WO2024001978A1 - 信号处理方法及通信设备 - Google Patents

信号处理方法及通信设备 Download PDF

Info

Publication number
WO2024001978A1
WO2024001978A1 PCT/CN2023/102274 CN2023102274W WO2024001978A1 WO 2024001978 A1 WO2024001978 A1 WO 2024001978A1 CN 2023102274 W CN2023102274 W CN 2023102274W WO 2024001978 A1 WO2024001978 A1 WO 2024001978A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
communication device
signal
spreading
spreading sequence
Prior art date
Application number
PCT/CN2023/102274
Other languages
English (en)
French (fr)
Inventor
黄伟
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024001978A1 publication Critical patent/WO2024001978A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/22Scatter propagation systems, e.g. ionospheric, tropospheric or meteor scatter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a signal processing method and communication equipment.
  • a backscatter communication (BSC) system it generally includes a radio frequency source, a backscatter communication sending device and a backscatter communication receiving device.
  • the radio frequency source can provide a radio frequency carrier source for the backscatter communication sending device.
  • the backscattering communication sending device can perform signal modulation and backscattering on the radio frequency signal, and send the obtained backscattering signal to the backscattering communication receiving device.
  • the backscattering communication receiving device can perform signal modulation and backscattering on the received backscattering signal. Demodulates and implements communication with the backscatter communication sending device.
  • the received signal not only contains the backscattered signal sent by the backscattering communication transmitting device, but also contains self-interference signals or direct interference signals of the same frequency. Link interference signal.
  • self-interference signals or direct interference signals of the same frequency.
  • Link interference signal In this way, in order to obtain useful backscattered signals, it is necessary to eliminate the self-interference signals or direct link interference signals received by the backscatter communication receiving equipment.
  • Embodiments of the present application provide a signal processing method and communication equipment, which can solve the current problem of being unable to effectively eliminate self-interference signals or direct link interference signals received by backscatter communication receiving equipment.
  • a signal processing method includes: a first communication device determines a first spreading sequence according to first indication information; the first communication device performs processing on an original signal according to the first spreading sequence.
  • Spread spectrum generates a first signal; the first communication device sends the first signal to a second communication device, and the first communication device is a device that provides a radio frequency carrier source to the second communication device.
  • a signal processing device in a second aspect, includes: a determining module for determining a first spreading sequence according to the first indication information; and a signal processing module for processing the original signal according to the first spreading sequence.
  • Spread spectrum is performed to generate a first signal;
  • a sending module is configured to send the first signal to a second communication device, and the device is a device that provides a radio frequency carrier source to the second communication device.
  • a signal processing method includes: a second communication device receiving a first signal, the first signal being generated by the first communication device after spreading the original signal according to a first spreading sequence; The second communication device determines a second spreading sequence according to the third indication information; the second communication device spreads the backscatter modulated signal according to the second spreading sequence to generate a second signal, and the reverse spreading sequence
  • the scattering modulation signal is generated by modulating and backscattering the first signal; the second communication device sends the second signal to the third communication device.
  • a signal processing device configured to include: a receiving module, configured to receive a first signal generated by a first communication device after spreading the original signal according to a first spreading sequence. ; Determination module, used to determine the second spreading sequence according to the third indication information; Signal processing module, used to spread the backscatter modulated signal according to the second spreading sequence to generate a second signal, the reverse The scattering modulation signal is generated by modulating and backscattering the first signal; a sending module is used to send the second signal to a third communication device.
  • a signal processing method includes: a third communication device receives a first signal and a second signal, and the first signal is spread by the first communication device according to a first spreading sequence.
  • the second signal is generated after the second communication device spreads the backscatter modulation signal according to the second spreading sequence, and the backscatter modulation signal is generated by the second communication device after the second spread spectrum sequence.
  • a signal is generated after modulation and backscattering; the third communication device determines a third spreading sequence according to the fifth indication information; the third communication device determines the first signal and the third spreading sequence according to the third spreading sequence.
  • the second signal is despread.
  • a signal processing device includes: a receiving module for receiving a first signal and a second signal.
  • the first signal is processed by the first communication device according to the first spreading sequence on the original signal.
  • Generated after spreading the second signal is generated after the second communication device spreads the backscattered modulated signal according to the second spreading sequence, and the backscattered modulated signal is generated by the second communication device.
  • the first signal is generated after being modulated and backscattered; a determination module is used to determine a third spreading sequence according to the fifth indication information; a signal processing module is used to determine the first signal according to the third spreading sequence;
  • the second signal is despread.
  • a signal processing method includes: a fourth communication device configuring or instructing a first spreading sequence, a second spreading sequence, and a third spreading sequence to a first communication device, a second communication device, and a third communication device. At least one of the third spreading sequences; wherein the first spreading sequence is used by the first communication device to spread the original signal to generate a first signal, and the second spreading sequence is used by the The second communication device spreads the backscattered modulated signal to generate a second signal. The backscattered modulated signal is generated by modulating and backscattering the first signal.
  • the third spreading sequence is used to The third communication device despreads the first signal and the second signal.
  • a signal processing device which device includes: a configuration module configured to configure or indicate a first spreading sequence and a second spreading sequence to a first communication device, a second communication device, and a third communication device. and at least one of a third spreading sequence; wherein the first spreading sequence is used by the first communication device to spread the original signal to generate a third A signal, the second spreading sequence is used by the second communication device to spread the backscatter modulation signal to generate a second signal, and the backscatter modulation signal modulates and inverts the first signal. Generated after forward scattering, the third spreading sequence is used by the third communication device to despread the first signal and the second signal.
  • a communication device in a ninth aspect, includes a processor and a memory.
  • the memory stores a program or instructions that can be run on the processor.
  • the program or instructions are implemented when executed by the processor.
  • a communication device including a processor and a communication interface, wherein the processor is configured to determine a first spreading sequence according to the first indication information; and spread the original signal according to the first spreading sequence.
  • the communication interface is used to send the first signal to a second communication device, and the communication device is a device that provides a radio frequency carrier source to the second communication device; or,
  • the communication interface is configured to receive a first signal, which is generated by the first communication device after spreading the original signal according to a first spreading sequence; the processor is configured to determine a second spreading signal based on the third indication information. frequency sequence; perform spread spectrum on the backscatter modulation signal according to the second spread spectrum sequence to generate a second signal, the backscatter modulation signal is generated by modulating and backscattering the first signal; the The communication interface is used to send the second signal to a third communication device; or,
  • the communication interface is used to receive a first signal and a second signal.
  • the first signal is generated by the first communication device after spreading the original signal according to the first spreading sequence.
  • the second signal is generated by the second communication device.
  • the backscattered modulated signal is generated by spreading the spectrum according to the second spreading sequence, and the backscattered modulated signal is generated by the second communication device modulating and backscattering the first signal; the processing The device is configured to determine a third spreading sequence according to the fifth indication information; despread the first signal and the second signal according to the third spreading sequence; or,
  • the communication interface is used to configure or indicate at least one of the first spreading sequence, the second spreading sequence and the third spreading sequence to the first communication device, the second communication device and the third communication device; wherein, the The first spreading sequence is used by the first communication device to spread spectrum the original signal to generate a first signal, and the second spreading sequence is used by the second communication device to spread spectrum the backscatter modulation signal and generate it.
  • the second signal, the backscattered modulated signal is generated by modulating and backscattering the first signal, and the third spreading sequence is used by the third communication device to combine the first signal and the second signal.
  • the second signal is despread.
  • a signal processing system including: at least two of a first communication device, a second communication device, a third communication device and a fourth communication device, the first communication device being operable to perform: The steps of the signal processing method described in the first aspect, the second communication device can be used to perform the steps of the signal processing method described in the third aspect, and the third communication device can be used to perform the steps of the signal processing method described in the fifth aspect.
  • the fourth communication device may be configured to perform the steps of the signal processing method as described in the seventh aspect.
  • a readable storage medium In a twelfth aspect, a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented. The steps of the method described in the third aspect, or the steps of implementing the method described in the fifth aspect, or the method described in the seventh aspect A step of.
  • a chip in a thirteenth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. Method, or implement the method as described in the third aspect, or implement the method as described in the fifth aspect, or implement the method as described in the seventh aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement as described in the first aspect
  • the original signal when the first communication device sends a signal to the second communication device, the original signal may be spread spectrum based on the indicated first spreading sequence to obtain the first signal, and the first signal may be sent to the second communication device.
  • Communication device when the second communication device sends the backscattered signal to the third communication device, the second communication device can generate a second signal according to the backscattered signal and the indicated second spreading sequence, and send the second signal to the third communication device.
  • the third communication device after receiving the first signal and the second signal, the third communication device may despread the first signal and the second signal according to the indicated third spreading sequence.
  • the third communication device when the third communication device despreads the first signal and the second signal based on the spreading sequence, the third communication device can despread the first signal and the second signal based on the spreading sequence.
  • the characteristics eliminate interference signals and restore useful backscatter signals, achieving effective elimination of interference signals, ensuring the communication performance of backscatter communication, and improving the transmission efficiency, transmission distance and reliability of backscatter communication.
  • Figure 1 is a schematic diagram of a wireless communication system according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of a backscatter communication system according to an embodiment of the present application.
  • Figure 3 is a schematic flow chart of a signal processing method according to an embodiment of the present application.
  • Figure 4 is a schematic flow chart of a signal processing method according to an embodiment of the present application.
  • Figure 5 is a schematic flow chart of a signal processing method according to an embodiment of the present application.
  • Figure 6 is a schematic flow chart of a signal processing method according to an embodiment of the present application.
  • Figure 7 is a schematic flow chart of a signal processing method according to an embodiment of the present application.
  • Figure 8 is a schematic flow chart of a signal processing method according to an embodiment of the present application.
  • Figure 9 is a schematic diagram of a signal processing method according to an embodiment of the present application.
  • Figure 10 is a schematic diagram of a signal processing method according to an embodiment of the present application.
  • Figure 11 is a schematic diagram of a signal processing device according to an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a signal processing device according to an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a signal processing device according to an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a signal processing device according to an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Figure 17 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the backscatter communication receiving device when the backscatter communication receiving device receives the backscatter signal sent by the backscatter communication sending device, it can also receive an interference signal at the same time.
  • the RF source and the backscatter communication receiving device are the same device, and the RF source (backscatter communication receiving device) faces outward on the one hand.
  • Transmitting radio frequency carrier signals provides energy and target carriers for backscatter communication sending equipment.
  • it also receives useful backscattering signals transmitted by backscattering communication transmission equipment.
  • the radio frequency source backscattering communication
  • the RF carrier signal sent by the receiving device and the received backscattered signal will be on the antenna at the same time, and the frequency of the two signals is the same.
  • the signal strength of the RF carrier signal is much greater than the signal strength of the received useful backscattered signal. , causing the carrier wave at the front end of the radio frequency source (backscatter communication receiving equipment) to leak and generate a self-interference signal.
  • the reasons for generating self-interference signals can include three factors: (1) The limited isolation between the transmitter and the receiver causes the transmitter carrier to leak to the receiving front end; (2) The mismatch of the antenna causes the carrier signal to be reflected to the receiving front end; (3) ) The reflection of the carrier signal from the environment enters the receiving antenna again.
  • the radio frequency source and the backscatter communication receiving device are two physically separated devices. Therefore, there is no self-interference in the single-base backscatter communication architecture. signal, but there is direct link interference between the RF source and the backscatter communication receiving device, and because the direct link interference may be a modulated signal, and the backscatter communication receiving device generally does not know the direct link
  • the modulation characteristics of the signal make the challenge of eliminating direct link interference even greater.
  • the transceiver channel can be isolated in the radio frequency source (backscatter communication receiving equipment), such as using a dual antenna structure with separate receiving and transmitting antennas. Or use a multi-port circulator, or use a coupler, etc.
  • carrier elimination technology or self-interference elimination technology can be further used to eliminate carrier leakage.
  • the receiving dual-channel elimination method, or the negative feedback loop method, or the dead zone amplifier cancellation method, etc. can be used to improve the performance of the carrier. Receiver sensitivity.
  • the direct link interference signal can be regarded as noise and demodulated using hard decisions, or it can also be based on the radio frequency carrier signal.
  • the time domain structure and frequency domain structure characteristics combined with the backscatter baseband signal design enable the backscatter communication receiving equipment to effectively eliminate strong direct link interference.
  • the degree of interference cancellation depends on the performance and complexity of the hardware.
  • its demodulation performance is limited by factors such as the difference between the repetitive structure and channel delay, the received signal-to-noise ratio, noise rise, and the decision threshold.
  • the decision threshold is the same as the effective one.
  • the length of the repeating structure and the received signal-to-noise ratio are relatedly, the optimal decision threshold changes with channel changes, so the demodulation complexity of this solution is high and is easily affected by the transmission environment.
  • embodiments of the present application provide a signal processing method and a communication device.
  • the original signal can be spread spectrum based on the indicated first spreading sequence to obtain The first signal is sent to the second communication device.
  • the second communication device sends the backscattered signal to the third communication device
  • the second communication device can generate a second signal based on the backscattered signal and the indicated second spreading sequence. signal, and sends the second signal to the third communication device.
  • the third communication device can despread the first signal and the second signal according to the indicated third spreading sequence. frequency.
  • the third communication device when the third communication device despreads the first signal and the second signal based on the spreading sequence, the third communication device can despread the first signal and the second signal based on the spreading sequence.
  • the characteristics eliminate interference signals and restore useful backscatter signals, achieving effective elimination of interference signals, ensuring the communication performance of backscatter communication, and improving the transmission efficiency, transmission distance and reliability of backscatter communication.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of this application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), Laptop Computer, also known as notebook computer, personal digital assistant (PDA), handheld computer, netbook, ultra-mobile personal computer (UMPC), mobile Internet device (Mobile Internet Device (MID), augmented reality (AR)/virtual reality (VR) equipment, robots, wearable devices (Wearable Device), vehicle user equipment (VUE), pedestrian terminals (Pedestrian User Equipment, PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (personal computers, PC), teller machines or self-service machines and other terminal-side devices, wearable Smart devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklet
  • the network side device 12 may include an access network device or a core network device, where the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or Wireless access network unit.
  • the access network device 12 may include a base station, a Wireless Local Area Network (WLAN) access point or a WiFi node, etc.
  • WLAN Wireless Local Area Network
  • the base station may be called a Node B, an evolved Node B (eNB), an access point, Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home evolved B-node , Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of the present application This introduction only takes the base station in the NR system as an example, and does not limit the specific type of base station.
  • eNB evolved Node B
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP Transmitting Receiving Point
  • FIG. 2 shows a block diagram of a backscatter communication system to which embodiments of the present application can be applied.
  • the backscattering communication system includes a radio frequency source 21, a backscattering communication sending device 22 and a backscattering communication receiving device 23.
  • the radio frequency source 21 can provide a radio frequency carrier source for the backscattering communication sending device 22.
  • the backscattering communication sending device 22 can reversely modulate the radio frequency signal sent by the radio frequency source 21 and send it to the backscatter communication receiving device 23, and the backscattering communication receiving device 23 demodulates the received signal.
  • the radio frequency source 21 may be a dedicated radio frequency source, or the terminal or network side equipment shown in Figure 1, etc.
  • the backscatter communication receiving device 23 may be a reader/writer, or the terminal or network side equipment shown in Figure 1, etc.
  • the scatter communication sending device 22 may be a passive device that does not generate a radio frequency signal (a radio frequency signal using a radio frequency source), a semi-passive device, or an active device, such as a sensor, a tag, etc.
  • the application scenario of the embodiment of the present application may be a single-station backscatter communication scenario or a bi-station backscatter communication scenario.
  • the radio frequency source 21 and the backscatter communication receiving device 23 shown in Figure 2 are the same device.
  • the radio frequency source shown in Figure 2 21 and the backscatter communication receiving device 23 are different devices.
  • this embodiment of the present application provides a signal processing method 300.
  • This method can be executed by a first communication device.
  • the first communication device can be the radio frequency source 21 shown in Figure 2, or a backscatter communication receiver.
  • Equipment 23 in order In the scenario of base backscatter communication, in other words, the signal processing method can be executed by software or hardware installed on the radio frequency source or the backscatter communication receiving device, and the signal processing method includes the following steps.
  • the first communication device determines the first spreading sequence according to the first indication information.
  • the first communication device is a device that provides a radio frequency carrier source.
  • the first communication device can be a radio frequency source and a backscatter communication receiving device (the radio frequency source and the backscatter communication receiving device are the same device).
  • the first communication device may be a radio frequency source.
  • the first communication device may determine the first spreading sequence according to the first indication information.
  • the first spreading sequence may be used by the first communication device to spread the original signal, and the original signal may be a radio frequency carrier signal or the like.
  • the first indication information may be used to indicate the sequence type and sequence length of the first spreading sequence.
  • the sequence type of the first spreading sequence can be m sequence, Gold sequence, Walsh sequence, pseudo-random noise (Pseudo-noise, PN) sequence, Bent sequence, Kasami sequence, sequence zero correlation zone (zero correlation zone, ZCZ) sequence, polyphase orthogonal sequence, completely complementary code, chaotic sequence.
  • the sequence type of the first spreading sequence can also be other sequences, which are not specifically limited here.
  • the above-mentioned first indication information may be configured or indicated by a fourth communication device.
  • the fourth communication device may specifically be a first communication device, a second communication device, a third communication device or a third-party network. equipment. That is to say, the first communication device may configure or instruct the first spreading sequence to be used by itself, or other communication devices may configure or instruct the first spreading sequence to the first communication device.
  • the second communication device may be a backscatter communication sending device
  • the third communication device may be a backscatter communication receiving device
  • the third party network device may be a radio frequency source, a backscattering communication sending device and a backscattering communication receiving device.
  • Other devices other than the device such as base stations, relay devices, reader devices or other terminal devices.
  • the first communication device determines the first communication device according to the first indication information. Before spreading the sequence, the method further includes:
  • the first indication information can be obtained by other communication devices through Radio Resource Control (RRC) signaling, Medium Access Control Element (MAC CE), and Downlink Control Information (Downlink Control Information, Configure or indicate at least one method among DCI), Sidelink Control Information (Sidelink Control Information, SCI) and preamble sequence.
  • RRC Radio Resource Control
  • MAC CE Medium Access Control Element
  • Downlink Control Information Downlink Control Information, Configure or indicate at least one method among DCI
  • Sidelink Control Information Sidelink Control Information
  • preamble sequence preamble sequence.
  • S304 The first communication device spreads the original signal according to the first spreading sequence to generate a first signal.
  • the first communication device may use the first spreading sequence to perform spreading processing on the original signal to obtain the first signal.
  • the first communication device sends the first signal to the second communication device, and the first communication device sends the first signal to the second communication device.
  • the second communication device may be a backscatter communication transmitting device, and the first communication device provides a radio frequency carrier source to the second communication device. After the first communication device uses the first spreading sequence to spread spectrum the original signal to obtain the first signal, the first communication device may send the first signal to the second communication device.
  • the first communication device may also indicate the first spreading sequence used by the first communication device to the second communication device, or to the second communication device and the third communication device.
  • the third communication device is a backscatter communication receiving device. Specifics may include:
  • the first communication device sends the second indication information to the second communication device and the third communication device;
  • the first communication device sends the second instruction information to the second communication device;
  • the second indication information is used to indicate the sequence type and sequence length of the first spreading sequence.
  • the first communication device and the third communication device are the same device, that is, the radio frequency source and the backscatter communication receiving device are the same and different devices.
  • the first communication device may only send the second indication information to the second communication device.
  • the first communication device and the third communication device are different devices, that is, the radio frequency source and the backscatter communication receiving device are different devices.
  • the first communication device When sending the second indication information, the second indication information may be sent to the second communication device and the third communication device.
  • the first communication device when the first communication device sends the second indication information to the second communication device, or to the second communication device and the third communication device, the first communication device may use RRC signaling, MAC CE, DCI, SCI and sending the second indication information in at least one manner in the preamble sequence.
  • the scenario in which the above-mentioned first communication device sends the second instruction information to the second communication device, or to the second communication device and the third communication device may be that the fourth communication device does not uniformly send the second instruction information to the second communication device and the third communication device.
  • a scenario where three communication devices configure or indicate a spreading sequence In this case, the first communication device needs to send the second indication information to the second communication device, or to the second communication device and the third communication device, so that the second communication device The device may determine the second spreading sequence based on the second indication information, and the third communication device may determine the third spreading sequence based on the second indication information.
  • the first communication device needs to send the second indication information to the second communication device, or to the second communication device and the third communication device, so that the second communication device
  • the device may determine the second spreading sequence based on the second indication information
  • the third communication device may determine the third spreading sequence based on the second indication information.
  • the first communication device may not need to send the second communication device to the second communication device or to the second communication device and the third communication device. Instruction information to avoid waste of transmission resources.
  • the original signal when the first communication device sends a signal to the second communication device, the original signal may be spread spectrum based on the indicated spreading sequence to obtain the first signal, and the first signal may be sent to the second communication device. .
  • the third communication device can eliminate the interference signal and recover the useful backscattered signal based on the characteristics of the spreading sequence when despreading the received signal. , achieve effective elimination of interference signals, ensure the communication performance of backscatter communication, and improve the transmission efficiency, transmission distance and reliable transmission of backscatter communication.
  • the embodiment of the present application provides a signal processing method 400, which can be executed by a second communication device.
  • the second communication device can be the backscatter communication sending device 22 shown in Figure 2.
  • the signal processing method may be executed by software or hardware installed on the backscatter communication transmitting device 22, and the signal processing method includes the following steps.
  • the second communication device receives the first signal, which is generated by the first communication device after spreading the original signal according to the first spreading sequence.
  • the first communication device may send the first signal to the second communication device, and the second communication device may receive the first signal.
  • the specific implementation method for the first communication device to generate the first signal according to the first spreading sequence may refer to the embodiment shown in FIG. 3, and the description will not be repeated here.
  • S404 The second communication device determines the second spreading sequence according to the third indication information.
  • the second communication device may determine the second spreading sequence according to the third indication information.
  • the second spreading sequence may be used by the second communication device to generate a second signal based on the backscatter modulation signal.
  • the backscatter modulation signal is generated by the second communication device by modulating and backscattering the first signal.
