WO2024017242A1 - 测量间隔冲突的处理方法、装置、终端及网络侧设备 - Google Patents

测量间隔冲突的处理方法、装置、终端及网络侧设备 Download PDF

Info

Publication number
WO2024017242A1
WO2024017242A1 PCT/CN2023/107898 CN2023107898W WO2024017242A1 WO 2024017242 A1 WO2024017242 A1 WO 2024017242A1 CN 2023107898 W CN2023107898 W CN 2023107898W WO 2024017242 A1 WO2024017242 A1 WO 2024017242A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement interval
measurement
priority
information
pattern
Prior art date
Application number
PCT/CN2023/107898
Other languages
English (en)
French (fr)
Inventor
魏旭昇
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024017242A1 publication Critical patent/WO2024017242A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a method, device, terminal and network side equipment for processing measurement interval conflicts.
  • a mechanism for configuring multiple measurement interval patterns (gap patterns) for a terminal has been introduced; at the same time, measurement gaps suitable for this feature have been introduced for multiple features, such as positioning, space communication network (Non-Terrestrial) Networks, NTN), Multi-Universal Subscriber Identity Module (MUSIM) and other features have introduced measurement gaps related to this feature.
  • the multiple configured gap patterns there may be multiple gap conflicts at a certain point in time. In this case, the discarded gap pattern is determined based on priority. However, adopting this solution will cause some gap patterns to become unusable.
  • Embodiments of the present application provide a method, device, terminal and network-side device for processing measurement interval conflicts, which can solve the problem in related technologies that some measurement interval modes cannot be used due to priority-based conflict resolution.
  • the first aspect provides a method for handling measurement interval conflicts, which is applied to terminals.
  • the method includes:
  • the terminal obtains configuration information of the configured measurement interval mode, where the configuration information includes: priority information and weight information of the measurement interval mode;
  • the terminal discards the conflicting measurement intervals according to the priority information and the weight information within a common time when the conflicting measurement interval modes are simultaneously activated.
  • a device for processing measurement interval conflicts which is applied to a terminal and includes:
  • a first acquisition module configured to acquire configuration information of the configured measurement interval mode, where the configuration information includes: priority information and weight information of the measurement interval mode;
  • the first processing module is configured to discard the conflicting measurement intervals within a common time when the conflicting measurement interval modes are simultaneously activated according to the priority information and the weight information.
  • a measurement interval configuration method which is applied to network side equipment.
  • the method includes:
  • the network side device configures the configuration information of the measurement interval mode for the terminal.
  • the configuration information includes: the measurement interval. Pattern priority information and weight information.
  • a measurement interval configuration device which is applied to network side equipment, including:
  • a configuration module configured to configure configuration information of the measurement interval mode for the terminal, where the configuration information includes: priority information and weight information of the measurement interval mode.
  • a terminal in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect.
  • a terminal including a processor and a communication interface, wherein the processor is configured to obtain configuration information of a configured measurement interval mode, where the configuration information includes: priority information of the measurement interval mode. and weight information; according to the priority information and the weight information, within a common time when conflicting measurement interval modes are simultaneously activated, the conflicting measurement intervals are discarded.
  • a network side device in a seventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor.
  • a network side device including a processor and a communication interface, wherein the processor is configured to configure configuration information of a measurement interval mode for a terminal, and the configuration information includes: a priority of the measurement interval mode. information and weight information.
  • a ninth aspect provides a communication system, including: a terminal and a network-side device.
  • the terminal can be configured to perform the steps of the method for processing measurement interval conflicts as described in the first aspect.
  • the network-side device can be configured to perform as The steps of the measurement interval configuration method described in the third aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the third aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. method, or implement a method as described in the third aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement as described in the first aspect or the steps of implementing the measurement interval configuration method described in the third aspect.
  • the measurement interval mode configured by the terminal has corresponding priority information and weight information.
  • the measurement interval mode conflicts, it can be determined based on the priority information and weight information of the measurement interval mode that the measurement interval between multiple measurement intervals is The measurement intervals that need to be discarded during the common time when the modes are simultaneously activated, thereby avoiding the problem that all measurement intervals in the measurement interval mode are unavailable.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is a schematic flowchart of a method for handling measurement interval conflicts according to an embodiment of the present application
  • Figure 3 is one of the schematic diagrams of measurement interval conflicts in an embodiment of the present application.
  • Figure 4 is a second schematic diagram of measurement interval conflicts according to the embodiment of the present application.
  • Figure 5 is a third schematic diagram of measurement interval conflicts according to the embodiment of the present application.
  • Figure 6 is a schematic flow chart of the measurement interval configuration method according to the embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a device for processing measurement interval conflicts according to an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a measurement interval configuration device according to an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a laptop computer or a personal digital assistant (Personal Digital Assistant).
  • PDA handheld computer
  • netbook ultra-mobile personal computer
  • MID mobile Internet device
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • VUE vehicle user equipment
  • pedestrian terminals Pedestrian User Equipment, PUE
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • PCs personal computers
  • teller machines or self-service machines and other terminal-side devices wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets) , smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless access network unit.
  • Access network equipment may include a base station, a Wireless Local Area Network (WLAN) access point or a WiFi node, etc.
  • WLAN Wireless Local Area Network
  • the base station may be called a Node B, an Evolved Node B (eNB), an access point, a base transceiver station ( Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home evolved B-node, transmitting and receiving point ( Transmitting Receiving Point (TRP) or some other appropriate terminology in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only in the NR system The base station is introduced as an example, and the specific type of base station is not limited.
  • embodiments of the present application provide a method for processing measurement interval conflicts, which is applied to terminals.
  • the method includes:
  • Step 201 The terminal obtains configuration information of the configured measurement interval mode, where the configuration information includes: priority information and weight information of the measurement interval mode.
  • Step 202 The terminal discards the conflicting measurement intervals according to the priority information and the weight information within a common time when the conflicting measurement interval modes are simultaneously activated.
  • inter-frequency and inter-system radio access technology inter-Radio Access Technology, inter-RAT
  • RF chain radio frequency chain
  • the network side device can configure multiple measurement gap patterns (gap patterns) for the terminal, and each measurement gap pattern can include multiple measurement intervals.
  • the network side device may also configure configuration information of the measurement interval mode.
  • the configuration information may include priority information and weight information of the measurement interval.
  • the weight information may Including: weighting factor or weighting coefficient. For example: A total of 2 measurement interval patterns are configured: gap pattern 1 and gap pattern 2. The priority of gap pattern 1 is higher than the priority of gap pattern 2; among them, gap pattern The weight configuration of 2 is 20%.
  • the terminal can determine the gap that needs to be discarded based on the priority information and the weight information.
  • Figure 3 shows an obvious conflict in time.
  • Figure 4 shows that when the distance between two gaps is less than x, it is also regarded as a conflict between two gaps.
  • the x can be 4ms.
  • the measurement interval mode configured by the terminal has corresponding priority information and weight information.
  • the measurement interval modes conflict, it can be determined based on the priority information and weight information of the measurement interval modes to determine whether to use multiple measurement interval modes. Measurement intervals that need to be discarded within a common period of simultaneous activation, thereby avoiding the problem that all measurement intervals in the measurement interval mode are unavailable.
  • the priority information includes: priority information of each configured measurement interval mode.
  • a corresponding priority is configured for each measurement interval mode configured for the terminal.
  • priority may be given to discarding low-priority measurement intervals.
  • the weight information includes:
  • Weight information of some of the configured measurement interval patterns is weight information of some of the configured measurement interval patterns.
  • the partial measurement interval patterns include: among the configured measurement interval patterns, a measurement interval pattern with a priority lower than the highest priority.
  • weight information can be configured separately for each measurement interval mode, or corresponding weight information can be configured only for some measurement interval modes.
  • corresponding weight information may be configured for low-priority measurement interval modes, and the weight information may not be configured for the highest-priority measurement interval mode; specifically, some or all of the low-priority measurement interval modes may be configured. weight information.
  • the system configures three measurement interval patterns for the terminal: gap pattern 1, gap pattern 2, gap pattern 3.
  • gap pattern 1 has the highest priority and gap pattern 3 has the lowest priority.
