技术人员更愿意使用带有连接基团的原料“烷基-COCl”。
在本发明中,采用下述方式测量泡沫体系在常温条件下在用0.1MPa CO2饱和后的黏度:采用Thermo Scientific公司HAAKE MARSⅢ型流变仪测定试样的表观黏度,用直径为41mm的同轴圆筒测量转子,在7.34s- 1剪切速率下进行测试黏度。
在本发明中,使用界面流变仪,采用下述方式测量当泡沫体系在常温条件下在用0.1MPa CO2饱和后得到的二氧化碳/泡沫体系的溶液表面的弹性模量、粘性模量和相角:采用法国I.T.CONCEPT公司生产的TRACKER界面扩张流变仪,震荡周期为10s,测试温度常温。
在本发明中,采用下述方式测量在10~200g/L矿化度油藏采油中所形成的泡沫的表观黏度:将岩心样品抽真空后称重,之后用水饱和,称重,根据重量 差计算孔隙体积PV=Δm/ρ,ρ为1.0g/cm3。测定水相渗透率k。之后用液体石蜡(分析纯,获自国药集团,其中液体石蜡用于模拟原油)饱和至无水流出,然后放置1个月将岩心样品老化;对老化后的岩心样品采用矿化度为10-200g/L的盐水进行驱替至无液体石蜡流出,然后采用黏弹性泡沫体系与CO2共同注入驱替,CO2与黏弹性泡沫体系体积流速比例为1:(0.5-2),黏弹性泡沫体系和CO2总注入速度2mL/min,测量并记录黏弹性泡沫体系注入量1.0PV前后端压差ΔP,计算得到在岩心中形成的泡沫的表观黏度μapp
其中A为样品岩心的截面积,本发明中采用的是4.91cm2,L为样品岩心的长度,本发明中采用的是30cm,QL和Qg分别为液相和气相的体积流速。
下面结合具体实施例对本发明进行具体的描述,有必要在此指出的是以下实施例只用于对本发明的进一步说明,不能理解为对本发明保护范围的限制,本领域技术人员根据本发明内容对本发明做出的一些非本质的改进和调整仍属本发明的保护范围。
实施例中所用原料均为常规市购原料。
实施例1
pH开关表面活性剂的制备:
(1)将十二酸200g(1.0mol)、氯化亚砜149g(1.25mol)和3g(0.04mol)N,N-二甲基甲酰胺(DMF),加入配有密封机械搅拌、温度计、冷凝管的四口烧瓶中,于90℃反应3小时后,减压蒸出过量的氯化亚砜,得到脂肪酰氯(C11H23COCl)。当温度降至60℃时,加入甲苯70g,搅拌均匀后,慢慢滴加由丙二胺74g(1.0mol)和吡啶99.0g(1.25mol)组成的混合液,控制温度小于60℃,滴完升温至85℃反应2小时。冷却,过滤,粗品以乙醇重结晶,真空干燥后得白色粉末状固体(白色粉末状固体为C11H23CONHC3H6NH2),总收率为90%。
(2)向装有冷凝装置、搅拌装置和气体分散器的反应器中加入128g(0.5mol)上述白色粉末状固体,加热至80~90℃,开启真空系统,在高真空下脱水1小时,然后用氮气吹扫3~4次以除去体系中的空气,然后将体系反应温度调至130℃缓缓通入88g(2mol)环氧乙烷,控制压力<0.60MPa进行烷氧基化反应;反应结束后,用氮气吹扫体系,除去未反应的环氧乙烷,冷却后中和、脱色、过滤、脱水,即得长链烃基胺1A,收率为93%。
长链烃基胺1A结构:
R1为C11H23;R2为C3H6;R3、R4、R5为H;m+n+p=4,q=1。
将脂肪酸原料分别换为十四酸、十六酸和十八酸按照上述条件进行反应,得到长链烃基胺1B,长链烃基胺1C,长链烃基胺1D。
长链烃基胺1B、长链烃基胺1C和长链烃基胺1D结构中的R1分别为C13H27、C15H31和C17H35,其他部分与长链烃基胺1A相同。
实施例1的黏弹性泡沫体系使用的pH开关表面活性剂为长链烃基胺1A、1B、1C和1D的混合物,其摩尔比为0.067:0.059:0.316:0.569。
长链烃基胺1A的核磁氢谱如图1所示,1B、1C和1D与1A具有相近的核磁谱图。
黏弹性泡沫体系制备:
在常温、常压下,称取pH开关表面活性剂0.5g、癸基磺酸钠(TCI)0.1g,加入到矿化度为50g/L的盐水中混合后得到共100g黏弹性泡沫体系。
该黏弹性泡沫体系在常温条件下,采用0.1MPa CO2饱和后测试黏度可达5mPa·s,采用界面流变仪测试二氧化碳/泡沫体系溶液表面弹性模量30mN/m,粘性模量15mN/m,相角为26°,表明其为一粘弹性体系。
黏弹性泡沫体系驱油实验:
将岩心样品抽真空后称重,之后用水饱和,称重,根据重量差计算孔隙体积PV为47.9mL。测定水相渗透率k为1045mD。之后用液体石蜡(分析纯,获自国药集团,其中液体石蜡用于模拟原油,下同)饱和至无水流出,后放置1个月老化岩心。对老化后的岩心采用矿化度为50g/L的盐水进行驱替至无液体石蜡流出,记录水驱采收率,为51%。然后对老化后的岩心采用实施例1中的黏弹性泡沫体系与CO2共同注入驱替,CO2与黏弹性泡沫体系体积流速比例为1:2,黏弹性泡沫体系和CO2总注入速度2mL/min,记录粘弹性泡沫体系注入量0.5PV和1.0PV驱替出的液体石蜡采收率分别达到70%和81%,提高采收率19%和30%,黏弹性泡沫体系注入量1.0PV时在岩心中形成泡沫表观黏度为353mPa·s。
对比例1
泡沫体系制备:
在常温、常压下,分别称取实施例1中的pH开关表面活性剂0.6g加入到矿化度为50g/L盐水中混合后得到共100g泡沫体系。
上述泡沫体系在常温条件下,采用0.1MPa CO2饱和后测试黏度与水粘度接近,均为1mPa·s。
泡沫体系驱油实验:
将岩心样品抽真空后称重,之后用水饱和,称重,根据重量差计算孔隙体积PV为47.1mL。测定水相渗透率k为997mD。之后用液体石蜡(分析纯,获自国药集团)饱和至无水流出,后放置1个月老化岩心。对老化后的岩心采用矿化度为50g/L的盐水进行驱替至无液体石蜡流出,记录水驱采收率,为50%。然后对老化后的岩心采用对比例1中的0.5%的泡沫体系与CO2共同注入驱替,CO2与泡沫体系体积流速比例为1:2,泡沫体系和CO2总注入速度2mL/min,记录泡沫体系注入量0.5PV和1.0PV驱替出的液体石蜡采收率分别为60%和69%,提高采收率10%和19%,泡沫体系注入1.0PV时在岩心中形成泡沫表观黏度为30mPa·s。
对比例2
泡沫体系制备:
在常温、常压下,称取实施例1中的癸基磺酸钠0.6g加入到矿化度为50g/L盐水中混合后得到共100g泡沫体系。
上述泡沫体系在常温条件下,采用0.1MPa CO2饱和后测试黏度与水粘度接近,为1mPa·s。