  • the second signal Used by the second communication device to send to the third communication device.
  • the third indication information may be indicated by the first communication device.
  • the third indication information may be used to indicate the first spreading sequence. Sequence type and sequence length.
  • the third indication information here may be the second indication information in the embodiment shown in FIG. 3 .
  • the third indication information may also be configured or indicated by a fourth communication device, which may be a first communication device, a second communication device, a third communication device or a third-party network device. . That is to say, the third indication information may be configured or instructed by the second communication device itself, or may be configured or instructed by other communication devices. In the case where the third indication information is configured or indicated by the fourth communication device, the third indication information may be used to indicate the sequence type and sequence length of the second spreading sequence. The sequence type of the second spreading sequence is different from the sequence type of the first spreading sequence.
  • sequence type of the second spreading sequence may be m sequence, Gold sequence, Walsh sequence, PN sequence, Bent sequence, Any one of Kasami sequence, sequence zero correlation zone sequence ZCZ, polyphase orthogonal sequence, completely complementary code, chaotic sequence.
  • sequence type of the second spreading sequence can also be other types, as long as it is different from the first spreading sequence.
  • sequence types of the sequences can be different, and there are no specific limitations here.
  • the third indication information is indicated by the first communication device, or is configured or indicated by the fourth communication device, and the fourth communication device is not the second communication device, the third indication information is before the second communication device determines the second spreading sequence according to the third indication information, the method further includes:
  • the third indication information may be configured or indicated by at least one of RRC signaling, MAC CE, DCI, SCI and preamble sequence.
  • the second communication device when the third indication information is indicated by the first communication device, and the third indication information is used to indicate the sequence type and sequence length of the first spreading sequence, the second communication device When determining the second spreading sequence according to the third indication information, the first spreading sequence may be determined first according to the third indication information, and then the first spreading sequence may be determined according to the third indication information. Other spreading sequences with different sequence types are used as second spreading sequences. The sequence length of the second spreading sequence may be the same as or different from the sequence length of the first spreading sequence.
  • the second communication device when the third indication information is indicated by the fourth communication device, and the third indication information is used to indicate the sequence type and sequence length of the second spreading sequence, the second communication device When determining the second spreading sequence according to the third indication information, the second spreading sequence may be determined according to the sequence type and sequence length indicated by the third indication information.
  • the second communication device spreads the backscatter modulation signal according to the second spreading sequence to generate a second signal.
  • the backscatter modulation signal is generated by modulating and backscattering the first signal.
  • the second communication device may perform backscatter modulation on the first signal based on the baseband signal, thereby generating a backscatter signal.
  • the backscattered signal may be spread based on the second spreading sequence determined in S304 and a second signal may be generated.
  • S408 The second communication device sends the second signal to the third communication device.
  • the third communication device may be a backscatter communication receiving device. After generating the second signal, the second communication device may send the second signal to the third communication device so that the third communication device can perform despreading.
  • the third communication device may perform despreading. For details, please refer to the embodiment shown in FIG. 5 , which will not be described in detail here.
  • the second communication device may further include:
  • the fourth indication information is used to indicate the sequence type and sequence length of the second spreading sequence, or the sequence type and sequence length of the third spreading sequence.
  • the third spreading sequence is the combination of the first spreading sequence and the second spreading sequence. Kronecker product.
  • the second communication device when the second communication device sends the fourth indication information to the third communication device, the second communication device may send the fourth indication information to the third communication device through at least one of RRC signaling, MAC CE, DCI, SCI and preamble sequence.
  • the communication device sends fourth instruction information.
  • the first communication device may spread spectrum the original signal based on the indicated spreading sequence to obtain the first signal, and send the first signal to the second communication device, and the second device modulates the first signal. and backscattering to generate a backscattered signal, and generate a second signal based on the indicated second spreading sequence and the backscattered signal to send to the third communication device.
  • the third communication device can eliminate the interference signal and recover the useful backscattered signal based on the characteristics of the spreading sequence when despreading the received signal. , achieve effective elimination of interference signals, ensure the communication performance of backscatter communication, and improve the transmission efficiency, transmission distance and reliable transmission of backscatter communication.
  • this embodiment of the present application provides a signal processing method 500, which can be executed by a third communication device.
  • the third communication device can be the backscatter communication receiving device 23 shown in Figure 2, or a radio frequency Source 21 (in the scenario of a single-station backscatter communication architecture), in other words, the signal processing method can be performed by software or hardware installed on the backscatter communication receiving device or the radio frequency source.
  • the signal processing method includes the following steps.
  • the third communication device receives the first signal and the second signal.
  • the first signal is generated by the first communication device after spreading the original signal according to the first spreading sequence.
  • the second signal is generated by the second communication device according to the second spreading sequence.
  • the frequency sequence spreads the backscattered modulated signal to generate the backscattered modulated signal, and the backscattered modulated signal is generated by the second communication device modulating and backscattering the first signal.
  • the first communication device may send the first signal to the second communication device.
  • the second communication device can modulate and backscatter the first signal to generate a backscattered signal, and then spread the backscattered signal according to the second spreading sequence to generate a second signal, and sends the second signal to the third communication device.
  • the specific implementation method for the first communication device to generate the first signal can be referred to the embodiment shown in Figure 3.
  • the specific implementation method for the second communication device to generate the second signal can be referred to the embodiment shown in Figure 4, which will not be repeated here. illustrate.
  • the third communication device when receiving a signal, it can not only receive the second signal sent by the second communication device, but also receive the first signal sent by the first communication device.
  • the second signal is a useful signal for the third communication device
  • the first signal is an interference signal that needs to be eliminated.
  • the interference signal can be a self-interference signal (for single-base backscatter communication architecture) or a direct link interference signal (for bistatic backscatter communication architecture).
  • the third communication device determines the third spreading sequence according to the fifth indication information.
  • the third communication device may determine the third spreading sequence according to the fifth indication information.
  • the third spreading sequence may be used by a third communication device to despread the first signal and the second signal, thereby eliminating interference signals therein and recovering useful backscattered signals.
  • the fifth indication information may be configured or indicated by the fourth communication device.
  • the fourth communication device is the first communication device, the second communication device, the third communication device or a third-party network device.
  • the fifth indication information may be used to indicate the sequence type and sequence length of the third spreading sequence.
  • the fifth indication information may also be indicated by the second communication device.
  • the fifth indication information may be used to indicate the sequence type and sequence length of the second spreading sequence, or the sequence type and sequence length of the third spreading sequence.
  • the fifth indication information here may be the fourth indication information in the embodiment shown in FIG. 3 .
  • the sequence type of the second spreading sequence is different from the sequence type of the first spreading sequence
  • the third spreading sequence is the Kronecker product of the first spreading sequence and the second spreading sequence
  • the first spreading sequence The sequence type of the sequence or the second spreading sequence can be m sequence, Gold sequence, Walsh sequence, PN sequence, Bent sequence, Kasami sequence, sequence zero correlation zone sequence ZCZ, polyphase orthogonal sequence, complete complementary code, chaotic sequence
  • it can also be other sequence types, as long as the sequence type of the first spreading sequence and the sequence type of the second spreading sequence are ensured to be different.
  • the third communication device Before determining the third spreading sequence according to the fifth indication information, it also includes:
  • the fifth indication information is configured or indicated by the second communication device or the fourth communication device through at least one of RRC signaling, MAC CE, DCI, SCI and preamble sequence.
  • the third communication device determines the third spreading sequence according to the fifth indication information
  • the fifth indication information is indicated by the second communication device, and the fifth indication information is used to indicate the second spreading sequence.
  • the sequence type and sequence length of the frequency sequence it can include:
  • the sixth indication information is used to indicate the sequence type and sequence length of the first spreading sequence
  • the third communication device needs to jointly determine the third spreading sequence based on the fifth indication information and the sixth indication information.
  • the sixth indication information may be indicated by the first communication device, or configured or indicated by the fourth communication device, and the fourth communication device is the first communication device, the second communication device, the third communication device or a third-party network device.
  • the sixth indication information may be the second indication information in the embodiment shown in FIG. 3 .
  • the third communication device performs the operation according to the sixth indication information.
  • the sixth indication information may also be received.
  • the sixth indication information may be provided by the first communication device or the fourth communication device through at least one of RRC signaling, MAC CE, DCI, SCI and preamble sequence. A way to configure or indicate.
  • the third communication device may determine the second spreading sequence according to the sequence type and sequence length indicated by the fifth indication information, and according to the sixth
  • the sequence type and sequence length indicated by the indication information determine the first spread spectrum sequence, and then Kronecker multiplication of the first spread spectrum sequence and the second spread spectrum sequence is performed.
  • the spread spectrum sequence obtained by the multiplication is the third spread spectrum sequence. frequency sequence.
  • the fifth indication information when the fifth indication information is indicated by the second communication device, and the fifth indication information is used to indicate the sequence type and sequence length of the third spreading sequence, or when the fifth indication information When configured or instructed by the fourth communication device, and the fifth indication information is used to indicate the sequence type and sequence length of the third spreading sequence, when the third communication device determines the third spreading sequence according to the fifth indication information, Can include:
  • the third spreading sequence is determined according to the fifth indication information. That is, the third spreading sequence is determined according to the sequence type and sequence length indicated by the fifth indication information.
  • S506 The third communication device despreads the first signal and the second signal according to the third spreading sequence.
  • the third communication device After determining the third spreading sequence based on the content in S504, the third communication device can despread the first signal and the second signal according to the third spreading sequence.
  • the specific implementation method of despreading please refer to the related art. The specific implementation will not be explained in detail here.
  • the first signal is obtained by spreading the original signal based on the first spreading sequence
  • the second signal is obtained by spreading the backscattered signal based on the second spreading sequence.
  • the backscattered signal passes through
  • the first signal is generated after modulation and backscattering, that is, the second signal is a signal generated based on the Kronecker product of the first spreading sequence and the second spreading sequence. Equivalently, the second signal is generated based on the Kronecker product of the first spreading sequence and the second spreading sequence.
  • the third communication device despreads the first signal and the second signal according to the third spreading sequence
  • the third communication device despreads the first signal and the second signal according to the third spreading sequence.
  • the three spreading sequences themselves are not orthogonal. Therefore, for the first signal, the orthogonal or cross-correlated characteristics of the third spreading sequence and the first spreading sequence in the first signal can be used to eliminate the first signal, thereby To achieve the purpose of eliminating interference signals, for the second signal, the non-orthogonal or autocorrelated characteristics of the third spreading sequence and the third spreading sequence in the second signal can be used to restore the backscattering in the second signal. signal, thereby obtaining a useful backscattered signal.
  • the original signal when the first communication device sends a signal to the second communication device, the original signal may be spread spectrum based on the indicated first spreading sequence to obtain the first signal, and the first signal may be sent to the second communication device.
  • Communication device when the second communication device sends the backscattered signal to the third communication device, the second communication device can generate a second signal according to the backscattered signal and the indicated second spreading sequence, and send the second signal to the third communication device.
  • the third communication device after receiving the first signal and the second signal, the third communication device may despread the first signal and the second signal according to the indicated third spreading sequence.
  • the third communication device when the third communication device despreads the first signal and the second signal based on the spreading sequence, the third communication device can despread the first signal and the second signal based on the spreading sequence.
  • the characteristics eliminate interference signals and restore useful backscatter signals, achieving effective elimination of interference signals, ensuring the communication performance of backscatter communication, and improving the transmission efficiency, transmission distance and reliability of backscatter communication.
  • this embodiment of the present application provides a signal processing method 600, which can be executed by a fourth communication device.
  • the fourth communication device can be the radio frequency source 21 shown in Figure 2, or a backscatter communication receiver. Device 23, or backscatter communication sending device 22, or third-party network equipment.
  • the third-party network equipment can be the terminal or network side equipment in the embodiment shown in Figure 1.
  • the signal processing method can be installed on the radio frequency source. , or the backscatter communication receiving device, or the backscatter communication sending device, or the software or hardware of a third-party network device.
  • the signal processing method includes the following steps.
  • the fourth communication device configures or instructs at least one of the first spreading sequence, the second spreading sequence and the third spreading sequence to the first communication device, the second communication device and the third communication device.
  • the fourth communication device may be the first communication device, the second communication device, the third communication device or a third party network device.
  • the first communication device may be a radio frequency source
  • the second communication device may be a backscatter communication transmitting device
  • the third communication device may be a backscatter communication receiving device
  • the third party network device may be a backscatter communication transmitting device in addition to the radio frequency source.
  • Equipment and other equipment other than backscatter communication receiving equipment such as base stations, relay equipment, reader/writer equipment or other terminal equipment.
  • the fourth communication device may uniformly configure or indicate the first spreading sequence, the second spreading sequence and the third spreading sequence to the first communication device, the second communication device and the third communication device in a static or semi-static manner. At least one of the three spreading sequences.
  • the fourth communication device may configure or indicate the first spreading sequence to the first communication device, configure or indicate the second spreading sequence to the second communication device, and configure or indicate the third communication device
  • the third spreading sequence is used by the first communication device to spread the original signal to generate the first signal
  • the second spreading sequence is used by the first communication device.
  • the second communication device spreads the backscatter modulation signal to generate a second signal.
  • the backscatter modulation signal is generated by the second communication device after modulating and backscattering the first signal.
  • the third spreading sequence is used for the third communication.
  • the device despreads the first signal and the second signal.
  • the first communication device is based on the first communication device indicated by the fourth communication device.
  • the specific implementation of the spreading sequence to generate the first signal can refer to the embodiment shown in Figure 3.
  • the specific implementation of the second communication device to generate the second signal based on the second spreading sequence indicated by the fourth communication device can refer to the embodiment shown in Figure 4.
  • the specific implementation of despreading by the third communication device based on the third spreading sequence indicated by the fourth communication device may refer to the embodiment shown in FIG. 5 , which will not be described in detail here.
  • the spreading sequences configured by the fourth communication device to the first to third communication devices may also be other combinations.
  • the fourth communication device may configure or indicate the first spreading sequence to the first communication device, configure or indicate the second spreading sequence to the second communication device, configure or indicate the first spreading sequence and the third spreading sequence to the third communication device. Two spreading sequences. No more examples will be given here.
  • the fourth communication device may configure the first communication device, the second communication device and the third communication device through at least one of RRC signaling, MAC CE, DCI, SCI or a preamble sequence. Or indicates at least one of the first spreading sequence, the second spreading sequence and the third spreading sequence.
  • the fourth communication device when it configures or indicates the first spreading sequence, it may specifically configure or indicate the sequence type and sequence length of the first spreading sequence, and when configuring or indicating the second spreading sequence, when configuring or indicating a third spreading sequence, it may specifically configure or indicate the sequence type and sequence length of the second spreading sequence. When configuring or indicating the third spreading sequence, it may specifically configure or indicate the sequence type and sequence length of the third spreading sequence.
  • the sequence type of the first spreading sequence is different from the sequence type of the second spreading sequence
  • the third spreading sequence is the Kronecker product of the first spreading sequence and the second spreading sequence.
  • the sequence type of the first spreading sequence or the sequence type of the second spreading sequence may be m sequence, Gold sequence, Walsh sequence, PN sequence, Bent sequence, Kasami sequence, sequence zero correlation zone sequence ZCZ, polyphase orthogonal sequence, It can be either a completely complementary code or a chaotic sequence. In addition, it can also be other sequence types, as long as the sequence type of the first spreading sequence and the sequence type of the second spreading sequence are different.
  • the fourth communication device can uniformly configure or instruct the first communication device, the second communication device and the third communication device to use the spreading sequence respectively.
  • the first communication device sends a signal to the second communication device.
  • the original signal can be spread based on the indicated first spreading sequence to obtain the first signal, and the first signal can be sent to the second communication device.
  • the second communication device sends the backscattered signal to the third communication device
  • the second signal can be generated according to the backscattered signal and the indicated second spreading sequence, and the second signal can be sent to the third communication device.
  • the third communication device can generate the second signal according to The indicated third spreading sequence despreads the first signal and the second signal.
  • the third communication device when the third communication device despreads the first signal and the second signal based on the spreading sequence, the third communication device can despread the first signal and the second signal based on the spreading sequence.
  • the characteristics eliminate interference signals and restore useful backscatter signals, achieving effective elimination of interference signals, ensuring the communication performance of backscatter communication, and improving the transmission efficiency, transmission distance and reliability of backscatter communication.
  • the first communication device, the second communication device and the third communication device each The spreading sequence used can be configured or indicated in a static or semi-static manner, or indicated in a dynamic manner.
  • the first communication device, the second communication device and the third communication device each The spreading sequence used can be configured or indicated in a static or semi-static manner, or indicated in a dynamic manner.
  • Figure 7 is a schematic flow chart of a signal processing method according to an embodiment of the present application.
  • the spreading sequences used by each of the first communication device, the second communication device, and the third communication device may be configured or instructed in a static or semi-static manner. Specifically, the following steps may be included.
  • the fourth communication device configures the first spreading sequence to the first communication device, the second spreading sequence to the second communication device, and the third spreading sequence to the third communication device.
  • the fourth communication device may be the first communication device, the second communication device, the third communication device or a third party network device.
  • the fourth communication device may configure the sequence type and sequence length of the first spreading sequence to the first communication device through the first indication information, and configure the sequence type and sequence length of the second spreading sequence to the second communication device through the third indication information. , configure the sequence type and sequence length of the third spreading sequence to the third communication device through the fifth indication information.
  • the sequence type of the first spreading sequence is different from the sequence type of the second spreading sequence
  • the third spreading sequence is the Kronecker product of the first spreading sequence and the second spreading sequence
  • the first spreading sequence The sequence type of the sequence or the sequence type of the second spreading sequence may be m sequence, Gold sequence, Walsh sequence, PN sequence, Bent sequence, Kasami sequence, sequence zero correlation zone sequence ZCZ, polyphase orthogonal sequence, complete complementary code, Any of the chaotic sequences.
  • the first communication device determines the first spreading sequence according to the first indication information.
  • S703 The first communication device spreads the original signal according to the first spreading sequence to generate a first signal.
  • S704 The first communication device sends the first signal to the second communication device.
  • the second communication device determines the second spreading sequence according to the third indication information.
  • the second communication device generates a second signal according to the second spreading sequence and the backscatter modulation signal.
  • the backscattered modulation signal is generated by the second communication device after modulating and backscattering the first signal.
  • the second communication device sends the second signal to the third communication device.
  • the third communication device receives the first signal and the second signal.
  • the third communication device determines the third spreading sequence according to the fifth indication information.
  • the third communication device despreads the first signal and the second signal according to the third spreading sequence.
  • Figure 8 is a schematic flow chart of a signal processing method according to an embodiment of the present application.
  • the spreading sequence used by each of the first communication device, the second communication device, and the third communication device may be indicated in a dynamic manner, which may include the following steps.
  • the first communication device determines the first spreading sequence according to the first indication information.
  • the first indication information may be indicated by a fourth communication device, and the fourth communication device may be a first communication device, a second communication device, a third communication device or a third-party network device.
  • S802 The first communication device spreads the original signal according to the first spreading sequence to generate a first signal.
  • S803 The first communication device sends the first signal to the second communication device.
  • the first communication device sends second indication information to the second communication device and the third communication device.
  • the second indication information is used to indicate the sequence type and sequence length of the first spreading sequence.
  • the first communication device and the third communication device are the same device (single-base backscatter communication architecture), the first communication device does not need to send the second indication information to the third communication device, here
  • the description is only made by taking the first communication device and the third communication device as not being the same device as an example.
  • the second communication device determines the second spreading sequence according to the second indication information.
  • the second communication device generates a second signal according to the second spreading sequence and the backscatter modulation signal.
  • the backscattered modulation signal is generated by the second communication device after modulating and backscattering the first signal.
  • S807 The second communication device sends the second signal to the third communication device.
  • S808 The second communication device sends fourth instruction information to the third communication device.
  • the fourth indication information is used to indicate the sequence type and sequence length of the second spreading sequence, or the sequence type and sequence length of the third spreading sequence.
  • the third spreading sequence is the combination of the first spreading sequence and the second spreading sequence. Kronecker product.
  • the third communication device receives the first signal and the second signal.
  • the third communication device determines the third target sequence according to the fourth indication information, or determines the third spreading sequence according to the second indication information and the fourth indication information.
  • the third communication device despreads the first signal and the second signal according to the third spreading sequence.
  • Figure 9 is a schematic diagram of a signal processing method according to an embodiment of the present application.
  • the backscatter communication system shown in Figure 9 is a single-base backscatter communication architecture.
  • Figure 9 shows the situation where the fourth communication device uniformly configures or instructs the spreading sequence to the first communication device, the second communication device and the third communication device. Take an example to illustrate.
  • the first communication device when it sends a signal to the second communication device, it can use the first spreading sequence c 1 (k) configured or indicated by the fourth communication device to spread spectrum the original signal to generate the first signal.
  • the first signal can be expressed as:
  • c 1 (k) is a spreading sequence of length M.
  • the first communication device may send the first signal to the second communication device.
  • the received first signal can be expressed as:
  • h 1 represents the channel between the second communication device and the first communication device
  • n 1 (k) is the noise signal
  • the second communication device performs backscatter modulation on the received signal with the baseband signal b(n) to generate a backscatter signal, and then performs backscatter modulation based on the second spreading sequence c 2 (l) configured or indicated by the fourth communication device. Spread the scattered signal to generate a second signal.
  • the second signal can be expressed as:
  • the length of the second spreading sequence c 2 (l) is N
  • c 3 (p) is the length M generated by the Kronecker multiplication of the first spreading sequence and the second spreading sequence.
  • the ⁇ N composite spreading sequence, that is, the third spreading sequence, c 3 (p) can be expressed as:
  • the second communication device may send the second signal to the third communication device.
  • the third communication device When the third communication device (ie, the first communication device) receives a signal, it can receive the first signal and the second signal.
  • the received signal can be expressed as:
  • the first item in the above-mentioned signals includes the self-interference signal caused by carrier leakage and the multipath interference signal caused by environmental multipath.
  • the second item is the attenuated and modulated reflection signal received by the third communication device after the two-way link.
  • h 3 represents the channel between the third communication device and the third communication device
  • h 2 represents the channel between the second communication device and the third communication device.
  • the third communication device After receiving the first signal and the second signal, the third communication device can despread the first signal according to the third spreading sequence c 4 (p) configured or instructed by the fourth communication device, which can be specifically expressed as:
  • the first term in the above formula is zero, and the second term only leaves h 2 (n)b(n)h 1 (n)x(n), the third term is the noise term, thereby eliminating the interference signal.
  • the baseband signal b(n) can be restored by signal demodulation of the signal d(n) after the interference is eliminated.
  • Figure 10 is a schematic diagram of a signal processing method according to an embodiment of the present application.
  • the backscatter communication system shown in Figure 10 is a bistatic backscatter communication architecture.
  • Figure 10 illustrates this by taking the example of dynamically indicating the spreading sequences used by each of the first communication device, the second communication device and the third communication device.
  • the first communication device when it sends a signal to the second communication device, it can autonomously select the first spreading sequence c 1 (k) according to the first instruction information to spread the original signal to generate the first signal.
  • the signal can be expressed as:
  • c 1 (k) is a spreading sequence of length M.
  • the first communication device may send the first signal to the second communication device, and at the same time send second indication information to the second communication device and the third communication device.
  • the second indication information is used to indicate the first extended communication device. The sequence type and sequence length of the frequency sequence.
  • the received first signal can be expressed as:
  • h 1 represents the channel between the second communication device and the first communication device
  • n 1 (k) is the noise signal
  • the second communication device modulates and backscatters the received signal with the baseband signal b(n) to generate a backscattered signal, and then determines the second spreading sequence c 2 (l) according to the second instruction information, and generates the second spreading sequence c 2 (l) according to the second instruction information.
  • Second spread spectrum c 2 (l) spreads the backscattered signal to generate a second signal.
  • the second signal can be expressed as:
  • the specific implementation method for the second communication device to determine the second spreading sequence according to the second indication information may refer to the embodiment shown in FIG. 3, which will not be described in detail here.
  • the length of the second spreading sequence c 2 (l) is N
  • c 3 (p) is a composite sequence of length M ⁇ N generated by Kronecker multiplication of the first spreading sequence and the second spreading sequence.
  • the spreading sequence, that is, the third spreading sequence, c 3 (p) can be expressed as:
  • the second communication device may send the second signal to the third communication device.
  • it may also send fourth indication information to the third communication device.
  • the fourth indication information is used to indicate the second spreading sequence.
  • the sequence type and sequence length, or the sequence type and sequence length of the third spreading sequence, and the third spreading sequence is the Kronecker product of the first spreading sequence and the second spreading sequence.
  • the third communication device When receiving the signal, the third communication device can receive the first signal and the second signal, and the received signal can Expressed as:
  • the first item in the above signal is cross-link interference or direct link interference
  • the second item is the signal item of the backscattered signal of the cascade channel received by the third communication device
  • h 3 represents the third communication device and The channel between the first communication device
  • h 2 represents the channel between the second communication device and the third communication device.
  • the third communication device may determine the third spreading sequence according to the second indication information and the fourth indication information, or determine the third spreading sequence according to the fourth indication information. Specific implementation manner Please refer to the corresponding content in the embodiment shown in Figure 4, and the description will not be repeated here.
  • the first signal and the second signal can be despread according to the third spreading sequence, which can be specifically expressed as:
  • the first term in the above formula is zero, and the second term only leaves h 2 (n)b(n)h 1 (n)x(n), the third term is the noise term, thereby eliminating the interference signal.
  • the baseband signal b(n) can be restored by signal demodulation of the signal d(n) after the interference is eliminated.
  • the original signal when the first communication device sends a signal to the second communication device, the original signal may be spread spectrum based on the indicated first spreading sequence to obtain the first signal, and the first signal may be sent to the second communication device.
  • Communication device when the second communication device sends the backscattered signal to the third communication device, the second communication device can generate a second signal according to the backscattered signal and the indicated second spreading sequence, and send the second signal to the third communication device.
  • the third communication device after receiving the first signal and the second signal, the third communication device may despread the first signal and the second signal according to the indicated third spreading sequence.
  • the third communication device when the third communication device despreads the first signal and the second signal based on the spreading sequence, the third communication device can despread the first signal and the second signal based on the spreading sequence.
  • the characteristics eliminate interference signals and restore useful backscatter signals, achieving effective elimination of interference signals, ensuring the communication performance of backscatter communication, and improving the transmission efficiency, transmission distance and reliability of backscatter communication.
  • the execution subject may be a signal processing device.
  • a signal processing device executing a signal processing method is used as an example to illustrate the signal processing device provided by the embodiment of the present application.
  • FIG 11 is a schematic structural diagram of a signal processing device according to an embodiment of the present application. This device may correspond to the first communication device in other embodiments. As shown in Figure 11, the device 1100 includes the following modules.
  • Determining module 1101 configured to determine the first spreading sequence according to the first indication information
  • the signal processing module 1102 is configured to spread spectrum the original signal according to the first spreading sequence to generate a first signal
  • the sending module 1103 is configured to send the first signal to a second communication device, and the device is a device that provides a radio frequency carrier source to the second communication device.
  • the first indication information is used to indicate the sequence type and sequence length of the first spreading sequence.
  • sequence type of the first spreading sequence includes any of the following:
  • the first indication information is configured or indicated by a fourth communication device
  • the fourth communication device is the first communication device, the second communication device, a third communication device or a third party Internet equipment.
  • the device when the first indication information is configured or indicated by the fourth communication device, and the fourth communication device is not the first communication device, the device further It includes a receiving module, and the receiving module is used for:
  • the first indication information is provided by the fourth communication device through at least one of radio resource control RRC signaling, medium access control unit MAC CE, downlink control information DCI, side link control information SCI and preamble sequence. configuration or instructions.
  • the sending module 1103 is also used to:
  • the second indication information is used to indicate the sequence type and sequence length of the first spreading sequence.
  • the sending module 1103 is used to:
  • the second indication information is sent through at least one of RRC signaling, MAC CE, DCI, SCI and preamble sequence.
  • the device 1100 according to the embodiment of the present application can refer to the process corresponding to the method 300 of the embodiment of the present application, and each unit/module in the device 1100 and the above-mentioned other operations and/or functions are respectively to implement the corresponding process in the method 300, And can achieve the same or equivalent technical effects. For the sake of simplicity, they will not be described again here.
  • FIG 12 is a schematic structural diagram of a signal processing device according to an embodiment of the present application. This device may correspond to the second communication device in other embodiments. As shown in Figure 12, the device 1200 includes the following modules.
  • the receiving module 1201 is configured to receive a first signal, which is generated by the first communication device after spreading the original signal according to the first spreading sequence;
  • Determining module 1202 configured to determine the second spreading sequence according to the third indication information
  • the signal processing module 1203 is configured to spread the backscatter modulation signal according to the second spread spectrum sequence to generate a second signal.
  • the backscatter modulation signal is obtained by modulating and backscattering the first signal. generate;
  • the sending module 1204 is used to send the second signal to a third communication device.
  • the third indication information is indicated by the first communication device, and the third indication information is used to indicate the sequence type and sequence length of the first spreading sequence; or,
  • the third indication information is configured or indicated by a fourth communication device, and the fourth communication device is the first communication device, the second communication device, the third communication device or a third-party network device, and the The third indication information is used to indicate the sequence type and sequence length of the second spreading sequence.
  • the receiving module 1201 when the third indication information is indicated by the first communication device, or when the third indication information is configured or indicated by the fourth communication device and the third When the fourth communication device is not the second communication device, the receiving module 1201 is also used to:
  • the third indication information is configured or indicated by at least one of RRC signaling, MAC CE, DCI, SCI and preamble sequence.
  • sequence type of the second spreading sequence is different from the sequence type of the first spreading sequence, and the sequence type of the second spreading sequence includes any of the following:
  • the sending module 1204 is also used to:
  • the fourth indication information is used to indicate the sequence type and sequence length of the second spreading sequence, or the sequence type and sequence length of the third spreading sequence, and the third spreading sequence is the first spreading sequence.
  • the Kronecker product of the spreading sequence and the second spreading sequence is used to indicate the sequence type and sequence length of the second spreading sequence, or the sequence type and sequence length of the third spreading sequence, and the third spreading sequence is the first spreading sequence.
  • the sending module 1204 is used to:
  • the fourth indication information is sent to the third communication device through at least one of RRC signaling, MAC CE, DCI, SCI and preamble sequence.
  • the device 1200 can refer to the process corresponding to the method 400 of the embodiment of the present application, and each unit/module and the above-mentioned other operations and/or functions in the device 1200 are respectively to implement the corresponding process in the method 400, And can achieve the same or equivalent technical effects. For the sake of simplicity, they will not be described again here.
  • Figure 13 is a schematic structural diagram of a signal processing device according to an embodiment of the present application. This device may correspond to a third communication device in other embodiments. As shown in Figure 13, the device 1300 includes the following modules.
  • the receiving module 1301 is configured to receive a first signal and a second signal.
  • the first signal is generated by the first communication device after spreading the original signal according to the first spreading sequence.
  • the second signal is generated by the second communication device.
  • the backscattered modulation signal is generated by spreading the spectrum according to the second spreading sequence, and the backscattered modulation signal is generated by the second communication device modulating and backscattering the first signal;
  • Determining module 1302 configured to determine the third spreading sequence according to the fifth indication information
  • Signal processing module 1303, configured to process the first signal and the second signal according to the third spreading sequence. Perform despreading.
  • the sequence type of the first spreading sequence and the sequence type of the second spreading sequence are different, and the third spreading sequence is the first spreading sequence and the sequence type.
  • Kronecker product of the second spreading sequence is the first spreading sequence and the sequence type.
  • sequence type of the first spreading sequence or the sequence type of the second spreading sequence includes any of the following:
  • the fifth indication information is used to indicate the sequence type and sequence length of the second spreading sequence, or the sequence type and sequence length of the third spreading sequence.
  • the determining module 1302 is configured to:
  • the first spreading sequence is determined according to sixth indication information, the sixth indication information is used to indicate the sequence type and sequence length of the first spreading sequence;
  • the third spreading sequence is obtained by performing Kronecker multiplication of the first spreading sequence and the second spreading sequence.
  • the sixth indication information is indicated by the first communication device.
  • the sixth indication information is configured or indicated by a fourth communication device, and the fourth communication device is the first communication device, the second communication device, the third communication device or a third-party network device.
  • the receiving module 1301 is also used to:
  • the sixth indication information is configured or indicated by at least one of RRC signaling, MAC CE, DCI, SCI and preamble sequence.
  • the fifth indication information is indicated by the second communication device, or,
  • the fifth indication information is configured or indicated by a fourth communication device, and the fourth communication device is the first communication device, the second communication device, the third communication device or a third-party network device.
  • the receiving module 1301 is also used to:
  • the fifth indication information is configured or indicated by at least one of RRC signaling, MAC CE, DCI, SCI and preamble sequence.
  • the device 1300 according to the embodiment of the present application can refer to the process corresponding to the method 500 of the embodiment of the present application, and each unit/module and the above-mentioned other operations and/or functions in the device 1300 are respectively to implement the corresponding process in the method 500, And can achieve the same or equivalent technical effects. For the sake of simplicity, they will not be described again here.
  • FIG 14 is a schematic structural diagram of a signal processing device according to an embodiment of the present application. This device may correspond to the fourth communication device in other embodiments. As shown in Figure 14, the device 1400 includes the following modules.
  • Configuration module 1401, configured to configure or indicate at least one of the first spreading sequence, the second spreading sequence, and the third spreading sequence to the first communication device, the second communication device, and the third communication device;
  • the first spreading sequence is used by the first communication device to spread the original signal to generate a first signal
  • the second spreading sequence is used by the second communication device to spread the backscatter modulated signal.
  • Spreading generates a second signal
  • the backscattered modulated signal is generated by modulating and backscattering the first signal
  • the third spreading sequence is used by the third communication device to signal and the second signal are despread.
  • the device is the first communication device, the second communication device, the third communication device or a third-party network device.
  • the configuration module 1401 is used to:
  • the configuration module 1401 is used to:
  • the sequence type of the first spreading sequence and the sequence type of the second spreading sequence are different, and the third spreading sequence is the first spreading sequence and the sequence type.
  • Kronecker product of the second spreading sequence is the first spreading sequence and the sequence type.
  • sequence type of the first spreading sequence or the sequence type of the second spreading sequence includes any of the following:
  • the device 1400 according to the embodiment of the present application can refer to the process corresponding to the method 600 of the embodiment of the present application, and each unit/module and the above-mentioned other operations and/or functions in the device 1400 are respectively to implement the corresponding process in the method 600, And can achieve the same or equivalent technical effects. For the sake of simplicity, they will not be described again here.
  • the signal processing device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the signal processing device provided by the embodiments of the present application can implement each process implemented by the method embodiments in Figures 3 to 6 and achieve the same technical effect. To avoid duplication, details will not be described here.
  • this embodiment of the present application also provides a communication device 1500, which includes a processor 1501 and a memory 1502.
  • the memory 1502 stores programs or instructions that can be run on the processor 1501, such as , when the communication device 1500 is a terminal, when the program or instruction is executed by the processor 1501, each step of the above signal processing method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 1500 is a network-side device, when the program or instruction is executed by the processor 1501, each step of the above signal processing method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, the details are not repeated here.
  • An embodiment of the present application also provides a communication device, including a processor and a communication interface.
  • the processor is configured to determine a first spreading sequence according to the first indication information; spread spectrum the original signal according to the first spreading sequence to generate a first spreading sequence. signal;
  • the communication interface is used to send the first signal to a second communication device, the communication device is a device that provides a radio frequency carrier source to the second communication device; or the communication interface is used to receive the first signal signal, the first signal is generated by the first communication device after spreading the original signal according to the first spreading sequence;
  • the processor is configured to determine the second spreading sequence according to the third indication information; according to the second spreading sequence
  • the frequency sequence spreads the backscattered modulated signal to generate a second signal, and the backscattered modulated signal is generated by modulating and backscattering the first signal;
  • the communication interface is used to transmit to a third communication device Send the second signal; or, the communication interface is used to receive a first signal and a second signal, the first signal is generated
  • the second signal, the backscattered modulated signal is generated by modulating and backscattering the first signal, and the third spreading sequence is used by the third communication device to combine the first signal and the second signal.
  • the second signal is despread.
  • This communication device embodiment corresponds to the above-mentioned first communication device-side method embodiment, or corresponds to the above-mentioned second communication device-side method embodiment, or corresponds to the above-mentioned third communication device-side method embodiment, or corresponds to the above-mentioned fourth communication device-side method embodiment.
  • each implementation process and implementation manner of the above method embodiment can be applied to this communication device embodiment, and can achieve the same technical effect.
  • FIG. 16 is a schematic diagram of the hardware structure of a communication device that implements an embodiment of the present application.
  • the communication device 1600 includes but is not limited to: antenna unit 1601, network module 1602, audio output unit 1603, input unit 1604, sensor 1605, display unit 1606, user input unit 1607, interface unit 1608, memory 1609, processor 1610, etc. at least some parts of it.
  • the communication device 1600 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1610 through a power management system, thereby managing charging, discharging, and function through the power management system. Consumption management and other functions.
  • the structure of the communication device shown in Figure 16 does not constitute a limitation on the communication device.
  • the communication device may include more or less components than shown in the figure, or some components may be combined, or different components may be used. The arrangement of components will not be described in detail here.
  • the input unit 1604 may include a graphics processing unit (Graphics Processing Unit, GPU) 16041 and a microphone 16042.
  • the GPU 16041 is used for recording images by an image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the image data obtained from still pictures or videos is processed.
  • the display unit 1606 may include a display panel 16061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1607 includes a touch panel 16071 and at least one of other input devices 16072. Touch panel 16071, also known as touch screen.
  • the touch panel 16071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 16072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the antenna unit 1601 after receiving downlink data from the network side device, the antenna unit 1601 can transmit it to the processor 1610 for processing; in addition, the antenna unit 1601 can send uplink data to the network side device.
  • the antenna unit 1601 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 1609 may be used to store software programs or instructions as well as various data.
  • the memory 1609 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 1609 may include volatile memory or nonvolatile memory, or memory 1609 may include both volatile and nonvolatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory Synchronous DRAM, SDRAM
  • Double data rate synchronous dynamic random access memory Double Data Rate SDRAM, DDRSDRAM
  • Enhanced SDRAM, ESDRAM synchronous link dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • the processor 1610 may include one or more processing units; optionally, the processor 1610 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 1610.
  • the processor 1610 is configured to determine a first spreading sequence according to the first indication information; spread spectrum the original signal according to the first spreading sequence to generate a first signal; and the antenna unit 1601 is used to transmit a signal to the second spreading sequence.
  • the communication device sends the first signal, and the communication device is a device that provides a radio frequency carrier source to the second communication device; or,
  • the antenna unit 1601 is configured to receive a first signal, which is generated by a first communication device after spreading the original signal according to a first spreading sequence; the processor 1610 is configured to determine according to the third indication information Second spread spectrum Sequence; perform spread spectrum on a backscatter modulation signal according to the second spread spectrum sequence to generate a second signal, the backscatter modulation signal is generated by modulating and backscattering the first signal; the antenna Unit 1601 is used to send the second signal to a third communication device; or,
  • the antenna unit 1601 is used to receive a first signal and a second signal.
  • the first signal is generated by the first communication device after spreading the original signal according to the first spreading sequence.
  • the second signal is generated by the second communication device.
  • the device spreads the backscattered modulated signal according to the second spreading sequence and generates the backscattered modulated signal by the second communication device modulating and backscattering the first signal;
  • the processor 1610 is configured to determine a third spreading sequence according to the fifth indication information; despread the first signal and the second signal according to the third spreading sequence; or,
  • the antenna unit 1601 is used to configure or indicate at least one of the first spreading sequence, the second spreading sequence and the third spreading sequence to the first communication device, the second communication device and the third communication device; wherein, The first spreading sequence is used by the first communication device to spread spectrum the original signal to generate a first signal, and the second spreading sequence is used by the second communication device to spread spectrum the backscatter modulated signal. Generate a second signal, the backscattered modulated signal is generated by modulating and backscattering the first signal, and the third spreading sequence is used by the third communication device to combine the first signal and The second signal is despread.
  • the original signal when the first communication device sends a signal to the second communication device, the original signal may be spread spectrum based on the indicated first spreading sequence to obtain the first signal, and the first signal may be sent to the second communication device.
  • Communication device when the second communication device sends the backscattered signal to the third communication device, the second communication device can generate a second signal according to the backscattered signal and the indicated second spreading sequence, and send the second signal to the third communication device.
  • the third communication device after receiving the first signal and the second signal, the third communication device may despread the first signal and the second signal according to the indicated third spreading sequence.
  • the third communication device when the third communication device despreads the first signal and the second signal based on the spreading sequence, the third communication device can despread the first signal and the second signal based on the spreading sequence.
  • the characteristics eliminate interference signals and restore useful backscatter signals, achieving effective elimination of interference signals, ensuring the communication performance of backscatter communication, and improving the transmission efficiency, transmission distance and reliability of backscatter communication.
  • An embodiment of the present application also provides a communication device, including a processor and a communication interface.
  • the processor is configured to determine a first spreading sequence according to the first indication information; and perform spreading generation on the original signal according to the first spreading sequence.
  • the first signal ;
  • the communication interface is used to send the first signal to a second communication device, the communication device is a device that provides a radio frequency carrier source to the second communication device; or the communication interface is used to receive
  • the first signal is generated by the first communication device after spreading the original signal according to the first spreading sequence;
  • the processor is configured to determine the second spreading sequence according to the third indication information; according to the third indication information Two spreading sequences spread spectrum on the backscatter modulation signal to generate a second signal.
  • the backscatter modulation signal is generated by modulating and backscattering the first signal; the communication interface is used to transmit data to a third signal.
  • the communication device sends the second signal; or, the communication interface is used to receive a first signal and a second signal.
  • the first signal is generated by the first communication device after spreading the original signal according to the first spreading sequence.
  • the second signal is generated by the second communication device after spreading the backscatter modulation signal according to the second spreading sequence
  • the backscatter modulation signal is generated by the second communication device by performing a spread spectrum on the first signal.
  • the processor is configured to determine a third spreading sequence according to the fifth indication information; and combine the first signal and the first signal according to the third spreading sequence.
  • the second signal is despread; or, the communication interface is used to configure or indicate the first spreading sequence, the second spreading sequence and the third spreading sequence to the first communication device, the second communication device and the third communication device. At least one of the sequences; wherein the first spreading sequence is used by the first communication device to spread the original signal to generate a first signal, and the second spreading sequence is used by the second communication device Spread the backscattered modulated signal to generate a second signal.
  • the backscattered modulated signal is generated by modulating and backscattering the first signal.
  • the third spread spectrum sequence is used for the third The communications device despreads the first signal and the second signal.
  • This communication device embodiment corresponds to the above-mentioned first communication device-side method embodiment, or corresponds to the above-mentioned second communication device-side method embodiment, or corresponds to the above-mentioned third communication device-side method embodiment, or corresponds to the above-mentioned fourth communication device-side method embodiment.
  • each implementation process and implementation manner of the above method embodiment can be applied to this communication device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a communication device.
  • the communication device 1700 includes: an antenna 171 , a radio frequency device 172 , a baseband device 173 , a processor 174 and a memory 175 .
  • the antenna 171 is connected to the radio frequency device 172 .
  • the radio frequency device 172 receives information through the antenna 171 and sends the received information to the baseband device 173 for processing.
  • the baseband device 173 processes the information to be sent and sends it to the radio frequency device 172.
  • the radio frequency device 172 processes the received information and then sends it out through the antenna 171.
  • the methods performed by the first communication device, the second communication device, the third communication device and the fourth communication device in the above embodiments may be implemented in the baseband device 173, which includes a baseband processor.
  • the baseband device 173 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the communication device operations shown in the above method embodiments.
  • the communication device may also include a network interface 176, such as a common public radio interface (CPRI).
  • a network interface 176 such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the communication device 1700 of the embodiment of the present invention also includes: instructions or programs stored in the memory 175 and executable on the processor 174.
  • the processor 174 calls the instructions or programs in the memory 175 to execute the steps shown in FIGS. 11 to 14. It shows the execution method of each module and achieves the same technical effect. To avoid duplication, it will not be repeated here.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above signal processing method embodiment is implemented and the same can be achieved. The technical effects will not be repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above signal processing method embodiments. Each process can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above signal processing method embodiment.
  • Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • Embodiments of the present application also provide a signal processing system, including: at least two of a first communication device, a second communication device, a third communication device, and a fourth communication device.
  • the first communication device may be used to perform:
  • the second communication device can be used to perform the steps of the signal processing method shown in Figure 4 above
  • the third communication device can be used to perform the steps shown in Figure 5 above.
  • the fourth communication device may be configured to perform the steps of the signal processing method as shown in FIG. 6 above.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)