  • You can configure the weight factor of gap pattern 1. is C1, the weight factor of gap pattern 2 is C2, and the weight factor of gap pattern 3 is C3; or, you can only configure the weight factor of gap pattern 2 to be C2, and the weight factor of gap pattern 3 to C3; or, if you do not pay attention to the gap Whether the gap in pattern 3 is discarded, you can only configure the weight factor of gap pattern 2 to C2; if you do not care whether the gap in gap pattern 2 is discarded, you can only configure the weight factor of gap pattern 3 to C3.
  • the terminal determines when there is a conflict based on the priority information and the weight information. Within the same period of time when the measurement interval mode is activated at the same time, conflicting measurement intervals will be discarded, including:
  • a conflicting measurement interval pattern if the weight information of the first measurement interval pattern is the first weight value, then within the common time, the first part of the measurement interval in the first measurement interval pattern is not discarded;
  • the first part of the measurement interval is determined according to the first weight value.
  • the weight information may be a weight factor or a weight coefficient, such as a percentage.
  • the first weight value may be set according to the number requirements for gaps in the measurement interval mode.
  • the first part of the measurement interval is determined according to the first weight value.
  • the first part of the measurement interval may be a measurement interval that accounts for the first weight value in the first measurement interval pattern, for example: the If a weight value is set to 20%, then the first part of the measurement interval is 20% of the first measurement interval mode; alternatively, the first part of the measurement interval can also be calculated in other ways based on the first weight value. , for example: the first weight value is set to 2, indicating that the first part of the measurement interval is a measurement interval accounting for 20%.
  • the terminal When the terminal performs discarding processing based on the priority information and the weight information, for a measurement interval pattern configured with weight information, it needs to ensure that the measurement intervals in the measurement interval pattern that account for the weight information are not discarded. For example, if there is a conflict between the first measurement interval mode and the second measurement interval mode, and the weight information of the first measurement interval mode is 20%, it is necessary to ensure that 20% of the measurement intervals in the first measurement interval mode are not discarded. The 20% of the measurement intervals that are not discarded are the first part of the measurement intervals.
  • the conflicting measurement intervals may be determined whether to discard the conflicting measurement intervals according to the corresponding priority information. For example: there is a conflict between the first measurement interval mode and the second measurement interval mode. The priority of the first measurement interval mode is lower than the priority of the second measurement interval mode. In the first measurement interval mode, the 20 values that are not discarded are removed. % of the measurement intervals, if there are some gaps in the remaining 75% of the measurement intervals that conflict with gaps in the second measurement interval mode, then the conflicting gaps in the first measurement interval mode with lower priority are discarded.
  • the first part of the measurement interval can be determined by the terminal itself. For example, according to the data transmission and reception requirements of the terminal at some measurement times, a gap corresponding to the time when data does not need to be sent and received can be reserved.
  • the method further includes: if in a conflicting measurement interval mode, the priority of the first measurement interval mode is lower than the priority of the second measurement interval mode, discarding the A second partial measurement interval in the second measurement interval pattern; wherein the second partial measurement interval is a measurement interval that conflicts with the first partial measurement interval.
  • the first part of the measurement interval conflicts with the measurement interval in the second measurement interval mode, since the first part of the measurement interval needs to be retained, it is necessary to discard the second part of the measurement interval in the second measurement interval mode.
  • a part of the measurement interval conflicts with a second part of the measurement interval, even if said second measurement interval pattern has a higher priority than the first measurement interval pattern.
  • the priority of the second measurement interval mode is higher than the priority of the first measurement mode, and the weight information of the first measurement interval mode is 20%, then It is necessary to ensure that 20% of the measurement intervals in the first measurement interval mode are not discarded, assuming that the first measurement interval mode Containing 10 gaps, it is determined that the two consecutive gaps located at the last moment are not discarded, but these two consecutive gaps conflict with the gaps in the second measurement interval mode, then the conflicting gaps in the second measurement interval mode need to be discarded.
  • the first part of the measurement interval includes one of the following:
  • the first part of the measurement intervals among all measurement intervals included in the first measurement interval pattern is the first part of the measurement intervals among all measurement intervals included in the first measurement interval pattern
  • the first measurement interval pattern includes a first part of the measurement intervals among the conflicting measurement intervals.
  • the first part of the measurement interval may be a part of all gaps in the first measurement interval pattern, or may be a part of the gaps in the first measurement interval pattern that have conflicts.
  • the first measurement interval mode contains 10 gaps
  • the first 8 gaps in timing conflict with the gaps in the second measurement interval mode and the first weight value is 20%
  • the first part of the measurement interval should be 2 gaps
  • the 2 gaps can be any two of the 10 gaps, or any two of the first 8 gaps.
  • the system configures two gap patterns for the terminal: gap pattern 1 and gap pattern 2, and there is a gap conflict (the distance between two gaps is less than threshold x); among them, the priority of gap pattern 1 P1 is greater than the priority P2 of gap pattern 2;
  • the terminal can perform the following processing according to the weight factor/weight coefficient:
  • the system configures two gap patterns for the terminal: gap pattern 1 and gap pattern 2, and there is a gap conflict (the distance between a certain two gaps is less than threshold x); Among them, the priority P1 of gap pattern 1 is greater than the priority P2 of gap pattern 2;
  • gap pattern 1 is not configured with a weight factor/weight coefficient
  • the terminal can perform the following processing according to the weight factor/weight coefficient:
  • the last gap in gap pattern 2 is not discarded, then the last gap in gap pattern 1 should be discarded The last gap, even if gap pattern 1 has a higher priority; for other conflicting gaps, the gap with a lower priority is discarded.
  • the network side does not need to know specifically which gap the terminal retains or discards in the gap conflict, but according to the weight factor/weight coefficient, it still knows the segment where multiple gap patterns are activated at the same time. Time performance index requirements.
  • the measurement interval mode configured by the terminal has corresponding priority information and weight information.
  • the measurement interval modes conflict, it can be determined based on the priority information and weight information of the measurement interval modes to determine whether to use multiple measurement interval modes. Measurement intervals that need to be discarded within a common period of simultaneous activation, thereby avoiding the problem that all measurement intervals in the measurement interval mode are unavailable.
  • this embodiment of the present application also provides a measurement interval configuration method, which is applied to network side equipment.
  • the method includes:
  • Step 601 The network side device configures the configuration information of the measurement interval mode for the terminal.
  • the configuration information includes: the priority information and weight information of the measurement interval mode.
  • the network side device configures a measurement interval mode for the terminal. Specifically, multiple measurement interval modes may be configured for the terminal.
  • the network side device may also configure priority information and weight information for the measurement interval mode.
  • the weight information may include: weight factors or weight coefficients. For example: A total of 2 measurement interval patterns are configured: gap pattern 1 and gap pattern 2. The priority of gap pattern 1 is higher than the priority of gap pattern 2; the weight of gap pattern 2 is configured as 20%.
  • the terminal can determine the gap that needs to be discarded based on the priority information and the weight information.
  • the priority information includes: priority information of each measurement interval mode configured for the terminal.
  • a corresponding priority is configured.
  • the terminal determines the measurement intervals that need to be discarded, it may give priority to discarding low-priority measurement intervals.
  • the weight information includes:
  • Weight information of some of the measurement interval patterns configured for the terminal is configured for the terminal.
  • the partial measurement interval mode includes: in the measurement interval mode configured for the terminal, low priority in the highest priority measurement interval mode.
  • weight information can be configured separately for each measurement interval mode, or corresponding weight information can be configured only for some measurement interval modes.
  • corresponding weight information may be configured for low-priority measurement interval modes, and the weight information may not be configured for the highest-priority measurement interval mode; specifically, some or all of the low-priority measurement interval modes may be configured. weight information.
  • the system configures three measurement interval patterns for the terminal: gap pattern 1, gap pattern 2, gap pattern 3.
  • gap pattern 1 has the highest priority and gap pattern 3 has the lowest priority.
  • You can configure the weight factor of gap pattern 1. is C1, the weight factor of gap pattern 2 is C2, and the weight factor of gap pattern 3 is C3; or, you can only configure the weight factor of gap pattern 2 to be C2, and the weight factor of gap pattern 3 to C3; or, if you do not pay attention to the gap Whether the gap in pattern 3 is discarded, you can only configure the weight factor of gap pattern 2 to C2; if you do not care whether the gap in gap pattern 2 is discarded, you can only configure the weight factor of gap pattern 3 to C3.