泡沫体系驱油实验:
将岩心样品抽真空后称重,之后用水饱和,称重,根据重量差计算孔隙体积PV为47.3mL。测定水相渗透率k为999mD。之后用液体石蜡(分析纯,获自国药集团)饱和至无水流出,,后放置1个月老化岩心。对老化后的岩心采用矿化度为50g/L的盐水进行驱替至无液体石蜡流出,记录水驱采收率,为51%。然后对老化后的岩心采用对比例1中的0.6%的泡沫体系与CO2共同注入驱替,CO2与泡沫体系体积流速比例为1:2,泡沫体系和CO2总注入速度2mL/min,记录泡沫体系注入量0.5PV和1.0PV驱替出的液体石蜡采收率分别为53%和56%,提高采收率2%和5%,泡沫体系注入1.0PV时在岩心中形成泡沫表观黏度为5mPa·s。
实施例2
pH开关表面活性剂结构和制备过程同实施例1。
黏弹性泡沫体系制备:
在常温、常压下,称取实施例1中的pH开关表面活性剂0.3g、乙氧基化烷基硫酸钠(金桐化工,型号:AES,烷基碳原子数为C12-C14)0.2g,加入到矿化度为100g/L盐水中混合后得到共100g黏弹性泡沫体系。
该黏弹性泡沫体系在常温条件下,采用0.1MPa CO2饱和后测试黏度可达4mPa·s,采用界面流变仪测试二氧化碳/泡沫体系溶液表面弹性模量40mN/m,粘性模量13mN/m,相角为18°。
黏弹性泡沫体系驱油实验:
将岩心样品抽真空后称重,之后用水饱和,称重,根据重量差计算孔隙体积PV为47.0mL。测定水相渗透率k为990mD。之后用液体石蜡(分析纯,获自国药集团)饱和至无水流出,后放置1个月老化岩心。对老化后的岩心采用矿化度为100g/L的盐水进行驱替至无液体石蜡流出,记录水驱采收率,为47%。然后对老化后的岩心采用实施例2中的黏弹性泡沫体系与CO2共同注入驱替,CO2与黏弹性泡沫体系体积比例为1:1,黏弹性泡沫体系和CO2总注入速度2mL/min,记录粘弹性泡沫体系注入量0.5PV和1.0PV驱替出的液体石蜡采收率分别达到64%和75%,提高采收率17%和28%,黏弹性泡沫体系注入1.0PV时在岩心中形成泡沫表观黏度为301mPa·s。
对比例3
泡沫体系制备:
在常温、常压下,称取实施例2中的乙氧基化烷基硫酸钠0.5g加入到矿化度为100g/L盐水中混合后得到共100g泡沫体系。
上述泡沫体系在常温条件下,采用0.1MPa CO2饱和后测试黏度与水粘度接近,为1mPa·s。
泡沫体系驱油实验:
将岩心样品抽真空后称重,之后用水饱和,称重,根据重量差计算孔隙体积PV为47.4mL。测定水相渗透率k为1037mD。之后用液体石蜡(分析纯,获自国药集团)饱和至无水流出,后放置1个月老化岩心。对老化后的岩心采用矿化度为100g/L的盐水进行驱替至无液体石蜡流出,记录水驱采收率,为50%。然后对老化后的岩心采用对比例3中的泡沫体系与CO2共同注入驱替,CO2与泡沫体系体积流速比例为1:1,泡沫体系和CO2总注入速度2mL/min,记录泡沫体系注入量0.5PV和1.0PV驱替出的液体石蜡采收率分别为56%和59%,提高采收率6%和9%,泡沫体系注入1.0PV时在岩心中形成泡沫表观黏度为5mPa·s。
实施例3
pH开关表面活性剂制备:
(1)将月桂酸200g(1.0mol)、氯化亚砜149g(1.25mol)和3g(0.04mol)N,N-二甲基甲酰胺(DMF),加入配有密封机械搅拌、温度计、冷凝管的四口烧瓶中,于90℃反应3小时后,减压蒸出过量的氯化亚砜,得到脂肪酰氯。当温度降至60℃时,加入甲苯70g,搅拌均匀后,慢慢滴加由N,N'-二正丙基乙二胺144g(1.0mol)和吡啶99.0g(1.25mol)组成的混合液,控制温度小于60℃,滴完升温至85℃反应2小时。冷却,过滤,粗品以乙醇重结晶,真空干燥后得白色粉末状固体(C11H23CONHC2H4N(C3H7)2),收率为91%。
(2)向装有冷凝装置、搅拌装置和气体分散器的反应器中加入163g(0.5mol)上述反应物,加热至80~90℃,开启真空系统,在高真空下脱水1小时,然后用氮气吹扫3~4次以除去体系中的空气,然后将体系反应温度调至130℃缓缓通入22g(0.5mol)环氧乙烷,控制压力<0.60MPa进行烷氧基化反应;反应结束后,用氮气吹扫体系,除去未反应的环氧乙烷,冷却后中和、脱色、过滤、脱水,即得pH开关表面活性剂,即为长链烃基胺2(结构如下所述),收率为92%。
pH开关表面活性剂结构:
R1为C11H23;R2为C2H4;R3、R4为C3H7;R5为H;m=1,n=0,p=0,q=1。
黏弹性泡沫体系制备:
在常温、常压下,称取实施例3中的pH开关表面活性剂0.6g、乙酸钠0.15g,加入到矿化度为10g/L盐水中混合后得到共100g黏弹性泡沫体系。
该黏弹性泡沫体系在常温条件下,采用0.1MPa CO2饱和后测试黏度可达10mPa·s,采用界面流变仪测试二氧化碳/泡沫体系溶液表面弹性模量35mN/m,粘性模量17mN/m,相角为26°。
黏弹性泡沫体系驱油实验:
将岩心样品抽真空后称重,之后用水饱和,称重,根据重量差计算孔隙体积PV为47.1mL。测定水相渗透率k为1009mD。之后用液体石蜡(分析纯,获自 国药集团)饱和至无水流出,后放置1个月老化岩心。对老化后的岩心采用矿化度为10g/L的盐水进行驱替至无液体石蜡流出,记录水驱采收率,为53%。然后对老化后的岩心采用实施例3中的黏弹性泡沫体系与CO2共同注入驱替,CO2与黏弹性泡沫体系体积比例为1:0.5,黏弹性泡沫体系和CO2总注入速度2mL/min,记录粘弹性泡沫体系注入量0.5PV和1.0PV驱替出的液体石蜡采收率分别达到67%和82%,提高采收率14%和29%,黏弹性泡沫体系注入1.0PV时在岩心中形成泡沫表观黏度为307mPa·s。
对比例4
泡沫体系制备:
在常温、常压下,称取实施例3中的pH开关表面活性剂0.75g,加入到矿化度为10g/L盐水中混合后得到共100g泡沫体系。
该泡沫体系在常温条件下,采用0.1MPa CO2饱和后测试黏度可达2mPa·s。
泡沫体系驱油实验:
将岩心样品抽真空后称重,之后用水饱和,称重,根据重量差计算孔隙体积PV为47.3mL。测定水相渗透率k为1030mD。之后用液体石蜡(分析纯,获自国药集团)饱和至无水流出,后放置1个月老化岩心。对老化后的岩心采用矿化度为10g/L的盐水进行驱替至无液体石蜡流出,记录水驱采收率,为54%。然后对老化后的岩心采用对比例4中的泡沫体系与CO2共同注入驱替,CO2与泡沫体系体积流速比例为1:0.5,泡沫体系和CO2总注入速度2mL/min,记录泡沫体系注入量0.5PV和1.0PV驱替出的液体石蜡采收率分别为67%和74%,提高采收率13%和20%,泡沫体系注入1.0PV时在岩心中形成泡沫表观黏度为130mPa·s。
对比例5
泡沫体系制备:
在常温、常压下,称取实施例3中的乙酸钠0.75g加入到矿化度为10g/L盐水中混合后得到共100g泡沫体系。
上述泡沫体系在常温条件下,采用0.1MPa CO2饱和后测试黏度与水粘度接近,为1mPa·s。
泡沫体系驱油实验:
将岩心样品抽真空后称重,之后用水饱和,称重,根据重量差计算孔隙体积PV为47.5mL。测定水相渗透率k为1021mD。之后用液体石蜡(分析纯,获自国药集团)饱和至无水流出,后放置1个月老化岩心。对老化后的岩心采用矿化度为10g/L的盐水进行驱替至无液体石蜡流出,记录水驱采收率,为48%。然 后对老化后的岩心采用对比例5中的泡沫体系与CO2共同注入驱替,CO2与泡沫体系体积流速比例为1:0.5,泡沫体系和CO2总注入速度2mL/min,记录泡沫体系注入量0.5PV和1.0PV驱替出的液体石蜡采收率分别为50%和52%,提高采收率2%和4%,泡沫体系注入1.0PV时在岩心中形成泡沫表观黏度为2mPa·s。
实施例4
pH开关表面活性剂结构和制备过程同实施例3。
黏弹性泡沫体系制备:
在常温、常压下,称取实施例3中的pH开关表面活性剂0.2g、α-烯基磺酸钠(中轻化工,型号:AOS/92)0.1g,加入到矿化度为10g/L盐水中混合后得到共100g黏弹性泡沫体系。
该黏弹性泡沫体系在常温条件下,采用0.1MPa CO2饱和后测试黏度可达3mPa·s。
黏弹性泡沫体系驱油实验:
将岩心样品抽真空后称重,之后用水饱和,称重,根据重量差计算孔隙体积PV为47.4mL。测定水相渗透率k为1041mD。之后用液体石蜡(分析纯,获自国药集团)饱和至无水流出,后放置1个月老化岩心。对老化后的岩心采用矿化度为10g/L的盐水进行驱替至无液体石蜡流出,记录水驱采收率,为49%。然后对老化后的岩心采用实施例4中的黏弹性泡沫体系与CO2共同注入驱替,CO2与黏弹性泡沫体系体积比例为1:1.5,黏弹性泡沫体系和CO2总注入速度2mL/min,记录粘弹性泡沫体系注入量0.5PV和1.0PV驱替出的液体石蜡采收率分别达到61%和71%,提高采收率12%和22%,黏弹性泡沫体系注入1.0PV时在岩心中形成泡沫表观黏度为317mPa·s。
对比例6
泡沫体系制备:
在常温、常压下,称取实施例4中的烯烃磺酸钠0.3g加入到矿化度为10g/L盐水中混合后得到共100g泡沫体系。
上述泡沫体系在常温条件下,采用0.1MPa CO2饱和后测试黏度与水粘度接近,为1mPa·s。
泡沫体系驱油实验:
将岩心样品抽真空后称重,之后用水饱和,称重,根据重量差计算孔隙体积PV为47.7mL。测定水相渗透率k为1038mD。之后用液体石蜡(分析纯,获自国药集团)饱和至无水流出,后放置1个月老化岩心。对老化后的岩心采用矿 化度为10g/L的盐水进行驱替至无液体石蜡流出,记录水驱采收率,为49%。然后对老化后的岩心采用对比例6中的泡沫体系与CO2共同注入驱替,CO2与泡沫体系体积流速比例为1:1.5,泡沫体系和CO2总注入速度2mL/min,记录泡沫体系注入量0.5PV和1.0PV驱替出的液体石蜡采收率分别为59%和65%,提高采收率10%和16%,泡沫体系注入1.0PV时在岩心中形成泡沫表观黏度为100mPa·s。
实施例5
pH开关表面活性剂制备:
(1)将二十酸312g(1.0mol)、氯化亚砜149g(1.25mol)和3g(0.04mol)N,N-二甲基甲酰胺(DMF),加入配有密封机械搅拌、温度计、冷凝管的四口烧瓶中,于90℃反应3小时后,减压蒸出过量的氯化亚砜,得到脂肪酰氯。当温度降至60℃时,加入甲苯70g,搅拌均匀后,慢慢滴加由二丙撑三胺131g(1.0mol)和吡啶99.0g(1.25mol)组成的混合液,控制温度小于60℃,滴完升温至85℃反应2小时。冷却,过滤,粗品以乙醇重结晶,真空干燥后得白色粉末状固体(C19H39CO(NHC3H6)2NH2),收率为89%。
(2)向装有冷凝装置、搅拌装置和气体分散器的反应器中加入213g(0.5mol)上述反应物,加热至80~90℃,开启真空系统,在高真空下脱水1小时,然后用氮气吹扫3~4次以除去体系中的空气,然后将体系反应温度调至130℃缓缓通入132g(3.0mol)环氧乙烷,控制压力<0.60MPa进行烷氧基化反应;反应结束后,用氮气吹扫体系,除去未反应的环氧乙烷,冷却后中和、脱色、过滤、脱水,即得pH开关表面活性剂:即为长链烃基胺3(结构如下所述),收率为91%。
pH开关表面活性剂结构:
R1为C19H39;R2为C3H6;R3、R4、R5为H;m+n+p=6,q=2。
黏弹性泡沫体系制备:
在常温、常压下,称取实施例5中的pH开关表面活性剂0.4g、丁基磺酸钠0.1g,加入到矿化度为200g/L盐水中混合后得到共100g黏弹性泡沫体系。
该黏弹性泡沫体系在常温条件下,采用0.1MPa CO2饱和后测试黏度可达23mPa·s,采用界面流变仪测试二氧化碳/泡沫体系溶液表面弹性模量60mN/m, 粘性模量23mN/m,相角为21°。
黏弹性泡沫体系驱油实验:
将岩心样品抽真空后称重,之后用水饱和,称重,根据重量差计算孔隙体积PV为46.8mL。测定水相渗透率k为990mD。之后用液体石蜡(分析纯,获自国药集团)饱和至无水流出,后放置1个月老化岩心。对老化后的岩心采用矿化度为200g/L的盐水进行驱替至无液体石蜡流出,记录水驱采收率,为45%。然后对老化后的岩心采用实施例5中的黏弹性泡沫体系与CO2共同注入驱替,CO2与黏弹性泡沫体系体积比例为1:0.5,黏弹性泡沫体系和CO2总注入速度2mL/min,记录粘弹性泡沫体系注入量0.5PV和1.0PV驱替出的液体石蜡采收率分别达到59%和74%,提高采收率14%和29%,黏弹性泡沫体系注入1.0PV时在岩心中形成泡沫表观黏度为307mPa·s。
对比例7
泡沫体系制备:
在常温、常压下,称取实施例5中的pH开关表面活性剂0.5g,加入到矿化度为200g/L盐水中混合后得到共100g泡沫体系。