Abstract

本申请公开了一种信号处理方法及通信设备,属于通信技术领域,本申请实施例的信号处理方法包括:第一通信设备根据第一指示信息确定第一扩频序列;所述第一通信设备根据所述第一扩频序列对原始信号进行扩频生成第一信号;所述第一通信设备向第二通信设备发送所述第一信号,所述第一通信设备是给所述第二通信设备提供射频载波源的设备。

Description

信号处理方法及通信设备
交叉引用
本发明要求在2022年06月29日提交中国专利局、申请号为202210753777.X、发明名称为“信号处理方法及通信设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于通信技术领域,具体涉及一种信号处理方法及通信设备。
背景技术
在反向散射通信(Backscatter Communication,BSC)系统中,一般可以包括射频源、反向散射通信发送设备和反向散射通信接收设备,射频源可以为反向散射通信发送设备提供射频载波源,反向散射通信发送设备可以对射频信号进行信号调制和反向散射,并将得到的反向散射信号发送给反向散射通信接收设备,反向散射通信接收设备可以对接收到的反向散射信号进行解调,实现与反向散射通信发送设备之间的通信。
然而,在实际的应用场景中,反向散射通信接收设备在进行信号接收时,接收到的信号不仅包含反向散射通信发送设备发送的反向散射信号,还包含同频的自干扰信号或直接链路干扰信号。这样,为了得到有用的反向散射信号,就需要对反向散射通信接收设备接收到的自干扰信号或直接链路干扰信号进行消除。然而,目前还缺少一种有效的技术方案能够实现这样的目的。
发明内容
本申请实施例提供一种信号处理方法及通信设备,能够解决目前无法有效地对反向散射通信接收设备接收到的自干扰信号或直接链路干扰信号进行消除的问题。
第一方面,提供了一种信号处理方法,该方法包括:第一通信设备根据第一指示信息确定第一扩频序列;所述第一通信设备根据所述第一扩频序列对原始信号进行扩频生成第一信号;所述第一通信设备向第二通信设备发送所述第一信号,所述第一通信设备是给所述第二通信设备提供射频载波源的设备。
第二方面,提供了一种信号处理装置,该装置包括:确定模块,用于根据第一指示信息确定第一扩频序列;信号处理模块,用于根据所述第一扩频序列对原始信号进行扩频生成第一信号;发送模块,用于向第二通信设备发送所述第一信号,所述装置是给所述第二通信设备提供射频载波源的设备。
第三方面,提供了一种信号处理方法,该方法包括:第二通信设备接收第一信号,所述第一信号由第一通信设备根据第一扩频序列对原始信号进行扩频后生成;所述第二通信设备根据第三指示信息确定第二扩频序列;所述第二通信设备根据所述第二扩频序列对反向散射调制信号进行扩频生成第二信号,所述反向散射调制信号通过对所述第一信号进行调制与反向散射后生成;所述第二通信设备向第三通信设备发送所述第二信号。
第四方面,提供了一种信号处理装置,该装置包括:接收模块,用于接收第一信号,所述第一信号由第一通信设备根据第一扩频序列对原始信号进行扩频后生成;确定模块,用于根据第三指示信息确定第二扩频序列;信号处理模块,用于根据所述第二扩频序列对反向散射调制信号进行扩频生成第二信号,所述反向散射调制信号通过对所述第一信号进行调制与反向散射后生成;发送模块,用于向第三通信设备发送所述第二信号。
第五方面,提供了一种信号处理方法,该方法包括:第三通信设备接收第一信号和第二信号,所述第一信号由第一通信设备根据第一扩频序列对原始信号进行扩频后生成,所述第二信号由第二通信设备根据第二扩频序列对反向散射调制信号进行扩频后生成,所述反向散射调制信号由所述第二通信设备对所述第一信号进行调制与反向散射后生成;所述第三通信设备根据第五指示信息确定第三扩频序列;所述第三通信设备根据所述第三扩频序列对所述第一信号以及所述第二信号进行解扩频。
第六方面,提供了一种信号处理装置,该装置包括:接收模块,用于接收第一信号和第二信号,所述第一信号由第一通信设备根据第一扩频序列对原始信号进行扩频后生成,所述第二信号由第二通信设备根据第二扩频序列对反向散射调制信号进行扩频后生成,所述反向散射调制信号由所述第二通信设备对所述第一信号进行调制与反向散射后生成;确定模块,用于根据第五指示信息确定第三扩频序列;信号处理模块,用于根据所述第三扩频序列对所述第一信号以及所述第二信号进行解扩频。
第七方面,提供了一种信号处理方法,该方法包括:第四通信设备向第一通信设备、第二通信设备和第三通信设备配置或指示第一扩频序列、第二扩频序列和第三扩频序列中的至少一项;其中,所述第一扩频序列用于所述第一通信设备对原始信号进行扩频生成第一信号,所述第二扩频序列用于所述第二通信设备对反向散射调制信号进行扩频生成第二信号,所述反向散射调制信号通过对所述第一信号进行调制与反向散射后生成,所述第三扩频序列用于所述第三通信设备对所述第一信号和所述第二信号进行解扩频。
第八方面,提供了一种信号处理装置,该装置包括:配置模块,用于向第一通信设备、第二通信设备和第三通信设备配置或指示第一扩频序列、第二扩频序列和第三扩频序列中的至少一项;其中,所述第一扩频序列用于所述第一通信设备对原始信号进行扩频生成第 一信号,所述第二扩频序列用于所述第二通信设备对反向散射调制信号进行扩频生成第二信号,所述反向散射调制信号通过对所述第一信号进行调制与反向散射后生成,所述第三扩频序列用于所述第三通信设备对所述第一信号和所述第二信号进行解扩频。
第九方面,提供了一种通信设备,该通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或实现如第三方面所述的方法的步骤,或实现如第五方面所述的方法的步骤,或实现如第七方面所述的方法的步骤。
第十方面,提供了一种通信设备,包括处理器及通信接口,其中,所述处理器用于根据第一指示信息确定第一扩频序列;根据所述第一扩频序列对原始信号进行扩频生成第一信号;所述通信接口用于向第二通信设备发送所述第一信号,所述通信设备是给所述第二通信设备提供射频载波源的设备;或,
所述通信接口用于接收第一信号,所述第一信号由第一通信设备根据第一扩频序列对原始信号进行扩频后生成;所述处理器用于根据第三指示信息确定第二扩频序列;根据所述第二扩频序列对反向散射调制信号进行扩频生成第二信号,所述反向散射调制信号通过对所述第一信号进行调制与反向散射后生成;所述通信接口用于向第三通信设备发送所述第二信号;或,
所述通信接口用于接收第一信号和第二信号,所述第一信号由第一通信设备根据第一扩频序列对原始信号进行扩频后生成,所述第二信号由第二通信设备根据第二扩频序列对反向散射调制信号进行扩频后生成,所述反向散射调制信号由所述第二通信设备对所述第一信号进行调制与反向散射后生成;所述处理器用于根据第五指示信息确定第三扩频序列;根据所述第三扩频序列对所述第一信号以及所述第二信号进行解扩频;或,
所述通信接口用于向第一通信设备、第二通信设备和第三通信设备配置或指示第一扩频序列、第二扩频序列和第三扩频序列中的至少一项;其中,所述第一扩频序列用于所述第一通信设备对原始信号进行扩频生成第一信号,所述第二扩频序列用于所述第二通信设备对反向散射调制信号进行扩频生成第二信号,所述反向散射调制信号通过对所述第一信号进行调制与反向散射后生成,所述第三扩频序列用于所述第三通信设备对所述第一信号和所述第二信号进行解扩频。
第十一方面,提供了一种信号处理系统,包括:第一通信设备、第二通信设备、第三通信设备及第四通信设备中的至少两个,所述第一通信设备可用于执行如第一方面所述的信号处理方法的步骤,所述第二通信设备可用于执行如第三方面所述的信号处理方法的步骤,所述第三通信设备可用于执行如第五方面所述的信号处理方法的步骤,所述第四通信设备可用于执行如第七方面所述的信号处理方法的步骤。
第十二方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤,或者实现如第五方面所述的方法的步骤,或者实现如第七方面所述的方法 的步骤。
第十三方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第三方面所述的方法,或实现如第五方面所述的方法,或实现如第七方面所述的方法。
第十四方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的信号处理方法的步骤,或实现如第三方面所述的信号处理方法的步骤,或实现如第五方面所述的信号处理方法的步骤,或实现如第七方面所述的信号处理方法的步骤。
在本申请实施例中,第一通信设备在向第二通信设备发送信号时,可以基于指示的第一扩频序列对原始信号进行扩频得到第一信号,并将第一信号发送给第二通信设备,第二通信设备在向第三通信设备发送反向散射信号时,可以根据反向散射信号和指示的第二扩频序列生成第二信号,并将第二信号发送给第三通信设备,第三通信设备在接收到第一信号和第二信号后,可以根据指示的第三扩频序列对第一信号和第二信号进行解扩频。由于第一信号和第二信号都是经过扩频序列处理后的信号,因此,第三通信设备在基于扩频序列对第一信号和第二信号进行解扩频时,可以基于扩频序列的特性消除其中的干扰信号并恢复有用的反向散射信号,实现对干扰信号的有效消除,保证了反向散射通信的通信性能,提高反向散射通信的传输效率、传输距离和可靠性传输。
附图说明
图1是根据本申请实施例的无线通信系统的示意图;
图2是根据本申请实施例的反向散射通信系统的示意图;
图3是根据本申请实施例的信号处理方法的示意性流程图;
图4是根据本申请实施例的信号处理方法的示意性流程图;
图5是根据本申请实施例的信号处理方法的示意性流程图;
图6是根据本申请实施例的信号处理方法的示意性流程图;
图7是根据本申请实施例的信号处理方法的示意性流程图;
图8是根据本申请实施例的信号处理方法的示意性流程图;
图9是根据本申请实施例的信号处理方法的示意图;
图10是根据本申请实施例的信号处理方法的示意图;
图11是根据本申请实施例的信号处理装置的示意图;
图12是根据本申请实施例的信号处理装置的结构示意图;
图13是根据本申请实施例的信号处理装置的结构示意图;
图14是根据本申请实施例的信号处理装置的结构示意图;
图15是根据本申请实施例的通信设备的结构示意图;
图16是根据本申请实施例的通信设备的结构示意图;
图17是根据本申请实施例的通信设备的结构示意图。
具体实施方式
目前,在反向散射通信系统中,反向散射通信接收设备在接收反向散射通信发送设备发送的反向散射信号时,还可以同时接收到干扰信号。具体而言,在单基地反向散射通信(Monostatic Backscatter Communication System,MBCSs)架构中,射频源和反向散射通信接收设备是同一个设备,射频源(反向散射通信接收设备)一方面向外发射射频载波信号为反向散射通信发送设备提供能量和目标载波,另一方面还要接收反向散射通信发送设备反向散射传输的有用的反向散射信号,这样,射频源(反向散射通信接收设备)发送的射频载波信号和接收到的反向散射信号将同时在天线上,且这两个信号的频率相同,射频载波信号的信号强度远大于接收到的有用反向散射信号的信号强度,导致射频源(反向散射通信接收设备)前端的载波泄露,产生自干扰信号。其中,产生自干扰信号的原因可以包含三个因素:(1)收发之间有限的隔离度使得发射端载波泄露到接收前端;(2)天线的失配造成载波信号反射到接收前端;(3)环境对载波信号的反射再次进入接收天线。
在双基地反向散射通信(Bistatic Backscatter Communication Systems,BBCSs)架构中,射频源和反向散射通信接收设备是物理分离的两个设备,因此,不存在单基地反向散射通信架构中的自干扰信号,但是却存在射频源到反向散射通信接收设备之间的直接链路干扰,并且,由于该直接链路干扰可能是经过调制的信号,且反向散射通信接收设备一般不知道直接链路信号的调制特性,因此消除直接链路干扰的挑战更大。
为了消除反向散射通信接收设备接收到的自干扰信号,在相关技术中,可以在射频源(反向散射通信接收设备)中将收发通道隔离,比如采用收、发天线分离的双天线结构,或采用多端口的环形器,或采用耦合器等。对于已经泄露出来的载波,可以进一步采用载波消除技术或自干扰消除技术进行载波泄露消除,比如,可以采用接收双路消除法,或负反馈环路法,或死区放大器抵消法等,从而提高接收机的灵敏度。
为了消除反向散射通信接收设备接收到的直接链路干扰信号,在相关技术中,可以将直接链路干扰信号当成噪声,并且使用硬判决来进行解调,或者,也可以基于射频载波信号的时域结构和频域结构特性并联合反向散射基带信号设计,使得反向散射通信接收设备能够有效的消除强直接链路干扰。
然而,针对目前的自干扰信号消除方案,由于其大多依赖于收发通道隔离或是设计载波消除电路,因此干扰消除的程度依赖于硬件的性能与硬件复杂度。针对目前的直接链路干扰信号消除方案,由于其解调性能受限于重复结构与信道时延的差值、接收信噪比、噪声抬升以及判决阈值等因素的影响,尤其判决阈值是与有效重复结构长度、接收信噪比是 相关的,最优判决阈值会随信道的变换而变化,因此该方案的解调复杂度高且容易受到传输环境的影响。
由此可见,目前还缺少一种有效的技术方案能够对反向散射通信接收设备接收到的自干扰信号或直接链路干扰信号进行有效消除。
为了解决上述技术问题,本申请实施例提供一种信号处理方法及通信设备,第一通信设备在向第二通信设备发送信号时,可以基于指示的第一扩频序列对原始信号进行扩频得到第一信号,并将第一信号发送给第二通信设备,第二通信设备在向第三通信设备发送反向散射信号时,可以根据反向散射信号和指示的第二扩频序列生成第二信号,并将第二信号发送给第三通信设备,第三通信设备在接收到第一信号和第二信号后,可以根据指示的第三扩频序列对第一信号和第二信号进行解扩频。由于第一信号和第二信号都是经过扩频序列处理后的信号,因此,第三通信设备在基于扩频序列对第一信号和第二信号进行解扩频时,可以基于扩频序列的特性消除其中的干扰信号并恢复有用的反向散射信号,实现对干扰信号的有效消除,保证了反向散射通信的通信性能,提高反向散射通信的传输效率、传输距离和可靠性传输。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统,WiFi系统、RFID系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、 膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(evolved Node B,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
图2示出本申请实施例可应用的一种反向散射通信系统的框图。反向散射通信系统中包括射频源21、反向散射通信发送设备22和反向散射通信接收设备23,射频源21可以为反向散射通信发送设备22提供射频载波源,反向散射通信发送设备22可以对射频源21发送的射频信号进行反向调制并发送给反向散射通信接收设备23,反向散射通信接收设备23对接收到的信号进行解调。其中,射频源21可以是专用的射频源,或图1所示的终端或网络侧设备等,反向散射通信接收设备23可以是读写器,或图1所示的终端或网络侧设备等,发向散射通信发送设备22可以是不产生射频信号(使用射频源的射频信号)的无源设备、或半无源设备,或有源设备,比如传感器、标签(tag)等。需要说明的是,本申请实施例的应用场景可以是单基地反向散射通信的场景,也可以是双基地反向散射通信的场景。在单基地反向散射通信的场景下,图2所示的射频源21和反向散射通信接收设备23为同一个设备,在双基地反向散射通信的场景下,图2所示的射频源21和反向散射通信接收设备23为不同的设备。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的信号处理方法及通信设备进行详细地说明。
如图3所示,本申请实施例提供一种信号处理方法300,该方法可以由第一通信设备执行,该第一通信设备可以是图2所示的射频源21,或反向散射通信接收设备23(在单 基地反向散射通信的场景下),换言之,该信号处理方法可以由安装在射频源或反向散射通信接收设备的软件或硬件来执行,该信号处理方法包括如下步骤。
S302:第一通信设备根据第一指示信息确定第一扩频序列。
第一通信设备是提供射频载波源的设备。具体而言,在单基地反向散射通信架构中,第一通信设备可以是射频源和反向散射通信接收设备(射频源和反向散射通信接收设备是同一个设备),在双基地反向散射通信架构中,第一通信设备可以是射频源。
本申请实施例中,第一通信设备在发送原始信号之前,可以根据第一指示信息确定第一扩频序列。第一扩频序列可以用于第一通信设备对原始信号进行扩频,该原始信号可以是射频载波信号等。
第一指示信息可以用于指示第一扩频序列的序列类型和序列长度。其中,第一扩频序列的序列类型可以是m序列、Gold序列、Walsh序列、伪随机噪声(Pseudo-noise,PN)序列、Bent序列、Kasami序列、序列零相关区(zero correlation zone,ZCZ)序列、多相正交序列、完全互补码、混沌序列中的任一种,可选地,该第一扩频序列的序列类型也可以是其他序列,这里不做具体限定。
可选地,作为一个实施例,上述第一指示信息可以由第四通信设备配置或指示,该第四通信设备具体可以是第一通信设备、第二通信设备、第三通信设备或第三方网络设备。也就是说,第一通信设备可以自行配置或指示其使用的第一扩频序列,或者由其他通信设备向第一通信设备配置或指示第一扩频序列。其中,第二通信设备可以是反向散射通信发送设备,第三通信设备可以是反向散射通信接收设备,第三方网络设备可以是除射频源、反向散射通信发送设备和反向散射通信接收设备以外的其他设备,比如可以是基站、中继设备、读写器设备或其他终端设备等。
可选地,作为一个实施例,在第一指示信息由第四通信设备配置或指示,且第四通信设备不为第一通信设备的情况下,第一通信设备根据第一指示信息确定第一扩频序列之前,所述方法还包括:
接收第一指示信息。
也就是说,在第一指示信息由第一通信设备以外的其他通信设备配置或指示的情况下,第一通信设备在根据第一指示信息确定第一扩频序列之前,还需要接收第一指示信息。其中,第一指示信息可以由其他通信设备通过无线资源控制(Radio Resource Control,RRC)信令、介质访问控制单元(Medium Access Control Control Element,MAC CE)、下行链路控制信息(Downlink Control Information,DCI)、旁链路控制信息(Sidelink Control Information,SCI)以及前导序列中的至少一种方式进行配置或指示。
S304:第一通信设备根据第一扩频序列对原始信号进行扩频生成第一信号。
第一通信设备在确定第一扩频序列后,可以使用第一扩频序列对原始信号进行扩频处理,得到第一信号。
S306:第一通信设备向第二通信设备发送第一信号,第一通信设备是给第二通信设备 提供射频载波源的设备。
第二通信设备可以是反向散射通信发送设备,第一通信设备为第二通信设备提供射频载波源。第一通信设备在使用第一扩频序列对原始信号扩频得到第一信号后,可以将第一信号发送给第二通信设备。
可选地,作为一个实施例,第一通信设备还可以将第一通信设备使用的第一扩频序列指示给第二通信设备,或者是指示给第二通信设备和第三通信设备,该第三通信设备为反向散射通信接收设备。具体可以包括:
在第一通信设备与第三通信设备为不同设备的情况下,第一通信设备向第二通信设备以及第三通信设备发送第二指示信息;
在第一通信设备与第三通信设备为同一个设备的情况下,第一通信设备向第二通信设备发送第二指示信息;
其中,第二指示信息用于指示第一扩频序列的序列类型和序列长度。
具体而言,在单基地反向散射通信架构中,第一通信设备与第三通信设备是同一个设备,即射频源和反向散射通信接收设备为同一个不同的设备,在这种情况下,第一通信设备在发送第二指示信息时,可以仅向第二通信设备发送第二指示信息。在双基地反向散射通信架构中,第一通信设备与第三通信设备是不同的设备,即射频源和反向散射通信接收设备是不同的设备,在这种情况下,第一通信设备在发送第二指示信息时,可以向第二通信设备和第三通信设备发送第二指示信息。
可选地,作为一个实施例,第一通信设备在向第二通信设备,或向第二通信设备和第三通信设备发送第二指示信息时,可以通过RRC信令、MAC CE、DCI、SCI以及前导序列中的至少一种方式发送第二指示信息。
需要说明的是,上述第一通信设备向第二通信设备,或向第二通信设备和第三通信设备发送第二指示信息的场景,可以是第四通信设备未统一向第二通信设备和第三通信设备配置或指示扩频序列的场景,在这种情况下,第一通信设备需要向第二通信设备,或向第二通信设备和第三通信设备发送第二指示信息,以便第二通信设备可以基于第二指示信息确定第二扩频序列,第三通信设备可以基于第二指示信息确定第三扩频序列,具体可以参见图4和图5所示实施例中的相应内容,这里不再详细说明。若第四通信设备统一向第二通信设备和第三通信设备配置或指示扩频序列,那么第一通信设备可以无需向第二通信设备,或向第二通信设备和第三通信设备发送第二指示信息,以避免传输资源浪费。
在本申请实施例中,第一通信设备在向第二通信设备发送信号时,可以基于指示的扩频序列对原始信号进行扩频得到第一信号,并将第一信号发送给第二通信设备。这样,通过使用扩频序列对信号进行处理,可以使得第三通信设备在对接收到的信号进行解扩频时,可以基于扩频序列的特性消除其中的干扰信号并恢复有用的反向散射信号,实现对干扰信号的有效消除,保证了反向散射通信的通信性能,提高反向散射通信的传输效率、传输距离和可靠性传输。
如图4所示,本申请实施例提供一种信号处理方法400,该方法可以由第二通信设备执行,该第二通信设备可以是图2所示的反向散射通信发送设备22,换言之,该信号处理方法可以由安装在反向散射通信发送设备22的软件或硬件来执行,该信号处理方法包括如下步骤。
S402:第二通信设备接收第一信号,第一信号由第一通信设备根据第一扩频序列对原始信号进行扩频后生成。
第一通信设备在根据第一扩频序列生成第一信号后,可以将第一信号发送给第二通信设备,第二通信设备可以接收该第一信号。其中,第一通信设备根据第一扩频序列生成第一信号的具体实现方式可以参见图3所示的实施例,这里不再重复说明。
S404:第二通信设备根据第三指示信息确定第二扩频序列。
第二通信设备在接收第一信号后,可以根据第三指示信息确定第二扩频序列。第二扩频序列可以用于第二通信设备基于反向散射调制信号生成第二信号,反向散射调制信号由第二通信设备通过对第一信号进行调制与反向散射后生成,第二信号用于第二通信设备发送给第三通信设备。
可选地,作为一个实施例,第三指示信息可以由第一通信设备指示,在第三指示信息由第一通信设备指示的情况下,第三指示信息可以用于指示第一扩频序列的序列类型和序列长度。其中,这里的第三指示信息可以是图3所示实施例中的第二指示信息。
可选地,作为一个实施例,第三指示信息也可以由第四通信设备配置或指示,该第四通信设备可以是第一通信设备、第二通信设备、第三通信设备或第三方网络设备。也就是说,第三指示信息可以由第二通信设备自行配置或指示,也可以由其他通信设备配置或指示。在第三指示信息由第四通信设备配置或指示的情况下,该第三指示信息可以用于指示第二扩频序列的序列类型和序列长度。其中,第二扩频序列的序列类型与第一扩频序列的序列类型不同,具体而言,第二扩频序列的序列类型可以是m序列、Gold序列、Walsh序列、PN序列、Bent序列、Kasami序列、序列零相关区序列ZCZ、多相正交序列、完全互补码、混沌序列中的任一种,此外,第二扩频序列的序列类型也可以是其他类型,只要与第一扩频序列的序列类型不同即可,这里不做具体限定。