  • the network side device configures corresponding priority information and weight information for the measurement interval mode configured by the terminal, so that when the measurement interval mode conflicts, the terminal can determine based on the priority information and weight information of the measurement interval mode. Measurement intervals that need to be discarded within a common time when multiple measurement interval modes are activated simultaneously.
  • the network-side device does not need to know the specific gaps that the terminal retains or discards in gap conflicts, but can know the performance index requirements within a common time when multiple gap patterns are activated simultaneously based on the weight information.
  • the execution subject may be a measurement interval conflict processing device; for the measurement interval configuration method provided by the embodiment of the present application, the execution subject may be the measurement interval configuration device.
  • the measurement interval conflict processing device performs the measurement interval conflict processing method and the measurement interval configuration device performs the measurement interval configuration method as an example to illustrate the measurement interval conflict processing device and the measurement interval configuration device provided by the embodiment of the present application. .
  • this embodiment of the present application provides a measurement interval conflict processing device 700, which is applied to a terminal.
  • the device includes:
  • the first acquisition module 710 is used to acquire configuration information of the configured measurement interval mode, where the configuration information includes: priority information and weight information of the measurement interval mode;
  • the first processing module 720 is configured to discard the conflicting measurement intervals within a common time when the conflicting measurement interval modes are simultaneously activated according to the priority information and the weight information.
  • the priority information includes: priority information of each configured measurement interval mode.
  • the weight information includes:
  • Weight information of some of the configured measurement interval patterns is weight information of some of the configured measurement interval patterns.
  • the partial measurement interval pattern includes:
  • the priority is lower than the measurement interval mode with the highest priority.
  • the first processing module includes:
  • a first processing unit configured to, in a conflicting measurement interval pattern, if the weight information of the first measurement interval pattern is the first weight value, then within the common time, the first part of the first measurement interval pattern Measurement intervals are not discarded;
  • a second processing unit configured to, for other measurement intervals except the first part of the measurement interval, determine the discarded measurement interval according to the priority information of the conflicting measurement interval mode;
  • the first part of the measurement interval is determined according to the first weight value.
  • the device also includes:
  • a third processing unit configured to discard the first measurement interval pattern within the common time if the priority of the first measurement interval pattern is lower than the priority of the second measurement interval pattern in conflicting measurement interval patterns.
  • the second part of the measurement interval is a measurement interval that conflicts with the first part of the measurement interval.
  • the first part of the measurement interval includes one of the following:
  • the first part of the measurement intervals among all measurement intervals included in the first measurement interval pattern is the first part of the measurement intervals among all measurement intervals included in the first measurement interval pattern
  • the first measurement interval pattern includes a first part of the measurement intervals among the conflicting measurement intervals.
  • the measurement interval mode configured by the terminal has corresponding priority information and weight information.
  • the measurement interval modes conflict, it can be determined based on the priority information and weight information of the measurement interval modes to determine whether to use multiple measurement interval modes. Measurement intervals that need to be discarded within a common period of simultaneous activation, thereby avoiding the problem that all measurement intervals in the measurement interval mode are unavailable.
  • this embodiment of the present application provides a measurement interval configuration device 800, which is applied to network-side equipment.
  • the device includes:
  • the configuration module 810 is configured to configure configuration information of the measurement interval mode for the terminal, where the configuration information includes: priority information and weight information of the measurement interval mode.
  • the priority information includes: priority information of each measurement interval mode configured for the terminal.
  • the weight information includes:
  • Weight information of some of the measurement interval patterns configured for the terminal is configured for the terminal.
  • the partial measurement interval pattern includes:
  • the priority is lower than the measurement interval mode with the highest priority.
  • the network side device configures corresponding priority information and weight information for the measurement interval mode configured by the terminal, so that when the measurement interval mode conflicts, the terminal can determine based on the priority information and weight information of the measurement interval mode. Measurement intervals that need to be discarded within a common time when multiple measurement interval modes are activated simultaneously.
  • the network side device does not need to know the specific gaps that the terminal retains or discards in gap conflicts, but can know the performance index requirements within a common time when multiple gap patterns are activated simultaneously based on the weight information.
  • the measurement interval conflict processing device or the measurement interval configuration device in the embodiment of the present application may be an electronic device,
  • an electronic device with an operating system may also be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the measurement interval conflict processing device provided by the embodiment of the present application can implement each process implemented by the method embodiment of Figures 2 to 5, and the measurement interval configuration device can implement each process implemented by the method embodiment of Figure 6, and achieve the same technology. The effect will not be described here to avoid repetition.
  • this embodiment of the present application also provides a communication device 900, which includes a processor 901 and a memory 902.
  • the memory 902 stores programs or instructions that can be run on the processor 901, for example.
  • the communication device 900 is a terminal, when the program or instruction is executed by the processor 901, each step of the above embodiment of the method for handling measurement interval conflict is implemented, and the same technical effect can be achieved.
  • the communication device 900 is a network-side device, when the program or instruction is executed by the processor 901, the steps of the above measurement interval configuration method embodiment are implemented, and the same technical effect can be achieved. To avoid duplication, they will not be described again here.
  • An embodiment of the present application also provides a terminal, including a processor and a communication interface.
  • the processor is configured to obtain configuration information of a configured measurement interval mode.
  • the configuration information includes: priority information and weight information of the measurement interval mode; According to the priority information and the weight information, within a common time when conflicting measurement interval modes are simultaneously activated, the conflicting measurement intervals are discarded.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 10 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 1000 includes but is not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, a processor 1010, etc. At least some parts.
  • the terminal 1000 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1010 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 10 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 1004 may include a graphics processing unit (GPU) 10041 and a microphone 10042, and the graphics processor 10041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 1006 may include a display panel 10061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1007 includes a touch panel 10071 and at least one of other input devices 10072 . Touch panel 10071, also known as touch screen.
  • the touch panel 10071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 10072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 1001 after receiving downlink data from the network side device, can transmit it to the processor 1010 for processing; in addition, the radio frequency unit 1001 can send uplink data to the network side device.
  • the radio frequency unit 1001 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • Memory 1009 may be used to store software programs or instructions as well as various data.
  • the memory 1009 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 1009 may include volatile memory or nonvolatile memory, or memory 1009 may include both volatile and nonvolatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory Synchronous DRAM, SDRAM
  • Double data rate synchronous dynamic random access memory Double Data Rate SDRAM, DDRSDRAM
  • enhanced SDRAM synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor x10.
  • the radio frequency unit 1001 is used to obtain the configuration information of the configured measurement interval mode, where the configuration information includes: priority information and weight information of the measurement interval mode;
  • the processor 1010 is configured to, according to the priority information and the weight information, discard conflicting measurement intervals within a common time when conflicting measurement interval modes are simultaneously activated.
  • the priority information includes: priority information of each configured measurement interval mode.
  • the weight information includes:
  • Weight information of some of the configured measurement interval patterns is weight information of some of the configured measurement interval patterns.
  • the partial measurement interval pattern includes:
  • the priority is lower than the measurement interval mode with the highest priority.
  • processor 1010 is specifically used to:
  • a conflicting measurement interval pattern if the weight information of the first measurement interval pattern is the first weight value, then within the common time, the first part of the measurement interval in the first measurement interval pattern is not discarded;
  • the first part of the measurement interval is determined according to the first weight value.
  • processor 1010 is also used to:
  • the priority of the first measurement interval pattern is lower than the priority of the second measurement interval pattern, then within the common time, the first measurement interval pattern in the second measurement interval pattern is discarded.
  • the second part of the measurement interval is a measurement interval that conflicts with the first part of the measurement interval.
  • the first part of the measurement interval includes one of the following:
  • the first part of the measurement intervals among all measurement intervals included in the first measurement interval pattern is the first part of the measurement intervals among all measurement intervals included in the first measurement interval pattern
  • the first measurement interval pattern includes a first part of the measurement intervals among the conflicting measurement intervals.
  • the measurement interval mode configured by the terminal has corresponding priority information and weight information.