该泡沫体系在常温条件下,采用0.1MPa CO2饱和后测试黏度可达2mPa·s。
泡沫体系驱油实验:
将岩心样品抽真空后称重,之后用水饱和,称重,根据重量差计算孔隙体积PV为47.6mL。测定水相渗透率k为1027mD。之后用液体石蜡(分析纯,获自国药集团)饱和至无水流出,后放置1个月老化岩心。对老化后的岩心采用矿化度为200g/L的盐水进行驱替至无液体石蜡流出,记录水驱采收率,为44%。然后对老化后的岩心采用对比例7中的泡沫体系与CO2共同注入驱替,CO2与泡沫体系体积流速比例为1:0.5,泡沫体系和CO2总注入速度2mL/min,记录泡沫体系注入量0.5PV和1.0PV驱替出的液体石蜡采收率分别为53%和62%,提高采收率9%和18%,泡沫体系注入1.0PV时在岩心中形成泡沫表观黏度为140mPa·s。
实施例6
pH开关表面活性剂结构和制备过程同实施例5。
黏弹性泡沫体系制备:
在常温、常压下,称取实施例5中的pH开关表面活性剂0.7g、丁基磺酸钠0.05g,加入到矿化度为200g/L盐水中混合后得到共100g黏弹性泡沫体系。
该黏弹性泡沫体系在常温条件下,采用0.1MPa CO2饱和后测试黏度可达4mPa·s,采用界面流变仪测试二氧化碳/泡沫体系溶液表面弹性模量37mN/m, 粘性模量15mN/m,相角为22°。
黏弹性泡沫体系驱油实验:
将岩心样品抽真空后称重,之后用水饱和,称重,根据重量差计算孔隙体积PV为47.0mL。测定水相渗透率k为1007mD。之后用液体石蜡(分析纯,获自国药集团)饱和至无水流出,后放置1个月老化岩心。对老化后的岩心采用矿化度为200g/L的盐水进行驱替至无液体石蜡流出,记录水驱采收率,为46%。然后对老化后的岩心采用实施例5中的黏弹性泡沫体系与CO2共同注入驱替,CO2与黏弹性泡沫体系体积比例为1:1.5,黏弹性泡沫体系和CO2总注入速度2mL/min,记录粘弹性泡沫体系注入量0.5PV和1.0PV驱替出的液体石蜡采收率分别达到60%和69%,提高采收率14%和23%,黏弹性泡沫体系注入1.0PV时在岩心中形成泡沫表观黏度为270mPa·s。
对比例8
泡沫体系制备:
在常温、常压下,称取实施例5中的丁基磺酸钠0.75g加入到矿化度为200g/L盐水中混合后得到共100g泡沫体系。
上述泡沫体系在常温条件下,采用0.1MPa CO2饱和后测试黏度与水粘度接近,为1mPa·s。
泡沫体系驱油实验:
将岩心样品抽真空后称重,之后用水饱和,称重,根据重量差计算孔隙体积PV为47.3mL。测定水相渗透率k为1023mD。之后用液体石蜡(分析纯,获自国药集团)饱和至无水流出,后放置1个月老化岩心。对老化后的岩心采用矿化度为200g/L的盐水进行驱替至无液体石蜡流出,记录水驱采收率,为46%。然后对老化后的岩心采用对比例8中的泡沫体系与CO2共同注入驱替,CO2与泡沫体系体积流速比例为1:1.5,泡沫体系和CO2总注入速度2mL/min,记录泡沫体系注入量0.5PV和1.0PV驱替出的液体石蜡采收率分别为49%和54%,提高采收率3%和8%,泡沫体系注入1.0PV时在岩心中形成泡沫表观黏度为3mPa·s。
实施例7
采用实施例1中制备的长链烃基胺1A开关表面活性剂。
黏弹性泡沫体系制备:
在常温、常压下,称取长链烃基胺1A pH开关表面活性剂0.5g、癸基磺酸钠(TCI)0.1g,加入到矿化度为50g/L的盐水中混合后得到共100g黏弹性泡沫体系。
该黏弹性泡沫体系在常温条件下,采用0.1MPa CO2饱和后测试黏度为3mPa·s,采用界面流变仪测试二氧化碳/泡沫体系溶液表面弹性模量39mN/m,粘性模量19mN/m,相角为26°。
黏弹性泡沫体系驱油实验:
将岩心样品抽真空后称重,之后用水饱和,称重,根据重量差计算孔隙体积PV为47.9mL。测定水相渗透率k为1048mD。之后用液体石蜡(分析纯,获自国药集团)饱和至无水流出,后放置1个月老化岩心。对老化后的岩心采用矿化度为50g/L的盐水进行驱替至无液体石蜡流出,记录水驱采收率,为50%。然后对老化后的岩心采用实施例1中的黏弹性泡沫体系与CO2共同注入驱替,CO2与黏弹性泡沫体系体积比例为1:2,黏弹性泡沫体系和CO2总注入速度2mL/min,记录粘弹性泡沫体系注入量0.5PV和1.0PV驱替出的液体石蜡采收率分别达到67%和77%,提高采收率17%和27%,黏弹性泡沫体系注入量1.0PV时在岩心中形成泡沫表观黏度为301mPa·s。
由实施例1和实施例7可看出:在黏弹性泡沫体系中混用由不同脂肪酸制备的长链烃基胺相比于单一脂肪酸制备的长链烃基胺对提高采收率的效果更好,本发明中,混用之后相比于单一的C12脂肪酸制备的长链烃基胺,对采收率可提高10%。
由实施例1-7和对比例1-8可以看出:本发明的黏弹性泡沫体系与酸性气体相遇后,pH开关表面活性剂与烃基阴离子表面活性剂相互作用增强,黏度增加,形成的泡沫具有更好的稳定性和封堵性能,黏弹性泡沫体系注入1.0PV时在岩心中形成泡沫表观黏度≥270mPa·s,可提高采收率20%以上,并且长链烃基胺提高了单一阴离子表面活性剂的耐盐性,使得体系的矿化度适用范围提高到10~200g/L。

Claims (22)

  1. 一种酸性气体开关的黏弹性泡沫体系,包括pH开关表面活性剂、烃基阴离子表面活性剂和水;所述pH开关表面活性剂为长链烃基胺中的至少一种;
    其中所述长链烃基胺是一种长链烃基多胺化合物,所述多胺化合物具有两个或更多个非环状胺部分(non-cyclic amine moieties),优选2-10个非环状胺部分,例如,2、3、4、5、6、7、8、9或10个非环状胺部分,并且所述长链烃基是具有11个或更多个碳原子的饱和或不饱和的脂肪族烃基,优选C11~C24的脂肪烃基;
    所述多胺化合物由主体部分和非主体部分组成,
    所述的两个或更多个非环状胺部分的氮原子、用于将各个非环状胺部分的氮原子连接在一起的原子或化学基团(例如C1~C5的脂肪烃基团)、以及与各个非环状胺部分的氮原子直接相连的氢原子是多胺化合物的主体部分,
    其它与非环状胺部分的氮原子连接的原子或化学基团是多胺化合物的非主体部分;
    非环状胺部分的氮原子以叔胺、和伯胺和/或仲胺的形式存在(优选地,按氮原子计,叔胺占伯胺、仲胺和叔胺的总和的30-100%,例如50%-100%,90%-100%,或100%);