可选地,作为一个实施例,在第三指示信息由第一通信设备指示的情况下,或由第四通信设备配置或指示,且第四通信设备不为第二通信设备的情况下,第二通信设备在根据第三指示信息确定第二扩频序列之前,所述方法还包括:
接收第三指示信息。
其中,第三指示信息可以通过RRC信令、MAC CE、DCI、SCI以及前导序列中的至少一种方式进行配置或指示。
可选地,作为一个实施例,在第三指示信息由第一通信设备指示,且该第三指示信息用于指示第一扩频序列的序列类型和序列长度的情况下,第二通信设备在根据第三指示信息确定第二扩频序列时,可以先根据第三指示信息确定第一扩频序列,然后将与第一扩频 序列的序列类型不同的其他扩频序列作为第二扩频序列。其中,第二扩频序列的序列长度可以与第一扩频序列的序列长度相同或不同。
可选地,作为一个实施例,在第三指示信息由第四通信设备指示,且该第三指示信息用于指示第二扩频序列的序列类型和序列长度的情况下,第二通信设备在根据第三指示信息确定第二扩频序列时,可以根据第三指示信息指示的序列类型和序列长度确定第二扩频序列。
S406:第二通信设备根据第二扩频序列对反向散射调制信号进行扩频生成第二信号,反向散射调制信号通过对第一信号进行调制与反向散射后生成。
第二通信设备在接收到第一信号后,可以基于基带信号对第一信号进行反向散射调制,从而生成反向散射信号。在生成反向散射信号后,可以基于S304中确定的第二扩频序列对反向散射信号进行扩频并生成第二信号。
S408:第二通信设备向第三通信设备发送第二信号。
第三通信设备可以是反向散射通信接收设备。第二通信设备在生成第二信号后,可以将第二信号发送给第三通信设备,以便第三通信设备进行解扩频,具体可以参见图5所示的实施例,这里不再详细说明。
可选地,作为一个实施例,在第二扩频序列由第二通信设备根据第一通信设备指示的第一扩频序列确定的情况下,第二通信设备还可以包括:
向第三通信设备发送第四指示信息。
第四指示信息用于指示第二扩频序列的序列类型和序列长度、或第三扩频序列的序列类型和序列长度,第三扩频序列为第一扩频序列和第二扩频序列的克罗内克Kronecker乘积。
可选地,作为一个实施例,第二通信设备在向第三通信设备发送第四指示信息时,可以通过RRC信令、MAC CE、DCI、SCI以及前导序列中的至少一种方式向第三通信设备发送第四指示信息。
在本申请实施例中,第一通信设备可以基于指示的扩频序列对原始信号进行扩频得到第一信号,并将第一信号发送给第二通信设备,第二设备对第一信号进行调制和反向散射后生成反向散射信号,并基于指示的第二扩频序列和反向散射信号生成第二信号发送给第三通信设备。这样,通过使用扩频序列对信号进行处理,可以使得第三通信设备在对接收到的信号进行解扩频时,可以基于扩频序列的特性消除其中的干扰信号并恢复有用的反向散射信号,实现对干扰信号的有效消除,保证了反向散射通信的通信性能,提高反向散射通信的传输效率、传输距离和可靠性传输。
如图5所示,本申请实施例提供一种信号处理方法500,该方法可以由第三通信设备执行,该第三通信设备可以是图2所示的反向散射通信接收设备23,或射频源21(在单基地反向散射通信架构的场景下),换言之,该信号处理方法可以由安装在反向散射通信接收设备或射频源的软件或硬件来执行,该信号处理方法包括如下步骤。
S502:第三通信设备接收第一信号和第二信号,第一信号由第一通信设备根据第一扩频序列对原始信号进行扩频后生成,第二信号由第二通信设备根据第二扩频序列对反向散射调制信号进行扩频后生成,反向散射调制信号由第二通信设备对第一信号进行调制与反向散射后生成。
第一通信设备在根据第一扩频序列对原始信号进行扩频并生成第一信号后,可以将第一信号发送给第二通信设备。第二通信设备在接收到第一信号后,可以对第一信号进行调制与反向散射并生成反向散射信号,然后根据第二扩频序列对反向散射信号进行扩频生成第二信号,并将第二信号发送给第三通信设备。其中,第一通信设备生成第一信号的具体实现方式可以参见图3所示的实施例,第二通信设备生成第二信号的具体实现方式可以参见图4所示的实施例,这里不再重复说明。
针对第三通信设备而言,其在接收信号时,不仅可以接收到第二通信设备发送的第二信号,还可以接收到第一通信设备发送的第一信号。其中,针对第三通信设备而言第二信号是有用信号,而第一信号是需要消除的干扰信号,该干扰信号可以是自干扰信号(针对单基地反向散射通信架构而言)或直接链路干扰信号(针对双基地反向散射通信架构而言)。
S504:第三通信设备根据第五指示信息确定第三扩频序列。
第三通信设备在接收到第一信号和第二信号后,可以根据第五指示信息确定第三扩频序列。第三扩频序列可以用于第三通信设备对第一信号和第二信号解扩频,从而消除其中的干扰信号并恢复有用的反向散射信号。
可选地,作为一个实施例,第五指示信息可以由第四通信设备配置或指示。第四通信设备为第一通信设备、第二通信设备、第三通信设备或第三方网络设备。在第五指示信息由第四通信设备配置或指示的情况下,第五指示信息可以用于指示第三扩频序列的序列类型和序列长度。
可选地,作为一个实施例,第五指示信息也可以由第二通信设备指示。在第五指示信息由第二通信设备指示的情况下,第五指示信息可以用于指示第二扩频序列的序列类型和序列长度、或第三扩频序列的序列类型和序列长度。这里的第五指示信息可以是图3所示实施例中的第四指示信息。其中,第二扩频序列的序列类型和第一扩频序列的序列类型不同,第三扩频序列为第一扩频序列和第二扩频序列的克罗内克Kronecker乘积,第一扩频序列或第二扩频序列的序列类型可以是m序列、Gold序列、Walsh序列、PN序列、Bent序列、Kasami序列、序列零相关区序列ZCZ、多相正交序列、完全互补码、混沌序列中的任一种,此外,也可以是其他序列类型,只要保证第一扩频序列的序列类型和第二扩频序列的序列类型不同即可。
可选地,作为一个实施例,在第五指示信息由第二通信设备指示,或由第四通信设备配置或指示且第四通信设备不为第三通信设备的情况下,第三通信设备在根据第五指示信息确定第三扩频序列之前,还包括:
接收第五指示信息。
其中,第五指示信息是由第二通信设备或第四通信设备通过RRC信令、MAC CE、DCI、SCI以及前导序列中的至少一种方式进行配置或指示。
第三通信设备在根据第五指示信息确定第三扩频序列时,可选地,作为一个实施例,在第五指示信息由第二通信设备指示,且第五指示信息用于指示第二扩频序列的序列类型和序列长度的情况下,可以包括:
根据第五指示信息确定第二扩频序列;
根据第六指示信息确定第一扩频序列,第六指示信息用于指示第一扩频序列的序列类型和序列长度;
将第一扩频序列和第二扩频序列进行克罗内克Kronecker相乘得到第三扩频序列。
也就是说,在第五指示信息用于指示第二扩频序列的序列类型和序列长度的情况下,第三通信设备需要基于第五指示信息和第六指示信息共同确定第三扩频序列。
第六指示信息可以由第一通信设备指示,或由第四通信设备配置或指示,第四通信设备为第一通信设备、第二通信设备、第三通信设备或第三方网络设备。其中,在第六指示信息由第一通信设备指示的情况下,该第六指示信息可以是图3所示实施例中的第二指示信息。可选地,在第六指示信息由第一通信设备指示,或由第四通信设备配置或指示且第四通信设备不为第三通信设备的情况下,第三通信设备在根据第六指示信息确定第一扩频序列之前,还可以接收该第六指示信息,该第六指示信息可以由第一通信设备或第四通信设备通过RRC信令、MAC CE、DCI、SCI以及前导序列中的至少一种方式进行配置或指示。
第三通信设备在根据第五指示信息和第六指示信息确定第三扩频序列时,具体地,可以根据第五指示信息指示的序列类型和序列长度确定第二扩频序列,以及根据第六指示信息指示的序列类型和序列长度确定第一扩频序列,然后将第一扩频序列和第二扩频序列进行克罗内克Kronecker相乘,相乘得到的扩频序列即为第三扩频序列。
可选地,作为一个实施例,在第五指示信息由第二通信设备指示,且第五指示信息用于指示第三扩频序列的序列类型和序列长度的情况下,或在第五指示信息由第四通信设备配置或指示,且第五指示信息用于指示第三扩频序列的序列类型和序列长度的情况下,第三通信设备在根据第五指示信息确定第三扩频序列时,可以包括:
根据第五指示信息确定第三扩频序列。即根据第五指示信息指示的序列类型和序列长度确定第三扩频序列。
S506:第三通信设备根据第三扩频序列对第一信号以及第二信号进行解扩频。
第三通信设备在基于S504中的内容确定第三扩频序列后,可以根据第三扩频序列对第一信号以及第二信号进行解扩频,解扩频的具体实现方式可以参见相关技术中的具体实现,这里不再详细说明。
需要说明的是,在本申请实施例中,第一信号基于第一扩频序列对原始信号进行扩频后得到,第二信号基于第二扩频序列对反向散射信号进行扩频后得到,反向散射信号通过 对第一信号进行调制与反向散射后生成,即第二信号是基于第一扩频序列和第二扩频序列的克罗内克Kronecker乘积生成的信号,等价为第二信号是基于第三扩频序列生成的信号。在这种情况下,第三通信设备在根据第三扩频序列对第一信号和第二信号进行解扩频时,由于第三扩频序列和第一扩频序列是正交的,与第三扩频序列本身不是正交的,因此,针对第一信号而言,可以利用第三扩频序列和第一信号中的第一扩频序列正交或互相关的特性消除第一信号,从而实现消除干扰信号的目的,针对第二信号而言,可以利用第三扩频序列和第二信号中的第三扩频序列本身非正交或自相关的特性恢复第二信号中的反向散射信号,从而得到有用的反向散射信号。
在本申请实施例中,第一通信设备在向第二通信设备发送信号时,可以基于指示的第一扩频序列对原始信号进行扩频得到第一信号,并将第一信号发送给第二通信设备,第二通信设备在向第三通信设备发送反向散射信号时,可以根据反向散射信号和指示的第二扩频序列生成第二信号,并将第二信号发送给第三通信设备,第三通信设备在接收到第一信号和第二信号后,可以根据指示的第三扩频序列对第一信号和第二信号进行解扩频。由于第一信号和第二信号都是经过扩频序列处理后的信号,因此,第三通信设备在基于扩频序列对第一信号和第二信号进行解扩频时,可以基于扩频序列的特性消除其中的干扰信号并恢复有用的反向散射信号,实现对干扰信号的有效消除,保证了反向散射通信的通信性能,提高反向散射通信的传输效率、传输距离和可靠性传输。
如图6所示,本申请实施例提供一种信号处理方法600,该方法可以由第四通信设备执行,该第四通信设备可以是图2所示的射频源21、或反向散射通信接收设备23、或反向散射通信发送设备22、或第三方网络设备,第三方网络设备可以是图1所示实施例中的终端或网络侧设备,换言之,该信号处理方法可以由安装在射频源、或反向散射通信接收设备、或反向散射通信发送设备、或第三方网络设备的软件或硬件来执行,该信号处理方法包括如下步骤。
S602:第四通信设备向第一通信设备、第二通信设备和第三通信设备配置或指示第一扩频序列、第二扩频序列和第三扩频序列中的至少一项。
第四通信设备可以是第一通信设备、第二通信设备、第三通信设备或第三方网络设备。第一通信设备可以是射频源,第二通信设备可以是反向散射通信发送设备,第三通信设备可以是反向散射通信接收设备,第三方网络设备可以是除射频源、反向散射通信发送设备和反向散射通信接收设备以外的其他设备,比如可以是基站、中继设备、读写器设备或其他终端设备等。本申请实施例中,第四通信设备可以通过静态或半静态的方式向第一通信设备、第二通信设备和第三通信设备统一配置或指示第一扩频序列、第二扩频序列和第三扩频序列中的至少一项。
可选地,作为一个实施例,第四通信设备可以向第一通信设备配置或指示第一扩频序列,向第二通信设备配置或指示第二扩频序列,向第三通信设备配置或指示第三扩频序列。第一扩频序列用于第一通信设备对原始信号进行扩频生成第一信号,第二扩频序列用于第 二通信设备对反向散射调制信号进行扩频生成第二信号,反向散射调制信号由第二通信设备对第一信号进行调制与反向散射后生成,第三扩频序列用于第三通信设备对第一信号和第二信号进行解扩频。其中,关于第一扩频序列、第二扩频序列和第三扩频序列的详细说明可以参见图2至图4实施例中的相应内容,第一通信设备基于第四通信设备指示的第一扩频序列生成第一信号的具体实现可以参见图3所示的实施例,第二通信设备基于第四通信设备指示的第二扩频序列生成第二信号的具体实现可以参见图4所示的实施例,第三通信设备基于第四通信设备指示的第三扩频序列进行解扩频的具体实现可以参见图5所示的实施例,这里都不再详细说明。
需要说明的是,在其他实现方式中,第四通信设备向第一通信设备至第三通信设备配置的扩频序列还可以是其他组合。比如,第四通信设备可以向第一通信设备配置或指示第一扩频序列,向第二通信设备配置或指示第二扩频序列,向第三通信设备配置或指示第一扩频序列和第二扩频序列。这里不再一一举例说明。
可选地,作为一个实施例,第四通信设备可以通过RRC信令、MAC CE、DCI、SCI或前导序列中的至少一种方式向第一通信设备、第二通信设备和第三通信设备配置或指示第一扩频序列、第二扩频序列和第三扩频序列中的至少一项。
可选地,作为一个实施例,第四通信设备在配置或指示第一扩频序列时,具体可以是配置或指示第一扩频序列的序列类型和序列长度,在配置或指示第二扩频序列时,具体可以是配置或指示第二扩频序列的序列类型和序列长度,在配置或指示第三扩频序列时,具体可以是配置或指示第三扩频序列的序列类型和序列长度。其中,第一扩频序列的序列类型和第二扩频序列的序列类型不同,第三扩频序列为第一扩频序列和第二扩频序列的克罗内克Kronecker乘积。第一扩频序列的序列类型或第二扩频序列的序列类型可以是m序列、Gold序列、Walsh序列、PN序列、Bent序列、Kasami序列、序列零相关区序列ZCZ、多相正交序列、完全互补码、混沌序列中的任一种,此外,也可以是其他序列类型,只要保证第一扩频序列的序列类型和第二扩频序列的序列类型不同即可。
在本申请实施例中,第四通信设备可以向第一通信设备、第二通信设备和第三通信设备统一配置或指示各自使用的扩频序列,第一通信设备在向第二通信设备发送信号时,可以基于指示的第一扩频序列对原始信号进行扩频得到第一信号,并将第一信号发送给第二通信设备,第二通信设备在向第三通信设备发送反向散射信号时,可以根据反向散射信号和指示的第二扩频序列生成第二信号,并将第二信号发送给第三通信设备,第三通信设备在接收到第一信号和第二信号后,可以根据指示的第三扩频序列对第一信号和第二信号进行解扩频。由于第一信号和第二信号都是经过扩频序列处理后的信号,因此,第三通信设备在基于扩频序列对第一信号和第二信号进行解扩频时,可以基于扩频序列的特性消除其中的干扰信号并恢复有用的反向散射信号,实现对干扰信号的有效消除,保证了反向散射通信的通信性能,提高反向散射通信的传输效率、传输距离和可靠性传输。
本申请实施例提供的技术方案中,第一通信设备、第二通信设备和第三通信设备各自 使用的扩频序列可以通过静态或半静态的方式配置或指示,也可以通过动态的方式进行指示。为了便于理解,可以参见图7和图8。
图7是根据本申请实施例的信号处理方法的示意性流程图。图7所示的实施例中,可以通过静态或半静态的方式配置或指示第一通信设备、第二通信设备和第三通信设备各自使用的扩频序列,具体可以包括以下步骤。
S701:第四通信设备向第一通信设备配置第一扩频序列,向第二通信设备配置第二扩频序列,向第三通信设备配置第三扩频序列。
第四通信设备可以是第一通信设备、第二通信设备、第三通信设备或第三方网络设备。第四通信设备可以通过第一指示信息向第一通信设备配置第一扩频序列的序列类型和序列长度,通过第三指示信息向第二通信设备配置第二扩频序列的序列类型和序列长度,通过第五指示信息向第三通信设备配置第三扩频序列的序列类型和序列长度。其中,第一扩频序列的序列类型和第二扩频序列的序列类型不同,第三扩频序列为第一扩频序列和第二扩频序列的克罗内克Kronecker乘积,第一扩频序列的序列类型或第二扩频序列的序列类型可以是m序列、Gold序列、Walsh序列、PN序列、Bent序列、Kasami序列、序列零相关区序列ZCZ、多相正交序列、完全互补码、混沌序列中的任一种。
S702:第一通信设备根据第一指示信息确定第一扩频序列。
S703:第一通信设备根据第一扩频序列对原始信号进行扩频生成第一信号。
S704:第一通信设备向第二通信设备发送第一信号。
S705:第二通信设备根据第三指示信息确定第二扩频序列。
S706:第二通信设备根据第二扩频序列和反向散射调制信号生成第二信号。
反向散射调制信号由第二通信设备对第一信号进行调制与反向散射后生成。
S707:第二通信设备向第三通信设备发送第二信号。
S708:第三通信设备接收第一信号和第二信号。
S709:第三通信设备根据第五指示信息确定第三扩频序列。
S710:第三通信设备根据第三扩频序列对第一信号以及第二信号进行解扩频。
上述S701至S710的具体实现方式可以参见图3至图6所示实施例中相应步骤的具体实现,这里不再详细说明。
图8是根据本申请实施例的信号处理方法的示意性流程图。图8所示的实施例中,可以通过动态的方式指示第一通信设备、第二通信设备和第三通信设备各自使用的扩频序列,具体可以包括以下步骤。
S801:第一通信设备根据第一指示信息确定第一扩频序列。
第一指示信息可以由第四通信设备指示,第四通信设备可以是第一通信设备、第二通信设备、第三通信设备或第三方网络设备。
S802:第一通信设备根据第一扩频序列对原始信号进行扩频生成第一信号。
S803:第一通信设备向第二通信设备发送第一信号。
S804:第一通信设备向第二通信设备和第三通信设备发送第二指示信息,第二指示信息用于指示第一扩频序列的序列类型和序列长度。
需要说明的是,在第一通信设备和第三通信设备为同一个设备的情况下(单基地反向散射通信架构),第一通信设备可以无需向第三通信设备发送第二指示信息,这里仅以第一通信设备和第三通信设备不为同一个设备为例进行说明。
S805:第二通信设备根据第二指示信息确定第二扩频序列。
S806:第二通信设备根据第二扩频序列和反向散射调制信号生成第二信号。
反向散射调制信号由第二通信设备对第一信号进行调制与反向散射后生成。
S807:第二通信设备向第三通信设备发送第二信号。
S808:第二通信设备向第三通信设备发送第四指示信息。
第四指示信息用于指示第二扩频序列的序列类型和序列长度、或第三扩频序列的序列类型和序列长度,第三扩频序列为第一扩频序列和第二扩频序列的克罗内克Kronecker乘积。
S809:第三通信设备接收第一信号和第二信号。
S810:第三通信设备根据第四指示信息确定第三目标序列,或根据第二指示信息和第四指示信息确定第三扩频序列。
S811:第三通信设备根据第三扩频序列对第一信号以及第二信号进行解扩频。
上述S801至S811的具体实现方式可以参见图3至图6所示实施例中相应步骤的具体实现,这里不再详细说明。
为了便于理解本申请实施例提供的技术方案,以下将分别以单基地反向散射通信架构和双基地反向散射通信架构为例进行说明。
图9是根据本申请实施例的信号处理方法的示意图。图9所示的反向散射通信系统为单基地反向散射通信架构,图9以第四通信设备统一向第一通信设备、第二通信设备和第三通信设备配置或指示扩频序列的情况为例进行说明。
图9中,第一通信设备在向第二通信设备发送信号时,可以使用第四通信设备配置或指示的第一扩频序列c1(k)对原始信号进行扩频生成第一信号,该第一信号可以表示为:
c1(k)为长度为M的扩频序列。
第一通信设备在生成第一信号后,可以将第一信号发送给第二通信设备。
第二通信设备接收第一信号后,接收到的第一信号可以表示为:
h1表示第二通信设备和第一通信设备之间的信道,n1(k)为噪声信号。
第二通信设备以基带信号b(n)对接收到的信号进行反向散射调制,生成反向散射信号,然后基于第四通信设备配置或指示的第二扩频序列c2(l)对反向散射信号进行扩频生成第二信号,第二信号可以表示为:
其中,第二扩频序列c2(l)的长度为N,c3(p)是第一扩频序列和第二扩频序列经过克罗内克(Kronecker)相乘后生成的长度为M×N的复合扩频序列,即第三扩频序列,c3(p)可以表示为:
第二通信设备在生成第二信号后,可以将第二信号发送给第三通信设备。
第三通信设备(即第一通信设备)在接收信号时,可以接收到第一信号以及第二信号,接收到的信号可以表示为:
其中,上述信号中的第一项即包括载波泄露带来的自干扰信号,也包括环境多径引起的多径干扰信号,第二项为第三通信设备接收到的经过双程链路衰减且调制反向散射信号的信号项,h3表示第三通信设备收发之间的信道,h2表示第二通信设备和第三通信设备之间的信道。
第三通信设备在接收到第一信号和第二信号后,可以根据第四通信设备配置或指示的第三扩频序列c4(p)对第一信号进行解扩频,具体可以表示为:
由于c4(p)等于c3(p),根据复合序列的自相关和互相关特性,上式中的第一项为零,第二项只剩下h2(n)b(n)h1(n)x(n),第三项为噪声项,从而消除了干扰信号,对消除干扰后的信号d(n)进行信号解调制即可恢复基带信号b(n)。
图10是根据本申请实施例的信号处理方法的示意图。图10所示的反向散射通信系统为双基地反向散射通信架构,图10以动态指示第一通信设备、第二通信设备和第三通信设备各自使用的扩频序列为例进行说明。
图10中,第一通信设备在向第二通信设备发送信号时,可以根据第一指示信息自主选择第一扩频序列c1(k)对原始信号进行扩频生成第一信号,该第一信号可以表示为:
c1(k)为长度为M的扩频序列。
第一通信设备在生成第一信号后,可以将第一信号发送给第二通信设备,同时向第二通信设备和第三通信设备发送第二指示信息,第二指示信息用于指示第一扩频序列的序列类型和序列长度。
第二通信设备接收第一信号后,接收到的第一信号可以表示为:
h1表示第二通信设备和第一通信设备之间的信道,n1(k)为噪声信号。
第二通信设备以基带信号b(n)对接收到的信号进行调制与反向散射,生成反向散射信号,然后根据第二指示信息确定第二扩频序列c2(l),并根据第二扩频c2(l)对反向散射信号进行扩频生成第二信号,第二信号可以表示为:
其中,第二通信设备根据第二指示信息确定第二扩频序列的具体实现方式可以参见图3所示的实施例,这里不再详细说明。第二扩频序列c2(l)的长度为N,c3(p)是第一扩频序列和第二扩频序列经过克罗内克Kronecker相乘后生成的长度为M×N的复合扩频序列,即第三扩频序列,c3(p)可以表示为:
第二通信设备在生成第二信号后,可以将第二信号发送给第三通信设备,同时,还可以向第三通信设备发送第四指示信息,第四指示信息用于指示第二扩频序列的序列类型和序列长度、或第三扩频序列的序列类型和序列长度,第三扩频序列为第一扩频序列和第二扩频序列的克罗内克Kronecker乘积。
第三通信设备在接收信号时,可以接收到第一信号以及第二信号,接收到的信号可以 表示为:
其中,上述信号中的第一项跨链路干扰或直接链路干扰,第二项为第三通信设备接收到的级联信道的反向散射信号的信号项,h3表示第三通信设备和第一通信设备之间的信道,h2表示第二通信设备和第三通信设备之间的信道。
第三通信设备在接收到第一信号和第二信号后,可以根据第二指示信息和第四指示信息确定第三扩频序列,或根据第四指示信息确定第三扩频序列,具体实现方式可以参见图4所示实施例中的相应内容,这里不再重复说明。在确定第三扩频序列后,可以根据第三扩频序列对第一信号和第二信号进行解扩频,具体可以表示为:
由于c4(p)等于c3(p),根据复合序列的自相关和互相关特性,上式中的第一项为零,第二项只剩下h2(n)b(n)h1(n)x(n),第三项为噪声项,从而消除了干扰信号,对消除干扰后的信号d(n)进行信号解调制即可恢复基带信号b(n)。
在本申请实施例中,第一通信设备在向第二通信设备发送信号时,可以基于指示的第一扩频序列对原始信号进行扩频得到第一信号,并将第一信号发送给第二通信设备,第二通信设备在向第三通信设备发送反向散射信号时,可以根据反向散射信号和指示的第二扩频序列生成第二信号,并将第二信号发送给第三通信设备,第三通信设备在接收到第一信号和第二信号后,可以根据指示的第三扩频序列对第一信号和第二信号进行解扩频。由于第一信号和第二信号都是经过扩频序列处理后的信号,因此,第三通信设备在基于扩频序列对第一信号和第二信号进行解扩频时,可以基于扩频序列的特性消除其中的干扰信号并恢复有用的反向散射信号,实现对干扰信号的有效消除,保证了反向散射通信的通信性能,提高反向散射通信的传输效率、传输距离和可靠性传输。
本申请实施例提供的信号处理方法,执行主体可以为信号处理装置。本申请实施例中以信号处理装置执行信号处理方法为例,说明本申请实施例提供的信号处理装置。
图11是根据本申请实施例的信号处理装置的结构示意图,该装置可以对应于其他实施例中的第一通信设备。如图11所示,装置1100包括如下模块。
确定模块1101,用于根据第一指示信息确定第一扩频序列;
信号处理模块1102,用于根据所述第一扩频序列对原始信号进行扩频生成第一信号;
发送模块1103,用于向第二通信设备发送所述第一信号,所述装置是给所述第二通信设备提供射频载波源的设备。
可选地,作为一个实施例,第一指示信息用于指示所述第一扩频序列的序列类型和序列长度。
可选地,作为一个实施例,所述第一扩频序列的序列类型包括以下任一种:
m序列;Gold序列;Walsh序列;PN序列;Bent序列;Kasami序列;序列零相关区序列ZCZ;多相正交序列;完全互补码;混沌序列。
可选地,作为一个实施例,所述第一指示信息由第四通信设备配置或指示,所述第四通信设备为第一通信设备、所述第二通信设备、第三通信设备或第三方网络设备。
可选地,作为一个实施例,在所述第一指示信息由所述第四通信设备配置或指示,且所述第四通信设备不为所述第一通信设备的情况下,所述装置还包括接收模块,所述接收模块,用于:
接收所述第一指示信息;
其中,所述第一指示信息由所述第四通信设备通过无线资源控制RRC信令、介质访问控制单元MAC CE、下行链路控制信息DCI、旁链路控制信息SCI以及前导序列中的至少一种方式配置或指示。
可选地,作为一个实施例,所述发送模块1103,还用于:
在所述第一通信设备与所述第三通信设备为不同设备的情况下,向所述第二通信设备以及所述第三通信设备发送第二指示信息;
在所述第一通信设备与所述第三通信设备为同一个设备的情况下,向所述第二通信设备发送所述第二指示信息;
其中,所述第二指示信息用于指示所述第一扩频序列的序列类型和序列长度。
可选地,作为一个实施例,所述发送模块1103,用于:
通过RRC信令、MAC CE、DCI、SCI以及前导序列中的至少一种方式发送所述第二指示信息。
根据本申请实施例的装置1100可以参照对应本申请实施例的方法300的流程,并且,该装置1100中的各个单元/模块和上述其他操作和/或功能分别为了实现方法300中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
图12是根据本申请实施例的信号处理装置的结构示意图,该装置可以对应于其他实施例中的第二通信设备。如图12所示,装置1200包括如下模块。
接收模块1201,用于接收第一信号,所述第一信号由第一通信设备根据第一扩频序列对原始信号进行扩频后生成;
确定模块1202,用于根据第三指示信息确定第二扩频序列;
信号处理模块1203,用于根据所述第二扩频序列对反向散射调制信号进行扩频生成第二信号,所述反向散射调制信号通过对所述第一信号进行调制与反向散射后生成;
发送模块1204,用于向第三通信设备发送所述第二信号。
可选地,作为一个实施例,所述第三指示信息由所述第一通信设备指示,所述第三指示信息用于指示所述第一扩频序列的序列类型和序列长度;或,
所述第三指示信息由第四通信设备配置或指示,所述第四通信设备为所述第一通信设备、所述第二通信设备、所述第三通信设备或第三方网络设备,所述第三指示信息用于指示所述第二扩频序列的序列类型和序列长度。
可选地,作为一个实施例,在所述第三指示信息由所述第一通信设备指示的情况下,或在所述第三指示信息由所述第四通信设备配置或指示且所述第四通信设备不为所述第二通信设备的情况下,所述接收模块1201,还用于:
接收所述第三指示信息;
其中,所述第三指示信息通过RRC信令、MAC CE、DCI、SCI以及前导序列中的至少一种方式配置或指示。
可选地,作为一个实施例,所述第二扩频序列的序列类型与所述第一扩频序列的序列类型不同,所述第二扩频序列的序列类型包括以下任一种:
m序列;Gold序列;Walsh序列;PN序列;Bent序列;Kasami序列;序列零相关区序列ZCZ;多相正交序列;完全互补码;混沌序列。
可选地,作为一个实施例,所述发送模块1204,还用于:
向所述第三通信设备发送第四指示信息;
其中,所述第四指示信息用于指示所述第二扩频序列的序列类型和序列长度、或第三扩频序列的序列类型和序列长度,所述第三扩频序列为所述第一扩频序列和所述第二扩频序列的克罗内克(Kronecker)乘积。
可选地,作为一个实施例,所述发送模块1204,用于:
通过RRC信令、MAC CE、DCI、SCI以及前导序列中的至少一种方式向所述第三通信设备发送所述第四指示信息。
根据本申请实施例的装置1200可以参照对应本申请实施例的方法400的流程,并且,该装置1200中的各个单元/模块和上述其他操作和/或功能分别为了实现方法400中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
图13是根据本申请实施例的信号处理装置的结构示意图,该装置可以对应于其他实施例中的第三通信设备。如图13所示,装置1300包括如下模块。
接收模块1301,用于接收第一信号和第二信号,所述第一信号由第一通信设备根据第一扩频序列对原始信号进行扩频后生成,所述第二信号由第二通信设备根据第二扩频序列对反向散射调制信号进行扩频后生成,所述反向散射调制信号由所述第二通信设备对所述第一信号进行调制与反向散射后生成;
确定模块1302,用于根据第五指示信息确定第三扩频序列;
信号处理模块1303,用于根据所述第三扩频序列对所述第一信号以及所述第二信号 进行解扩频。
可选地,作为一个实施例,所述第一扩频序列的序列类型和所述第二扩频序列的序列类型不同,所述第三扩频序列为所述第一扩频序列和所述第二扩频序列的克罗内克(Kronecker)乘积;
其中,所述第一扩频序列的序列类型或所述第二扩频序列的序列类型包括以下任一种:
m序列;Gold序列;Walsh序列;PN序列;Bent序列;Kasami序列;序列零相关区序列ZCZ;多相正交序列;完全互补码;混沌序列。
可选地,作为一个实施例,所述第五指示信息用于指示所述第二扩频序列的序列类型和序列长度、或所述第三扩频序列的序列类型和序列长度。
可选地,作为一个实施例,在所述第五指示信息用于指示所述第二扩频序列的序列类型和序列长度的情况下,所述确定模块1302,用于:
根据所述第五指示信息确定所述第二扩频序列;
根据第六指示信息确定所述第一扩频序列,所述第六指示信息用于指示所述第一扩频序列的序列类型和序列长度;
将所述第一扩频序列和所述第二扩频序列进行克罗内克Kronecker相乘得到所述第三扩频序列。
可选地,作为一个实施例,所述第六指示信息由所述第一通信设备指示;或,
所述第六指示信息由第四通信设备配置或指示,所述第四通信设备为所述第一通信设备、所述第二通信设备、所述第三通信设备或第三方网络设备。
可选地,作为一个实施例,在所述第六指示信息由所述第一通信设备指示,且所述第一通信设备与所述第三通信设备不为同一个设备的情况下,或在所述第六指示信息由所述第四通信设备配置或指示,且所述第四通信设备不为所述第三通信设备的情况下,所述接收模块1301,还用于:
接收所述第六指示信息;
其中,所述第六指示信息通过RRC信令、MAC CE、DCI、SCI以及前导序列中的至少一种方式进行配置或指示。
可选地,作为一个实施例,所述第五指示信息由所述第二通信设备指示,或,
所述第五指示信息由第四通信设备配置或指示,所述第四通信设备为所述第一通信设备、所述第二通信设备、所述第三通信设备或第三方网络设备。
可选地,作为一个实施例,在所述第五指示信息由所述第二通信设备指示的情况下,或在所述第五指示信息由所述第四通信设备配置指示,且所述第四通信设备不为所述第三通信设备的情况下,所述接收模块1301,还用于:
接收所述第五指示信息;
其中,所述第五指示信息通过RRC信令、MAC CE、DCI、SCI以及前导序列中的至少一种方式进行配置或指示。
根据本申请实施例的装置1300可以参照对应本申请实施例的方法500的流程,并且,该装置1300中的各个单元/模块和上述其他操作和/或功能分别为了实现方法500中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
图14是根据本申请实施例的信号处理装置的结构示意图,该装置可以对应于其他实施例中的第四通信设备。如图14所示,装置1400包括如下模块。
配置模块1401,用于向第一通信设备、第二通信设备和第三通信设备配置或指示第一扩频序列、第二扩频序列和第三扩频序列中的至少一项;
其中,所述第一扩频序列用于所述第一通信设备对原始信号进行扩频生成第一信号,所述第二扩频序列用于所述第二通信设备对反向散射调制信号进行扩频生成第二信号,所述反向散射调制信号通过对所述第一信号进行调制与反向散射后生成,所述第三扩频序列用于所述第三通信设备对所述第一信号和所述第二信号进行解扩频。
可选地,作为一个实施例,所述装置为所述第一通信设备、所述第二通信设备、所述第三通信设备或第三方网络设备。
可选地,作为一个实施例,所述配置模块1401,用于:
通过RRC信令、MAC CE、DCI、SCI或前导序列中的至少一种方式配置或指示所述第一扩频序列、所述第二扩频序列和所述第三扩频序列中的至少一项。
可选地,作为一个实施例,所述配置模块1401,用于:
配置或指示所述第一扩频序列的序列类型和序列长度、所述第二扩频序列的序列类型和序列长度和所述第三扩频序列的序列类型和序列长度。
可选地,作为一个实施例,所述第一扩频序列的序列类型和所述第二扩频序列的序列类型不同,所述第三扩频序列为所述第一扩频序列和所述第二扩频序列的克罗内克Kronecker乘积;
其中,所述第一扩频序列的序列类型或所述第二扩频序列的序列类型包括以下任一种:
m序列;Gold序列;Walsh序列;PN序列;Bent序列;Kasami序列;序列零相关区序列ZCZ;多相正交序列;完全互补码;混沌序列。
根据本申请实施例的装置1400可以参照对应本申请实施例的方法600的流程,并且,该装置1400中的各个单元/模块和上述其他操作和/或功能分别为了实现方法600中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
本申请实施例中的信号处理装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的信号处理装置能够实现图3至图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图15所示,本申请实施例还提供一种通信设备1500,包括处理器1501和存储器1502,存储器1502上存储有可在所述处理器1501上运行的程序或指令,例如,该通信设备1500为终端时,该程序或指令被处理器1501执行时实现上述信号处理方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1500为网络侧设备时,该程序或指令被处理器1501执行时实现上述信号处理方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种通信设备,包括处理器和通信接口,处理器用于根据第一指示信息确定第一扩频序列;根据所述第一扩频序列对原始信号进行扩频生成第一信号;所述通信接口用于向第二通信设备发送所述第一信号,所述通信设备是给所述第二通信设备提供射频载波源的设备;或,所述通信接口用于接收第一信号,所述第一信号由第一通信设备根据第一扩频序列对原始信号进行扩频后生成;所述处理器用于根据第三指示信息确定第二扩频序列;根据所述第二扩频序列对反向散射调制信号进行扩频生成第二信号,所述反向散射调制信号通过对所述第一信号进行调制与反向散射后生成;所述通信接口用于向第三通信设备发送所述第二信号;或,所述通信接口用于接收第一信号和第二信号,所述第一信号由第一通信设备根据第一扩频序列对原始信号进行扩频后生成,所述第二信号由第二通信设备根据第二扩频序列对反向散射调制信号进行扩频后生成,所述反向散射调制信号由所述第二通信设备对所述第一信号进行调制与反向散射后生成;所述处理器用于根据第五指示信息确定第三扩频序列;根据所述第三扩频序列对所述第一信号以及所述第二信号进行解扩频;或,所述通信接口用于向第一通信设备、第二通信设备和第三通信设备配置或指示第一扩频序列、第二扩频序列和第三扩频序列中的至少一项;其中,所述第一扩频序列用于所述第一通信设备对原始信号进行扩频生成第一信号,所述第二扩频序列用于所述第二通信设备对反向散射调制信号进行扩频生成第二信号,所述反向散射调制信号通过对所述第一信号进行调制与反向散射后生成,所述第三扩频序列用于所述第三通信设备对所述第一信号和所述第二信号进行解扩频。该通信设备实施例与上述第一通信设备侧方法实施例对应,或与上述第二通信设备侧方法实施例对应,或与上述第三通信设备侧方法实施例对应,或与上述第四通信设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该通信设备实施例中,且能达到相同的技术效果。具体地,图16为实现本申请实施例的一种通信设备的硬件结构示意图。
该通信设备1600包括但不限于:天线单元1601、网络模块1602、音频输出单元1603、输入单元1604、传感器1605、显示单元1606、用户输入单元1607、接口单元1608、存储器1609以及处理器1610等中的至少部分部件。
本领域技术人员可以理解,通信设备1600还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图16中示出的通信设备结构并不构成对通信设备的限定,通信设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的 部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1604可以包括图形处理单元(Graphics Processing Unit,GPU)16041和麦克风16042,GPU16041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1606可包括显示面板16061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板16061。用户输入单元1607包括触控面板16071以及其他输入设备16072中的至少一种。触控面板16071,也称为触摸屏。触控面板16071可包括触摸检测装置和触摸控制器两个部分。其他输入设备16072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,天线单元1601接收来自网络侧设备的下行数据后,可以传输给处理器1610进行处理;另外,天线单元1601可以向网络侧设备发送上行数据。通常,天线单元1601包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1609可用于存储软件程序或指令以及各种数据。存储器1609可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1609可以包括易失性存储器或非易失性存储器,或者,存储器1609可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1609包括但不限于这些和任意其它适合类型的存储器。
处理器1610可包括一个或多个处理单元;可选的,处理器1610集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1610中。
其中,所述处理器1610用于根据第一指示信息确定第一扩频序列;根据所述第一扩频序列对原始信号进行扩频生成第一信号;所述天线单元1601用于向第二通信设备发送所述第一信号,所述通信设备是给所述第二通信设备提供射频载波源的设备;或,
所述天线单元1601用于接收第一信号,所述第一信号由第一通信设备根据第一扩频序列对原始信号进行扩频后生成;所述处理器1610用于根据第三指示信息确定第二扩频 序列;根据所述第二扩频序列对反向散射调制信号进行扩频生成第二信号,所述反向散射调制信号通过对所述第一信号进行调制与反向散射后生成;所述天线单元1601用于向第三通信设备发送所述第二信号;或,
所述天线单元1601用于接收第一信号和第二信号,所述第一信号由第一通信设备根据第一扩频序列对原始信号进行扩频后生成,所述第二信号由第二通信设备根据第二扩频序列对反向散射调制信号进行扩频后生成,所述反向散射调制信号由所述第二通信设备对所述第一信号进行调制与反向散射后生成;所述处理器1610用于根据第五指示信息确定第三扩频序列;根据所述第三扩频序列对所述第一信号以及所述第二信号进行解扩频;或,
所述天线单元1601用于向第一通信设备、第二通信设备和第三通信设备配置或指示第一扩频序列、第二扩频序列和第三扩频序列中的至少一项;其中,所述第一扩频序列用于所述第一通信设备对原始信号进行扩频生成第一信号,所述第二扩频序列用于所述第二通信设备对反向散射调制信号进行扩频生成第二信号,所述反向散射调制信号通过对所述第一信号进行调制与反向散射后生成,所述第三扩频序列用于所述第三通信设备对所述第一信号和所述第二信号进行解扩频。
在本申请实施例中,第一通信设备在向第二通信设备发送信号时,可以基于指示的第一扩频序列对原始信号进行扩频得到第一信号,并将第一信号发送给第二通信设备,第二通信设备在向第三通信设备发送反向散射信号时,可以根据反向散射信号和指示的第二扩频序列生成第二信号,并将第二信号发送给第三通信设备,第三通信设备在接收到第一信号和第二信号后,可以根据指示的第三扩频序列对第一信号和第二信号进行解扩频。由于第一信号和第二信号都是经过扩频序列处理后的信号,因此,第三通信设备在基于扩频序列对第一信号和第二信号进行解扩频时,可以基于扩频序列的特性消除其中的干扰信号并恢复有用的反向散射信号,实现对干扰信号的有效消除,保证了反向散射通信的通信性能,提高反向散射通信的传输效率、传输距离和可靠性传输。
本申请实施例还提供一种通信设备,包括处理器和通信接口,所述处理器用于根据第一指示信息确定第一扩频序列;根据所述第一扩频序列对原始信号进行扩频生成第一信号;所述通信接口用于向第二通信设备发送所述第一信号,所述通信设备是给所述第二通信设备提供射频载波源的设备;或,所述通信接口用于接收第一信号,所述第一信号由第一通信设备根据第一扩频序列对原始信号进行扩频后生成;所述处理器用于根据第三指示信息确定第二扩频序列;根据所述第二扩频序列对反向散射调制信号进行扩频生成第二信号,所述反向散射调制信号通过对所述第一信号进行调制与反向散射后生成;所述通信接口用于向第三通信设备发送所述第二信号;或,所述通信接口用于接收第一信号和第二信号,所述第一信号由第一通信设备根据第一扩频序列对原始信号进行扩频后生成,所述第二信号由第二通信设备根据第二扩频序列对反向散射调制信号进行扩频后生成,所述反向散射调制信号由所述第二通信设备对所述第一信号进行调制与反向散射后生成;所述处理器用于根据第五指示信息确定第三扩频序列;根据所述第三扩频序列对所述第一信号以及所述 第二信号进行解扩频;或,所述通信接口用于向第一通信设备、第二通信设备和第三通信设备配置或指示第一扩频序列、第二扩频序列和第三扩频序列中的至少一项;其中,所述第一扩频序列用于所述第一通信设备对原始信号进行扩频生成第一信号,所述第二扩频序列用于所述第二通信设备对反向散射调制信号进行扩频生成第二信号,所述反向散射调制信号通过对所述第一信号进行调制与反向散射后生成,所述第三扩频序列用于所述第三通信设备对所述第一信号和所述第二信号进行解扩频。该通信设备实施例与上述第一通信设备侧方法实施例对应,或与上述第二通信设备侧方法实施例对应,或与上述第三通信设备侧方法实施例对应,或与上述第四通信设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该通信设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种通信设备。如图17所示,该通信设备1700包括:天线171、射频装置172、基带装置173、处理器174和存储器175。天线171与射频装置172连接。在上行方向上,射频装置172通过天线171接收信息,将接收的信息发送给基带装置173进行处理。在下行方向上,基带装置173对要发送的信息进行处理,并发送给射频装置172,射频装置172对收到的信息进行处理后经过天线171发送出去。
以上实施例中第一通信设备、第二通信设备、第三通信设备和第四通信设备执行的方法可以在基带装置173中实现,该基带装置173包括基带处理器。
基带装置173例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图17所示,其中一个芯片例如为基带处理器,通过总线接口与存储器175连接,以调用存储器175中的程序,执行以上方法实施例中所示的通信设备操作。
该通信设备还可以包括网络接口176,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的通信设备1700还包括:存储在存储器175上并可在处理器174上运行的指令或程序,处理器174调用存储器175中的指令或程序执行图11至图14所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信号处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述信号处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述信号处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种信号处理系统,包括:第一通信设备、第二通信设备、第三通信设备及第四通信设备中的至少两个,所述第一通信设备可用于执行如上述图3所示的信号处理方法的步骤,所述第二通信设备可用于执行如上述图4所示的信号处理方法的步骤,所述第三通信设备可用于执行如上述图5所示的信号处理方法的步骤,所述第四通信设备可用于执行如上述图6所示的信号处理方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (40)