  • the measurement interval modes conflict, it can be determined based on the priority information and weight information of the measurement interval modes to determine whether to use multiple measurement interval modes. Measurement intervals that need to be discarded within a common period of simultaneous activation, thereby avoiding the problem that all measurement intervals in the measurement interval mode are unavailable.
  • An embodiment of the present application also provides a network side device, including a processor and a communication interface.
  • the processor is configured to configure configuration information of a measurement interval mode for a terminal.
  • the configuration information includes: priority information and weight information of the measurement interval mode. .
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1100 includes: an antenna 111 , a radio frequency device 112 , a baseband device 113 , a processor 114 and a memory 115 .
  • the antenna 111 is connected to the radio frequency device 112 .
  • the radio frequency device 112 receives information through the antenna 111 and sends the received information to the baseband device 113 for processing.
  • the baseband device 113 processes the information to be sent and sends it to the radio frequency device 112.
  • the radio frequency device 112 processes the received information and then sends it out through the antenna 111.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 113, which includes a baseband processor.
  • the baseband device 113 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 116, which is, for example, a common public radio interface (CPRI).
  • a network interface 116 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1100 in this embodiment of the present invention also includes: instructions or programs stored in the memory 115 and executable on the processor 114.
  • the processor 114 calls the instructions or programs in the memory 115 to execute each of the steps shown in Figure 8. The method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
  • Embodiments of the present application also provide a readable storage medium on which a program or instructions are stored.
  • a program or instructions are stored.
  • the program or instructions are executed by a processor, each process of the above embodiment of the method for handling measurement interval conflict is implemented, or Reality
  • the various processes of the above embodiments of the measurement interval configuration method can achieve the same technical effect. To avoid repetition, they will not be described again here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above method for processing measurement interval conflicts.
  • Each process of the embodiment, or each process of implementing the above embodiment of the measurement interval configuration method, can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above-mentioned processing of measurement interval conflicts.
  • Each process of the method embodiment, or each process of implementing the above-mentioned measurement interval configuration method embodiment can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • Embodiments of the present application also provide a communication system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the method for processing measurement interval conflicts as described above.
  • the network side device can be used to perform the above steps. Measurement interval configuration method steps.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each functional unit may be Each unit physically exists alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially or contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer-readable storage medium.
  • the program can be stored in a computer-readable storage medium.
  • the process may include the processes of the embodiments of each of the above methods.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种测量间隔冲突的处理方法、装置、终端及网络侧设备,属于通信领域,本申请实施例的测量间隔冲突的处理方法包括:终端获取被配置的测量间隔模式的配置信息,所述配置信息包括:所述测量间隔模式的优先级信息和权重信息;所述终端根据所述优先级信息和所述权重信息,在存在冲突的测量间隔模式同时激活的共同时间内,对冲突的测量间隔进行丢弃处理。

Description

测量间隔冲突的处理方法、装置、终端及网络侧设备
相关申请的交叉引用
本申请主张在2022年7月22日在中国提交的中国专利申请No.202210869317.3的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种测量间隔冲突的处理方法、装置、终端及网络侧设备。
背景技术
在相关技术中,引入了为一个终端配置多种测量间隔模式(gap pattern)的机制;同时,对于多个特性都引入了适用于本特性的测量gap,如定位、空间通信网络(Non-Terrestrial Networks,NTN)、多通用用户标识模块(Multi-Universal Subscriber Identity Module,MUSIM)等特性都引入了本特性相关的测量gap。在配置的多个gap pattern中,某个时间点可能会有多个gap冲突的情况,在这种情况下,基于优先级确定丢弃的gap pattern。但是采用此方案会导致某些gap pattern无法使用。