    多胺化合物的非主体部分包括或由以下(2)和/或(3)、和(1)组成:
    (1)与非环状胺部分的氮原子直接相连或通过连接基团相连的至少一个、优选一个长链烃基如C11~C24的脂肪烃基,更优选地,长链烃基如C11~C24的脂肪烃基直接或通过羰基(-CO-)与非环状胺部分的氮原子相连;和
    (2)与非环状胺部分的氮原子直接相连的至少一个C1~C3的脂肪烃基或取代脂肪烃基;和/或(3)与非环状胺部分的氮原子直接相连的至少一个-(C2~C3烷基-O-)s-Rs,s为1-60,例如1-6,或1-4,或1-3,或1-2,Rs为H或C1~C3的脂肪烃基或取代脂肪烃基,-(C2~C3烷基-O-)s-Rs例如为-(C2H4O)sH,s是如上定义的;
    多胺化合物的非主体部分,例如多胺化合物的非主体部分的末端,不包括离子性基团,如酸根基团(如磺酸基团、羧酸基团、磷酸基团、和膦酸基团)或盐基团(如磺酸盐基团和羧酸盐基团,例如磺酸钠)或季铵碱基团(如甜菜碱及其衍生物,如烷基甜菜碱、烷基酰胺甜菜碱、磺丙基甜菜碱、羟基磺丙基甜菜碱、和磷酸脂甜菜碱)。
  2. 一种酸性气体开关的黏弹性泡沫体系,包括pH开关表面活性剂、烃基阴离子表面活性剂和水;所述pH开关表面活性剂为长链烃基胺中的至少一种;所述长链烃基胺的结构如式(1)或式(Ia)或式(Ib)或式(Ic)所示:
    其中,R1各自独立地选自C11~C24的脂肪烃基;R2各自独立地选自C1~C5的脂肪烃基;R3、R4、R5各自独立地选自H、C1~C3的脂肪烃基或取代脂肪烃基;
    m+n+p为0~30,q为1或2;
    L各自独立地是化学键或二价连接基团,优选地,二价连接基团选自:-CO-、-CO-NH-、-CO-NH-CO-、-CO-NH-COO-、-CO-NH-OCO-、-COO-、-COO-NH-、-COO-NH-CO-、-COO-NH-COO-、-NHCO-、-NHCONH-、-NHCOO-、-NHOCO-、-OCONH-、-OCO-NH-CO-、-OCO-NH-OCO-、-OCOO-、-O-SO2-、-SO2和-O-。
  3. 如权利要求2所述的黏弹性泡沫体系,其特征在于:
    所述pH开关表面活性剂为长链烃基胺中的至少两种。
  4. 如权利要求2-3中任一项所述的黏弹性泡沫体系,其特征在于:
    R1选自C11~C20的脂肪烃基;R2选自C1~C3的脂肪烃基;R3、R4、R5各自独立地选自H、C1~C3的脂肪烃基;m+n+p优选为0~6。
  5. 如权利要求2-4中任一项所述的黏弹性泡沫体系,其特征在于:
    R1选自C11~C20的脂肪烃基;R2选自C1~C3的脂肪烃基;R3、R4、R5各自独立地选自H、C1~C3的脂肪烃基;m+n+p优选为0~6但不为0,优选m,n,p均为非负整数。
  6. 如权利要求2-5中任一项所述的黏弹性泡沫体系,其特征在于:
    其中,R1选自C11~C24的脂肪烃基;R2选自C1~C5的脂肪烃基;R3、R4、R5各自独立地选自H、C1~C3的脂肪烃基或取代脂肪烃基,且至少一个为H;
    m+n+p为1~30,q为1~2。
  7. 如权利要求1-6中任一项所述的黏弹性泡沫体系,其特征在于:
    所述烃基阴离子表面活性剂为烷基羧酸盐、烷基硫酸盐、烷基磺酸盐、烯烃磺酸盐中的至少一种;
    所述烷基的碳原子数优选为1~20,更优选为1~12;和/或,
    所述烯烃磺酸盐中的碳原子数优选为10~20。
  8. 如权利要求1-7中任一项所述的黏弹性泡沫体系,其特征在于:
    所述水为含矿物质的水,优选为自来水、油气田地层注入水、水油气田注入水中的至少一种,更优选矿化度范围为10~200g/L的盐水。
  9. 如权利要求1-8中任一项所述的黏弹性泡沫体系,其特征在于:
    所述pH开关表面活性剂占所述黏弹性泡沫体系的0.2~1wt%;优选为0.3~0.6wt%;
    所述烃基阴离子表面活性剂占所述黏弹性泡沫体系的0.05~0.3wt%;优选为0.1~0.2wt%;
    所述pH开关表面活性剂与烃基阴离子表面活性剂质量比为1:(0.05-15);优选为1:(0.1-3);
    所述泡沫体系在酸性气体作用下可以形成3~30mPa·s的溶液黏度。
  10. 一种如权利要求1-9中任一项所述的黏弹性泡沫体系的制备方法,包括将包括所述pH开关表面活性剂、烃基阴离子表面活性剂和水在内的组分充分混合。
  11. 一种用权利要求1-9中任一项所述的黏弹性泡沫体系或权利要求10所制备的所述的黏弹性泡沫体系提高采收率的方法,包括将所述黏弹性泡沫体系与酸性气体交替或者共同注入到含有原油的多孔介质中,在多孔介质中原位 形成泡沫,从而提高采收率。
  12. 如权利要求11所述的方法,其特征在于:
    所述酸性气体为CO2、H2S中的至少一种。
  13. 如权利要求11所述的方法,其特征在于:
    所述酸性气体与黏弹性泡沫体系的体积比或体积流速比为1:(0.1-2)。
  14. 一种如权利要求1-9中任一项所述的黏弹性泡沫体系或权利要求10所制备的所述的黏弹性泡沫体系在10~200g/L矿化度油藏采油中的应用。
  15. 一种用于原位形成泡沫的组合产品,其包括:
    (1)黏弹性泡沫体系包;和
    (2)酸性物质包;
    其中所述黏弹性泡沫体系包,含有权利要求1-9任一所述的黏弹性泡沫体系或权利要求10所制备的所述的黏弹性泡沫体系;
    酸性物质包,含有酸性液体(如碳酸、乙酸、丙酸和丁酸)或酸性气体(优选CO2、H2S),酸性气体以压缩气体的形式存在,酸性液体或酸性气体在酸性物质包中的压强为0.1-30MPaG。
  16. 一种权利要求15的用于原位形成泡沫的组合产品,其包括:
    用于控制黏弹性泡沫体系包输出黏弹性泡沫体系的装置;和
    用于控制酸性物质包输出酸性物质的装置,使得:酸性物质包输出的酸性物质的体积流速与黏弹性泡沫体系包输出的黏弹性泡沫体系的体积流速之比为1:(0.1-10),例如1:(0.5-2);
    优选地,酸性物质包输出的酸性物质的体积流速与黏弹性泡沫体系包输出的黏弹性泡沫体系的体积流速之和为0.2-200mL/min,例如,0.5-10.0mL/min,或1-4mL/min,如2mL/min,和/或,酸性物质包输出的酸性物质的压强为0.1-30MPaG;黏弹性泡沫体系包输出的黏弹性泡沫体系的压强为0.1-30MPaG。