  1. 一种信号处理方法,其中,包括:
    第一通信设备根据第一指示信息确定第一扩频序列;
    所述第一通信设备根据所述第一扩频序列对原始信号进行扩频生成第一信号;
    所述第一通信设备向第二通信设备发送所述第一信号,所述第一通信设备是给所述第二通信设备提供射频载波源的设备。
  2. 根据权利要求1所述的方法,其中,第一指示信息用于指示所述第一扩频序列的序列类型和序列长度。
  3. 根据权利要求1所述的方法,其中,所述第一扩频序列的序列类型包括以下任一种:
    m序列;Gold序列;Walsh序列;伪随机噪声PN序列;Bent序列;Kasami序列;序列零相关区序列ZCZ;多相正交序列;完全互补码;混沌序列。
  4. 根据权利要求1所述的方法,其中,所述第一指示信息由第四通信设备配置或指示,所述第四通信设备为所述第一通信设备、所述第二通信设备、第三通信设备或第三方网络设备。
  5. 根据权利要求4所述的方法,其中,在所述第一指示信息由所述第四通信设备配置或指示,且所述第四通信设备不为所述第一通信设备的情况下,所述第一通信设备根据第一指示信息确定第一扩频序列之前,所述方法还包括:
    接收所述第一指示信息;
    其中,所述第一指示信息由所述第四通信设备通过无线资源控制RRC信令、介质访问控制单元MAC CE、下行链路控制信息DCI、旁链路控制信息SCI以及前导序列中的至少一种方式配置或指示。
  6. 根据权利要求4所述的方法,其中,所述方法还包括:
    在所述第一通信设备与所述第三通信设备为不同设备的情况下,所述第一通信设备向所述第二通信设备以及所述第三通信设备发送第二指示信息;
    在所述第一通信设备与所述第三通信设备为同一个设备的情况下,所述第一通信设备向所述第二通信设备发送所述第二指示信息;
    其中,所述第二指示信息用于指示所述第一扩频序列的序列类型和序列长度。
  7. 根据权利要求6所述的方法,其中,所述第一通信设备发送所述第二指示信息,包括:
    所述第一通信设备通过RRC信令、MAC CE、DCI、SCI以及前导序列中的至少一种方式发送所述第二指示信息。
  8. 一种信号处理方法,其中,包括:
    第二通信设备接收第一信号,所述第一信号由第一通信设备根据第一扩频序列对原始信号进行扩频后生成;
    所述第二通信设备根据第三指示信息确定第二扩频序列;
    所述第二通信设备根据所述第二扩频序列对反向散射调制信号进行扩频生成第二信号,所述反向散射调制信号通过对所述第一信号进行调制与反向散射后生成;
    所述第二通信设备向第三通信设备发送所述第二信号。
  9. 根据权利要求8所述的方法,其中,
    所述第三指示信息由所述第一通信设备指示,所述第三指示信息用于指示所述第一扩频序列的序列类型和序列长度;或,
    所述第三指示信息由第四通信设备配置或指示,所述第四通信设备为所述第一通信设备、所述第二通信设备、所述第三通信设备或第三方网络设备,所述第三指示信息用于指示所述第二扩频序列的序列类型和序列长度。
  10. 根据权利要求9所述的方法,其中,在所述第三指示信息由所述第一通信设备指示的情况下,或在所述第三指示信息由所述第四通信设备配置或指示且所述第四通信设备不为所述第二通信设备的情况下,所述方法还包括:
    接收所述第三指示信息;
    其中,所述第三指示信息通过RRC信令、MAC CE、DCI、SCI以及前导序列中的至少一种方式配置或指示。
  11. 根据权利要求8所述的方法,其中,所述第二扩频序列的序列类型与所述第一扩频序列的序列类型不同,所述第二扩频序列的序列类型包括以下任一种:
    m序列;Gold序列;Walsh序列;PN序列;Bent序列;Kasami序列;序列零相关区序列ZCZ;多相正交序列;完全互补码;混沌序列。
  12. 根据权利要求8所述的方法,其中,所述方法还包括:
    向所述第三通信设备发送第四指示信息;
    其中,所述第四指示信息用于指示所述第二扩频序列的序列类型和序列长度、或第三扩频序列的序列类型和序列长度,所述第三扩频序列为所述第一扩频序列和所述第二扩频序列的克罗内克(Kronecker)乘积。
  13. 根据权利要求12所述的方法,其中,向所述第三通信设备发送第四指示信息,包括:
    通过RRC信令、MAC CE、DCI、SCI以及前导序列中的至少一种方式向所述第三通信设备发送所述第四指示信息。
  14. 一种信号处理方法,其中,包括:
    第三通信设备接收第一信号和第二信号,所述第一信号由第一通信设备根据第一扩频序列对原始信号进行扩频后生成,所述第二信号由第二通信设备根据第二扩频序列对反向散射调制信号进行扩频后生成,所述反向散射调制信号由所述第二通信设备对所述第一信号进行调制与反向散射后生成;
    所述第三通信设备根据第五指示信息确定第三扩频序列;
    所述第三通信设备根据所述第三扩频序列对所述第一信号以及所述第二信号进行解扩频。
  15. 根据权利要求14所述的方法,其中,
    所述第一扩频序列的序列类型和所述第二扩频序列的序列类型不同,所述第三扩频序列为所述第一扩频序列和所述第二扩频序列的克罗内克Kronecker乘积;
    其中,所述第一扩频序列的序列类型或所述第二扩频序列的序列类型包括以下任一种:
    m序列;Gold序列;Walsh序列;PN序列;Bent序列;Kasami序列;序列零相关区序列ZCZ;多相正交序列;完全互补码;混沌序列。
  16. 根据权利要求14所述的方法,其中,
    所述第五指示信息用于指示所述第二扩频序列的序列类型和序列长度、或所述第三扩频序列的序列类型和序列长度。
  17. 根据权利要求16所述的方法,其中,在所述第五指示信息用于指示所述第二扩频序列的序列类型和序列长度的情况下,所述第三通信设备根据第五指示信息确定第三扩频序列,包括:
    根据所述第五指示信息确定所述第二扩频序列;
    根据第六指示信息确定所述第一扩频序列,所述第六指示信息用于指示所述第一扩频序列的序列类型和序列长度;
    将所述第一扩频序列和所述第二扩频序列进行克罗内克Kronecker相乘得到所述第三扩频序列。
  18. 根据权利要求17所述的方法,其中,所述第六指示信息由所述第一通信设备指示;或,
    所述第六指示信息由第四通信设备配置或指示,所述第四通信设备为所述第一通信设备、所述第二通信设备、所述第三通信设备或第三方网络设备。
  19. 根据权利要求18所述的方法,其中,在所述第六指示信息由所述第一通信设备指示,且所述第一通信设备与所述第三通信设备不为同一个设备的情况下,或在所述第六指示信息由所述第四通信设备配置或指示,且所述第四通信设备不为所述第三通信设备的情况下,所述方法还包括:
    接收所述第六指示信息;
    其中,所述第六指示信息通过RRC信令、MAC CE、DCI、SCI以及前导序列中的至少一种方式进行配置或指示。
  20. 根据权利要求14所述的方法,其中,所述第五指示信息由所述第二通信设备指示,或,
    所述第五指示信息由第四通信设备配置或指示,所述第四通信设备为所述第一通信设备、所述第二通信设备、所述第三通信设备或第三方网络设备。
  21. 根据权利要求20所述的方法,其中,在所述第五指示信息由所述第二通信设备 指示的情况下,或在所述第五指示信息由所述第四通信设备配置指示,且所述第四通信设备不为所述第三通信设备的情况下,所述方法还包括:
    接收所述第五指示信息;
    其中,所述第五指示信息通过RRC信令、MAC CE、DCI、SCI以及前导序列中的至少一种方式进行配置或指示。
  22. 一种信号处理方法,其中,包括:
    第四通信设备向第一通信设备、第二通信设备和第三通信设备配置或指示第一扩频序列、第二扩频序列和第三扩频序列中的至少一项;
    其中,所述第一扩频序列用于所述第一通信设备对原始信号进行扩频生成第一信号,所述第二扩频序列用于所述第二通信设备对反向散射调制信号进行扩频生成第二信号,所述反向散射调制信号通过对所述第一信号进行调制与反向散射后生成,所述第三扩频序列用于所述第三通信设备对所述第一信号和所述第二信号进行解扩频。
  23. 根据权利要求22所述的方法,其中,
    所述第四通信设备为所述第一通信设备、所述第二通信设备、所述第三通信设备或第三方网络设备。
  24. 根据权利要求22所述的方法,其中,
    所述第四通信设备通过RRC信令、MAC CE、DCI、SCI或前导序列中的至少一种方式配置或指示所述第一扩频序列、所述第二扩频序列和所述第三扩频序列中的至少一项。
  25. 根据权利要求22所述的方法,其中,
    所述第四通信设备配置或指示所述第一扩频序列的序列类型和序列长度、所述第二扩频序列的序列类型和序列长度和所述第三扩频序列的序列类型和序列长度。
  26. 根据权利要求25所述的方法,其中,
    所述第一扩频序列的序列类型和所述第二扩频序列的序列类型不同,所述第三扩频序列为所述第一扩频序列和所述第二扩频序列的克罗内克Kronecker乘积;
    其中,所述第一扩频序列的序列类型或所述第二扩频序列的序列类型包括以下任一种:
    m序列;Gold序列;Walsh序列;PN序列;Bent序列;Kasami序列;序列零相关区序列ZCZ;多相正交序列;完全互补码;混沌序列。
  27. 一种信号处理装置,其中,包括:
    确定模块,用于根据第一指示信息确定第一扩频序列;
    信号处理模块,用于根据所述第一扩频序列对原始信号进行扩频生成第一信号;
    发送模块,用于向第二通信设备发送所述第一信号,所述装置是给所述第二通信设备提供射频载波源的设备。
  28. 根据权利要求27所述的装置,其中,第一指示信息用于指示所述第一扩频序列的序列类型和序列长度,所述第一扩频序列的序列类型包括以下任一种:
    m序列;Gold序列;Walsh序列;PN序列;Bent序列;Kasami序列;序列零相关区 序列ZCZ;多相正交序列;完全互补码;混沌序列。
  29. 根据权利要求27所述的装置,其中,所述第一指示信息由第四通信设备配置或指示,所述第四通信设备为第一通信设备、所述第二通信设备、第三通信设备或第三方网络设备。
  30. 一种信号处理装置,其中,包括:
    接收模块,用于接收第一信号,所述第一信号由第一通信设备根据第一扩频序列对原始信号进行扩频后生成;
    确定模块,用于根据第三指示信息确定第二扩频序列;
    信号处理模块,用于根据所述第二扩频序列对反向散射调制信号进行扩频生成第二信号,所述反向散射调制信号通过对所述第一信号进行调制与反向散射后生成;
    发送模块,用于向第三通信设备发送所述第二信号。
  31. 根据权利要求30所述的装置,其中,
    所述第三指示信息由所述第一通信设备指示,所述第三指示信息用于指示所述第一扩频序列的序列类型和序列长度;或,
    所述第三指示信息由第四通信设备配置或指示,所述第四通信设备为所述第一通信设备、所述第二通信设备、所述第三通信设备或第三方网络设备,所述第三指示信息用于指示所述第二扩频序列的序列类型和序列长度。
  32. 根据权利要求30所述的装置,其中,所述第二扩频序列的序列类型与所述第一扩频序列的序列类型不同,所述第二扩频序列的序列类型包括以下任一种:
    m序列;Gold序列;Walsh序列;PN序列;Bent序列;Kasami序列;序列零相关区序列ZCZ;多相正交序列;完全互补码;混沌序列。
  33. 一种信号处理装置,其中,包括:
    接收模块,用于接收第一信号和第二信号,所述第一信号由第一通信设备根据第一扩频序列对原始信号进行扩频后生成,所述第二信号由第二通信设备根据第二扩频序列对反向散射调制信号进行扩频后生成,所述反向散射调制信号由所述第二通信设备对所述第一信号进行调制与反向散射后生成;
    确定模块,用于根据第五指示信息确定第三扩频序列;
    信号处理模块,用于根据所述第三扩频序列对所述第一信号以及所述第二信号进行解扩频。
  34. 根据权利要求33所述的装置,其中,
    所述第一扩频序列的序列类型和所述第二扩频序列的序列类型不同,所述第三扩频序列为所述第一扩频序列和所述第二扩频序列的克罗内克Kronecker乘积;
    其中,所述第一扩频序列或所述第二扩频序列的序列类型包括以下任一种:
    m序列;Gold序列;Walsh序列;PN序列;Bent序列;Kasami序列;序列零相关区序列ZCZ;多相正交序列;完全互补码;混沌序列。
  35. 根据权利要求33所述的装置,其中,
    所述第五指示信息用于指示所述第二扩频序列的序列类型和序列长度、或所述第三扩频序列的序列类型和序列长度。
  36. 一种信号处理装置,其中,包括:
    配置模块,用于向第一通信设备、第二通信设备和第三通信设备配置或指示第一扩频序列、第二扩频序列和第三扩频序列中的至少一项;
    其中,所述第一扩频序列用于所述第一通信设备对原始信号进行扩频生成第一信号,所述第二扩频序列用于所述第二通信设备对反向散射调制信号进行扩频生成第二信号,所述反向散射调制信号通过对所述第一信号进行调制与反向散射后生成,所述第三扩频序列用于所述第三通信设备对所述第一信号和所述第二信号进行解扩频。
  37. 根据权利要求36所述的装置,其中,所述配置模块,用于:
    通过RRC信令、MAC CE、DCI、SCI或前导序列中的至少一种方式配置或指示所述第一扩频序列、所述第二扩频序列和所述第三扩频序列中的至少一项。
  38. 根据权利要求36所述的装置,其中,所述配置模块,用于:
    配置或指示所述第一扩频序列的序列类型和序列长度、所述第二扩频序列的序列类型和序列长度和所述第三扩频序列的序列类型和序列长度。
  39. 一种通信设备,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至7任一项所述的信号处理方法的步骤,或实现如权利要求8至13任一项所述的信号处理方法的步骤,或实现如权利要求14至21任一项所述的信号处理方法的步骤,或实现如权利要求22至26任一项所述的信号处理方法的步骤。
  40. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至7任一项所述的信号处理方法的步骤,或实现如权利要求8至13任一项所述的信号处理方法的步骤,或实现如权利要求14至21任一项所述的信号处理方法的步骤,或实现如权利要求22至26任一项所述的信号处理方法的步骤。
PCT/CN2023/102274 2022-06-29 2023-06-26 信号处理方法及通信设备 WO2024001978A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210753777.XA CN117353801A (zh) 2022-06-29 2022-06-29 信号处理方法及通信设备
CN202210753777.X 2022-06-29