发明内容
本申请实施例提供一种测量间隔冲突的处理方法、装置、终端及网络侧设备,能够解决相关技术中的基于优先级解决冲突问题导致某些测量间隔模式无法使用的问题。
第一方面,提供了一种测量间隔冲突的处理方法,应用于终端,该方法包括:
终端获取被配置的测量间隔模式的配置信息,所述配置信息包括:所述测量间隔模式的优先级信息和权重信息;
所述终端根据所述优先级信息和所述权重信息,在存在冲突的测量间隔模式同时激活的共同时间内,对冲突的测量间隔进行丢弃处理。
第二方面,提供了一种测量间隔冲突的处理的装置,应用于终端,包括:
第一获取模块,用于获取被配置的测量间隔模式的配置信息,所述配置信息包括:所述测量间隔模式的优先级信息和权重信息;
第一处理模块,用于根据所述优先级信息和所述权重信息,在存在冲突的测量间隔模式同时激活的共同时间内,对冲突的测量间隔进行丢弃处理。
第三方面,提供了一种测量间隔配置方法,应用于网络侧设备,该方法包括:
网络侧设备为终端配置测量间隔模式的配置信息,所述配置信息包括:所述测量间隔 模式的优先级信息和权重信息。
第四方面,提供了一种测量间隔配置装置,应用于网络侧设备,包括:
配置模块,用于为终端配置测量间隔模式的配置信息,所述配置信息包括:所述测量间隔模式的优先级信息和权重信息。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于获取被配置的测量间隔模式的配置信息,所述配置信息包括:所述测量间隔模式的优先级信息和权重信息;根据所述优先级信息和所述权重信息,在存在冲突的测量间隔模式同时激活的共同时间内,对冲突的测量间隔进行丢弃处理。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述处理器用于为终端配置测量间隔模式的配置信息,所述配置信息包括:所述测量间隔模式的优先级信息和权重信息。
第九方面,提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的测量间隔冲突的处理方法的步骤,所述网络侧设备可用于执行如第三方面所述的测量间隔配置方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第三方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的测量间隔冲突的处理方法的步骤,或者实现如第三方面所述的测量间隔配置方法的步骤。
在本申请实施例中,终端配置的测量间隔模式具有相对应的优先级信息和权重信息,在测量间隔模式冲突时,可以基于测量间隔模式的优先级信息和权重信息,确定在多个测量间隔模式同时激活的共同时间内需要丢弃的测量间隔,从而避免测量间隔模式的全部测量间隔不可用的问题。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例的测量间隔冲突的处理方法的流程示意图;
图3是本申请实施例的测量间隔冲突的示意图之一;
图4是本申请实施例的测量间隔冲突的示意图之二;
图5是本申请实施例的测量间隔冲突的示意图之三;
图6是本申请实施例的测量间隔配置方法的流程示意图;
图7是本申请实施例的测量间隔冲突的处理装置的结构示意图;
图8是本申请实施例的测量间隔配置装置的结构示意图;
图9是本申请实施例的通信设备的结构示意图;
图10是本申请实施例的终端的结构示意图;
图11是本申请实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant, PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的测量间隔冲突的处理方法进行详细地说明。
如图2所示,本申请的实施例提供一种测量间隔冲突的处理方法,应用于终端,所述方法包括:
步骤201、终端获取被配置的测量间隔模式的配置信息,所述配置信息包括:所述测量间隔模式的优先级信息和权重信息。
步骤202、所述终端根据所述优先级信息和所述权重信息,在存在冲突的测量间隔模式同时激活的共同时间内,对冲突的测量间隔进行丢弃处理。
该实施例中,对于无线资源管理(Radio resource management,RRM)测量,针对异频(inter-frequency)和系统间无线接入技术(inter Radio Access Technology,inter-RAT)测量,由于inter-frequency和inter-RAT同服小区频点不同,无法使用同一射频通路(Radio Frequency chain,RF chain)同时完成服务小区信号收发和异频点测量工作,因此在终端射频通路受限的情况下,需要引入测量gap来进行测量。
网络侧设备可以为终端配置多个测量间隔模式(gap pattern),每个测量间隔模式可以包括多个测量间隔。在为终端配置了测量间隔模式的情况下,所述网络侧设备还可以配置所述测量间隔模式的配置信息,所述配置信息可以包括测量间隔的优先级信息和权重信息,所述权重信息可以包括:权重因子或者权重系数。例如:共配置2个测量间隔模式:gap pattern 1和gap pattern 2,gap pattern 1的优先级高于gap pattern 2的优先级;其中gap pattern 2的权重配置为20%。
对于配置的多个gap pattern,在一些时间点可能存在冲突,例如在多个gap pattern同时激活的共同时间(common period of time)内,gap pattern 1和gap pattern 2的部分gap冲突。在多个gap pattern之间存在冲突时,所述终端可以根据所述优先级信息和所述权重信息,确定需要丢弃的gap。
其中,gap冲突的情况如图3和图4所示,图3为明显的时间上冲突,图4为当两个gap之间的间距小于x时,也视为2个gap冲突,可选地,所述x可以为4ms。在不同的gap pattern之间存在冲突时,若仅仅根据gap pattern的优先级确定丢弃的gap,会导致低优先级的gap pattern内的全部gap均不可用,因此终端根据冲突的gap pattern的优先级和权重,确定具体需要丢弃的gap,可以避免gap pattern不可用的问题。
本申请的实施例,终端配置的测量间隔模式具有相对应的优先级信息和权重信息,在测量间隔模式冲突时,可以基于测量间隔模式的优先级信息和权重信息,确定在多个测量间隔模式同时激活的共同时间内需要丢弃的测量间隔,从而避免测量间隔模式的全部测量间隔不可用的问题。
作为一个可选实施例,所述优先级信息包括:被配置的每个所述测量间隔模式的优先级信息。
该实施例中,对于为终端配置的每个测量间隔模式,均配置对应的优先级。在确定需要丢弃的测量间隔时,可以优先考虑丢弃低优先级的测量间隔。
作为一个可选实施例,所述权重信息包括:
被配置的每个所述测量间隔模式的权重信息;
或者,
被配置的所述测量间隔模式中的部分测量间隔模式的权重信息。
可选地,所述部分测量间隔模式包括:被配置的所述测量间隔模式中,优先级低于最高优先级的测量间隔模式。
该实施例中,对于为终端配置的测量间隔模式,可以为每个测量间隔模式分别配置权重信息,也可以仅针对部分测量间隔模式配置对应的权重信息。例如:可以仅为低优先级的测量间隔模式配置对应的权重信息,对于最高优先级的测量间隔模式不配置所述权重信息;具体地,可以配置低优先级中的部分或者全部测量间隔模式的权重信息。
例如:系统为终端配置3个测量间隔模式:gap pattern 1、gap pattern 2、gap pattern 3,其中gap pattern 1的优先级最高,gap pattern 3的优先级最低,则可以配置gap pattern 1的权重因子是C1,gap pattern 2的权重因子是C2、gap pattern 3的权重因子是C3;或者,可以仅配置gap pattern 2的权重因子为C2、gap pattern 3的权重因子为C3;或者,如果不关注gap pattern 3中的gap是否丢弃,则可以仅配置gap pattern 2的权重因子为C2;若不关注gap pattern 2中的gap是否丢弃,则可以仅配置gap pattern 3的权重因子为C3。
作为一个可选实施例,所述终端根据所述优先级信息和所述权重信息,在存在冲突的 测量间隔模式同时激活的共同时间内,对冲突的测量间隔进行丢弃处理,包括:
在存在冲突的测量间隔模式中,若第一测量间隔模式的权重信息是第一权重值,则在所述共同时间内,所述第一测量间隔模式中的第一部分测量间隔不被丢弃;
对于除所述第一部分测量间隔外的其他测量间隔,根据存在冲突的所述测量间隔模式的优先级信息,确定丢弃的测量间隔;
其中,所述第一部分测量间隔根据所述第一权重值确定。
该实施例中,所述权重信息可以是权重因子或者权重系数,例如百分比。所述第一权重值可以根据对于测量间隔模式的gap的数量需求设置。所述第一部分测量间隔根据所述第一权重值确定,具体地,所述第一部分测量间隔可以为所述第一测量间隔模式中占比为第一权重值的测量间隔,例如:所述第一权重值设置为20%,则所述第一部分测量间隔为所述第一测量间隔模式中的20%;或者,所述第一部分测量间隔也可以根据所述第一权重值由其他方式计算得到,例如:所述第一权重值设置为2,表示所述第一部分测量间隔是占比为20%的测量间隔。
所述终端根据所述优先级信息和所述权重信息进行丢弃处理时,对于配置了权重信息的测量间隔模式,需要保证该测量间隔模式中占比为该权重信息的测量间隔不被丢弃。例如:第一测量间隔模式和第二测量间隔模式存在冲突,且第一测量间隔模式的权重信息为20%,则需要保证所述第一测量间隔模式中20%的测量间隔不被丢弃,该不被丢弃的20%的测量间隔即为所述第一部分测量间隔。
对于除所述第一部分测量间隔外的其他测量间隔,存在冲突的测量间隔可以根据对应的优先级信息确定是否丢弃。例如:第一测量间隔模式和第二测量间隔模式存在冲突,第一测量间隔模式的优先级低于第二测量间隔模式的优先级,在所述第一测量间隔模式中除去不被丢弃的20%的测量间隔外,其余的75%的测量间隔中存在部分gap与第二测量间隔模式中的gap冲突,则丢弃优先级较低的第一测量间隔模式中冲突的gap。
需要说明的是,所述第一部分测量间隔可以由终端自行确定,例如可以根据终端在一些测量时刻的数据收发需求,保留无需收发数据的时刻对应的gap。
可选地,所述方法还包括:若在存在冲突的测量间隔模式中,所述第一测量间隔模式的优先级低于第二测量间隔模式的优先级,则在所述共同时间内,丢弃所述第二测量间隔模式中的第二部分测量间隔;其中,所述第二部分测量间隔是与所述第一部分测量间隔冲突的测量间隔。