  17. 一种权利要求15或16的用于原位形成泡沫的组合产品,其中:
    酸性物质包中的酸性物质为CO2
    使黏弹性泡沫体系包中的黏弹性泡沫体系在常温、0.1MPa的条件下用酸性物质包中的酸性物质饱和后得到的体系的黏度为3-30mPa·s,体系的溶液表面的弹性模量为至少30mN/m,例如30-90mN/m,如30-60mN/m,粘性模量为至少10mN/m,例如13-23mN/m,相角为10-30°,例如18-26°。
  18. 权利要求15-17中任一项的用于原位形成泡沫的组合产品在10~200g/L 矿化度油藏采油中的用途,优选地,组合产品所形成的泡沫表观黏度为200-400mPa·s,例如250-360mPa·s,如270-353mPa·s。
  19. 一种用于原位形成泡沫的组合产品,其包括:
    (1a)pH开关表面活性剂包,其包含如权利要求1-9中任一项所述的pH开关表面活性剂,和任选地水;
    (1b)烃基阴离子表面活性剂包,其包含如权利要求1-9中任一项所述的烃基阴离子表面活性剂,和任选地水;
    或者(1)表面活性剂包,其包含如权利要求1-9中任一项所述的pH开关表面活性剂和烃基阴离子表面活性剂,和任选地水;
    所述组合产品还包括:(2)酸性物质包,
    所述酸性物质包,含有酸性液体(如碳酸、乙酸、丙酸和丁酸)或酸性气体(优选CO2、H2S),酸性气体以压缩气体的形式存在,酸性液体或酸性气体在酸性物质包中的压强为0.1-30MPaG。
  20. 一种权利要求19的用于原位形成泡沫的组合产品,其包括:
    用于控制引入任选的外部水的装置;
    用于控制pH开关表面活性剂包和烃基阴离子表面活性剂包分别输出pH开关表面活性剂(和任选地水)和烃基阴离子表面活性剂(和任选地水)的装置;或者用于控制表面活性剂包输出pH开关表面活性剂和烃基阴离子表面活性剂(和任选地水)的装置;
    用于将输出的pH开关表面活性剂(和任选地水)和输出的烃基阴离子表面活性剂(和任选地水),和被引入的任选的外部水混合的装置;或者任选地,用于将输出的pH开关表面活性剂和烃基阴离子表面活性剂(和任选地水),和被引入的任选的外部水混合的装置;和
    用于控制酸性物质包输出酸性物质的装置,使得:
    所述pH开关表面活性剂、烃基阴离子表面活性剂和水在内的组分混合而形成黏弹性泡沫体系,其中水来自于外部水,上述包中的水,或其两者;
    优选地,所述pH开关表面活性剂占所述黏弹性泡沫体系的0.2~1wt%,例如0.3~0.6wt%;所述烃基阴离子表面活性剂占所述黏弹性泡沫体系的0.05~0.3wt%,例如0.1~0.2wt%;所述pH开关表面活性剂与烃基阴离子表面活性剂质量比为1:(0.05-15),例如1:(0.1-3);并且
    酸性物质包输出的酸性物质的体积流速与所形成的黏弹性泡沫体系的体积流速之比为1:(0.1-10),例如1:(0.5-2);
    优选地,酸性物质包输出的酸性物质的体积流速与所形成的黏弹性泡沫体系的体积流速之和为0.2-200mL/min,例如,0.5-10.0mL/min,或1-4mL/min,如2mL/min,和/或,酸性物质包输出的酸性物质的压强为0.1-30MPaG;所形成的黏弹性泡沫体系的压强为0.1-30MPaG。
  21. 一种权利要求20的用于原位形成泡沫的组合产品,其中:
    酸性物质包中的酸性物质为CO2
    所形成的黏弹性泡沫体系在常温、0.1MPa的条件下用酸性物质包中的酸性物质饱和后得到的体系的黏度为3-30mPa·s,体系的溶液表面的弹性模量为至少30mN/m,例如30-90mN/m,如30-60mN/m,粘性模量为至少10mN/m,例如13-23mN/m,相角为10-30°,例如18-26°。
  22. 权利要求19-21中任一项的用于原位形成泡沫的组合产品在10~200g/L矿化度油藏采油中的用途,优选地,组合产品所形成的泡沫表观黏度为200-400mPa·s,例如250-360mPa·s,如270-353mPa·s。
PCT/CN2023/102636 2022-06-27 2023-06-27 一种酸性气体开关的黏弹性泡沫体系及用其提高采收率的方法和应用 WO2024002048A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210735805.5A CN117343714A (zh) 2022-06-27 2022-06-27 一种泡沫剂组合物、酸性气体开关的黏弹性泡沫体系及用其提高采收率的方法和应用
CN202210735805.5 2022-06-27

Publications (1)

Publication Number Publication Date
WO2024002048A1 true WO2024002048A1 (zh) 2024-01-04

Family

ID=89365470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102636 WO2024002048A1 (zh) 2022-06-27 2023-06-27 一种酸性气体开关的黏弹性泡沫体系及用其提高采收率的方法和应用

Country Status (2)

Country Link
CN (1) CN117343714A (zh)
WO (1) WO2024002048A1 (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1167500A (zh) * 1994-10-13 1997-12-10 普罗格特-甘布尔公司 含有胺和阴离子表面活性剂的洗涤剂组合物
US20070107897A1 (en) * 2005-11-16 2007-05-17 Dahanayake Manilal S Methods for recovering oil from an oil reservoir
US20150190772A1 (en) * 2012-08-02 2015-07-09 Queen's University At Kingston Micellar Composition Having Switchable Viscosity