Publications (1)

Publication Number Publication Date
WO2024001978A1 true WO2024001978A1 (zh) 2024-01-04

Family

ID=89367853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102274 WO2024001978A1 (zh) 2022-06-29 2023-06-26 信号处理方法及通信设备

Country Status (2)

Country Link
CN (1) CN117353801A (zh)
WO (1) WO2024001978A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169474B1 (en) * 1998-04-23 2001-01-02 Micron Technology, Inc. Method of communications in a backscatter system, interrogator, and backscatter communications system
WO2019219156A1 (en) * 2018-05-14 2019-11-21 Nokia Technologies Oy Non-coherent backscatter communications over ambient-based wireless source
CN113454651A (zh) * 2018-12-19 2021-09-28 阿瑞斯贸易股份公司 与电子通信元件一起使用的通信设备、电子通信元件及其用途
WO2022078331A1 (zh) * 2020-10-14 2022-04-21 维沃移动通信有限公司 信号发送和信号接收方法、终端及通信设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169474B1 (en) * 1998-04-23 2001-01-02 Micron Technology, Inc. Method of communications in a backscatter system, interrogator, and backscatter communications system
WO2019219156A1 (en) * 2018-05-14 2019-11-21 Nokia Technologies Oy Non-coherent backscatter communications over ambient-based wireless source
CN113454651A (zh) * 2018-12-19 2021-09-28 阿瑞斯贸易股份公司 与电子通信元件一起使用的通信设备、电子通信元件及其用途
WO2022078331A1 (zh) * 2020-10-14 2022-04-21 维沃移动通信有限公司 信号发送和信号接收方法、终端及通信设备

Also Published As

Publication number Publication date
CN117353801A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
WO2022078331A1 (zh) 信号发送和信号接收方法、终端及通信设备
WO2024001978A1 (zh) 信号处理方法及通信设备
WO2024001976A1 (zh) 信号处理方法及通信设备
CN116156354A (zh) 感知信号传输处理方法、装置及相关设备
CN116156605A (zh) 感知信号检测方法、感知信号检测处理方法及相关设备
WO2024032609A1 (zh) 时延信息估计方法、装置、通信设备及存储介质
WO2023246919A1 (zh) 信道估计方法、装置、通信设备、系统及存储介质
WO2024061175A1 (zh) 信号传输方法、装置、通信设备及存储介质
WO2024032607A1 (zh) 帧结构确定方法、装置、通信设备及存储介质
WO2024037447A1 (zh) 反向散射通信处理方法、装置、通信设备及可读存储介质
WO2023186018A1 (zh) 信息传输方法、装置、终端及可读存储介质
WO2024061111A1 (zh) 资源处理方法、装置及通信设备
WO2024032496A1 (zh) 通信、资源配置方法、装置、阅读器、标签和网络侧设备
WO2024061109A1 (zh) 传输方法、装置、通信设备及反向散射设备
WO2023155780A1 (zh) 传输资源确定方法、设备及可读存储介质
WO2024017242A1 (zh) 测量间隔冲突的处理方法、装置、终端及网络侧设备
WO2022028452A1 (zh) 测量参考信号的方法、终端设备和网络设备
WO2023125311A1 (zh) 信道估计方法、装置、终端、网络侧设备及介质
US20240040410A1 (en) Information Acquisition and Configuration Methods and Apparatuses, and Communication Device
WO2023109763A1 (zh) Prach传输方法、装置及终端
WO2023231924A1 (zh) 信号发送方法、发送设备及接收设备
WO2023186158A1 (zh) 解调参考信号传输方法、装置、终端及网络侧设备
WO2023179664A1 (zh) 信道信息的传输方法、装置及通信设备
WO2024099190A1 (zh) 能力指示方法、装置、终端、网络侧设备及可读存储介质
WO2023109759A1 (zh) Prach传输方法、装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830156

Country of ref document: EP

Kind code of ref document: A1