该实施例中,在所述第一部分测量间隔与第二测量间隔模式中的测量间隔冲突时,由于需要保留所述第一部分测量间隔,则需要丢弃所述第二测量间隔模式中与所述第一部分测量间隔冲突的第二部分测量间隔,即使所述第二测量间隔模式的优先级高于第一测量间隔模式的优先级。例如:第一测量间隔模式和第二测量间隔模式存在冲突,第二测量间隔模式的优先级高于所述第一测量模式的优先级,且第一测量间隔模式的权重信息为20%,则需要保证所述第一测量间隔模式中20%的测量间隔不被丢弃,假设第一测量间隔模式 包含10个gap,确定位于最后时刻的连续2个gap不被丢弃,但是该连续2个gap与第二测量间隔模式中的gap冲突,则需要丢弃所述第二测量间隔模式中冲突的gap。
可选地,所述第一部分测量间隔,包括以下一项:
所述第一测量间隔模式包含的所有测量间隔中的第一部分测量间隔;
所述第一测量间隔模式包含的冲突的测量间隔中的第一部分测量间隔。
该实施例中,所述第一部分测量间隔可以是所述第一测量间隔模式中所有gap中的一部分,也可以是所述第一测量间隔模式中存在冲突的gap中的一部分。例如:第一测量间隔模式包含10个gap,其中时序上的前8个gap与第二测量间隔模式中的gap存在冲突,第一权重值为20%,则第一部分测量间隔应为2个gap,该2个gap可以是10个gap中的任意两个,也可以是前8个gap中的任意两个。
下面通过具体实施例说明所述测量间隔冲突的处理方法的实现过程。
如图5所示,系统为终端配置2个gap pattern:gap pattern 1和gap pattern 2,且存在gap冲突情况(某2个gap之间的距离小于threshold x);其中,gap pattern 1的优先级P1大于gap pattern 2的优先级P2;
系统为gap pattern 1分配权重因子/权重系数为C1,为gap pattern 2分配权重因子/权重系数C2;假设C1=25%,C2=25%,且gap pattern 1中的4个gap均与gap pattern 2中的gap冲突。在gap pattern 1和gap pattern 2同时激活的共同时间中,终端可以根据权重因子/权重系数执行以下处理:
(1)在所述共同时间内,保证gap pattern 1中至少有25%的gap不被丢弃,且保证gap pattern 2中至少有25%的gap不被丢弃;
例如:假设确定gap pattern 1中的第一个gap不被丢弃,gap pattern 2中的最后一个gap不被丢弃,对于其他冲突的gap,丢弃优先级低的gap。
(2)在所述共同时间内,保证gap pattern 1中冲突的gap至少25%不被丢弃,且保证gap pattern 2中冲突的gap至少25%不被丢弃。该实施例中,由于gap pattern 1中的4个gap与gap pattern 2中的4个gap均存在冲突,则应保证gap pattern 1中至少一个gap不丢弃,且保证gap pattern 2中至少一个gap不丢弃。
作为另一个可选实施例,如图5所示,系统为终端配置2个gap pattern:gap pattern 1和gap pattern 2,且存在gap冲突情况(某2个gap之间的距离小于threshold x);其中,gap pattern 1的优先级P1大于gap pattern 2的优先级P2;
gap pattern 1未配置权重因子/权重系数,gap pattern 2配置权重因子/权重系数是C2;假设C2=25%,且gap pattern 1中的4个gap均与gap pattern 2中的gap冲突。在gap pattern1和gap pattern 2同时激活的共同时间中,终端可以根据权重因子/权重系数执行以下处理:
(1)在所述共同时间内,保证gap pattern 2中至少有25%的gap不被丢弃;
例如:假设确定gap pattern 2中的最后一个gap不被丢弃,则应丢弃gap pattern 1中 的最后一个gap,即使gap pattern 1的优先级较高;对于其他冲突的gap,丢弃优先级低的gap。
(2)在所述共同时间内,保证gap pattern 2中冲突的gap至少25%不被丢弃。该实施例中,由于gap pattern 1中的4个gap与gap pattern 2中的4个gap均存在冲突,则应保证gap pattern 2中至少一个gap不丢弃;
假设确定gap pattern 2中的最后一个gap不被丢弃,由于gap pattern 2的优先级低于gap pattern 1的优先级,则gap pattern 2中其他三个gap均被丢弃。
该实施例中,根据分配的权重因子/权重系数,网络侧无需具体知道终端在gap冲突中保留或者丢弃哪一个gap,但是根据权重因子/权重系数仍然知悉在多个gap pattern同时激活的这一段时间的性能指标要求。
本申请的实施例,终端配置的测量间隔模式具有相对应的优先级信息和权重信息,在测量间隔模式冲突时,可以基于测量间隔模式的优先级信息和权重信息,确定在多个测量间隔模式同时激活的共同时间内需要丢弃的测量间隔,从而避免测量间隔模式的全部测量间隔不可用的问题。
如图6所示,本申请实施例还提供一种测量间隔配置方法,应用于网络侧设备,所述方法包括:
步骤601、网络侧设备为终端配置测量间隔模式的配置信息,所述配置信息包括:所述测量间隔模式的优先级信息和权重信息。
该实施例中,网络侧设备为终端配置测量间隔模式,具体地,可以为终端配置多个测量间隔模式。所述网络侧设备还可以为所述测量间隔模式配置优先级信息和权重信息。所述权重信息可以包括:权重因子或者权重系数。例如:共配置2个测量间隔模式:gap pattern1和gap pattern 2,gap pattern 1的优先级高于gap pattern 2的优先级;其中gap pattern 2的权重配置为20%。
对于配置的多个gap pattern,在一些时间点可能存在冲突,例如在多个gap pattern同时激活的共同时间(common period of time)内,gap pattern 1和gap pattern 2的部分gap冲突。在多个gap pattern之间存在冲突时,所述终端可以根据所述优先级信息和所述权重信息,确定需要丢弃的gap。
可选地,所述优先级信息包括:为终端配置的每个所述测量间隔模式的优先级信息。
该实施例中,对于为终端配置的每个测量间隔模式,均配置对应的优先级。在终端确定需要丢弃的测量间隔时,可以优先考虑丢弃低优先级的测量间隔。
可选地,所述权重信息包括:
为终端配置的每个所述测量间隔模式的权重信息;
或者,
为终端配置的所述测量间隔模式中的部分测量间隔模式的权重信息。
可选地,所述部分测量间隔模式包括:为终端配置的所述测量间隔模式中,优先级低 于最高优先级的测量间隔模式。
该实施例中,对于为终端配置的测量间隔模式,可以为每个测量间隔模式分别配置权重信息,也可以仅针对部分测量间隔模式配置对应的权重信息。例如:可以仅为低优先级的测量间隔模式配置对应的权重信息,对于最高优先级的测量间隔模式不配置所述权重信息;具体地,可以配置低优先级中的部分或者全部测量间隔模式的权重信息。
例如:系统为终端配置3个测量间隔模式:gap pattern 1、gap pattern 2、gap pattern 3,其中gap pattern 1的优先级最高,gap pattern 3的优先级最低,则可以配置gap pattern 1的权重因子是C1,gap pattern 2的权重因子是C2、gap pattern 3的权重因子是C3;或者,可以仅配置gap pattern 2的权重因子为C2、gap pattern 3的权重因子为C3;或者,如果不关注gap pattern 3中的gap是否丢弃,则可以仅配置gap pattern 2的权重因子为C2;若不关注gap pattern 2中的gap是否丢弃,则可以仅配置gap pattern 3的权重因子为C3。
本申请的实施例,网络侧设备为终端配置的测量间隔模式配置对应的优先级信息和权重信息,使终端可以在测量间隔模式冲突时,基于测量间隔模式的优先级信息和权重信息,确定在多个测量间隔模式同时激活的共同时间内需要丢弃的测量间隔。所述网络侧设备无需知道终端在gap冲突中保留或者丢弃的具体gap,但是根据权重信息可以知悉在多个gap pattern同时激活的共同时间内的性能指标要求。
本申请实施例提供的测量间隔冲突的处理方法,执行主体可以为测量间隔冲突的处理装置;本申请实施例提供的测量间隔配置方法,执行主体可以为测量间隔配置装置。本申请实施例中以测量间隔冲突的处理装置执行测量间隔冲突的处理方法,测量间隔配置装置执行测量间隔配置方法为例,说明本申请实施例提供的测量间隔冲突的处理装置和测量间隔配置装置。
如图7所示,本申请实施例提供一种测量间隔冲突的处理装置700,应用于终端,所述装置包括:
第一获取模块710,用于获取被配置的测量间隔模式的配置信息,所述配置信息包括:所述测量间隔模式的优先级信息和权重信息;
第一处理模块720,用于根据所述优先级信息和所述权重信息,在存在冲突的测量间隔模式同时激活的共同时间内,对冲突的测量间隔进行丢弃处理。
可选地,所述优先级信息包括:被配置的每个所述测量间隔模式的优先级信息。
可选地,所述权重信息包括:
被配置的每个所述测量间隔模式的权重信息;
或者,
被配置的所述测量间隔模式中的部分测量间隔模式的权重信息。
可选地,所述部分测量间隔模式包括:
被配置的所述测量间隔模式中,优先级低于最高优先级的测量间隔模式。
可选地,所述第一处理模块包括:
第一处理单元,用于在存在冲突的测量间隔模式中,若第一测量间隔模式的权重信息是第一权重值,则在所述共同时间内,所述第一测量间隔模式中的第一部分测量间隔不被丢弃;
第二处理单元,用于对于除所述第一部分测量间隔外的其他测量间隔,根据存在冲突的所述测量间隔模式的优先级信息,确定丢弃的测量间隔;
其中,所述第一部分测量间隔根据所述第一权重值确定。
可选地,所述装置还包括:
第三处理单元,用于若在存在冲突的测量间隔模式中,所述第一测量间隔模式的优先级低于第二测量间隔模式的优先级,则在所述共同时间内,丢弃所述第二测量间隔模式中的第二部分测量间隔;
其中,所述第二部分测量间隔是与所述第一部分测量间隔冲突的测量间隔。
可选地,所述第一部分测量间隔,包括以下一项:
所述第一测量间隔模式包含的所有测量间隔中的第一部分测量间隔;
所述第一测量间隔模式包含的冲突的测量间隔中的第一部分测量间隔。
本申请的实施例,终端配置的测量间隔模式具有相对应的优先级信息和权重信息,在测量间隔模式冲突时,可以基于测量间隔模式的优先级信息和权重信息,确定在多个测量间隔模式同时激活的共同时间内需要丢弃的测量间隔,从而避免测量间隔模式的全部测量间隔不可用的问题。
如图8所示,本申请实施例提供一种测量间隔配置装置800,应用于网络侧设备,所述装置包括:
配置模块810,用于为终端配置测量间隔模式的配置信息,所述配置信息包括:所述测量间隔模式的优先级信息和权重信息。
可选地,所述优先级信息包括:为终端配置的每个所述测量间隔模式的优先级信息。
可选地,所述权重信息包括:
为终端配置的每个所述测量间隔模式的权重信息;
或者,
为终端配置的所述测量间隔模式中的部分测量间隔模式的权重信息。
可选地,所述部分测量间隔模式包括:
为终端配置的所述测量间隔模式中,优先级低于最高优先级的测量间隔模式。
本申请的实施例,网络侧设备为终端配置的测量间隔模式配置对应的优先级信息和权重信息,使终端可以在测量间隔模式冲突时,基于测量间隔模式的优先级信息和权重信息,确定在多个测量间隔模式同时激活的共同时间内需要丢弃的测量间隔。所述网络侧设备无需知道终端在gap冲突中保留或者丢弃的具体gap,但是根据权重信息可以知悉在多个gap pattern同时激活的共同时间内的性能指标要求。
本申请实施例中的测量间隔冲突的处理装置或者测量间隔配置装置可以是电子设备, 例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的测量间隔冲突的处理装置能够实现图2至图5的方法实施例实现的各个过程,测量间隔配置装置能够实现图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图9所示,本申请实施例还提供一种通信设备900,包括处理器901和存储器902,存储器902上存储有可在所述处理器901上运行的程序或指令,例如,该通信设备900为终端时,该程序或指令被处理器901执行时实现上述测量间隔冲突的处理方法实施例的各个步骤,且能达到相同的技术效果。该通信设备900为网络侧设备时,该程序或指令被处理器901执行时实现上述测量间隔配置方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于获取被配置的测量间隔模式的配置信息,所述配置信息包括:所述测量间隔模式的优先级信息和权重信息;根据所述优先级信息和所述权重信息,在存在冲突的测量间隔模式同时激活的共同时间内,对冲突的测量间隔进行丢弃处理。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图10为实现本申请实施例的一种终端的硬件结构示意图。
该终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009以及处理器1010等中的至少部分部件。
本领域技术人员可以理解,终端1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图10中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理单元(Graphics Processing Unit,GPU)10041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其他输入设备10072中的至少一种。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1001接收来自网络侧设备的下行数据后,可以传输给处理器1010进行处理;另外,射频单元1001可以向网络侧设备发送上行数据。通常,射频单元1001包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1009可用于存储软件程序或指令以及各种数据。存储器1009可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1009可以包括易失性存储器或非易失性存储器,或者,存储器1009可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1009包括但不限于这些和任意其它适合类型的存储器。
处理器1010可包括一个或多个处理单元;可选的,处理器1010集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器x10中。
其中,射频单元1001,用于获取被配置的测量间隔模式的配置信息,所述配置信息包括:所述测量间隔模式的优先级信息和权重信息;
处理器1010,用于根据所述优先级信息和所述权重信息,在存在冲突的测量间隔模式同时激活的共同时间内,对冲突的测量间隔进行丢弃处理。
可选地,所述优先级信息包括:被配置的每个所述测量间隔模式的优先级信息。
可选地,所述权重信息包括:
被配置的每个所述测量间隔模式的权重信息;
或者,
被配置的所述测量间隔模式中的部分测量间隔模式的权重信息。
可选地,所述部分测量间隔模式包括:
被配置的所述测量间隔模式中,优先级低于最高优先级的测量间隔模式。
可选地,所述处理器1010具体用于:
在存在冲突的测量间隔模式中,若第一测量间隔模式的权重信息是第一权重值,则在所述共同时间内,所述第一测量间隔模式中的第一部分测量间隔不被丢弃;
对于除所述第一部分测量间隔外的其他测量间隔,根据存在冲突的所述测量间隔模式的优先级信息,确定丢弃的测量间隔;
其中,所述第一部分测量间隔根据所述第一权重值确定。
可选地,所述处理器1010还用于:
若在存在冲突的测量间隔模式中,所述第一测量间隔模式的优先级低于第二测量间隔模式的优先级,则在所述共同时间内,丢弃所述第二测量间隔模式中的第二部分测量间隔;
其中,所述第二部分测量间隔是与所述第一部分测量间隔冲突的测量间隔。
可选地,所述第一部分测量间隔,包括以下一项:
所述第一测量间隔模式包含的所有测量间隔中的第一部分测量间隔;
所述第一测量间隔模式包含的冲突的测量间隔中的第一部分测量间隔。
本申请的实施例,终端配置的测量间隔模式具有相对应的优先级信息和权重信息,在测量间隔模式冲突时,可以基于测量间隔模式的优先级信息和权重信息,确定在多个测量间隔模式同时激活的共同时间内需要丢弃的测量间隔,从而避免测量间隔模式的全部测量间隔不可用的问题。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,处理器用于为终端配置测量间隔模式的配置信息,所述配置信息包括:所述测量间隔模式的优先级信息和权重信息。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图11所示,该网络侧设备1100包括:天线111、射频装置112、基带装置113、处理器114和存储器115。天线111与射频装置112连接。在上行方向上,射频装置112通过天线111接收信息,将接收的信息发送给基带装置113进行处理。在下行方向上,基带装置113对要发送的信息进行处理,并发送给射频装置112,射频装置112对收到的信息进行处理后经过天线111发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置113中实现,该基带装置113包括基带处理器。
基带装置113例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图11所示,其中一个芯片例如为基带处理器,通过总线接口与存储器115连接,以调用存储器115中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口116,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1100还包括:存储在存储器115上并可在处理器114上运行的指令或程序,处理器114调用存储器115中的指令或程序执行图8所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述测量间隔冲突的处理方法实施例的各个过程,或者实 现上述测量间隔配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁盘或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述测量间隔冲突的处理方法实施例的各个过程,或者实现上述测量间隔配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述测量间隔冲突的处理方法实施例的各个过程,或者实现上述测量间隔配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的测量间隔冲突的处理方法的步骤,所述网络侧设备可用于执行如上所述的测量间隔配置方法的步骤。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各 个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁盘、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (25)

  1. 一种测量间隔冲突的处理方法,包括:
    终端获取被配置的测量间隔模式的配置信息,所述配置信息包括:所述测量间隔模式的优先级信息和权重信息;
    所述终端根据所述优先级信息和所述权重信息,在存在冲突的测量间隔模式同时激活的共同时间内,对冲突的测量间隔进行丢弃处理。
  2. 根据权利要求1所述的方法,其中,所述优先级信息包括:被配置的每个所述测量间隔模式的优先级信息。
  3. 根据权利要求1所述的方法,其中,所述权重信息包括:
    被配置的每个所述测量间隔模式的权重信息;
    或者,
    被配置的所述测量间隔模式中的部分测量间隔模式的权重信息。
  4. 根据权利要求3所述的方法,其中,所述部分测量间隔模式包括:
    被配置的所述测量间隔模式中,优先级低于最高优先级的测量间隔模式。
  5. 根据权利要求1所述的方法,其中,所述终端根据所述优先级信息和所述权重信息,在存在冲突的测量间隔模式同时激活的共同时间内,对冲突的测量间隔进行丢弃处理,包括:
    在存在冲突的测量间隔模式中,若第一测量间隔模式的权重信息是第一权重值,则在所述共同时间内,所述第一测量间隔模式中的第一部分测量间隔不被丢弃;
    对于除所述第一部分测量间隔外的其他测量间隔,根据存在冲突的所述测量间隔模式的优先级信息,确定丢弃的测量间隔;
    其中,所述第一部分测量间隔根据所述第一权重值确定。
  6. 根据权利要求5所述的方法,所述方法还包括:
    若在存在冲突的测量间隔模式中,所述第一测量间隔模式的优先级低于第二测量间隔模式的优先级,则在所述共同时间内,丢弃所述第二测量间隔模式中的第二部分测量间隔;
    其中,所述第二部分测量间隔是与所述第一部分测量间隔冲突的测量间隔。