WO2015135777A2 (en) * 2014-03-12 2015-09-17 Basf Se Method for the production of oil and/or gas
CN106350052A (zh) * 2016-07-29 2017-01-25 四川大学 长链叔胺作为co2泡沫驱起泡稳泡剂的应用
CN107674665A (zh) * 2017-10-18 2018-02-09 中国石油化工股份有限公司 超深气井用泡沫排水剂组合物及其制备方法和应用
US20180119003A1 (en) * 2015-05-08 2018-05-03 Halliburton Energy Services, Inc. Carbon Dioxide-Viscosifiable Compositions for Subterranean Treatment
CN108101794A (zh) * 2017-12-06 2018-06-01 中国石油天然气股份有限公司 一种聚氧乙烯异构十三烷氧基丙胺及其制备方法和应用
CN108659808A (zh) * 2018-02-02 2018-10-16 中国地质大学(北京) Co2驱封窜体系和co2驱油的方法
CN109679631A (zh) * 2017-10-18 2019-04-26 中国石油化工股份有限公司 超深气井用泡沫排水剂组合物和制备方法及应用
CN109679615A (zh) * 2017-10-18 2019-04-26 中国石油化工股份有限公司 超深气井采用泡沫排水剂组合物排水采气的方法
CN109679609A (zh) * 2017-10-18 2019-04-26 中国石油化工股份有限公司 适用于超深气井的泡沫排水剂组合物和制备方法及应用
CN109679617A (zh) * 2017-10-18 2019-04-26 中国石油化工股份有限公司 适用于超深气井的固体泡沫排水剂组合物和制备方法及应用
CN112694884A (zh) * 2019-10-22 2021-04-23 中国石油化工股份有限公司 用于低渗透油藏强化采油的泡沫剂组合物及制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1167500A (zh) * 1994-10-13 1997-12-10 普罗格特-甘布尔公司 含有胺和阴离子表面活性剂的洗涤剂组合物
US20070107897A1 (en) * 2005-11-16 2007-05-17 Dahanayake Manilal S Methods for recovering oil from an oil reservoir
US20150190772A1 (en) * 2012-08-02 2015-07-09 Queen's University At Kingston Micellar Composition Having Switchable Viscosity
WO2015135777A2 (en) * 2014-03-12 2015-09-17 Basf Se Method for the production of oil and/or gas
US20180119003A1 (en) * 2015-05-08 2018-05-03 Halliburton Energy Services, Inc. Carbon Dioxide-Viscosifiable Compositions for Subterranean Treatment
CN106350052A (zh) * 2016-07-29 2017-01-25 四川大学 长链叔胺作为co2泡沫驱起泡稳泡剂的应用
CN107674665A (zh) * 2017-10-18 2018-02-09 中国石油化工股份有限公司 超深气井用泡沫排水剂组合物及其制备方法和应用
CN109679631A (zh) * 2017-10-18 2019-04-26 中国石油化工股份有限公司 超深气井用泡沫排水剂组合物和制备方法及应用
CN109679615A (zh) * 2017-10-18 2019-04-26 中国石油化工股份有限公司 超深气井采用泡沫排水剂组合物排水采气的方法
CN109679609A (zh) * 2017-10-18 2019-04-26 中国石油化工股份有限公司 适用于超深气井的泡沫排水剂组合物和制备方法及应用
CN109679617A (zh) * 2017-10-18 2019-04-26 中国石油化工股份有限公司 适用于超深气井的固体泡沫排水剂组合物和制备方法及应用
CN108101794A (zh) * 2017-12-06 2018-06-01 中国石油天然气股份有限公司 一种聚氧乙烯异构十三烷氧基丙胺及其制备方法和应用
CN108659808A (zh) * 2018-02-02 2018-10-16 中国地质大学(北京) Co2驱封窜体系和co2驱油的方法
CN112694884A (zh) * 2019-10-22 2021-04-23 中国石油化工股份有限公司 用于低渗透油藏强化采油的泡沫剂组合物及制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BA, AIYE: "Research on the Preparation of Salt-tolerant CO2-responsive Foaming and Discharge Agent", ZHONGGUO SHEBEI GONGCHENG - CHINA PLANT ENGINEERING, ZHONGGUO SHEBEI GONGCHENG ZAZHISHE, CN, no. 7, 10 April 2022 (2022-04-10), CN , pages 13 - 14, XP009552080, ISSN: 1671-0711 *