  7. 根据权利要求5所述的方法,其中,所述第一部分测量间隔,包括以下一项:
    所述第一测量间隔模式包含的所有测量间隔中的第一部分测量间隔;
    所述第一测量间隔模式包含的冲突的测量间隔中的第一部分测量间隔。
  8. 一种测量间隔配置方法,包括:
    网络侧设备为终端配置测量间隔模式的配置信息,所述配置信息包括:所述测量间隔模式的优先级信息和权重信息。
  9. 根据权利要求8所述的方法,其中,所述优先级信息包括:为终端配置的每个所述测量间隔模式的优先级信息。
  10. 根据权利要求8所述的方法,其中,所述权重信息包括:
    为终端配置的每个所述测量间隔模式的权重信息;
    或者,
    为终端配置的所述测量间隔模式中的部分测量间隔模式的权重信息。
  11. 根据权利要求10所述的方法,其中,所述部分测量间隔模式包括:
    为终端配置的所述测量间隔模式中,优先级低于最高优先级的测量间隔模式。
  12. 一种测量间隔冲突的处理装置,包括:
    第一获取模块,用于获取被配置的测量间隔模式的配置信息,所述配置信息包括:所述测量间隔模式的优先级信息和权重信息;
    第一处理模块,用于根据所述优先级信息和所述权重信息,在存在冲突的测量间隔模式同时激活的共同时间内,对冲突的测量间隔进行丢弃处理。
  13. 根据权利要求12所述的装置,其中,所述优先级信息包括:被配置的每个所述测量间隔模式的优先级信息。
  14. 根据权利要求12所述的装置,其中,所述权重信息包括:
    被配置的每个所述测量间隔模式的权重信息;
    或者,
    被配置的所述测量间隔模式中的部分测量间隔模式的权重信息。
  15. 根据权利要求14所述的装置,其中,所述部分测量间隔模式包括:
    被配置的所述测量间隔模式中,优先级低于最高优先级的测量间隔模式。
  16. 根据权利要求12所述的装置,其中,所述第一处理模块包括:
    第一处理单元,用于在存在冲突的测量间隔模式中,若第一测量间隔模式的权重信息是第一权重值,则在所述共同时间内,所述第一测量间隔模式中的第一部分测量间隔不被丢弃;
    第二处理单元,用于对于除所述第一部分测量间隔外的其他测量间隔,根据存在冲突的所述测量间隔模式的优先级信息,确定丢弃的测量间隔;
    其中,所述第一部分测量间隔根据所述第一权重值确定。
  17. 根据权利要求16所述的装置,还包括:
    第三处理单元,用于若在存在冲突的测量间隔模式中,所述第一测量间隔模式的优先级低于第二测量间隔模式的优先级,则在所述共同时间内,丢弃所述第二测量间隔模式中的第二部分测量间隔;
    其中,所述第二部分测量间隔是与所述第一部分测量间隔冲突的测量间隔。
  18. 根据权利要求16所述的装置,其中,所述第一部分测量间隔,包括以下一项:
    所述第一测量间隔模式包含的所有测量间隔中的第一部分测量间隔;
    所述第一测量间隔模式包含的冲突的测量间隔中的第一部分测量间隔。
  19. 一种测量间隔配置装置,包括:
    配置模块,用于为终端配置测量间隔模式的配置信息,所述配置信息包括:所述测量间隔模式的优先级信息和权重信息。
  20. 根据权利要求19所述的装置,其中,所述优先级信息包括:为终端配置的每个所述测量间隔模式的优先级信息。
  21. 根据权利要求19所述的装置,其中,所述权重信息包括:
    为终端配置的每个所述测量间隔模式的权重信息;
    或者,
    为终端配置的所述测量间隔模式中的部分测量间隔模式的权重信息。
  22. 根据权利要求21所述的装置,其中,所述部分测量间隔模式包括:
    为终端配置的所述测量间隔模式中,优先级低于最高优先级的测量间隔模式。
  23. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至7任一项所述的测量间隔冲突的处理方法的步骤。
  24. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求8至11任一项所述的测量间隔配置方法的步骤。
  25. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-7任一项所述的测量间隔冲突的处理方法的步骤,或者实现如权利要求8至11任一项所述的测量间隔配置方法的步骤。
PCT/CN2023/107898 2022-07-22 2023-07-18 测量间隔冲突的处理方法、装置、终端及网络侧设备 WO2024017242A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210869317.3 2022-07-22
CN202210869317.3A CN117499972A (zh) 2022-07-22 2022-07-22 测量间隔冲突的处理方法、装置、终端及网络侧设备

Publications (1)

Publication Number Publication Date
WO2024017242A1 true WO2024017242A1 (zh) 2024-01-25

Family

ID=89617064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107898 WO2024017242A1 (zh) 2022-07-22 2023-07-18 测量间隔冲突的处理方法、装置、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN117499972A (zh)
WO (1) WO2024017242A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385836A (zh) * 2018-12-29 2020-07-07 电信科学技术研究院有限公司 一种信息配置和数据传输的方法及设备
CN113133029A (zh) * 2021-03-09 2021-07-16 杭州红岭通信息科技有限公司 一种测量Gap的配置方法
WO2022146767A1 (en) * 2021-01-04 2022-07-07 Intel Corporation Gap instance behavior within concurrent gap patterns
US20220217562A1 (en) * 2021-01-04 2022-07-07 Mediatek Singapore Pte. Ltd. Multiple Concurrent Gap Configuration
WO2022242556A1 (zh) * 2021-05-18 2022-11-24 维沃移动通信有限公司 测量间隙的确定方法、终端及网络侧设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385836A (zh) * 2018-12-29 2020-07-07 电信科学技术研究院有限公司 一种信息配置和数据传输的方法及设备
WO2022146767A1 (en) * 2021-01-04 2022-07-07 Intel Corporation Gap instance behavior within concurrent gap patterns
US20220217562A1 (en) * 2021-01-04 2022-07-07 Mediatek Singapore Pte. Ltd. Multiple Concurrent Gap Configuration
CN113133029A (zh) * 2021-03-09 2021-07-16 杭州红岭通信息科技有限公司 一种测量Gap的配置方法
WO2022242556A1 (zh) * 2021-05-18 2022-11-24 维沃移动通信有限公司 测量间隙的确定方法、终端及网络侧设备

Also Published As

Publication number Publication date
CN117499972A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
WO2023186161A1 (zh) 候选小区处理方法及装置、终端及网络侧设备
WO2024017242A1 (zh) 测量间隔冲突的处理方法、装置、终端及网络侧设备
JP2024518516A (ja) 測定ギャップの決定方法、端末及びネットワーク側機器
WO2024037401A1 (zh) gap配置方法、装置、终端及网络侧设备
WO2024017007A1 (zh) 条件配置信息的处理方法、装置及终端
WO2023198047A1 (zh) 资源确定、配置方法、终端及网络侧设备
WO2023109759A1 (zh) Prach传输方法、装置及终端
WO2023198125A1 (zh) 副链路发现传输处理方法、装置及终端
WO2023131148A1 (zh) 干扰辅助信息的上报方法、终端及网络侧设备
WO2023036329A1 (zh) 资源重评估方法、装置及终端
WO2023202603A1 (zh) 条件切换的配置方法、终端及网络侧设备
WO2023221883A1 (zh) 辅小区SCell激活方法及设备
WO2024061111A1 (zh) 资源处理方法、装置及通信设备
WO2024032489A1 (zh) Prs接收方法及装置、终端
WO2023198062A1 (zh) Csi测量和上报方法、装置、设备、系统及存储介质
WO2023078328A1 (zh) 旁链路资源选择处理方法、装置、终端及可读存储介质
WO2023036327A1 (zh) 资源选择方法、装置及终端
WO2024099190A1 (zh) 能力指示方法、装置、终端、网络侧设备及可读存储介质
WO2023216959A1 (zh) 条件重配置信息的处理方法、装置及通信设备
WO2023109763A1 (zh) Prach传输方法、装置及终端
CN113676853B (zh) 通话方法和终端设备
WO2023151695A1 (zh) 波束切换时延的确定方法、装置及终端
WO2023221909A1 (zh) 信号处理方法、终端及网络侧设备
WO2024099151A1 (zh) 测量间隙Gap冲突处理方法、装置、终端及网络侧设备
WO2023104025A1 (zh) Srs资源配置方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842305

Country of ref document: EP

Kind code of ref document: A1