SUN SHUANGQING; ZHANG XIQIANG; FENG SHENGXIANG; WANG HONGBING; WANG YAN; LUO JIANHUI; LI CHUNLING; HU SONGQING: "CO2/N2 switchable aqueous foam stabilized by SDS/C12A surfactants: Experimental and molecular simulation studies", CHEMICAL ENGINEERING SCIENCE, OXFORD, GB, vol. 209, 9 September 2019 (2019-09-09), GB , XP085839291, ISSN: 0009-2509, DOI: 10.1016/j.ces.2019.115218 *
ZHANG PANFENG; BAI GUANGYI; CUI GUODONG; ZHANG LIANG; PENG XIYI; PEI SHUFENG; REN SHAORAN: "Enhanced CO2foam based on amide and amine surfactants and synergistically coupled with sodium dodecyl sulfate at high temperature and high pressure", JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, ELSEVIER, AMSTERDAM,, NL, vol. 179, 1 January 1900 (1900-01-01), NL , pages 266 - 275, XP085704313, ISSN: 0920-4105, DOI: 10.1016/j.petrol.2019.04.070 *

Also Published As

Publication number Publication date
CN117343714A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
US8765644B2 (en) Polyamide emulsifier based on polyamines and fatty acid/carboxylic acid for oil based drilling fluid applications
US8722588B2 (en) Foaming composition for high temperature and salinity
Ishikawa et al. Self-assembly of bilayers from double-chain fluorocarbon amphiphiles in aprotic organic solvents: thermodynamic origin and generalization of the bilayer assembly
US8741817B2 (en) Water-based fluid loss additive containing an amphiphilic dispersant for use in a well
US8684080B2 (en) Use of surfactant mixtures of polycarboxylates for microemulsion flooding
WO2021223609A1 (zh) 一种基于超分子自组装的二氧化碳响应自增稠智能流体
US9874079B2 (en) Nonionic surfactants for enhanced crude oil recovery
US10081604B1 (en) Imidazoline compound, mobility control system, plugging agent for gas channeling, and method for carbon dioxide flooding
CN109135709B (zh) 一种适用于稠油油藏的降粘驱油剂及驱油体系
CN105642186A (zh) 一种pH值响应性可逆乳化剂组合物及其制备方法和应用
CN113024746B (zh) 一种用于降滤失的星型结构的共聚物及其制备方法和应用及钻井液及其应用
EP2855624A1 (en) Method and composition for enhanced oil recovery based on supercritical carbon dioxide and a nonionic surfactant
WO2024002048A1 (zh) 一种酸性气体开关的黏弹性泡沫体系及用其提高采收率的方法和应用
CN111205846A (zh) 一种用于低渗透油藏开发的粘弹性表面活性剂制备方法
CN112226226B (zh) 苯胺化合物与聚醚表面活性剂组合物及聚-表驱油剂
CN108905882B (zh) 一类非离子氟碳表面活性剂及其制备
RU2612756C2 (ru) Применение неионных поверхностно-активных веществ, растворимых в диоксиде углерода, для повышения нефтедобычи
CN105505368B (zh) 一种超临界二氧化碳驱可溶调剖用发泡剂及其制备方法
CN108546315B (zh) 一种两亲高分子驱油剂及其制备方法与应用
Cai et al. Synthesis and physiochemical properties of poly (ethylene glycol)-octanol sulfosuccinates
CN103406064B (zh) Gemini季铵盐型氟表面活性剂及其制备方法
CN106543383B (zh) 一种水溶性纳米聚硅/聚合物凝胶驱油剂及其制备方法
CN105315983B (zh) 水基压裂液减阻剂及其制备方法和应用
CN114479811B (zh) 一种阴离子-非离子表面活性剂及其制备方法与应用
CN105273708B (zh) 压裂液减阻剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830225

Country of ref document: EP

Kind code of ref document: A1